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Abstract

Rewriting logic and the Maude language make possible
a new methodology in which formal modeling and analysis
can be used from the earliest phases of system design to un-
cover many errors and inconsistencies, and to reach high
assurance for critical components. Our methodology is ar-
ranged as a sequence of increasingly stronger methods, in-
cluding formal modeling, executable specification, model-
checking analysis, narrowing, and formal proof, some of
which can be used selectively according to the specific
needs of each application. The paper reports on a num-
ber of experiments and case studies applying this formal
methodology to active networks, communication protocols,
and security protocols.

1 Introduction

When a new software technology is first developed, no-
body has at first a complete understanding of that new tech-
nology. The traditional “build first, learn later” approach is
too wasteful and, by providing information too late, does
not allow any flexibility to optimize the design and im-
plementation effort. It can also lead to serious integration
problems, particularly when different teams are developing
different subsystems. All those difficulties apply to Active
Networks: it is a novel technology being developed by dif-
ferent teams, and the traditional engineering approaches to
deal with its architecture and the integration of subsystems
are insufficient. More generally, new methods are needed to
properly model and design the increasingly more sophisti-
cated communication systems now in the horizon. We pro-
pose that much can be gained from a paradigm shift that
uses formal modeling systematically and more aggressively
from the earliest phases of system design.

The work presented here focuses on applying a novel,

wide-spectrum executable formal specification language,
called Maude, to Active Networks and Communication Pro-
tocols. Our experience indicates that Maude can substan-
tially help in modeling, symbolically simulating, and ana-
lyzing the subsystems of Active Networks and other com-
munication systems, in documenting and ensuring consis-
tency of important parts of the architecture, and in formal-
izing and analyzing important safety-critical aspects. Part
of what makes Maude very well suited for these purposes is
its flexible wide-spectrum character: it can deal with very
early design phases such as architectures and high-level de-
signs, can be used to quickly develop executable prototypes,
and can also be used to generate code. There is also a wide
range of options on the kind of analyses that can be per-
formed. One can develop formal models of a system very
early, can debug formal specifications—which can be par-
tial and incomplete—by executing them, can do more ex-
haustive model-checking and symbolic simulation analyses,
or, for highly critical subsystems, can in fact do full formal
verification using our theorem proving tools. Often much
can be gained from the “lightweight” application of our
methods through executable specification; the full power of
our methods can be reserved for those aspects in which it
is more critically needed. The first thing to be gained even
from the simplest executable specification uses is a precise
documentation of a system’s design, that can be used as a
clear means of communication between teams, and also to
find many bugs and inconsistencies very early on.

The Maude interpreter [7] offers also some useful ad-
vantages. The first is efficient executability (1.3 million
rewrites per second on a Pentium II for some applications)
combined with the ability to trace in detail each execution
step. But executability is actually not enough. Since a
concurrent system can have many different behaviors, to
properly analyze the system it becomes important to ex-
plore not just the single execution provided by some de-
fault strategy, but many other executions. Under assump-



tions of finite-state or of termination it may even be pos-
sible to analyze all executions. The reflective capabilities
of rewriting logic and Maude [6] are very helpful in this
regard, because they allow user-defined execution strate-
gies that can be formally specified by rewrite rules at the
metalevel, including strategies such as breadth-first-search
that can exhaustively explore all the executions of a system
from a given initial state. This is very helpful in uncovering
security flaws under unforeseen attack scenarios or exam-
ining the behavior of newly designed algorithms. Maude
executables, its manual, and a collection of examples and
papers have been available on the web since January 1999
(http://maude.csl.sri.com).

In summary, using Maude to formally specify and an-
alyze communication systems offers the following advan-
tages:

� Early insertion of the formal method. In this way, max-
imum benefit can be obtained, since the design can be
corrected very early, before heavy implementation ef-
forts have been spent.

� Simplicity and intuitive appeal of the formalism. The
formalism involved, namely rewriting logic [29], is
very simple and it is very well suited for specifying
distributed systems, in which local concurrent transi-
tions can be specified as rewrite rules.

� Modeling Flexibility. Instead of building in a fixed
model of concurrency, rewriting logic allows great
flexibility to specify many such models [29, 32], in-
cluding both synchronous and asynchronous models of
communication and a wide range of concurrent object
systems.

� Executability. Rewriting logic specifications are exe-
cutable in a rewriting logic language such as Maude
[7]. This means that the formal model of the protocol
becomes an executable prototype, that can be directly
used for simulating, testing and debugging the specifi-
cation.

� Formal analysis and proof. Since the behavior of
a communications protocol is highly concurrent and
nondeterministic, a particular simulation run only ex-
hibits one among many possible behaviors. Therefore,
although direct execution can already reveal many er-
rors and inconsistencies, a much greater confidence in
the correctness of the design can be gained by formal
analysis techniques in which all possible behaviors—
up to termination, or up to a certain depth, or up to sat-
isfaction of a specific state condition—are analyzed in
detail. This can be done in Maude by means of exhaus-
tive execution strategies that achieve a form of “model

checking” analysis of the state space. In addition, for-
mal proofs of highly critical properties can also be car-
ried out using Maude’s theorem proving tools [4].

1.1 Applying Maude to Active Networks and
Communication Protocols

In collaboration with other teams working on active net-
works and on communication and security protocols we
have applied Maude to formally specify and analyze active
networks protocols and algorithms, security protocols, com-
posable communication services, and distributed software
architectures. Our experience so far is quite encouraging:

� In [14] we report joint work with group led by J.J.
Garcı́a-Luna at the Computer Communications Re-
search Group at University of California Santa Cruz
in which we used Maude very early in the design of a
new reliable broadcast protocol for ANs. In this work,
we have developed precise executable specifications of
the new protocol and, by analyzing it through execu-
tion and model-checking techniques, we have found
many deadlocks and inconsistencies, and have clari-
fied incomplete or unspecified assumptions about its
behavior.

� We have also applied Maude to the specification and
analysis of cryptographic protocols [10] and have
shown how our model-checking techniques can be
used to discover attacks.

� The positive experience with security protocols has led
to the adoption of Maude by J. Millen and G. Denker
as the basis for giving a formal semantics to their new
secure protocol specification language CAPSL and as
the meta-tool used to endow CAPSL with an execution
and formal analysis environment [13].

� The paper [44] reports joint work with with Y. Wang
and C. Gunter at the University of Pennsylvania in us-
ing Maude to formally specify and analyze a PLAN
[22] active network algorithm.

� In [11] we present an executable specification of
a general middleware architecture for composable
distributed communication services such as fault-
tolerance, security, and so on, that can be composed
and can be dynamically added to selected subsets of a
distributed communications system.

� In[7] (Appendix E) we present a substantial case study
showing how Maude can be used to execute very high
level software designs, namely architectural descrip-
tions. It focuses on a difficult case, namely, heteroge-
neous architectures illustrated by a command and con-
trol example featuring dataflow, message passing, and
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implicit invocation sub-architectures. Using Maude,
each of the different subarchitectures can not only be
executed, but they can also be interoperated in the ex-
ecution of the resulting overall system.

