Formal Methods for the Analysis of Authentication Protocols

Aviel D. Rubin

Bellcore
445 South St.
Morristown, NJ 48109-4143

Abstract

In this paper, we examine current approaches and
the state of the art in the application of formal meth-
ods to the analysis of authentication protocols. We
use Meadows’ classification of analysis techniques into
four types.

The Type I approach models and verifies a protocol
using specification languages and verification tools not
specifically developed for the analysis of cryptographic
protocols. In the Type II approach, a protocol de-
signer develops expert systems to create and examine
different scenarios, from which he may draw conclu-
sions about the security of the protocols being studied.
The Type III approach models the requirements of a
protocol family using logics developed specifically for
the analysis of knowledge and belief. Finally, the Type
IV approach develops a formal model based on the
algebraic term-rewriting properties of cryptographic
systems.

The majority of research and the most interesting
results are in the Type III approach, including reason-
ing systems such as the BAN logic; we present these
systems and compare their relative merits. While each
approach has its benefits, no current method is able
to provide a rigorous proof that a protocol is secure.

1 Introduction

Authentication is the process by which a princi-
pal in a distributed system proves its identity. Typi-
cally, each principal shares a secret with some trusted
machine, called an authentication server. By proving
possession of this secret, a principal can establish trust
in its identity. The use of passwords in a multi-user
environment is an example of this.

The shared secret in an authentication system is
typically used as an encryption key. The encryption
scheme has the property that a user cannot generate

Peter Honeyman

Center for Info. Technology Integration

University of Michigan
Ann Arbor, MI 48109-4143

or decrypt encrypted data without possession of the
key. Thus, a principal proves it is in possession of a
key by encrypting with it.

Authentication in a large, distributed system is
challenging because principals communicate over a
network that is vulnerable to many attacks. A passive
intruder can eavesdrop on a line and obtain sensitive
information. Of graver consequence, is an active in-
truder who can modify message traffic by blocking the
transmission of packets and inserting his own packets
at will. Such an intruder can impersonate any princi-
pal in the system and possibly intercept his rights and
privileges.

Encryption can thwart the attacks of an active in-
truder. Many encryption schemes preserve the in-
tegrity property, where any modification to some part
of the data causes the decryption to fail. Thus, with-
out knowledge of the key, an active, malicious in-
truder’s ability is limited to blocking data from reach-
ing its destination.

Most authentication systems used in practice are
symmetric; the same key is used for encryption and
decryption. It is assumed that each principal shares a
secret key with an authentication server, and this key
is established by some secure, off-line method. Two
principals can communicate securely by sending en-
crypted messages to the authentication server, who
can re-encrypt and forward them to the intended re-
cipient. However, issues of scale make this impractical.

Rather, when two principals wish to communicate,
they establish a secret key known only to them. This
secret key serves as a secure communication channel
between the two principals because an active intruder
who doesn’t know the key cannot successfully interfere
with the communication!. However, establishing such
a key, called a session key, is a nontrivial problem.

The problem of establishing secure session keys be-

1Tt is assumed that systems will always be vulnerable to mes-
sage blocking because in the simple case an intruder can cut the
physical wire connecting two machines.

tween pairs of principals in a distributed authentica-
tion system led to a great deal of research. This re-
search focuses on the development of protocols, and is
accompanied by a greater and more interesting prob-
lem, the analysis of authentication protocols.

The Needham and Schroeder authentication proto-
col [54] revolutionized security in distributed systems.
Adaptations of this protocol, such as Kerberos [71]
and the Andrew File System [34] have become univer-
sal. However, it was not long before a flaw was found
in this protocol [20]. Needham and Schroeder then
published a revised version of their protocol [55].

The existence of a subtle flaw in a previously
trusted protocol stressed the need for formal methods
for analyzing authentication protocols. In fact, many
authors praise the merits of their analysis techniques
with their ability to discover the flaw in the Needham
and Schroeder protocol [11, 14, 29, 51, 70, 87].

Abadi and Needham offer guidelines for avoiding
known types of flaws in cryptographic protocols [1].
The authors suggest prudent engineering practices for
designing protocols securely. Although their argu-
ments are informal, the authors build on the successes
of formal methods used to discover different types of
flaws. Several categories of flaws are defined along
with techniques for avoiding them. Thus, an indirect
benefit to formal methods for authentication protocol
analysis is that general categories of flaws are identi-
fied. Liebl [41] provides a bibliography of protocols
and logics of protocols for authentication.

A few specification techniques for authentication
protocols have been published [48, 77, 88, 91], and
several formal analysis techniques have been proposed.
In particular, the use of predicate logic for the anal-
ysis of protocols was proposed by Burrows et. al.?
[11], and many extensions have since been published
[13, 14, 25, 29, 69, 70]. Others have been critical of
the BAN logic [56, 74], and have proposed their own
logics [42, 43, 46, 48, 49, 51, 53, 72, 74, 87, 91]. This
paper explores these logics and discusses the trade-offs
among them.

2 Terminology

This section describes some of the terminology used
in the rest of the paper. Because many researchers
define their own terms and use different notations, we
have standardized on the following definitions.

2This logic is referred to as BAN logic, after the authors
Burrows, Abadi, and Needham.

Threat model refers to the assumed characteristics
of the security environment. It includes the as-
sumptions made about the principals involved
and the possible interference of malicious agents.
In this paper, the threat model includes an ac-
tive intruder who can delete, modify, and create
message traffic at will. We also assume strong
encryption.

Encryption is the science or art of generating a ci-
pher text from a clear text, making the clear text
unrecognizable. In security systems encryption
involves the use of a secret key and a known al-
gorithm.

Decryption is the science or art of generating a clear
text from a cipher text. In security systems de-
cryption involves knowledge of a secret key and a
known algorithm.

Cryptanalysis is the science or art of breaking a
cryptographic code without knowledge of the key.

Strong encryption is an encryption method that is
assumed to be computationally unbreakable.

Z is a common notation to represent the intruder. (It
is also common to see X and C.)

Key management protocol is a set of rules defin-
ing the messages passed in an encryption system
to distribute secret keys.

Authentication protocol is a set of rules defining
the messages passed in a system for a principal to
prove its identity.

Nonce is an identifier, usually a large random num-
ber, that is used only once. The main purpose of
a nonce is to link two messages together so that
a response can be recognized as fresh. A nonce is
usually represented as N, or N, etc.

Doxastic logic is based on belief. The reasoning sys-
tem uses rules about how belief is propagated to
establish new beliefs.

Epistemic logic is based on knowledge. The reason-
ing is similar to reasoning in a doxastic logic, but
these logics are used to reason about knowledge
instead of belief.

{data }; represents data encrypted under secret key,
k.

Session key is a secret encryption key established
between two principals for communication pur-
poses. As the name implies, this key is intended
for one session only. Sometimes this session is
only one protocol run; often it lasts for the life-
time of a ticket or token.

Symmetric keys are used for private key systems.
In such systems, the same key is used for encryp-
tion and decryption. For example, {data }; can
be decrypted with k.

Asymmetric (public) keys are pairs of keys that
are inverses of each other. One key is kept pri-
vate, and is known only to the principal who pos-
sesses it. The other key is public, and is made
widely available. Data encrypted with the pri-
vate key can be decrypted with the public key;
similarly, data encrypted with the public key can
be decrypted with the private key.

Balanced protocol exists if two principals play the
same role in the protocol. Thus, a protocol in
which a principal speaks with the authentication
server is not balanced, whereas a protocol, in
which two users at the same trust level share data
usually is balanced.?

3 Needham and Schroeder

We now turn to one of the most famous and land-
mark protocols to begin our discussion of protocol
analysis.

The Needham and Schroeder protocol [54] dis-
tributes a secret session key between two principals
in a network. The threat model of the Needham and
Schroeder protocol assumes that each principal shares
a secret key with an authentication server and that
an intruder can read and modify anything that passes
on the network. In addition, the model assumes that
intruders can block any message from reaching its des-
tination and insert malicious messages of their own.

The participants in this protocol are the three prin-
cipals, A, B, and S, where S is the authentication
server, and A is a principal who wishes to initiate a
secure session with principal B. Thus, as pointed out
by Sidhu [67], this protocol is not balanced.* We rep-
resent a protocol step as

3In the literature, these protocols have been called symmet-
ric protocols ([67, 87]). However, the term symmetric is more
commonly associated with a type of cryptography, and so we
use the term “balanced protocols” to avoid confusion.

4Sidhu uses the term symmetric instead of balanced [67].

1. A,B,Na

2.{Na, B, Kab{Kab,A} \ s} kas

3.{KabA}
A) AN B

5. {Nb-

B wa

Figure 1: The Needham and Schroeder Protocol

A — B : Message

to indicate that A sends Message to B. Thus, the
Needham and Schroeder protocol can be specified as
follows:

1. A— S: A, B,N,

2. S — A:{Nag, B, Kap,{Kas, A}k, } k..
3. A— B:{Ku, A}k,

4. B— A {Ny}k.,

5. A— B :{Ny— 1}k,

This protocol is represented graphically in Figure 1.
Each node represents a principal, and the transitions
represent the messages being sent. The transitions are
numbered in the order of the messages. K,j represents
the secret key shared by A and B, etc.

In message 1, A sends a request to the server (S)
indicating that it wishes to communicate with B. The
nonce N, is included to link future messages to this
request. This message is sent in the clear because it
includes no security related information.

In message 2, the server S responds with a session
key, Kq5. A copy of the key is also encrypted under
B’s secret key. In addition, N, is included as a guar-
antee that this message is not a replay of a previous
response. Each principal is also told which principal
will be on the other end of the secure channel. This
can be seen by the inclusion of A in {K4, A} k,,-

In message 3, A forwards {Kg, A}k,, to B, who
can decrypt it and recover K,;. B then issues mes-
sage 4 as a challenge to A to make sure that A pos-
sesses K,p. In message 5, A proves possession of the
session key. At the end of the protocol, it would seem

that A and B would be in possession of K,;,°> and
that no intruder could possibly know the secret ses-
sion key. Thus, this protocol appears to allow A and
B to establish a secure channel.

3.1 A Weakness in the Protocol

Denning and Sacco [20] were the first to discover a
major weakness in the Needham and Schroeder pro-
tocol.

It is assumed that a session key is meant to be used
only once and then discarded. Now, if we assume an
intruder, 7, has recorded a previous run of the Need-
ham and Schroeder protocol, then an attack is possible
if the old session key is compromised.

To illustrate, suppose that an old session key, CK,
has been compromised. If Z recorded the protocol
run where C'K was established, then Z can replay the
message:

Z — B:{CK,A}x,,

Thinking A has initiated a new conversation, B re-
quests a handshake from A:

B— A: {Nb}CK

7 intercepts the message, decrypts it with C'K, and
impersonates A’s response:

Z—B:{N,—1}ck

Thereafter, Z can send bogus messages to B that ap-
pear to be from A. B will have no way of knowing
that it is not communicating with A.

3.2 Handling the Weakness

Denning and Sacco suggest that by adding times-
tamps to messages 2 and 3, the problem can be solved.
Thus, these two steps become:

S—A: {Ta Na; B7I(aba {I(ab;A;T}KbS}K”
A— B: {I{ab,A,T}KbS

where 7' is a timestamp. Thus, a replay of message 3
would be recognized as old and would be ignored.

In a follow-up paper Needham and Schroeder pro-
pose a solution that is based on the use of nonces[55].
They observe that one of the communicating parties
will require proof of the timeliness of a future message.
It is always this party that should generate the nonce
identifier.

This is achieved as follows. Before the protocol
takes place,

5We ignore the fact that S also has K ,;, because it is assumed
to be a trusted server that would not abuse the key.

A—B:A

B — A:{A, J}k,,, where J is a nonce identifier that
will be kept by B.

Now, J can be included in the authenticator sent to
A to be forwarded to B. Thus, B will be assured that
the session key is fresh and not a replay.

The vulnerability of the Needham and Schroeder
protocols comes from the fact that each session key is
meant for exactly one session. If an intruder can com-
promise an old session key, he can force its use in an-
other session. Both Denning and Sacco’s solution and
the revised Needham and Schroeder protocols solve
this problem by requiring that the forwarded message
from A to B establish a new session.

This section deals with symmetric secret keys. The
arguments are similar for public key systems, and we
do not repeat them here.

3.3 Discussion

We have shown how a weakness discovered in a pub-
lished protocol can be fixed, but we have not proved
that the resulting protocol is secure. Furthermore, we
have not shown that a mechanical technique could dis-
cover this weakness. In the remainder of this paper we
will discuss how formal methods have been applied to
the analysis of authentication protocols.

4 Approaches to Analysis

Meadows [49] defines four approaches to the analy-
sis of cryptographic protocols:

Type I- To model and verify the protocol using
specification languages and verification tools not
specifically developed for the analysis of crypto-
graphic protocols.

Type II- To develop expert systems that a protocol
designer can use to develop and investigate differ-
ent scenarios.

Type ITII- To model the requirements of a protocol
family using logics developed for the analysis of
knowledge and belief.

Type IV— To develop a formal model based on
the algebraic term-rewriting properties of cryp-
tographic systems.

The Type 1 approach is the least popular, while the
Type III approach is the most common. These ap-
proaches share a few properties. In all cases, the meth-
ods are independent of the underlying cryptographic
mechanisms.® Kailar ef. al. [37] criticize this assump-
tion and show that it leads to results that are unrealis-
tic in practice for some protocols. Nevertheless, all of
the logics to date make this assumption. In addition,
we typically assume a set of principals and a trusted
authentication server. The principals are not trusted,
and may consist of a privileged intruder who can add,
delete, or modify messages on the network at will.
The next four sections describe each of the four
types of authentication protocol analysis. Table 1
shows the focus of current research. The entries in
the table refer to the bibliography reference numbers.

5 Type I Approach

The Type I approach to the analysis of crypto-
graphic protocols is to model and verify protocols us-
ing specification languages and verification tools not
specifically developed for the analysis of such proto-
cols. The main idea is to treat a cryptographic pro-
tocol as any other program and attempt to prove its
correctness. A criticism of this approach is that it
proves correctness and not necessarily security [67].

The first step in this approach is to specify the cryp-
tographic protocol so that the techniques apply. Sidhu
[67] suggests a specification technique that involves
representing a protocol as a directed graph. Varad-
harajan [87] also adopts this method. However, in
later publication [88], he uses LOTOS (Language of
Temporal Ordering Specification) for specifying au-
thentication protocols.

The work by Kemmerer [40] fits into several of the
types of approaches, as shown in Table 1. The author
describes an example system with a special crypto-
graphic facility. The Type I approach can be seen
in his attempt to use machine-aided verification tech-
niques. The properties that the protocol should pre-
serve are expressed as state invariants, and the theo-
rems that must be proved to guarantee that the cryp-
tographic facility satisfies the invariants are automat-
ically generated by the verification system.

It should be noted that, although at first much ef-
fort concentrated on the Type I approach, most work
in this area was redirected as the logics of the Type
IIT approach gained popularity.

