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Abstract. A brief survey of the impact of intuitionistic logic and math-

ematics on modern practice is presented. The main influence is via the

so-called “BHK interpretation” (or “proof interpretation”). By somewhat

relaxing the conditions on the notion of proof the familiar notions of ‘re-

alizability’, ‘Curry-Howard isomorphism’ etc. are motivated. Also some

attention is paid to the characteristic process of replacing traditional no-

tions by strong positive ones.

1 The paradox of success

The history of intuitionism affirms the general rule of success in science: once
a topic or notion has been successfully adopted by the scientific community,
its founder and origins become almost irrelevant to the user. Examples are all
around us: nobody quotes Euclid when doing geometry, or Newton or Leibniz
when differentiating a function. Even notions or areas called after their creators
loose the association with the persons, e.g. hardly anybody thinks of Euclid
when mentioning euclidean geometry, or of Turing when writing down a Turing
machine. Perhaps the real mark of success is a dissociation of the notion from
its creator (In modern terms: the ultimate success of a scientist consists of a
gradual withdrawal from the citation index). In the case of intuitionism this
kind of success has been attained. Few people will still think of Brouwer when
they use bar-induction, or appeal to the continuity theorem, and even fewer
will cite Brouwer. After the boom of the sixties-seventies in the foundations of
mathematics, intuitionism has lost its controversial character and became ac-
cepted within the larger framework of constructivism. Its methods and insights
have been so widely recognized, that it mostly seems to live on as an adjective
(as in intuitionistic logic). Its success has killed the topic as an independent area
of research in mathematics or logic. It has become part of a wider tradition of
constructivism.

Contrary to Brouwer’s expectations and hopes, intuitionism has found its
acceptation by way of logic and computer science, rather than in mathematics.

As a consequence of the present position of intuitionism in the wider con-
text this talk will deal with general issues in constructivity and not just in
intuitionism. To make the distinction clear: intuitionism is based on the men-
tal, intellectual activity of the individual, and it derives its objects and principles

1



from this source. Constructivity, on the other hand, is a philosophy free part of
mathematics and logic which studies algorithmic aspects.

2 The heritage of intuitionism

The three principal areas where Brouwer left his mark, are objects, methods and
principles. The first two are closely connected, and the third one is the result
of reflection on them. Brouwer’s basic innovation in the domain of objects
is the notion of choice sequence. Choice sequences (say of natural numbers)
provide us with an element of uncertainty (unpredictability), which lends a
new complexion to the mathematical universe. The introduction of incomplete
objects (or objects with incomplete information) automatically forces another
logic on the user. Let us recall one of those familiar example of intuitionistic
mathematics: how does one show that if the decimal expansion of π contains
100 consecutive sixes, it also contains 99 consecutive sixes? The truth table
wisdom fails here; we cannot assert that either there are no 100 consecutive
decimals six in π’s expansion or there are 99 consecutive decimals six in π. For,
we simply are in no position to make the decision. Instead we have to adopt a
more effective procedure: as soon as we have proof that there are 100 consecutive
sixes in π’s expansion (which means that we can pinpoint the sequence), we can
provide a proof that there are 99 consecutive sixes in the expansion. So how
do we get the conviction that the proof of the first statement leads to the proof
of the second statement? The answer is: we have an algorithm that converts
proof 1 into proof 2. This is the basic of idea of the proof interpretation: ;
so one has to adopt the proof-interpretation (or some variation): a proof of
A → B is an algorithm that converts a proof of A into a proof of B. Such an
algorithm has to be a finite object, after all we want to convince, if not others,
at least ourselves. So intuitionism has brought us the double feature of finitary
objects (natural numbers, rationals, operations, proofs) and infinitary objects
(choice sequences, sets), complete with its own logic and intended semantics.
It is important to note that Brouwer introduced a novelty in mathematics that
might easily have escaped the attention of the contemporaries, had not Heyting
and Kolmogorov presented the matter in a systematic approach. For Brouwer,
proofs were constructions of a particular kind, and so they were part and parcel
of mathematics itself, not a phenomenon in another medium (i.e. language).
Proofs were actual objects to be constructed and to be operated upon.

3 The influence on modern practice

Apart from its philosophical impact, intuitionism has influenced mathematics
and computer science along two-initially separate lines: the algorithmic and the
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semantic lines. The algorithmic line starts with Kleene in 1945; the semantic
line is much older, it dates back to the middle thirties.

Both the semantical and the algorithmic tradition have their strong and
weak points. The algorithmic tradition has some strong claims to superiority,
in face of the basic claim of constructive and intuitionistic mathematics: it pro-
vides programmable algorithms instead of intuitive constructivity.

