Protecting the Itinerary of Mobile Agents *

Uwe G. Wilhelm and Sebastian Staamann
Laboratoire de Systémes d’Exploitation

Levente Buttyan
Institut pour les Communications informatiques et leurs Applications

Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
e-mail: {Uwe.Wilhelm, Sebastian.Staamann, Levente.Buttyan}@epfl.ch

Abstract

Systems that support mobile agents are increasingly
being used on the global Internet. An important ap-
plication that is considered for these agents is elec-
tronic commerce, where agents roam the World Wide
Web in search of goods for their owners. In these
applications, an agent moves along some itinerary in
order to search for the best offer for the good sought
by the user. The problem with this approach is that
malicious providers on the agent’s itinerary can dam-
age the agent, tamper with the agent so that the agent
itself becomes malicious, or forward the agent to any
arbitrary provider that might not be on the agent’s
itinerary.

In this presentation we will primarily address the
question how an agent can safely follow some pre-
defined itinerary. We will identify the problem of trust
as a major issue in this context and describe a trusted
and tamper-proof hardware that can be used to en-
force a policy. Based on this policy, we will show how
the agent can take advantage of it in order to achieve
the desired goal.

1 Introduction

New approaches for distributed computing based on
mobile agent! technology, such as Java, Telescript,
or Agent Tcl become ever more pervasive and, with
emerging standards for electronic commerce, consti-
tute an interesting domain for research that may also
have important economical implications.

*Research supported by a grant from the EPFL (“Privacy”
project) and by the Swiss National Science Foundation as part
of the Swiss Priority Programme Information and Communica-
tions Structures (SPP-ICS) under project number 5003-045364.

1The term mobile agent has been charged with many dif-
ferent meanings. We use it here in the context of distributed
systems (as opposed to its use in artificial intelligence) to refer
to an object that is capable to move between different agent
platforms in order to accomplish some well-defined task on be-
half of its owner.

A typical application of mobile agents in the do-
main of electronic commerce is an agent that roams
the World Wide Web in search of some good for its
owner. Such an agent is configured by its owner with
all the relevant information about the desired good,
the constraints that define under which conditions an
offer from a provider is acceptable, and a list of some
potential providers of the good, to which the agent
will migrate in order to query for their offer. The
path that defines the agent’s journey between the
providers is called the itinerary of the agent. Fur-
thermore, the agent might hold information for one
or several payment methods that it needs to finalize
a purchase and which should not be available to any
principal other than the one that receives the pay-
ment. Since the agent is vulnerable when it is exe-
cuting at the provider, it is necessary that its owner
obtains some guarantees concerning the execution of
the agent. This is, for instance, necessary to prevent
that a provider removes some information about a
better offer from the memory of the agent, and thus
tricks the agent into accepting this provider’s offer. A
similar problem exists for the agent’s itinerary, since
a provider can easily forward the agent to an arbi-
trary provider that can or cannot be on the agent’s
itinerary. The usual approach that is taken to pro-
vide some guarantees, is to assume that the providers
are trusted principals [12] or at least to create a mech-
anism that allows to detect which of the providers on
the itinerary misbehaved [18].

The notion of trust has long been recognized as
being of paramount importance for the development
of secure systems [6, 11, 23]. For instance, any con-
ceivable system for authenticating users needs trusted
functionality that holds the necessary authentication
information (see e.g., [22, 16]). However, the meaning
that is associated with trust or the notion of a trusted
principal is hardly ever clearly defined in these ap-
proaches and the reader is left with his intuition.

In this paper we want to address the question of how
trust in a certain principal can be motivated based
on social or technical reasoning and we will discuss

our ideas in the context of protecting the itinerary of
mobile agents. We believe that our findings can have
important repercussions for the architecture of open
systems for mobile agents, where everybody should be
capable to easily become a service provider.

In the following Section 2, we will introduce our
model for mobile agents and point out the problems
related to trust within this model. Then, in Section 3,
we will discuss the notion of trust and define its rela-
tion to policy, which will enable us to better assess the
possible motivations for trust. In Section 4, we will
introduce a piece of trusted hardware, the TPE, and
a protocol, the CryPO protocol, which will allow us in
Section 5 to show how these can be used to protect the
itinerary of a mobile agent relying only on technical
means. In Section 6, we discuss why we consider this
to be a better way to approach the problem and what
effects this has on the notion of open systems. Finally,
Section 7 concludes the paper with a summary of the
main contributions.

2 The mobile agent paradigm

The mobile agent paradigm (also referred to as mo-
bile code, mobile computation, or program mobility)
has been identified by many authors as a promising
and innovative new approach to structure problems
in distributed computing [3, 4, 8, 9, 19]. In [10], Har-
rison et. al. have pointed out that the mobile agent
paradigm provides interesting solutions to many real-
life problems, for instance in the context of:

e mobile users, where agents are sent out from a
mobile computer in order to accomplish a well-
defined task on behalf of the user while he is
disconnected from the communication network.
Once the user reconnects, the agent returns and
reports the result of the task or the problems it
encountered.

e high-bandwidth interactions, where an agent is
sent to a database server that holds a large
amount of unstructured data to search for some
specific information for the user.

o resident agents, which are stationary agents that
take residence at some service provider and han-
dle simple routine actions for their owner (e.g.,
communication management for a mobile user,
where the agent decides how to handle an incom-
ing communication request).

