The Scope of a Logic of Authentication

Michael Burrows* Martin Abadi* Roger Needham?

February 9, 1990

*Digital Equipment Corporation, Systems Research Center
TComputer Laboratory, University of Cambridge

1 A Logic of Authentication

Authentication protocols are both essential to security in distributed systems
and notoriously obscure. A typical authentication protocol involves only
two or three parties (called principals) and a few messages between them
(see[1, 10,13, 14, 15, 16, 19] for example). The intended outcome is that the
parties obtain a guarantee that they are dealing with each other. In addition,
the parties sometimes acquire a new shared secret, such as a session key. The
exchanges are brief, but many of the authentication protocols found in the
literature contain serious security flaws ([1, 10, 14, 19] for example).

The logic of authentication described in the first part of this report has
helped us in analyzing certain aspects of authentication protocols. Our logic
consists of a simple set of inference rules, in a notation designed specifically
for the study of authentication protocols.! The goal of the logic is to de-
scribe the beliefs of trustworthy parties involved in authentication, and the
evolution of these beliefs while the principals communicate. This approach
has proved useful. We have met with some success in explaining protocols
and in uncovering subtle assumptions and dangerous bugs. On occasion, we
have also found redundancies, such as unnecessary message parts and un-
necessary encryption. More recently, others have used the logic, sometimes
with a similar result [4, 17].

The logic does not attempt to answer every important question about
every conceivable authentication protocol. In this note, we wish to clarify
what the logic captures and what it does not capture, and where there is
room for other formal or informal techniques. We introduce and discuss the
logic through an example that relies on public-key cryptography [18].

In our example, a principal A obtains the public key of another principal
B from a server S. First, A requests a certificate containing B’s public key,
from a trusted server 5. In an informal notation, this message might be
written:

A—=S: AB

The server replies with the desired certificate, which includes B’s name, a
key K, a timestamp 7', and which is encrypted under the server’s secret
key K !:

S—A: S, {Kb,B,T}qu

!We use slightly different notation in other works on the logic. The notation here is
more verbose, but more readable.

53

The analysis of a protocol consists of three phases:

e reformulating the protocol in our notation;
o spelling out the implicit assumptions;

e applying the inference rules of the logic to the assumptions and to the
messages.

We will go through these phases in our example.

First, we transform the protocol into an idealized form, where each mes-
sage becomes an expression in the logic. Intuitively, the expression reflects
the logical meaning of the message. For example, S says that K} is B’s pub-

. . K .
lic key (written —£B) in the second message, and hence the second message
becomes:

Ky

§—=A: {=B, T}

We have removed a cleartext field from the second message. Similarly,
the first message, from A to S, can be omitted altogether from the idealized
form of the exchange. Unencrypted parts are simply “hints” designed to
help with the timely progress of the protocol, and would not contribute to
our proofs. Therefore, the idealized protocol proceeds as if 5 sends B’s
public key to A spontaneously.

The transformation from an informal description of a protocol to a de-
scription in our notation is carried out by hand, but we have found that it
is usually straightforward. Nevertheless, this transformation is not always
possible: some protocols rely on techniques that cannot be represented ade-
quately in the logic. However, the class of protocols treated is large enough
to be useful.

We have not yet been able to make rigorous the correspondence between
formulas in idealized protocols and bits transmitted. Hence, our derivations
provide no guarantees about actual implementations of the protocols. It
might be desirable and possible (at least in principle) to prove properties of
authentication protocols expressed in conventional programming languages.

In the second phase of the analysis, we write assumptions. The assump-
tions that underly this message exchange are fairly obvious.

o The server’s public key must be known to A, otherwise the message is
of no use to A. We say that A believes that K is S’s public key, and

write it A believes I»‘—>S

54

e A must believe that the timestamp is a recent one if it is to accept S’s
message as timely (and not a replay by an intruder). In this case we
say that A believes that 7" is fresh, and write it A believes fresh(7').
What it is about 7 that causes A to believe it fresh is outside the
province of the logic.

