
ar
X

iv
:q

ua
nt

-p
h/

03
07

15
0

v4

20
 D

ec
 2

00
3

A Lambda Calculus for Quantum

Computation

André van Tonder

Department of Physics, Brown University
Box 1843, Providence, RI 02906

andre@het.brown.edu

July 15, 2003

Abstract

The classical lambda calculus may be regarded both as a programming
language and as a formal algebraic system for reasoning about com-
putation. It provides a computational model equivalent to the Turing
machine, and continues to be of enormous benefit in the classical the-
ory of computation. We propose that quantum computation, like its
classical counterpart, may benefit from a version of the lambda calcu-
lus suitable for expressing and reasoning about quantum algorithms.
In this paper we develop a quantum lambda calculus as an alternative
model of quantum computation, which combines some of the benefits
of both the quantum Turing machine and the quantum circuit mod-
els. The calculus turns out to be closely related to the linear lambda
calculi used in the study of Linear Logic. We set up a computational
model and an equational proof system for this calculus, and we argue
that it is equivalent to the quantum Turing machine.

PACS: 03.67.Lx, 02.10.-v, 02.70.-c
Keywords: Quantum Computing, Lambda Calculus, Programming
Languages
Brown preprint: BROWN-HET-1366

1

1 Introduction

Currently there exists two main approaches to the theory of quantum com-
putation: The quantum Turing machine, introduced by Benioff and Deutsch
[1, 2], and the quantum circuit model, introduced by Deutsch [3]. These two
approaches were shown to be essentially equivalent by Yao [4].

The quantum Turing machine provides a fundamental model of quantum
computation that may be regarded as a baseline for defining universality.
However, reasoning about Turing machines can be a cumbersome process,
requiring word-at-a-time thinking while keeping track of complicated ma-
chine and tape states. Turing machine programs do not satisfy a simple
algebra.

For this reason, the quantum circuit model is more popular in the practi-
cal investigation of quantum algorithms. Quantum circuits are visual, com-
positional, and may be manipulated algebraically. However, no single finite
quantum circuit is universal. Indeed, Yao’s proof of Turing equivalence relies
on the concept of uniform circuit families generated by classical computation
[4, 5]. To define what we mean by such a circuit family, we need to rely on a
separate model of classical computation not described by any finite quantum
circuit.

In classical computation, the lambda calculus provides an alternative
computational model, equivalent to the Turing machine, which continues to
be of enormous utility in the theory of computation, in mathematical logic,
and in the study of computer languages and their semantics [6, 7, 8, 9, 10].
Due to its simplicity and expressive power, the lambda calculus has been
used as the basis of several powerful computer languages, including Lisp,
Scheme, ML and Haskell [11, 12, 13, 14].

In this article, we propose that quantum computing, like its classical
counterpart, may benefit from an alternative computational model based on
a version of the lambda calculus suitable for expressing and reasoning about
quantum algorithms. We develop such a calculus, which turns out to be
closely related to the linear lambda calculi used in the study of Linear Logic.
We set up its computational model and equational proof system, and argue
that the computational model is equivalent to the quantum Turing machine.

The quantum lambda calculus combines some of the benefits of both
quantum circuits and the quantum Turing machine. The quantum lambda
calculus describes functions that may be composed and manipulated alge-
braically, like quantum circuits. Programs can be algebraically transformed

2

into equivalent programs, and one can solve equations whose unknowns are
programs, in much the same way as one solves equations in high school al-
gebra [15]. Unlike quantum circuits, the quantum lambda calculus provides
a unified framework that is universal for quantum computation without the
need to rely on a separate model of classical computation.

In a practical vein, we show how various known quantum algorithms
may be expressed as simple programs in the lambda calculus. Indeed, the
calculi described in this paper may be used as a programming language for
prototyping quantum algorithms. In fact, the algorithms exhibited in this
article were transcribed into Scheme for testing. The simulator, which was
also written in Scheme, is available upon request from the author.

2 The classical lambda calculus

We begin by providing a reasonably self-contained introduction to concepts
and constructions in the classical lambda calculus that will be used in the
rest of the paper. The expert may skip this section and refer back as needed.

The classical lambda calculus may be regarded both as a programming
language and as a formal algebraic system for reasoning about computation.
It was originally introduced by Church in the study of the foundations of
mathematics [16, 17]. Church postulated that it provides a universal model
of computation, which was later shown by Turing to be equivalent to the
Turing machine [18].

As a formal system, the lambda calculus has axioms and rules of inference,
and lends itself to analysis using the language and tools of mathematical logic.
Computation may be regarded as guided deduction in this formal system.
This provides a directed form of equational reasoning that corresponds to
symbolic evaluation of programs via a sequence of algebraic simplifications
called reductions [6, 7, 8, 9, 10].

The syntax of the classical untyped lambda calculus λ is as follows: Ex-
pressions (also called terms) are constructed recursively from variables x, y,
z, . . . , parentheses, spaces, the period, and the symbol λ, according to the
grammar of figure 1.

A term of the form (λx. t) is called a functional abstraction. It represents
the function x 7→ t . For example, the identity function x 7→ x is written as

(λx. x)

3

t ::= terms:

x variable

(λx . t) abstraction

(t t) application

Figure 1: Syntax of the lambda calculus λ

The dummy variable x here is called a bound variable, and conforms to
the usual rules governing bound variables in mathematical formulae. For
example, we identify expressions that differ only in the renaming of bound
variables.

A term of the form (t t) represents a function application. The sole means
of computation in the lambda calculus is the operation of applying a function
to its argument consistent with the following axiom:

((λx. t) v) = t [v/x] (β)

Here v denotes a value, to be defined shortly. Reading this axiom from left
to right defines an algebraic rewrite rule for transforming terms, substituting
the argument v in place of the variable x into the function body. This
transformation is called beta reduction. We will use the arrow −→ to indicate
one (and sometimes more than one) beta reduction steps. A reducible term
is called a redex.

Unabridged lambda terms can be painful to read. For this reason, we will
often introduce abbreviations using the symbol ≡. In addition, we will often
omit parentheses according to the convention that nested lambda abstrac-
tions associate to the right and applications associate to the left.

Consider the simple program ((λx. x) apple) where apple stands for some
term in our language. With the abbreviation id ≡ (λx. x), this may be
written more legibly as (id apple), which should evaluate to apple. Indeed,
beta reduction gives

((λx. x) apple) −→ apple

in a single step.
In general, a computation consists of a sequence of beta reductions exe-

cuted according to some deterministic strategy until the resulting term can-
not be reduced any further, at which point the computation terminates.

4

A slightly more complicated example, which serves to show how multiple-
argument functions can represented in terms of nested single-argument func-
tions (a technique known as currying), is given by

apply ≡ λf. λx. (f x)

≡ λf. (λx. (f x))

which represents a function that applies its first argument f , which should
be a function, to its second argument x. Applying the identity function
to banana should give banana. To see this, the program (apply id banana),
which is shorthand for ((apply id) banana), is now executed by the following
sequence of beta reductions (underlining redexes)

((apply id) banana) ≡ (((λf. (λx. (f x))) id) banana)

−→ ((λx. (id x)) banana)

−→ (id banana)

−→ banana

Often there is more than one reducible subterm at any given step and a
strategy is required to make the process unambiguous. For definiteness, we
will use a call by value strategy. This works as follows: Abstractions (terms of
the form (λx. t)) are considered values and may not be reduced any further.
A function application (t t) may only be reduced if both the operator and the
operand are values. Otherwise the operator and operand must be reduced
first. We will call the resulting calculus the call-by-value lambda calculus λv.
Formally, we state the syntax for values [19, 20] in figure 2.

v ::= values:

x variable

(λx. t) abstraction value

Figure 2: Values in the call-by-value calculus λv ,

The reduction rules are listed in figure 3.