In this presentation, we are not interested in the
underlying technology that is used to implement the
mobile agent paradigm, but we only require a rather
simple model for our discussion. Therefore, we iden-
tify the following major abstractions that we associate
with mobile agents. A mobile agent consists of code,

data, and the current execution state, which can be
marshaled by the agent owner in a transport format
and subsequently sent to the agent executor. The
agent can be confidentiality and integrity protected
during transit to protect it against outside attackers
through the use of cryptographic mechanisms. These
mechanisms can also provide data origin authentica-
tion for the marshaled agent. The agent executor will
then eventually unmarshal the agent and instantiate
it on a special environment located at the agent ex-
ecutor, which is called agent platform (AP). Here, the
mobile agent can interact with services of the local AP
and other agents located at this AP and continue to
accomplish the task it was given by the agent owner.
The literature on agents (e.g., [3, 12]) distinguishes
between two different approaches to agent mobility:

e weak mobility and
e strong mobility.

The former only allows a very restricted form of
mobility, where the agent can only migrate once to
another AP. When it has finished, the result of its
remote execution will either be sent directly to the
agent owner in form of a message, or the agent itself is
returned to the agent owner who can then extract the
result from the agent. Agents that exhibit this form
of mobility are usually called one-hop or boomerang
agents.

The latter approach does not impose such a general
restriction on agent mobility, but allows agents to visit
as many APs as is deemed necessary to accomplish
the desired task. In this approach, the result of the
agent execution can also be sent directly to the agent
owner, for instance as an intermediate result before
each migration, but usually it is kept in the execution
state of the agent and transferred to the agent owner
when the agent returns. Agents that exhibit this form
of mobility are usually called multi-hop agents.

The reasons for restricting an agent’s mobility are
first that the execution environment in the AP and
the agent transport format can be much simpler since
the AP does not have to provide the current execu-
tion state (which is, for instance, not available from
the Java virtual machine) and the transport format
does not have to encode it. The second reason is that
this approach has a simpler trust model, since any
damage incurred by the agent to the AP (and thus to
the agent executor) or by the AP to the agent (and
thus to the agent owner) can easily be attributed to
the other entity. If more than two principals are in-
volved, the problem of accountability becomes much
more difficult [12]. Each principal can easily defer any
damage to actions by any of the other principals on
the agent’s itinerary. This problem has also been ad-
dressed by Vigna in [18], where he tries to resolve the
problem of how to attribute the damage to one of the
principals that the agent visited.

In this presentation, we are interested in the protec-
tion of the agent’s itinerary, which we will more clearly
define in the following section. Since this implies that
an agent will generally visit more than two princi-
pals, we will only consider agent systems that support
strong mobility. Furthermore, we will make the sim-
plifying assumption that the complete itinerary of the
agent is pre-defined in advance and given to the agent
upon startup. We will illustrate the problem with a
small example of a shopping agent, but first we want
to discuss the notion of an itinerary in more detail.

2.1 The itinerary

We assume that the itinerary of an agent is given in
the form of a list of AP descriptors, which identify the
owner and the network address of the AP as well as
other relevant information about the AP. Protecting
this itinerary is important, since we assume that some
agent executors are more trustworthy than others and
it would be good if the execution of the agent could
be limited to the trusted agent executors.

In order to achieve this protection, we have to en-
sure both the safety and the liveness of the agent. In
order to ensure the safety, we have to make sure that
the agent does not visit any AP that is not on its
itinerary, that it does visit all the APs that are on its
itinerary, and that it visits them in the correct order.
In an actual implementation of this, it is sufficient to
ensure that the agent starts on the first AP on its
itinerary and that it takes each step according to its
itinerary. Ensuring the liveness of an agent is a task
that is even more difficult than ensuring the safety.
It consists of mechanisms with which an agent can,
for instance, survive the crash of the AP on which it
is executing or cope with the unavailability of crucial
communication links. In the following, we will only
give some hints on how this might be accomplished,
but we will mainly concentrate on ensuring the safety
of the agent’s itinerary.

2.2 The shopping agent

Consider the following task: a user, say Alice, tries to
find the best offer for some item (e.g. a CD, an air-
line ticket, or a video on demand) from a well-defined
set of providers for this item. This offer can be a
quite sophisticated combination out of several vari-
ables, such as price, QoS, payment method, delivery
method, etc. Alice configures her agent with all the
relevant information in order to identify the best of-
fer and she also provides the itinerary that the agent
is supposed to follow. The agent also contains pay-
ment information that should not be disclosed to any
principal other than the one that receives the pay-
ment. Alice launches the agent by sending it to the
first provider on the itinerary, where it will negotiate

an offer for the item and store this information in its
current state. Then the agent will migrate to the next
provider on its itinerary and negotiate an offer for the
item from this provider. Once the agent has visited
all the providers on its itinerary, it can decide which
of them has provided the best offer and it can then
migrate to this provider in order to finalize the pur-
chase transaction?. This behaviour of the agent can
be disturbed by the providers very easily. We will now
discuss some of the threats that the agent has to cope
with.

2.3 Threats to the shopping agent

There are two different forms of threats to the agent
that we want to consider:

e threats to the agent’s code or data and
e threats to the agent’s itinerary.

The former are threats to the agent as an entity
itself, where the agent executor gains access to internal
data of the agent or manipulates code or data of the
agent in order to change the behaviour of the agent?
in such a way that it will not operate correctly or
even behave maliciously when executing at another
provider.