Girard, [G 95], has quite correctly pointed out that mathematicians tend
to consider the subject matter of mathematics as rigid and eternal, whereas
computer science has introduced dynamics and structures with states. Whereas
this is undoubtedly the case for classical mathematics, which is frozen from the
outset by its adherence to the principle of the excluded middle, intuitionistic
mathematics is far more modest in its eternity claims. The explicit insistence on
potential infinity, together with the adoption of incomplete (in time!) objects,
lends intuitionism a dynamic feature, for which it does not have to introduce an
explicit time parameter, as in classical mathematics. This may serve as a par-
tial explanation of the modest popularity of intuitionistic methods in computer
science.

4 Theme and Variations: Existence yields algo-
rithms

The theme of the intuitionistic logic is the proof interpretation, and the varia-
tions were composed by Kleene, Kreisel, Gödel, Curry-Howard, Martin-Löf and
others. The significance of the theme and its variation can hardly be overrated.
Building on the idea of the proof interpretation a number of “models” have been
introduced that each take advantage of certain aspects of constructive mathe-
matics. In exchange for the efforts invested in the codification of variation of
proof-notions, one would like to ash in on effectiveness. To be precise, the mark
of success here is the “existence property” or the “effective definability prop-
erty”: if ∃xAx is proved constructively, there should be an effective procedure to
compute (or define) an object a and a proof of Aa. In addition to Martin-Löf’s
type theory the typed lambda-calculus should be mentioned as a manifestation
of the proof-interpretation. The success of type theories of various orders is
highly gratifying from an intuitionistic point of view. It shows that the funda-
mental ideas underlying the constructive truth notion are sufficiently robust to
be realised under a large range of conditions.

In the sixties Kreisel listed a number of requirements for the proof inter-
pretation, [Kr 65]; the most important of which was the decidability of the
proof relations: “one recognizes whether p is a proof of A”. This decidability
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is conceptually plausible, and in a number of instances – e.g. the standard
proof-predicate, or the natural deduction derivation – it is satisfied. However,
for the fruitfulness of the idea of the proof-interpretation it is often necessary
to be somewhat liberal, and to drop one or more basic restrictions. It is by now
generally accepted that the proof interpretation (or the problem interpretation
of Kolmogorov; the names of the Heyting and Kolmogorov are lumped together
with the name of the founding father in the term “BHK-interpretation”) under-
lies most of the constructive interpretations of logic. It is a general methodolog-
ical fact that the fruitfulness of a paradigm is increased by avoiding undesirable
precision; this applies well in the case of the proof interpretation – one has to
allow for a measure of freedom in selecting the criteria.

The proof-interpretation has turned out to be a powerful heuristic tool. A
warning is in order here: even the truth table interpretation can be viewed as
a degenerate proof interpretation, with just one proof object. So the general
applicability also carries its weakness.

If we, for the moment describe the business of constructive mathematics and
its logic as the analysis of the algorithmic content of mathematics, then it is ob-
vious that we should look for algorithmic interpretations of one sort or another.
We will look at a number of those and trace their development.

4.1 Kleene’s 1945 Realizability

Kleene viewed the interpretation of quantifiers (say over natural numbers) along
the line of the finitary standpoint of Hilbert-Bernays.1 Quantified statements
are viewed as incomplete statements, or statements with incomplete informa-
tion. The meaning of ∃xA(x) thus has to be completed by an instance n such
that A(n). Combining the intuitionistic proof interpretation with the “incom-
plete” information notion, Kleene implemented the basic notions in terms of
partial recursive functions [K 45]. He boldly extended the ‘incomplete informa-
tion’ idea to all connectives.

We will show the main points of the proof interpretation and realizability in
the table below. The notation is:

proof interpretation a is a proof of A – a : A
realizability a realizes A – a r A)

In the proof interpretation “a is a proof of A” is primitive, i.e. it stands for the
unformalized proof notion. In realizability natural numbers realize statements.

1Who seem to be indebted, in turn, to Hermann Weyl, cf. [?].
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In our notation we freely use the apparatus of recursion theory, e.g. {a}b for
application, (a)i for projection, etc.

A a : A a r A
A1 ∧A2 a = 〈a1, a2〉 and (a)0 r A1 and (a)1 r A2

a1 : A1, a2 : A2

A1 ∨A2 a = 〈a1, a2〉 and ((a)0 = 0 ∧ a2 r A1)∨
(a1 = 0 and a2 : A1) or ((a)0 6= 0 ∧ a2 r A2)
(a1 6= 0 and a2 : A2)

A1 → A2 a is a construction such that if b r A1 → {a}b rA2

b : A1, then a(b) : A2

∀xA(x) a is a construction such that {a}n r A(n) for all n
a(n) : A(n) for all n

∃xA(x) a = 〈a1, a2〉 and a2 : A(a1) (a)1 r A((a)0)

The realizability clauses are faithfully mimicking those of the proof interpre-
tation, and so realizability can be viewed as a particular, constructive truth
definition. It should not surprise us that by narrowing down the meaning of “a
is a proof of A”, we obtain a theory which is actually richer than the originally
intended theory, i.e. HA in this case. It came, however, as a surprise that the
theory of realizable arithmetic can indeed be a few meaningful statements,2 the
key role here is played by:

Church’s Extended Thesis:

ECT0 ∀x(A(x) → ∃yB(x, y) → ∃z∀z(A(x) → B(x, {z}x))
for ∃-free A.