� As part of a project to represent the Wright architecture
description language [2] in Maude we have developed
a representation of CSP (“Communicating Sequential
Processes”, process algebra notation) [23] in Maude.
This is compatible with existing tools for analyzing
CSP specifications, complements them by providing a
rich execution environment and the ability to analyze
non-finite state specifications, and provides a means of
combining CSP specifications with other notations for
specifying concurrent systems.

1.2 Formal Methodology

The formal methodology underlying our approach can be
summarized by stating that a small amount of formal meth-
ods can go a long way. Approaches requiring full math-
ematical verification of a system can be too costly. Proof
efforts should be used judiciously and selectively, carefully
choosing those properties for which a very high level of as-
surance is needed. But there are many important benefits
that can be gained from “lighter” uses of formal methods,
without necessarily requiring a full-blown proof effort.

The general idea is to have a series of increasingly
stronger methods, to which a system specification is sub-
jected. Only after less costly and “lighter” methods have
been used, leading to a better understanding and to impor-
tant improvements and corrections of the original specifi-
cation, is it meaningful and worthwhile to invest effort on
“heavier” and costlier methods. Our approach is based on
the following, increasingly stronger methods:

1. Formal specification. This process results in a first for-
mal model of the system, in which many ambiguities
and hidden assumptions present in an informal specifi-
cation are clarified.

2. Execution of the specification. If the formal specifica-
tion is executable, it can be used directly for simulation
and debugging purposes, leading to increasingly better
versions of the specification.

3. Formal model-checking analysis. Errors in highly dis-
tributed and nondeterministic systems not revealed by
a particular execution can be found by more a sophis-
ticated model-checking analysis that considers all be-
haviors of a system from an initial state, up to some
level or condition. In this way, the specification can be
substantially hardened, and can even be formally veri-
fied if the system is finite-state.

4. Narrowing analysis. By using symbolic expressions
with logical variables, one can carry out a symbolic
model-checking analysis in which all behaviors not
from a single initial state, but from the possibly infi-
nite set of states described by a symbolic expression
are analyzed. Some of these analyses are already a
special type of formal proof.

5. Formal Proof. For highly critical properties it is also
possible to carry out a formal proof of correctness,
which can be assisted by formal tools such as those
in Maude’s formal environment [4].

Up to now, we have used methods 1–3 in the case studies
mentioned in Section 1.1, reaping important benefits from
this use. In the future we also plan to use methods 4 and 5
for selected purposes.

1.3 Outline of this Paper

Rewriting logic and Maude, including the formal model-
ing of distributed objects, are summarized in Section 2. To
make our methods and ideas concrete, we discuss in detail a
case study applying Maude to security protocols in Section
3. Other active network and communication protocol appli-
cations are discussed in Section 4. Section 5 presents some
concluding remarks and discusses future developments.

2 Rewriting Logic and Maude Basics

Rewriting logic is a very simple logic in which the state
space of a distributed system is formally specified as an al-
gebraic data type by means of an equational specification
consisting of a signature of types and operations

�
and a

collection of conditional equations � . The dynamics of
such a distributed system is then specified by rewrite rules
of the form �������
where

� � � � are
�

-terms, that describe the local, concurrent
transitions possible in the system, namely, when a part of
the distributed state fits the pattern

�
, then it can change to

a new local state fitting the pattern
� �

. Therefore, a rewrite
theory is a triple 	 � � � ��

� , with 	 � � � � an equational spec-
ification axiomatizing a system’s distributed state space,
and 
 a collection of rewrite rules axiomatizing the sys-
tem’s local transitions. Rewriting logic has proved to be a
general and flexible semantic framework for specifying a
wide variety of models of concurrency [29, 33], and in par-
ticular for specifying concurrent object systems [30].

Maude [5] is a multi-paradigm executable specification
language based on rewriting logic [29]. Maude integrates an
equational style of functional specification with an object-
oriented specification style for highly concurrent and non-
deterministic object systems. Maude modules are rewrite
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theories whose basic axioms are rewrite rules. The complex
concurrent computations of the system so axiomatized then
exactly correspond to proofs in the logic. Maude specifi-
cations can be efficiently executed using the Maude rewrite
engine [5], thus allowing their use for system prototyping
and the debugging of specifications.

We briefly summarize the syntax of Maude. There are
three types of modules:

� functional modules, that are equational theories used
to specify algebraic data types; they are declared with
the syntax fmod ... endfm,

� system modules, that are rewrite theories specifying
concurrent systems; they are declared with the syntax
mod ... endm, and

� object-oriented modules, that provide special syntax
to specify concurrent object-oriented systems but are
entirely reducible to system modules; they are declared
with the syntax omod ... endom.

All the above modules can be parameterized, and have an
initial model semantics. That is, they specify the initial
models of their corresponding theories, or, in the case of pa-
rameterized modules, the free extension of a model of the
parameter theory to a model of the body.

Immediately after the module’s keyword, the name of
the module is given. After this, a list of imported submod-
ules can be added. One can also declare sorts and subsorts
and operators. Operators are introduced with the op key-
word. They can have user-definable syntax, with under-
bars ‘ ’ marking the argument positions, and are declared
with the sorts of their arguments and the sort of their re-
sult. Some operators can have equational attributes, such as
assoc and comm, stating, for example, that the operator is
associative and commutative. Such attributes are then used
by the Maude engine to match terms modulo the declared
axioms.

There are three kinds of logical axioms, namely,
equations—introduced with the keywords eq, or, for con-
ditional equations, ceq—memberships—declaring that a
term has a certain sort and introduced with the keywords
mb and cmb—and rewrite rules—introduced with the key-
words rl and crl. Functional modules can only have
equations and memberships. System and object-oriented
modules can have any of the three kinds of axioms. The
mathematical variables in such axioms are declared with the
keywords var and vars.

In this paper, given that a concurrent object-oriented
style fits communication protocols very well, we will focus
on the specification of concurrent object-oriented systems.
In object-oriented Maude modules one can declare classes
and subclasses. Each class is declared with the syntax

class � | ��� : ��� , ����� , �
	 : ��	

where � is the name of the class, and for each ����
���� , �
�
is an attribute identifier, and ��� is the sort over which the
values of such an attribute identifier must range. Objects of
a class are then record-like structures of the form

< ����� | � � : � � , ����� , � 	 : � 	 >

with � the name of the object, �
� � ��������	 the current values
of its attributes, and with � � of sort � � for ��������� .
Objects can interact with each other in a variety of ways,
including the sending of messages. A message declaration

msg � 
"! � �����#! 	
�

Message

defines the name of the message and the sorts of its param-
eters. Often, the first parameter refers to the object the mes-
sage is sent to. The state of a concurrent object system is
called a configuration. Typically, a configuration is a mul-
tiset of objects and messages. The multiset union operator
for configurations is associative and commutative so that or-
der and parentheses do not matter, and so that rewriting is
multiset rewriting in Maude. It is denoted with empty syn-
tax (juxtaposition). The dynamic behavior of a concurrent
object system is then axiomatized by specifying each of its
basic concurrent transition patterns by a corresponding la-
beled rewrite rule. For instance,

rl [rule1] :
m1(O1,O3) < O1; C1 | a1: v1, a2: n >
=> < O1; C1 | a1: f(v1), a2: n+1 >

< O1.n; C2 | b: g(v1) > m2(O3)

expresses the result of an asynchronous reception of a mes-
sage type m1 by an object of class C1, namely, the message
is consumed, the object changes its a1 value to f(v1) and
has its a2 value increased by one, a new object of class
C2 with identity O1.n is created, and a message of type
m2 is sent to O3. In general, a rewrite rule may have sev-
eral objects in its lefthand side, describing a synchronization
or multi-party interaction between several objects. How-
ever, in most of the rules in the communication protocol
examples that we shall discuss the communication will be
asynchronous and the lefthand sides will consist of either
an object and a message, or just an object. By convention,
attributes whose value does not change and does not affect
the next state of other attributes need not be mentioned in a
rule.