We divide time into two epochs, the present (the current run) and the
past; a fresh expression is one that was never uttered in the past. The
distinction of present and past suffices for our purposes.

e 5 must believe that K, really is B’s public key, for S’s message to be
honest and not a deliberate lie. Although we allow for the possibility
of attackers, we take all the principals mentioned in the protocol to be
honest.

e Finally, A must trust S to provide B’s key. More precisely, if A believes
that 5 believes that K3 is B’s key, then A believes that K, is B’s key.

We say that A believes that S has jurisdiction over &B, and write

A believes S controls Al—’?B

Once the protocol is idealized and the assumptions are made explicit,
we check that all the principals communicate honestly in the course of the
exchange. This means that the sender of each message believes in the truth
of its contents, either on the basis of initial assumptions or as a result of valid
inference from previously received messages. In the example, the honesty of

S follows from the assumption that S believes p.

We also use the assumptions and the messages to reason about the final
state achieved by the protocol. We consider only stable formulas, those
that once true remain true for the duration of a protocol run. Therefore,
all the assumptions about the initial state still hold as post-conditions to
the messages. (The manipulation of pre-conditions and post-conditions is
inspired by Hoare logic [7].) In addition, it also holds as a post-condition
that A sees S’s message, which we write A sees {&B,T}K:l.

Hence we proceed to apply the rules of inference of the logic to the
assumptions and to the post-condition A sees {&B,T}qu—l. These rules
simply account for how A ascertains that K}, is B’s public key.

The first relevant rule is

P believes II—X>Q, P sees {X }j—
P believes) said X

55

which expresses that if P believes that K is ()’s public key and it receives a

message {X }x-1 under the inverse of K, then P believes that @) once said

the contents of the message. We derive A believes 5 said (I»&B,T).

Another rule enables us to deduce A believes fresh(&B,T) from the
assumption A believes fresh(7'):
P believes fresh(Y')
P believes fresh(X,Y)

A third rule,

P believes fresh(X), P believes @) said X
P believes () believes X

then yields that A believes S believes (AI—I?B,T). This rule expresses the
check that a message belongs to the current run of the protocol. If P believes
that X is fresh and ¢) has once said X, then P believes that () has said X
during the current run, and hence that ¢} believes X at present.

Immediately, we can derive A believes S believes K¢ B. Notice a for-
mal oddity here: we can also derive A believes 5 believes T, where a
timestamp is treated as a statement—a “believable” expression. This seems
less odd if we view T as a statement such as “it is 5PM,” rather than as
the corresponding term “5PM.” A reformulation of the syntax of the logic
could avoid the oddity altogether.

We complete the proof with the rule:
P believes () controls X, P believes () believes X
P believes X
which expresses that if P believes that () believes X and P trusts ¢) on X

then P believes X as well. Immediately, we obtain A believes Kep.

Thus, we have followed the process of obtaining a public key step by
step. The derivation may have seemed particularly trivial, but in fact similar
derivations, with the same rules, do account for many of the authentication
protocols found in the literature.

2 The Scope of the Logic

The purpose of the logic is to describe the beliefs of principals in the course
of authentication, and this purpose affects our choice of constructs and rules.

56

For example, the logic has a notation for saying that K} is a public key for
B, but there is no rule for checking that K, is long enough, as this sort
of check does not typically happen in the course of authentication. Nor
is there a way to show that a cryptosystem is secure and that it is used
properly. (Voydock and Kent [20] and Moore [11] discuss inappropriate use
of cryptosystems.)

Nevertheless, a few basic assumptions about encryption and how it is
used underly the rules of the logic, and they are worth keeping in mind:

e Each encrypted unit is integral; it cannot be altered or adapted by a
principal not knowing the appropriate key(s), without the encrypted
part being reduced to nonsense. For example, an encrypted mes-
sage {9,1}k may not be fabricated from {S}x, {17}k, {5,U }k, and
{V, T}k except by decryption and re-encryption, with knowledge of
K.

e An encrypted message is verifiable. That is, when a principal applies a
decryption algorithm D to a ciphertext ' using key K, it will be able
to judge whether the result is or is not the plaintext used to generate
(' in the first place, and thus whether it has been decrypted using the
“right” key. The decision will necessarily be based on prior knowledge,
total or partial, of the expected plaintext.