Fact:

• HA∗ + ECT0 ` A ↔ ∃x(x r A) and

• HA∗ + ECT0 ` A ⇔ HA ` nr A for a numeral n,

where HA∗ is a suitable extension of HA in which partial terms are allowed,
and which allow for a formalization of the basics of recursion theory, cf. [TD 88].

Kleene’s realizability was the first of a long sequence of realizability notions,
which are more or less variations on the original notion.

One of such notions is the “truth-realizability”, which is obtained from
Kleene’s realizability by an extra condition in the implication clause:

2the material on realizability, modified realizability and the Dialectica interpretation is
mostly drawn from [T 73] and [T 92]
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x rt (A → B) := ∀y(y rt A → {x}(y) rt B) ∧ (A → B)

One of the attractive aspects of realizability is that it makes the relation be-
tween existential statements and instantiations explicit. The truth realizability
is in particular useful in this respect. One shows that:

HA∗ ` t rt A → A and

HA∗ ` A ⇒ HA∗ ` t rt A for a suitable term t.

One may use this fact to get an effective version of the numerical existence
property

HA∗ ` ∃xAx ⇒ HA∗ ` An for a suitable n.

In fact, HA is closed under Church’s Rule:
HA ` ∀x∃yA(x, y) → HA ` ∀xA(x, {e}y) for a suitable e.

Since the index of the recursive (choice) function can be effectively deter-
mined, realizability provides a (not albeit extremely realistic) program extra-
dition machinery. The idea is, however, basic for some more realistic versions,
which we will discuss later.

5 Kreisel’s modified realizability

.
More than a decade after Kleene’s pioneering papers, an essentially differ-

ent realizability notion was introduced by Kreisel; this version is now known
as modified realizability. Whereas Kleene’s realizability is basically a first-order
technique, modified realizability is a technique for typed systems. The present
versions are formulated for HAω, the higher-type extension of Heyting’s arith-
metic. HAω is a type theory with product and function types, its formalisation
is well-known, following the formulation of Gödel’s system T. Apart from the
usual axioms for the traditional combinators, it has a recursor at all types and
an accompanying recursion axiom.

The clauses for modified realizability run as follows: (the types of the terms
are not indicated, but they don’t present problems).

x mr (t = s) := t = s (for numerical terms)
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x mr (A ∧B) := p0x mr A ∧ p1x mr B

x mr (A → B) := ∀y(y mr A → xy mr B)

x mr ∀zA(z) := ∀z(xz mr A(z))

x mr ∃xA(x) := p1x mr A(p0x).

The disjunction is not treated separately, as it is definable from ∃. This
realizability looks rather like a translation, but one can obtain more semantical
versions by interpreting HAω itself in models, e.g. HRO.

Modified realizability, like its predecessor, allows an axiomatization in sim-
ple terms:

HAω + AC + IP∃f ` A ⇔ HAω ` t mr A for some t.

Here AC is the full typed axiom of choice and IP∃f is the independence of
premise principle for ∃-free formulas:

(A → ∃xσB) → ∃xσ(A → B) with A ∃-free.

It is not hard to see that HA+MPR +CT0 +IP is inconsistent, where MPR

is the primitive recursive version of Markov’s principle and CT0 the arithmetic
version of Church’s Thesis. IP is the negative independence of premise princi-
ple. Since CT0 is likewise modified realizable, it is clear that Markov’s principle
is not mr realizable. So there is a version of “recursive” arithmetic (of higher
types) which violates Markov’s principle.

There are numerous variations on realizability, each of them having its own
specific proof theoretic features. We mention the realizability notion of Lifs-
chitz, introduced for the purpose of proving CT0 independent of CT0!

In the past decades a large number of facts about formal systems of intuition-
istic arithmetic has been established by means of one realizability or another.

The following is a modest selection (the reader should consult [T 73] and
[T 92] for a survey of realizability):

(i) HA∗ + ECT0 is conssistent over HA∗

(ii) HA + ECT0 + M ` A ⇔ HA + M ` ∃x(x r A)

(iii) HA + M + ECT0 ` ¬¬A ⇔ PA ` ∃x(x r A)
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(iv) HA + IP + CT0 is consistent over HA

(v) HAω + IPω + AC + CT0 is consistent over HAω

(vi) HA + CT0 6` ECT0 (Beeson)

(vii) HA + CT0! 6` CT0 (Lifshitz)

(viii) EL + WCT 6` CT (where EL is elementary analysis)

6 Gödel’s Dialectica Interpretation

.

