

## Introduction to Dynamic Logic

Peter H. Schmitt



Universität Karlsruhe, Germany

Presentation at the ANU Logic & Automated Reasoning Summer School,

December, 2002





- Reasoning about Programs: the DL Approach



- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic



- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic
- Axioms for Dynamic Logic



- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic
- Axioms for Dynamic Logic
- Propositional Dynamic Logic



- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic
- Axioms for Dynamic Logic
- Propositional Dynamic Logic
- Summary

# **Reasoning About Programs**



An Example Program  $\alpha_{\mathbf{RM}}$ 

int 
$$a, b, z;$$
  
 $z = 0;$   
while  $(b! = 0)$   
{ if  $((b/2) * 2 == b)$   
 $\{a = 2 * a;$   
 $b = b/2;$ }  
else  
 $\{z = z + a;$   
 $a = 2 * a;$   
 $b = b/2;$ }  
}

## **Annotated Programs**





ANU Logic Summer School, December 2002 - p.4



- Annotated programs use formulas within programs.



- Annotated programs use formulas within programs.
- Dynamic Logic uses programs within formulas.



- Annotated programs use formulas within programs.
- Dynamic Logic uses programs within formulas.
- Instead of placing annotation F after program segment  $\alpha$ ,



- Annotated programs use formulas within programs.
- Dynamic Logic uses programs within formulas.
- Instead of placing annotation F after program segment  $\alpha$ ,
- we write  $[\alpha]F$  in DL.



- Annotated programs use formulas within programs.
- Dynamic Logic uses programs within formulas.
- Instead of placing annotation F after program segment  $\alpha$ ,
- we write  $[\alpha]F$  in DL.
- Example

$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [\alpha_{RM}] \ z \doteq x * y)$$



$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [\alpha_{RM}] \ z \doteq x * y)$$



$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [\alpha_{RM}] \ z \doteq x * y)$$

 $\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [z = 0; \alpha_{RMwhile}] \ z \doteq x * y)$ 



$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [\alpha_{RM}] \ z \doteq x * y)$$

 $\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [z = 0; \alpha_{RMwhile}] \ z \doteq x * y)$ 

 $\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [z = 0][\alpha_{RMwhile}] \ z \doteq x * y )$ 



$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [\alpha_{RM}] \ z \doteq x * y)$$

 $\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [z = 0; \alpha_{RMwhile}] \ z \doteq x * y)$ 

$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [z = 0][\alpha_{RMwhile}] \ z \doteq x * y )$$

$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [\alpha_{RMwhile}] \ z \doteq x * y )$$



$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [\alpha_{RM}] \ z \doteq x * y)$$

 $\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [z = 0; \alpha_{RMwhile}] \ z \doteq x * y)$ 

$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \rightarrow [z = 0] [\alpha_{RMwhile}] \quad z \doteq x * y )$$

$$\forall a, b, z, x, y \quad (x \doteq a \land y \doteq b \land z \doteq 0 \to [\alpha_{RMwhile}] \ z \doteq x * y )$$

 $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [\alpha_{RMwhile}] (b \doteq 0 \land a \ast b + z \doteq x \ast y))$ 



 $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [\alpha_{RMwhile}] (b \doteq 0 \land a \ast b + z \doteq x \ast y))$ 



 $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [\alpha_{RMwhile}] (b \doteq 0 \land a \ast b + z \doteq x \ast y))$  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] b \doteq 0)$ and  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] a \ast b + z \doteq a$ 



 $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [\alpha_{RMwhile}] (b \doteq 0 \land a \ast b + z \doteq x \ast y))$  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] b \doteq 0) okay$ and  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] a \ast b + z \doteq a$ 



 $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [\alpha_{RMwhile}] (b \doteq 0 \land a \ast b + z \doteq x \ast y) )$  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] b \doteq 0 ) okay$ and $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] a \ast b + z \doteq x \\ \forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow a \ast b + z \doteq x \ast y) \\ and \\ \forall a \dots (a \ast b + z \doteq x \ast y \rightarrow [body] a \ast b + z \doteq x \ast y )$ 



 $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [\alpha_{RMwhile}] (b \doteq 0 \land a \ast b + z \doteq x \ast y) )$  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] b \doteq 0 ) okay$ and $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] a \ast b + z \doteq x \\ \forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow a \ast b + z \doteq x \ast y) okay \\ and \\ \forall a \dots (a \ast b + z \doteq x \ast y \rightarrow [body] a \ast b + z \doteq x \ast y )$ 