The latter are threats to the pre-defined itinerary
of the agent, where the agent is forced to skip certain
agent executors on its itinerary or is tricked into ex-
ecuting on others that are not on its itinerary. The
result of such a manipulation may be similar to those
of a direct manipulation of the agent, but the manip-
ulation of the agent’s itinerary might be more difficult
to discover. As an illustration of the problem consider
that a provider might simply not send the agent to its
most fierce competitor, so that it can not obtain an
offer from this competitor and will thus conclude that
the manipulator made the best offer. In case this ir-
regularity is discovered, the manipulator could simply
pretend that the required communication link to its
competitor was not available and that it did not act
maliciously.

In a conventional agent system, when the agent
owner sends a mobile agent to an agent executor in
order to use some service, the agent owner loses all
control over the code and data of the agent. The agent
executor can:

e reverse engineer the agent’s code,

21f we assume that the agent returns to the chosen provider
in order to finalize the purchase transaction, then this consti-
tutes a dynamic change to the agent’s itinerary, which we do
not allow in the basic model described above, but only in some
relaxations discussed below.

3Since it can be assumed that the code of an agent is static,
it is possible to apply some integrity protection, which makes it
much more difficult for a malicious agent executor to manipu-
late the code. This assumption does, however, not hold for the
agent’s data.

¢ analyze the agent’s data,
e arbitrarily change the agent’s code or data, or
e send the agent to any arbitrary agent executor.

This constellation puts the agent executor in a much
stronger position than the agent owner. The agent
owner simply has to trust the agent executor not to
use the methods described above to illicitly obtain
confidential information from the agent that it has
to carry in order to use the service or to protect it
against changes to the agent’s itinerary. There is no
way for the agent owner to control or even know about
the behaviour of the agent executor.

The reason for the imbalance between agent execu-
tor and agent owner in the mobile agent model as
compared to service provider and service user in the
client /server model is that in the former approach, the
agent owner has no guarantees whatsoever concerning
the execution of its agent. In the client/server ap-
proach, the service user relies on many assumptions
that are so basic that one hardly ever thinks of them.
Nevertheless, these guarantees allow to implement cer-
tain types of behaviour in the client part of the dis-
tributed application that can not be implemented in
conventional agent systems (e.g., code will be executed
at most once, code will be executed correctly, requests
will be sent to servers in a particular and well-defined
order, availability of a reasonably reliable time ser-
vice, etc.). This advantage relies on the fact that the
client implementation is under the physical control of
the service user. Based on these assumptions, a ser-
vice user can observe what is happening in the system
and notice irregularities. Thus, he is able to react ac-
cordingly, for instance, to interrupt an ongoing trans-
action. Another possibility to take advantage of these
assumptions would be to log any irregularities at the
client side so that they can be provided as evidence in
the case of a dispute with some service provider.

We intend to create an environment for mobile
agents that allows them to base their execution on
similar assumptions, so that it becomes possible for a
mobile agent to protect itself from a malicious service
provider.

3 The notion of trust

We already mentioned the importance of trust for se-
curity in distributed systems and pointed out the lack
of a clear definition of what is meant by the terms
trusted principal or trusted system. In the following,
we present our analysis of possible trust relations be-
tween different principals.

A reason for the lack of a clear definition of trust
could be that trust is more a social than a technical is-
sue and consequently quite difficult to tackle entirely
in a technical approach. The major problem stems

from the fact that the notion of trust mixes the goals
of a principal with its behaviour to achieve these goals.
In order to trust some principal, it is usually necessary
to concur with or at least approve of its goals (which
are not always clearly stated) and to believe that it
will behave accordingly. In our definition of trust, we
will try to clearly separate these two issues by gather-
ing the goals of a principal in a policy, which is a set
of rules that constrains the behaviour of this principal
for all conceivable situations. This policy has to be
written down and made available to all other princi-
pals that interact with the issuer of the policy. Then,
we define trust in another principal as the belief that
it will adhere to its published policy.

The question of whether a certain principal can be
trusted now consists of (a) checking its published pol-
icy in order to decide if it is acceptable and (b) to es-
tablish a motivation for the belief that it will adhere
to its published policy. The former is quite difficult
but can be supported by a formal specification of the
security policy (similar to the approach in [14]). The
latter, however, is a problem that is quite difficult to
formalize.

We have identified two fundamentally different ap-
proaches to the problem of trust: the optimistic ap-
proach, where we give an entity the benefit of the
doubt and assume that it will behave properly and
try to punish any violation of the published policy
afterwards; and a pessimistic approach, in which we
try to prevent any violation of the published policy in
advance, by effectively constraining the possible ac-
tions of a principal to those conforming to the policy.
Both of these approaches have their advantages and
disadvantages.

The optimistic approach is easy to implement, since
it does not require any special measures to make some
interaction possible. This is probably why it is the
basis for most business done today. However, it re-
quires some possibility to discover a policy violation
after it has occurred. If such a possibility does not
exist, then the approach degenerates to blind trust,
which indicates that there is no particular motivation
to believe that a principal will adhere to its published
policy other than its own assertion. Blind trust is ob-
viously a very weak foundation for trust and not rec-
ommended for any important or financially valuable
transaction. It is therefore important to make the risk
that a policy violation is discovered as high as possible
by improving controls and establishing checkpoints.

