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Abstract

Dynamic logic is a logic to reason about the dynamics of (natural

or arti�cial) systems in general, ranging from the e�ects of actions of

human agents to the behaviour of arti�cial agents and software systems.

Therefore it is to be expected that in AI it can be fruitfully employed

both to represent knowledge about the dynamics of the domain at hand

as well as to describe / specify (the dynamic behaviour of) AI systems

themselves. A typical example of the former is the description of the

e�ects of actions (of humans, for example) in the commonsense world,

while the speci�cation of a particular reasoning system would be of the

latter type. In this paper a number of examples are given to illustrate the

usefulness (and wide scope!) of dynamic logic for AI.

1 Introduction

Originally, dynamic logic has been proposed in computer science as a logic for
reasoning about programs in order to verify their correctness. Later it was
realised that dynamic logic could also be fruitfully employed as a logic for rea-
soning about actions more in general. Recently in AI and computer science the
concept of an intelligent agent has become in the limelight very much, with both
intelligent robots and software agents (softbots) as intended applications. Since
the various attitudes an intelligent agent is supposed to possess can be captured
as actions operating on a complex mental state, for the logical description of
(the behaviour of) agents one might also resort to dynamic logic (which should
then be combined with other modal logics to cater for a description of an agent's
mental state).
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In this paper some examples are given we have encountered during our re-
search in the past decade illustrating how dynamic logic might constitute a basis
of a logic for reasoning about actions and agents. These include a range of ap-
plications, from database updates to the description of agent attitudes (belief
revision, commitments, obligations) and reasoning about actions in a common-
sense environment, where we touch upon the infamous frame problem. The
paper contains a rather personal choice of topics and the paper is certainly not
meant as a complete overview of dynamic logic and its uses. Furthermore, the
topics that are treated are only sketched, without providing all the sordid de-
tails, to get a 
avour of them, since a full treatment is beyond the scope of the
present paper. (For this the reader is referred to other papers.)

2 Dynamic Logic As a Basic Logic of Actions

Dynamic logic is a modal logic especially designed to reason about actions.
Historically it dates back to work by Vaughan Pratt [40], Bob Moore [39], and
David Harel [19, 18], and it has been used for reasoning about programs, thus
providing a formalism for program veri�cation and speci�cation [25, 6]. 1 It is
very much akin to Hoare's logic [20] for program correctness, and can in fact be
considered as a generalisation of this logic.

In this section we will treat the basic idea behind an elementary form of
(propositional) dynamic logic2, which will serve as a basis for the later logics in
this paper.

2.1 Language

For the purpose of this basic treatment we introduce the following logical lan-
guage LDL. Assume a set P of propositional atoms, and a set A of atomic
actions. We will use p; q (with possible marks and indexes) to denote elements
from P, and a; b (with possible marks and indexes) to denote elements from A.

De�nition 2.1 The logical language LDL and action language LACT are given

as the least sets closed under the clauses:

1. P � LDL

2. A � LACT

3. '; 2 LDL implies :';' ^  ;' _  ;'!  ;'$  2 LDL

1We note that the term \dynamic logic" is somewhat overloaded, since in particular the
Amsterdam School in logic employs the term for a dynamic interpretation of classical (non-
modal) logic, mostly used in linguistic applications, such as for a formal treatment of dis-
courses [16]. This branch of \dynamic logic" will not be treated in this paper, although we'll
touch on it when we'll consider multiple agent updates in section 7.2.1.

2Propositional Dynamic Logic or PDL is due to Fischer & Ladner [13]
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4. ' 2 LDL; � 2 LACT implies [�]'; h�i' 2 LDL

5. ' 2 LDL implies '? 2 LACT

6. �; � 2 LACT implies �;�; �+ �; �
� 2 LACT

Here we see that the logical language LDL is an extension of propositional
logic with modal operators of the form [�] (and duals h�i) where � is an el-
ement from the action language LACT . This action language is here taken to
be a very basic programming language, viz. that of the regular expressions over
`action alphabet' A. The `;' operator denotes sequential composition (`followed
by'), `+' means (nondeterministic) choice, and `�' denotes arbitrary �nite repe-
tition. (This choice of operators is `classic' for dynamic logic (cf. [18, 25, 50]);
in this paper also di�erent operators such as `&' (parallel composition) and ` '
(action negation) are employed, but in this section we'll restrict ourselves to
the familiar ones.) Finally the action expression '? stands for a test whether
the logical expression ' holds in the current state. This is typically used in an
expression involving a choice operator to guide control of this choice, as in e.g.
the expression p?; a+ :p?; b, where p 2 P and a; b 2 A.

2.2 Models

The language LDL is given an interpretation on the basis of Kripke-models, as
is usual for a modal language. We will use tt and ff for the truth values.

Formally a Kripke model for language LDL is a structure of the following
form:

De�nition 2.2 A Kripke model for LDL is a structureM of the form hS; �; ri,
where

� S is a non-empty set (the set of states);

� � : S ! (P ! ftt; ffg) is a truth assignment function to the atoms per

state;

� r : LACT ! 2S�S are state transition relations per action, satisfying the

following properties:

1. r('?) = f< s; s > j M; s j= 'g, whereM; s j= ' is de�ned below;

2. r(�;�) = r(�) � r(�), where � stands for the relational composition;

3. r(�+ �) = r(�) [ r(�);

4. r(��) = r(�)?, where ? stands for the re
exive, transitive closure

operator on relations

Truth of a formula ' 2 LDL in a state s 2 S in a model M = hS; �; ri
(written (M; s) j= '), is de�ned by the following.

3



De�nition 2.3 LetM = hS; �; ri be a given model and s 2 S. Then:

� M; s j= p i� �(s)(p) = tt, for p 2 P;

� M; s j= :' i� notM; s j= ';

� M; s j= ' ^  i�M; s j= ' andM; s j=  ;

� M; s j= ' _  i�M; s j= ' orM; s j=  ;

� M; s j= '!  i�M; s j= ' impliesM; s j=  ;

� M; s j= '$  i�M; s j= ' bi-impliesM; s j=  ;

� M; s j= [�]' i�M; s
0 j= ' for all s0 with r(�)(s; s0);

� M; s j= h�i' i�M; s
0 j= ' for some s0 with r(�)(s; s0);

A formula ' is valid in a modelM = hS; �; ri, denotedM j= ', ifM; s j= '

for every s 2 S. A formula ' is valid with respect to a set MOD of models,
denoted MOD j= ', if M j= ' for every model M 2 MOD. If MOD is the
set of all Kripke models of the above form, we generally write j= ' instead of
MOD j= '.