5

t1 −→ t′1
(t1 t2) −→ (t′1 t2)

(app1)

t2 −→ t′2
(v1 t2) −→ (v1 t′2)

(app2)

(λx. t) v −→ t [v/x] (β)

Figure 3: Reduction rules for the call-by-value calculus λv

We will denote by 〈〈t〉〉 the term, when it exists, obtained by fully reducing t
to a value.

We will often use a less cumbersome informal notation when defining
functions. For example, the apply function above satisfies the following prop-
erty

apply f x −→ (f x)

under beta reduction. Given this specification, the translation into a lambda
term is straightforward.

How do we represent data in the lambda calculus? Since all we have at
our disposal are lambda terms, we need a way of encoding data as lambda
abstractions with specified properties. There is a technique which can be used
for any kind of data structure, which we will illustrate with two examples:
Natural numbers and lists.

Let us first consider how the natural numbers may be represented. As
with any kind of data, we need a way to construct natural numbers and a
way to deconstruct them, extracting their constituents.

One possible encoding is as the sequence

0, 1 ≡ 〈〈succ 0〉〉, 2 ≡ 〈〈succ 1〉〉, . . . ,

where

0 ≡ λx. λy. (x id)

succ ≡ λn. λx. λy. (y n)

6

are the constructors.1 The above definitions were motivated by the need to
be able to define a case expression (deconstructor)

case t1 of (0 → t2, succ m → t3)

which may now be taken as an abbreviation for

t1 (λz. t2) (λm. t3)

Here z denotes a variable that does not appear free in t2. This expression
allows us to deconstruct a natural number, extracting the ingredients that
went into its construction, i.e., either 0 or its predecessor m. It is indeed not
difficult to verify the following behavior under beta reduction:

case 0 of (0 → t2, succ m → t3) −→ t2

case 〈〈succ t0〉〉 of (0 → t2, succ m → t3) −→ t3 [〈〈t0〉〉/m]

As an example, it is now trivial to define the predecessor function (with the
convention that pred 0 = 0)

pred ≡ λn. case n of

{

0 → 0
succ m → m

In order to program arbitrary computations, we need to verify that the
lambda calculus is sufficiently powerful to represent recursive functions. In-
deed, recursion can be used to represent any kind of iterative or looping
computation.

For example, in order to define addition, we need an expression add which
behaves as follows under beta reduction:

add m n −→ case m of

{

0 → n
succ k → add k (succ n)

1Explicitly

0 ≡ λx. λy. (x (λw. w))

1 ≡ λx. λy. (y λx. λy. (x (λw. w)))

2 ≡ λx. λy. (y λx. λy. (y λx. λy. (x (λw. w))))

...

7

where the subterm denoted by add on the left has copied itself into the body
of the term on the right hand side. One of the simplest ways of achieving
this is to define [21]

add ≡ (t t) (1)

where

t ≡ λf.

(

λm. λn. case m of

{

0 → n

succ k → (f f) k (succ n)

)

(2)

In other words, t is an abstraction consisting of the body of the addition
function with the combination (f f) in the position where add should insert
itself after reduction. It is a simple exercise to show that add indeed has the
specified behavior under beta reduction. This method can be applied to any
recursive function.

The computation of the program (add 2 2) then proceeds via the following
sequence of beta reductions:

add 2 2 ≡ add 〈〈succ 1〉〉 2

−→ case 〈〈succ 1〉〉 of (0 → 2, succ k → add k (succ 2))

−→ add 1 〈〈succ 2〉〉 ≡ add 〈〈succ 0〉〉 3

−→ case 〈〈succ 0〉〉 of (0 → 3, succ k → add k (succ 3))

−→ add 0 〈〈succ 3〉〉 ≡ add 0 4

−→ case 0 of (0 → 4, succ k → add k (succ 4))

−→ 4

The above technique can be generalized to arbitrary data structures. For
example, lists can be represented by the following constructors, which are
entirely analogous to those of the natural numbers

() ≡ λx. λy. (x id)

cons ≡ λh. λt. λx. λy. ((y h) t)

where () denotes the empty list and cons constructs a list consisting of a
first (head) element h followed by a list t (the tail) containing the rest of
the elements. Again, the above definitions were motivated by the need to be
able to define a deconstructor

case t1 of (() → t2, cons h t → t3)

8

which may now be taken as an abbreviation for

t1 (λz. t2) (λh. λt. t3)

We will often abbreviate h : t ≡ (cons h t). We can define tuples in terms
of lists as (x1, . . . , xn) ≡ x1 : x2 : · · · : xn : (). Under beta reduction, we have
the behavior

case () of (() → t2, h : t → t3) −→ t2

case 〈〈t0 : t1〉〉 of (() → t2, h : t → t3) −→ t3 [〈〈t0〉〉/h, 〈〈t1〉〉/t]

showing how the case expression may be used to deconstruct the list, ex-
tracting its head and tail. To see how these abstractions are used, consider
the following recursive function

map f list −→ case list of

{

() → ()
h : t → (f h) : (map f t)

which takes as input a function and a list and applies the function to each
element of the list. The reader may verify that, for example,

map double (4, 7, 2) −→ (8, 14, 4), double ≡ λx. (add x x)

Finally, we introduce some convenient notation. Since we can represent tuples
as lists, we can define functions on tuples using notation such as

λ(x, y). t ≡ λu. case u of

() → ()

x : t → case t of

{

() → ()
y : t′ → t

For example, (λ(x, y). (add x y)) (7, 7) evaluates to 14. It is also useful to
have a notation for representing intermediate results. The let notation

let (x1, . . . , xn) = (t1, . . . , tn) in t

≡ (λ(x1, . . . , xn). t) (t1, . . . , tn)

allows us to write terms such as

let x = 1 in

let (y, z) = (2, 3) in

add x (add y z)

which evaluates to 6.

9

3 A quantum computational model

In this section we will construct a computational model, based on the lambda
calculus, suitable for describing quantum computations. The language used
will be an adaptation of the classical lambda calculus, extended with a set of
quantum primitives. We will denote it by λi where the subscript stands for
intermediate. For reasons to be discussed in the next section, this language
is not suitable as a formal system. In particular, reduction in λi does not
correspond to a simple system for equational reasoning. In section 5 we will
correct these deficiencies to obtain the full quantum lambda calculus λq.

In the classical lambda calculus, beta reduction consumes the program
to give the result. At each step, information is discarded, which makes the
process irreversible. For quantum computing, we need reduction rules that
take computational states to superpositions of states in a way that is unitary
and reversible.

Bennett [22] showed that any classical computation can be transformed
into a reversible computation. The construction, adapted to our situation,
is as follows: Let x denote the term being computed, and let β : x 7→ β(x)
denote a single beta reduction step. Instead of the non-invertible function β,
one considers the function x 7→ (x, β(x)), which is invertible on its range. In
its simplest version, the computation proceeds as

x 7→ (x, β(x)) 7→ (x, β(x), β2(x)) 7→ (x, β(x), β2(x), β3(x)) 7→ · · ·
More complicated schemes exist that reversibly erase the intermediate steps,
saving space at the expense of running time. Although this process does
not end by itself, we may observe it and regard the computation as having
terminated when βn+1(x) = βn(x), at which time we may stop the machine
by external intervention.