8Moore [52] gives some examples of failures in cryptosystem
that result form the interactions between protocols and the un-
derlying encryption mechanisms.

5.1 Using a Formal Verification System

Kemmerer [40] describes two goals in using formal
methods for the analysis of encryption protocols. The
first is to verify formally that an encryption protocol
satisfies its stated security requirements, and the sec-
ond is to discover weaknesses in its specification. His
formal model uses a state machine approach where a
system is viewed as being in various states, which are
differentiated from one another by the values of state
variables. The values of the variables can be changed
only via well-defined state transitions.

Kemmerer uses an extension of first-order predicate
calculus, a formal specification language called Ina Jo
[65]. This nonprocedural assertion language was not
developed specifically for use with security protocols,
and thus this work fits into the Type I analysis ap-
proach. Ina Jo was designed as a general-purpose
tool to support software development and correctness
proofs.

Ina Jo uses the following symbols for logical opera-
tions:

& logical AND

— logical implication

In addition, there is a conditional form,
(if A then B else C)

where A is a predicate and B and C' are well-formed
terms. The notation for set operations is:

€ is a member of

U set union

{a,b,...,c} set consisting of elements a,b,...,and ¢
{set description} set described by set description

The language also contains the following quantifier no-
tation:

Y for all
3 there exists
There are also two special Ina Jo symbols:

N toindicate the new value of a variable (e.g., N"'v1
is the new value of variable v1)

T" which defines a subtype of a given type, T

Protocol Protocol Analysis
First Author Specification Type 1 Type 11 Type 111 Type IV
Abadi 2
Bieber 5
Blumer [6] [6]
Britton [8]
Burrows [11] [12]
Calvelli 13
Campbell 14
Dolev [23]
Gaarder [25]
Gong [28] [29]
Gray [35]
Kailar [36]
Kasami [38]
Kemmerer [40] [40] [40]
Longley [42] [43]
Lu [44]
Mao [45]
Meadows [48] [48] [46] [47] [48] [49]
Merritt [50]
Millen [51]
Moser 53
Nessett 56
Rangan 59
Rubin [63]
Sidhu [67]
Snekkenes [68] [69] [70]
Syverson [77] [77] [73] [74] [75] [79] [78] [72] [77]
Toussaint [81] [82] [83]
Varadharajan | [86] [87] [88] | [86] [87] [88]
Van Oorschot [85]
Woo [91] [91]

Table 1: The Focus of Research in the Specification and Analysis of Authentication Protocols by Category. Entries in the
table correspond to bibliography reference numbers. The four types under protocol analysis are as described by Meadows

[49].

Kemmerer [40] describes an example system, and
then gives an Ina Jo specification of the system. In
this system, n terminals are connected to a central
host. Each terminal contains a cryptographic facility
that holds a permanent terminal key. The host stores
two tables of keys. The first table is a list of the session
keys being used in the system, and the second table
contains the terminal keys. As such, the host acts as
an authentication server.

In this system, the host is connected to a tamper-
proof cryptographic facility that holds master keys for
decrypting the information in the two tables. This
system is used for pedagogical purposes and has not
actually been implemented. The system architecture

is shown in Figure 27. Ina Jo constants and variables
are described, along with {ransforms. An example of
a constant in this example system is:

Terminal key(Terminal num):Key

because each terminal has a constant terminal key.
However, as session keys vary from session to session,
an example variable in Ina Jo is:

Session_Key(Terminal num):Key

An example of a transform in Ina Jo is Gener-
ate_Session_Key. These are used to change state in
the analysis.

"This figure is based on the figure by Kemmerer [40].

Key 0
Key 1

Host

Cryptographic
Facility

Terminal
Key Table

Key Table

pie

Terminal 1

Termina 2

Terminal
Cryptographic
Facility Containing
Terminal Key K(n)

Terminal 3

Terminal n

Figure 2: System Architecture for Kemmerer’s
Sample System.

An Ina Jo aziom is an expression of a property that
is assumed. For example, to express that encryption
and decryption are commutative, we would use the
following Ina Jo axiom:

AXIOM Vt:TEXT, k1, k2:Key (Encrypt(kl,
Decrypt(k2,t)) = Decrypt(k2,Encrypt(kl,t))).

Other such axioms are given in the full specification
found in the appendix of Kemmerer’s paper [40].

Finally, Ina Jo criteria clauses are used to specify
the critical requirements that the system is to satisfy
in all states. For example, the criterion that no key
available to the intruder can be used for encryption
can be specified as:

CRITERION Vk:Key (k € Intruder.Info — k ¢
Keys_Used).

Once the specification is complete, Ina Jo generates
theorems that can be used to verify if the critical re-
quirements (criterion) are satisfied. Kemmerer points
out that “an advantage of expressing the system using
formal notation and attempting to prove properties
about the specification is that, if the generated theo-
rems cannot be proved, the failed proofs often point

to weaknesses in the system or to an incompleteness
in the specification.”

Kemmerer uncovers a weakness in his sample sys-
tem using the formal specification. However, the value
of this method is limited because proving the crite-
rion of an Ina Jo specification does not necessarily
guarantee that a protocol is secure. In addition, to
specify requirements that secure a system from active
attacks, the designer first needs to know the poten-
tial attacks, obviating any need for formal methods to
discover them.

5.2 Using LOTOS for Protocol Specifica-
tion

Varadharajan [88] proposes the use of LOTOS to
analyze authentication protocols. He gives as exam-
ples the specification of two protocols that have been
adopted as standards: the ISO/DP 9798 and CCITT
X.509. However, no results are given. The paper con-
cludes by stating that LOTOS tools are not yet ade-
quate and are currently being developed.

The paper gives a very strong recommendation for
the use of LOTOS. The goals of such a Formal De-
scription Technique (FDT) are outlined as follows:

expressive power: ability to express a wide range of
properties required for the description of services
and protocols.

well-defined: syntax and semantics enabling me-
chanical manipulation, and validation.

well-structured: increasing understandability and
maintainability of specifications.

abstraction: allowing representation of architectural
aspects at a sufficiently high level of abstraction,
where implementation details are not specified.

LOTOS has been developed for systems related to
the Open Systems Interconnection (OSI), and is based
on a process algebra that does not use a temporal
logic, despite what the name might imply.

A system in LOTOS is modeled as a collection of
processes in which the order of events is specified. As
such, it can be used to model the messages sent in an
authentication protocol. However, to date no concrete
results have been reported using this method.

Methods of Type I will have to demonstrate some
success before they become popular. The next section
describes another attempt to use tools not originally
intended to analyze authentication protocols.

5.3 Specifying a Protocol as a Finite State
Machine

Sidhu [67] and Varadharajan [87] describe how to
specify a protocol using state diagrams. A directed
graph is used for each principal. First, an initial state
is specified. Then, an arc is drawn to another state
for each message that can be sent or received at that
point. We will demonstrate this with an example.

The Needham and Schroeder [54] protocol is repro-
duced below for reference.

1. A—=S5:A BN,

2. S — A:{Ny, B, Kap,{Kap, A}k, } K.,

3. A= B : {Ku,Alk,,

4. B— A :{Np}k,,

5. A— B :{Ny — 1}k,
We use the following notation:
P! event — principal P transmits message 1
Pt event — principal P receives message 1

Varadharajan [87] gives a state diagram for each en-
tity, A, B, and S. The attempt is to capture the be-
havior of each principal in the protocol. However, his
example is highly complex and counterintuitive. We
prefer to represent the protocol as a cross product of
the state diagrams for each individual principal (Fig-
ure 3). The nondeterministic finite state machine is
constructed from the individual machines for A and B.
The individual machine for a principal is composed of
a sequence of states with arcs representing the trans-
mission or reception of a message. A state is labeled
P~" to indicate that principal, P, has transmitted
message number n and PT" if P receives message n.

If the final accepting state is reached, then we have
a legal run of the protocol initiated by either A or
B. If an individual principal’s machine consists of z
states, then the cross product machine with another
principal in the protocol has z? + 1 states including
the final accepting states. All other states represent
illegal runs of the protocol.

As we describe each state in our protocol specifi-
cation, notice that it is assumed that A and B play
the same role in the protocol. This assumption is con-
troversial. Varadharajan [87] states that “A4 and B
have symmetric roles.” However, Sidhu [67] states
that “The authentication protocols of Needham and
Schroeder are not symmetric between a sender and

a receiver and assume a particular time ordering of
events.”

The state representations presented by Sidhu dif-
fer slightly from those of Varadharajan. Remaining
impartial, we present our own state diagram con-
struction, and refer the curious reader to Sidhu’s and
Varadharajan’s papers [67, 87] for their representa-
tions.

The next section discusses how these finite state
machines that are used to specify protocols can also
be used in their analysis.

5.4 The Use of Finite State Machines for
Protocol Analysis

The state machines described above can be used
to analyze authentication protocols by employing a
technique known as the reachability analysis technique
[90].

To use this technique, for each transition, the global
state of the system is expressed using the states of the
entities and the states of the communication channels
between them. Each global state is then analyzed and
properties are determined, such as deadlock and cor-
rectness. If an entity is not able to receive a message
that it is supposed to receive in a given state, then
there is a problem with the protocol. For an example
of such an analysis, see Varadharajan [87].

Reachability analysis techniques are effective in de-
termining whether or not a protocol is correct with
respect to its specifications, the purpose for which
they were invented. However, they do not guaran-
tee security from an active intruder. The weakness of
Type I analysis techniques is that in applying methods
that were not intended specifically for security anal-
ysis, subtle pitfalls that are peculiar to the security
domain, such as the effect of message replay, are not
considered.

6 Type II Approach

The Type II approach to the analysis of crypto-
graphic protocols is to develop expert systems that a
protocol designer can use to develop and investigate
different scenarios. These systems begin with an un-
desirable state and attempt to discover if this state is
reachable from an initial state.

Although this approach may better identify flaws
than Type I approaches, it does not guarantee the se-
curity of an authentication protocol, nor does it pro-
vide an automated technique for developing attacks
on a protocol. In other words, the Type II approaches

accept

accept

Figure 3: Nondeterministic Finite State Machine for Principals A and B Initiating the Needham
and Schroeder Protocol. The arc P~" means that principal P transmits message number n. P1? means that
P receives message n. This machine is constructed by taking the cross product of the individual machines for
A and B initiating the protocol. If a state of A’s machine is S;, and B’s is labeled S;, then the corresponding
state in the cross product machine is S;;. The number of legal states in each of A’s and B’s machines is z, and
the cross product contains 2 + 1 legal states including the accepting final state. All other states are illegal, and

stand for illegal runs of the protocol.

can discover whether a given protocol contains a given
flaw, but are unlikely to discover unknown types of
flaws in protocols.

Longley and Rigby [42] summarize the value of
expert systems in the analysis of key management
schemes. The expert systems provide:

e a new perspective on an authentication system;

e a technique of building models capable of contin-
uous refinement;

e a method of interaction with the model, which
provides a greater insight into the operation of
the system;

e a model that responds to what if questions; and

e a method of testing the effects of proposed system
modifications.

Thus, expert systems can be used in conjunction
with other analysis techniques such as those of Type

IIT and IV for the purposes mentioned above, but they
will never replace those techniques.

The NRL protocol analyzer [77] might be viewed as
a Type II approach. However, because it is based on
the Dolev and Yao model [23], in which an intruder
produces words in a term-rewriting system, we will
consider it a Type IV approach.

Kemmerer, Meadows and Millen provide an in-
depth analysis of their respective systems [39]. They
analyze a protocol by Tatebayashi, Matsuzaki and
Newman [80] and compare the process in which each
system discovers the flaw in that protocol. Their pa-
per is recommended for people who wish to further
explore these approaches to protocol analysis.

6.1 The Interrogator

The Interrogator, by Millen et. al. [51] is a note-
worthy effort to apply expert systems to the analysis
of security protocols. The input to the system is a pro-
tocol specification and a target data item. The output
is a message history showing how the penetrator could

have obtained this data item.

In the Interrogator, a protocol is viewed as a col-
lection of communicating processes, one for each prin-
cipal. Each process has a set of possible states, and
the transmission of a message can cause a state tran-
sition in a process. Each process maintains its own
state, and when applicable, sends messages to other
processes causing them to change state. The system
is based on the finite state machine approach [33].

The Interrogator generates a large number of paths
through a protocol, ending in a specified insecure
state. If any of these paths start with an initial state,
then a vulnerability has been discovered. Thus, an
important issue in using the Interrogator is the speci-
fication of the final state.

In the Interrogator, the penetrator is expressed as
a relation:

p-knows(z, H, q)

where z is the data item learned by the penetrator, H
is the message history that lead to this discovery, and
¢ is a state of the network reachable from the initial
state. The meaning of p_knows is as follows:

p-knows(z, H, q) iff
x 1s known initially

or (H = H'sent(m) and sent(m) : ¢’ — ¢ and H' :
90 — ¢' and p_gets(z,m, ', ¢'))

or (H=H'eand ¢ : ¢ — ¢ and pknows(z, H',¢'))

or (H ¢ — ¢ and pmodifies(¢’,¢,H) and
p-knows(z, H,q"))

Similarly, p-gets is defined as follows:
p-gets(z,m, H,q) iff
x 1s a field of m

or ({m'}y is a field of m and p_knows(k, H,¢) and
p-gets(z,m', H,q))

The definition of p_knows describes the three ways
a penetrator may learn z with message history, H, in
state ¢. The penetrator may learn it from the last mes-
sage read; may have already known it in the previous
network state, ¢’; or may learn it using p_modifies
described below.

The definition of p_gets states that a penetrator
can read any message, but if some part of the mes-
sage is encrypted, then it can only be extracted if the
key encrypting that field is known. The statement
pmodifies(q’, ¢, H), describes how a penetrator who
modifies the network buffer can learn z. Millen et. al.
state that

“pmodifies(q’,q, H) is characterized by
saying that if m is a new message in the net-
work buffer of the new state ¢, the penetra-
tor knows each field of m in the prior state
q' reached by history H.” [51]

This means that if the penetrator knows z in state ¢,
reachable with message history H, and the penetrator
changes the message buffer such that state q is reached
instead with message history H, the penetrator still
knows z.

Millen et. al. claim that the Interrogator was able
to rediscover the flaw in the Needham and Schroeder
protocol. However, the Interrogator was first pro-
vided with information to the effect that the pene-
trator knows an old connection key. This informa-
tion could be supplied because the programmers of
the Interrogator were familiar with the weakness in
the Needham and Schroeder protocol.

Systems such as the Interrogator can be useful for
providing message histories for known attacks, but it
remains to be seen whether such methods will discover
new attacks on protocols previously believed to be se-
cure. No such result has been reported.

6.2 A Rule-Based System

Longley and Rigby [42] describe a rule-based sys-
tem used to test the vulnerability of a key management
scheme to specified attacks. The results of applying
this system to the IBM key management scheme de-
scribed by Davies and Price [19] were consistent with
the known characteristics of that scheme.

The expert system uses an exhaustive search to de-
termine if a given attack is successful. When the sys-
tem halts, then the history of rule firings can give an
attack strategy. Until then, nothing can be said about
the given attack. In fact, in some cases, the search
space is infinite and the system does not even halt.

