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Abstract

We consider shifted equality sets of the form EG(a, g1, g2) = {w | g1(w) =
ag2(w)}, where g1 and g2 are nonerasing morphisms and a is a letter. We
are interested in the family consisting of the languages h(EG(J)), where h
is a coding and EG(J) is a shifted equality set. We prove several closure
properties for this family. Moreover, we show that every every recursively
enumerable language L ⊆ A∗ is a projection of a shifted equality set, that is,
L = πA(EG(a, g1, g2)) for some (nonerasing) morphisms g1 and g2 and a let-
ter a, where πA deletes the letters not in A. Then we deduce that recursively
enumerable star languages coincide with the projections of equality sets

Keywords: equality set, Post Correspondence Problem, coding, recursive
enumerable set, projection
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1 Introduction
In formal language theory, languages are often determined by their gener-
ating grammars or accepting machines. It is also customary to say that
languages generated by grammars of certain form or accepted by automata
of speci�c type form a language family. Here we shall study a language
family de�ned by simple generalized equality sets of the form EG(J), where
J = (a, g1, g2) is an instance of the shifted Post Correspondence Problem
consisting of a letter a and two morphisms g1 and g2. Then the set EG(J)
consists of the words w that satisfy g1(w) = ag2(w).

Our motivation for these generalized equality sets comes partly from a
result of [6], where it was proved that the family of regular valence languages
is equal to the family of languages of the form h(EG(J)), where h is a
coding (i.e., a letter-to-letter morphism), and, moreover, in the instance
J = (a, g1, g2) the morphism g2 is periodic. Here we shall consider general
case where we do not assume g2 to be periodic. However, we do assume that
both morphisms to be nonerasing. We study the properties of this family CE

of languages by studying its closure properties. In particular, we show that
CE is closed under union, product, Kleene plus, intersection with regular sets.
Also, more surprisingly, CE is closed under nonerasing inverse morphisms.

In the last section, we consider the connection of the sifted equality sets
to recursively enumerable languages. In particular, we show that every every
recursively enumerable language L ⊆ A∗ is a projection of a shifted equality
set, that is, L = πA(EG(a, g1, g2)) for some (nonerasing) morphisms g1 and
g2 and a letter a, where πA deletes the letters not in A.

The results of Sections 2 and 3 have been proved in the authors' confer-
ence paper [7]. The characterization results of Section 4 concerning presen-
tation of recursively enumerable sets by shifted equality sets are new. The
problem of presenting recursively enumerable sets using (general) equality
sets was initiated by Salomaa [14], Culik [1], and Engelfriet and Rozen-
berg [3]; see also [4, 11, 15, 16].

2 Preliminaries
Let A be an alphabet, and denote by A∗ the monoid of all �nite words under
the operation of concatenation. Note that the empty word, denoted by ε,
is in the monoid A∗. The semigroup A∗ \ {ε} generated by A is denoted
by A+. For a subset L ⊆ A∗, we denote by L+ the set of all words of the
form w1w2 . . . wn for wi ∈ L with n ≥ 1. Then L∗ = L+ ∪ {ε}.

For two words u, v ∈ A∗, u is a pre�x of v if there exists a word z ∈ A∗

such that v = uz. If v = uz, then we also write u = vz−1 and z = u−1v.
In the following, let A and B be alphabets and g : A∗ → B∗ a mapping.

For a word x ∈ B∗, we denote by g−1(x) = {w ∈ A∗ | g(w) = x} the inverse
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image of x under g. Then g−1(K) = ∪x∈Kg−1(x) is the inverse image of
K ⊆ B∗ under g, and g(L) = {g(w) | w ∈ L} is the image of L ⊆ A∗ under g.
Also, g is a morphism if g(uv) = g(u)g(v) for all u, v ∈ A∗. A morphism g
is a coding, if it maps letters to letters, that is, if g(A) ⊆ B. A morphism g
is said to be periodic, if there exists a word w ∈ B∗ such that g(A∗) ⊆ {w}∗.

If A and B are alphabets such that A ⊆ B, then the morphism πA : B∗ →
A∗, which becomes de�ned by

πA(a) =

{
a if a ∈ A,

ε if a ∈ B \A,

is the projection of B∗ onto A∗.
In the following section, for a given alphabet A, the alphabet Ā = {ā |

a ∈ A} is a copy of A, if A ∩ Ā = ∅.
In the Post Correspondence Problem, PCP for short, we are given two

morphisms g1, g2 : A∗ → B∗ and it is asked whether or not there exists a
nonempty word w ∈ A+ such that g1(w) = g2(w). Here the pair (g1, g2) is
an instance of the PCP, and the word w is called a solution. As a general
reference to the problems and results concerning the Post Correspondence
Problem, we give [8].