Although this scheme can be used to reversibly implement computations
in the classical lambda calculus, we will soon see that it does not work un-
modified in the quantum case.

In order to represent computations involving qubits, we will add a few
constant symbols as additional primitives to our language as in figure 4.

The symbols 0 and 1 here are primitives and should not be confused
with the abbreviations 0 and 1 of the previous section. Additional constants
H , S, . . . , will denote elementary gate operations on qubits. These should
include symbols for a universal set of elementary quantum gates [3, 23, 24].
For example, the set consisting of the Hadamard gate H , the phase gate

10

t ::= terms:

x variable

(λx . t) abstraction

(t t) application

c constant

c ::= constants:

0 | 1 | H | S | R3 | cnot | X | Y | Z | . . .

Figure 4: Syntax of the intermediate language λi

S, the π/8 gate R3, and the controlled-not gate cnot is universal [24, 5].
Additional primitives, such as the the Pauli gates X, Y and Z, may be
added for convenience.

We now allow the state of a computation to be a quantum superposition of
terms in this language. As a model, one may imagine lambda terms encoded
as strings of symbols on the tape of a quantum Turing machine.

As a first example, consider an initial state written in ket notation as

|(H 0)〉 .

We would like to choose the transition rules of the quantum computer in
such a way that this string will evaluate to the Hadamard operator applied
to |0〉, which should give the superposition 1√

2
(|0〉 + |1〉) of the states |0〉 and

|1〉 containing unit-length strings. The candidate reduction rule

|(H 0)〉 −→ 1√
2

(|0〉 + |1〉)

|(H 1)〉 −→ 1√
2

(|0〉 − |1〉)

is not reversible. To make it reversible, we first try the same trick as in the
classical case

|(H 0)〉 −→ 1√
2

(|(H 0); 0〉 + |(H 0); 1〉)

= |(H 0)〉 ⊗ 1√
2

(|0〉 + |1〉)

11

where we have factored out the common substring. The semicolon denotes
string concatenation. In this simple example, the answer indeed factors out
on the right. However, notice what happens if we apply this method to the
term

|(H (H 0))〉 −→ 1√
2

(|(H (H 0)); (H 0)〉 + |(H (H 0)); (H 1)〉)

−→ 1

2
|(H (H 0))〉⊗

⊗
(

|(H 0); 0〉 + |(H 0); 1〉 + |(H 1); 0〉 − |(H 1); 1〉
)

Here the answer does not factor out. The fully reduced rightmost term is
entangled with the intermediate term in the history.

Note, however, that this scheme keeps more information than necessary.
For reversibility, it is sufficient to record at each step only which subterm
has been reduced, and the operation that has been applied to it. We may
encode this in our example as follows (to be formalized below):

|(H (H 0))〉 −→ 1√
2

(|((H)); (H 0)〉 + |((H)); (H 1)〉)

−→1

2
|((H))〉⊗

⊗
(

|(H); 0〉 + |(H); 1〉 + |(H); 0〉 − |(H); 1〉
)

= |((H)); (H)〉 ⊗ |0〉
Here we have at each step replaced subterms that do not need to be recorded
by the constant placeholder symbol . Now the answer does indeed factor out
on the right as required, consistent with H2 |0〉 = |0〉. It is also clear that at
each step we have kept enough information to reconstruct the previous step,
thus ensuring reversibility.

The computational model may now be formalized with the following rules:
First, we extend our definition of values to include constants as in figure 5.
The computational state is taken to be a quantum superposition of sequences
of the form

h1; . . . ; hn; t

where h1; . . . ; hn will be called the history track and t will be called the
computational register. The classical subset of the transition rules is shown
in figure 6.

12

v ::= values:

x variable

c constant

(λx. t) abstraction value

Figure 5: Values in the intermediate language λi

t1 −→ h1; t′1
H; (t1 t2) −→ H; (h1); (t′1 t2)

(app1)

t2 −→ h2; t′2
H; (v1 t2) −→ H; (h2); (v1 t′2)

(app2)

H; ((λx. t) v) −→ H; ((λx. tx)); t [v/x] (β1) if x appears free in t

H; ((λx. t) v) −→ H; ((λx.) v); t (β2) if x not free in t

H; t −→ H; ; t (Id) otherwise

Figure 6: Operational model for the classical subset of λi

In these rules H denotes the (possibly empty) history track, and tx is
obtained from t by recursively replacing all subterms that do not contain x
with the placeholder symbol and keeping x. More formally

(λy. t)x ≡ (. tx)

(t t ′)x ≡ (t ′x t ′x)

xx ≡ x

yx ≡ for y different from x

cx ≡

(3)

These rules are sufficient to make classical computations reversible. For

13

example,

|((apply id) banana)〉 ≡ (((λf. (λx. (f x))) (λz. z)) banana)

−→ |(((λf. (. (f))))); ((λx. ((λz. z) x)) banana)〉
−→ |(((λf. (. (f))))); ((λx. (x))); ((λz. z) banana)〉
−→ |(((λf. (. (f))))); ((λx. (x))); ((λz. z)); banana〉
−→ |(((λf. (. (f))))); ((λx. (x))); ((λz. z)); ; banana〉
−→ |(((λf. (. (f))))); ((λx. (x))); ((λz. z)); ; ; banana〉
−→ · · ·

At each step just enough information is kept to reconstruct the previous
step. Termination can be checked by observing the last expression in the
history. When this becomes , the answer is given by the contents of the
computational register.

In addition, we have some extra reduction rules involving the quantum
gate symbols such as:

|H; (H 0)〉 −→ |H; (H)〉 ⊗ 1√
2

(|0〉 + |1〉)

|H; (H 1)〉 −→ |H; (H)〉 ⊗ 1√
2

(|0〉 − |1〉)

Figure 7: Operational model for H

The rules for quantum primitives are summarized in figure 8.

|H; (cU φ)〉 −→ |H; (cU)〉 ⊗ U |φ〉 (U)

Figure 8: Operational model for the quantum primitives of λi

Here cU denotes any one of the quantum primitive symbols and U the cor-
responding unitary transformation, while φ stands for 0 or 1 in the case
of single-bit operators, or one of (0, 0), (0, 1), (1, 0) or (1, 1) in the case of
two-bit operators. For example

|(cnot (1, 0))〉 −→ |(cnot); (1, 1)〉 .

14

4 Towards an equational theory

While the language λi constructed in the previous section can be used to
describe quantum computations, reduction in λi does not correspond to a
simple system for equational reasoning. This makes λi unsuitable as a formal
proof system for quantum computation. We will discuss the problem in
this section and resolve it in the next with the introduction of the quantum
lambda calculus λq.

In the classical lambda calculus, program evaluation through beta reduc-
tion can be regarded as a directed form of equational reasoning consistent
with the axiom

(λx. t) v = t [v/x] (β)

Indeed, the classical lambda calculus provides both a model of computation
and a formal system for reasoning about functions, a property we would like
to keep in the quantum case.

To understand the difficulty, notice what happens when a function appli-
cation discards its argument (in other words, the argument does not appear
in the function body). For example

|((λx. apple) banana)〉 −→ |((λx.) banana); apple〉

We see that in order to maintain reversibility, a record of the argument
banana is kept in the history. Restricting our attention to the computational
register, we see that its evolution is consistent with replacing the original
expression with an equal expression according to the axiom (β). In other
words, in this example reduction is consistent with equational reasoning.