Longley et. al. use a rule-based system, OPS5 [9].
This system uses rules to transform goals into sub-
goals, and this process is continually refined until a
concrete attack strategy is reached.

In a later work [43], Longley and Rigby present a
PROLOG implementation of their rule-based scheme.
The attacker is modeled using a search tree. The root
node represents the data required by an attacker for a
security flaw (such as knowledge of a cryptographic
key), and each other node in the tree represents a
data item that is either available to or required by
the attacker. The leaves of the tree represent the data
required to know the root item. Unfortunately, this

scheme is not used to demonstrate any previously un-
known flaws in published protocols.

At best, these systems can be used as a model of
threat analysis. They do not perform the function
of analysis in terms of demonstrating the security of
an authentication protocol. Rather, they can some-
times determine how a given attack might be success-
ful against a protocol.

6.3 Discussion

The Type II approaches to protocol analysis serve
a limited function. They are most useful for analyzing
known weaknesses in protocols, and generating mes-
sage lists to exploit those weaknesses.

The systems developed under this approach are
usually inefficient, often resorting to exhaustive
search. In addition, the results are often inconclusive,
and the systems may not even halt.

Their limitations are due to the lack of expressive-
ness of the types of rules found in expert systems. For
this reason, the majority of research into the analy-
sis of authentication protocols falls into the Type III
category, discussed next.

7 Type III Approach

The Type III approach to protocol analysis uses for-
mal logic models developed for the analysis of knowl-
edge and belief. Burrows ef. al.’s landmark BAN logic
[11] initiated intense research using this approach.
Since then, BAN has been extended [13, 14, 25, 29,
45, 69], and criticized [45, 56, 69, 74].

This section discusses other contributions to the
Type III approach including the logic of Bieber [5]
and its extension by Snekkenes [70]; the axiomization
of trust and belief by Rangan [59]; the logic of Syver-
son [72]; the logic of Kailar et. al. [36]; and the logic
of Moser [53].

In addition to these logics, some work has concen-
trated on the semantics of logics for authentication
protocols [2, 79]. We discuss the semantics introduced
here and why it is important to define the semantics
of a logic with great care.

Gligor et. al. [26] provides an informative analysis
of logics for cryptographic protocols. They compare
various features of the logics that are presented in this
section. One important contribution of their work is
that they state the scopes of the logics explicitly.

The primary mission of the logics of authen-
tication, namely that of verifying whether a

protocol delivers mutual authentication be-
tween two parties and distributes fresh keys
of known quality, helps delimit the scope of
these logics fairly precisely. Any use of these
logics beyond this point can be hazardous
and, therefore, must be carefully scrutinized.
126]

In the following sections we present these logics and
discuss, compare, and evaluate their relative merits.

7.1 An Axiomization of Belief

Much of the work in the Type III approach is
based on a formal axiomization of belief and trust.
Shoham and Moses [66] describe the relationship be-
tween knowledge and belief, and note a close connec-
tion between belief and nonmonotonic reasoning.

Syverson [79] shows that belief and knowledge are
equally adequate for protocol analysis on the logical
level. Logics based on knowledge are termed epis-
temic, while doxastic logics refer to those based on
belief. The main difference in reasoning with these
two logics is that all epistemic logics have an axiom
that states that if a principal knows X, then X. No
doxastic logics have such an axiom. However, Syver-
son shows that this axiom (termed axiom T) can easily
be captured in doxastic logics.

Rangan [59] provides an axiom schema for belief
that is frequently referenced in the literature. Later,
he presents an axiomatic theory of trust in secure com-
munication protocols [60]. In his notation, the term
B;p means that principal i believes p. The schema is
as follows.

forallz,i=1,...,m:

A1 All substitution instances of propositional tau-
tologies.

A2 B;pABi(p = q) = Big.
A3 B;p= B;B;p (introspection of positive belief).

A4 —-B;p = B;—B;p (introspection of negative be-
lief).

A5 —B(false) (process i does not believe a contradic-
tion).

The following are the inference rules.
forallz,i=1,...,m:
R1 From p and p = ¢ infer ¢ (modus ponens).

R2 From p infer B;p (generalization).

In his paper [59], Rangan defines the {ransitivity, Eu-
clidian, and serial properties, and shows that A3 cor-
responds to transitivity, given R2, A4 corresponds to
the euclidian property, and A5 corresponds to the se-
rial property.

These definitions of knowledge and belief are the
foundation for the Type III approaches discussed be-
low.

7.2 The BAN Logic

The BAN logic is the most widely used logic for
analyzing authentication protocols. Although many
extensions have been proposed and are discussed be-
low, most protocol designers still refer back to the
original. Many published papers use BAN analysis
to make claims about the security of their protocols.
Some notable examples are Neuman and Stubblebine
[57], Aziz and Diffie [4], and Anderson [3]. Unfortu-
nately, Aziz ef. al. and Anderson claim that their
BAN analysis is a proof of security, which is not what
BAN was designed to do, as its authors explain very
clearly [11]. The fact that Syverson [76] discovered a
flaw in the Newman e?. al. protocol also suggests
that these logics are easy to misuse.

Rather than provide a proof of security, the BAN
logic casts authentication protocols in formal terms to
reason about the state of belief among principals in a
system. The authors’ goals were to be able to answer
the following questions about a protocol:

e What does this protocol achieve?

e Does this protocol need more assumptions than
another one?

e Does this protocol take any unnecessary steps,
ones that could be left out without weakening it?

e Does this protocol encrypt a message that could
be sent in the clear without weakening security?

The authors state that such issues as errors intro-
duced by concrete implementations of a protocol, such
as deadlocks, or inappropriate use of a cryptosystem
(as described by Voydock and Kent [89]) are not con-
sidered; this system deals with authentication proto-
cols on an abstract level only.

7.2.1 The basic constructs of the BAN logic

The only propositional connective is conjunction,
which is denoted with a comma. Associativity and
commutativity properties are taken for granted.

P E X P believes X. That is, the principal, P, acts
as though X is true.

P sees X Someone has sent a message containing X
to P, who can read and repeat X (possibly after
doing some decryption).

P said X At some time, the principal P sent a mes-
sage that includes the statement X. It is not
known how long ago the message was sent, or
even if it was sent during the current run of the
protocol. It is known that P believed X when he
said it.

P controls X The principal P is an authority on X
and should be trusted on this matter. This con-
struct is used primarily when a principal has del-
egated authority over some statement.

#(X) The formula X is fresh. That is, X has not been
sent in a message at any time before the current
run of the protocol. This is defined to be true
for nonces, that is, expressions generated for the
purpose of being fresh.

P«I—{>Q P and Q may use the shared key K to commu-
nicate. The key K is good, in that it will never
be discovered by any principal except P or Q, or
a principal trusted by either P or Q.

L P P has K as a public key. The matching secret
key, K~1, will never be discovered by any princi-
pal other than P or a principal trusted by P.

PéQ The formula X is a secret known only to P and
Q, and those principals to whom they reveal it.
P and Q may use X to prove their identities to
one another.

{X}k from P This represents the formula X en-
crypted under the key K by principal P. The from
P part is often omitted, and it is assumed that
each principal is able to recognize and ignore his
OWn Mmessages.

Logical postulates are formed from these basic con-
structs. A security protocol is idealized, according to
rules defined by the authors, in terms of these postu-
lates. Every protocol must be idealized before using
the BAN logic; many examples follow.

7.2.2 The rules of inference of the BAN logic

Burrows et. al. [11] provide rules of inference for rea-
soning about the belief in a protocol. These rules are

applied to the initial assumptions to drive a proof or
to answer questions about a protocol. One important
rule, the message meaning rule, states how to derive
belief from the origin of a message.

P E Q£P,Psees {X}k
P E QsaidX

Remember that {X}x in this context stands for
{X}k from R # P. Then this formula can be intu-

itively explained as:

IF P believes that Q and P share a secret
key, K, and P sees X, encrypted under K,
and P did not encrypt X under K, THEN P
believes that Q once said X.

A similar postulate exists for public keys and shared
secrets. Another important rule of inference for the
BAN logic is the nonce-verification rule.

P E#(X), P E QsaidX
PEQEX

For the sake of simplicity, the authors of BAN state
that X must be clear text, that is, it should not in-
clude any subformula of the form {Y}x. An intuitive
explanation of this rule is:

IF P believes that X could have been uttered
only recently and that Q once said X, THEN
P believes that Q believes X.

This rule is important because many protocols rely
on the use of nonces to avoid successful replay attacks.
In fact, this is the only postulate that promotes from
said to believes, and thus reflects in an abstract way,
the practice of using challenges and responses for au-
thentication. A result of applying this rule demon-
strates that challenges often need not be encrypted,
but responses must be.

The next rule, the jurisdiction rule, is often used
for delegation.

P EQceontrols X, P E Q E X
PE X

This rule states:

IF P believes that QQ has jurisdiction over X,
and P believes that Q believes X, THEN P
believes X.

Burrows et. al. [11] provide many other inference
rules that can be used to combine beliefs.

7.2.3 The idealized protocol of the BAN logic

For a protocol to be analyzed using the BAN logic, it
must first be converted to an idealized form. Typically,
a step in a protocol is written as:

P — Q : message

This means that P sends the message and that the
principal, Q, receives it. This framework is often am-
biguous, and does not lend itself to formal analysis.
For example, when something is encrypted under a
session key, it may not always be clear what parts of
the message are fresh, or who exactly knows this key.
Therefore, each step in a protocol is transformed into
an idealized form. A message in the idealized protocol
is a formula. Say we define the protocol step:

A— B: {A;I{ab}Kbs

In this step, A tells B, who knows the key, Kjs, that
Kgp is a key to communicate with A. It is clear that
A did not generate this message, because A does not
know Kjs. In fact, the message must have come from
the server S. This step is idealized as:

A—B:{A Bk,

When this message is sent to B, we can deduce that
the formula X
B sees {A <% B}k,.

holds, indicating that the receiving principal becomes
aware of the message and can act upon it.

In the idealized form, parts of the message that
do not contribute to the beliefs of the recipient are
omitted. Thus, clear text parts of the message are
not included because they can be intercepted and read
or forged by anyone. Idealized messages are of the
form {X1}k,,-,{Xn}k,, where each encrypted part
is treated separately.

The authors of BAN logic “view the idealized pro-
tocols as clearer and more complete specifications than
the traditional descriptions found in the literature,
which we view merely as implementation-dependent
encodings of the protocols” [11]. However, no clear
transformation method is presented. The paper gives
numerous examples of the transformation to an ide-
alized protocol; after careful study, idealizing proto-
cols becomes intuitive. However, Woo and Lam [91]
criticize the idealization of protocols. “We find ide-
alization undesirable because of the potentially large
semantic gap that exists between the original proto-
col and the idealized version.” Nessett’s criticism [56]
raises similar concerns, as we shall see.

The idealization step required by logics of authen-
tication has been a source of debate. Boyd and Mao
[7] criticize the process of idealization by pointing out
that there is a flaw in the idealization of the Otway-
Rees protocol by the authors of BAN. The claim is
that it is not reasonable to expect others to be able
to idealize correctly if the authors themselves make
mistakes. Boyd and Mao then present informal guide-
lines for avoiding idealization. In a later paper [45],
a logic similar to BAN 1is presented that requires less
idealization. This is discussed in Section 7.3.2.

On the other hand, Van Oorschot argues that the
criticisms of Boyd and Mao are not valid [84]. He
suggests that the flaws in the protocols presented by
Boyd and Mao are due to misunderstandings about
the subtleties of some of the BAN constructs. Some
constructs carry implicit meaning, such as the fact
that a key is a good key, or that it has not been pub-
lished. Ignoring these implicit assumptions can lead
to errors. These errors can then be inappropriately
attributed to other aspects of the logic, such as ideal-
ization.

7.2.4 Protocol analysis with the BAN logic

The steps in protocol analysis with BAN logic as pre-
sented by its authors are:

1. The idealized protocol is derived from the original
one.

2. Assumptions about the initial state are written.

3. Logical formulas are attached to the statements
of the protocol, as assertions about the state of
the system after each statement.

4. The logical postulates are applied to the assump-
tions and the assertions to discover the beliefs
held by the parties in the protocol.

More precisely, a protocol in the BAN logic is an
ordered series of “send” statements, S1,...,5,, each of
the form P — Q : X with P # Q. An annotation for
a protocol consists of a sequence of assertions inserted
before the first statement and after each statement.
The assertions are made by combining formulas of the
forms P believes X and P sees X. The first assertion
contains the assumptions, while the last assertion con-
tains the conclusions. These are similar to simple for-
mulas in Hoare logic [32]. They are written in the
form:

[assumptions]
Si [assertion 1] Sy ... [assertion n — 1] S,
[conclusions]

Protocol Specification

]
Idealized PrItocoI

(Fzraoncne(gd _ Formulas attached
to protocol steps

Apply Rule

Initial Assumptions

Conclusion Reached

Figure 4: Protocol Analysis with the BAN
Logic: The input to BAN is a protocol specification and
the initial assumptions. At each step, formulas are at-
tached to the protocol messages, and either a rule is ap-
plied, or the logic must halt. If possible, the desired con-
clusion is reached.

Protocol analysis with the BAN logic is summarized
in Figure 4. The protocols use no notion of time. In-
stead, time is divided into past and present depending
on whether something was said in a previous or cur-
rent run of the protocol.

The authors of BAN state that “More ambi-
tious proofs may require finer temporal distinctions,
reflected by constructs to reason about additional
epochs, or even general-purpose temporal operators
(see, for example, Halpern & Vardi 1986 [30]).” In
a recent paper, Syverson [75] introduces temporal ax-
ioms to the BAN logic and exposes protocol flaws us-
ing this extended logic.

7.2.5 The goals of authentication of the BAN
logic

There is some debate as to what the goals of authen-
tication are. Some argue that authentication is com-
plete between A and B if there is a K such that:

AE ALEB

BE AEB

Others believe that an authentication protocol should
achieve:

AEBE ALB
BE AE AEB

The first set of goals is referred to as first-level belief,
whereas the second set 1s termed second-level belief.

According to Syverson [74], the level of belief needed
varies for different applications and should be specified
along with the protocol; the goals of BAN logic have
often been misinterpreted.

Cheng and Gligor [17] claim that the following con-
ditions for the BAN logic must be satisfied at the end
of a protocol run:

1. Both A and B believe K, is a secret key shared
exclusively between A and B.

2. Both A and B believe that the other has the first-
level belief. This is the second-level belief. If a
party holds a second-level belief, then it believes
that a secure channel has been established.

3. The causal relation between the first-level and
second-level belief holds. That is, the first level-
belief must be established at some time before the
second-level belief.

4. Kg4p should be distributed exclusively to A and B;
thus no parties other than A and B should have
beliefs about Kgp ([17], p. 222).

The BAN logic is versatile in the sense that its func-
tion may be interpreted several different ways. The
goals of BAN may vary for individual protocol design-
ers. The important thing is to make the objectives of
a protocol explicit.