For an instance I = (g1, g2) of the PCP, let

E(I) = {w ∈ A∗ | g1(w) = g2(w)}

be its equality set. It is easy to show that an equality set E = E(g1, g2) is
always a monoid, that is, E = E∗. In fact, it is a free monoid, and thus the
algebraic structure of E is relatively simple, although the problem whether
or not E is trivial is undecidable.

We shall now consider special instances of the generalized Post Corre-
spondence Problem in order to have slightly more structured equality sets.
In the shifted Post Correspondence Problem, or shifted PCP for short, we
are given two morphisms g1, g2 : A∗ → B∗ and a letter a ∈ B, and it is asked
whether there exists a word w ∈ A∗ such that

g1(w) = ag2(w). (2.1)

The triple J = (a, g1, g2) is called an instance of the shifted PCP and a word
w satisfying equation (2.1) is called a solution of J . It is clear that a solution
w is always nonempty. We let

EG(J) =
{
w ∈ A+ | g1(w) = ag2(w)

}

be the generalized equality set of J .
We shall denote by CE the set of all languages h(EG(J)), where h is a

coding, and the morphisms in the instances J of the shifted PCP are both
nonerasing.
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In [6] CEper is de�ned as the family of languages h(EG(J)), where h is
a coding, and one of the morphisms in the instance J of the shifted PCP is
assumed to be periodic. It was proved in [6] that CEper is equal to the family
of languages de�ned by the regular valence grammars (see [12]). It is easy
to see that the morphisms in the instances could have been assumed to be
nonerasing in order to get the same result. Therefore, the family CE studied
in this paper is a generalization of CEper or, actually, CEper is a subfamily
of CE.

3 Closure properties of CE

The closure properties of the family CEper follow from the known closure
properties of regular valence languages. In this section, we study the closure
properties of the more general family CE under various operations.

Before we start our journey through the closure results, we make �rst
some assumptions of the instances of the shifted PCP de�ning the languages
at hand.

An instance J = (a, g1, g2) of the shifted PCP is said to be frontal, if the
shift letter a appears only as the �rst letter in the images of g1 and a does
not occur at all in the images of g2.
Lemma 1. Let L = h(EG(J)) for a instance J = (a, g1, g2) of the shifted
PCP and a coding h. There exists a frontal instance J ′ = (#, g′1, g

′
2) and a

coding h′ such that L = h′(EG(J ′)).
Proof. Assume g1, g2 : A∗ → B∗ and h : A∗ → C∗. Let # be a letter not in B.
We shall construct a new instance J ′ = (#, g′1, g

′
2), where g′1, g

′
2 : (A∪ Ā)∗ →

(B ∪ {#})∗ and Ā is a copy of A, by setting for all x ∈ A g′2(x) = g′2(x̄) =
g2(x), and g′1(x) = g1(x) and

g′1(x̄) =

{
g1(x), if a is not a pre�x of g1(x),
#w, if g1(x) = aw.

De�ne a new coding h′ : (A ∪ Ā)∗ → C∗ by h′(x) = h′(x̄) = h(x) for all
x ∈ A. It is now obvious that L = h′(EG(J ′)).

The next lemma shows that we may also assume that the instance (g1, g2)
does not have any nontrivial solutions, that is, E(g1, g2) = {ε} for all in-
stances J = (a, g1, g2) de�ning the language h(EG(J)). For this result we
introduce two mappings which are used for desynchronizing a pair of mor-
phisms. Let d be a new letter. For a word u = a1a2 · · · an, where each ai is
a letter, de�ne

`d(u) = da1da2d · · · dan and rd(u) = a1da2d · · · dand.

In other words, `d is a morphism that adds d in front of every letter and rd

is a morphism that adds d after every letter of a word.
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Lemma 2. For every instance J of the shifted PCP and coding h, there
exists a frontal instance J ′ = (a, g′1, g

′
2) and a coding h′ such that h(EG(J)) =

h′(EG(J ′)) and E(g′1, g
′
2) = {ε}.