2.3 The Logic PDL

The simple propositional dynamic logic introduced above can be �nitely axiom-
atized by the following system:

� any axiomatisation of propositional logic

� [�]('!  )! ([�]'! [�] )

� ['?] $ ('!  )

� [�;�]'$ [�][�]'

� [�+ �]'$ [�]' ^ [�]'

� [��]'! '

� [��]'! [�][��]'

� [��]('! [�]')! ('! [��]')

� [�]'$ :h�i:'

and rules modus ponens (MP) and

� '

[�]'
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Theorem 2.4 The above axiomatic system is sound and complete with respect

to the class of Kripke models of De�nition 2.2.

We note that taking di�erent choices for the basic operators in the action
language, and especially further extensions to these, has a large in
uence on the
axiomatisation. This is the reason that sometimes a quite di�erent axiomatic
system is obtained. However, as the above system is rather standard in the
literature (e.g. [50]), we have presented it here as a basis.

3 Dynamic Update Logic

Since dynamic logic is suited par excellence for reasoning about the dynamics
of systems, it may also be used for the description of performing updates on a
database (or information system more in general). In [48] this idea is elaborated.
Here the logic Propositional Dynamic Database Logic (PDDL) is proposed for
rather simple update programs. These are in fact of the form of regular programs
as in general propositional dynamic logic, where the atomic actions are now
instantiated to updates of the form Ip and Dp for atoms p, denoting insertion
and deletion of this atomic fact, respectively. Actually, there are two versions of
these updates, passive ones and active ones, where the latter are parametrized
by a logic program H, serving as a background theory, and which are denoted
as THp and DH

p. Here a logic program is a �nite set of program clauses of the
form p p1; : : : ; pn, where all pi and p are atoms. Given a logic program H, we
de�ne the set Der(H) of derived atoms in H as the set of all atoms occurring
as a head of some clause in H, and the set Base(H) of base atoms in H as
PnDer(H).

The semantics of this logic is as in the general case, only now the speci�c
atomic actions should be catered for. To this end we need some additional
de�nitions.

De�nition 3.1 � LetM = hS; �; ri be a Kripke model. The function prop :
S ! 2P is given by prop(s) = fp 2 P j �(s)(p) = ttg.

� A Kripke modelM = hS; �; ri is full i� for all P � P there exists a state

s 2 S such that prop(s) = P .

� Let H be a logic program. The function min
H : 2P ! 2P is given by:

min
H(P ) is the minimal set P 0 (w.r.t. set inclusion) such that (P \

Base(H)) � P
0 and such that if p  p1; : : : ; pn 2 H and p1; : : : ; pn 2 P

0

then also p 2 P 0.

Now we can state the semantics of (passive and active) insertion and deletion:

De�nition 3.2 � r(Ip) = f< s; s
0
> j prop(s0) = prop(s) [ fpgg
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� r(Dp) = f< s; s
0
> j prop(s0) = prop(s)nfpgg

� r(IHp) = f< s; s
0
> j prop(s0) = min

H(prop(s) [ fpg)g

� r(IHp) = f< s; s
0
> j prop(s0) = min

H(prop(s)nfpg)g

The axiomatisation of this logic includes the following axioms (besides the
familiar ones from PDL):

� [Ip]p

� [Dp]:p

� hIpitt

� hDpitt

One also have to deal with non-changes by means of the so-called frame

axioms:

� q ! [Ip]q, for q 6= p

� :q ! [Ip]:q, for q 6= p

� q ! [Dp]q, for q 6= p

� :q ! [Dp]:q, for q 6= p

As to active updates we have analogous axioms:

� [IHp]p

� [DH
p]:p

� hIHpitt

� hDH
pitt

� q ! [Ip]q, for q 2 Base(H)nfpg

� :q ! [Ip]:q, for q 2 Base(H)nfpg

� q ! [Dp]q, for q 2 Base(H)nfpg

� :q ! [Dp]:q, for q 2 Base(H)nfpg

However, to deal with derived atoms we need some more de�nitions:

De�nition 3.3 Let H be a logic program.
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� Let q 2 Der(H) such that

q  p11; : : : p1n1

: : :

q  pm1; : : : pmnm

are all program clauses in H with q as head. Then the completion formula
of q in H, denoted Hq, is de�ned as:

Hq = (p11 ^ : : : ^ p1n1) _ : : : _ (pm1 ^ : : : ^ pmnm)

� The binary relation depH � P � P is de�ned as: (p; q) 2 depH i� there

is a program clause p  q1; : : : ; qn 2 H such that q = qi for some i. The

relation dep+H is the transitive closure of depH .

� An atom p is said to be recursive in H if there is an atom q such that

(p; q) 2 dep
+
H and (q; q) 2 dep

+
H . The set of recursive atoms in H is

denoted Rec(H). H is called recursive if Rec(H) 6= ;.

� A mutual dependency group of H is non-empty subset P of rec(H) such

that 8p; q 2 P : (p; q) 2 dep+H .

Now we have the following axioms pertaining to derived atoms:

� [IHp](q $ Hq), for q 2 Der(H)

� [DH
p](q $ Hq), for q 2 Der(H)

� [IHp](_q2P q ! _q2PHq[ff=P ])
for P a mutual dependency group of H

� [DH
p](_q2P q ! _q2PHq[ff=P ])

for P a mutual dependency group of H

(Here '[ff=P ] stands for the formula ' in which all occurrences of atoms p 2 P
are replaced by ff.)

The last two axioms are minimization axioms: they state that if recursive
atoms are true, then there must be an \external reason" for this; the atoms in
a mutual dependency group cannot be true only because other atoms in this
group are true. If a recursive atom in such a group is true, then the completion
formula for some atom in the group must be true, even if the recursive atoms
in the completion formula are replaced by ff.

In [48] it is shown that this axiomatization of PDDL is complete with respect
to so-called full structures. (In that paper also a complete axiomatization is
given for all structures, but we will not elaborate on this here.)
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Next in [49] this idea is generalised to the �rst-order case, which of course
in the context of databases is almost a `must'. In fact in this paper two update
logics are proposed, both based on (�rst-order) dynamic logic.

The �rst one is Relational Algebra Update Logic (RAUL), which can be
viewed as an extension of relational algebra with assignment. The second logic
is Dynamic Database Logic (DDL) in which the atomic updates are updates of
the extension of predicates and assignments, which are updates to the values
of attributes construed as updatable functions. DDL can be viewed as a true
extension of PDDL to the �rst-order case. We will not go into this here further,
but refer to [49] for this, and restrict ourselves here to a brief sketch of RAUL.