There is one more influential implementation of the proof interpretation;
the interpretation of typed arithmetic in itself via Gödel’s interpretation. The
similarity is not so obvious here, but for the key cases (→, and ∀) there is an
observable relationship. Consider HAω and define for each formula A a trans-
lation AD:

AD := A for atomic A

Now let AD = ∃x∀yAD(x, y), BD = ∃u∀vBD(u, r), then

(A ∧B)D := ∃xu∀yv(AD ∧BD)

(A ∨B)D := ∃z0xu∀yv(z = 0 → AD) ∧ (z 6= 0 → BD))

(∃zA)D := ∃zx∀yAD

(∀zA)D := ∃x∀zyAD(xz, y, z)

The constructive feature of the Dialectica interpretation is of a different
nature, compared to the preceding interpretations. It is rather closer to the
finitistic meaning considerations of Hilbert-Bernays, or even the intuitionistic
meaning consideration of Hermann Weyl. This can be seen by looking at a
simple case.

Consider, e.g., ∃xAx → ∃uBu for atomic A and B; it is translated as
∃U∀x(Ax → BUx). This is exactly what the finitistic interpretation yields.

There is no immediate “proof interpretation” feature here. But since explicit
functionals can be found for the existential variables, and the matrix of the for-
mula is quantifier free, a certain analogy with the constructive interpretation
can be claimed.
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The Dialectica interpretation can also be axiomatized; the following holds:

HAω + IP ′
0 + M ′ + AC ` A ↔ AD,

where IP ′
0 = (∀xAx → ∃yBy) → ∃y(∀xAx → By) and

M ′ = ¬¬∃xAx → ∃xAx for quantifier free A, with arbitrary x.

7 Effectivity and Feasibility

.

¿From a constructive viewpoint the above implementation of the “proof-
interpretation” idea is very gratifying, in as far as it carries the idea beyond
that of a mere heuristic instrument. It has a serious drawback, however. The
resulting algorithms are highly complex and the machinery involved does not
seem to suggest immediate relations between the formula to be interpreted and
the resulting algorithm (say for ∃xAx and its instantiating algorithm).

A desideratum, here, is a method that allows control over the complexity of
realizing objects.

Some attempts have been made in this direction. There is a recent paper of
Damnjanovic [D 95], dealing with the problem for Kleene-realizability.

Damnjanovic showed that one may essentially restrict the class of (indices
of) realizing functions. In fact the so-called ε0 -recursive functions are sufficient
to obtain a sound realization of HA. Moreover, his method shows that the re-
alizability is minimal in a specific sense: a rise in complexity corresponds to the
use of sensitive rules of the formal system, e.g. →-elimination, ∀-elimination,
induction. Thus he incidentally recovers a result of Kreisel which says that the
definable functions of HA are the ε0-recursive ones, as a special case of the
following:

If HA ` ∀x∃yA(x, y) then for all n A(n, f(n)) for some ε0-recursive function
(there is also a version for arbitrary types).

Cook and Urquhart had also approached the problem of improving on re-
alizability and on the Dialectica interpretation in their ‘Feasible interpretation
of feasibly constructive arithmetic” [CU 93]. They considered an intuitionistic
first-order extension of Cook’s polynomial equation calculus, and a higher-type
system of feasible functionals. The authors work in a formal system IPV which
is a predicate logic extension (with a weak form of induction) of Cook’s equation
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calculus PV (polynomially verifiable). The system IPV in fact is a conservative
extension of Buss’ IS1

2. IPV itself is extended conservatively to a higher-type
system IPVω of typed lambda-calculus with feasible functionals, which is con-
servative over IPV. A suitable modification of the modified realizability yields
results for the polynomial versions of arithmetic and functionals comparable to
the older results for HA; for the existence property holds:

For example IPVω ` ∀x∃Y A(x, y) → IPVω ` ∀xA(X, S(x)) for a suitable
closed term S of IPVω

and
IPVω ` A(x)∨¬A(x) ⇒ IPVω ` f(x) = 0 ↔ A(x) for a function f in PV (i.e.
predicates which are decidable in IPVω are polynomial time computable).

There are thus indications that large parts of the realizability techniques can
be fruitfully modified to a more feasible approach.

Beltiukov [Be 95] has also investigated realizability in weaker computation
classes by means of a weak system of arithmetic (with concatenation), he ob-
tains polynomial time programs, and similar results for other complexity classes
(the Kalmar elementary class, the Grzegorczyk class E2, LinSpacePolyTime).