Proof. By Lemma 1, we can assume that J = (a, g1, g2) is a frontal instance
of the shifted PCP. Let g1, g2 : A∗ → B∗, and let h : A∗ → C∗. We de�ne
new morphisms g′1, g

′
2 : (A ∪ Ā)∗ → (B ∪ {d})∗, where d /∈ B is a new letter

and Ā is a copy of A, as follows. For all x ∈ A,

g′2(x) = `d(g2(x)) and g′2(x̄) = `d(g2(x))d, (3.1)

g′1(x) = g′1(x̄) =

{
ad · rd(w), if g1(x) = aw,

rd(g1(x)), if a is not a pre�x of g1(x).
(3.2)

It is clear that J ′ is a frontal instance. Note also that, since the images
g′2(x̄) start and end in d, the letters in Ā can be used only as the last letter
of a solution of J ′ = (a, g′1, g

′
2). Since every image by g′2 begins with letter

d and it is not a pre�x of any image of g′1, we obtain that E(g′1, g
′
2) =

{ε}. On the other hand, (a, g′1, g
′
2) has a solution wx̄ if and only if wx is

a solution of (a, g1, g2). Therefore, we can de�ne h′ : (A ∪ Ā)∗ → C∗ by
h′(x) = h′(x̄) = h(x) for all x ∈ A. The claim of the lemma follows, since
obviously h(EG(J)) = h′(EG(J ′)).

We call an instance (a, g1, g2) reduced, if it is frontal and E(g1, g2) = {ε}.

3.1 Union and product
Theorem 3. The family CE is closed under union and product of languages.

Proof. Let K, L ∈ CE with K = h1(EG(J1)) and L = h2(EG(J2)), where
J1 = (a1, g11, g12) and J2 = (a2, g21, g22) are reduced, and g11, g12 : Σ∗ → B∗

1

and g21, g22 : Ω∗ → B∗
2 . Without restriction we can suppose that Ω ∩Σ = ∅.

(Otherwise we take a copy of the alphabet Ω that is disjoint from Σ.) We
can also assume that B1 ∩B2 = ∅. Let B = B1 ∪B2.

(1) For the closure under union, let # be a new letter. First replace
every appearance of the shift letters a1 and a2 in J1 and J2 by #. De�ne
g1, g2 : (Σ ∪ Ω)∗ → B∗ as follows: for all x ∈ Σ ∪ Ω,

g1(x) =

{
g11(x), if x ∈ Σ
g21(x), if x ∈ Ω

and g2(x) =

{
g12(x), if x ∈ Σ
g22(x), if x ∈ Ω.

De�ne a coding h : (Σ ∪ Ω)∗ → C∗ similarly:

h(x) =

{
h1(x), if x ∈ Σ
h2(x), if x ∈ Ω.

(3.3)
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Since Σ∩Ω = ∅, and the instances J1 and J2 are reduced (i.e., E(g11, g12) =
{ε} = E(g21, g22)), it follows that the solutions in EG(J1) and EG(J2) cannot
be combined or mixed. Thus, it is easy to see that h(EG(#, g1, g2)) = K∪L.

(2) For the closure under product, we assume that the length of the
images of the morphisms are at least 2. (Actually, this is needed only for
g11). This can be assumed, for example, by the construction in the proof of
Lemma 2.

We shall prove that KL = {uv | u ∈ K, v ∈ L} is in CE. For this, we
de�ne g1, g2 : (Σ ∪ Ω)∗ → B∗ in the following way: for each x ∈ Σ,

g1(x) =

{
`a2(g11(x)), if a1 is not a pre�x of g11(x),
a1y`a2(w), if g11(x) = a1yw (y ∈ B1),

and
g2(x) = ra2(g12(x)),

and for each x ∈ Ω, g1(x) = g21(x) and g2(x) = g22(x). If we now de�ne h by
combining h1 and h2 as in (3.3), we obtain that h(EG(a1, g1, g2)) = KL.

We shall now extend the above result by proving that CE is closed under
Kleene plus, i.e., if K ∈ CE, then also K+ ∈ CE. Clearly CE is not closed
under Kleene star, since the empty word does not belong to any language in
CE.

Theorem 4. The family CE is closed under Kleene plus.

Proof. Let K = h(EG(a, g1, g2)), where g1, g2 : A∗ → B∗ are nonerasing
morphisms, h : A∗ → C∗ is a coding and the instance (a, g1, g2) is frontal.
Also, let Ā be a copy of A, and de�ne ḡ1, ḡ2 : (A∪ Ā)∗ → B∗ in the following
way: for each x ∈ A,

ḡ1(x) = g1(x) and ḡ2(x) = g2(x),

ḡ1(x̄) =

{
`a(g1(x)), if a is not a pre�x of g1(x),
`a(w), if g1(x) = aw,

ḡ2(x̄) = ra(g2(x)).