In RAUL we consider as actions typically assignments of the form p := e,
where p is a predicate symbol, and e is a relational algebra expression, which has
a relation (i.e., a set of tuples) as its meaning. Relational algebra expressions
are of the form e1 [ e2; e1ne2; e1 � e2; e[k1; : : : ; kn]; e where ', denoting union,
di�erence, product, projection and selection (here ' is a test with which one
can test whether attributes are equal to a term or to each other), respectively.
We omit here the formal semantics of these expressions, and go straight to the
logic. Typical axioms in RAUL include for example:

� qT ! [p := q]pT

� :qT ! [p := q]:pT

� [p := e1 [ e2]pT $ ([p := e1]pT _ [p := e2]pT )

� [p := e1ne2]pT $ ([p := e1]pT ^ :[p := e2]pT )

� [p := e1 � e2]pT1T2 $ ([p1 := e1]p1T1 ^ [p2 := e2]p2T2)

� hp := eitt

Again one also have to deal with non-changes by means of frame axioms:

� qT ! [p := e]qT , for q 6= p

� fT = t! [p := e]fT = t

expressing that, by assigning to an updatable predicate, other updatable pred-
icates and updatable functions do not change.

4 Dynamic Semantics of Reasoning Systems

In the previous section we have seen how dynamic logic can be applied to de-
scribe the dynamics of updating a database or an information system more in
general. In the case of active updates this also involved some reasoning already
due to the logic program stored in the information system that served as a
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background theory, in particular pertaining to derived atoms. Of course one
may turn to a more advanced system of reasoning. Also such more advanced
reasoning systems themselves can be analyzed by means of dynamic logic. The
basic idea behind this is that reasoning systems like any other dynamic system
display a certain behaviour that can also be thought of being brought about by
reasoning steps. These may be `classical steps' like applying deduction, but {
and in AI this is even more important { also reasoning steps in a `non-standard'
logic or reasoning system. One may, for instance, think of default reasoning,
but there are many other examples as well.

4.1 Descriptive Dynamic Logic

For example, Sierra et al. [46] have applied dynamic logic for analysing / de-
scribing reasoning by means of a re
ective (multi-language) architecture, where
typical reasoning steps include `re
ection' steps, such as moving from an object
level to a meta-level where one e.g. may reason about one's knowledge and ig-
norance on the assertions on the object level. More in general in multi-language
architectures one employs so-called bridge rules to infer / transfer / translate
information between two di�erent units (that is to say, languages or, if one
thinks more in terms of an implementation of such an architecture, modules).
Of course also inferences within a unit may take place.

In their set-up called Descriptive Dynamic Logic they tailor (propositional)
dynamic logic to suit their purpose by taking as atomic formulas so-called
\quoted" formulas of the form k : d'e, where k is a unit identi�er denoting
a unit uk of the system, and ' is a formula in the language of that unit. `Sub-
atomic' programs are inferences (deduction steps) by means of (intra-unit or
inter-unit) inference rules, written as d� `kl 'e, where k and l refer to the units
uk and ul in the system, respectively (if k = l, we have an intra-unit inference),
and � is a set of formulas in the language of uk and ' is a formula in the
language of ul.

Atomic programs in the sense of propositional dynamic logic are now taken
to be non-deterministic choices of subatomic actions.3 For instance, we have
atomic actions like `kl=

S
f� j � is of the form d� `kl 'eg, where

S
stands

for the nondeterministic choice of the subatomic actions that are given to it as
argument.

In this language one may express the case where a unit uk is endowed with
the modus ponens inference rule by the (valid) formula:

MP : h�i(k : d'e ^ k : d'!  e)! h�;`mp
kk ik : d e;

where the modus ponens program `mp
kk =

S

;�df
; 
 ! �g `kk �e.

Other typical axioms in this logic include:

3We employ here a somewhat di�erent terminology than in [46] to stay in line with the
rest of our paper.
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� hd� `ij  eitt$
V
'2� i : d'e

� [d� `ij  e]j : d e

� hd� `ij  eip! p, for atomic proposition p 6= j : d e

The �rst one expresses that an application of a deduction step (viewed as
a program) d� `ij  e succeeds if and only if the formulas in the antecedent �
are all established within unit ui. The second one says that an application of
the deduction step d� `ij  e (when it succeeds) results in a state where the
conclusion  is established in unit uj . The third is again a kind of frame axiom:
after application of a step d� `ij  e every atom p di�erent from j : d e that
is true was already true before application (informally, of course, since the step
has no bearing on such an atom).

In [46] a complete axiomatisation of the logic is given. Furthermore it is also
indicated how this logic might be used to describe a re
ective architecture for
non-standard reasoning methods like default reasoning.

5 Dynamic Deontic Logic

In this section we consider another application of dynamic logic, viz. reasoning
about the deontics of actions. Deontic logic itself is an old branch of philosoph-
ical (modal) logic dating back to Mally [32], but which has become a serious
subject of study since the seminal work of Von Wright [54, 55]. Deontic logic
is the logic of obligation, prohibition, and permission and can, in principle, be
applied both to obligated / forbidden / permitted states of a�airs and obligated
/ forbidden / permitted actions. In the literature these two forms of deontic
logic have been referred to as ought-to-be and ought-to-do logic, respectively, and
it is mostly not made explicit which form is treated / meant. In [34] an explicit
ought-to-do logic has been proposed, based on dynamic logic. The main idea
here was inspired by work of Anderson [1], who tried to reduce deontic logic to
alethic modal logic. The crux of his idea was that something (') is forbidden
i� violation of the constraint ' has some undesirable e�ect. In [34] this idea is
applied explicitly to actions: an action if forbidden i� performing it leads to an
undesirable e�ect. This is easily formalised in dynamic logic.

5.1 The Logic PDeL

In order to reason about the deontics of actions we take the following language,
where we assume a special propositional constant V 2 P, denoting a state of
`violation' of a deontic constraint.

De�nition 5.1 The logical language LDeL and action language LACT0 are

given as the least sets closed under the clauses:
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1. P � LDeL

2. A � LACT0

3. '; 2 LDeL implies :';' ^  ;' _  ;'!  ;'$  2 LDeL

4. ' 2 LDeL; � 2 LACT0 implies [�]'; h�i' 2 LDeL

5. �; � 2 LACT0 implies �;�; �+ �; �&�; � 2 LACT0

Thus in the language we use for deontic purposes we employ a slightly di�er-
ent set of action operators, viz. sequential composition, alternative composition
(choice), parallel composition and action negation(!). The latter is a little non-
standard in dynamic logic. It expresses that the action is not performed. This
construct will enable us to express the obligation of an action below.