7.2.6 Nessett’s criticism of the BAN logic

The BAN logic has been successful in finding flaws
in some well known protocols, such as the Needham-
Schroeder protocol, the Andrew secure RPC hand-
shake, and the CCITT X.509 protocol. In addition,
BAN has uncovered redundancy in the Needham-
Schroeder conventional key protocol, the Otway-Rees
protocol, Kerberos, the Yahalom protocol, the Andrew
RPC handshake, and the CCITT X.509 protocol. As
such, BAN logic can be called a success.

However, there are some problems with BAN logic.
One problem is pointed out by Nessett [56], who
demonstrates what he claims to be the hazards of
devising systems of logic. He states that “a simple
example shows that the BAN logic is capable of de-
ducing characteristics about security protocols that by
inspection are obviously false.”

In Nessett’s example, two principals, A and B com-
municate using public keys. The protocol is:

A— B :{Ny Kup}g, -1

B— A: {Nb}Ka.b

The idealized form presented by Nessett is:
A— B:{Ny A B}y s

B—A:{A™ Blg.,

A sends B a message containing K, the secret key
between A and B, encrypted under A’s private key.
Thus, as the corresponding public key is well known,
the key K3 is no longer a secret. In the example, B
then responds with a nonce identifier Ny, encrypted
under the shared key, K4;. According to the BAN
model, this nonce is fresh and secret. However, as
Nessett points out, it is obvious that N, is readable
and forgeable by anyone.

The problem with the BAN logic is that there is
no way to represent what a principal does not know.
All of the constructs and postulates deal with what
a principal does believe, but there is no way to rep-
resent that a principal cannot know something. As
Nessett states, [56] “The essence of this flaw rests in
the inability of the logic to analyze security protocols
to assure that private information remains private.”

Burrows et. al. [12] defend their logic. They claim
that the main difficulty in BAN logic as pointed out
by Nessett is the assumption that A believes Kg; is
a good shared key for A and B. “This assumption is
clearly inconsistent with the message exchange, where
A publishes K,;. The inconsistency is not manifested
by our formalism, but is not beyond the wit of man to
notice.”

Syverson [74] states that the confusion arises be-
cause “the BAN logic deals only with trust and not
with security.” Thus, he claims that Nessett’s criti-
cism is not valid because BAN does not claim to pro-
vide security, but rather, trust.

On the other hand, Snekkenes [69] attributes the
Nessett flaw to the restriction of the BAN logic to par-
tial correctness. He defines a class of protocols called
terminating, and shows that the Nessett protocol is a
non-terminating one. “A statement or protocol step
S terminates after finite time only if FALSE is not a
derivable assertion succeeding S.”

The criticism by Nessett has sparked a debate that
has led to a clearer understanding of the role of knowl-
edge and belief in the analysis of key management
schemes. Much work has referred back to the research
of Shoham and Moses [66] that specifically defines the
relationship between belief and knowledge.

7.3 Extensions to the BAN Logic

The BAN logic was purposely designed to be open
ended. That is, new constructs and postulates can

be added to suit a particular application. It is not
unusual to customize the BAN logic for an application
to analyze a protocol to which the original BAN logic
does not directly apply. However, Syverson argues
that this is very dangerous, and should be viewed with
suspicion [73].

Some of these extensions have focussed on elimi-
nating some of the assumptions in the original BAN
logic. Others have been necessary for expanding the
reasoning power of BAN. In the following sections we
discuss some extensions to the logic.

7.3.1 The GNY logic

The Gong, Needham and Yahalom [29] extensions to
the BAN logic are often referred to as the GNY logic.
Gong et. al describe new constructs that eliminate
some of the assumptions made by the original BAN
logic. In particular, the GNY logic does not assume
that redundancy exists in encrypted messages. In-
stead, they introduce the notion of recognizability to
represent the fact that a principal expects certain for-
mats in the messages it receives. Without this notion,
anaive implementation of the Needham and Schroeder
protocol would contain a second flaw (see [29]). Also,
Gong et. al explicitly represent whether a principal
generated a message itself using the not-originated-
here construct (discussed below).

The notion of recognizabilityis important. A princi-
pal participating in a protocol has expectations about
the messages he will receive, and the analysis tech-
nique should take these into consideration. Thus, if
a protocol step specifies that A will receive nonces,
N, and Nj, then the next two values received will be
treated as nonces. Logical postulates are added to re-
quire that a principal’s expectations according to the
protocol are met. These rules are defined below.

One of the important contributions of the GNY
logic is the recognition that belief and possession are
different. In this extended logic, each principal main-
tains a belief set and a possession set. Along with the
basic constructs of BAN, the following are included in

the GNY logic:

P <« X P is told formula X. P receives X, possibly af-
ter performing some computation such as decryp-
tion. A formula being told can be the message it-
self, as well as anything that P can compute from

X.

P 5 X P possesses, or is capable of possessing for-
mula X. At a particular stage of a run, the pos-
session set includes all the formulae that P has

been told, started the session with, or was able to
compute for formulae he already possesses.

¢(x) The formula X is recognizable. If P believes
#(x), then P would recognize X if P had certain
expectations about the nature of X.

A formula in GNY may also be regarded as a not-
originated-here formula, meaning that it was not pre-
viously generated by a principal in the current run.
This is represented by adding an asterisk (*) to the
formula; the paper [29] describes a mechanical process
by which this is achieved.

The following postulates are defined:

PaX
P> X

which states that principals possess what they are
told, and
P>3X P3Y

P>(X,Y),P>F(X)Y)

which states that if a principal possesses X and Y,
he also possesses the concatenation of X and Y, and
any computable function F of X and Y. Similarly for
recognizability,

PE ¢(X)
PE (X,Y), PE ¢(F(X))

states that if a principal believes that X is recogniz-

able, then that principal believes that the concatena-
tion of X with anything is recognizable, and that the
application of some computable function to X is rec-
ognizable.

An important postulate in GNY states that if

C1
C2
is a postulate, then for any principal, P, so is

P EC]
P E C2

This is called the rationality rule and allows principals
to reason about the state of other principals.

Gong et. al define preconditions that can be at-
tached to rules to achieve different levels of belief.
“Since we do not require the universal assumption that
all principals are honest and competent, we should rea-
son about beliefs held by others based on trust of dif-
ferent levels.” Precondition statements are attached
to formulas, and GNY provides trust and jurisdiction
postulates for reasoning with preconditions.

The GNY logic is used to uncover the weakness in
the Needham and Schroeder protocol. Then, the en-
hanced Needham and Schroeder protocol is analyzed
and a second-level belief is attained. This logic is an
improvement over the BAN logic in that it separates
the content from the meaning of a message. Thus, the
results of an analysis will be determined by the level
of trust placed between principals. The original BAN
logic did not accommodate for different levels of trust.
Thus, the GNY logic increases the classes of protocols
that can be analyzed. Unfortunately, few researchers
use GNY due to its unwieldiness and proliferation of
rules. The original BAN logic is used more due to its
simplicity and ease of use.

In a later paper, Gong describes enhancements to
the GNY logic to handle infeasible protocol specifica-
tions [28]. The problem is that a specification that
could not possibly represent a real world situation can
still be verified to be correct in the BAN and GNY
logics. He introduces a new construct, eligible, defined
below.

P « X P is eligible to send formula X. A principal is
only eligible to send something that he possesses
or can construct.

An example of such an infeasible specification is a pro-
tocol in which P sends R’s password to . If R’s
password is represented by X, then this protocol step
is:

P—>Q: {X}KPQ

As P and @ are not supposed to know R’s password,
this protocol is not feasible, and yet the GNY logic
could not detect this.

Another type of infeasible specification that GNY
and BAN cannot detect can lead to beliefs that do not
preserve a causal relation. Say we have the protocol
step:

P—=Q:{P E P2 Qlkpg

This will cause @ E P E P A Q, however, if it is

not the case that the statement P E P & @ already
existed, then the causal relation between beliefs is not
preserved. That is, a second level belief is established
without the first level belief. Without guarantees of
causality, part of a causal chain may be broken, and
then the path may not be trusted (e.g. [36]). The
causal chain is broken any time a principal, P, sends
a message that contains a belief, and P does not hold
that belief.

The BAN logic assumes that principals believe
what they say, and so the infeasible specification due

to causal relations is not an issue. Gong introduces
the notion of eligibility to the GNY logic. Thus, if
P x X, then P is eligible to send formula X. Thus,

new postulates are added to the logic:

P—-Q: X, PxX
QX

This rule states that if P sends X to (), and P is
eligible to send X, then @) receives X. Similarly,

P> X
PxX

This rule says that if P possesses X, then P is eligible
to send X. Other rules are included to describe when
a principal is eligible to encrypt with a key, K, or to
perform a hash function.

Thus, using the extensions to the GNY logic, we can
reason about protocols whose specification fall into
two categories of infeasibility. Although Gong’s work
is useful, it appears that a more formal technique is
needed to discover infeasible protocols in the general
case.

7.3.2 The Mao and Boyd logic

Mao and Boyd [45] describe four weaknesses in the
BAN logic and propose a new logic, based on BAN,
which offers several improvements. Mao et. al. also
present a fault in a version of the Otway-Rees protocol
[58] that the authors of the BAN logic proved to be
correct [11]. Finally, a revised version of Otway-Rees
is presented by Mao et. al. and proved correct with
the new logic.

Mao and Boyd discuss the following defect of the
BAN logic:

1. Protocol Idealization
2. Belief

3. Protocol Assumptions
4. Confidentiality

The authors discuss these defects and give examples.

Protocol idealization suffers from too much flexi-
bility. New terms and constructs can be freely cho-
sen from an infinite alphabet provided by the original
BAN logic. Also, as Mao et. al. point out, “There
seems to be no well-understood semantic rule to gov-
ern this job of idealization.” [45]

The flaw in protocol idealization can be seen clearly
if we view a protocol specification as a procedure dec-
laration. Once formal parameters are substituted with

“real values,” the behavior is unpredictable. The au-
thors make this analogy to demonstrate the flaw in the
Otway-Rees protocol. The GNY logic [29] is also crit-
icized for using the same idealization rules, and thus
suffering the same weakness.

In the original BAN logic, the nonce verification

rule is:
PE #(X),PE @ said X
PEQE X

From this we draw the conclusion that) believes X,
which is a nonce. However, as Mao et. al. point out,
it does not make sense to believe a nonce. One can
believe that X is a nonce, or that nonce X is fresh,
but one cannot believe a nonce.

Mao and Boyd claim that the method for determin-
ing assumptions in a protocol is flawed in the BAN
logic. A slight modification to the assumptions could
turn a useless protocol into a valuable one or vice
versa. Also, there is no way to know if the assump-
tions are the weakest ones possible. This is obviously
desirable.

The last defect of the BAN logic discussed by Mao
et. al. has to do with confidentiality. The authors use
the Nessett example [56] to show that a BAN analysis
fails to recognize some protocols that give away secrets
to attackers. Thus, those pieces of information that
must remain secrets must be explicitly designated as
such.

The new logic presented by Mao and Boyd requires
strict typing of formulas and messages. Thus, a prin-
cipal may no longer believe a nonce, because a nonce
is not of a type that may be believed. In addition,
a new idealization process is defined. This process is
mostly mechanical, and requires little human interven-
tion. However, as some part of the process requires
non-automated judgement, this method still suffers
from the very criticism the authors have of the original
BAN logic.

In the new idealization, challenges and responses
are linked. The human interaction is to determine
the types of the various parts of messages, and which
responses to associate with the challenges. A new con-
struct, sup(Q) is defined to represent the fact that Q
is a “super” principal. This means that @ is entirely
trusted. An example of this would be an authenti-
cation server in the Needham and Schroeder protocol
[54]. This is necessary because a principal should not
be trusted only on certain beliefs. If a principal is
trusted, it must be entirely trusted.

New inference rules are added in the Mao and Boyd
logic. They are very similar to rules in the BAN logic,
but include the sup construct, and are based on the

mechanical idealization process. However, the reason-
ing process is quite different. Mao and Boyd used the
tableaw method [24]. The reasoning starts with the

desired conclusion, such as A E A & B, and finds
rules that lead to that conclusion. Thus, reasoning
proceeds backwards until the initial assumptions are
found. This method finds the weakest pre-conditions
if necessary conditions are always found when search-
ing for rules to apply.

The new logic is applied to the Nessett protocol to
uncover the known weakness. Then, a revised version
of Otway-Rees is given, and the new logic is used to
prove that no conditions are violated when applying
rules from the assumptions to the conclusions. Be-
cause the logic is not complete, this is the strongest
statement that can be made from such a system.

The system described by Mao and Boyd reasons
monotonically, as does the BAN logic, so there is no
provision for refutation of belief. Human interven-
tion still exists but is much more limited. While this
logic is an improvement over previous ones, it does
not provide a mechanism for proving that a protocol
is correct.

7.3.3 Gaarder and Snekkenes

To analyze a public key crypto system (PKCS), the
CCITT X.509 Strong Two-Way Authentication Pro-
tocol, Gaarder and Snekkenes [25] extend the BAN
logic. They add constructs for reasoning about time.
It should be noted that they fail to mention the dan-
gers inherent in relying on synchronized clocks. Gong
[27] discusses these dangers and gives some examples.
The following constructs are introduced to represent
public key cryptography and time:®

PK(K,U) The entity U has associated the good pub-
lic key K.

II(U) The entity U has associated some good private
key. The key value is only known by U.

o(X,U) The formula X is signed with the private key
belonging to U.

(©(t1,t2), X) X holds in the interval t;,%5. The cre-
ator that uttered the time-stamped message X
claims that X is good in the time interval between
tl and t2.

A(t1,t2) The local unique Real Time Clock (RTC)

shows a time in the interval between ¢; and ¢-.

8Recall that the original BAN logic has little provision for
reasoning about time. It only distinguished between past and
current runs of a protocol.

According to the rules for public key cryptography,
we have the rule

U; sees o(X,Uj)
U; sees X

which states that any principal seeing a formula signed
with another principal’s private key, can see that for-
mula.

The following rule deals with duration stamps.
That is, a formula is good for a certain interval. This
is necessary because the CCITT X.509 protocol being
analyzed involves the use of time and a real clock.

PEQE Al t).
P E Qsaid (0(t1,12), X)

PEQEX
This is similar to one of the rules in the original BAN
logic, but it restricts the time during which this rule
can be applied to a “good” interval. Calvelli and
Varadharajan [13] reason about time in a similar way
by introducing a rule of the form (B; A t)says r that
means that B; says r at or before time ¢.
Gaarder ef. al. also introduce the construct

R(P, X)

to say that P is the intended recipient of message X.
An example of this would be

P—-Q : R(Q X)X

where R(P, X) is a tag telling @ that he is the intended
recipient of the message.

The authors then proceed to formalize the goals
of the protocol, and idealize the protocol. The ex-
tended BAN logic is then used to prove that the pro-
tocol meets its goals.

7.3.4 Key Agreement Protocols

Paul C. van Oorschot extends BAN and GNY to deal
with key agreement protocols such as Diffie-Hellman
[21]. He introduces several new constructs.