Extend h also to Ā by setting h(x̄) = h(x) for all x ∈ A.
Now h(EG(a, ḡ1, ḡ2)) = K+, since ḡ1(w) = aḡ2(w) if and only if, w =

x1 · · ·xnxn+1, where xi ∈ Ā+ for 1 ≤ i ≤ n, xn+1 ∈ A+, ḡ1(xi)a = aḡ2(xi)
for 1 ≤ i ≤ n and ḡ1(xn+1) = aḡ2(xn+1). After removing the bars form the
letters xi (by h), we obtain words in EG(a, g1, g2).
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3.2 Intersection with regular languages
We show now that CE is closed under intersections with regular languages.

Theorem 5. The family CE is closed under intersections with regular lan-
guages.

Proof. Let J = (a, g1, g2) be an instance of the shifted PCP, g1, g2 : Σ∗ → B∗.
Let L = h(EG(J)), where h : Σ∗ → C∗ is a coding.

We shall prove that h(EG(J))∩R is in CE for all regular R ⊆ B∗. We note
�rst that h(EG(J)) ∩ R = h(EG(J) ∩ h−1(R)), and therefore it is su�cient
to show that, for all regular languages R ⊆ Σ∗, h(EG(J) ∩ R) is in CE.
Therefore, we shall give a construction for instances J ′ of the shifted PCP
such that EG(J ′) = EG(J) ∩R.

Assume R ⊆ Σ∗ is regular, and let G = (N,Σ, P, S) be a right linear
grammar generating R (see [13]). Let N = {A0, . . . , An−1}, where S = A0,
and assume without restriction, that S does not appear on the right hand
side of any production. We consider the set P of the productions as an
alphabet.

Let # and d be new letters. We de�ne g′1, g
′
2 : P ∗ → (B ∪ {d,#})∗ as

follows. First assume that

g1(a) = a1a2 . . . ak and g2(a) = b1b2 . . . bm

for the (generic) letter a. We de�ne

g′1(p) =





#dna1d
na2d

n . . . akd
j , if p = (A0 → aAj)

dn−ia1d
na2d

n . . . akd
j , if p = (Ai → aAj),

#dna1d
na2d

n . . . ak , if p = (A0 → a),
dn−ia1d

na2d
n . . . ak , if p = (Ai → a).

and
g′2(p) = dnb1d

nb2 . . . dnbm, if p = (A → aX),

where X ∈ N ∪ {ε}.
As in [9], EG(J ′) = EG(J)∩R for the new instance J ′ = (#, g′1, g

′
2). The

claim follows from this.

3.3 Morphisms
Next we shall present a construction for the closure under nonerasing mor-
phisms. This construction is a bit more complicated than the previous ones.

Theorem 6. The family CE is closed under taking images of nonerasing
morphisms.
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Proof. Let J = (a, g1, g2) be an instance of the shifted PCP, where g1, g2 : A∗ →
B∗. Let L = h(EG(J)), where h : A∗ → C∗ is a coding. Assume that
f : C∗ → Σ∗ is a nonerasing morphism. We shall construct h′, g′1 and g′2
such that f(L) = h′(EG(J ′)) for the new instance J ′ = (a, g′1, g

′
2).

First we show that we can restrict ourselves to cases where
min{|g1(x)|, |g2(x)|} ≥ |f(x)| for all x ∈ A. (3.4)

Indeed, suppose the instance J does not satisfy (3.4). We construct a new
instance J̄ = (#, ḡ1, ḡ2) and a coding h̄ such that h̄(EG(J̄) = h(EG(J)) and
ḡ1 and ḡ2 do ful�ll (3.4). Let c /∈ B be a new letter. Let k = maxx∈A{|f(x)|}.
We de�ne ḡ1(x) = `k

c (g1(x)) and ḡ2(x) = `k
c (g2(x)) for all x ∈ A. We also

need a new copy x′ of each letter x for which a is a pre�x of g1(x). If
g1(x) = aw, where w ∈ B∗, then de�ne ḡ1(x′) = #`k

c (w). It now follows
that if u ∈ EG(J̄), then u = x′v for some word v ∈ A∗ and xv ∈ EG(J).
Therefore, by de�ning h̄ as follows

h̄(y) =

{
h(y), if y ∈ A,

h(x), if y = x′,

we have h̄(EG(J̄) = h(EG(J)) as required.
Now assume that (3.4) holds in J = (a, g1, g2) and for f . Let us consider

the nonerasing morphism fh : A∗ → Σ∗. Note that also the composition fh
satis�es (3.4). In order to prove the claim, it is clearly su�cient to consider
the case, where h is the identity mapping, that is, f = fh.