Models for the language LDeL are like those for LDL, but of course, one
has now to cater for the operators & and . Since we like the (interpretations
of) the operators to satisfy the rules of a Boolean algebra, this is (surprisingly)
rather involved (due to the presence of the sequential composition `;'), so that
we do not give its full de�nition here. Here it su�ces that & and are very
much resembling an intersection and complement operator on the accessibility
relations (like + is resembling an union operator) (cf. [34, 9]).4

We can now de�ne the deontic operators as abbreviations as follows:

De�nition 5.2 � F� � [�]V, i.e., the action � is forbidden i� performing

� leads to a state of violation;

� P� � :F�, i.e., the action � is permitted i� it is not forbidden;

� Obl� � [�]V, i.e., an action � is obligated i� not-doing it leads to a

violation.

Although the basic ideas behind these de�nitions are very simple indeed, it
leads already to some interesting deontic properties:

Proposition 5.3 1. (Obl� _Obl�)! Obl(�+ �)

2. P(�+ �)$ (P� _P�)

3. F(�+ �)$ (F� ^ F�)

4. Obl(�&�)$ (Obl� ^Obl�)

5. P(�&�)! (P� ^P�)

6. (F� _ F�)! F(�&�)

4With respect to the negation of sequential composition we have that in the semantics it
holds that �;� = �+ (�;�).
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7. Obl(�;�)$ (Obl� ^ [�]Obl�)

8. P(�;�)$ h�iP�

9. F(�;�)$ [�]F�

Although these properties are rather intuitive, one might consider alternative
approaches with (slightly) di�erent ones. For example, in legal reasoning it
is not always the case that everything that is not forbidden is automatically
permitted, so that one might also consider a class of actions that is neither
(explicitly) forbidden nor (explicitly) permitted (cf. e.g. [47]). Sometimes also
a property like (Obl�_Obl�)! Obl(�+ �) and, hence, Obl�! Obl(�+ �)
is considered undesirable. This property is called Ross's paradox, and it is
counterintuitive if one reads the choice operator in such a way that the agent
is free to choose its alternatives him/herself: \if one ought to mail the letter,
then one ought to mail the letter or burn it" sounds counterintuitive in this
reading. Deontic logic traditionally has a history of such paradoxes.5 Another
paradox was discovered by Van der Meyden [33] concerning permission in our
approach, where only the `end' situation is decisive as to whether the action is
permitted: P(�;�) $ h�iP� is equivalent with P(�;�) $ h�i(h�i:V), which
has as a consequence that doing � resulting in a violation state while then
doing � resolving the violation is permitted according to our de�nitions. So
this is a kind of \ the end justi�es the means" approach, and while this might
be acceptable for some applications, it is obviously not the case for all uses
/ readings of permission, so that one should then use a stronger notion. In
fact several of these alternatives have been proposed. We ourselves have also
considered alternatives to deal with these so-called paradoxes (e.g. [9]), but most
of them can be viewed harmless once one realizes what exactly the meanings of
these are, and one is then able to `�ne-tune' these notions to one's needs.

Deontic logic can be employed for the representation of knowledge in do-
mains where obligations, permissions and prohibitions occur directly, such as
the legal reasoning domain [41], but its application goes beyond that. It has
also been proved very useful in the description of systems where it is important
to distinguish ideal from actual behaviour. Ideal behaviour is then speci�ed by
using deontic operators which can then be well distinguished from actual be-
haviour. So here we see that there are more or less implicit (ideal) constraints
that can be (actually) violated by the system. Examples of such systems in-
clude fault-tolerant software systems [5], but also information systems such as
databases where there may be so-called soft constraints that every system state
ought to / should satisfy, but again might be violated [38]. It has recently been
recognized that being able to represent such a violation (by e.g. the use of deon-
tic operators) is very helpful to specify for instance a way to recover from such

5To be fair, other modal logics have some of this trouble as well; for instance epistemic logic
su�ers from the so-called logical omniscience problem(s), which is very much akin conceptually
and technically to the deontic paradoxes (cf. [36]).
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a violation. Soft constraints typically occur in systems where not all actors /
agents in the system are under complete control and have a certain autonomy so
that they can choose themselves to violate these constraints. A commonsense
example would be an automated library system where nevertheless the people
borrowing books may choose to return their books too late according to the
library's regulations.

6 Typical E�ects of Commonsense Actions and

the Frame Problem

In AI there has been considerable e�ort to give an adequate treatment of reason-
ing about actions in a commonsense context. It has appeared to be a very hard
problem to describe the e�ects and particularly the non-e�ects of actions. This
problem has become known as the frame problem. Related problems include
the speci�cation of the necessary preconditions for an action to be performed
successfully (or intendedly), also known as the quali�cation problem, and the
precise determination of the derived e�ects of an action, the rami�cation prob-

lem (cf. [43]). Although there has been a lot of research on this problem and
de�nitely some progress have been made, I believe that in general the frame
problem and its related problems remain highly problematic. The problem is
the space of possible (non-) e�ects and preconditions / quali�cations and rami�-
cations is potentially in�nite, or at least astronomical in practical cases, so that
it is virtually impossible to give such a precise speci�cation in those cases, and
neither do we really want to. What is searched for is a `convenient' method to
deal with this problem, which triggered a lot of research in nonmotonic reason-
ing (such as default reasoning) with the idea in mind that `by default', unless
explicitly speci�ed or deduced otherwise, aspects / features of the world remain
the same. (This is sometimes called `inertia', but one has to bear in mind that
this has nothing to do with physics, but rather with the reasoner's mental lazi-
ness to reckon with all conceivable changes/preconditions/rami�cations of the
world due to the performance of some action! But this laziness on the part of
the reasoner is not to be blamed on him, since s/he has to act in the world in
a real-time fashion...)

6.1 Preferential Action Semantics

In [35] an approach to the speci�cation of actions dealing with some of the
issues mentioned above is proposed which is based on the use of dynamic logic
(inspired by work reported in [31] using the di�erent but related framework
of Dijkstra's weakest precondition calculus as well as the Features and Fluents
approach as taken in [42]). Essentially this approach consists of specifying
per action which aspects of the world, in this area often called features, are
de�nitely set to some value, which are framed, that is subject to inertia, and

13



which 
uents are considered to be truly variable, expressing that their values
may be nondeterministically change during the execution / performance of the
action at hand. In the literature on action changes and the frame problem it has
proved to be also useful to sometimes `release' features temporarily from being
framed (i.e. being subject to inertia) so that they become temporarily variable
(cf. e.g. [42, 24]).

The action language that we consider here is the following variant of the
basic one. Besides a set A of atomic actions we assume a set F of feature

variables.