3 A Cryptographic Protocol Analysis Appli-
cation

Cryptographic protocols for key exchange and authen-
tication are the basis for network security. These protocols
are often described in a message-list style, i.e., the sequence
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of messages to be exchanged between the communicating
agents is defined as a finite transition system. Though many
of the security protocols only involve a very restricted num-
ber of messages, it is surprisingly difficult to get the pro-
tocols correct. Even under the assumption of “perfect cryp-
tography”, i.e., an encrypted message can only be decrypted
with the proper key, it has been shown that protocols are
vulnerable to message modification attacks [16, 25]. An
intruder can overhear or intercept network communications
and can manipulate ongoing communications by faked mes-
sages. The highly concurrent nature of cryptographic pro-
tocols is responsible for the complexity of proving a cryp-
tographic protocol secure with respect to message secrecy
or correct with respect to authentication. This suggests that
a formal analysis methodology supporting several analysis
techniques, such as simulation, model checking and theo-
rem proving, could be of great value for the design of cryp-
tographic protocols.

We have applied Maude to the specification and analy-
sis of several cryptographic protocols. We illustrate our ap-
proach with the help of the Needham-Schroeder Public-Key
(NSPK) protocol [34]. In Section 3.1 we illustrate the natu-
ralness of an object-oriented NSPK specification in Maude.
The level of specification is detailed enough to capture es-
sential operational aspects and to allow rapid prototyping
and debugging by directly executing the specifications. In
this sense, it can be compared to protocol specifications
based on process algebras, CSP, the � -calculus, UNITY,
or Petri nets. However, unlike those approaches, rewriting
logic does not prescribe a fixed model of concurrency. This
translates into additional naturalness and ease of represen-
tation.

In order to successfully detect protocol vulnerabilities it
is necessary to build not only an abstract model of the pro-
tocol but also formal models of the malicious environment,
and to define situations in which security goals are violated.
It is the combination of the various models of the protocol,
the attacker, and the attack that is amenable to formal analy-
sis techniques. In Section 3.2 we describe our formalization
of the malicious environment. A breadth-first search strat-
egy and the attack are presented in Section 3.3.

The Maude interpreter allows to efficiently execute the
protocol specification. This way we can detect inconsisten-
cies and flaws. But this is not enough to examine all possi-
ble behaviors. Our systematic search for an attack using a
breadth-first strategy illustrates a form of model checking in
which we explore all the possible behaviors beginning with
a given state using the reflective capabilities of Maude. We
explain our strategies in more detail in Section 3.3.

3.1 Specifying and Executing the NSPK Protocol

The NSPK Protocol [34] is a cryptographic protocol for
the authentication of pairs of agents in a distributed com-
puter system. For instance, agents want to be assured of
each other’s identity before they exchange security-critical
data. Thus, an intruder should not be allowed to imperson-
ate another agent. For this purpose, initiator and respon-
der of a communication mutually authenticate each other.
NSPK uses public key cryptography, i.e., each agent pos-
sesses a public key which can be accessed by all agents and
a secret key, which is the inverse of the public key. More-
over, nonces are used in the protocol. Nonces are freshly
generated, random numbers to be used in a single run of
the protocol. It is assumed that these numbers are generated
in such a way that they cannot be guessed by other agents.
A textbook-style simplified description of NSPK as for in-
stance given in [25] is:

Message 1
� ���


����	� � ��
���
������
Message 2

� � � 
����	� � ��� 
���
������
Message 3

� ���

���� � 
���
������

In this protocol
�

tries to establish a communication
with

�
. Thus,

�
plays the role of the initiator and

�
re-

acts in the responder role.
�

encrypts his nonce � � with
the public key of

�
and sends it along with his identity to�

. Now
�

is in a waiting status.
�

decrypts the message,
creates a new nonce and sends back to

�
the concatenation

of both nonces encrypted with the public key of
�

. After
this,

�
is waiting for the answer from

�
.
�

can decrypt the
message sent by

�
. In case the contents of the message is

the concatenation of his own nonce ��� plus another nonce,�
can be assured that the message was sent by

�
, because�

is the only agent who can decrypt the message sent by
�

containing the nonce � � . Thus,
�

establishes a communi-
cation with

�
. Moreover, to acknowledge to

�
the receipt

of
�

’s nonce,
�

separates it from the message and sends it
back. If

�
receives this message from

�
, he can be assured

that he is talking to
�

and, therefore, of having established
a communication with

�
.

As one can see, there is a lot of implicit knowledge in the
textbook-style specification of the NSPK Protocol. More-
over, there are open questions concerning how agents be-
have if they receive a message which does not have the ex-
pected contents, e.g., if

�
receives a message from

�
which

does not contain his nonce.
We make this implicit knowledge explicit and clarify

fuzzy parts of the description by formalizing the protocol
in rewriting logic. In addition to the protocol requirements
given above, we provide a Maude specification which al-
lows multiple sessions for an agent. Therefore, an agent
may simultaneously participate in several runs of the proto-
col, and may simultaneously play different roles (e.g., ini-
tiator or responder) in different runs.
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We need to provide some application-specific data types
such as fields, nonces, keys, etc. These types are equation-
ally specifiable with the help of Maude’s functional mod-
ules.

fmod DATATYPES is
sorts Key Field FieldSet Nonce Principal

Run Role EstabComm .
subsort Nonce Principal Key < Field .
subsort Field < FieldSet .
op keypair : Key Key -> Bool [comm] .
op mtfield : -> Field .
op ped : Key Field -> Field .
op n : Principal Nat -> Nonce .
op cat : Nonce Nonce -> Field .
op (_,_,_) : Nonce Principal Nonce -> Run .
op (_,_,_,_) : Role Nonce Principal Nonce

-> EstabComm .
ops i r : -> Role .
vars sk pk : Key . var f : Field .
ceq ped(sk,ped(pk,f)) = f

if keypair(sk,pk) .
...