Once a policy violation is discovered and if it can
further irrefutably be attributed to one of the partici-
pants in the corresponding transaction, this principal
should be punished according to the appropriate laws
and the damage caused by the policy violation. The
goal of this punishment is primarily to deter potential
violators from committing such a policy violation in
the first place. Depending on how this punishment is

enacted, we identify the following two motivations for
the belief that an entity will adhere to its published
policy:

e trust based on (a good) reputation
e trust based on control and punishment

Trust based on reputation stems from the fact that
the principal in question is well known and has very
little to gain through a violation of its own policy but
a lot to lose in case a policy violation is discovered.
This loss is supposed to transpire from the lost rev-
enue due to customers taking their business to an-
other principal. Reputation is an asset that is very
expensive to build up and that is invaluable for any
company. Thus, a principal would not risk to lose its
good reputation for a small gain and will consequently
rather adhere to its policy.

Trust based on control and punishment means that
we do not trust the principal at all, but rather the
underlying technical and legal framework to ensure
the principal’s proper behaviour. Here, we explicitly
introduce the same tradeoff by normal disciplinary ac-
tions such as fines or imprisonment, depending on the
severity of the offence. The short term gain that might
be achieved through a policy violation is supposed to
be negated by appropriate punishment.

Obviously, there are many other problems with this
approach, such as the enforcement of laws, which can
be very expensive, is usually quite slow, and is some-
times very complex (in particular if the laws of differ-
ent countries are applicable) or the different percep-
tions of punishment. A person who has not much to
lose might readily risk some years of imprisonment for
the possibility of a relatively large gain.

Another problem in the approach stems from the
fact that many abuses of confidential information are
not necessarily conducted for the purposes of the com-
pany that holds this information, but rather by mali-
cious insiders of such a company, who do it for strictly
personal reasons or financial benefits [17, 21]. Such
abuses are even more difficult to discover (there are
less people involved) and to punish (it has to be de-
cided if only the employee for malicious behaviour,
only the company for negligence, or both have to be
pursued).

The problem to reliably discover a policy violation
could be resolved by requiring a very high degree of
transparency. However, this is difficult to achieve and
it is quite likely that even trustworthy principals with
a very good reputation might not accept it. We there-
fore assume that complete transparency is not a very
useful tool for supervision. A better approach would
be to designate specialized companies that execute fre-
quent in-depth controls of the conduct of companies.

Finally, neither of the two approaches can prevent
malicious behaviour, but they only try to compensate

for it after it has been discovered. For many situations
in real-life, where an offence might have an irrepara-
ble effect (e.g., the collapse of the Barings Bank, where
the Bank officials trusted their trader [7]) or where a
proper functioning of the system is absolutely essen-
tial, this guarantee might not be strong enough.

We would like to remark that most of these prob-
lems are also present in our every-day life and there-
fore quite well understood. However, the question
stands if we can do better than that.

The pessimistic approach removes all these disad-
vantages by simply preventing any violation of the
published policy. This would clearly be the best foun-
dation for trust since we can solely rely on a principal’s
policy to verify that its behaviour will be acceptable.
The behaviour of the principal becomes completely
transparent as far as it is constrained by its policy
without the need to actually supervise any particular
action. If the policy prescribes a particular action for
some event and if the policy is enforced then it is guar-
anteed that the action will take place. Unfortunately,
this policy enforcement can not be realized in its full
generality, but is limited to those policies (or rules of a
policy) that can effectively be enforced with some un-
circumventable mechanism. For non-enforceable poli-
cies, we still have to rely on optimistic approaches to
trust.

There is no possibility to enforce rules within a
policy without relying on some piece of trusted and
tamper-proof hardware [4]. In the following section,
we will describe such a piece of hardware and the re-
quirements that have to be met so that it can be used
to enforce certain rules of a policy.

4 Tamper-proof hardware and
the CryPO protocol

We will first present the execution environment (TPE)
that we rely on and then describe the CryPO (cryp-
tographically protected objects) protocol that uses
it. Figure 1 gives an overview of the principals in the
system.

The TPE manufacturer produces the TPEs, which
can be bought by any agent executor. An agent owner
has to trust the TPE manufacturer to design and pro-
duce its TPEs properly (see Section 6). The broker is
basically a directory service to locate the other prin-
cipals and to obtain their credentials.

4.1 Notation

The described approach relies on public key cryptog-
raphy [5] (such as RSA [13]). A detailed description of
cryptography and the corresponding notations is not

4We have originally chosen the term object since it is more
general than the term agent.

TR
e trust :
A

o8
o Lo

“~_ provides
N
N

host |saas
computer

TPE: Tamper Proof Environment AO: Agent Owner
AE: Agent Executor

TM: TPE Manufacturer

Figure 1: Overview of the Principals in the CryPO
protocol

within the scope of this presentation, for information
on this topic see, for instance [2, 15]. The notation we
will use is as follows.

A principal P has a pair of keys (Kp,KIZl) where
Kp is P’s public key and K;l its private key. Given
these keys and the corresponding algorithm, it is pos-
sible to encrypt a message m, denoted {m}k, , so that
only P can decrypt it with its private key. A signed
message, including a digital signature on the message
m, generated by P is denoted {m}gs,.

In the following we assume the usage of optimiza-
tion schemes such as encrypting a large message with
a symmetric session key, which in turn is encrypted
using public key cryptography and prepended to the
message as well as the use of hash algorithms to reduce
the amount of data that has to be signed. However,
for ease of presentation, we will not make this explicit.