No reflection on the role of the BHK interpretation can be considered com-
plete without mentioning Martin-Löf’s type theory. In this type theory the
parallel “proofs : propositions = elements : types” has been carried to perfect-
ness. The term-calculus for proofs and for derivations has been incorporated in
an efficient generalization of Gentzen’s Natural Deduction system. One of the
features that distinguishes Martin-Löf’s approach from earlier formulations, is
its precise treatment of hypotheses, or context – by now a generally accepted
practice. The major foundational importance of Martin-Löf’s type theory de-
rives, however, from stressing the importance of introduction-elimination rules
for connectives and operations. Taking the hint from Wittgenstein, the im-
portance of introduction- and elimination rules for rendering the meaning of
connectives manifest in usage, has been pointed out by Dummett, Prawitz and
Martin-Löf. (cf [Du 75], [Du 78], [Pr 77], [?], [Su 86].

Far from being content with a type-theoretical formulation of just the coun-
terpart of predicate logic, Martin-Löf has added rules for basic mathematical
notions and operations, e.g. natural numbers, well-order, universes. The type-
theoretic approach is highly gratifying for a number of reasons. It provides prac-
tical, omputational procedures, but it also embodies in a systematical way vari-
ous ideas and methods that have been part of the intuitionistic/constructivistic
folklore.
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8 Incorporating classical systems

.
Almost all of the above can be seen in the light of the extraction of informa-

tion from constructive proofs. For some time, however, there have been efforts
to extract – if possible - - effective information from classical proofs. Instead of
trying to give a survey of these developments, we will just mention a particular
topic.

The theory to be analysed is a higher-order version of Peano’s arithmetic,
PAω, plus the axiom of choice. To this theory Kolmogorov’s double negation
translation K is applied. For PAω one gets PAω ` A ⇒ HAω

− ` K(A), where
HAω is a minimal higher-order arithmetic (i.e. without the Ex Falso rule). In
view of the classical strength of the axiom of choice, one cannot expect a corre-
sponding result for PAω ` AC. The theory HAω

− + K(AC) has to be analysed
separately.

The translation K(AC) is actually strong enough to allow an interpreta-
tion of the impredicative comprehension principle, hence it cannot be inferred
from the intuitionistic choice axiom. Moreover, it is not neutral since it refutes
Church’s Thesis:

In PAω we get ∃f∀x(A(x) ↔ f(x) = 0) for any A, and hence one can prove
in HAω

− + K(AC)

¬¬∃f∀x[¬¬(f(x) = 0) ↔ ∀z¬T (xxz)]

By the routine properties of recursive realizability we see that it cannot be re-
alized, in view of the unsolvability of the Halting Problem.

By means of a suitable extension of modified realizability (formulated in a
handy programming language), which contains extra realizers for ⊥, it is shown
that the theorems of HAω

−+K(AC) are realized by closed terms not containing
any of the extra constants.
Among the fall out of this modified realization there are the consistency of clas-
sical analysis (PAω + AC); a computation for the numerical existence property
in PAω + AC, (that is, for formulas decidable in HAω); an effective algorithm
for the ∀xτ∃yN case (i.e. in the above mentioned programming language).

There is also work by Berger and Schwichtenberg on program extraction
form classical proofs, e.g. the program for the gcd as a linear combination of
both parts, cf. [BS 95], [BS 95*].

Finally it should be noted that there are a number of semantic proofs of the
existence property for certain systems (such as HA). As a rule these methods
do not yield effective solutions, or at best, they require a certain amount of
metamathematical processing before effectivity can be obtained.
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9 Semantical Approaches

.
Whereas the preceding sections dealt with various theories incorporating cer-
tain aspects of constructivity, the true constructivist wishes to see a coherent
account of the mathematical universe. The first such account that comes to
mind is a constructive version of set theory, such as, for example, embodied in
IZF of Harvey Friedman, or Aczel’s CZF. However, these accounts are still on
the proof theoretical side of constructive mathematics.

The semantical approach which we want to pursue here, has its roots in the
thirties, when Kuratowski and Tarski introduced their topological interpreta-
tion of propositional logic. Model theory of intuitionism went through a long
incubation period before it started to investigate realistic mathematical struc-
tures. After a period of more or less abstract study, as presented for example,
in the comprehensive “The Mathematics of Metamathematics” of Rasiowa and
Sikorski [RS 63]; the semantics of Beth, [B 56], and Kripke, [K 62], provided
tools for the analysis of concrete systems, in particular arithmetic and analysis;
cf [DG 71], [Sm 73], [G 81]. After Scott showed how to model real analysis in
the framework of topological interpretations [S 68], [S 70], the basic theories of
analysis were modelled in topological- and Beth models [Mos 73], [D 74], [D 78].

Almost simultaneously, through the efforts of Lawvere, Scott and others,
category theory was discovered as basic ingredient in the semantical study of
intuitionistic logic, cf. [MM 92]. In particular topos theory provided a unified
view of the existing semantics of intuitionistic mathematics. A topos can be
viewed as a particular embodiment of the (or ‘a’) intuitionistic set theoretic
universe.