In the sort declaration, application-specific data types
such as keys, fields, nonces, principals (i.e., identities of
agents), etc., are defined. Sorts may be ordered in an in-
clusion hierarchy by defining subsort relationships. For in-
stance, nonces, principals, and keys are subsorts of FIELD.
The predicate keypair is true for pairs of secret and public
keys of one agent. ped1 is the operation to encrypt and de-
crypt fields. Agents send data of type Field in a message.
mtfield is the empty constant of sort Field. n is a func-
tion to generate fresh, cryptographic nonces. To make the-
ses nonces unique, we implemented this function by using
the address of an agent and a number. Concatenation of two
nonces is denoted with cat. The conditional equation de-
fines the behavior of ped. In the complete specification, ap-
propriate equations for all operations are provided. We use
the sort Run to store information about different sessions
of an agent. An agent may concurrently communicate with
several other agents by establishing several runs. The first
argument of a run is the nonce which is newly created by the
agent for the session. The second and third arguments are
the identity and nonce of the communication partner. We
assume that nonces are always freshly generated and, there-
fore, can be used to uniquely identify a run. EstabComm

will be used to store information about successfully estab-
lished communications, in either of the two roles, initiator
or responder. For each established communication an agent
stores his own nonce, and for the communication partner it
stores the identity and the nonce.

We define an object class Agent in Maude. Agents will
model the legal participants of a protocol. Later on we

1“public key encryption and decryption” (borrowed from CAPSL).
This operator behaves like RSA encryption.

will also define a class Intruder. Agents have a secret
key, two attributes storing information about possible runs
(Run), one for each possible role, an attribute to store infor-
mation about established communications, an attribute for
desired communications, i.e., a set of object identifiers to
identify the agents they want to communicate with, and a
counter which will be used to generate nonces.

class Agent | e_com: EstabCom, sec_key: Key,
role_i: Run, role_r: Run,
d_com: FieldSet, cnt: Nat .

Moreover, we need one message to send data between
agents. The first two parameters of this message contain
the identities of the sender and receiver agents. The third
argument is the content to be sent, i.e., an encrypted field.

msg from_to_send_ : Principal Principal
Field -> Message .

The Maude specification of NSPK consists of six rules. The
first rule BeginRun defines the start of a protocol run. The
second rule Message1Rec defines the behavior of a respon-
der agent to a request of starting a protocol session.

vars A B P : Principal . vars RI RR : Run .
vars NI : Nonce . var F : Field .
var S : FieldSet .
vars SKB PKB SKA PKA : Key .
var C : EstabCom .

rl [BeginRun] :
< A; Agent | role_i: RI, d_com: B U S,

cnt: J >
=>
< A; Agent | role_i: RI U (n(A,J),B,mtfield),

d_com: S, cnt: J + 1 >
from(A)to(B)send(ped(pk(B),n(A,J))) .

If an agent A wants to talk to at least one other agent,
say B (U is the union operator for field sets), then he starts
a protocol run by sending to this agent his address A and a
newly created nonce n(A,J). He deletes the agent B from
his set of desired communication partners and keeps track
of the information of the protocol run in attribute role i.
Additionally, the agent encrypts his nonce n(A,J) with the
public key of his communication partner2.

crl [Message1Rec] :
< B; Agent | sec_key: SKB, role_i: RI,

role_r: RR, cnt: J >
from(A)to(B)send(ped(PKB,F))
=> < B; Agent | role_r: RR U (n(B,J),A,F),

cnt: J + 1 >
from(B)to(A)send(ped(pk(A),cat(F,n(B,J))))
if keypair(SKB,PKB) and not(F in RR) .

2pk(B) is understood as a function which delivers the public key of
agent B. In our implementation we used a table of public keys which is
accessible by all agents.
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If an agent gets a request for a protocol session, he stores
the information in attribute role r and sends back the en-
crypted concatenation of nonces, provided he could decrypt
the message. The second part of the condition not(F in

RR) assures that the nonce is not in use in a responder ses-
sion of agent B. As already mentioned, by default conven-
tion one only needs to mention in the righthand side of the
rule those attributes which change their value.

The next two rules deal with the receipt of Message 2.
In case the initiator gets back his own nonce plus the new
nonce of the other agent, he establishes the communication
and triggers the last message, i.e., sending Message 3. This
behavior is specified in rule Message2RecCorrect. Oth-
erwise, the initiator refuses to establish the communication,
does not send back any message and just stops the current
protocol run (Message2RecIncorrect).

crl [Message2RecCorrect] :
< A; Agent | sec_key: SKA, e_com: C

role_i: RI U (NI,P,mtfield) >
from(B)to(A)send(ped(PKA,F))
=>
< A; Agent | role_i: RI,

e_com: C U (i,NI,B,rest(F)) >
from(A)to(B)send(ped(pk(B),rest(F)))
if keypair(SKA,PKA)

and (B == P) and NI == first(F) .

crl [Message2RecIncorrect] :
< A; Agent | sec_key: SKA,

role_i: RI U (NI,P,mtfield) >
from(B)to(A)send(ped(PKA,F))
=>
< A; Agent | role_i: RI >
if keypair(SKA, PKA) and NI == first(F)

and B =/= P .

first and rest are operations which are defined on
fields. Applied to a concatenation of nonces they deliver
the first or last one, respectively. Analogously, there are
two rules for the responder, covering the cases for the cor-
rect and the incorrect receipt of Message 3 of the NSPK
Protocol. Because of space limitations we refrain from pre-
senting these rules. They are very similar to the last two
rules above.

A slightly extended version of the specification pre-
sented above has been executed on the Maude rewrite en-
gine [5]. The given initial configuration involved two
agents Alice and Bob, where Alice wants to talk to
Bob. Using the default rewriting strategy we already
found an unexpected behavior. Analyzing the rewrite
path showed that the problem was connected with the
ability of having several runs per agent. The condi-
tion of the rule Message1Rec was not sufficient. If
the responder sends Message 2 of the NSPK Proto-
col, i.e., from(Bob)to(Alice)send(ped(pk(Alice),

cat(NI,n(Bob,J)))), the rule Message2RecCorrect

should be applied to indicate the situation where Alice

already started a run with Bob and she waits for his an-
swer. But there is also a matching for another rule, namely
Message1Rec. Thus, Alice sets up a new responder ses-
sion with Bob as initiator without recognizing that there is
another run in which the nonce NI is already used. This
error clarifies a fact which was not clear from the informal
specification: in this protocol nonces play the role of ses-
sion identifiers. In order to reflect this in the specification
we have to change the condition for rule Message1Rec.
It needs to be checked whether the first nonce in the mes-
sage is already used in another session (not(first(F) in

RI)). This example illustrates the usefulness of executing
specifications in the Maude engine for validation purposes.

3.2 The Intruder

The intruder is part of the system and, therefore, may
participate in normal protocol runs. Moreover, an intruder
may observe, intercept or fake messages. Introducing a fake
message into the system either means replaying a previ-
ously observed or intercepted message, or creating a new
message using the nonces known by the intruder. In Maude
we can give a comprehensive specification of a general in-
truder who is able to perform all the mentioned actions.