AL B Kis A%s unconfirmed secret suitable for B.
Only A and B can know or deduce K. However,
B may not know K.

AEE B Kis A’ confirmed secret suitable for B. At
this point A has received confirmation from B
that B knows K.

PK,(A,K) K is the public signature verification key
associated with principal A.

PK;l(A) A’s private signature key K~ is good. The
key, K~! corresponds to the public key, K in
PK,(4, K).

PK;(A, K) K is the public key-agreement key associ-
ated with principal A. When the specific value
of the key is not the central focus, this can be
represented as PK;(A).

PK;l(A) A’s private key-agreement key, K~ is good.
The key, K~! corresponds to the public key K in
PK;(A, K).

confirm(K) Current knowledge of K has been
demonstrated (without compromising K).

These are the most important constructs, although
there are others. Using these constructs, several in-
ference rules are defined. For example, the following
rule is used to represent that A can compute a joint
key from a private key of his own and a public key of
some other party, U.

A has PK;'(A), A has PKs(U)
A has K

where K = f(PK;'(A),PKs(U)). That is, K is some
function of the private key agreement key of A and
the public key agreement key of U.

Another rule is introduced to show how A obtains
the belief that a key, K, is an unconfirmed key result-
ing from a key agreement protocol. In the following
rule, A believes that a public key is bound to B. Also,
A believes that B’s private key is a good key. The
result is that A believes that K is an unconfirmed key
between B and himself.

A E PK;'(A), A E PKs(B), 4 E PK;'(B)
A AX= B

where K = f(PKé_l(A), PKs(B)). That is, K is some
function of A’s private key and B’s public key.

Finally, there is a rule to upgrade a key to confirmed
status. The followingrule states that if A believes that
K is an unconfirmed key that he shares with B, and
A sees some confirmation of K that is not originated
by him, then A believes that K is a confirmed key
between B and himself.

AE A X B, A seesx confirm(K)
A A&t B

The *confirm(K) could be derived from a handshake
between A and B where B demonstrates knowledge of
K by encrypting something with it.

One contribution of this work is that it is the first
logic of belief to take into account the importance of
binding a public key to an identity. This is impor-
tant for preventing man in the middle attacks.® Van
Oorschot’s method also enables one to compare the
formal assumptions and goals of different protocols.
This serves as an useful aid to a protocol designer.

7.3.5 Adding probabilistic reasoning to BAN

BAN logic is “...concerned with evaluating the trust
that can be put on the goal by the legitimate commu-
nicants using beliefs of the principals,” according to
Campbell et. al. [14]. Tt “has no provisions for mod-
eling insecure communication channels or untrustwor-
thy principals and, in fact, fails to model any type of
insecurity.”

Campbell et. al. extend the BAN logic using proba-
bilistic reasoning to calculate a measure of trust rather
than complete trust. That is, given assumptions about
the level of trust among principals, and a protocol,
we can analyze the level of trust that this protocol
achieves.

The authors define the analysis problem in terms of
an equivalent linear programming problem as follows:

Let pi1,...,p, be an assignment of probabilities to
the assumptions ay, ..., a, of a proof of the conclusion
¢. Then, L < P(¢) < U, and the lower limit L (re-
spectively upper limit U) can be obtained by solving
the linear program:

minimize (resp. maximize)z = ¢ -«
subject to the constraints Wa =p
l-#=1,7>0

The simplex algorithm can then be applied to find
a minimal solution. This method is then applied to
the Needham and Schroeder protocol. This method
eagily reveals the known weakness. It also shows that
the assumption that K,; is a good key is responsible
for this weakness.

The weakness of the Needham and Schroeder pro-
tocol was discovered by the extensions of Campbell
et. al., as the original BAN logic does. However, their
method requires preprocessing of the protocol with the
BAN logic, and is thus not capable of independently
discovering the flaw. In addition, this application of
the method of Campbell €. al. does not constitute
a proof that the protocol is secure, due to its incom-
pleteness. The contribution of Campbell ef. al. is in

2In a man in the middle attack, an intruder executes separate
runs of a protocol with two parties, while they think they are
communicating with each other. Thus, the intruder can actively
(or passively) interfere with the messages.

obtaining the functional representation for the lower
bound on the probability of conclusion in terms of the
probabilities attached to the assumptions and rule in-
stances used in the proof.

One weakness of schemes such as that presented
by Campbell et. al. [14] is difficulty of use. The
original BAN logic has been praised for its simplicity,
so it seems, and intuition also dictates, that there is
a trade-off between the ease of use of an analysis tool
and its expressiveness.

7.4 The CKT5 Logic

Bieber [5] extends the epistemic logic of Hintikka
[31]. This new logic of communication in a hostile
environment, called CKTb, allows a user to describe
the states of knowledge and ignorance associated with
the communication via encrypted messages. Bieber
also extends the logic of knowledge and time, K'T5,
of Sato [64] with operators that relate directly to the
sending and receiving of messages.'?

To describe a protocol, P, in CKT5, we define ¢
to be the way principals behave when participating in
P, and w states who knows what when the protocol
terminates. Then, ¢ — w is a CKT5 formula that
describes P. Next, it must be proved that ¢ — w is a
theorem. An example of a member of p is “if principal
A has sent m encrypted under K, then he must have
received m at some point in the past.” Similarly, w
contains statements such as “At time ¢, A knows that
k is a crypto key.”

CKT5 extends the basic epistemic logic by adding
modal operators to express the transmission and re-
ceipt of messages. The usual connectives are used,
A, V,—, =, &, along with the quantifiers, V,3, and
equality of terms (=). In addition, Bieber defines
modal operators K4 ;, R4+ and S ;. If A and B are
principals, ¢ is a number representing time, and ¢ is
a well formed formula in CKT5, and m,n,m;, and &
are terms, then the following are definitions in CK'T5.

K At time ¢, A knows that ¢ holds.

Ratp At time ¢, A received some message stating
that ¢ holds.

Sap At time t, A sent some message stating that ¢
holds.

m.m; The concatenation of m and m;.

d(k,m) The decryption of m with key k.

10The following summary of Bieber’s logic borrows examples
from Snekkenes [70], who gives an excellent summary of CKT5,
and from the original paper by Bieber [5].

nonce(n,t, A) nis anonce generated at time ¢ by the
system at the request of A.

private(t,{A, B}, k) k is a symmetric key shared by
A and B.

key(k) k is a symmetric key.

K4 ;msg(m) At time ¢, A knows that m is a com-
putable term®!.

belongs(my, m2) m; occurs as a subterm of ma.
clear(m) m is a clear text message.

clean(m) m is a clear text message, the concatena-
tion of two clean messages or can be decrypted to
yield a clean message.

n_s_clean(m) m contains a subterm that is not nec-
essarily well built!2.

The logic assumes uncertain communication, so that
if a message is intercepted by an intruder, it may not
arrive at its destination. Messages are not lost, but

the intruder can prevent them from reaching a target.

Bieber defines univoque messages to be ones that
for agent X at time ¢, are well built with exclusively
clear text messages and keys known only by X at time
t. Formally:

univoque(X,t,m) < Kx ; clear(M)
vV (3k Kx ikey(k)A univoque(X,t,d(k, m)))
V (Im1 Imz m = m1l.m2A univoque(X,t, m1)A
univoque(X,t,m2))

Thus, X knows that a message has been con-
structed properly if it is univoque.

Bieber makes the recommendation that knowledge
rather than belief be used to guarantee security be-
cause epistemic logics are better at describing the be-
havior of other agents, as is seen by a strong logic such
as CK'T5. Syverson makes a similar recommendation
[73].

Snekkenes gives an example application of CKTH
[70] with K P, a protocol similar to the Needham and
Schroeder protocol. CKT5 is modified so that it can
distinguish between the role of a principal and its
name. This is done simply by introducing a predi-
cate “role-R” that maps principals to their roles in a
protocol.

11Bieber defines a computable term as a clean message, or
a concatenation of two not so clean terms (containing some
encrypted part), or the result of performing a cryptographic
function on a not so clean term [5].

12Bjeber defines a well built term as a clear text term, or
the concatenation of two clear text terms, or the encryption or
decryption of a clear text term [5].

Carlsen [15] provides a tool which translates a pro-
tocol specified in the usual notation (A — B : M) into
CKT5. An automated tool helps eliminate many of
the errors introduced by human interaction. Also, the
tool provides a much less redundant, and thus smaller,
specification.

The proof that K P is secure points out the weak-
ness of CKT5. As it is known that K P has a flaw (dis-
cussed in section 3.1), the fact that it can be proved
correct in CKTh demonstrates that strictly epistemic
logics, as we know them, are not sufficient for analyz-
ing the security of authentication protocols.

7.5 Analysis of Belief Evolution

An authentication protocol analysis can be viewed
as the evolution of the beliefs of the principals in-
volved. Kailar and Gligor [36] present a logic similar
to the BAN logic for reasoning about the evolution of
belief within a protocol run. The types of protocols
that can be analyzed with this logic include interdo-
main authentication, and protocols where trust in an
encryption key must be established despite the lack of
jurisdiction.

In this logic, beliefs in a protocol run evolve as in
a state machine, where a current belief and an action
determine the next state of belief.

Belief + Action = New Belief

The concept of a knowledge set for each message con-
tent is introduced. A knowledge set is a set of prin-
cipals who know the contents of a message, a, and a
given round in the protocol, M;. Here, M; stands for
message M at instant ¢ in the protocol run.

A message is represented as:

{Message round, Sender, Receiver, Contents}

The sender and receiver field correspond to signing
with a given key, or in the case of symmetric keys, to
the encryption with a session key. Thus,

Y e {M;,Y,X,C}

denotes that Y sends message M with content C' in
round k of this session to principal X. Similarly,

X a{M,Y, X,C}

denotes that X sees message M in round k and knows
that it is sent by Y. It also reads the message contents
C.

Kailar and Gligor’s logic represents trust explicitly,
thus avoiding some of the problems that arise in the

BAN logic based on trust assumptions. The state-
ment TRUSTR(P, Q) means that P trusts principal
@ in the context R. Trust means that if @ says X,
and P trusts (), then P believes X. In the analysis,
a forwarded message is viewed as being sent from the
originator directly to the destination. As the inter-
mediary cannot read the contents, this short circuit
makes sense.

One noteworthy assumption made in this logic is
that principals can distinguish between messages from
a current session, and messages from other sessions.
Without this, an inconsistent state of beliefs can be
attained due to unrelated message histories.

The logic contains inference rules similar to those
of the BAN logic. Most of the rules are concerned
with maintaining the knowledge sets, and these sets
are what allow principals to reason about the evolution
of other principals’ beliefs in a protocol. The first
inference rule presented is the belief in uniqueness of
message receipt. This rule states that if X sends a
message, M;, to Y, and X believes that Z reads the
message, then X believes that Z =Y.

X {M; XY, C)’/‘,»,
XE{Z4{M;, X, Y, C}}
XE{Z=1}

The following rule defines how knowledge sets are
maintained. Here, KS(a, M;) stands for the knowl-
edge set of contents a of message M;, and this set con-
tains the principals who know a after having received
message M;. Kailar and Gligor use C' to denote the
contents of a message, except in the case of knowledge
sets where a is used. We follow their conventions.

XJE K%}a, MZB = <?Sl};

X'EAS((I, j)— Sg}j22>0

XE .VY S {Sz%/— ?5’1};
AP k|P € S;i< k <j;Y «{My, P,Y,a}

This states that if the knowledge set for some contents
a in a later round number contains principals that are
not in the knowledge set of an earlier round number,
then those principals must have received a message
with that contents during the time interval between
the rounds.

Other rules in the logic describe when a formula
can be included in a knowledge set, the freshness of
nonces, and the freshness of message content. They
are similar in style to the ones above and can be found
in the original paper [36].

Kailar and Gligor compare the use of their logic to
the BAN logic for the analysis of some well known pro-
tocols such as an inter-domain authentication proto-
col, a PROXY ticket forwarding protocol, and a multi-
party session protocol. They show that their analysis

preserves the accumulation of beliefs of all the princi-
pals in the system, whereas the BAN analysis falls a
bit short.

Calvelli and Varadharajan [13] use this logic to an-
alyze some delegation protocols for Kerberos, which
is evidence of the usefulness of the logic. Others have
also used it to analyze new systems. The ease of use
of Kailar and Gligor’s logic is seen by its applicability
to many problems. This advantage is significant as is
seen from the complexity and resulting lack of use of
methods in the Type IV approach discussed later.

7.6 Semantics of Logics of Authentication

The utility of formal protocol analysis is limited by
the quality of the tools we are using. Just as we have
formal methods for evaluating protocols, it is useful to
be able to reason about the tools themselves.

According to Syverson [74], “One of the main roles
of a semantics is to give us a means to evaluate our
logics. When evaluating a logic we are primarily in-
terested in two questions: Can we derive everything
we want? (Completeness) And, can we avoid deriving
things we don’t want (Soundness).” In general, we
seem to be more concerned with soundness, whereas,
for computer security, “completeness is of the utmost
importance” [74].

The reason we need to ensure that we can derive
anything possible is that many logics rely on the gen-
eration of all possible security flaws. If a logic is in-
complete, (as is the original BAN logic [11]), then
there may be flaws that are overlooked. “A formal
semantics provides a precise structure with respect to
which soundness and completeness of a logic may be
proven” [74]. However, as Syverson explains, the se-
mantics must not be derived directly from the logic.
An independently derived semantics for a logic serves
as a valuable tool in evaluating the logic.

7.6.1 A semantics for the BAN logic

Abadi and Tuttle [2] define a semantics for the BAN
logic. They define belief as a form of resource-bounded
defeasible knowledge, using a possible-worlds seman-
tics. First, they remove some unnecessary assump-
tions in the original assumptions by introducing new
constructs. Then, the semantics are formally defined.

The original BAN logic assumes that principals
are honest, in that they believe in the truth of the
messages they send. To remove this assumption, a
new construct is introduced, ‘X’, which is read “for-
warded X,” that is used for messages that were not
constructed by the principal sending them. Another

construct introduced before the semantics are defined
is “P says X7 to represent the fact that P has sent
X in the present. Using this, a new postulate is intro-
duced that states that if P said X and X is fresh, then
P says X. This promotes from knowledge to belief.

Another construct deals with shared secrets. If P
and () share a secret, s, then (X@), represents the
combination (usually concatenation) of X and s. This
is usually used to demonstrate knowledge of a secret.

The BAN logic is reformulated to define the seman-
tics precisely. For the complete description, the reader
is referred to the paper [2]. We give a summary of the
more important aspects of the semantics. The follow-
ing actions are defined for a principal P:

send(m, Q)) denotes P’s sending of the message m to
. The message m is added to ()’s message buffer.

receive() denotes P’s receipt of a message. Some
message m is nondeterministically chosen and
deleted from P’s message buffer.

newkey(K) denotes P’s coming into possession of a
new key. The key K is added to P’s key set.

seen-submsgsg (M) is defined as the union of the
set {M} and

1. seen-submsgsg (X1) U -+ U seen-
submsgsg (Xp)ift M = (X1, -, Xi)

2. seen-submsgsg (X) if M =
{X9}k and K € K13

3. seen-submsgsk (X) if M = (X @)
4. seen-submsgsg (X)if M = ‘X’

said-submsgsg y(M) This is defined almost the
same way as seen-submsgsg (X) except that the
fourth condition also stipulates that X ¢ seen-
submsgsg (X).

