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The Genesis of Mathematical Objects, following Weyl and
Brouwer.

Dirk van Dalen

Almost a century ago, Brouwer launched his first intuitionistic pro-
gramme for mathematics. He did so in his dissertation of 1907, where he
formulated the basic act of creation of mathematical objects, known as the
ur-intuition of mathematics. Mathematics, in Brouwer’s view, was an intel-
lectual activity of men (of the subject), independent of language and logic.
The objects of mathematics come first in the process of human cognition,
and description and systematization (in particular logic) follow later. The
formulation of the ur-intuition is somewhat hermetic, but in view of its
fundamental role, let us reproduce it here.

Ur-intuition of mathematics (and every intellectual activity) as
the substratum, divested of all quality, of any perception of
change, a unity of continuity and discreteness, a possibility of
thinking together several entities, connected by a ‘between’ that
by the interpolation of new entities never gets exhausted.

As we see, Brouwer sees the ur-intuition as the genesis of both the discrete
part of mathematics, let us say, the natural numbers, and of the continuous
part, i.e. the continuum. Neither of these can be reduced to the other.

A more refined analysis was given in the Vienna lectures (although it
is foreshadowed in the so-called ‘rejected parts’ of the thesis), where the
notion of the falling apart of a moment of life is introduced. In the fi-
nal presentation, Consciousness, Philosophy and Mathematics (CPM), [?],
this phenomenon is described as the move of time: ‘By a move of time
a present sensation gives way to another present sensation in such a way
that consciousness retains the former one as a past sensation and moreover,
through this distinction between present and past, recedes from both and
from stillness and becomes mind.’ Thus the subject has created a ‘twoity’
of a past and present sensation. The process evidently can be iterated, and
complexes and strings of sensation become the object of attention. The
sensation-complexes form a bewildering mixture, in which a certain order
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is introduced by the causal attention. This carries out a process of identi-
fication. One may think of the identification of ‘similar’ complexes, or of
abstraction.

In CPM the notion of causal sequence is further refined: ‘An iterative
complex of sensations whose elements have an invariable order of succession
in time, whilst if one of its elements occurs, all following elements are ex-
pected to occur likewise, in the right order of succession, is called a causal
sequence’. It might be tempting to explain these, let us say ‘strongly causal
sequences’, scs, by a causality, independent of the will of the subject. This,
however, is rejected by Brouwer. On the contrary, causality is explained by
the notion of strong causal sequence. A scs can be put to use by the subject
in order to realize events that are not immediately obtainable. One only has
to realize the first event of a scs, or an intermediate one, in order to obtain
the final event. The procedure of realizing the final (and desirable) event
by realizing a preceding event was called the ‘jump from end to means’, and
later the mathematical or cunning act. The jump from end to means, is a
useful and convenient tool for the subject to dominate nature and for the
protection of his personal sphere.

Assuming that in a scs a0, . . . , ak, . . . , an the realization of all stages is
indeed of a fixed determined nature, one may recognize in the jump from
end to means the germ of the constructive implication. The transition from,
say, ak to an is completely lawlike and thus the proof interpretation of
A → B is foreshadowed by the automatic and algorithmic transition from
(the building for) A to (the building for) B. Of course, the subject may
and will add much more regularity to causal sequences than the primitive
spontaneous sequence of sensations offers.

By abstracting from all accidental features of twoities, the empty twoity
is obtained. In other words, by identifying all twoities one obtains the object
where only order and distinction are recognized. This empty twoity then can
take the place of the number 2. From there it is not difficult to generalize
to the individual natural numbers, and the next step — the recognition of
the iteration of the ‘next number’ step as a legitimate mental construction,
together with the corollary, the (potentially infinite) set of natural numbers
— is mentioned in passing by Brouwer . He speaks of ‘unlimited unfolding’
(CPM, p.1237).