Roughly speaking a topos is a category with finite limits and colimits, which
is cartesian closed (i.e. has exponents, say ‘function spaces’) and has a subob-
ject classifier. The latter allows the treatment of ‘subsets’ and ‘powersets’ in the
same manner as traditional set theory. In particular an intuitionistic substitute
of “characteristic function” is part of the machinery.

The unifying power of categorical logic has proved to be surprising. Let us
restrict ourselves for a moment to the topos-part of category theory.

Topos theory managed to give natural models of traditional intuitionistic
mathematics (e.g. sheaves over a suitable topological space, such as Baire
space), strongly anti-classical theories, such as the theory of lawless sequences
(sheaves over Grothendieck topologies, [HM 84]), and even algorithmic universes
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with Church’s Thesis (the effective topos, the modified realizability topos). The
latter provided the link between intuitionism and Russian constructivism à la
Markov, [M 71].

The semantic tradition used to be appreciated because it yielded simple
consistency proofs of intuitionistic systems (mostly arithmetic, analysis or set
theory); the various models allowed the non-constructive mathematician to give
a meaning to the logical and mathematical notions of the intuitionist. For some
time, however, models have been studied that interpret intuitionistic theories,
and at the same time are part of intuitionistic mathematics. To put it in tra-
ditional language, the metamathematics of these models is intuitionistic. This
opens the way to the application of model theoretic techniques on a intuitionis-
tic scale.

We mention some examples here:

Moerdijk has constructed a non-standard model of HA by intuitionistic
means, [M 95]. Moerdijk’s model is an object in a suitable Grothendieck topos
of sheaves. The model can be viewed as an elementary extension of the standard
natural number object. The analogy with traditional non-standard models is
fairly precise, one indeed gets results corresponding the traditional ones. E.g.
for this model ‘overspill’ holds.

Another approach to non-standard models was given by Palmgren, [Pa 95].
He introduced certain conservative extensions of HA, that have a number of
desired properties of non-standard extensions. In particular he applies his tech-
niques to the testcase of the basic facts of calculus.

One can also develop the older semantics of Beth and Kripke for the inter-
pretation of intuitionistic analysis. In [D 86] this technique is used to obtain
intuitionistically correct proofs of the disjunction and existence properties for
intuitionistic analysis. The trick is to apply a suitable gluing technique. Similar
techniques were also applied by Moerdijk in categorical semantics, cf. [M 82].
This is by no means an exhaustive list of intuitionistically correct semantic
techniques. E.g. Lipton has considered hybrids of realizability and Kripke
semantics[L 95].

The topos has the pleasing feature that it generalizes (almost) all semantics
that have been around, e.g. Kripke semantics, Beth semantics, the topological
interpretation. In addition, it has been allowed us to conceive the realizability
interpretation as semantical constructs. If we consider Kleene’s realizability,
then we can use the realizing numbers to obtain a truth value object. In this
case it is simply the powerset of N (which obviously is a Heyting algebra). The
‘logical operations’ on P(N) are given by the realizability clauses.
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Let the predicates A and B on a set X be given as mappings from X to
P(N), then
(A ∧B)(x) = {〈n1, n2〉|n1 ∈ A(x), n2 ∈ B(x)}

(A ∨B)(x), {〈0, n〉|n ∈ A(x)} ∪ {〈1, n〉|n ∈ B(x)}

(A → B)(x) = {n|{n}m ∈ B(x) for all m ∈ A(x)}

⊥ (x) = ∅

And for A : X × Y → P(N) put

∀yA =
⋂

y∈Y

A(x, y)

∃yA =
⋃

y∈Y

A(x, y)

Starting from a suitable valuation of the atoms, a valuation [[A]] is obtained
for arithmetic statements.
On the natural numbers (as a natural number object) one defines [[n = m]] =
{n} ∩ {m}.

¿From this point on, one just mimics Kleene’s realizability in order to com-
pute the truth values of the arithmetical statements. The higher-order part of
the interpretation presents no problems. On the basis of the sketched interpre-
tation one obtains a topos, called the effective topos, introduced by Hyland in
[Hy 82]

The effective topos yields a universe in which Church’s Thesis and Markov’s
principle hold, one which therefore can hardly be called ‘intuitionistic’ – ‘Marko-
vian’ would be a more proper name, or perhaps ‘Kleenean’.

The effective topos thus makes it clear that the phenomena which we know
from first-order practice, fit perfectly well in a natural universe, where the
higher-order aspects are taken of.

One particular use of the effective topos was discovered by Hyland, he con-
structed in Eff a small complete object (i.e. one having all limits). Such an
object is exactly what we need in order to make a model of polymorphic typed
lambda calculus. Pitts subsequently presented a logical argument to show di-
rectly that in a suitable intuitionistic universe the polymorphic lambda calculus
can be modelled, [Pi 90].