An intruder has usually all attributes an agent has, plus
additional ones to store the set of nonces he knows and all
the messages he observed or intercepted.

class Intruder |
e_com: EstabCom, sec_key: Key,
ncs: FieldSet, msgs: FieldSet,
agents: FieldSet, role_i: Run,
role_r: Run, d_com: Field, cnt: Nat.

Moreover, since the intruder may behave as a normal
agent, all agent rules are redefined in such a way that, when-
ever an intruder creates or receives a nonce, he stores it in
the attribute ncs. Similarly, he remembers all seen agent
identities in agents and all seen messages in msgs. We
do not give all these redefined rules. They are very sim-
ilar to the normal agent rules, except for being extended,
so that the intruder can remember nonces and agent identi-
ties. Instead we describe the rules specifying the intrusion
behavior.

crl [IntruderInterceptMessage] :
< I; Intruder | sec_key: SKI, ncs: N,

msgs: M, agents: S >
from(B)to(A)send(ped(KEY,F))
=>
if keypair(KEY,SKI)
then < I; Intruder | ncs: N U F,

agents: S U A U B >
else < I; Intruder | msgs: M U ped(KEY,F),

agents: S U A U B >
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fi
if A =/= I and B =/= I .

If the intruder intercepts a message that is encoded with
a key he has, then he can decrypt it and store the nonce in
his list of nonces. A similar rule for overhearing messages
only differs from the interception rule in the way the mes-
sages remain in the configuration. The following two rules
express the intruder’s ability to fake messages.

crl [IntruderReplayMessage] :
< I; Intruder | msgs: M U MES,

agents: S U A U B >
=> < I; Intruder | msgs: M U MES >

from(B)to(A)send(M)
if MES =/= mtfield and A =/= I .

crl [IntruderFakeMessage] :
< I; Intruder | ncs: N U F,

agents: S U A U B >
=> < I; Intruder | ncs: N U F >

from(A)to(B)send(ped(pk(B),F))
if B =/= I .

3.3 Finding an Attack: a Breadth-First-Search
Strategy

To prove the correctness of the protocol one has to prove:
(1) the authentication of the responder, i.e., that an initia-
tor only establishes a communication with another agent
if the agent took part in the protocol run, and (2) the au-
thentication of the initiator. Concerning item (2) there is a
well-known attack to the NSPK Protocol proposed by Gavin
Lowe [25]. This attack is newer and more subtle than the
one proposed by Denning and Sacco in [16] which allows
an intruder to replay old, compromised public keys. The at-
tacker takes part in two sessions and exchanges information
between them ( � 	 � � stands for the intruder masquerading
as agent

�
).

Message 1
� �

� 
����	� � ��
���
���� �
Message 1’ � 	 � � ���


����	� � � 
�� 
������
Message 2’

� � � 
�� �	� � �	� 
 ��
���������� intercepted
���

Message 2 �
� � 
����	� � �	� 
 ��
������

Message 3
� �

� 
����	� 
 ��
���� �
Message 3’ � 	 � � ���


����	� 
���
������

At the end of this attack
�

believes that he talks to
�

,
i.e., the authentication of the initiator fails.

We can take advantage of the Maude engine to analyze
the enriched specification “NSPK � Intruder”. For this pur-
pose we need to specify an appropriate analyzing strategy.
Thanks to the reflective nature of rewriting logic, it is pos-
sible to define a very wide variety of rewriting strategies
using rewrite rules at the metalevel, and to then execute a
specification with a given strategy in Maude. For example,

one can program a breadth-first-search strategy to exhaus-
tively determine all possible behaviors from a given initial
state using the rewrite rules of a Maude specification. In
this way we can either validate the specification and detect
errors, or do formal reasoning about the specification. To
analyze behaviors starting from a symbolic description of a
set of states, the technique of narrowing can instead be used
(see Section 5).

For the “NSPK+Intruder” specification we implemented
a breadth-first-search strategy (brFS) which searches for
possible attacks. To efficiently implement this strategy, we
have chosen to use a bounded depth-first-search strategy
(bDFS) which is recursively called with increasing bounds
as long as no attack is discovered. A breadth-first-search
strategy which starts at a given depth and iteratively calls a
depth-first search with increased maximum depth is given
as follows:

var StartDepth : MachineInt .
op brFS :

Module Term QidList QidSet MachineInt
-> Strategy .

op bDFS :
Module Term QidList QidSet MachineInt
-> Strategy .

eq brFS(M,T,Labels,StopLabels,StartDepth)
= if bDFS(M,T,Labels,StopLabels,StartDepth)

== stop(0, emptyPath)
then bDFS(

M,T,Labels,StopLabels,StartDepth+1)
else bDFS(

M,T,Labels,StopLabels,StartDepth)
fi .

Both strategies have five parameters: a module with the
specification, a term which is the initial configuration, a
list of labels which should be applied during the compu-
tation (i.e., all rewrite labels in the specification), a set of
rewrite labels which define attack situations and for which
the search stops, and a depth, which in the case of the
breadth-first-search strategy is the depth to start with, and
in the case of the bounded depth-first-search strategy is the
maximum depth.

For NSPK we defined one stop rule: a successful attack
is determined by the fact that nonces have been compro-
mised, i.e., an intruder possesses two nonces with which an-
other agent established a communication. The conditions of
the following rule assure that it can only be applied in case
an attack happened. The intruder remembers the successful
attack by storing the information in the set of established
communications.

crl [IntruderRecognizeAttack] :
< I; Intruder | e_com: EC, role_i: RI,

role_r: RR,
ncs: N U N1 U N2 >

< A; Agent | e_com: EC’ U (ROLE,N1,B,N2) >
=>
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if ROLE == i
then

< I; Intruder | e_com: EC U (r,N2,A,N1) >
< A; Agent | e_com: EC’ U (ROLE,N1,B,N2) >

else
< I; Intruder | e_com: EC U (i,N2,A,N1) >
< A; Agent | e_com: EC’ U (ROLE,N1,B,N2) >

fi
if not((r,N2,A,N1) in EC)

and not((i,N2,A,N1) in EC)
and not(N1 in RR)
and not(N1 in RI)
and not(N2 in RR)
and not(N2 in RI) and B =/= I .

The intuitive idea is that, starting in the initial config-
uration, for a rewrite step all rules in the given list of
rules are tried until a rewrite is found. In case there is
no path containing the rewrite label in the given set, the
empty path is returned; otherwise, the first such path found
in the search is returned. A rewrite step (step) consists
of a rewrite label, a number indicating which substitu-
tion for the rule with that label was used, and a term that
is precisely the righthand side replacement for the given
label, rule, and substitution. Thus, a path of the form
path(T1, step(L1,N1,T2), step(L2,N2,T3)) rep-
resents a computation sequence which starts in configura-
tion T1 and in this configuration the rule with label L1 and
matching substitution number N1 has been applied and re-
sulted in configuration T2, from which rule L2 could be ap-
plied with the N2th matching substitution resulting in con-
figuration T3.