However, we run into problems when the discarded subterm is in a quan-
tum superposision with respect to the computational basis. For example,
consider the reduction of

|(λx. 0) (H 0)〉 −→ |((H)〉 ⊗ 1√
2

(

|(λx. 0) 0〉 + |(λx. 0) 1〉
)

−→ |((H)〉 ⊗
(

|(λx.) 0〉 + |(λx.) 1〉
)

⊗ |0〉

In the second step, a discarded subterm in a superposition is saved in the
history and the computational register becomes |0〉. However, if we were to

15

apply the axiom (β) to the contents of the computational register, we would
get the equation

1√
2

(

|(λx. 0) 0〉 + |(λx. 0) 1〉
)

=
√

2 |0〉

which is invalid since the right hand side is not a legal normalized state.
As a second example, consider the following computation, where the inner

function discards its argument x:

|((λy. ((λx. y) y)) (H 0))〉

−→ 1√
2
|((H))〉 ⊗

(

|((λy. ((λx. y) y)) 0)〉 + |((λy. ((λx. y) y)) 1)〉
)

−→ 1√
2
|((H)); ((λy. ((. y) y)))〉⊗

⊗
(

|((λx. 0) 0)〉 + |((λx. 1) 1)〉
)

−→ 1√
2
|((H)); ((λy. ((. y) y)))〉⊗

⊗
(

|((λx.) 0); 0〉 + |((λx.) 1); 1〉
)

Now the computational register is entangled with the last expression in the
history. Ignoring the history, the computational register would be in a mixed
state with density matrix

(

1

2
0

0 1

2

)

However, an attempt to apply the equational axiom (β) to the contents of
the computational register would give

1√
2

(

|((λx. 0) 0)〉 + |((λx. 1) 1)〉
)

=
1√
2

(|0〉 + |1〉)

which is clearly inconsistent.

5 A quantum lambda calculus

We will resolve the shortcomings of the language λi by developing a quantum
lambda calculus λq which has a consistent equational theory. This section

16

will be somewhat heavier on the formalities, and the reader who wishes to
see some concrete examples may wish to skip ahead to section 7 after reading
the introductory paragraphs.

The previous discussion suggests that the problems with equational rea-
soning in the presence of quantum operations can be avoided by preventing
functions from discarding arguments which may be in a superposition with
respect to the computational basis.

Let us call a substate definite with respect to the computational basis if
it is textually the same in all branches of the superposition. For example, in
the state

1√
2

(

|(λx. 0) 0〉 + |(λx. 0) 1〉
)

the subexpression (λx. 0) is definite, whereas the argument 1

2
(|0〉 + |1〉) is

non-definite. Definite subexpressions may be thought of as a classical re-
source. They can be observed without affecting the state of the computation.
On the other hand, non-definite subexpressions represent purely quantum re-
sources.

We seek a calculus that will keep track of whether an argument is definite
or non-definite, and which will make it impossible to write a function that
discards a non-definite resource. Calculi that are resource sensitive, known
as linear lambda calculi, have been studied intensively in recent years [25, 26,
27, 28]. So-called typed linear lambda calculi are very closely related to the
field of linear logic [29, 30]. Linear logic is a resource sensitive logic where,
for example, certain assumptions may only be used once in the course of a
derivation.

For our purposes it will be sufficient to study a simple untyped linear
calculus. The syntax is a fragment of the one introduced in [26], extended
with quantum operations as in figure 9.

Here terms of the form !t are called nonlinear. Nonlinear terms will
be guaranteed to be definite with respect to the computational basis and
may be discarded and duplicated, whereas linear terms may be non-definite.
Abstractions of the form (λ!x . t) denote functions of nonlinear arguments.
In an abstraction of the form (λx . t), the argument is called linear.

A functional abstraction may use a nonlinear argument any number of
times in its body, or not at all. On the other hand, a linear argument must
appear exactly once in the function body (hence the name linear).

To enforce these rules, we require terms to be well-formed. This corre-

17

t ::= terms:

x variable

(λx . t) abstraction

(t t) application

c constant

!t nonlinear term

(λ!x . t) nonlinear abstraction

c ::= constants:

0 | 1 | H | S | R3 | cnot | X | Y | Z | . . .

Figure 9: Syntax of the quantum calculus λq

sponds to the constraint that linear arguments appear linearly in a function
body, and that all free variables appearing in a term !t refer to nonlinear
variables [27]. In the following examples, the terms in the left column are
well-formed, while those in the right column are ill-formed

(λ!x. 0) (λx. 0)
(λx. x) (λx. !x)
(λ!x. (x x)) (λx. (x x))
(λy. (λ!x. y)) (λy. (λx. y))
(λ!y. !(λ!x. y)) (λy. !(λ!x. y))

Well-formedness is a property that can be checked syntactically. For com-
pleteness, we formally state the rules for well-formedness [27], which the
reader satisfied with the above informal characterization may skip, in figure
10 .

These rules may be related to the typed linear calculi described in [27, 26]
by erasing the type annotations from the typing rules of the latter. Here Γ
and ∆ denote contexts, which are sets containing linearity assumptions of
the form x and !x, where each variable x is distinct. If Γ and ∆ are contexts
with no variables in common, then Γ, ∆ denotes their union. For example,
the rule ⊸-E implicitly assumes that Γ ∩ ∆ = ∅. Rules may be read as
follows: For example, the promotion rule says that if t is a well-formed term
under the assumption that x1 to xn are nonlinear, then !t is a well-formed
term under the same assumption. The condition Γ∩∆ = ∅ in (⊸-E) ensures

18

x ⊢ x
Id

!x1, . . . , !xn ⊢ t

!x1, . . . , !xn ⊢!t
Promotion

Γ, x ⊢ t

Γ, !x ⊢ t
Dereliction

Γ, !x, !y ⊢ t

Γ, !z ⊢ t [z/x, z/y]
Contraction

Γ ⊢ t

Γ, !x ⊢ t
Weakening

Γ, x ⊢ t

Γ ⊢ (λx. t)
⊸-I

Γ, !x ⊢ t

Γ ⊢ (λ!x. t)
→-I

Γ ⊢ t1 ∆ ⊢ t2
Γ, ∆ ⊢ (t1 t2)

⊸-E

Figure 10: Rules for well-formed terms in the quantum calculus λq

that a linear variable can only appear once in the body of a formula. The
weakening and (→-I) rules allow a function to discard a nonlinear argument,
whereas the contraction and (⊸-E) rules allow us to duplicate a nonlinear
argument any number of times in the body of a function.

The well-formedness constraint prevents us from writing a function which
discards a linear argument. However, this is not sufficient to prevent unsafe
computations without further specification of the substitution order. To see
this, consider the expression ((λ!x. 0) !(H 0)), which is well-formed. The
problem is that we are allowed to use ! to promote the expression (H 0) to a
nonlinear value, which can then be discarded. If we were allowed to reduce

19

the subterm (H 0) first, equational reasoning would give

|((λ!x. 0) !(H 0))〉 =
1√
2

(

|((λ!x. 0) !0)〉 + |((λ!x. 0) !1)〉
)

=
√

2 |0〉

which is an invalid equation since the last line is not a valid normalized state.
On the other hand, if we consider !(H 0) as an irreducible value, we may use
beta reduction immediately to obtain

|((λ!x. 0) !(H 0))〉 = |0〉

which is a valid result, since we are discarding the unevaluated expression
!(H 0), which is definite.