First we de�ne for every image f(x), where x ∈ A, a new alphabet
Ax = {bx | b ∈ Σ}. We consider the words

(b1b2 . . . bm)x = (b1)x(b2)x . . . (bm)x,

for f(x) = b1 . . . bm.
Let c and d be new letters and let n =

∑
x∈A |f(x)|. Assume that

A = {x1, x2, . . . , xq}.
Partition the integers 1, 2, . . . , n into q sets such that for the letter xi

there corresponds a set, say Si = {i1, i2, . . . , i|f(xi|}, of |f(xi)| integers.
Assume that f(xi) = b1 . . . bm, g1(xi) = a1a2 . . . a`, and g2(xi) = a′1a

′
2 . . . a′k.

We de�ne new morphisms g′1 and g′2 as follows:
g′1((b1)xi) = cndna1c

i1 ,

g′1((bj)xi) = cn−ij−1dnajc
ij for j = 2, . . . , m− 1,

g′1((bm)xi) = cn−im−1dnamcndn . . . cndna`,

and
g′2((b1)xi) = cndna1c

ndi1 ,

g′2((bj)xi) = dn−ij−1a′jc
ndij for j = 2, . . . ,m− 1,

g′2((bm)xi) = cndn−im−1a′mcndn . . . cndna′k.
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Then

g′1((b1 . . . bm)xi) = cndna1c
ndna2 . . . cndna`,

g′2((b1 . . . bm)xi) = cndna′1c
ndna′2 . . . cndna′k.

The beginning has to be still �xed. For the cases, where a1 = a, we need
new letters (b1)′xi

, for which we de�ne

g′1((b1)′xi
) = aci1 and g′2((b1)′xi

) = cndnajc
ndi1 .

Now our constructions for the morphisms g′1 and g′2 are completed.
Next we de�ne h′, by setting h′((bi)x) = bi and h′((b1)′x) = b1 for all i and

x. We obtain that h′(EG(J ′)) = f(h(EG(J)), which proves the claim.

Next we shall prove that the family CE is closed under inverse of non-
erasing morphisms.
Theorem 7. The family CE is closed under nonerasing inverse morphisms.

Proof. Consider an instance h(EG(J)), where J = (a, g1, g2) with gi : A∗ →
B∗ and h : A∗ → C∗ is a coding. We may assume that h(A) = C.

Moreover, let g : Σ∗ → C∗ be a nonerasing morphism.
For each x ∈ Σ, let h−1g(x) = {vx,1, vx,2, . . . , vx,kx} and let

Σx = {x(1), . . . , x(kx)}
be a set of new letters for x. Denote Θ = ∪x∈ΣΣx, and de�ne the morphisms
g′1, g

′
2 : Θ∗ → B∗ and the coding t : Θ∗ → Σ∗ by

g′j(x
(i)) = gj(vx,i) for j = 1, 2, and t(x(i)) = x

for each x(i) ∈ Θ.
Consider the instance J ′ = (a, g′1, g

′
2).

Now, assume that u = a1a2 . . . an ∈ g−1h(EG(J)) (with ai ∈ Σ). Then
there exists a word w = w1w2 . . . wn such that g1(w) = ag2(w) and ai ∈
g−1h(wi), that is, wi = vai,ri ∈ h−1g(ai) for some ri, and so g′1(w

′) =
ag′2(w

′) for the word w′ = a
(r1)
1 a

(r2)
2 . . . a

(rn)
n , for which t(w′) = u. Therefore

u ∈ t(EG(J ′)).
The converse inclusion t(EG(J ′)) ⊆ g−1h(EG(J)) is clear by the above

constructions.

Let A and B be two alphabets. A mapping τ : A∗ → 2B∗ , where 2B∗

denotes the set of all subsets of B∗, is a substitution if for all u, v ∈ A∗

τ(uv) = τ(u)τ(v).

Note that τ is actually a morphism from A∗ to 2B∗ .
A substitution τ is called �nite if τ(a) is a �nite set for all a ∈ A, and

nonerasing if ε /∈ τ(a) for all a ∈ A.
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Corollary 8. The family CE is closed under nonerasing �nite substitutions.

Proof. Since CE is closed under nonerasing morphisms, inverses of nonerasing
morphisms, it is closed under nonerasing �nite substitutions. Indeed, as is
immediate, every �nite substitution is a composition of an inverse of a coding
and a nonerasing morphism.