The bounded depth-search-first algorithm continues
building the path, provided that none of the rules in the set
of stop rules is applied, nor the maximum depth is reached.
For each new step in the path all rewrite rules are tried.
Whenever a path is closed, i.e., whenever no other rewrite
rules are applicable, or the maximum depth is reached, the
algorithm backtracks. Backtracking means that first the
same rule as in the previous step is tested with the next
matching substitution number. If this fails, then the next
rule in the list of applicable rules is tried. If this also fails,
another backtracking step is taken until no more rules can be
applied from the initial configuration. If any of the previous
two attempts is successful, the bounded depth-first-search
algorithm for the new, extended path is called. Running this
strategy delivers the attack given in [25].

Notice that our protocol specification is an infinite state
specification. We made no restrictions to fit the specifica-
tion into a finite state tool. This is one of the strengths of the
Maude approach. Moreover, the specification is amenable
to further forms of analysis such as narrowing analysis and
theorem proving. The NSPK example has been chosen for
illustrative purposes to emphasize the wide-spectrum mod-
eling and analysis technique of rewriting logic and Maude.

4 Other Applications

4.1 A Reliable Broadcast Protocol

In [14] we report on an ongoing case study in which
a new reliable broadcasting protocol (RBP) [20] currently
under development at the University of California at Santa
Cruz (UCSC) has been formally specified and analyzed,
leading to many corrections and improvements to the origi-
nal design. Traditionally, the only means to document such
protocol designs is pseudo-code. Since this is not suitable
for execution or formal analysis, it is only in a post-facto
way, after the protocol has been implemented, that flaws
and inconsistencies are usually discovered. The process of
formally specifying the protocol, and of symbolically ex-
ecuting and formally analyzing the resulting specification,
has revealed many bugs and inconsistencies very early in
the design process, before the protocol was implemented.

RBP performs reliable broadcasting of information in
networks with dynamic topology. Reliable broadcasting is
not trivial when the topology of the network can change due
to failure and mobility. The aim is to ensure that all nodes
that satisfy certain connectedness criteria receive the infor-
mation within a finite time, and that the source is notified
about it. The protocol should furthermore incur as low la-
tency and as few messages as possible.

The full Maude specification tackles the cases of send-
ing and receiving messages and acknowledgments, as well
as link deletion and link addition, and can be found in [15].
A major advantage of rewriting logic specifications is that
they can be validated immediately by executing test cases to
provide quick feedback on the specification. This prototyp-
ing possibility comes for free. We used this feature every
time the specification was modified, and often encountered
errors quite easily on quite simple test examples (such as a
network of three nodes). In this validation effort, we exe-
cuted the test cases using Maude’s default interpreter, which
simulated an arbitrary run of the protocol for a given initial
state of a network. The validation effort helped eliminate
errors of syntax and of thought; furthermore, the built-in
Maude facilities for tracing an execution were useful for
discovering where the error occurred. This validation and
correction cycle led to substantial improvements on, and a
clear formalization of, the basic ideas of the starting infor-
mal protocol.

To substantially increase our confidence in the specifi-
cation before any costly attempt at a formal proof of cor-
rectness, the specification was subjected to close formal
analysis using the meta-programming features of Maude to
explore all states and behaviors that can nondeterministi-
cally be reached from an initial state. Since the specifi-
cation should be terminating, one could apply a strategy
that explores all possible rewrite paths from some given
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initial state. In particular, we wrote a strategy for finding
every non-rewritable state reachable from the initial state.
For non-terminating systems, this setting can be modified
to give, e.g., every state which is reachable in less than 50
one-step rewrites from some initial state.

We experimented with different, increasingly complex,
versions of the protocol. For example, executing the speci-
fication using an exhaustive strategy on a clique with three
nodes did not produce the hoped-for result, namely a single-
ton set of irreducible states. Instead, the set of irreducible
configurations reachable from the clique of three nodes in-
cluded a term which indicated a deadlock before the ex-
pected end of one round of the protocol. A simple analysis
of the output explained the error.

Using Maude’s meta-programming features, the user
may himself define the rewrite strategies, thereby analyz-
ing the specification in various ways. Although we only
needed the quite straightforward exploratory analysis to in-
validate our first version, this capability is very useful for
analyzing various executions and extracting the relevant in-
formation from these automatically. Using the information
from the exploratory analysis, the group came up with a new
improved version of the protocol.

The effort of formally specifying RBP for dynamic net-
works using Maude brought to light several weaknesses of
the original pseudocode [20]. However, the analysis is not
yet finished. For the moment, the following problems were
identified and solved (for details see [15]):

1. As described above we could eliminate a deadlock sit-
uation in the given protocol.

2. The pseudocode on which we based our first specifica-
tion of the dynamic RBP was incomplete. In several
places it was not clear what are the assumptions about
node attributes.

3. A description of initial state was missing, and so was
the termination condition for the protocol.

4. Moreover, the original pseudocode was incomplete
with respect to how attributes are updated.

5. Some cases were left out in the original specification.

6. Other essential errors were detected using the strate-
gies. For example, we tested a scenario with three
nodes � ��� , and � where � has the neighbors � and � ,
� is a source nodes which sends a message and the
link between � and � breaks down. Running the proto-
col with this initial configuration using an exhaustive
search strategy delivers three different states of which
one is a correct state, the second one reveals an unde-
sired behavior and the third one showed an error in the
original pseudocode which has been corrected in the
current version.

4.2 Cryptographic Protocol Analysis

As mentioned earlier in this paper, we applied Maude
to the specification and analysis of cryptographic proto-
cols and showed how our model-checking techniques can
be used to discover attacks.

The TIPE DARPA project focuses on the development
of tools for cryptographic protocol analysis. The approach
taken is to provide a single common protocol specification
language that could be used as the input format for any for-
mal analysis. CAPSL (Common Authentication Protocol
Specification Language) [12] has been designed as such a
language. It is a modern, easy-to-use specification language
for the early specification phase. The main syntactic feature
of CAPSL is a message-list style protocol description as can
be found in most textbooks published. It is translated to CIL
[13], an intermediate language, that expresses the protocol
as transition rules in a term rewriting formalism similar to
the formalism we used in our experiments with NSPK. The
CAPSL Intermediate Language (CIL) serves two purposes:
to help define the semantics of CAPSL, and to act as an in-
terface through which protocols specified in CAPSL can be
analyzed using a variety of tools. TIPE aims at designing
and implementing an integrated protocol environment for
the specification and analysis of cryptographic protocols.

Maude has been used in the TIPE project for several pur-
poses. First, the translation from CAPSL to CIL has been
carried out in Maude. This way, the formal semantics of
CAPSL via its translation to CIL is precisely specified. In
the current translator a pre-compiled and type-checked ab-
stract syntax tree is passed to the Maude implementation
which determines the corresponding CIL specification. The
translator transforms the message list into a set of multiset
rewrite rules.

Second, Maude is used as a model-checking tool in the
integrated protocol environment and tool-kit. The CIL out-
put of a cryptographic protocol is translated into an exe-
cutable Maude specification. A metalevel search strategy
imports the Maude protocol specification and provides the
user with a predefined breadth-first strategy. Search sce-
narios are automatically derived from the corresponding
CAPSL environment specification. The translation from
CIL to executable Maude specifications is performed in
Maude itself.