4.2 The execution environment

As we have noted above, there is no way to enforce any
particular behaviour from another principal without a
piece of trusted and tamper-proof hardware. We will
discuss the problem of trust in the tamper-proof hard-
ware in Section 6. The concept of tamper-proofedness
usually applies to a well-defined module, sometimes
called black-box, that executes a given task. The
outside environment cannot interfere with the task
of this module other than through a restricted inter-
face that is under the complete control of the tamper-
proof module (see Section 4.4). We will call this device
tamper-proof environment (TPE). The TPE provides
a complete agent platform that can not be inspected
or tampered with. Any agent residing on the TPE is
thus protected by the TPE both from disclosure and
manipulation.

The TPE is a complete computer that consists of a
CPU, RAM, ROM, and non-volatile storage (e.g. hard-
disk or flash RAM). It runs a virtual machine (VM)
that provides the platform for the execution of agents

and an operating system that provides the external
interface to the TPE and controls the VM (e.g., pro-
tection of agents from each other). Furthermore, the
TPE contains a private key K ., that is known to
no principal other than the TPE — also the physical
owner of the TPE has no information concerning this
private key. This can be achieved by generating the
private key on the TPE®. Using this approach, the
key is never available outside of the TPE and, thus,
protected by the operating system and the tamper-
proofedness of the TPE. The secrecy of the private
key is a crucial requirement for the usage of the TPE
to enforce a particular behaviour.

The TPE is connected to a host computer that is
under the control of the TPE owner. This host com-
puter can access the TPE exclusively through a well
defined interface that allows, for instance, the follow-
ing operations on the TPE:

e u migr I Temove nts;
pload, ate, or remove agents;

e facilitate interactions between host and agent or
between agents on the TPE;

e verify certain properties of the TPE (such as
which agents are currently executing).

Due to its implementation as a tamper-proof mod-
ule and the restricted access via the operating system,
it is impossible to directly access the information that
is contained on the TPE.

This property is ensured and guaranteed by the
TPE manufacturer (TM), which also provides the
agent executor (AFE) with a certificate (signed by
TM). The certificate contains information about the
TPE, such as its manufacturer, its type, the guaran-
tees provided, and its public key. The agent owner
(AO) has to trust the TM (see Section 6) that the
TPE actually does provide the protection that is
claimed in the certificate.

4.3 CryPO protocol

The CryPO (cryptographically protected objects)
protocol transfers agents exclusively in encrypted form
over the network to a TPE. Therefore, it is impossi-
ble for anyone who does not know the proper key to
obtain the code or data of such a protected agent.

The protocol is divided into two distinct phases.
The first phase consists of an initialization, which has
to be executed once before the actual execution of the
protocol. The second phase is concerned with the us-
age of the TPE and the actual transfer of the agent.
The protocol is based on the interactions given in Fig-
ure 2.

50ther, more sophisticated approaches to create the pair
of keys could be envisaged, which could also incorporate key
recovery mechanisms (e.g., escrowed key shares).

4.3.1 Initialization: In the initialization phase, the
participants establish the trust relations that are as-
sociated with the different keys:

e the TM publishes its certification key K.

e the TM sends the certificate Certrpg =
{K71pg}sm to the AE.

o the AE registers its reference® with one or several

brokers.

senpnenseiie
\\\\\\\\\\\\\\\ Tust H @

s
o

TPE: Tamper Proof Environment AO: Agent Owner
TM: TPE Manufacturer
REF: Reference for an AE

AE: Agent Executor
Br: Broker

Figure 2: Initialization of the CryPO protocol

4.3.2 TPE usage: After the participants have fin-
ished the initialization, they can execute the usage
part of the CryPO protocol:

e The AO queries the broker for the reference to the
AE with which it wants to interact (or it already
holds this reference from a previous interaction).

e The AO verifies the certificate Cert rpg to check
the manufacturer and the type of the TPE, in
order to decide if it satisfies the security require-
ments of the AQ. If it is not satisfied with these
checks, it will abort the protocol.

e The AO sends the agent encrypted with the pub-
lic key of the TPE, {A}k,,, to the AE.

e The AE cannot decrypt {4}y nor can it do
anything other than upload the agent to its TPE.

e The TPE decrypts {4}k, using its private key
K75, and obtains the executable agent A, which
will eventually be started and can then interact
with the local environment of the AE or other
agents on the TPE.

6 A reference to an AE consists of its name, its physical ad-
dress in the network, its policy, and the certificate Certpg for
its TPE. The broker can also verify that the AE actually con-
trols the corresponding TPE by executing a challenge-response
protocol with the TPE via the AE.

e The agent can, after it has finished its task, send
a message back to its owner or migrate back to
its owner or to another AE to which it holds a
reference.

SRR
\\\\\\\\\\\\\\\\\t\rust \\\ @

o
G
o
G

TPE: Tamper Proof Environment AO: Agent Owner
TM: TPE Manufacturer AE: Agent Executol
REF: Reference for an AE Br: Broker

Figure 3: Usage of the CryPO protocol

The obvious problem of protecting the TPE from
malicious agents is independent of the described ap-
proach and has to be tackled with additional mech-
anisms, such as code signing. The problem of pro-
tecting the TPE from tampered agents can easily be
solved by concatenating the agent with a well known
bit-pattern (magic number, MN) before encrypting it
{A, MN }k p,- The TPE simply has to verify the cor-
rect MN before starting the agent.