 $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [\alpha_{RMwhile}] (b \doteq 0 \land a \ast b + z \doteq x \ast y))$  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] \ b \doteq 0) \ okay$ and  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow [while(b! = 0) \{body\}] \ a * b + z \doteq x$  $\forall a \dots (x \doteq a \land y \doteq b \land z \doteq 0 \rightarrow a * b + z \doteq x * y) okay$ and  $\forall a \dots (a * b + z \doteq x * y \rightarrow [body] \ a * b + z \doteq x * y)$  $\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \doteq b$  $\rightarrow [a = 2 * a; b = b/2] a * b + z \doteq x * y)$ and  $\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \neq b$  $\rightarrow [z = z + a; a = 2 * a; b = b/2] a * b + z \doteq x * y)$ 



$$\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \doteq b$$
  

$$\rightarrow [a = 2 * a; b = b/2] a * b + z \doteq x * y)$$
and

$$\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \neq b \rightarrow [z = z + a; a = 2 * a; b = b/2] a * b + z \doteq x * y )$$



$$\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \doteq b$$
  

$$\rightarrow [a = 2 * a; b = b/2] a * b + z \doteq x * y)$$
and

$$\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \neq b \rightarrow [z = z + a; a = 2 * a; b = b/2] a * b + z \doteq x * y )$$

$$\forall a \dots ((2 * a) * (b/2) + z \doteq x * y \land (b/2) * 2 \doteq b \rightarrow a * b + z \doteq x * y )$$

and

$$\forall a \dots ((2*a)*(b/2) + z + a \doteq x * y \land (b/2) * 2 \neq b$$
  
 
$$\rightarrow a * b + z \doteq x * y )$$



$$\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \doteq b$$
  

$$\rightarrow [a = 2 * a; b = b/2] a * b + z \doteq x * y)$$
and

$$\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \neq b \rightarrow [z = z + a; a = 2 * a; b = b/2] a * b + z \doteq x * y )$$

$$\forall a \dots ((2 * a) * (b/2) + z \doteq x * y \land (b/2) * 2 \doteq b \\ \rightarrow a * b + z \doteq x * y ) \quad okay$$

and

$$\forall a \dots ((2 * a) * (b/2) + z + a \doteq x * y \land (b/2) * 2 \neq b$$
  
 
$$\rightarrow a * b + z \doteq x * y )$$



$$\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \doteq b$$
  

$$\rightarrow [a = 2 * a; b = b/2] a * b + z \doteq x * y)$$
and

$$\forall a \dots (a * b + z \doteq x * y \land (b/2) * 2 \neq b \rightarrow [z = z + a; a = 2 * a; b = b/2] a * b + z \doteq x * y )$$

$$\forall a \dots ((2 * a) * (b/2) + z \doteq x * y \land (b/2) * 2 \doteq b \\ \rightarrow a * b + z \doteq x * y ) \quad okay$$

and

$$\forall a \dots ((2 * a) * (b/2) + z + a \doteq x * y \land (b/2) * 2 \neq b \rightarrow a * b + z \doteq x * y) \quad okay \quad here \ b/2 \doteq (b-1)$$



# Formal Introduction of Dynamic Logic

ANU Logic Summer School, December 2002 - p.9





Let  $\Sigma$  be a vocabulary (set of function - and relation symbols). The set  $\operatorname{Term}_{\Sigma}$  is defined as usual:

## Syntax: Terms



Let  $\Sigma$  be a vocabulary (set of function - and relation symbols). The set  $\operatorname{Term}_{\Sigma}$  is defined as usual:

Every variable

 ${\mathcal X}$ 

is in  $\operatorname{Term}_{\Sigma}$ .

# **Syntax: Terms**



Let  $\Sigma$  be a vocabulary (set of function - and relation symbols). The set  $\operatorname{Term}_{\Sigma}$  is defined as usual:

Every variable x is in  $\mathrm{Term}_{\Sigma}$ .

If f is an n-place function symbol in  $\Sigma$  and  $t_i$  are terms in  $\operatorname{Term}_{\Sigma}$  then

 $f(t_1,\ldots,t_n)$  is in Term<sub> $\Sigma$ </sub>.

# **Syntax: Terms**



Let  $\Sigma$  be a vocabulary (set of function - and relation symbols). The set  $\operatorname{Term}_{\Sigma}$  is defined as usual:

Every variable x is in  $\mathrm{Term}_{\Sigma}$ .