Gong, Needham, and Yahalom [6] have recently proposed a way of
bringing verifiability within the scope of the logic. This may be useful,
since it is not always obvious whether an author has overlooked the
question of verifiability or has assumed it is handled at a lower level.

e A principal can recognize his own encrypted messages, and will not
mistakenly attribute them to another principal. This is easily achieved
through direction bits, for example. In the logic, we make {X }x
an abbreviation for the longer expression {X }x from P; we use the
“from” field in side conditions to some rules.

The assumption is more important in the shared-key world than in the
public-key world, because it is uncommon for a principal to encrypt
with his own public key in authentication protocols.

The foregoing are assumed properties of encryption. Another issue con-

cerns the purposes of encryption. Encryption may be used to preserve
secrecy, to maintain the integrity of a compound message, or simply to

57

demonstrate knowledge of a key by using it. Our logic does not capture
these distinctions.

A great deal of what is interesting in an authentication protocol does
not depend on the cryptosystem chosen, but rather on the structure of the
message exchange. Many of the bugs in published authentication protocols
do not come from a poor cryptosystem, but rather from mistakes in the
higher-level design. Often the formal analysis of a protocol has suggested
the existence of these high-level bugs, and how to construct attacks. In order
to illustrate how some bugs manifest themselves in proofs, let us consider a
few flawed variants of our example:

¢ B’s name is omitted: If B’s name is not mentioned in the encrypted
message from S, there is nothing to tie B to this message, and there
is a danger of misinterpreting a message about some other principal
C' (perhaps an adversary) as a message about B. Notice that it does
not suffice to include B’s name in clear next to the encrypted packet,
as cleartext can be modified by adversaries. In our analysis, we would
not be entitled to idealize S5’s message as we have, since we cannot
argue that S believes that Ky is B’s key when S sends { K, T} 1.

e 5 is not an authority: If it is not assumed that A trusts S to provide
B’s public key, the formal analysis would proceed exactly as above,
but the last step would be blocked, as the last rule of inference would
not be applicable. Thus, under the weaker assumptions, the protocol

yields only A believes S believes p.

o A has no key for 5: If A does not know that K is S’s public key, the
protocol is totally useless, as A cannot read the message, or cannot

. . . . K
recognize it as coming from 5. We obtain A sees {»lfB,T}Kq, but
cannot proceed further.

e 5’s secret key can be discovered: For the protocol to work, it is es-
sential that 5’s secret key remain secret. Otherwise, A has no reason
to trust a message signed with 5’s secret key, and in fact the message
could come from an attacker. If we add a step where S broadcasts
his secret key, the formal analysis still goes through, and we obtain
that A believes that K} is B’s public key. When we trace the ori-
gin of this ridiculous conclusion, we find that the protocol no longer

58

justifies the assumption A believes K25, The bad assumption natu-
rally leads to a vacuous proof. Once this assumption is removed, the
analysis becomes correct again, though quite uninteresting.

We make no formal attempt to detect incongruities between assump-
tions and messages. This might be possible, using existing tools to
guard against release of secrets (see [2, 5, 9, 10, 12] for example).

o T is not fresh: If the message includes an old timestamp, A should not
accept the message as fresh. Old messages can be replays, and could
provide A with a compromised key for B [3]. In the formal analysis,
the proof would be blocked at A believes S said (IILEB,T).

e T is omitted: The danger is exactly the same as when T is not fresh.
In the formal analysis, the idealized protocol would not include 7', and

the proof would finish with A believes 5 said g

If no bug becomes apparent, then the protocol is correct, in the sense
that if all initial assumptions are justified then all conclusions are justified
as well. More precisely, define knowledge as truth in all possible states (as
in [8]); our notion of belief is a rudimentary approximation to knowledge,
and it is simple to see that if all initial beliefs are knowledge then all final
beliefs are knowledge and, in particular, they are true.

There is much room for improvement here. For example, we do not
take into account complexity-theoretic assumptions or provide probabilistic
guarantees. A strong semantics for the logic might remedy this, and at the
same time it should provide a more compelling and robust notion of belief
than those we have considered. Mark Tuttle and one of us (M.A.) have
started work on an improved semantics.