Next, Abadi and Tuttle describe the syntactic restric-
tions on a protocol run, r, a time k, a key set K, a
principal P, and M, the set of messages P has re-
ceived before time k.

1. A principal’s key set never decreases: If K’ is P’s
key set at time k' < k, then K’ C K.

2. A message must be sent before it is received: If
recetve(M) appears in p’s local history at time k,
then send(M, P) appears in some principal @’s
local history at time k.

13 P's key set.

3. A principal must possess keys it uses for en-
cryption. Suppose that action send(M,Q) ap-
pears in P’s local history at time k& and that
{XB}k € said-submsgsk pr(M). Then, either
{XB} € seen-submsgsx (M) or K € K.

4. A system principal sets “from” fields correctly: if
send(M, @) appears in P’s local history at time k&
and {XF}x € said-submsgsg pr (M), then P =
Ror {Xf}g € seen-submsgsy (M). Similarly, if
send(M, Q) appears in P’s local history at time k
and (XB)y € said-submsgsg pr (M), then P = R
or (XB)y € seen-submsgsy (M).

5. A system principal must see messages it forwards:
if send(M, Q) appears in P’s local history at time
k and ‘X’ € said-submsgsg pr (M), then X €
seen-submsgsg (M).

Once the syntax has been defined, the semantics
can be described. The definition of (r, k) |E ¢ is in-
ductive on the structure of ¢. An interpretation 7
maps each p € ® to the set of points 7(p) at which p
is true. So,

(r k) E piff (r, k) € w(p) for primitive p €
(rk)Eeng iff (rk) = e and (r k) E ¢’
(r k) b= = 0fF (1, 1) e

Next, the semantics are described for the various con-

structs in the logic. For example, P sees X at (r, k)
is defined as

(r k) = P sees X
iff, for some message M, at time k in r
o receive(M) appears in P’s local history
o X € seen-submsgsg (M), where K is P’s key set.
Also, P has jurisdiction over ¢ at (r, k) is defined as
(r, k) E P controls ¢

iff (r, k") = P says ¢ implies (r, k') = ¢ for all &' > 0.

The other constructs in the BAN logic are defined
similarly in the semantics. The notion of belief is cap-
tured using a possible-worlds semantics where a prin-
cipal believes a fact if that fact is believed in all the
possible worlds known to that principal at that time.
Abadi and Tuttle [2] prove that this axiomization is
sound, but it is not complete. They give an example
of a formula that is valid, but cannot be generated
using the logic:

(P controls (P has K) A
P says (P has K, {X"}g)) D P says X

In the semantics described by Abadi and Tuttle,
choosing good protocol runs is important. They do
not allow an initial assumption with a negative belief,
such as P; does not believe K is a good key. This seems
to be a reasonable assumption. As the authors state,
“In every application of this logic that we are aware
of, the initial assumptions satisfy this restriction.”

7.6.2 Unifying some logics

Syverson and Van Oorschot [78] combine the features
of the Abadi-Tuttle semantics [2], the GNY logic [29],
the VanOorschot logic [85], and the original BAN logic
[11] to produce a new logic, SVO, that captures all
of the desired features of these logics using the same
number of rules as the smallest of these. In addition,
the logic is sound with respect to the semantics they
define.

SVO uses two inference rules, modus ponens and
necessitation. These are defined as follows:

Modus Ponens From ¢ and ¢ D 9 infer .
Necessitation From ¢ infer - P E ¢.
The logical axioms are:

Believing For any principal P and fomulae ¢ and 9,

PEYAPE(¢DY¢)DPE Y
PE¢DPE(PEY)

This axiom states that a principal believes anything
that can be derived from his beliefs and that a princi-
pal can tell what he believes.

Source Association For any message X

(P £ Q A R received {X9}k) D @ said X
(PKs(Q, K) A R received {X}I_(l) D@ said X

(Recall the notation from Section 7.3.4.) This axiom
is used to identify the sender of a message based on
the encryption key used. Other axioms are:

Key Agreement Session keys that are the result of
good key-agreement keys are good.

Receiving A principal receives the concatenates of
received message and decryptions with available
keys.

Seeing A principal sees anything he receives.

Comprehending If a principal comprehends a mes-
sage and sees a function of it, then he understands
that this is what he is seeing.

Saying A principal who has said a concatenated mes-
sage has also said and sees the concatenates of
that message.

Jurisdiction P’s word is law for the ¢ in question
(P controls ¢ Apsays ¢) D ¢

Freshness A concatenated message is fresh if one of
its concatenates is fresh, and any effectively one-
one function of a fresh message is fresh.

Nonce-Verification Freshness promotes a message
from having been said to having been said within
the current epoch.

Symmetric goodness of shared keys A shared
key is good for P and @ iff it is good for @ and
P.

Having A principal has a key iff he sees it.

The authors provide a semantics that define the mean-
ing of these axioms, and they prove that the logic is
sound.

The complexity of SVO is no greater than any of
its predecessors, and it is sound with respect to the
semantics defined. In addition, this logic encompasses
all of the desirable properties of the four logics on
which it is based. However, it is not clear exactly
how to use SVO. The authors provide no examples,
and it is doubtful that SVO will be used instead of
BAN. The simplicity and fame enjoyed by BAN make
it the most widely used analysis technique for authen-
tication protocols, even though other techniques, such
as SVO, are better.

7.6.3 A semantic model for authentication
protocols

Woo and Lam [91] present a semantic model for au-
thentication protocols. They identify correspondence
and secrecy as two correctness properties. Correspon-
dence specifies that different principals in a protocol
must execute steps in a locked-step fashion. This rep-
resents the idea that a protocol step can be in response
to a previous protocol step, and not just an indepen-
dent event.

The notion of correspondence is similar to that of
matching messages presented by Diffie et. al [22]
where incoming and outgoing messages are matched
in an authentication protocol based on the fields in
the messages. They further define matching runs of
protocols where all of the messages in the runs can be
matched with others.

Woo and Lam define an action schema to specify
the steps in a protocol. In protocol specification, each
of these actions is preceded by a label. The actions
allowed are:

BeginInit (r)
EndInit (r)
BeginRespond (1)
EndRespond (7)
Accept (N)

NewNonce (n)
NewSecret (S, n)
Send (p, M)
Receive (p, M)
GetSecret (n)

The meanings of these actions are for the most part
intuitive. A notable exception is the GetSecret action.
This is used to model the compromise of an old key by
the intruder. The action would not be included in a
protocol specification, but rather, on the consequence
side of a rule, and serves to eliminate timeliness re-
quirements.

A protocol specification begins with a set of initial
conditions, followed by the protocol for each partic-
ipant. For example, the authors specify the Otway-
Rees protocol [58] using their model. The specification
takes the form.

1. Initial Conditions
2. Initiator Protocol
3. Responder Protocol
4. Server Protocol

Notice that although the Otway-Rees protocol does
not differentiate between the communicating princi-
pals, Woo and Lam explicitly designate the roles as
initiator and responder.

The main difference between this work, and that
of Syverson [73] is that Woo and Lam specify pro-
tocols as programs and are concerned with a general
formalism of correctness, whereas Syverson is more
concerned with logic. The approach by Woo et. al
is significant in that it recognizes and formalizes the
notion of correspondence in authentication protocols.

7.7 A Nonmonotonic Logic of Belief

All of the logics we have discussed so far have dealt
with monotonic knowledge and belief. However, in a
real world model, our beliefs can change. For example,
if a session key is compromised, we need to change our
belief that this is a good key.

Moser [53] describes a nonmonotonic logic of belief
based on a monotonic logic of belief and knowledge.
She describes the standard S5 [16] knowledge axioms.
Here K;(p) means that principal i knows p.

1. Ki(p) = p

B;(p) unless B;(q)

f
t
t
X

Figure 5: The Definition of Moser’s unless oper-
ator The z in the last row indicates a special case. x
is true iff 3r : B;(p) unless B;(r) € F', where F'is a
conjunction of formulas containing the unless opera-
tor.

2. K;(p) NKi(p = q) = Ki(q)
3. = K;(p) = K;(—K;(p)) (Negative introspection)
4. F pinfer K;(p)

Axiom 4 corresponds to the axiom T described by
Syverson [79] (see section 7.1). Also, Moser points out
that positive introspection is easily derivable from the
above axioms. The axioms for belief are the standard
KD45 axioms [16], and are the same as those described
by Rangan [59] (see section 7.1).

In Moser’s logic, a belief is considered true unless
it is stated otherwise. She introduces a new predi-
cate, unless whose value can be seen from the follow-
ing truth table (where F is a conjunction of formulas
containing the unless operator).

The definition of unlessis given by the truth table in
Figure 5. The z in the last row is the most interesting
part of the definition and indicates a special case. @
is defined as follows:

t if 3r: Bi(p) unless B;(r) € F
r = and B;(r) is true
f otherwise

Thus, the value of the unless operator depends on the
context in which it appears. This definition allows for
any belief to be held unless it is refuted somewhere
else in the formula.

Moser proceeds to give an application of this logic
for a key distribution protocol. Although her logic
provides for a new type of reasoning, there are a few
shortcomings. Moser does not discuss the tractability
of her logic other than pointing out that if quantifica-
tion were added to the logic, it would be undecidable.
Also, Moser makes no mention of soundness and com-
pleteness. A formal semantics is necessary to answer
questions about these.

Another shortcoming of Moser’s logic is that it
deals with the nonmonotonicity of belief, and men-
tions nothing of the nonmonotonicity of knowledge.
Rubin and Honeyman [63] present a method for speci-
fying and analyzing protocols that deal with nonmono-
tonicity of knowledge. They provide a mechanism for
a principal to forget some information. An example of
a protocol that requires this is the khat system [62] of
Rubin and Honeyman. The security of khat is based
on the notion that a vacant workstation erases some
information from its memory so that an intruder gains
nothing from compromising the machine.

8 Type IV Approach

The Type IV approach to protocol analysis de-
velops a formal model based on the algebraic term-
rewriting properties of cryptographic systems. This
approach was introduced by Dolev and Yao [23], and
has since been pursued by Merritt [50], Toussaint
[81, 82], Syverson [72, 77], Meadows [46, 47, 48, 49],
and Woo & Lam [91]. The more recent applications
of this approach have provided automated support for
the analysis, and have enabled a user to query the
system for known attacks.

The Type IV approach generally involves an analy-
sis of the attainability of certain system states. In this
regard, it is similar to some of the Type II approaches
discussed earlier. However, the Type IV approaches
try to show that an insecure state cannot be reached,
whereas the Type II approaches began with an inse-
cure state and attempted to show that no path to that
state could have originated at an initial state.

8.1 Dolev and Yao

Dolev and Yao [23] proposed the first algebraic
model for the security of protocols. Their protocols
dealt more with the distribution of secrets than au-
thentication, although the two are closely linked. The
main difference is that we generally think of authenti-
cation as involving a third party authentication server,
whereas the Dolev and Yao protocols dealt with only
two parties.

Dolev and Yao define some classes of protocols.
They reason about these classes of protocols rather
than individual protocols themselves, and prove some
interesting properties of these classes. For example,
cascade protocols and name-stamp protocols are exam-
ined. A cascade protocol is one in which a user can
apply the public key encryption-decryption operations
in several layers to form messages. The authors prove

that such protocols are secure if and only if the fol-
lowing conditions hold:

1. The messages transmitted between X and Y al-
ways contains some layers of encryption functions
E; or B,

2. In generating a reply message, each participant A
(A = X,Y) never applies D4 without also apply-
ing EA.

Similarly, Dolev and Yao provide a polynomial-time
algorithm for deciding if a given name-stamp protocol
is secure.

Dolev and Yao not only show how to model proto-
cols algebraically, but they consider whole classes of
protocols and demonstrate how to reason about any
protocol that shares certain properties.

8.2 Merritt’s Model

Merritt [50] generalizes on the technique of Dolev
and Yao to model diverse cryptographic systems and
to formally state and prove security properties other
than secrecy. His approach is to use the messages
an attacker knows as well as the relationship between
these messages to model its knowledge.

Merritt defines a partial algebra, A =
(D, Ry, -+, Rg), where D is a set, and Ry, ---, Ry are
relations on D. A subalgebra of A is any algebra
A’ with D' C D, and whose relations are the restric-
tions to D’ of the relation in A. Algebras such as
B = (D, R;) containing a subset of the relations in A
are called reducts or A.

Let I = (M, C, EA,EB,eA,eB,eA_l,eB_l) be
a partial algebra where M is a set of messages,
C C M is the set of cleartext messages, Ex is
a predicate of the principal X that is true only
on messages which are properly encrypted, ex is
the encryption function of principal X, and ey ™!
is the decryption function of principal X. The
reducts Iy = (M,C,Ea,ea,ea”tep) and Ip =
(M,C,Eg,ep,ep~1 ea) represent the cryptographic
capabilities of A and B.

Merrit shows how this algebraic model can be used
to analyze cryptographic protocols by performing al-
gebraic operations using algebras such as I above. In
the next section we see how an algorithm can be used
to further analyze the behavior of the intruder.

8.3 Toussant’s Technique

Toussaint presents a technique for formally proving
the probabilistic properties of cryptographic protocols

[82]. The first step is to model the states of knowledge
in the cryptosystem. Toussaint describes a technique
for deriving the complete knowledge of participants
in cryptographic protocols [81] that is based on the
algebraic model of Merritt.

The state of knowledge of a participant in a proto-
col is defined as partial knowledge of the isomorphism
between the free and crypto-algebras. The states of
knowledge are partitioned into three sets, F,V, and

SV that are defined as follows:

F (fixed) contains pairs, (a,b) that represent a one
to one mapping from a subset of F' to a subset
of a crypto-algebra, C'. These correspond to el-
ements that the participant has seen or knew at
the beginning of the protocol.

V (Variables) contains generators of the crypto-
algebra that a participant is aware of but has not
seen.

SV (Semi-Variables) contains elements that the
participant has seen but has been unable to la-

bel.

The closure set, CL(X) of X is defined as X, and ev-
erything that can be derived from X using encryption
and decryption. The participants make computations
on their states of knowledge in the algebra to derive
new states of knowledge. In addition, Toussaint de-
scribes the states of belief that are associated with
the states of knowledge of other participants.

Toussaint uses the technique for deriving the states
of knowledge in a protocol to verify its probabilistic
properties. The possible global states are represented
by a global protocol execution tree. The nodes in the
tree correspond to the different choices for variable in-
stantiations by the participants in the protocol. Each
path through the tree corresponds to a different pos-
sible execution of the protocol.