Thus the basic material of ‘discrete mathematics’ is at the disposition of
the subject. This part of the process of creating is later called the first act
of intuitionism. We should note that the aspect of simultaneous creation of
discrete and continuous, is played down, but as late as the Vienna lectures
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(1928) Brouwer pointed out that both acts of intuitionism are grounded in
the ur-intuition. The continuum is given in the move-of-time act as the
‘between’. In his Rome lecture (1908) Brouwer explicitly points out that
‘the first and the second are thus kept together, and the intuition of the
continuous (continere = keeping together) consists of this keeping together’.
And he adds: ‘This mathematical ur-intuition is nothing but the contentless
abstraction of the sensation (experience) of time’. Time is thus created by
the subject through the ‘move of time’, together with the continuum and
the natural numbers. The second act of intuitionism is the creation of ‘more
or less freely proceeding infinite sequences of mathematical entities previ-
ously acquired’ and of ‘species’, i.e. ‘properties supposable for mathematical
entities previously acquired’.

In CPM the two acts are tacitly lumped together under the act of ‘unlim-
ited unfolding’. The process of creation of causal sequences and complexes
does extend beyond the realm of mathematics; indeed the physical world, as
well as the social one is made up of those objects. If we look for a minute at
the physical phenomena, then we can see the role of mathematics as follows.
The objects of the physical world are obtained by abstraction from sensation
complexes, a further abstraction gets the subject to mathematical objects
and structures. And hence there is a natural connection between the phys-
ical universe and the mathematical, something like a projection. Although
this does not explain the success of mathematics in full, it shows that the
connections do not come out of the blue.

By and large, the above sketches the genesis of Brouwer’s mathematical
universe. In the dissertation Brouwer goes to great lengths to determine the
possible sets in mathematics on the basis that there are no sets but those
we can create ourselves. After the introduction of choice sequences (cf. the
second act) he revised his views. The extent of the mathematical universe
is modest compared to the traditional Cantorian universe, from a classical
point of view, Brouwer’s universe does not get beyond ω1. But what it lacks
in ‘height’ is compensated by the extra fine structure which is inherent to
the intuitionistic approach (and its logic).

The most spectacular part of the universe is the second-order part, let
us say second-order arithmetic with sequences, species, or both. Where the
first-order part yields more-or-less a subtheory of classical arithmetic, the
second-order part has certain specific properties that are incompatible with
classical mathematics.
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We will look at a few of these principles. The first and most strik-
ing principle was introduced by Brouwer in his courses on pointset the-
ory of 1915-1917. The principle appeared in print in 1918, in modern for-
mulation it reads ‘A mapping F from choice sequences to natural num-
bers has the property that each F (α) is determined by an initial segment
αk(= (α0, α1, α2, . . . , α(k − 1))
Formalized: ∀α∃x∀β(αx = βx → F (α) = F (β)

The principle finds a more general form in the Principle of weak continuity

WC ∀α∃xA(α, x) → ∀α∃x∃y∀β(αy = βy → A(β, x)

Brouwer formulated his functional version in a proof, giving no argument
for it. A first attempt at a justification could run as follows: in order to
compute the natural number F (α) a finite number of steps is required, when
the computation is finished only finitely many members of the sequence
α have been generated, and so only this initial segment enters into the
computation. Hence any sequence β with the same initial segment yields
the same value under F . This argument only works in the case that only
numerical information of α is used. In general, however, information of a
different kind may be used.

Here is an example, formulated as a game (Brouwer introduced game
formulations in his Groningen Lectures, 1930). There are two players, I and
II. I provides successively information about α and II has an algorithm for
computing F (α). At each step II may ask for more information or show the
output. In our example II simply takes F (α) = 100

I II
0 7 ?
1 2 ?
2 301 ?
...

...
...

13 5 and α becomes stationary F (α) = 5

Note that I may (and perhaps must) give more information than just
the numerical values of α. Indeed, if one accepts the idea of mathematics
as a solitary play of the subject, then I and II are no more than puppets
controlled by the subject. Thus the availability of full information is obvious.