De�nition 6.1 The action language LPA is given as the least set closed under

the clauses:

1. A � LPA

2. �; � 2 LPA implies �� �; �+ �; �k�; if b then � else � 2 LPA, where
b is a boolean test on feature variables

3. � 2 LPA implies �# 2 LPA

Thus here we have atomic actions, and compositions of these by means of
the operators � (restricted choice), + (liberal choice), k (parallel composition)
and a conditional composition operator. Moreover we include compositions by
means of the operators # (preferred behaviour). Note the lack of a sequential
composition in this language.6

To render semantics to these action expressions, we need to �x some things
�rst. First of all, we endow an atomic action a 2 A with a `signature' (seta;
framea; releasea), where seta; framea; releasea � F , and releasea � framea,
describing the status of the feature variables w.r.t. this action: seta is the set
of feature variables that are set by a, framea is the set of variables that are
framed while performing a, of which the variables in releasea are released in
the sense we mentioned above. For convenience we also use the abbreviations
inerta = frameanreleasea for the feature variables that are subject to inertia
while performing action a and vara = Fn(seta [ framea) for the feature vari-
ables that are `truly variable', i.e. are known to be subject to change of their
values in a nondeterministic way.

In this context we de�ne a state s as a function: F ! V, where V is a set
of feature values (in many examples this set may be taken to be the booleans).
The set of states is denoted �. The state sfd=xg, with s 2 �; d 2 V; x 2 F ,
is de�ned as the state s0 satisfying s0(x) = d, and s

0(y) = s(y) for y 6= x. For
X � F and s 2 �, we de�ne varyX(s) = fs0 j s0 = sfv1=x1; v2=x2; : : : ; vn=xng

6This operator may be added, but as it is not clear what it means to have the preferred
behaviour of a sequentially composed action, one has to take care that the # operator cannot
be applied to such an action. Thus a layered language is needed which we will not de�ne here.
Here we only note that in the logical language a property of a sequentially composed scenario
�;�, like [�;�]', can be expressed by [�][�]'.
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for any subsets fv1; v2; : : : ; vng � V; fx1; x2; : : : ; xng � Xg. Furthermore, for
S � �, we put varyX(S) =

S
s2S varyX(s). Note that vary has the property

that varyX(varyY (S)) = varyX[Y (S).
Now we are ready for the formal semantics of our actions expressions:
For atomic actions a 2 A we stipulate an accessibility relation r(a) � ���

that yields the behaviour of a with respect to the variables in seta. Thus,
r(a)(s; s0) captures the setting of the variables in seta by means of a.

To cater for the other variables, we include in the semantics of an action �

(given an input state) a number of items, viz.

1. the set of all states that possibly may result as a consequence of performing
the action �, when considering all the variables apart from the set ones in
set� truly variable,

2. the set of all states that are preferred / expected as a consequence of
performing the action �, taking inertia of the inert variables in inert�

into account, and

3. a triple (set�; frame�; release�) that records the exact resulting status
of the variables during performance of � (for future reference, see below).

For atomic actions this is given by means of the semantic function [[�]]: [[a]](s) =

f(
[

s0:r(a)(s;s0)

varyvara[framea(s0);
[

s0:r(a)(s;s0)

varyvara[releasea(s0); (seta; framea; releasea))g

For compound actions � we also need to establish the status of the variables.
We do this again by sets set�, frame� and release�, and use abbreviations
inert� = frame�nrelease� and var� = Fn(set� [ frame�).

The semantics of the conditional composition operator is as usual. With
respect to the other operators we de�ne:

[[�4�]](s) = [[�]](s) 4 [[�]](s)

for 4 = �;+; k and

[[�#]](s) = #([[�]](s))

where Z14Z2 =
S
z12Z1;z22Z2

z14z2 for4 = �;+; k and #(Z) =
S
z2Z #(z)

and

� regarding the operator � we de�ne:

(S1; S
0

1; (set1; frame1; release1))� (S2; S
0

2; (set2; frame2; release2)) =

f(S1; S
0

1; (set1; frame1; release1)); (S2; S
0

2; (set2; frame2; release2))g
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� regarding the operator + we have:

(S1; S
0

1; (set1; frame1; release1)) + (S2; S
0

2; (set2; frame2; release2)) =

f(S3; S
0

3; (set1; frame3; release3)); (S4; S
0

4; (set2; frame4; release4))g

where S3 = vary(set2[frame2)nset1(S1),
S
0
3 = vary(set2[release2)nset1(S01),
S4 = vary(set1[frame1)nset2(S2),
S
0
4 = vary(set1[release1)nset2(S02),
frame3 = (frame1 [ frame2 [ set2) n set1,
release3 = (release1 [ release2 [ set2) n set1,
frame4 = (frame1 [ frame2 [ set1) n set2,
release4 = (release1 [ release2 [ set1) n set2

� regarding the operator k we have:

(S1; S
0

1; (set1; frame1; release1)) k (S2; S
0

2; (set2; frame2; release2)) =

f(S3 \ S4; S
0

3 \ S
0

4; (set3; frame3; release3))g

where S3; S
0
3; S4; S

0
4 are as in the previous case, and set3 = set1 [ set2,

frame3 = (frame1 [ frame2) n (set1 [ set2), release3 = (release1 [
release2) n (set1 [ set2)

� and �nally regarding the preference operator # it holds that:

#(S; S0; (set; frame; release)) = (S0; S0; (set [ inert; release; release))

where inert = framenrelease.

Note that [[(�#)#]] = [[�#]]. If, for [[�]](s) = f(S1; S
0
1; : : :); (S2; S

0
2; : : :); : : :g,

we use the notation [[�]]1(s) =
S
i Si and [[�]]2(s) =

S
i S

0
i, we may de�ne the

interpretation of formulas [�]' and [�#]' as follows:

� s j= [�]' i� t j= ' for all t 2 [[�]]1(s)

� s j= [�#]' i� t j= ' for all t 2 [[�]]2(s)

Typical validities in this framework are:

� j= [�]'! [�#]'

� j= [�]'! [�k�]'

� j= [(�+ �)#]'! [(�� �)#]'

the �rst expressing that the expected states after execution of an action
constitute a subset of the possible states after executing that action; the second
that concerning all possible successor states those of � are a superset of those
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of the parallel execution �k�; and the third expressing that the expected states
after the execution of the restricted choice between two actions is a subset of
those resulting after a liberal choice.