To prevent terms of the form !t from being evaluated, we follow Abramsky
[25] and extend our definition of values as in figure 11.

v ::= values:

x variable

c constant

(λx. t) abstraction value

!t !-suspension

Figure 11: Values in the quantum calculus λq

The computational model is described in figure 12 2, where t is defined as in
(3).

According to these rules, quantum superpositions can only be created by
evaluating terms containing quantum primitives. The result of applying a
quantum gate is a linear value, not preceded by a !. As we prove below,
there is no way of including such a linear value in a nonlinear subterm.
It follows that subterms that may be quantum non-definite will never be
discarded since, by (!β1) and (!β2), nonlinear functions can only be applied
to nonlinear terms.

2See [25, 31, 32] for related operational interpretations of linear lambda calculi. Our
evaluation model recomputes !-closures (see [31]).

20

t1 −→ h1; t′1
H; (t1 t2) −→ H; (h1); (t′1 t2)

(app1)

t2 −→ h2; t′2
H; (v1 t2) −→ H; (h2); (v1 t′2)

(app2)

H; ((λx. t) v) −→ H; ((λx. tx)); t [v/x] (β)

H; ((λ!x. t) !t′) −→ H; ((λ!x. tx)); t [t′/x] (!β1) if x appears free in t

H; ((λ!x. t) !t′) −→ H; ((λ!x.) !t′); t (!β2) if x not free in t

H; t −→ H; ; t (Id) otherwise

|H; (cU φ)〉 −→ |H; (cU)〉 ⊗ U |φ〉 (U)

Figure 12: Operational model for the quantum lambda calculus λq

Note that when a nonlinear function encounters a linear argument, it
simply gets stuck. More precisely, the rule (Id) applies.

The above reduction rules may create superpositions. However, such
superpositions are not arbitrary. Indeed, terms in a superposition may only
differ in positions containing the constants 0 and 1. Otherwise they have the
same structure. We may formalize this by defining two terms to be congruent
if they coincide symbol by symbol except possibly in positions containing 0
or 1. It then follows that

Lemma 5.1. All terms in a superposition obtained via a reduction sequence
from a definite initial term are congruent.

Proof. The proof is by a simple induction on the length of the reduction
sequence, analyzing the reduction rules case by case.

Because terms appearing in a superposition have the same structure, it
makes sense to talk about specific subterms of the expression in the compu-
tational register. We can therefore formulate the following lemma:

Lemma 5.2. Starting from a definite initial term, any !-suspension subterm
occurring during reduction is definite with respect to the computational basis.

21

Proof. This follows by induction on the length of the reduction sequence.
The initial term is definite by assumption. Assume that the lemma holds
after n steps. We have argued that all terms in a superposition obtained
from a definite initial term are congruent. They therefore have the same
structure of subterms and the same reduction rule applies to them all. There
are then three ways in which we may obtain a !-suspension subterm after
n + 1 steps. First, the suspension may not be part of the redex, in which
case it is included unmodified in the resulting expression. Second, it may be
the result of beta reduction of an application of the form

(λx. (· · ·x · · ·)) !t

where !t is definite by the induction assumption. The result is (· · ·!t · · ·),
where !t has been copied without modification. Third, it may be the result
of beta reduction of an application of the form

(λ!x. · · · !(· · ·x · · ·) · · ·) !t

where !t and !(· · ·x · · ·) are definite by the induction assumption. This cre-
ates a suspension !(· · · t · · ·), which is definite because all its subterms are
definite. This completes the proof.

It is worth pointing out that we cannot create possibly non-definite sus-
pensions by reducing terms like

(λx. · · · !(· · ·x · · ·) · · ·) (H 0)

because x is linear, which implies that !(· · ·x · · ·) is not a well-formed sub-
term.

Lemma 5.3. Given a definite initial term, the contents of the history track
remains definite throughout reduction.

Proof. We have argued that all terms in a superposition obtained from a
definite initial term are congruent. They therefore have the same structure of
subterms and the same reduction rule applies to them all. Since our reduction
rules allow only !-suspensions to be discarded (which saves a copy in the
history), and since !-suspensions are always definite by the previous lemma,
the result follows by induction on the length of the reduction sequence.

Since the history remains definite throughout reduction, we have the fol-
lowing lemma

22

Lemma 5.4. Termination can be tested without disturbing the computation
by observing the last term in the history. When this term becomes equal to
the placeholder , the result can be read off from the computational register.

The fact that the history remains definite in λq eliminates the specific
impediments to setting up an equational theory that were pointed out in the
previous section. Indeed, since the state of the computation is now always
guaranteed to be a direct product |H〉 ⊗ |c〉 of the history |H〉 and the com-
putational register |c〉, reduction can never lead to a computational register
|c〉 that is in a mixed state. In addition, since |H〉 remains definite, the
restriction of the reduction rules to the computational register will preserve
the normalization. We are therefore led to the following theorem:

t1 −→ t′1
(t1 t2) −→ (t′1 t2)

(app1)

t2 −→ t′2
(v1 t2) −→ (v1 t′2)

(app2)

(λx. t) v −→ t [v/x] (β)

(λ!x. t) !t′ −→ t [t′/x] (!β)

|cU φ〉 −→ U |φ〉 (U)

Figure 13: Reduction rules for the quantum calculus λq

Theorem 5.5. In the quantum calculus λq, the evolution of the computa-
tional register is governed by the reduction rules of figure 13.

Proof. This easily follows from a case-by-case analysis of the computational
rules of figure 12.

For example, consider the rule (!β2) applied to a state of the form |H〉⊗|c〉
where |c〉 is a normalized superposition of the form

∑

i

ci |(· · ·i ((λ!x. ti) !t′) · · ·i)〉

23

in which, by lemma 5.1, all terms have the same structure and by lemma 5.2,
the subterm !t′ does not depend on i. This then reduces to

|H〉 ⊗
∑

i

ci |(((λ!x.) !t′)); (· · ·i ti · · ·i)〉

= |H; (((λ!x.) !t′))〉 ⊗
∑

i

ci |(· · ·i ti · · ·i)〉

with the computational register in the normalized state
∑

i ci |(· · ·i ti · · ·i)〉,
consistent with applying a reduction rule (λ!x. t) !t′ −→ t [t′/x] to its con-
tents.

The big win is that we now have a simple set of reduction rules that can
be used to reason about the computation without having to keep track of
the history.

In order to define an equational theory for this calculus, we will simply
define a notion of equality that is compatible with the the reduction rules of
figure 13. Intuitively, reduction should be understood as a simple algebraic
operation of replacing subterms with equal subterms. However, we need to
take into account that reduction may not take place inside !-suspensions.

We therefore need to introduce algebraic rules governing just when we
can replace subterms in an expression with equal subterms [19, 20]. One way
to do that is to introduce the notion of a term context, which are expressions
with a hole [] in place of a subexpression:

C ::= [] | (t C) | (C t) | (λx. C)

It is important to note that there are no contexts of the form ![]. As a result,
subterms preceded by ! will be opaque in the sense that we will not be able
to perform substitutions under the ! sign.

Definition 5.6. The equational theory of λq is the least equivalence relation
= containing the reduction relation (−→) of figure 13 and which is closed
under substitution in term contexts, in other words

t1 = t2
C[t1] = C[t2]

(subst)

where C is an arbitrary term context and C[t] denotes the textual replace-
ment of the holes in C by the term t [19, 20].