4.3 Specifying and Analyzing a PLAN Algorithm

PLAN [22] is a language to program active networks de-
veloped at the University of Pennsylvania. In collabora-
tion with Yaw Wang and Carl Gunter at Penn, we have used
Maude to formally specify and analyze a PLAN active net-
work algorithm in which active packets scout the nodes of
an active network from a source to a destination to find an
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optimal route relative to a given metric [44]. One inter-
esting aspect of this case study is that it is not clear how
to apply traditional network models, such as those used in
model checkers, to specify active networks in which active
packets carry code that is executed in different nodes and
can modify the network. In this regard, the great modeling
flexibility of Maude has allowed us to specify the PLAN al-
gorithm in a very direct and simple way that is furthermore
executable.

The algorithm has three phases. When a user wants
to send a message from a source to a destination, “scout”
packets are first sent to try to find an optimal route accord-
ing to a predefined metric. Then, when a route is found, a
flow packet is sent to set up the route. Finally, the desired
data packets are sent. Each of these phases is formalized
in Maude by appropriate rewrite rules, so that the entire al-
gorithm is specified as a rewrite theory. Since packets and
nodes only have local information, it is possible for some
data packets to arrive at the destination while some scout
packets are still in transit. Also, the route may change while
data packets are in transit. Therefore, it is not obvious that
the algorithm delivers messages correctly.

The main limitation of testing the algorithm by execut-
ing it is that only some behaviors among many are thus
explored, while errors may still be lurking in unexplored
behaviors. Since the algorithm always terminates, using
Maude it is possible to explore all behaviors from a given
initial state to check their correctness. This can be done
by specifying a suitable strategy at the metalevel. Such a
strategy takes the Maude formal specification of the PLAN
algorithm and an initial state of the network as inputs, and
then explores all the possible behaviors until termination,
checking the correct delivery of the messages.

By performing such an analysis we have gained greater
confidence of the correct behavior of the algorithm. Of
course, even greater confidence could be gained by a nar-
rowing analysis, beginning with a symbolically described
family of initial states, or with formal proofs. However, our
methodology suggests using those heavier methods only af-
ter other errors have already been eliminated by a model
checking analysis of the kind described above. Another
promising direction would be using Maude to give a for-
mal operational semantics to PLAN. Then, one could use
such a formal semantics to analyze and prove properties of
PLAN algorithms, that would automatically become formal
objects within Maude’s logic.

4.4 Composable Distributed Services

In practice NSPK and other protocols provide ser-
vices designed to ensure desired communication semantics
or other properties of the runtime infrastructure. These
protocols are not—as it might appear from the usual

discussions—the main objectives of the agents involved. It
is important to be able to specify and implement services
and protocols in a modular way, so that they can be in-
stalled dynamically and can be composed in many ways
to meet complex and changing requirements in open dis-
tributed systems. It is also important to harden a system
against a variety of threats. If we have protocols protecting
against several such threats, how can we modularly com-
bine them to protect the system against a combined attack?

Composition of system properties is in general a nontriv-
ial matter (c.f. [36, 38, 39]) and a modular approach seems
particularly promising in this regard. Formally we want op-
erations that compose two or more protocols to form a new
protocol, and that install a protocol on a system to obtain
a new system. These operations should work on specifica-
tions, code, or running systems. Let ��� ��� denote the instal-
lation of protocol � on system � . Two key questions are: if
� ensures property � for � under what conditions does �
ensure property � for �

�
� ��� where �

�
is another protocol; if

� ensures property � for � and �
�

ensures property �
�

for
� under what conditions does � ensure �

�
for �

�
� ��� .

Subclassing is one way to obtain some degree of mod-
ularity. An alternative is to use reflection to achieve a
highly expressive, modular, dynamic formalism. In partic-
ular, reflection can be used as a mechanism for installing
protocols by composing a protocol specified as a metalevel
activity and a system specified at the base level. Two
reflective architectures have been developed for the actor
model and used to provide a basis for defining and reason-
ing about dynamic adaptable distributed systems: the onion
skin model [1, 3] aims at layered specification of interac-
tion policies for components of distributed systems and al-
lows different protocols for security, reliability, quality of
service and other policies to be composed and modified dy-
namically as the system runs by adding new metalevels; the
two level actor model [41] focuses on horizontal composi-
tion of system-wide services provided by meta-actors that
manage resources and control runtime properties of base
level application components in an open-distributed sys-
tem. Services are composed by concurrent operation of ser-
vice meta-actors and interaction via message passing. This
model has been used to specify and reason about services
such as migration and distributed garbage collection [43],
and QoS based admission control in a multi-media sys-
tem [42] .

Such reflective models can be naturally represented in
Maude. In [11] we present an executable specification of a
general middleware architecture for composable distributed
communication services based on the onion skin model.
We also explain how the compositionality of the resulting
middleware can be exploited in proving formal properties
about the composed system consisting of the middleware
services and given applications. The formal model is based
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on the rewriting logic axiomatization of concurrent objects
specialized to distributed asynchronous objects in the spirit
of the actor model. It provides a representation of meta
objects and an encapsulation of layers of meta-objects in
towers. We show how a system of concurrent objects com-
municating through asynchronous message passing can be
naturally transformed into a behaviorally equivalent system
of meta-object towers of height one. Composition of meta-
objects is very simply expressed by stacking meta-objects
on top of each other, with the application meta-object at
the bottom of the stack. The behavior of meta-object com-
positions is then formalized by general rewrite rules gov-
erning the communication between the different levels of a
stack of meta-objects, as well as by the specific additional
rules that govern the behavior of meta-objects providing a
particular service. Using the initial semantics of Maude it
is now easy to formalize notions such as � ensures prop-
erty � for � (written ��� � � � ��� ��� � ). We show how the
formal properties expressing different service guarantees—
relative to different hostile environments—can themselves
also be stated in a parametric way, so that one can com-
bine in a systematic way the properties of different services
when composing them, in order to study whether they hold
or not for a given composition of services. We show how to
model composable communication services as distributed
meta-objects and illustrate the basic ideas with a case study
treating fault-tolerance, encryption and authentication ser-
vices and their composition. Formal specification of service
guarantees and combination of guarantees for compositions
of these services are also discussed.

4.5 Software Architecture Interoperation

To illustrate the flexibility and ease with which differ-
ent semantic models can be specified and interoperated in
rewriting logic we have carried out a substantial case study
as part of the DARPA EDCS initiative. The study, en-
titled “A Software Architecture Interoperation Example,”
is documented as Appendix E of [7]. In this study we
show how Maude can be used to execute very high level
software designs, namely architectural descriptions. It fo-
cuses on a difficult case, namely, heterogeneous architec-
tures illustrated by a command and control example fea-
turing dataflow, message passing, and implicit invocation
sub-architectures. This is accomplished by first defining a
general model for objects that can interact with each other
in a variety of synchronous and asynchronous ways. Then
we define a general dataflow model as a semantic model for
a pipes and filters interaction model as well as a semantic
model for event-based implicit invocation. We then give an
executable high-level specification of a command and con-
trol system in which several of these models are combined
and interoperated.