Typical non-validities are:

� 6j= [�#]'! [(�k�)#]'

� 6j= [(�� �)#]'! [(�+ �)#]'

the �rst stating that in general the set of expected states when executing an
action is not a superset of the set of expected states when executing that action
in parallel with some other action; the second that the expected states after
the execution of the restricted choice between two actions is generally a proper

subset of those resulting after a liberal choice.
Interestingly, in this approach preferred behaviour in terms of applying iner-

tia when possible is explained in terms of `concurrency': if no concurrent events
(or actions as performed by other agents) are known to interfere, the behaviour
of the action at hand in which inertia is applied to the inert variables is pre-
ferred. Thus, for example, the preferred behaviour of a wait action, viewed in
isolation is the same as that of the skip action, the interpretation of which is the
identity function, while viewed in a concurrent context we may have to take into
account the interference of other events. (This is di�erent from the approach
proposed in [31] where the wait action is simply identi�ed with the skip action.)
In [35] we show how typical AI scenarios involving inertia like the infamous Yale
Shooting Scenario can be treated adequately in this set-up.

7 Specifying Intelligent Agents

In the philosophical literature the term `agent' is often used to refer to the
(human) subject who knows, reasons or performs acts. Recently in computer
science the term `(intelligent) agent' has become popular to refer to intelligent
pieces of software (or hardware) that perform `intelligent' tasks autonomously,
that is, in a way that is not directly dependent on the user's actions / re-
quests [56, 23]. Typical examples of software agents (or softbots) are personal
assistents to help and guide the internet user through the ever increasing and
perhaps already almost impenetrable jungle of the World Wide Web. Of course,
another example of these arti�cial agents are robots that should be able to rea-
son and perform intelligent tasks. In this section we will use a modal logic based
on dynamic logic to describe or specify the behaviour of such intelligent agents,
thus providing a theoretic framework on which the realisation of these artefacts
may be founded.
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7.1 Single Agents

First we will discuss the behaviour / attitudes of a single agent in isolation. In
the next subsection we will see what issues have to be tackled when `societies
of agents' are studied. We give a simpli�ed treatment of our work reported
in [26, 27, 28, 37].

7.1.1 Agent Attitudes

Typical agent attitudes include, besides the ability of acting(!), possession and
maintenance of knowledge / belief, and intentional or motivational ones, such
as the possession and maintenance of desires, goals and commitments. These
attitudes may be described in a logic that consists of dynamic logic, enriched
with (modal) operators dealing with such notions as ability, opportunity, knowl-
edge, belief, desires and goals. So we enrich the language with operators
A;O;K;B;D;G.7 Moreover, we introduce special actions revise and commit

in the language to deal with revision of knowledge / belief and the performance
of commitments (which can be seen as an operator that revises the agent's
agenda).

De�nition 7.1 The logical language LSA and action language LACT;SA are the

least extensions of the languages LDL and LACT , respectively, that are closed

under the clauses:

1. ' 2 LSA implies K';B';D';G' 2 LSA

2. ' 2 LSA; � 2 LACT;SA implies A�;O� 2 LSA

3. ' 2 LSA; � 2 LACT;SA implies [[�]]';� �� ' 2 LSA

4. ' 2 LSA implies revise' 2 LACT;SA

5. � 2 LACT;SA implies commit� 2 LACT;SA

To interpret this extended language we need also to extend our models:

De�nition 7.2 A Kripke model for LSA is a structureM of the form

hS; �; r; t; RK; RB; RD; Agendai, where

� S is a non-empty set (the set of states);

7We mention here also related work [22] in which a so-called preference-based action logic
is proposed based on dynamic logic in which goals are expressed as well. The main di�erence
between this logic and ours is that Huang et al. use a blend of dynamic logic, preference
logic (where preferences are taken in the sense of Herbert Simon), (a kind of) conditional
logic and Veltman's update semantics, and de�ne goals in these terms and preferences in
particular. Their work is more motivated from the perspective of social science and particularly
organisation theory than from our standpoint of specifying and realising an intelligent system.
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� � : S ! (P ! ftt; ffg) is a truth assignment function to the atoms per

state;

� r; t : LACT;SA ! 2S�S are state transition relations per action, satisfying

the properties of De�nition 2.2, as well as some constraints regarding the

revise and commit actions, to which we will return in the sequel. The

r transition relation models the transition resulting from performing an

action, with respect to the aspect of the agent's opportunity (provided by

the environment) to perform the action, regardless of its ability to per-

form this action, whereas the t transition relation models the transition

resulting from doing the action, with respect to the aspect of the agent's

(internal) capability to perform the action, regardless whether it has the

actual opportunity to do so (cf. [21]);

� RK; RB; RD � S � S, such that RK is an equivalence relation, RB is

serial, transitive and euclidean, and RB � RK;

� Agenda : S ! 2LACT is a function that yields the agent's agenda of com-

mitments, consisting of the set of actions it is committed to, at any state.

The interpretation of the (new) formulas in LSA now reads:

De�nition 7.3 LetM = hS; �; r; t; RK; RB; RD; Agendai and s 2 S. Then:

� M; s j= K' i�M; s
0 j= ' for all s0 with RK(s; s0);

� M; s j= B' i�M; s
0 j= ' for all s0 with RB(s; s0);

� M; s j= D' i�M; s
0 j= ' for all s0 with RD(s; s0);

� M; s j= Com� i� � 2 Agenda(s);8

� M; s j= [[�]]' i�M; s
0 j= ' for all s0 with t(�)(s; s0);

� M; s j=� �� ' i�M; s
0 j= ' for some s0 with t(�)(s; s0);

These basic modalities serve as a basis to de�ne further operators, such as
ability, opportunity, practical possibility, can, goal, (possible) intend, as follows:

De�nition 7.4 � (ability) A� �� �� tt, i.e., an agent is able to do an

action i� there is a successor state w.r.t. the t-relation;

� (opportunity) O� � h�itt, i.e., an agent has the opportunity to do an

action i� there is a successor state w.r.t. the r-relation;

8This is a simpli�cation of our treatment in [37], where we also incorporated semantical
implications of such a action into the notion of commitment, dealing e.g. with initial compu-
tations of the action.
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� (practical possibility) P(�;') � A� ^O� ^ h�i', i.e., an agent has the

practical possibility to do an action with result ' i� it is both able and

has the opportunity to do that action and the result of actually doing that

action leads to a state where ' holds;

� (can) Can(�;') � KP(�;'), i.e., an agent can do an action with a

certain result i� it knows it has the practical possibilty to do so;

� (realisability) 3' � 9a1; : : : ; anP(a1; : : : ; an; ')9, i.e., a state property '

is realisable i� there is a �nite sequence of atomic actions of which the

agent has the practical possibility to perform it with the result ';

� (goal) G' $ :' ^ D' ^ 3', i.e., a goal is a formula that is not (yet)

satis�ed, but desired and realisable.10

� (possible intend) I(�;') � Can(�;') ^ KG', i.e., an agent (possibly)

intends an action with a certain result i� the agent can do the action with

that result and it moreover knows that this result is a goal of his.