4.4 Notes on feasibility

The actual construction of a tamper-proof module in
the real world is difficult; nevertheless, there are many
applications that rely on them (e.g., payphones, debit
cards, or SIM cards for GSM). Given sufficient time
and resources, it becomes very probable that an at-
tacker can violate the protection of such a module [1].

We believe that the actual realization of the pre-
sented TPE with reasonably strong guarantees in real-
world settings is also quite difficult, but nonetheless
feasible. Especially, since we only require the detec-
tion of tampering for most envisioned applications.

We imagine the TPE as a regular computer with
a special operating system. It is physically protected
with a special hardware that can effectively be sealed
to detect tampering, is under continuous video surveil-
lance similar to the systems used to supervise ATMs,
and is subject to challenge inspections by the TM or
an independent appraisal and inspection organization.
As explained in [1], such an installation is conceivable
and can even resist massive attacks. A thorough anal-
ysis of the remaining risks has to be undertaken, but
this is not within the scope of this presentation.

5 Usage of the TPE to guarantee
an agent’s itinerary

The CryPO protocol and the TPE described above
guarantee the integrity of the agent platform to the
AO and protect the code and data of an agent against
manipulation and disclosure, both in transit and dur-
ing execution. These guarantees are based on the trust
relation between the AO and the TM, where the AO
trusts the TM to properly manufacture its TPEs and
to control them regularly (if necessary) so that the
claimed guarantees hold. The certificate enables the
AO to ensure that it really deals with a TPE from a
certain manufacturer.

The above guarantees can then be extended to for-
mulate rules of a policy that can effectively be enforced
by a TPE. In [20], we have discussed these issues in
more detail and have shown how this approach can be
used to implement limited lifetime (i.e., an agent can
only be executed up to a certain point in time) and
at-most-once execution (i.e., an agent can be executed
once, but after it has finished, it can never be executed
again) of an agent. If the enforced policy rules provide
sufficient protection for a given agent, then the user
does not need to trust the AE, but it suffices to trust
the TM. The problem of why the agent owner should
trust the TM is discussed in section 6.

Here, we want to investigate how a similar ap-
proach can be used to assure an agent owner that
his agent will follow a pre-defined itinerary. As we
have already seen, this problem consists of ensuring
that the agent will neither migrate to a TPE that
is not on its itinerary nor skip a TPE that is on its
itinerary. Therefore, it suffices to make sure that the
agent will migrate exactly to the TPE that is next on
its itinerary. This resolves the problem of ensuring
the safety part of this problem. The complementary
problem of ensuring liveness, i.e., to make sure that
the agent will actually continue its execution on the
next TPE is another difficult task, for which we will
only sketch a solution.

We will start by identifying the policy that a TPE
has to enforce, to which we will refer to as itinerant
safe policy. Then we will describe the send-agent ap-
proach, which takes advantage of this policy to ensure
that the agent will migrate exactly to the next TPE
on its itinerary.

For reasons of simplicity, we assume that the AO
provides the agent with a pre-defined itinerary upon
its start and that the AO has also verified that all
the TPEs on the itinerary enforce the itinerant safe
policy, which is encoded in the TPE’s certificate.

This limitation can easily be removed by having the
agent perform the policy verification itself before mi-
grating to a new TPE. This might possibly require a
slightly stronger protection by a TPE that supports
this (i.e., some new policy rules). Since the agent is ex-

ecuting on a TPE that enforces an itinerant safe policy
at its start — the AO verifies this, before sending the
agent — and since it will only migrate to a TPE that
also enforces an itinerant safe policy, by induction, we
can conclude that the agent will never execute on a
TPE that does not enforce an itinerant safe policy.

5.1 An itinerant safe policy

We assume that the policy rules enforced by the TPE
are the following;:

<a> the code and data of an agent will never be
disclosed by the TPE.

 an agent is protected from any interference
from other agents executing on the same TPE
(other than calls on its public interface).

<c> an agent can create new agents on the TPE.

<d> an agent can explicitly pass a capability to an-
other agent on the same TPE in order to allow
it to perform special management operations on
this agent.

<e> the TPE provides a capability protected man-
agement operation to freeze” an active agent.

<f> the TPE provides a capability protected man-
agement operation to marshal a frozen agent into
a sequence of bytes.

<g> the TPE provides a cryptographic interface to
encrypt a sequence of bytes with a public key?®.

<h> the TPE provides an I/O operation to send a
sequence of bytes to some network address.

Apart from rule <a>, which is a basic rule for al-
most any TPE, all the other rules are regular operat-
ing system functionality that is well understood. The
rules , <e>, and <f> that require protection of
agents from one another are readily implementable us-
ing normal memory protection mechanisms. The ca-
pability that is required in rules <d>, <e>, and <f>
can be a simple random bit-string that is sufficiently
long to prevent guessing attacks from other agents.

5.2 The send-agent approach

The use of the itinerant safe policy to guarantee that
an agent will migrate from a TPE Tj to a specific TPE

"The agent that will be frozen will be informed about this
action, so that it can perform any necessary cleanup operations
before being frozen.

8For performance reasons, the TPE might also use a hybrid
encryption scheme, where it only encrypts a session key with
the public key and the bulk of the data with the session key
using a symmetric encryption scheme.

T, is now straightforward. We assume that the orig-
inal agent Ao carries the code for the send-agent Ag
with it. Ao will now take advantage of rule <c¢> and
<d> to instantiate Ag on the TPE (using a primitive
similar to fork on the UNIX operating system) and
provides it with a capability to access the manage-
ment functionality on Ap as well as the certificate for
T>, which contains T5’s policy, the public key of T3,
and a network address for T5.