Toussaint shows that the tree can be reduced to
a finite length, and probabilities can be assigned to
the branches. Using this technique, the probabilistic
properties of an oblivious transfer protocol are veri-
fied. In a later paper [83], the technique is applied
to a coin flip protocol, the Kerberos authentication
protocol, and the X.509 standard.

One problem with this technique is that in the pro-
tocol execution tree, only the actions specified in the
protocol are represented. Thus, if the analysis of the
oblivious transfer protocol is considered, and messages
that are not in the original protocol are sent by an
intruder, the probabilistic properties no longer hold.
Thus, Toussaint’s method works for analyzing against

eavesdropping and replay attacks, but not against a
malicious intruder who can introduce new messages.

8.4 Using the NARROWER Algorithm
for Protocol Analysis

According to Meadows [46], “A cryptographic pro-
tocol may be thought of in part as a set of rules for
generating words in some formal language.” We can
define algebraic operations on these words, such as
encryption and decryption. The security of a proto-
col can then be based on the ability of an intruder to
generate certain words in the language.

The operations in a term-rewriting system are the
reductions of terms using the cancellation properties
of the words in the system. Examples of such rules
are:

1. d(X,e(X,Y)) =Y
2. e(X,d(X,Y)) =Y

which define the symmetric properties of encryption
and decryption. An intruder can attempt to see if any
words available to him can reduce to some secret word,
say a session key.

Meadows [46] uses the NARROWER [61] algo-
rithm, which she has implemented in Prolog [18] to an-
alyze the IBM key management scheme [19] mentioned
in Section 6.2. The algorithm begins with a trivial set
(possibly the empty set) of words available to the in-
truder, and an initial state. A set of secrets, which the
intruder should not learn, is also defined. The algo-
rithm attempts to show that there is no path through
the protocol, beginning at the initial state, that leads
to a state where the intruder can learn words in the
secret set.

The algorithm works by induction on the length of
the path, beginning with the trivial set, and continues
until no more paths can be generated. For any m, we
can state that no “dangerous” path of length less than
or equal to m exists. The user can interact with the
program to improve on the tractability of the problem
by modifying the initial set, and the rules available.

In a later paper [48], Meadows analyzes the Burns-
Mitchell resource sharing protocol [10] using an anal-
ysis tool based on the same term-rewriting properties
utilized by the NARROWER. This system models the
knowledge and belief of the intruder, and defines a set
of rules whereby an intruder can learn new informa-
tion based on protocol steps. Using this technique,
Meadows demonstrates the existence of a flaw in the
Burns-Mitchell protocol. Meadows suggests a fix to

this protocol, and then uses the analysis technique to
show that the attack no longer succeeds.

In the analysis of the IBM key management scheme,
it is shown that certain secrets are unobtainable by a
penetrator unless a session key has been compromised.
However, such a proof is not a proof that the protocol
is secure; this would require proving that the term-
rewriting system is complete, i.e., that every valid
word can be generated. Unfortunately, the system is
not complete. Another requirement for proving that
a protocol is secure is that the method for formalizing
the protocol, must itself be formal, and it is not.

Thus, methods such as the NARROWER can be
used to find insecurities in a protocol, but do not con-
stitute a proof that a protocol is secure.

8.5 The KPL Logic

In the logics presented so far, we have seen ways of
representing the fact that P knows that Kpg is the
secret key between P and). However, there has been
no way to represent simply the fact that intruder 7
knows P’s key. Syverson calls this a key simpliciter,
and his KPL logic [72, 73] can represent such a fact.

KPL is a quantified modal logic with a correspond-
ing possible-worlds interpretation. In KPL, Z knows
P’s key if P’s key is present in all of the worlds acces-
sible to Z from his current set of possible worlds via
some transition. Syverson defines a semantics for the
logic that he uses to prove the soundness and com-
pleteness of KPL.

As Syverson states, the soundness and complete-
ness of KPL do not guarantee that there can be no er-
ror in the reasoning about a secure protocol, but they
do prove that there can be no formal error: “Once
we have formally specified a protocol, a logical deriva-
tion of any result concerning the specification will be
correct — i.e. true of that specification — and any-
thing that can be formally shown to be a semantic
consequence of that specification will be provable in
the logic.”

Syverson does not provide examples of how to spec-
ify an authentication protocol in KPL; such a specifi-
cation would be complicated. In general, the Type IV
approaches suffer from a great deal of complexity, and
thus their value as an analysis tool is diminished.

8.6 The NRL Protocol Analyzer

Syverson and Meadows [77] use the techniques de-
scribed above, namely, using the term-rewriting prop-
erties of protocol specifications, to develop the NRL
protocol analyzer. This system is used to analyze

classes of protocols, and is not tied to any assump-
tions about the protocols.

The NRL protocol analyzer allows a single set of
requirements to specify a class of protocols. The fol-
lowing symbols are used:

— represents the standard conditional
A represents conjunction

¢ represents a temporal operator meaning af some
point in the past.

Each principal keeps track of a local round number for
a protocol, and the following actions are defined:

accept(B, A, Mes, N) means that B accepts the
message Mes as from A during B’s local round
N. N is an optional parameter.

learn(Z, Mes) means that the intruder, Z, learns the
word Mes.

send (A4, B, (Query, Mes)) means that A sends Mes
to B in response to Query. The use of a Query
is optional.

request(B, A, Query, N) means that B sends Query
to A during B’s local round N. Query is optional.

From these constructs and actions, requirements can
be specified. The requirements are represented by a
conjunction of statements. For example:

Requirement #1
o —(¢ accept(B,A, Mes, N)A ¢ learn(Z, Mes))

o accept (B,A,Mes,N) —
¢ (send(A, B, (Query, Mes))A
o request(B, A, Query, N))

Requirement #1 contains two conditions, both of
which must hold. The first condition is that if B ac-
cepted message Mess from A at some point in the past,
then the intruder did not learn Mess at some point in
the past. The second condition is that if B accepted
message Mess from A in B’s local round, N, then A
sent Mess to B as a response to a query at B’s local
round N.

It is clear from the last sentence why formal meth-
ods are needed to represent such statements. There is
a need for a precise description. If it is not necessary
for A to send the message in response to B’s query
only after the query, then we can have the relaxed
requirement:

Requirement #2

o —(¢ accept(B,A, Mes)A ¢ learn(Z, Mes))
o accept (B, A, Mes,N) —
¢ (send(A, B, Mes)) A ¢ request(B, A, N))

The omission of the Query from the send and re-
quest actions are due to the relaxation of the require-
ment. Also, it may be required that the messages from
A and B be recent. These can be specified with the
following requirement:

Requirement #3

o —(e accept(B,A, Mes)A ¢ learn(Z, Mes))
o accept (B,A, Mes,N) —

¢ (send(A, B, Mes)) A ¢ request(B, A, N))
e accept (B, A, Mes,N) —

¢ (send(A4, B, Mes)) A

—(¢ time_out(B,N)) A

(¢ time_out(A4,N))

The new action, fime_out, is used to control cur-
rency of messages.

To avoid assumptions such as those made in
the BAN logic [11] that all participants in a
protocol are honest, an honest user A is desig-
nated as user(A, honest), and a dishonest user as
user(A, dishonest), and in the case where it is not
known, a variable Y can be included, user(4,Y). To
specify the requirement that an honest B accept a
message as coming from an honest A only if it was
never previously accepted by an honest user, Syverson
and Meadows [77] provide the following complicated
requirement:

Requirement #4

o -6 accept(user(B,honest), user(A, honest),
Mes) Vo learn(Z, Mes)

o accept(user(B,honest), user(A, honest), Mes, N)
— ¢ (send (user (A, honest), user(B, honest), Mes)
A¢ request (user(B, honest), user(A, honest), N))

o accept(user(B,honest), user(A, honest), Mes) —
—¢ accept(user(C, honest), user(D,Y'), Mes)

The variable Y states that the message could not
have been accepted by anyone, regardless of honesty.

The NRL protocol consists of a state space, where
a protocol trace is an infinite sequence of states. A
model is an ordered 4-tuple, (S, I, o,t) such that S is a
state space, I is an interpretation, o is a trace, and t is
time. Satisfaction is defined as (S, I, 0,1) = o means
that « is true at (S,I,0,t). Syverson and Meadows
[77] give a detailed definition of the |= relation in their
paper.

A specification in the NRL protocol analyzer is
modeled on the communication of honest participants.

Dishonest participants are assumed to be modeled by
the intruder, and so are not modeled separately. Each
honest participant possesses a set of learned facts,
called {facts. Also, a function called intruderknows()
represents the Ifacts known by the intruder.

To use the protocol analyzer, a protocol is specified
using the above constructs. Then, a set, K, of lfacts
is defined. K may contain a possible attack by an
intruder. The analyzer then can determine if the set
K can meet the requirements of the protocol. If so, a
successful attack by the intruder can be discovered.

The NRL protocol analyzer consists of four phases.
In the first phase, transition rules are defined for the
actions of honest principals. In phase 2, the opera-
tions available to all principals, such as encryption and
decryption, are described. Phase 3 consists of describ-
ing the atoms used as the basic building blocks of the
words in the protocol, and the final phase describes
the rewrite (reduction) rules obeyed by the operators.
An example of such a rule is:

IF:
count(user(B,honest)) = [M],
lfact(user(B,honest),N,recvvho,14 M) =
[user(A,Y)],
not(user(A, Y) = user(B,honest)),
THEN
count(user(B honest)) = [s(M)],
intruderlearns([user(B,honest),
rand(user(B,honest), M)]),
Ifact(user(B,honest), N recsendsnonce,
s(M)) = [rand(user(B,honest),M)],
EVENT
event(user(B, honest), N requestedmessage,

s(M)) = [user(A,Y),rand(user(B,honest), M)].

This rule describes the sending of a nonce from an
honest principal, B, to some principal A, whose hon-
esty is unknown.

Operations are described by listing the restrictions
on them (for example, key length), and then defining
their properties. Similarly, rewrite rules describe the
cancellation of operations. For public key encryption,
for example, a rewrite rule would be:

pke(privkey(X),pke(pubkey(X),Y)) = Y

Syverson et. al. [77] then give a full specification and
show that the protocol meets the specification.

The purpose of the NRL protocol analyzer is to
show that a given protocol specification meets its re-
quirements. However, this does not constitute a proof
that the protocol is secure. The NRL protocol an-
alyzer can be viewed as a tool that, combined with

14The word recwho is used by the authors to mean “the prin-
cipal who receives this.”

other tools, could eventually lead to a protocol that
can be proven secure.

9 Conclusions

This paper surveys the current state of research into
the formal analysis of authentication protocols. The
field has made substantial progress in the detection of
flaws in published protocols as well as in the develop-
ment of formal specification techniques. We have seen
how various techniques from other fields can be used
to reason about security in key management schemes.
We have also seen the weaknesses of such methods
in that they fail to capture the subtle properties of
these protocols, such as their susceptibility to replay
attacks.

Some authors have developed expert systems to ex-
periment with various scenarios in an authentication
protocol. Such systems are useful as tools in the devel-
opment of protocols, but have not been able to offer
much in the way of formal analysis of existing pro-
tocols. In particular, such systems are good at rec-
ognizing known attacks on protocols when they are
specified, but have not been able to produce new, pre-
viously unknown attacks.

The predominant technique for analyzing crypto-
graphic protocols is to use logical reasoning about be-
lief and knowledge in the system. These schemes have
been successful in proving that a protocol meets its
formal requirements. However, a criticism of these
systems is that the process of formalizing the require-
ments is itself not formal. To cope with this, seman-
tics have been presented for reasoning about the log-
ics themselves. There is a debate as to whether epis-
temic logics (knowledge) are preferable to doxastic log-
ics (belief), but either one can be used to reason about
the other.

The BAN-type methods force analysts to iden-
tify /specify what the objective goals of a protocol are,
and then allow one to determine whether or not these
can be reached by formal analysis. One of the rec-
ognized advantages of BAN-type methods is that an-
alysts are compelled to explicitly identify what the
goals are; often these are not clear when a protocol is
initially given, which is a criticism not of the BAN-
type methods, but of protocol selection and specifica-
tion.

Another criticism of logics based on belief and
knowledge is that they are used to model trust and
not security. Although the two are related, it is clear
that they are not interchangeable.

In addition to the above methods, some have used
the algebraic term-rewriting properties of protocols to
reason about security. This technique has been suc-
cessful in uncovering flaws in known protocols. Unlike
the modeling with belief and knowledge, the term-
rewriting algebras are highly complex. It it doubt-
ful that many protocol developers will be able to use
these systems. In contrast, it is common to find anal-
yses of protocols using BAN. However, the ease of use
of techniques such as BAN creates a danger of misuse
by people who do not fully understand their purpose
and limitations, as has been frequently demonstrated.

Although we have presented numerous ways to rea-
son about the security of protocols, and in some cases,
to prove that they meet their requirements, there is no
technique known for proving that a protocol is secure.
The reason for this may be that security itself is not
sufficiently well defined. We can prove that a protocol
is correct, or that it meets its specification. We can
even prove that under various assumptions, certain at-
tacks against a protocol will not work. However, we
have no general-purpose method of proving that an
arbitrary authentication protocol is secure.

Future research is likely to focus on formal methods
for formalizing authentication protocols. The weakest
link in current proofs of security is the formalization
process. We believe that once all of the aspects of
a protocol can be converted to a formal specification
using a sound and complete formal method, then we
will be able to assure a proven level of security.

Acknowledgements

The authors thank Atul Prakash for his excellent
advice to pursue this topic; Paul Syverson for provid-
ing valuable reference materials; Anish Mathuria for
helpful comments; and Mary Jane Northrop for help-
ful comments and editing.

References

[1] M. Abadi and R. Needham. Prudent engineering
practice for cryptographic protocols. Proceedings
of the 1994 IEEE Computer Society Symposium
on Research in Security and Privacy, pages 122-

136, 1994.

[2] Martin Abadi and Mark R. Tuttle. A seman-
tics for a logic of authentication. Proceedings of
the Tenth Annual ACM Symposium on Principles

3

[}

[14]

of Distributed Computing, pages 201-216, August
1991.

Ross Anderson. Ueps something.

Ashar Aziz and Whitfield Diffie. Privacy and
authentication for wireless local area networks.
IEEE Personal Communications, pages 25-31,
1994.

P. Bieber. A logic of communication in a hostile
environment. Proceedings of the Computer Secu-
rity Foundation Workshop 111, pages 14-22, June
1990.

Thomas Blumer and Deepinder P. Sidhu. Me-
chanical verification and automatic implementa-
tion of communication protocols. IEEE Transac-
tions on Software Engineering, SE-12(8):827-843,
August 1986.

Colin Boyd and Wenbo Mao. On a limitation of
ban logic. Advances in Cryptology: Proceedings
of Eurocrypt 93, pages 240-247, 1993.

D.E. Britton. Formal verification of a secure net-
work with end-to-end encryption. Proceedings of
the 1984 IEEE Computer Society Symposium on
Research in Security and Privacy, pages 154-166,
May 1984.

L. Brownston and E. Kant. Programming Ezpert

Systems in OPS5. Addison Wesley, 1985.