Note that CE is almost a trio, see [5], but it seems that it is not closed
under all inverse morphisms. It is also almost a bifaithful rational cone, see
[10], but since the languages do not contain the empty word, CE is not closed
under the bifaithful �nite transducers.

4 Equality sets and recursively enumerable languages
The following result of Engelfriet and Rozenberg [3] gives a classical morphic
representation of recursively enumerable languages; see Salomaa [15] (see
Theorem 6.9, page 111). Recall that πA denotes the projection onto A∗.

Theorem 9. For every recursively enumerable language L ⊆ A∗, there are
two morphisms h1, h2 and a regular language R such that L = πA(E(h1, h2)∩
R).

A slight modi�cation of its proof permits to strengthen this theorem:

Lemma 10. For every recursively enumerable language L ⊆ A∗, there are
two nonerasing morphisms h1, h2 and a regular language R such that L =
πA(E(h1, h2) ∩ R). Moreover, one can take R = KA∗K ′ where K and K ′

are proper regular languages de�ned on an alphabet B disjoint from A.

Proof. Assume �rst that ε /∈ L. Let G = (N, A, P, S) be a type 0 grammar
generating L, where we can assume that the productions have no terminal
letters on the right hand side, i.e., P ⊆ N+ × (N ∪ A)+. Let Ā be a copy
of A that is disjoint from the other alphabets. Also, let V = N ∪ Ā and
R = KA∗K ′ with

K = S0B(V ∗PV ∗B)∗ and K ′ = F#∗,

where S0, B, F and # are new symbols.
Let us de�ne the morphisms h1 and h2 by

S0 B p = (u, v) X ∈ N ā ∈ Ā a ∈ A F #
h1 S0BS B v X a # # #
h2 S0 B u X a a B ##

Let us take u ∈ πA(E(h1, h2) ∩ R). Then there exists a word z ∈
E(h1, h2) ∩R such that h1(z) = h2(z), and u = πA(z). Here

z = S0Bz1B . . .BznF#i,
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where z1, . . . , zn−1 ∈ V ∗PV ∗, u = zn, and i ≥ 0. Hence, for 1 ≤ j ≤ n− 1,

h2(zj) =⇒G h1(zj),
h1(S0Bz1B . . . Bzj) = h2(S0Bz1B . . . Bzj+1).

Therefore, h2(z1) = S and h1(zj) = h2(zj+1) for 1 ≤ j ≤ n−1. So we obtain
that

S =h2(z1) =⇒G h1(z1) = h2(z2) =⇒G . . . =⇒G h1(zn−2) =
= h2(zn−1) =⇒G h1(zn−1) = h2(zn) = u

and therefore u ∈ L.
Conversely, if u ∈ L, then we have a derivation

S = w1 =⇒G w2 =⇒G . . . =⇒G wn = u

according to the grammar G. For each 1 ≤ j ≤ n − 1, one can �nd zj ∈
V ∗PV ∗ such that h1(zj) = wj+1 and h2(zj) = wj . Set then

z = S0Bz1B . . .Bzn−1BuF#i+1,

where i is the length of u. Then z ∈ R and one can easily check that
h1(z) = h2(z). Hence, u = πA(z) ∈ πA(E(h1, h2) ∩R).

Finally, if ε ∈ L, set D = A ∪ {d}, where d is a new symbol. Then

Ld = πD(E(h1, h2) ∩KD∗K ′) = πD(E(h1, h2) ∩KA∗dK ′)

and hence L = πA(E(h1, h2) ∩ KA∗dK ′). This completes the proof of the
lemma.

Note that the form of the regular language R and the fact that the two
morphisms are nonerasing are crucial for the proofs of the following lemmata.
The proof of the following lemma uses the methods from [9].

Lemma 11. Let A and B be two disjoint alphabets and h1, h2 : (A ∪B)∗ →
C∗ be two nonerasing morphisms. If K and K ′ are two regular languages
included in B+, then πA(E(h1, h2) ∩KA∗K ′) = πA(EG(#, g1, g2)) for some
nonerasing morphisms g1 and g2.

Proof. Let us take two nondeterministic �nite automata M = (Q,B,∆, q0, F ),
M ′ = (Q′, B,∆′, q′0, F

′) such that L(M) = K and L(M ′) = K ′. The
transitions are triples of the form (q, b, p), that is, ∆ ⊆ Q × B × Q and
∆′ ⊆ Q′ × B × Q′. Clearly, one can assume that Q = {q0, . . . , qn} and
Q′ = {q′0, . . . , q′n} with Q∩Q′ = ∅, and that the automata have unique �nal
states F = {qn} and F ′ = {q′n}. Also, we can assume that there are no
transitions (q, b, q0) and (q′, b, q′0) that enter the initial states q0 and q′0, and
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that there are no transitions (qf , b, q) and (q′f , b, q′) leaving from the �nal
states qf and q′f .