Ag will now take the necessary actions to freeze
Ao (rule <e>) and to marshal Ap into a sequence of
bytes (rule <f>). For this, As needs the capability
that it received from Ap. Then Ag will encrypt the
marshaled Ao (rule <g>) using the key in the certifi-
cate for T» and send it to the network address given
in the certificate.

In order to guarantee the liveness of an agent that
is executing on a TPE, the TPE needs to implement
some form of checkpointing mechanism that allows the
agent to survive a possible crash of the TPE (or an-
other mechanism with a similar functionality). Solv-
ing this problem is in itself a complex task and we
will not discuss it here any further. However, in or-
der for Ag to ensure that Ap will actually continue
its execution on T5, it is necessary that Ag waits for
a confirmation stating that Ao has successfully cre-
ated such a checkpoint on T5. If Ag does not receive
such a message after a certain timeout, it might sim-
ply re-instantiate Ap on T and inform it about the
unsuccessful migration attempt. Ao can then take
appropriate actions to recover from this error.

No other agent on 77 is capable to execute the op-
erations that give access to Ap’s code or data in any
way (rule). Furthermore, since T} will never dis-
close any information on any agent executing on it
(rule <a>), the only way that any information about
an agent on a TPE can ever become available out-
side of this TPE is through proper actions of the
agent itself (by sending messages or by using the send-
agent approach for migration). Therefore, we con-
clude that the presented approach allows to guarantee
that an agent will migrate exactly to the next TPE
on its itinerary and will, thus, follow its pre-defined
itinerary.

To simplify this approach to agent mobility, the
code of Ag could also be integrated in the operating
system of the TPE, which could offer access to this
functionality in the form of a system call that per-
forms the migration (e.g. jump, go, etc.). However,
the underlying policy and the necessary actions that
are required to achieve this, are the ones described
above.

6 Trust in the TPE manufac-
turer

We have just introduced the mechanism, with which
an agent can take advantage of the policy enforced by
a TPE. However, as we have mentioned above, in or-
der for a user to trust in the proper enforcement of this
policy, it is necessary that he also trusts the TPE man-
ufacturer to properly design, implement, and produce
its TPEs. Since there is no way (to the knowledge
of the authors) to enforce a correct behaviour of the
TPE manufacturer, it seems that the presented ap-
proach simply replaces one required trust relationship
with another one. This is a correct observation from
a theoretical point of view. Nevertheless, we believe
that this replacement of trust in an arbitrary service
provider with trust in a TPE manufacturer has sev-
eral more subtle implications. We will briefly discuss
the following advantages that we identified:

e better understanding of security and privacy
problems

e centralized control
e resources to build reputation

e separation of concern

The TPE manufacturer is a specialized service
provider, which primarily deals in the field of the pro-
vision of security devices. Therefore it has a better un-
derstanding of security and privacy problems, which
makes it a much more capable entity to ensure this
service since it is more aware of the potential prob-
lems and pitfalls.

We assume that there will be relatively few TPE
manufacturers (on the order of several hundreds) com-
pared to the number of possible operators of the TPE
(on the order of several millions). This makes the con-
trol of their behaviour much easier for expert appraisal
organizations. Also, it is quite conceivable that a TPE
manufacturer might invite external experts to control
its internal operation, in order to obtain a better posi-
tion in the market (similar to the approach for quality
assurance in the ISO-9000 or the approach taken by
Intermind?).

The production of TPEs is considered to be a diffi-
cult task (see Section 4.4). Therefore, we assume that
it will be undertaken by major corporations, which
have the necessary resources to build a good reputa-
tion and which have an incentive to protect this rep-
utation. This allows us to rely on good reputation as
foundation for trust in the TPE manufacturer.

9Intermind was evaluated by a Big 6 accountants firm
to verify the implementation of its privacy policy. For fur-
ther information see press release from June 6, 1997 on
http://www.intermind.com/.

The TPE manufacturer that is responsible for the
enforcement of the proper policy rules on the TPE, has
nothing to gain by not accomplishing its task. Since
the TPE will be operated independent from the TPE
manufacturer by a completely different principal and
since the TPE manufacturer has no means to access
the data that is processed on the TPE (no physical
connection), there is no possibility for the TPE man-
ufacturer to draw a direct benefit from a TPE that
does not properly enforce its policy*°.

We assume that the above arguments of high exper-
tise, effective controllability, good reputation, and lack
of incentive are sound reasons to trust a TPE man-
ufacturer to build reliable and powerful TPEs. The
main advantage of the approach lies in the possibility
to leverage this trust in the TPE manufacturer onto a
completely different principal in the role of a service
provider, which

e does not have the proper expertise to ensure a
secure operation of its hardware and to guarantee
the protection of the processed data.

¢ is quite difficult to control, due to the sheer num-
ber of such service providers.

e has no particular reputation (and therefore none
to lose).

e might have short term goals that (in its point of
view) justify a policy violation.

With the presented approach, such a service
provider can easily define the policy rules that it would
like its TPE to enforce (by selecting from the options
offered by the TPE manufacturer) and buy the appro-
priate TPE from a reputable TPE manufacturer. The
service provider can then immediately benefit from
the trust that users have in the TPE manufacturer of
its TPE to convince them that it will not maliciously
abuse an agent sent by the users.