J. Burns and C. J. Mitchell. A security scheme
for resource sharing over a network. Computers

and Security, 9:67-76, February 1990.
M. Burrows, M. Abadi, and R. Needham. A logic

of authentication. ACM Transactions on Com-
puter Systems, 8, February 1990.

M. Burrows, M. Abadi, and R. Needham. Re-
joinder to Nessett. Operating System Review,
24(2):39-40, April 1990.

Claudio Calvelli and Vijay Varadharajan. An
analysis of some delegation protocols for dis-
tributed systems. Proceedings of the Computer
Security Foundation Workshop V, pages 92-110,
1992.

E. A. Campbell, R. Safavi-Naini, and P. A. Pleas-
ants. Partial belief and probabilistic reasoning in
the analysis of secure protocols. In Proceedings of
the Computer Security Foundation Workshop V,
pages 84-91, Washington, 1992.

[15]

[26]

[27]

Ulf Carlsen. Generating formal cryptographic
protocl specifications. Proceedings of the 1994
IEEE Computer Society Symposium on Research
in Security and Privacy, pages 137-146, 1994.

B. F. Chellas. Modal Logic: An Introduction.
Cambridge University Press, 1980.

P. C. Cheng and V.D. Gligor. On the formal spec-
ification and verification of a multiparty session
protocol. Proceedings of the 1990 IEEE Computer
Society Symposium on Research in Securily and
Privacy, pages 216-233, May 1990.

W. F. Clocksin and C. S. Mellish. Programming
in Prolog. Springer-Verlag, 1984.

D. W. Davies and W.L. Price. Security for Com-
puter Networks. Wiley, 1984.

Dorothy E. Denning and Giovanni Maria Sacco.
Timestamps in key distribution protocols. Com-
munications of the ACM, 24(8):533-536, August
1981.

W. Diffie and Martin E. Hellman. New directions
in cryptography. IEEE Transactions on Informa-
tion Theory, 22(6), 1976.

Whitfield Diffie, Paul C. Van Oorschot, and
Michael Weiner. Authentication and authenti-
cated key exchanges. Design Codes and Cryp-
tography, 2:107-125, 1992.

D. Dolev and A. Yao. On the security of public-
key protocols. Communications of the ACM,
29:198-208, August 1983.

M. Fitting. Proof Methods for Modal and Intu-
ttionistic Logics. D. Reidel Publishing Company,
1983.

Klaus Gaarder and Einar Snekkenes. Applying
a formal analysis technique to the CCITT X.509
strong two-way authentication protocol. Journal

of Cryptology, 3:81-98, 1991.

V.D. Gligor, R. Kailar, S. Stubblebine, and
L. Gong. Logics for cryptgraphic procols - virtues
and limitations. Proceedings of the Computer Se-
curity Foundation Workshop IV, pages 219-226,
June 1991.

L. Gong. A Security Risk of Depending on Syn-
chronized Clocks. ACM Operating Systems Re-
view, 26(1):49-53, January 1992.

[28]

[37]

Li Gong. Handling infeasible specifications of
cryptographic protocols. Proceedings of the Com-
puter Security Foundation Workshop IV, pages
99-102, 1991.

Li Gong, Roger Needham, and Raphael Yahalom.
Reasoning about belief in cryptographic proto-
cols. Proceedings of the 1990 IEEE Computer
Society Symposium on Research in Security and
Privacy, pages 234-248, May 1990.

J. Y. Halpern and M. Y. Vardi. The complexity of
reasoning about knowledge and time. Proceedings
of the Eighteenth ACM Symposium on the Theory
of Computing, pages 304-415, 1986.

J. Hintikka. Knowledge and Belief. Cornell Uni-
versity Press, 1962.

C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,

12(10):576-580, 1969.

John E. Hopcroft and Jeffrey D. Ullman. In-
troduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Com-
pany, 1979.

J.H. Howard, M.L. Kazar, S.G. Menees, D.A.
Nichols, M. Satyanarayanan, R.N. Sidebotham,
and M.J. West. Scale and performance in a dis-
tributed file system. ACM Transactions on Com-
puter Systems, 6(1):51-81, February 1988.

James W. Gray III and Paul F. Syverson. A logi-
cal approach to multilevel security of probabilistic
systems. Proceedings of the 1992 IEEE Computer
Society Symposium on Research in Security and
Privacy, pages 164-176, May 1992.

R. Kailar and V. D. Gilgor. On belief evolu-
tion in authentication protocols. Proceedings of
the Computer Security Foundation Workshop IV,
pages 103-116, June 1991.

R. Kailar, V. D. Gligor, and Li Gong. On the
security effectiveness of cryptographic protocols.
4th IFIP Working Group Conference on Depend-
able Computing for Critical Applications, pages
90-101, January 1994.

T. Kasami, S. Yamamura, and K. Mori. A key
management scheme for end-to-end encryption
and a formal verification of its security. Systems,
Computers, Control 13:59-69, May-June 1982.

[39]

[40]

[43]

[44]

[46]

[47]

[48]

R. Kemmerer, C. Meadows, and J. Millen.
Three systems for cryptographic protocol anal-
ysis. Journal of Cryptology, 7(2), 1994.

Richard A. Kemmerer. Analyzing encryption pro-
tocols using formal verification techniques. IEEE
Journal on Selected areas in Communications,

7(4):448-457, May 1989.

Armin Liebl. Authentication in distributed sys-
tems: A bibliography. Operating System Review,
27(4):31-41, October 1993.

D. Longley and S. Rigby. Use of expert sys-
tems in the analysis of key management systems.
Security and Protection in Information Systems,

pages 213-224, 1989.

D. Longley and S. Rigby. An automatic search
for security flaws in key management schemes.

Computers & Security, 11:75-89, 1992.

W. P. Lu and M. K. Sundareshan. Secure commu-
nication in Internet environments: A hierarchical
key management scheme for end-to-end encryp-
tion. [EEE Transactions on Communications,

37(10):1014-1023, October 1989.

Wenbo Mao and Colin Boyd. Towards formal
analysis of security protocols. Proceedings of
the Computer Security Foundation Workshop VI,
pages 147-158, June 1993.

Catherine Meadows. Using narrowing in the anal-
ysis of key management protocols. Proceedings of
the 1989 IEEE Computer Society Symposium on
Research in Security and Privacy, pages 138-147,
May 1989.

Catherine Meadows. Representing parital knowl-
edge in an algebraic security model. Proceedings
of the Computer Security Foundation Workshop
111, pages 23-31, June 1990.

Catherine Meadows. A system for the specifica-
tion and analysis of key management protocols.
Proceedings of the 1991 IEEE Computer Society
Symposium on Research in Security and Privacy,

pages 182-195, May 1991.

Catherine Meadows. Applying formal methods
to the analysis of a key management protocol.

Journal of Computer Security, 1(1):5-35, 1992.

Michael J. Merritt. Cryptographic Protocols. PhD
thesis, Georgia Institute of Technology, 1983.

[51]

Jonathan K. Millen, Sidney C. Clark, and Sh-
eryl B. Freedman. The interrogator: Protocol se-
curity analysis. TEEE Transactions on Software

Engineering, SE-13(2):274-288, February 1987.

Judy H. Moore. Protocol failures in cryptosys-
tems. Proceedings of the IEEE, 76(5):594-602,
May 1988.

Louise E. Moser. A logic of knowledge and belief
for reasoning about computer security. Proceed-
ings of the Computer Security Foundation Work-
shop II, pages 57-63, 1989.

R.M. Needham and M.D. Schroeder. Using en-
cryption for authentication in large networks
of computers. Communications of the ACM,

21(12):993-999, December 1978.

R.M. Needham and M.D. Schroeder. Authenti-
cation revisited. Operating Systems Review, 21:7,
January 1987.

D. M. Nessett. A critique of the Burrows, Abadi
and Needham logic. Operating System Review,
24(2):35-38, April 1990.

B. C. Neuman and S. G. Stubblebine. A note
on the use of timestamps as nonces. Operating

System Review, 27(2):10-14, April 1993.

D. Otway and O. Rees. Efficient and timely mu-
tual authentication. ACM Operating System Re-
view, 21(1):8-10, January 1987.

P. V. Rangan. An axiomatic basis of trust in dis-
tributed systems. Proceedings of the 1988 IEEE
Computer Society Symposium on Research in Se-
curity and Privacy, pages 204-211, May 1988.

P. V. Rangan. An axiomatic theory of trust in
secure communication protocls. Computers & Se-

curity, 11:163-172, 1992.

P. Rety, C. Kirchner, H. Kirchner, and P. Les-
canne. Narrower: a new algorithm for unification
and its application to logic programming. Rewrit-
ing Technigues and Applications, Lecture Notes
in Computer Science, 202, 1985.

A. D. Rubin and P. Honeyman. Long running
jobs in an authenticated environment. USENIX
Security Conference IV, pages 19-28, October
1993.

[63]

[66]

[69]

Aviel D. Rubin and Peter Honeyman. Non-
monotonic cryptographic protocols. Proceedings
of the Computer Security Foundation Workshop
VII, pages 100-116, June 1994.

M. Sato. Study of Kripke-style models of some
modal logics by Gentzen’s sequential method.
Publications of the Research Institute for Mathe-
matical Sciences, 13(2), 1977.

J. Scheid and S. Holtsberg. Ina Jo Specifica-
tion Language Reference Manual. Systems De-
velopment Group, Unisys Corporation, Septem-

ber 1988.

Yoav Shoham and Yoram Moses. Belief as defea-
sible knowledge. Proceedings of the 11th Interna-
tional Joint Conference on Artificial Intelligence,
pages 1168-1173, August 1989.

Deepinder P. Sidhu. Authentication protocols for
computer networks: 1. Computer Networks and

ISDN Systems, 11:297-310, 1986.

Einar Snekkenes. Authentication in open sys-
tems. Proceedings of the IFIP WG 6.1 Tenth In-
ternational Symposium on Protocol Specification,
Testing, and Verification, pages 311-324, June
1990.

Einar Snekkenes. Exploring the BAN approach to
protocol analysis. Proceedings of the 1991 I[EFEE
Computer Society Symposium on Research in Se-
curity and Privacy, pages 171-181, May 1991.

Einar Snekkenes. Roles in cryptographic proto-
cols. Proceedings of the 1992 IEEE Computer
Society Symposium on Research in Security and
Privacy, pages 105-119, May 1992.

J.G. Steiner, B.C. Neuman, and J.I. Schiller. Ker-
beros: An authentication service for open net-
work systems. In Useniz Conference Proceedings,
pages 191-202, Dallas, Texas, February 1988.

Paul Syverson. A logic for the analysis of crypto-
graphic protocols. Technical Report 9305, Naval
Research Laboratory, December 19.

Paul Syverson. Formal semantics for logics of
cryptographic protocols. Proceedings of the Com-
puter Security Foundation Workshop III, pages

32-41, June 1990.

Paul Syverson. The use of logic in the analy-

sis of cryptographic protocols. Proceedings of the

[79]

[80]

[82]

[84]

1991 IEEE Computer Society Symposium on Re-
search in Security and Privacy, pages 156-170,
May 1991.

Paul Syverson. Adding time to a logic of authen-
tication. Ist ACM Conference on Computer and
Communications Security, pages 97-101, Novem-

ber 1993.

Paul Syverson. On key distribution protocols for
repeated authentication. Operating System Re-
view, 27(4):24-30, October 1993.

Paul Syverson and Catherine Meadows. A logical
language for specifying cryptographic protocol re-
quirements. Proceedings of the 1993 IEEE Com-
puter Society Symposium on Research in Security
and Privacy, pages 165-177, May 1993.

Paul Syverson and Paul C. van Oorschot. On
unifying some cryptographic protocol logics. Pro-
ceedings of the 1994 IEEE Computer Society
Symposium on Research in Security and Privacy,
pages 14-28, May 1994.

Paul F. Syverson. Knowledge, belief, and seman-
tics in the analysis of cryptographic protocols.
Journal of Computer Security, 1:317-334, 1992.

M. Tatebayashi, N. Matsuzaki, and D. B. New-
man. Key distribution protocol for digital mobile
communication systems. Advances in Cryptology:
Proceedings of Crypto 89, pages 3234-333, 1991.

M. J. Toussaint. Deriving the complete knowl-
edge of participants in cryptographic protocols.
Advances in Cryptology: Proceedings of Crypto
’91, pages 24-43, August 1991.

M. J. Toussaint. Formal verification of probabilis-
tic properties in cryptographic protocols. Lecture
Notes in Computer Science #739, pages 412-426,
1992.

M. J. Toussaint.
the security of cryptographic protocols. Journal
of Selected Areas in Communication, 11(5):702-
714, June 1993.

A new method for analyzing

Paul C. van Qorschot. An alternate explanation
of two BAN-logic ”failures”. Advances in Cryp-
tology: Proceedings of Eurocrypt 93, pages 1-5
rump session, 1993.

Paul C. van Oorschot. Extending cryptographic
logics of belief to key agreement protocols. 1st
ACM Conference on Computer and Communica-
tions Security, pages 232-243, November 1993.

[86]

V. Varadharajan and S. Black. Formal specifica-
tion of a secure distributed system. Proceedings of
the 12th National Computer Security Conference,
pages 146-171, October 1989.

Vijay Varadharajan. Verification of network secu-
rity protocols. Computers and Security, 8(8):693—
708, 1989.

Vijay Varadharajan. Use of a formal description
technique in the specification of authentication
protocols. Computer Standards and Interfaces,

9:203-215, 1990.

V. L. Voydock and S. T. Kent. Security mecha-
nisms in high-level network protocols. Computing

Surveys, 15(2):135-171, June 1983.

C. H. West. General technique for communica-
tions protocol validation. IBM Journal of Re-
search and Development, 22:393-404, 1978.

Thomas Y.C. Woo and Siman S. Lam. A semantic
model for authentication protocols. Proceedings
of the 1993 IEFE Computer Society Symposium
on Research in Security and Privacy, pages 178~

194, May 1993.

List of Figures

1

The Needham and Schroeder Protocol
System Architecture for Kemmerer’s Sample System.
Nondeterministic Finite State Machine for Principals A and B Initiating the Needham
and Schroeder Protocol. The arc P~ means that principal P transmits message number n.
P*" means that P receives message n. This machine is constructed by taking the cross product
of the individual machines for A and B initiating the protocol. If a state of A’s machine is S;, and
B’s is labeled Sj, then the corresponding state in the cross product machine is S;;. The number
of legal states in each of A’s and B’s machines is z, and the cross product contains z? + 1 legal
states including the accepting final state. All other states are illegal, and stand for illegal runs of
the protocol. L e
Protocol Analysis with the BAN Logic: The input to BAN is a protocol specification and the
initial assumptions. At each step, formulas are attached to the protocol messages, and either a rule is
applied, or the logic must halt. If possible, the desired conclusion is reached.
The Definition of Moser’s unless operator The z in the last row indicates a special case. z
is true iff 3r : B;(p) unless B;(r) € F', where I is a conjunction of formulas containing the unless
OpPerator. L e e e e e e e