First, we de�ne three morphisms Θ, ` and r as follows.
Let θ : (A ∪∆ ∪∆′)∗ → (A ∪B)∗ be the morphism de�ned by

θ(a) = a for a ∈ A, and θ((p, b, q)) = b for (p, b, q) ∈ ∆ ∪∆′.

Also, let ` = `d2n and r = rd2n , that is, `, r : C∗ → (C ∪ {d})∗, where d is a
new symbol, and

`(c) = d2nc, and r(c) = cd2n for c ∈ C.

The morphism g2 : (A ∪∆ ∪∆′)∗ → (C ∪ {#, d})∗ becomes de�ned by

g2 = rh2θ.

It is immediate that g2(z) ∈ (Cd2n)∗ for all z ∈ (A∪∆∪∆′)∗. The shift letter
# does not belong to any image of g2. The notation wd−m means w(dm)−1,
that is, dm is removed as a su�x of the word w, and similarly d−mw is an
abbreviation for (dm)−1w. The morphism g1 : (A∪∆∪∆′)∗ → (C∪{#, d})∗
is de�ned by

g1((q0, b, qj)) = #rh1(b)d−2j ,

g1((qi, b, qj)) = d2irh1(b)d−2j for i 6= 0,

g1(a) = `h1(a) for a ∈ A,

g1((q′0, b, q
′
n)) = `h1(b)d2n,

g1((q′0, b, q
′
j)) = `h1(b)d2j+1 for j 6= n,

g1((q′i, b, q
′
n)) = d−(2i+1)`h1(b)d2n for i 6= 0,

g1((q′i, b, q
′
j)) = d−(2i+1)`h1(b)d2j+1 for i 6= 0 and j 6= n.

The morphism g1 decodes the behaviour of the combined automata that
accepts the language KA∗K ′ in the sense that g1(z) ∈ #(Cd2n)∗ if and only
if z = uvu′ for some words u ∈ ∆∗, v ∈ A∗, and u′ ∈ ∆′∗ such that θ(u) ∈ K
and θ(u′) ∈ K ′. Therefore, we have

g1(z) ∈ #(Cd2n)∗ ⇐⇒ θ(z) ∈ KA∗K ′. (4.1)

Finally, let π = πC be the projection π : (C ∪{#, d})∗ → C∗ that deletes
the letters d and #. Then we have

πg1 = h1θ and πg2 = h2θ. (4.2)

Let v be a word in πA(EG(#, g1, g2)) and let z be such that v = πA(z)
and g1(z) = #g2(z). Since g2(z) ∈ (Cd2n)∗, also g1(z) ∈ (Cd2n)∗, and it
follows by (4.1) that θ(z) ∈ KA∗K ′. Consequently, by (4.2), we have

h1θ(z) = πg1(z) = π(#g2(z)) = πg2(z) = h2θ(z).
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Hence, θ(z) ∈ E(h1, h2) ∩ KA∗K ′ and also v = πAθ(z) ∈ πA(E(h1, h2) ∩
KA∗K ′) as required.

Conversely, let v ∈ πA(E(h1, h2) ∩ KA∗K ′), say v = πA(kvk′) with
k ∈ K, k′ ∈ K ′ and h1(kvk′) = h2(kvk′). Then there exists a word z = uvu′

with u ∈ ∆+, u′ ∈ ∆′+, θ(u) = k, θ(u′) = k′, θ(z) = kvk′ and g1(z) =
#rh1θ(z) = #rh2θ(z) = #g2(z). Therefore, v = πA(z) ∈ πA(EG(#, g1, g2)),
which completes the proof.

From the two above lemmata, we obtain immediately the following result.

Theorem 12. Every recursively enumerable language L ⊆ A∗ is a projection
of a shifted equality set, that is, L = πA(EG(a, g1, g2)) for a letter a and some
nonerasing morphisms g1 and g2.

We remark that from this result it is very easy to �nd again Theorem 9.
Indeed, if L = πA(EG(a, g1, g2)) for some morphisms g1 and g2 de�ned on
an alphabet X, one gets L = πA(E(h1, h2) ∩ dX∗) where d is a new letter,
h1(d) = d, h2(d) = da and hi(x) = gi(x) for x ∈ X. Note also that the
regular language dX∗ is quite simple!