We are now in a position to state the constraints for the revise and commit

actions. Given a LSA-model M, we de�ne the semantics of these actions as
model/state transformers:

1. r(revise')(M; s) = update belief('; (M; s)), and likewise for t(revise');

2. r(commit�)(M; s) = update agenda(�; (M; s)), if M; s j= I(�;') for
some ', otherwise r(commit�)(M; s) = ; (indicating failure of the commit
action), and likewise for t(commit�).

Here update belief and update agenda are functions that update the agent's
belief and agenda, respectively. Their formal de�nitions can be found in [26, 28]
and [37]. The revise operator can be used to cater for revisions due to obser-
vations and communication with other agents, which we will not go into further
here (see [28]). Note that the revise and commit action are `model-transforming'

actions rather than `state-transforming' ones as is the usual interpretation of ac-
tions in dynamic logic. This should not surprise us too much, since these actions
change the mental state of the agent, which in our Kripke-style representation
involves (part of) the whole model rather than just one (the actual) state.

Besides the familiar properties from epistemic logic (see e.g. [12, 36]), typical
properties of this framework, called the KARO logic, include (cf. [26, 37]):

1. j= O(�;�)$ h�iO�

9We abuse our language here slightly, since strictly speaking we do not have quanti�cation
in our object language. See [37] for a proper de�nition.

10In fact, here we again simplify matters slightly. In [37] we also stipulate that a goal should
be explicitly selected somehow from the desires it has, which is modelled in that paper by
means of an additional modal operator. Here we leave this out for simplicity's sake.
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2. j= A(�;�)$� �� A�

3. j= Can(�;�; ')$ Can(�;P(�; '))

4. j= [revise']B'

5. j= K:'$ [revise']Bff

6. j= K('$  )! ([revise']B�$ [revise ]B�)

7. j= I(�;')! hcommit�iCom�

7.1.2 Actions with Typical E�ects

As we have seen before, when we reason about actions we have to take care
of an economic speci�cation of the e�ects and, perhaps even more importantly,
the non-e�ects of actions. The same problem, of course, holds for actions as
performed or initiated by agents. As we have also seen, a way to do this is to
consider default or typical e�ects of actions. In [11] it has been attempted to
incorporate this in an agent setting, more in particular in a KARO-like logic.
Here we discuss the main idea(s) of their approach.

Firstly to the logical language a new construct h�i'; is added with as
intended reading that the agent has the opportunity to perform the action �

and as a result of this event ' holds (always) and  typically holds.
Semantically, in the Kripke model, besides the usual accessibility relation

r, a relation r
� is added that deals with the typical results of an action; it is

stipulated that r�(�) � r(�). However, contrary to what one might expect,
in the approach of [11] the meaning of the construct h�i'; is not given by
means of r�. Instead the meaning of this construct is given only in terms of
the relation r: M; s j= h�i'; i� 8s0 : r(�)(s; s0) ) M; s

0 j= ' and 9s00 :
r(�)(s; s00) & M; s

00 6j= : .
The typical e�ects (and the semantical function r

�) come into play in a
rather sophisticated way. So-called scenarios are introduced, which more or
less consist of a sequence of actions � = �1; : : : ;�n together with a pre- and
postcondition, 
pre and 
post, respectively. Next a so-called epistemic path
is de�ned as a sequence of states in the model < s0; : : : ; sn >, such that s0
satis�es 
pre, sn satis�es 
post, and the si are such that r(�)(si; si+1) holds.11

(In terms of dynamic logic it thus holds in s0 that 
pre ^ [�]
post.) The state
sn is called an end state of the scenario. Now in this path it is counted how
many of the si are in fact atypical, i.e. such that :r�(�)(si; si+1) holds. If a
path has less atypical states than another, it is more preferred. This is used
to de�ne a preference-based nonmonotonic inference relation between scenarios
and formulas as follows: SC j� � (where SC is a scenario) i� for every end
state s of the most preferred epistemic paths with respect to the scenario SC it

11In this simpli�ed account I leave out the requirements regarding capabilities.
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holds thatM; s j= �. We thus see here a sophisticated mixture of dynamic logic
(or rather the KARO logic) and nonmonotonic inference techniques in order to
treat typical results / e�ects of actions.

7.1.3 Real World Agents

When considering agents that operate in the real world, such as robots, also a
lot of additional uncertainty comes in. For example, when a robot gets informa-
tion from sensor devices this may contain errors, both random and systematic
ones. The same holds for the other actions that agent performs in the real
world. Executing a command of moving ahead for 2 meters may result in ac-
tually moving ahead for 1,9 meters. This depends on the devices (e.g. wheels)
within the robot that actually achieve such a command but also on the environ-
ment (e.g. being on a slippery 
oor or on a slope). To treat the behaviour of
a real world agent properly one has to resort to means of describing such forms
of uncertainty in the agent's dynamics. There has been some work on this al-
ready [17, 44, 45]. In [52, 53] we are now trying to bring probabilistic reasoning
within the framework of dynamic logic. As the work is still in a preliminary
stage I restrict myself to an informal description of the main idea. As before we
treat actions of the agent as model-transformers. However, these models now
contain also probabilistic information. Roughly one can say that the `state' of
a real-world agent is given by a set of possible worlds with a probability dis-
tribution, indicating the probability that the agent is in that particular world.
Now, for instance an observe action will result in a new `state' described by a
set of possible worlds where possibly some worlds have been eliminated and the
probability distribution is adjusted according to Bayesian reasoning. This mod-
els the fact that by observation the agent learns something about the state it's
in (cf. [52]). Other actions (like a move) are given by a transition to a model in
which every possible world is replaced by a set of worlds with a probability dis-
tribution on them re
ecting the agent's uncertainty (for example, with respect
to its position in the case of a move action) after execution of the action [53].

7.2 Multi-Agent Systems

In the agent systems community it is appreciated that probably the most inter-
esting and useful applications of such systems will involve a number of agents
(possibly even very many). These systems have great potential in applications
such as electronic commerce. To describe, specify and realise such multi-agent
systems (MAS) one needs to go beyond the individual level of agents (such as a
description of their mental states / attitudes), but one has also to pay serious
attention to social attitudes / behaviour of the agents in such a system. Things
that naturally come to mind here are communication, co-ordination, negotia-
tion, co-operation and the like. Although it is not entirely clear how much of
this can be speci�ed by purely logical means (it is, for instance, quite obvious
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that other theoretical concepts and techniques such as stemming from decision
and game theory are of crucial importance to obtain an adequate description),
it is nevertheless interesting to investigate whether logic (and dynamic logic in
particular) is also of some help in this context. Some work in this direction has
been done already.