Finally, we should point out that knowledge and belief must not be
confused, and that the usual semantics of knowledge is not adequate for the
belief operator. As knowledge is often defined, principals can know only
true facts. It follows that if P knows that) knows X, then P knows X.
In contrast, one of our rules says that if P believes that @) believes X, then
P believes X, but only under an additional hypothesis: P must believe
that ¢) has jurisdiction over X. The additional hypothesis expresses the
trust that P puts in @, and should not be suppressed. The delegations in
a distributed system are often founded on subtle trust relations, which it is
fruitful to make explicit.

59

60

References

[1]

[10]

[11]

CCITT. CCITT Blue Book, Volume VIII, Fascicle VIII.8, Recom-
mendation X.509: The Directory—Authentication Framework. Geneva,
1989.

R.A. DeMillo, N.A. Lynch, and M.J. Merritt. Cryptographic Proto-
cols, Proceedings of the Fourteenth ACM Symposium on the Theory of
Computing, 1982, pp. 383-400.

D.E. Denning and G.M. Sacco. Timestamps in Key Distribution Pro-
tocols, CACM Vol. 24, No. 8, August 1981, pp. 533-536.

D. Davis and R. Swick. Workstation Services and Kerberos Authenti-
cation at Project Athena, manuscript, 1989.

D. Dolev and A.C. Yao. On the Security of Public Key Protocols, IEEFE
Transactions on Information Theory Vol. IT-29, No. 2, March 1983,
pp. 198-208.

L. Gong, R.M. Needham, and R. Yahalom. Reasoning about Belief in
Cryptographic Protocols, manuscript, 1989.

C.A.R. Hoare. An Axiomatic Basis for Computer Programming, CACM
Vol. 12, No. 10, October 1969, pp. 576-580.

J.Y. Halpern and Y.O. Moses. Knowledge and Common Knowledge in
a Distributed Environment. Proceedings of the Third ACM Conference
on the Principles of Distributed Computing, 1984, pp. 480-490.

R.A. Kemmerer. Analyzing Encryption Protocols Using Formal Verifi-
cation Techniques, IFEF Journal on Selected Areas in Communications
Vol. 7, No. 4, May 1989, pp. 448-457.

W.P. Lu and M.K. Sundareshan. Secure Communication in Internet En-
vironments: A Hierarchical Key Management Scheme for End-To-End
Encryption, IFEFE Transactions on Communications Vol. 37, No. 10,
October 1989, pp. 1014-1023.

J.H. Moore. Protocol Failures in Cryptosystems. Proceedings of the
IEFFE Vol. 76, No. 5, May 1988, pp. 594-602.

61

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

J.K. Millen, S.C. Clark, and S.B. Freedman. The Interrogator: Protocol
Security Analysis, IEFE Transactions on Software Engineering Vol. SE-
13, No. 2, March 1987, pp. 274-288.

S.P. Miller, C. Neuman, J.I. Schiller, and J.H. Saltzer. Kerberos Au-
thentication and Authorization System. Project Athena Technical Plan
Section E.2.1, MIT, July 1987.

R.M. Needham and M.D. Schroeder. Using Encryption for Authentica-
tion in Large Networks of Computers. CACM Vol. 21, No. 12, December
1978, pp. 993-999.

R.M. Needham and M.D. Schroeder. Authentication Revisited. Oper-
ating Systems Review Vol. 21, No. 1, January 1987, p. 7.

D. Otway and O. Rees. Efficient and Timely Mutual Authentication.
Operating Systems Review Vol. 21, No. 1, January 1987, pp. 8-10.

Racal Research Ltd. Private communication from John Walker, 1989.

R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-key Cryptosystems, Communications of
the ACM Vol. 21, No. 2, February 1978, pp. 120-126.

M. Satyanarayanan, Integrating Security in a Large Distributed Sys-
tem, ACM Transactions on Computer Systems Vol. 15, No 3, August
1989, pp 247-280.

V.L. Voydock and S.T. Kent. Security Mechanisms in High-Level Net-
work Protocols, Computing Surveys Vol. 15, No. 2, 1983, pp. 135-171.

62