Now there obviously are β’s with the same initial segment β14 = α14 =
(7, 2, 301, . . . , 5) with F (β) 6= 5. This failure of the simple argument is
caused by the fact that suddenly a condition of a higher order is put on α.
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And higher order conditions cannot be avoided, if only because one wants to
allow lawlike sequences (think of the difference between the decimals of π and
those determined by flipping a coin). Hence a better argument is required.
One was provided by Mark van Atten in a setting which slightly, but justifi-
ably, extended Brouwer’s framework. Brouwer demanded that once one has
introduced a condition on future choices (of values or conditions), one sticks
to it. However, it is fairly clear that his main stipulation was that each finite
sequence of choices has at least one immediate successor. By allowing higher
order conditions to be repealed, the extendibility condition is observed, and
the extra flexibility certainly does not restrict the practical aspects of choice
sequences. Now the possible ephemeral nature of higher order conditions,
disqualifies them for use in the computation of the output of F on input α,
see [?]. The analysis lays down certain conditions on the class of sequences
for the validity of the continuity principle. The principle is in fact justified
for the holistic universe; but we can see that there is a new problem for
research: for which universes does WC hold? A simple example of a uni-
verse that violates the continuity principle is the one in which each sequence
eventually becomes constant. The function F assigns this constant value to
α; F is obviously not continuous. There is a rich literature on the continuity
principle, see for example [?, ?]. The continuity principle has striking con-
sequences in everyday mathematics e.g. Brouwer’s continuity theorem - all
real functions are continuous and the indecomposability of the continuum -
R cannot be split into two non-empty parts. Both results confirm the above
mentioned incompatibility, in particular the latter shows that the principle
of the excluded middle is false: ¬∀x ∈ R(x = 0 ∨ x 6= 0)

Weyl, in his basic paper, On the new foundational crisis in mathematics,
[?], adopted Brouwer’s intuitionistic programme, adding his own interpre-
tations to it. In particular Weyl did not give the same status to choice
sequences Brouwer did. For Weyl choice sequences did not belong to math-
ematics proper; all he accepted was the real status of initial segments. As a
consequence arbitrary reals were replaced by generating intervals. Such an
interval, say (a, b) for rational a and b, represents for Weyl the open horizon
of ‘the reals that are potentially given by the interval’. Concrete real num-
bers are given by lawlike sequences of intervals, and arbitrary ones by choice
sequences, in the representing interpretation. Hence there is on Weyl’s ap-
proach a fundamental distinction between existential quantification (over
lawlike reals), and universal quantification (over choice reals). Apart from
everything else, this destroys the hope of salvaging the principle of the
excluded middle. Here Brouwer’s and Weyl’s roads separated. For Weyl
quantified statements were ‘judgement abstracts’, not to be taken for real
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judgements, whereas Brouwer recognized quantified statements as ordinary
statements with ordinary proof conditions. Hence for Weyl the continuity of
all real functions was an obvious consequence of the notion of arbitrary real
number (approximations follow from approximations), whereas for Brouwer
there was a hard theorem to be proved. For more on the Brouwer-Weyl
views, see [?].

A further analysis, making use of transfinite principles (the principle of
Bar Induction), established the bar theorem, the fan theorem, and the lo-
cally uniform continuity theorems (real functions on intuitionistically com-
pact subsets of R are uniformly continuous). For the practical consequences
of these properties of Brouwers universe see [?, ?].