7.2.1 Epistemic Group Updates

For example, in [2] the issue of belief updates within a MAS has been considered.
The generalization of belief updates from the single agent case to the multi-
agent one is by no means trivial, since one should take care of an adequate
representation of whose belief is updated and whose is not! For instance, if
agent i communicates to agent j some information such that another agent
k is not aware of this, the knowledge/belief of agent k, and in particular his
beliefs about the beliefs of agents i and j (!), should remain una�ected. Whereas
in the single agent it is su�cient to eliminate `arrows' in the Kripke model
(re
ecting the elimination of epistemic possibilities) this is not an adequate
procedure any more in the multi-agent case. Baltag et al. solve the problem
by adding arrows instead. The main idea is that, for instance in the previous
example, the epistemic relations of agent j change (by eliminating epistemic
possibilities), from the perspective of agent k things should remain the same,
so that his accessibility relations should still point to worlds where the agents
i and j have still the old epistemic possibilities. Precisely this e�ect can be
obtained by copying the old model (for agent k) as well as adding a submodel
dealing with agents i and j in isolation.

In [15, 14] related work is reported from a more linguistic perspective, using
the framework of Veltman's update semantics [51].12 Here group updates of
the form UG� are considered, denoting the update of group G by means of
action or `program' �. These programs are either tests '?, group updates again,
or sequential or alternative compositions of programs. A sound and complete
axiomatisation, based on dynamic logic, is given with typical axioms such as:

� [UG�]Bi'$ Bi' if i 62 G

� [UG�]Bi'$ Bi[�][UG�]' if i 2 G

The former is called the privacy axiom, since it expresses that the belief of
someone who is not involved in the group update will not change its beliefs.
The latter is called the Ramsey axiom; it expresses that after a group update
with action � an agent believes ' just in case s/he already believed that after
executing � an update with UG� could only result in a world where ' would be
true. (This is related to the so-called Ramsey test in philosophical logic.)

12Here we must also mention [30], where also similar updates on Kripke models are inves-
tigated; however, here these updates are not included in the logical language itself but only
considered in the meta-language.

23



7.2.2 Communication and Speech Acts

Another example of the use of (dynamic) logic for describing MAS is that per-
taining to communication. Dignum and Van Linder [8] have attempted to deal
with agent communication by means of dynamic logic. The idea here is to view
communication between agents as speech acts, that is to say actions by means of
speech, so that it becomes amenable to a logic for reasoning about actions such
as dynamic logic. In fact they use a rather sophisticated mixture of the KARO
logic from the previous subsection and (a re�nement of) dynamic deontic logic
from section 5, since in their set-up some speech acts may give rise to obliga-
tions! (E.g. they have an operator Oblij such that Oblij� expresses that agent
i has an obligation to agent j to perform action �.) Furthermore, of course, in
a multi-agent setting it must be indicated who is performing the action. We do
this here by employing the notation doi(�), denoting that agent i is performing
the action �. They consider the following speech acts: commitments, directions,
declarations and assertions, formalised by the actions:

1. COMMIT (i; j; �) denoting the act of commitment of agent i to agent j
to perform the action �.

2. DIR(i; j; �) denoting the act of agent i directing agent j to perform action
�.

3. DECL(i; ') denoting the act of declaration of i that ' holds.

4. ASSN(i; j; ') denoting the act of agent i asserting to agent j that ' holds.

Without going too much into the details of the rather involved semantic
framework, it should come as no surprise that these actions are given a model-
transforming interpretation again (like the revise and commit actions for single
agents we saw before). Su�ce here to say that

1. COMMIT (i; j; �) changes the model in such a way that afterwards there
exists an obligation of i to j to perform �, i.e. Oblij holds.

2. DIR(i; j; �) changes the model such that afterwards j has an obligation to
i to perform �. The action only succeeds if the agent i has the authority
to give this directive.

3. DECL(i; ') changes the model such that ' holds in all resulting states,
provided that ' is consistent, and the agent i has the authority to perform
this declarative action.

(The action ASSN is similar to the multi-agent belief update we have seen
before, and I leave it out here.)

Typical formulas that are valid in this framework are thus:
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� [doi(COMMIT (i; j; �))]Oblij�

� auth(i;DIR(i; j; �))! [doi(DIR(i; j; �))]Oblji�

� auth(i;DECL(i; '))! [doi(DECL(i; '))]'

7.2.3 Social Attitudes : a Challenge for the Future

Of course, the behaviour of a non-trivial multi-agent system with possibly many
heterogeneous agents involves much more than their knowledge and the speech
acts between them. Also more complex social attitudes are to be investigated
and described. Examples include negotiations, co-ordination of behaviours, co-
operation and competition, delegation, trust, coping with joint intentions and
goals, but also `fault-tolerant' behaviour in the sense that if one agent fails to
accomplish a task for some reason, another can take over or can at least take
some compensatory action. Although already interesting work has been done
on these issues (cf. e.g. [4, 7]13), I believe that there is still a lot to be done
here. Obviously a comprehensive and adequate treatment of these matters needs
elements from game and decision theory (or theory of economics more in general)
as well as the theory of distributed computing. On the other hand, since it is
obvious that here, too, (the description of) dynamics plays an important role,
there is no a priori reason to doubt the use of dynamic logic based on the idea of
social actions viewed as transformers of models capturing these social attitudes
in this context as well. I think it is a very interesting issue to study where and
how these `extra-logical' elements such as the ones mentioned above may �t in.

8 Conclusion

In this paper I have reviewed a number of di�erent instances of knowledge rep-
resentation involving agents, actions and changes, in which it has been proven
(or at least made plausible) to be fruitful to employ dynamic logic as a basic ac-
tion logic. From the instances shown I believe the wide applicability of dynamic
logic is clearly demonstrated. Of course, in each speci�c application domain the
bare dynmic logic has to be `embellished' to increase expressibility, but dynamic
logic remains the `core' of the resulting system.

Of course, to reason about the dynamics of (intelligent) systems one might
also consider alternatives. A prominent `rival' of dynamic logic is temporal
logic, the logic of time [3], which has also been put to use for the purpose of the
veri�cation and speci�cation of programs. Although there are some similarities
between dynamic and temporal logic (e.g. both are modal logics, and both
can be used to descibe the (temporal) behaviour of systems), a main di�erence
between the two is that in dynamic logic the actions (and perhaps even the actor)

13In the latter paper a formalisation of goal formation / generation within a group of agents
is presented in a KARO-like logic containing dynamic logic operators
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involved are mentioned explicitly in the object language, while this is not the
case in temporal logic (although, of course, one may add additional predicates
to express aspects of actions). In my opinion both temporal and dynamic logics
have their merits, and may be convenient tools for di�erent applications.
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