24

t = t (refl)

t1 = t2
t2 = t1

(sym)

t1 = t2 t2 = t3
t1 = t3

(trans)

t1 = t2 t3 = t4
(t1 t3) = (t2 t4)

(app)

t1 = t2
λx. t1 = λx. t2

(λ1)

t1 = t2
λ!x. t1 = λ!x. t2

(λ2)

(λx. t) v = t [v/x] (β)

(λ!x. t) !t′ = t [t′/x] (!β)

Figure 14: Equational proof system for the quantum calculus λq

An alternative way of presenting the equational theory is by listing a set
of axioms and rules of inference as in figure 14.

There, the rules (app), (λ1) and (λ2) are together equivalent to the term
context substitution rule (subst) above. Again, there is no rule that permits
substitutions inside !-suspensions.

Theorem 5.7. In the quantum lambda calculus, the evolution of the com-
putational register proceeds by replacing equals by equals according to the
equational theory of figure 14.

Proof. True by construction.

6 Recursion and a fixed point operator

Recursive functions may be defined in the calculus λq in a way analogous
to that described in section 2. We simply replace (t t) in equation (1) with
(t !t), where now t ≡ λ!f. (· · · (f !f) · · ·).

25

Here we describe an related approach based on so-called fixed point com-
binators. A fixed point operator suitable for the linear lambda calculus is
given by the following adaptation of the classical Turing combinator

fix ≡ ((λ!u. λ!f. (f !((u !u) !f)))
!(λ!u. λ!f. (f !((u !u) !f))))

It is easy to check that under reduction

fix !t −→ t !(fix !t)

where the !-suspension prevents further reduction of the term in brackets.
Recursive functions can be defined as follows: If

t ≡ λ!f. u

then it easily follows that

fix !t −→ u [(fix !t)/f]

In other words, fix !t copies itself into the body u of t under reduction, as
required for recursion.

7 Examples of algorithms

We are now ready to formulate some algorithms in the quantum lambda
calculus. First, we reproduce some classical constructions, now decorated
with the proper nonlinearity annotations.

First, we introduce list constructors that will enable us to build lists of
linear values (qubits or structures containing qubits)

() ≡ λ!x. λ!y. (x id)

cons ≡ λh. λt. λ!x. λ!y. ((y h) t)

with abbreviations h : t ≡ (cons h t) and (x1, . . . , xn) ≡ x1 : x2 : · · · : xn : ()
as before. Since the arguments !x and !y above are nonlinear, we need to
redefine our case abbreviation as follows:

case t1 of (() → t2, h : t → t3)

26

now stands for
t1 !(λz. t2) !(λh. λt. t3)

Deutsch’s algorithm [1, 5] can be very simply expressed as follows:

deutsch Uf −→ let (x, y) = Uf ((H 0), (H 1)) in

((H x), y)

Here the argument Uf is assumed to be a function that takes (x, y) to

|1〉

|0〉

H

H
Uf

H

Figure 15: Deutsch’s algorithm

(x, y ⊕ f(x)), where f is some (unknown) function of one bit. For example,
if f is the identity function, then we should take Uf to be cnot . Indeed, the
reader may check that

|deutsch cnot 〉 −→ |1〉 ⊗ 1

2

(

|0〉 − |1〉
)

,

where the first bit 1 = f(0) ⊕ f(1) indicates that the function is balanced,
as required.

Let us write a simple expression that creates an EPR pair

epr ≡ cnot ((H 0), 0)

The quantum teleportation gate array with deferred measurement [33, 5] can
easily be translated into the following code: We create an EPR pair and
pass the first EPR qubit, along with the unknown qubit x to be teleported,
to Alice. The outcome of Alice’s computation then gets passed to Bob along
with the second EPR qubit

teleport x −→ let (e1, e2) = epr in

let (x′, e′1) = alice (x, e1) in

bob (x′, e′1, e2)

27

|0〉

|0〉

x

H

f

v f

v H

X Z

v

v

Figure 16: Quantum teleportation

Here
alice (x, e) −→ let (x′, e′) = cnot (x, e) in ((H x′), e′)

and
bob (x, e1, e2) −→ let (e′1, e

′
2) = cX (e1, e2) in

let (x′, e′′2) = cZ (x, e′2) in

(x′, e′1, e
′′
2)

The outcome of the computation consists of the list of three qubits (x′, e′1, e
′′
2).

The teleported qubit is e′′2, but notice how linearity requires us to keep the
other two qubits in the answer. The reader may check that throughout
the computation, linear arguments are used exactly once. Implementing the
conditional operations cX and cZ in terms of the primitive constants is left
as an easy exercise.

Given recursion and lists, the map function, which applies a given function
f to each element of a list, may be defined as

map !f list −→ case list of

{

() → ()
h : t → (f h) : (map !f t)

The arguments list , h and t may refer to qubits or data structures containing
qubits and are therefore chosen linear. The expression is well-formed because
list , h and t are each used exactly once.

It is now trivial to define a program that computes a uniform superposi-
tion of a list of qubits by applying the Hadamard gate to each qubit in the
list:

H⊗n list −→ map !H list

For example, we may evaluate

∣

∣H⊗n (0, 0)
〉

−→ 1

2

(

|(0, 0)〉 + |(0, 1)〉 + |(1, 0)〉 + |(1, 1)〉
)

28

Note that the well-formedness conditions may be somewhat subtle, as the
following example illustrates. A naive attempt at defining an append function
that concatenates two linear lists

append x y −→ case x of

{

() → y
h : t → h : (append t y)

fails to be well-formed. The problem can be seen by expanding the case

abbreviation
x !(λz. y) !(λh. λt. (h : (append t y)))

Since y is a linear variable, we may not promote the λ subterms to nonlinear
values with the prepended !. An alternative definition that does work is

append x y −→
(

case x of

{

() → (λu. u)
h : t → λu. (h : (append t u))

)

y

Next we define a reverse function

reverse list −→ case list of

{

() → ()
h : t → append (reverse t) (h)

The quantum Fourier transform [34, 35, 36] can now be defined as a direct
translation of the corresponding quantum circuit [5] as follows:

H R2 R3 · · · · · Rn

v

v

v

H R2 · · · · · Rn−1

v

v

H · · · · · Rn−2

v

···
···

· · · · · H

Figure 17: The quantum Fourier transform (without reversal)

fourier list −→ reverse fourier′ list

29

where

fourier′ list −→ case list of

() → ()
h : t → let h′ : t′ = phases (H h) t !2 in

h′ : (fourier′ t′)

recursively applies the appropriate conditional phase operations to the first
qubit in the list, using the helper function

phases target controls !n

−→ case controls of

() → (target)
control : t → let (control ′, target ′)

= (cR !n) (control , target) in

let target ′′ : t′

= phases target ′ t !(succ n) in

target ′′ : control ′ : t′

Here (cR !n) composes an appropriate combination of elementary gates to
implement a conditional phase operation with phase 2πi/2n. Since this is
essentially a classical computation and depends on the particular set of prim-
itive constants chosen, we will not write it out here.

Note that we have assumed that the classical construction of the natural
numbers may be adapted to the quantum lambda calculus. That this is
possible for all classical constructions follows from the fact that there is an
embedding of the classical lambda calculus into the linear lambda calculus,
as shown in formula (4) of section 8.

8 Relating λq to quantum Turing machines

In this section we will sketch a proof of the following theorem, leaving a more
rigorous analysis to future work:

Theorem 8.1. The computational model provided by the quantum lambda
calculus λq is equivalent to the quantum Turing machine.

Proof. First, we argue that the quantum lambda calculus λq may be effi-
ciently simulated on a quantum Turing machine.