To demonstrate the use of Maude to give formal exe-
cutable and analyzable semantics to software engineering
notations, a subset of the Wright architecture description
language [2] has been implemented in Maude. This pro-
vides an execution environment for Wright specifications as
well as the basis for defining additional analysis tools using
the reflective capabilities of Maude.

As part of the mapping of Wright to Maude, a mapping
of CSP to Maude has been designed and implemented. This
mapping is based on concurrent distributed objects (actors),
providing as a side benefit a truly concurrent semantics for
CSP. The specification of CSP and its machine readable
syntax as given in [37] was followed in order to have an in-
dependently useful tool for CSP that can interoperate with
existing CSP tools and to support interoperation with other
notations formalized in Maude such as the CAPSL language
for specification of security protocols. This representation
of CSP in Maude also provides the starting point for inter-
operation of CSP specifications and those based on other
communication models such as the asynchronous commu-
nication of actors, also implemented in Maude.

5 Conclusions and Future Developments

We have presented our experience so far in applying a
new formal methodology based on rewriting logic and sup-
ported by the Maude language to active networks, commu-
nication protocols, and security protocols. The case studies
are encouraging and suggest that this methodology, when
inserted early in the design process, can uncover many de-
sign errors and inconsistencies, can yield unambiguous and
executable formal models of the systems being designed,
and can be used to reach high levels of assurance about
communication systems through a combined series of in-
creasingly stronger techniques.

The case studies discussed in the paper illustrate the use
of the techniques 1–3 in the formal methodology of Section
1.2. In the near future we plan to explore more systemati-
cally the application of techniques 4–5, namely, the use of
narrowing analysis, and of formal proof based on a suitable
combination of rewriting and temporal logic. We discuss in
more detail each of these techniques in what follows.

5.1 Narrowing

Our systematic search for an attack using a breadth-first
strategy and several applications discussed in Section 4 have
illustrated a form of model checking in which we explore all
the possible behaviors beginning with a given state using the
reflective capabilities of Maude. The fact that state-building
operators—such as the multiset union of configurations—
obey structural axioms like associativity and commutativity
allows the rewriting to take place modulo such axioms. This
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means that we have a single representation for the many
different expressions describing such a state, and therefore a
much smaller search space than if rewriting modulo axioms
were not supported.

But what about exploring behaviors starting not just from
one state, but from a possibly infinite set of states? For
object-oriented protocol specifications of the general style
illustrated by the NSPK example, this can be accomplished
by performing narrowing [19] modulo structural axioms
such as the associativity and commutativity of the multi-
set union of configurations. The idea is to describe a set of
initial states by a symbolic expression with variables that
stands for the set of all its ground substitutions. Then, the
exploration of behaviors is entirely similar to the rewriting
exploration, except that at each step, instead of matching the
lefthand side of a rule to a ground term representing a single
state, we unify (modulo structural axioms such as associa-
tivity and commutativity) such a lefthand side with a nonva-
riable subterm of the symbolic expression representing the
current set of states. In principle, such narrowing and unifi-
cation algorithms can be specified by means of rewrite rules
in Maude, but for efficiency reasons it is better to build in
the unification algorithm.

We plan to add to Maude built-in unification modulo sev-
eral equational theories and their combinations, and to ex-
ploit such a facility to explore behaviors for sets of states
by narrowing. There are some similarities between our
proposed use of narrowing and the narrowing analysis per-
formed in the NRL Protocol Analyzer [26, 27, 28]. But
in the NRL tool narrowing (with standard unification) is
performed only by means of the Church-Rosser equations
that axiomatize the basic algebraic properties of the under-
lying cryptography, whereas our proposed use is different,
namely, to perform narrowing (modulo structural axioms)
using both the (Church-Rosser) equations and the (in gen-
eral non-Church-Rosser) transition rules specifying the sys-
tem as a rewrite theory.

5.2 Combining Rewriting and Temporal Logic

Rewriting logic is a logic that we could call internal to
the concurrent computation of a system that it axiomatizes.
Deduction exactly corresponds to computation, and in fact
can be used to implement the system axiomatized by the
rules. By contrast, temporal logic can be regarded as taking
an external view of the system. It regards it as a mathemati-
cal model—typically some kind of Kripke structure—about
which it then makes assertions about its global properties
such as safety or liveness. Both levels of description and
analysis are useful in their own right; in fact, they comple-
ment each other. We therefore plan to use both logics in
combination to prove properties about communication pro-
tocols and other concurrent systems. The semantic nexus

between the two levels of specification is given by the initial
model of the rewrite theory specifying the system, which
plays at the same time the role of the Kripke structure about
which specific temporal logic properties are asserted.

The first issue that must be addressed is the semantic in-
tegration between the two logics. Essentially, such an in-
tegration is straightforward, because both logics are talking
about the same mathematical model. Theories in rewriting
logic have initial models. The initial model ��� of a rewrite
theory � is a mathematical model of the concurrent sys-
tem axiomatized by � . Specifically, it is a category with
algebraic structure [29], where the objects correspond to
system states, and the arrows correspond to concurrent sys-
tem transitions. Therefore, � � can be regarded as a Kripke
structure whose transitions are labeled by the arrows of the
category. A variety of different modal or temporal logics
can then be chosen to make assertions about such a Kripke
structure. We are particularly interested in temporal logics
of this kind that provide explicit support for objects. Two
candidates that we are considering are the version of the� -calculus proposed by Ulrike Lechner [24] for reasoning
about object-oriented Maude specifications, and the object-
oriented Distributed Temporal Logic (DTL) of Ehrich et al.
[18, 9], and the temporal logic of Duarte [17] used to axiom-
atize the actor model. For the second alternative a temporal
logic extension of rewriting logic and a technique to trans-
form a rewrite theory into a temporal logic theory have been
proposed in [8]. In future work we will investigate how one
can reason in the combined calculus and how such reason-
ing can be supported by tools.

Other approaches to reason about security protocols include
Paulson’s inductive method [35], Gray and McLean’s ap-
proach [21], which uses Lamport’s TLA notation to specify
cryptographic protocols and correctness requirements, and
Syverson and Meadows’ approach [40], which proposes a
logical language for specifying protocol requirements and
translates them by hand into the Prolog language of the
NRL Analyzer [26, 27, 28]. There is also a large body of
work by various authors using abstraction techniques to re-
duce communication protocols—that in principle have an
infinite number of states—to finite-state versions for which
temporal logic formulas can be decided by model check-
ing. We conjecture that abstraction maps will have a natural
high-level specification in rewriting logic as adequate maps
between theories.

Our medium-term goal is to reach high assurance for ac-
tive networks and communication protocols by combining
the advantages of Maude executable specification, formal
analysis by rewriting-based model checking and narrow-
ing, and temporal logic reasoning by means of both theorem
proving and finite-state model checking using abstractions.
We expect that rewriting logic and Maude will provide a
good logical framework for the integration and implemen-
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tation of these techniques.
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