So far the treatment of the universe was completely uniform, but in the
twenties Brouwer started to make the distinction between the lawlike and
the full continuum. Equivalently, between the set of lawlike sequences and
the set of (all) choice sequences. Historically speaking, there was a perfect
reason to do so. When dealing with infinite processes algorithms are the first
things that come to mind, for the law is the thing that guarantees infinite
continuation. The first Brouwerian counterexamples, were, not surprisingly,
based on an algorithm: the decimal expansion of π. However, once choice
sequences were recognized by him as legitimate objects (the subject is free
to make choices), it was natural to look for a counterpart of the (lawlike)
Brouwerian counter examples where one uses a decidable property of a law-
like sequence, which has neither been proved, nor rejected. One should fully
exploit the choice-character of sequences in the hope of exploiting the prop-
erties of the full Brouwerian universe. In 1927 there are the first signs of
the new method, which was published some twenty years later, and which
goes by the name of the ‘creating subject’. The underlying idea is that the
subject investigates some particular property, while he carries out a conve-
nient bookkeeping at the same time: if at moment n A has not yet been
established, put down a 0, otherwise a 1. Brouwer uses the expression ‘the
creating subject experiences the truth of A’. Here it is tacitly assumed that
‘the creating subject experiences the truth or he does not’, the simple argu-
ment being that ‘in doubt, one does not experience the truth’. A reasonable
assumption. In view of the fact that the ur-intuition, in its function as a
time-measuring and -introducing principle, provides the subject with a se-
quence of moments ordered like the natural numbers, the time parameter n
is a natural one. The effect of the activity of the creating subject is that a
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choice sequence α is in the following way associated to a proposition A:

∃α(A ↔ ∃x(αx 6= 0))

This formalization of Brouwer’s argument is due to Kripke and is called
Kripke’s Schema, KS. Note that KS is an extra condition on the richness
of the Brouwerian universe. It asserts the existence of particular sequences,
compare the role of the axiom of choice. Thus it is not automatically seen
that the old principles still hold. It has in fact been shown that KS is
consistent with most principles. Kreisel formulated an interesting ‘tensed
modal’ extension of the existing theories which captures the properties of
the creating subject, and which is equivalent to the extension by KS [?],
[?]).

The classically inclined logician will note that KS is a very weak com-
prehension principle, which is provable in the classical setting. So whatever
strength one can expect from KS, it has to come from suitable extra prin-
ciples, such as the continuity principle.

We will now proceed to show a number of consequences of KS in prac-
tical mathematics, consequences which are not mere curiosities, but which
make manifest certain features of the universe one would expect, and some
unexpected phenomena to boot. The proofs are carried out under the as-
sumption of the continuity principle and Kripke’s Schema. It turns out to
be convenient to reformulate Kripke’s Schema, such that there is at most
one 1 in the sequence α : ∀x(

∑
y≤x α(y) ≤ 1). Let us call such a sequence

satisfying A ↔ ∃x(αx = 1) , a Kripke sequence for A.

(1) ¬∀xy ∈ R(x 6= y → x#y)

(2) ¬∀xy ∈ R(¬¬x < y → x < y)
(2) was shown by Brouwer in [?], and (1) follows by a completely
similar argument.

(3) The Principle of ∀α∃β-continuity fails, [?].
Proof: we apply KS to ∀x(α(x) = 0):

∃β(∀x(α(x) = 0 ↔ ∃y(β(y) = 1))

Hence ∀α∃β(. . .); by ∀α∃β-continuity there should be a continuous
functional G: NN → NN such that ∀α((∀x(α(x) = 0 ↔ ∃y(G(α)(y) =
1)). Hence we have a continuous functional G testing if an α is the
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zero-sequence 0. I.e. G is 0 on all sequences distinct from 0, and
non-zero on 0. This functional is clearly discontinuous.

Note that therefore there is a real foundational choice to be made here:
adopt KS or ∀α∃β-continuity, but not both.

(4) All negative dense subsets of R are indecomposable.

By a negative subset X we mean one for which X = Xcc (in particular
the complement of a set is negative).

Proof. This theorem follows from two lemma’s. Let X be negative
and dense in R.

(4.1) If X = A ∪ B, with A ∩ B = ∅, then converging sequences (ai)
and (bi) in respectively A and B cannot have the same limit.