In λq the current state of the computation consists of a superposition
of term sequences of the form H; t, which may be encoded as strings of

30

symbols on the tape of the quantum Turing machine. By lemma 5.1, term
sequences in different branches of the superposition are congruent, and the
same reduction rule will apply for all branches at each time step. The subset
of λq not involving quantum operations consists of a set of reversible classical
rewritings, which can be unitarily and efficiently implemented on a quantum
Turing machine by [2, 37, 38]. The fragment involving quantum operators
again involves simple classical rewritings followed by a unitary transformation
involving one or two symbols on the tape. Once again, the methods of
[2, 37, 38] may be used to construct a quantum Turing machine that can
execute these transformations. This completes the proof of the first half of
the equivalence.

Next we argue that a quantum Turing machine can be efficiently simu-
lated by the calculus λq.

Yao shows in [4] that for any quantum Turing machine T , there is quan-
tum circuit Cn,t that efficiently simulates T on inputs of size n after t steps.
The circuit family Cn,t may be efficiently constructed via a classical compu-
tation. But λq is universal for classical computation. This follows from the
fact that the classical call-by-value lambda calculus may be embedded in λq

via the following translation, adapted from [27]

(t1 t2)
∗ = ((λ!z. z) t∗1) t∗2

x∗ = !x

(λx. t)∗ = !(λ!x. t∗)

(4)

So, given the specification of a quantum Turing machine and an input of
length n, a classical computation in λq first constructs a representation of
the appropriate quantum circuit family Cn,t. It then follows the circuit di-
agram and applies the appropriate quantum operations one by one to the
input. Since λq has primitive quantum operations available corresponding to
a universal set of quantum gates, this proves the second half of the equiva-
lence.

9 Related work

In a series of papers, Henry Baker [39, 40, 41] develops an untyped linear
language based on Lisp. His language is similar to the classical fragment of
the lambda calculus developed in the current article. It served as the initial
inspiration for the linear approach followed here.

31

Ideas stemming from linear logic have been used previously by Abramsky
in the study of classical reversible computation [42].

One of the earlier attempts at formulating a language for quantum com-
putation was Greg Baker’s Qgol [43]. Its implementation (which remained
incomplete) used so-called uniqueness types (similar but not identical to our
linear variables) for quantum objects [44]. The language is not universal for
quantum computation.

The language QCL, developed by Ömer, is described in [45, 46]. QCL
is an imperative language with classical control structures combined with
special operations on quantum registers. It provides facilities for inverting
quantum functions and for scratch space management. No formal program
calculus is provided. A simulator is publicly available.

Another imperative language, based on C++, is the Q language developed
by Bettelli, Calarco and Serafini [47]. As in the case of QCL, no formal
calculus is provided. A simulator is also available.

A more theoretical approach is taken by Selinger in his description of the
functional language QPL [48]. This language has both a graphical and a
textual representation. A formal semantics is provided.

The imperative language qGCL, developed by Sanders and Zuliani [49],
is based on Dijkstra’s guarded command language. It has a formal semantics
and proof system.

A previous attempt to construct a lambda calculus for quantum com-
putation is described by Maymin in [50]. However, his calculus appears to
be strictly stronger than the quantum Turing machine [51]. It seems to go
beyond quantum mechanics in that it does not appear to have a unitary
and reversible operational model, instead relying on a more general class of
transformations. It is an open question whether the calculus is physically
realizable.

A seminar by Wehr [52] suggests that linear logic may be useful in con-
structing a calculus for quantum computation within the mathematical frame-
work of Chu spaces. However, the author stops short of developing such a
calculus.

Abramsky and Coecke describe a realization of a model of multiplicative
linear logic via the quantum processes of entangling and de-entangling by
means of typed projectors. They briefly discuss how these processes can be
represented as terms of an affine lambda calculus [53].

32

10 Conclusion

In this article we developed a lambda calculus λq suitable for expressing and
reasoning about quantum algorithms. We discussed both its computational
model and its equational proof system. We argued that the resulting calculus
provides a computational model equivalent to the quantum Turing machine
and is therefore universal for quantum computation.

There are many possible directions for future work. The proof of Turing
equivalence should be fleshed out. Formal issues relating to consistency and
semantics need to be addressed further. While our computational model
provides an operational semantics, the problem of providing a denotational
semantics is open. The formalism of [54] may be useful in this regard.

In this article, the introduction of a linear calculus was motivated by re-
quiring consistency of its operational model with equational reasoning. The
fact that linear arguments, denoting quantum resources, may not be dupli-
cated suggests a separate motivation for linearity, not addressed here, based
on the no-cloning theorem [55, 56].

While our calculus is untyped, it would be interesting to investigate typed
linear calculi with quantum primitives and, via the Curry-Howard correspon-
dence, the corresponding generalizations of linear logic [57, 58]. We might
mention that there have been prior attempts to relate linear logic to quantum
mechanics, starting with a suggestion by Girard [29, 59, 60].

On the practical side, the calculi described in this paper may be used as
a programming language for prototyping quantum algorithms. Indeed, the
algorithms exhibited in this article were transcribed into Scheme for testing.
The simulator, which was also written in Scheme, is available upon request
from the author.

It is our hope that the field of quantum computation, like its classical
counterpart, may benefit from the insights provided by the alternative com-
putational model provided by the quantum lambda calculus.

Acknowledgments

I would like to thank Prof. Antal Jevicki and the Brown University Physics
department for their support.

33

References

[1] P. Benioff, The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines, J. Stat. Phys. 22 (5) (1980), 563-591.

[2] D. Deutsch, Quantum theory, the Church-Turing principle and the uni-
versal quantum computer, Proceedings of the Royal Society of London A

400 (1985), 97-117.

[3] D. Deutsch, Quantum Computational Networks, Proceedings of the Royal
Society of London A 439 (1989), 553-558.

[4] A. Yao, Quantum circuit complexity, in Proceedings of the 34th Annual
Symposium on the Foundations of Computer Science, IEEE COmputer
Society Press, Los Alamitos, CA (1993) 352-361.

[5] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press 2000.

[6] H.P. Barendregt, The lambda Calculus, North Holland, revised edition
(1984).

[7] J.C. Mitchell, Foundations of programming languages, MIT press 1996.

[8] B.C. Pierce, Types and programming languages, MIT press 2002.

[9] R.E. Davis, Truth, deduction and computation: logic and semantics for
computer science, Computer Science Press, New York 1989.

[10] C.A. Gunter, Semantics of programming languages: structures and tech-
niques, MIT press 1992.

[11] J. McCarthy, Recursive functions of symbolic expressions and their com-
putation by machine, part I, Communications of the ACM 3 (4) (1960),
184-195.

[12] D.P. Friedman, M. Wand, C.T. Haynes, Essentials of programming lan-
guages, MIT press 1992.

[13] L.C. Paulson, ML for the working programmer, Cambridge University
Press, 1996.

34

[14] P. Hudak, The Haskell school of expression, Cambridge University Press
2000.

[15] J. Backus, Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs, Communications of the
ACM 21 (8), 1978.

[16] A. Church, An unsolvable problem in elementary numer theory, Ameri-
can Journal of Mathematics 58 (1936) 354-363.

[17] A. Church, The calculi of lambda conversion, Princeton University Press
1941.

[18] A.M. Turing, On computable numbers, with an application to the
Entscheidungsproblem, Proc. London Math. Soc. (2) 42 (1936) 230-265;
Corrections in Proc. London Math. Soc. (2) 43 (1937) 544-546.