If f is an n-place function symbol in  $\Sigma$  and  $t_i$  are terms in  $\operatorname{Term}_{\Sigma}$  then

 $f(t_1,\ldots,t_n)$  is in Term<sub> $\Sigma$ </sub>.

We ignore types for simplicity.

# **Syntax: Formulas**



The sets  ${\rm Fml}_{\Sigma}$  of formulas and  $\Pi_{\Sigma}$  of programs are defined by mutual recursion

- If  $r \in \Sigma$  is an *n*-place relation symbol and  $t_i \in \text{Term}_{\Sigma}$  then  $r(t_1, \ldots, t_n)$  is in  $\text{Fml}_{\Sigma}$ .

# **Syntax: Formulas**



The sets  ${\rm Fml}_{\Sigma}$  of formulas and  $\Pi_{\Sigma}$  of programs are defined by mutual recursion

- If  $r \in \Sigma$  is an *n*-place relation symbol and  $t_i \in \text{Term}_{\Sigma}$  then  $r(t_1, \ldots, t_n)$  is in  $\text{Fml}_{\Sigma}$ .
- If  $t_1, t_2$  are terms then  $t_1 \doteq t_2$  is in  $\operatorname{Fml}_{\Sigma}$ .

# **Syntax: Formulas**



The sets  ${\rm Fml}_{\Sigma}$  of formulas and  $\Pi_{\Sigma}$  of programs are defined by mutual recursion

- If  $r \in \Sigma$  is an *n*-place relation symbol and  $t_i \in \text{Term}_{\Sigma}$  then  $r(t_1, \ldots, t_n)$  is in  $\text{Fml}_{\Sigma}$ .
- If  $t_1, t_2$  are terms then  $t_1 \doteq t_2$  is in  $\operatorname{Fml}_{\Sigma}$ .
- If  $F_1, F_2 \in \operatorname{Fml}_{\Sigma}$  then also  $F_1 \lor F_2, F_1 \land F_2, F_1 \to F_2, \neg F_1, \forall xF_1 \text{ and } \exists xF_1.$

#### **Syntax: Formulas**



The sets  ${\rm Fml}_{\Sigma}$  of formulas and  $\Pi_{\Sigma}$  of programs are defined by mutual recursion

- If  $r \in \Sigma$  is an *n*-place relation symbol and  $t_i \in \text{Term}_{\Sigma}$  then  $r(t_1, \ldots, t_n)$  is in  $\text{Fml}_{\Sigma}$ .
- If  $t_1, t_2$  are terms then  $t_1 \doteq t_2$  is in  $\operatorname{Fml}_{\Sigma}$ .
- If  $F_1, F_2 \in \operatorname{Fml}_{\Sigma}$  then also  $F_1 \lor F_2, F_1 \land F_2, F_1 \to F_2, \neg F_1, \forall x F_1 \text{ and } \exists x F_1.$
- If F is a formula in  $\operatorname{Fml}_{\Sigma}$  and  $\pi \in \Pi_{\Sigma}$  then  $[\pi]F$  and  $\langle \pi \rangle F$  are in  $\operatorname{Fml}_{\Sigma}$ .



- If  $t \in \text{Term}_{\Sigma}$  and x a variable then x = t is in  $\Pi_{\Sigma}$ .



- If  $t \in \text{Term}_{\Sigma}$  and x a variable then x = t is in  $\Pi_{\Sigma}$ .
- If  $\pi_1, \pi_2 \in \Pi_{RM}$  then also  $\pi_1; \pi_2$  is in  $\Pi_{RM}$ .



- If  $t \in \text{Term}_{\Sigma}$  and x a variable then x = t is in  $\Pi_{\Sigma}$ .
- If  $\pi_1, \pi_2 \in \Pi_{RM}$  then also  $\pi_1; \pi_2$  is in  $\Pi_{RM}$ .
- If con is a quantifierfree formula in  $Fml_{\Sigma}$  and  $\pi \in \Pi_{RM}$  then while  $(con) \{\pi\}$

is in  $\Pi_{\Sigma}$ .