The construction of the effective topos has been modified to obtain toposes
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for other realizabilities, e.g. modified realizability (Grayson).

Van Oosten in [O 94] extended the existing axiomatizations of first-order
realizability for HA, and extensions, to the higher-order theory. The key-role
is played, as before, by ECT , but now one also needs uniformity principles and
certain parametrization axioms. The second-order one is called Shanin’s Prin-
ciple:

∀X ∈ P(N)∃A ∈ P¬¬(N)∀n ∈ N[n ∈ X ↔ ∃y〈y, n〉 ∈ A].

It should be noted that independent of the topos development of realizabil-
ity, D. McCarty has carried out a cumulative model construction for IZF +CT ,
based on Kleene’s realizability. He has observed a number of metamathematical
features of life in a universe with Church’s Thesis, [M 91].

E.g. there is quite a number of examples of the two extremes of ‘lean’ and
‘fat’ sets. Among the first there are ω-enumerable sets (called sub-countable by
McCarty); there is a large supply of those, e.g. all sets with a stable equality
(hence all sets with an apartness relation). Among the fat ones we find the
so-called uniform sets, i.e. those satisfying the uniformity property:

∀x ∈ X∀n ∈ NA(x, n) → ∃n∀x ∈ XA(x, n).

There are lots of sets satisfyinf the uniformity principle, in particular all
power sets do.

Furthermore he observed that, assuming Church’s Thesis, one can show that
HA has no non-standard models. [M 91].

10 The type theories

.

It was observed long ago by Curry that there is a striking similarity between
types and propositions [CF 58]; schematically given by:

proof

proposition
=

element

type

Howard extended Curry’s ideas to the full language, he coined the phrase
“Formulae-as-Types”. Howard’s ideas circulated in the sixties, but were only
published in 1980 [Ho 80].
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The type theoretic approach is almost a literal copy of the proof interpreta-
tion, indeed, one can write down just one table for the operators and interpret
them in two ways.

proof : proposition element : type
〈a1, a2〉 : A ∧B a1 : A and a2 : B 〈a1, a2〉 : A×B
〈a1, a2〉 : A ∨B a1 = 0 and a2 : A 〈a1, a2〉 : A + B

or a1 6= 0 and a2 : B
c : A → B for all a a : A ⇒ c(a) : B c : BA

c : ∀x:P.A(x) for all p p : P ⇒ c(p) : A(p) c : Πx:P.A(x)
〈a1, a2〉 : ∃x:P.A(x) a1 : P and a2 : A(a1) 〈a1, a2〉 : Σx:P.A(x)

This formulation suggests a term calculus for proofs or elements, analogous
to typed lambda-calculus as the companion for the implicational fragment.

One can them ‘update’, so to speak, Gentzen’s natural deduction system
with proof terms; cf [TD 88], 556, [Gal 95], [GLT 89].

This idea has further led to a systematization of the natural extensions of
simple typed lambda-calculus, as laid down in Barendregt’s cube, [Ba 92]. All
this illustrates the striking fruitfulness of the proof interpretation.

The proof interpretation and linear logic.

Although the heuristic and even technical value of the proof interpretation
may be generally accepted, there still is the challenge of fitting the new basic
ideas of linear logic into the intuitionistic framework. In other words, how do we
make sense of the key notions of linear logic : parallelism and resource bounds.
The technical issue how to find a suitable underlying term calculus to accom-
pany linear logic has been addressed and has the same significance as in ordinary
logic. The problem is to see if the traditional explanation has anu relevance to
linear logic

It may, of course, be the case that mathematics and linear logic are and
will be fundamentally separated areas (cf [G 95]), but that seems a defeatist
viewpoint. After all, even if mathematics tends to foster time and resource in-
dependent methods and results, there could very well be foundational questions
related to these issues.

Let us return to the roots of Brouwer’s mathematics. The basic phenomenon
is ‘move of time’, from this the whole of mathematics follows more or less au-
tomatically. This seems drastically at odds with paralellism, for how could the
subject experience two causal sequences simultaneously? This is partly because
we view time as externally given, but in fact, time is the result of the activity of
the subject, i.e. the subject classifies one sensation as ‘after’ another sensation.

Hence time is somewhat loosely introduced, the decisive point is not what

16



processes go in the subjects mind, but on which one he concentrates. So par-
allelism is by no means excluded, it is only that the subject can pay attention
to one phenomenon at the time. ¿From a pragmatic point of view parallelism
is even preferable to sequentialism, since it does away with the need of coding,
or similar techniques, such as interleaving, to handle more than one choice se-
quence at the time. The sort of parallelism involved in linear logic, e.g. in &
and ⊕ can be handled in a constructive basis theory just as Girard explains
them, the distinction being indeed that of the subject may consciously make a
choice between two events through an act of will, whereas he could also remain
inert and wait for the next (sensation of an) event.