[19] G. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoretical
Computer Science 1 (1) (1976), 125159.

[20] M. Felleisen and R. Hieb, A revised report on the syntactic theories
of sequential control and state, Theoretical Computer Science 103 (2)
(1992) 235-271.

[21] O. Kiselyov, Many faces of the fixed-point combinator, online article
http://okmij.org/ftp/Computation/fixed-point-combinators.html, (Oct
1999).

[22] C.H. Bennett, Logical reversibility of computation, IBM J. Res. Develop.
17 (1973), 525532.

[23] A. Barenco, C.H., Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P.
Schor, T. Sleator, J. Smolin and H. Weinfurter, Elementary gates for
quantum computation, Phys. Rev. A52 (1995), 3457-3467.

[24] P.O. Boykin, T. Mor, M. Pulver, V. Roychowdhury and F.
Vatan, On universal and fault-tolerant quantum computing,
arXiv:quant-ph/9906054 (1999).

[25] S. Abramsky, Computational interpretations of linear logic, Theoretical
Computer Science 111 (1-2) (1993) 3-57.

35

http://okmij.org/ftp/Computation/fixed-point-combinators.html
http://arXiv.org/abs/quant-ph/9906054

[26] P. Wadler, A syntax for linear logic, in Mathematical Foundations of
Programming Semantics: 9th International Conference, New Orleans,
LA, Proceedings 802 Springer-Verlag, New York (1993) 513-529.

[27] J. Maraist, M. Odersky, D. Turner and P. Wadler, Call-by-name, call-by-
value, call-by-need, and the linear lambda calculus, in 11th International
Conference on the Mathematical Foundations of Programming Seman-
tics, New Orleans, Lousiana, March-April 1995.

[28] R.A.G. Seely, Linear logic, *-autonomous categories, and cofree coalge-
bras, in Categories in Computer Science and Logic, June 1989, AMS
Contemporary Mathematics 92.

[29] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1-
102.

[30] P. Wadler, A taste of linear logic, in Proceedings of the 18th International
Symposium on Mathematical Foundations of Computer Science, Gdánsk,
Springer-Verlag, New York (1993).

[31] D.N. Turner and P. Wadler, Operational interpretations of linear logic,
Theoretical Computer Science 227 (1-2) (1999) 231-248.

[32] J. Chirimar, C.A. Gunter and J.G. Riecke, Reference counting as a com-
putational interpretation of linear logic, Journal of Functional Program-
ming 6 (2) (1996) 195-244.

[33] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.
Wootters, Teleporting an unknown quantum state via dual classical and
EPR channels, Phys. Rev. Lett. 70 (1993) 1895-1899.

[34] D. Coppersmith, An approximate Fourier transform useful in quantum
factoring, IBM Research Report RC 19642 (1994).

[35] A. Ekert and R. Jozsa, Shor’s quantum algorithm for factorizing num-
bers, Rev. Mod. Phys. 68 (1996), 733-753.

[36] P.W Shor., Algorithms for quantum computation: discrete log and fac-
toring, in Proceedings of the 35th IEEE FOCS, (1994) 124134;
P.W. Shor, Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer, SIAM Journal on Computing
26 (5) (1997), 1484-1509.

36

[37] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J.
Computing 26 (1997), 1411-1473.

[38] C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths and
weaknesses of quantum computing, SIAM Journal on Computing 26 (5)
(1997) 1510-1523.

[39] H.G. Baker, Lively linear Lisp – ’Look Ma, no garbage!’, ACM Sigplan
Notices 27 (8) (1992), 89-98.

[40] H.G. Baker, A ’Linear Logic’ quicksort, ACM Sigplan Notices 29 (2)
(1994), 13-18.

[41] H.G. Baker, ’Use-once’ variables and linear objects – storage manage-
ment, reflection and multi-threading, ACM Sigplan Notices 30, 1 (1995),
45-52.

[42] S. Abramsky, A structural approach to reversible computation, Program-
ming Research Group Research Report RR-01-09, Oxford University
(2001).

[43] G.D. Baker, “Qgol”: A system for simulating quantum computations:
theory, implementation and insights, Honours thesis, Macquarie Univer-
sity (1996).

[44] E. Barendsen and S. Smetsers, Conventional and uniqueness typing in
graph rewrite systems, Computing Science Institute, University of Ni-
jmegen, Technical report CSI-R9328 (December 1993).

[45] B. Ömer, A procedural formalism for quantum computing, Master thesis,
Technical University Vienna (1998).
http://tph.tuwien.ac.at∼oemer/qcl.html

[46] B. Ömer, Classical concepts in quantum programming,
quant-ph/0211100 (2002).

[47] S. Bettelli, T. Calarco and L. Serafini, Towards and architecture
for quantum programming, Eur. Phys. J. D 25 (2) (2003), 181-200.
arXiv.cs.PL/0103009 (2001).

[48] P. Selinger, Towards a quantum programming language, to appear in
Mathematical Structures in Computer Science (2003) 45 pages.

37

http://tph.tuwien.ac.at~oemer/qcl.html
http://arXiv.org/abs/quant-ph/0211100
http://arXiv.org/abs/cs/0103009

[49] J.W. Sanders and P. Zuliani, Quantum programming in Mathematics of
Program Construction, Springer LNCS, 1837:80-99, (2000).

[50] P. Maymin, Extending the lambda calculus to express randomized and
quantumized algorithms, quant-ph/9612052 (1996).

[51] P. Maymin, The lambda-q calculus can efficiently simulate quantum com-
puters, quant-ph/9702057 (1997).

[52] M. Wehr, Quantum computing: A new paradigm and its type theory,
Talk held at Quantum Computing Seminar, Lehrstuhl Prof. Beth, Uni-
versität Karlsruhe (1996).

[53] S. Abramsky and B. Coecke, Physical traces: Quantum vs. classical in-
formation processing, Electronic Notes in Theoretical Computer Science
69 (2003), arXiv:cs.CG/0207057 (2002).

[54] E. Kashefi, Quantum domain theory - definitions and applications,
arXiv:quant-ph/0306077 (2003).

[55] D. Dieks, Communication by EPR devices, Phys. Lett. A 92 (1982),
271-272.

[56] W.K. Wootters and W.H. Zurek, A single quantum cannot be cloned,
Nature 299 (1982), 802-803.

[57] H.B. Curry and R. Feys, Combinatory Logic, Volume 1, North Holland,
1985. Second edition, 1968.

[58] W.A. Howard, The formulas-as-types notion of construction, in J.P.
Seldin and J.R. Hindley, editors, To H.B. Curry: Essays on COmbi-
natory Logic, Lambda Calculus, and Formalism, Academic Press, New
York 1980, pp. 479-490. Reprint of 1969 article.

[59] V. Pratt, Linear logic for generalized quantum mechanics, in Proc. of
Workshop on Physics and Computation (PhysComp’92), IEEE, Dallas
(1992), 166-180.

[60] S. Smets, What has Operational Quantum Logic to do with Linear
Logic?, presented at the Logic and Interaction Week 3, Marseille, France,
February 2002.

38

http://arXiv.org/abs/quant-ph/9612052
http://arXiv.org/abs/quant-ph/9702057
http://arXiv.org/abs/cs/0207057
http://arXiv.org/abs/quant-ph/0306077

	Introduction
	The classical lambda calculus
	A quantum computational model
	Towards an equational theory
	A quantum lambda calculus
	Recursion and a fixed point operator
	Examples of algorithms
	Relating q to quantum Turing machines
	Related work
	Conclusion