With this, the approach favours the open systems
philosophy, where any principal can possibly become
a provider of services. Such a service provider sim-
ply has to obtain a TPE from some reputable man-
ufacturer and can then easily convince a client that
the client’s confidential information is sufficiently pro-
tected. Thus, it becomes much easier for a new service
provider to establish itself in the market.

7 Conclusion

In this paper, we have discussed the notion of trust in
the context of mobile agent systems and introduced
a structuring for this problem domain. Starting from

10T here is the possibility that a TPE operator bribes a TPE
manufacturer to provide an incorrect TPE. We assume that
such a behaviour is a severe offence that is subject to criminal
investigation and not within the scope of this discussion.

10

this structure, we have proposed an approach that re-
lies on trusted and tamper-proof hardware, which al-
lows to prevent malicious behaviour rather than cor-
rect it. We believe this to be the better form of protec-
tion for confidential data. We have shown how the ap-
proach can be used to effectively protect the itinerary
of a mobile agent. Finally, we identified the positive
implications that the presented approach can have on
the construction of open mobile agent systems, where
any principal can become a service provider and re-
ceive mobile agents.

In real-life, there are limitations to the approach.
Given sufficient time and resources, a TPE operator
might succeed in breaking the system and it would
thus be possible for him to violate even those parts of
the policy that should be enforced by the TPE. Our
goal is to make this approach so costly that it would
negate a possible gain (there may be many different
implementations of TPEs that provide different secu-
rity guarantees). As further deterrent, we assume that
a non-repudiable proof for a policy violation of an en-
forced policy or of an attempted or successful breaking
of a TPE might be punished much more severely than
a mere policy violation since it proves a much larger
determination to commit a criminal offence.

References

[1] R. Anderson and M. Kuhn. Tamper resistance — a cau-
tionary note. In The Second USENIX Workshop on Elec-
tronic Commerce Proceedings, pages 1-11, Oakland, Cali-
fornia, November 1996.

[2] G. Brassard. Modern Cryptology — A Tutorial, volume 325

of Lecture Notes in Computer Science. Springer Verlag,

1988.

A. Carzaniga, G. P. Picco, and G. Vigna. Designing dis-
tributed applications with mobile code paradigms. In
R.Taylor, editor, Proceedings of the 19th International
Conference on Software Engineering (ICSE’97), pages 22—
32. ACM Press, 1997.

D. M. Chess, B. Grosof, C. G. Harrison, D. Levine, C. Par-
ris, and G. Tsudik. Itinerant agents for mobile comput-
ing. IEEE Personal Communications, 2(3):34-49, October
1995.

(3]

(4]

[5] W. Diffie and M. E. Hellman. New directions in cryptog-
raphy. IEEE Trans. Inform. Theory, IT-22(6):644-654,

1976.

DoD. Trusted Computer System Evaluation Criteria (TC-
SEC). Technical Report DoD 5200.28-STD, Department
of Defense, December 1985.

The Economist. The collapse of Barings, March 4 1995.

(6]

[7]
[8] J. Gosling and H. McGilton. The java language environ-
ment. White paper, Sun Microsystems, Inc., 1996.

[9] R.S. Gray. Agent Tcl: A transportable agent system. In
Proceedings of the CIKM Workshop on Intelligent Infor-

mation Agents, Baltimore, MD, December 1995.

C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mo-
bile agents: Are they a good idea? In J. Vitek and
C. Tschudin, editors, Mobile Object Systems: Towards the
Programmable Internet, volume 1222 of Lecture Notes on
Computer Science, pages 25—-47. Springer, 1997. Also avail-
able as IBM Technical Report RC 19887.

[10]

(11]

(12]

(13]

(14]

15]
[16]

(17]

ITU. ITU-T Recommendation X.509: The Directory —
Authentication Framework. International Telecommunica-~
tion Union, 1993.

J. Ordille. When agents roam, who can you trust? Techni-
cal Report Technical Report, Computing Science Research
Center, Bell Labs, 1996.

RSA Data Security, Inc. PKCS #1: RSA Encryption
Standard. RSA Data Security, Inc., November 1993.

R. A. Rueppel. A formal approach to security architec-
tures. In FuroCrypt, pages 387-398, Brighton, England,
1991.

B. Schneier. Applied cryptography. Wiley, New York, 1994.

J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An
authentication service for open network systems. In Pro-
ceedings of the USENIX Winter 1988 Technical Confer-
ence, pages 191-202. USENIX Association, Berkeley, USA,
February 1988.

New York Times. U.S. workers stole data on 11,000, agency
says, April 6, 1996.

11

18]

(19]

[20]

[21]

[22]

(23]

G. Vigna. Protecting mobile agents through tracing. In
Proceedings of the Third Workshop on Mobile Object Sys-
tems, Finland, June 1997.

J. E. White. Telescript technology: The foundation for
the electronic market place. White paper, General Magic,
Inc., 1994.

U. G. Wilhelm, L. Buttyan, and S. Staamann. On the
problem of trust in mobile agent systems. In Symposium
on Network and Distributed System Security. Internet So-
ciety, March 1998. (to appear).

I. S. Winkler. The non-technical threat to computing sys-
tems. Computing Systems, USENIX Association, 9(1):3—
14, Winter 1996.

T. Y. C. Woo and S. S. Lam. Authentication for dis-
tributed systems. IEEE Computer, 25(1):39-52, January
1992.

P. Zimmermann. PGP User’s Guide. MIT Press, Cam-
bridge, 1994.