The issue of resource boundedness seems more problematic, for not only in
classical, but also in intuitionistic logic “once true - always true” holds.

On Brouwer’s view, the individual has in practice an imperfect memory, but
for the purpose of a systematic treatment of mathematics (and science in gen-
eral) he stipulated an unbounded perfect memory. He indeed, at certain places,
left open the possibility that the individual had to prove the same fact over
and over again. So there is no a priori why one should not take a bound on
the memory capacity into account. This means that one is not automatically
justified in reusing assumptions. Unfortunately this kind of consideration seems
not good enough to take the drastic actions that linear logic requires. Even
worse, it is hard to see how one can develop a systematic logic on the basis of
possible limitations of the subjects. For the moment it seems best to accept
the justifications of traditional logic and linear logic as distinct idealizations of
forms of argumentation.

11 In Praise of positive notions

.
Finally a few words on a particular aspect of the actual practice of construc-

tive mathematics.
In realistic theories of mathematics there are certain notions that cannot be

dispensed with. The prime example is identity! Identity is inextricably tied
up with the structures one is dealing with. A comparable place is taken by
its negation, ‘inequality’. In constructive theories one is often served better by
positive versions of negative notions.

A familiar example is the apartness relation which strengthens the inequality
relation:

a#b → a 6= b, but in general a 6= b 6→ a#b.

An explanation of this fact is that apartness on the reals is existential by nature,
whereas inequality is a negative notion:
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a#b if there is a 2−k-neighbourhood of a separating it from b.

This makes it prima facie stronger than the usual ‘inequality’. Apartness was
axiomatized by Heyting in the following elegant form:[H 27],

a#b → b#a
a = b ↔ ¬a#b
a#b → a#c ∨ c#b

Observe that this immediately yields the stability of = : ¬¬a = b ↔ a = b.
Appartness is not just the invention of intuitionists for foundational reasons,

for many purposes it cannot be dispensed with, e.g. in fields a#0 is equivalent
to invertibility of a.

The idea of replacing negative notions by positive ones is fruitful in situa-
tions beyond that of simple identity. In constructive algebra one needs some
positive notion to supplement the familiar notions of normal subgroup, ideal,
etc. The positive counterparts of these notions are indicated by the prefix ‘anti’.

E.g. an anti-ideal in a ring with an apartness relation is a subset A satisfying
0 6∈ A
x + y ∈ A → x ∈ A ∨ y ∈ A
xy ∈ A → x ∈ A ∧ y ∈ A

It appears that anti-ideals are the natural things to carry out the standard
constructions, such as that of quotient ring. To be precise, quotient of a ring
over the complement of an inhabited anti-ideal (which is a proper ideal) has
a natural apartness relation. This feature was already observed by Heyting in
1941, in the content of polynomial rings [H 41], cf [TD 88], Ch.8.

The adaptation of algebra to structures with apartness turns out to be non-
trivial. E.g. the construction of free groups with apartness asks for rather strong
properties of the apartness relation on the generating set, cf. [DV 88].

Recently Von Plato, [Pl 95], has picked up the thread of geometry with
apartness. He similarly advocates the use of positive notions on the grounds
that equality requires infinite precision, which is alien to constructive mathe-
matics. Apartness on the other hand, only requires rough estimates. Plato’s
geometry project combines two natural constructive features: a constructive ap-
proach to the subject, combined with a incorporation in a suitable type system,
so that one may apply the available techniques of proof checkers.

Geometry provides another (albeit first-order) example of the success of pos-
itive substitutes. In geometry one can go one step beyond apartness with one
sort, and consider, e.g. ‘outside’ as a positive relation between points and lines,
or points and planes. This too, was observed by Heyting in [H 27]; for the role
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of ‘outside’ see further [D 96].

Needless to say that the apartness relation plays an important role in topol-
ogy. The very least one wants, is to have one’s topology compatible with apart-
ness:

{a|a#b} is open
a ∈ U → b ∈ U ∨ a#b for any open U and points a, b

Spaces satisfying these conditions are called separated. For most mathemat-
ical applications it is obvious that separation is required.
It is a experimental fact that one cannot restrict mathematics to structures
with decidable equality, if only because the introduction of quotient structures
are bound to have non-decidable equality. For that reason, it seems a sound
methodology to introduce positive notions at an early stage, so that as much
constructive information as possible can be handled. For computer science this
seems less urgent, as it mostly deals with data structures with decidable equal-
ity. On the other hand the infinitary objects of computer science may eventually
call for techniques as outlined above.

In conclusion we may say that intuitionism has enriched mathematics and
logic with a number of notions and principles which in one way or another
embody the basic features of constructivesness. It does not downright provide
algoritms or bounds, but it rather points at the mechanisms that are implicit
in the idea of effectivity.
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