Assume ∀k∃n∀m(|am+n − bm+n| < 2−k). We consider the Kripke
sequences α for r ∈ Q and β for r 6∈ Q, where r is an arbitrary real
number.
We define new sequences γ and ci by{

γ(2n) = α(n)
γ(2n + 1) = β(n)

and
{

c2n = an

c2n+1 = bn

Now we introduce a new sequence (di)

dn =
{

cn if ∀k ≤ n(γ(k) = 0)
ck if k ≤ n and γ(k) = 1

Claim: d ∈ X.
If d 6∈ X, then d 6∈ A; hence (dn) does not become stationary in A. So
α(n) = 0 for all n. And by the definition of Kripke sequence we get
r 6∈ Q.
Similarly d 6∈ B; hence (dn) does not become stationary in B. There-
fore β(n) = 0 for all n, and thus r 66∈ Q. Contradiction.
So ¬¬d ∈ X. But since X is negative, we find d ∈ X.

As X = A ∪ B, d ∈ A ∨ d ∈ B. If d ∈ A then (dn) does not become
stationary in B, hence ∀nβ(n) = 0. By the definition of β this im-
plies ¬¬r ∈ Q. A similar argument shows that ¬r ∈ Q if d ∈ B. As
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a result we get ¬r ∈ Q ∨ ¬¬r ∈ Q. As r was en arbitrary real, we
have established ∀r ∈ R(¬r ∈ Q ∨ ¬¬r ∈ Q) , which contradicts the
indecomposability of R. Therefore lim(an) 6= lim(bn).

(4.2) If the above sets A and B are inhabited (i.e. contain an element),
then there are sequences in A and B converging to the same point.
The proof is a piece of elementary analysis, see [?].

Conclusion: X is indecomposable.

This theorem shows that there are lots of indecomposable subsets
of the continuum, for example the irrationals, Qc, and the not-not-
rationals, Qcc. The continuum is clearly extremely ‘connected’; even
if we punch holes in it, it still remains indecomposable. Note that
classically Qc is not connected. It is even zero-dimensional. Intu-
itionistically it has dimension 1. The moral is that the intuitionistic
continuum is very tight, and that its topology will offer unknown sur-
prises and difficulties.

(5) The powerset of N exists.
More precisely: each subset of N can be represented by a suitable 0−1
choice sequence.

The basic idea of the proof is that, given a subset X there is for each
n a Kripke sequence αn such that n ∈ X ↔ ∃x(αn(x) = 1) All these
αn’s can be glued together to form one α that tests membership for
X. For the technical details, see [?].

(6) If R is indecomposable, then there are no discontinuous functions,
([?]).
The converse is obvious, and it allows one to conclude the indecom-
posability on the basis of Brouwer’s negative version of the continuity
theorem (cf. [?]).

Proof. Let f be discontinuous, say in 0. It is no restriction to assume
f(0) = 0. Then ∃k∀n∃x(|x| < 2−n ∧ |f(x) > 2−k)

After determining k we can find a sequence (xn) with |f(xn)| > 2−k

and |xn| < 2−n.

Let α and β again be Kripke sequences for r ∈ Q and r 6∈ Q. Put
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{
γ(2n) = α(n)

γ(2n + 1) = β(n)
and cn =

{
xn if ∀k ≤ n(γ(k) = 0)
xk if k ≤ n and γ(k) = 1

(cn) converges, say to c. As 0 < 2−k, we get f(c) < 2−k ∨ f(c) > 0.
If f(c) < 2−k, then f(c) = 0, so ∀p(γ(p) = 0), which is impossible.
So f(c) > 0, and therefore r ∈ Q ∨ r 6∈ Q. As before we see that this
yields a non-trivial decomposition of the continuum. Contradiction.

This result establishes an equivalence between a certain characteristic
of a function and the nature of its domains. Results of this kind are
familiar from recursion theory and descriptive set theory.

In our description of Brouwer’s universe we have discussed a few basic
principles which have unusual consequences in practical mathematics. One
of the challenges of constructive mathematics, is to find new principles that
embody certain specific phenomena that shed new and unexpected light on
the universe. Markov’s principle is one of those principles, but unfortu-
nately, one cannot justify it on the basis of a strong notion of ‘constructive’.
Kripke’s schema is a good candidate. What we need is more experience with
its applications, furthermore it would be desirable to find a realistic math-
ematical principle equivalent to KS, in the tradition of reverse mathematics.
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