Two morphisms, g1, g2 : A∗ → B∗ are said to be pre�x-incomparable, if
for each letter a ∈ A, g1(a) is not a pre�x of g2(a) and g2(a) is not a pre�x
of g1(a).

Lemma 13. Let L = EG(#, h1, h2) where h1 and h2 are nonerasing mor-
phisms de�ned on the alphabet A. Then L = πA(EG(#, g1, g2)) for some
pre�x-incomparable nonerasing morphisms g1 and g2.

Proof. Let h1, h2 : A∗ → X∗, and let c and d be new letters. Set B = A∪{d}
and Y = X ∪ {c, d}. Recall that `c, rc : X∗ → Y ∗ are de�ed by `c(x) = cx
and rc(x) = xc. Let g1 : B∗ → Y ∗ and g2 : B∗ → Y ∗ be de�ned by

g1(d) = d and g1(a) = rch1(a) for a ∈ A,

g2(d) = cd and g2(a) = `ch2(a) for a ∈ A.

Clearly, g1(b) and g2(b) are pre�x-incomparable morphisms. We have, for
each u ∈ A∗, that

#g2(ud) = #g2(u)cd = #`h2(u)cd = r(#h2(u))d. (4.3)

Now, if u ∈ L, that is, h1(u) = #h2(u), then it follows from (4.3) that
#g2(ud) = r(#h2(u))d = rh1(u) = g1(ud). Hence u = πA(ud) ∈ πA(EG(#, g1, g2)).

Conversely, assume that u ∈ πA(EG(#, g1, g2)). Then there exists a
word v such that u = πA(v) and g1(v) = #g2(v). By the de�nitions of the
morphisms g1 and g2, we must have v = ud. From (4.3), we obtain #g2(v) =
r(#h2(u))d = g1(v) = g1(ud) = rh1(u)d. Thus r(#h2(u))d = r(h1(u)),
which implies #h2(u) = h1(u) and u ∈ EG(#, h1, h2) as required.
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A language L ⊆ A∗ is a star language, if L = L∗, that is, if it is closed
under concatenation.

As seen in the preliminaries, equality sets are star languages. So it is clear
that projections of equality sets are recursively enumerable star languages.
As a matter of fact, the following result shows that these two families coin-
cide.

Theorem 14. Every recursively enumerable star language is a projection of
an equality set, that is, for every recursively enumerable L ⊆ A∗, there are
nonerasing morphisms g1 and g2 such that L∗ = πA(E(g1, g2)).

Proof. From Theorem 12, we have that L∗ = πA(EG(#, h1, h2)) for some
nonerasing morphisms h1 and h2 de�ned on an alphabet X. When we apply
Lemma 13 to the shifted equality set EG(#, h1, h2), we can, without loss of
generality, assume that the morphisms h1 and h2 pre�x-incomparable. Let
d be a new letter and set Y = X ∪ {d}. Let us de�ne the morphisms g1 and
g2 by:

g1(d) = d and g1(x) = h1(x) for x ∈ X,

g2(d) = d# and g2(x) = h2(x) for x ∈ X.

Now, if u ∈ L∗, we have g1(du) = dh1(u) = d#h2(u) = g2(du) and from
(4.3) #g2(ud) = r(#h2(u))d = rh1(u) = g1(ud). Hence u ∈ πA(E(g1, g2)).

Conversely, let u ∈ πA(E(g1, g2)). Then u = πA(v) with g1(v) = g2(v).
Since for each x ∈ X, h1(x) and h2(x) are pre�x-incomparable, we have
v = dv1 . . . dvn where each vi is in X∗. Now,

g1(v) = dh1(v1) . . . dh1(vn) = g2(v) = d#h2(v1) . . . d#h2(vn).

Therefore h1(vi) = #h2(vi) for each i, and πA(vi) ∈ L∗. From these we
obtain u = πA(v) = πA(dv1 . . . dvn) = πA(v1 . . . vn) ∈ L∗, which proves the
claim.

We conclude with a remark that Theorem 9 is a direct consequence of
this result. Indeed, let L ⊆ A∗ be a recursively enumerable language, d a
new letter and set D = A ∪ {d}. From Theorem 14, we obtain (Ld)∗ =
πD(E(g1, g2)), and hence

Ld = (Ld)∗ ∩A∗d = πD(E(g1, g2) ∩ π−1
D (A∗d))

and so L = πA(E(g1, g2) ∩ π−1
D (A∗d)) as required.
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