- If  $t \in \text{Term}_{\Sigma}$  and x a variable then x = t is in  $\Pi_{\Sigma}$ .
- If  $\pi_1, \pi_2 \in \Pi_{RM}$  then also  $\pi_1; \pi_2$  is in  $\Pi_{RM}$ .
- If con is a quantifierfree formula in  $Fml_{\Sigma}$  and  $\pi \in \Pi_{RM}$  then while  $(con) \{\pi\}$

is in  $\Pi_{\Sigma}$ .

- If con is a quantifierfree formula in  ${\rm Fml}_{\Sigma}$  and  $\pi_1,\pi_2\in\Pi_{\Sigma}$  then

if  $(con) \{\pi_1\}$  else  $\{\pi_2\}$ 

is in  $\Pi_{\Sigma}$ .

### **Kripke Structures**



A DL-Kripke structure

$$\mathcal{K} = (S, \rho)$$

consists of

- a set  $\boldsymbol{S}$  of states (or worlds) and
- a function  $\rho$  that maps every program  $\pi$  to a binary relation  $\rho(\pi)$  on S.

The  $\rho(\pi)$  are called called the accessibility relations.

#### **The State Space**



For a Dynamic Logic with vocabulary  $\Sigma$  a state  $s \in S$  of any Kripke structure  $\mathcal{K}$  is a pair

$$s = (\mathcal{A}, \beta)$$

where

- $\mathcal{A}$  is a usual first-order structure for  $\Sigma$  that is fixed for all of S.
- A variable assignment  $\beta: Var \to A$  that determines the values of the program variables in state s



For any state  $(A, \beta)$  of a Kripke structure  $\mathcal{K}$  define:

-  $t^{(\mathcal{A},\beta)}$  for a term t is as usual.



For any state  $(\mathcal{A}, \beta)$  of a Kripke structure  $\mathcal{K}$  define:

- $t^{(\mathcal{A},\beta)}$  for a term t is as usual.
- $(\mathcal{A},\beta) \models r(t_1,\ldots,t_k)$  iff  $(t_1^{(\mathcal{A},\beta)},\ldots,t_k^{(\mathcal{A},\beta)}) \in r^{\mathcal{A}}$ .



For any state  $(\mathcal{A}, \beta)$  of a Kripke structure  $\mathcal{K}$  define:

- $t^{(\mathcal{A},\beta)}$  for a term t is as usual.
- $(\mathcal{A},\beta) \models r(t_1,\ldots,t_k)$  iff  $(t_1^{(\mathcal{A},\beta)},\ldots,t_k^{(\mathcal{A},\beta)}) \in r^{\mathcal{A}}$ .
- $(\mathcal{A}, \beta) \models t_1 = t_2$  iff  $t_1^{(\mathcal{A}, \beta)} = t_2^{(\mathcal{A}, \beta)}$



For any state  $(A, \beta)$  of a Kripke structure K define:

- $t^{(\mathcal{A},\beta)}$  for a term t is as usual.
- $(\mathcal{A},\beta) \models r(t_1,\ldots,t_k)$  iff  $(t_1^{(\mathcal{A},\beta)},\ldots,t_k^{(\mathcal{A},\beta)}) \in r^{\mathcal{A}}$ .
- $(\mathcal{A},\beta) \models t_1 = t_2$  iff  $t_1^{(\mathcal{A},\beta)} = t_2^{(\mathcal{A},\beta)}$
- $(\mathcal{A}, \beta) \models F$  is defined as usual for connectives for first order logic.



For any state  $(\mathcal{A}, \beta)$  of a Kripke structure  $\mathcal{K}$  define:

- $t^{(\mathcal{A},\beta)}$  for a term t is as usual.
- $(\mathcal{A},\beta) \models r(t_1,\ldots,t_k)$  iff  $(t_1^{(\mathcal{A},\beta)},\ldots,t_k^{(\mathcal{A},\beta)}) \in r^{\mathcal{A}}$ .
- $(\mathcal{A},\beta) \models t_1 = t_2$  iff  $t_1^{(\mathcal{A},\beta)} = t_2^{(\mathcal{A},\beta)}$
- $(\mathcal{A}, \beta) \models F$  is defined as usual for connectives for first order logic.
- $(\mathcal{A}, \beta) \models \langle p \rangle F$  iff  $(\mathcal{A}, \gamma) \models F$ for at least one pair  $((\mathcal{A}, \beta), (\mathcal{A}, \gamma))$  of states in  $\rho(p)$



For any state  $(\mathcal{A}, \beta)$  of a Kripke structure  $\mathcal{K}$  define:

- $t^{(\mathcal{A},\beta)}$  for a term t is as usual.
- $(\mathcal{A},\beta) \models r(t_1,\ldots,t_k)$  iff  $(t_1^{(\mathcal{A},\beta)},\ldots,t_k^{(\mathcal{A},\beta)}) \in r^{\mathcal{A}}$ .
- $(\mathcal{A},\beta) \models t_1 = t_2$  iff  $t_1^{(\mathcal{A},\beta)} = t_2^{(\mathcal{A},\beta)}$
- $(\mathcal{A}, \beta) \models F$  is defined as usual for connectives for first order logic.
- $(\mathcal{A}, \beta) \models \langle p \rangle F$  iff  $(\mathcal{A}, \gamma) \models F$ for at least one pair  $((\mathcal{A}, \beta), (\mathcal{A}, \gamma))$  of states in  $\rho(p)$
- $(\mathcal{A}, \beta) \models [p]F$  iff  $(\mathcal{A}, \gamma) \models F$ for all pairs  $((\mathcal{A}, \beta), (\mathcal{A}, \gamma))$  of states in  $\rho(p)$ .

-  $\rho(x := s) = \{((\mathcal{A}, \beta), (\mathcal{A}, \beta[x/s^{(\mathcal{A}, \beta)}])) \mid (\mathcal{A}, \beta) \in S\}.$ 



- $\rho(x := s) = \{((\mathcal{A}, \beta), (\mathcal{A}, \beta[x/s^{(\mathcal{A}, \beta)}])) \mid (\mathcal{A}, \beta) \in S\}.$
- $\rho(\pi_1; \pi_2)$  consists of all pairs  $(\beta, \gamma)$ such that  $(\beta, \delta) \in \rho(\pi_1)$  and  $(\delta, \gamma) \in \rho(\pi_2)$  for some  $\delta$ .



- $\rho(x := s) = \{((\mathcal{A}, \beta), (\mathcal{A}, \beta[x/s^{(\mathcal{A}, \beta)}])) \mid (\mathcal{A}, \beta) \in S\}.$
- $\rho(\pi_1; \pi_2)$  consists of all pairs  $(\beta, \gamma)$ such that  $(\beta, \delta) \in \rho(\pi_1)$  and  $(\delta, \gamma) \in \rho(\pi_2)$  for some  $\delta$ .
- $((\beta, \gamma) \in \rho(if(F_0) \{\pi_1\} else\{\pi_2\}))$ iff  $\beta \models F_0 \text{ and } (\beta, \gamma) \in \rho(\pi_1)$ or  $\beta \models \neg F_0 \text{ and } (\beta, \gamma) \in \rho(\pi_2)$



- $\rho(x := s) = \{((\mathcal{A}, \beta), (\mathcal{A}, \beta[x/s^{(\mathcal{A}, \beta)}])) \mid (\mathcal{A}, \beta) \in S\}.$
- $\rho(\pi_1; \pi_2)$  consists of all pairs  $(\beta, \gamma)$ such that  $(\beta, \delta) \in \rho(\pi_1)$  and  $(\delta, \gamma) \in \rho(\pi_2)$  for some  $\delta$ .

- 
$$((\beta, \gamma) \in \rho(if(F_0) \{\pi_1\} else\{\pi_2\}))$$
  
iff  
 $\beta \models F_0 \text{ and } (\beta, \gamma) \in \rho(\pi_1)$   
or  
 $\beta \models \neg F_0 \text{ and } (\beta, \gamma) \in \rho(\pi_2)$ 

We have simplified notation:  $\beta$  instead of  $(\mathcal{A}, \beta)$ .

#### $(\beta, \gamma) \in \rho(\text{while}(F_0)\{\pi\})$ iff

there is an  $n \in \mathbb{N}$  and there are states  $\beta_i$  for  $0 \le i \le n$  such that

- 1.  $\beta_0 = \beta$ ,
- 2.  $\beta_n = \gamma$ ,
- **3.**  $\beta_i \models F_0$  for  $0 \le i < n$
- **4.**  $\beta_n \models \neg F_0$
- **5.**  $(\beta_i, \beta_{i+1}) \in \rho(\pi)$  for  $0 \le i < n$



General assumption: x does not occuir in  $\pi$ .

-  $(\exists x \langle \pi \rangle F) \leftrightarrow (\langle \pi \rangle \exists x F)$ 



- $(\exists x \langle \pi \rangle F) \leftrightarrow (\langle \pi \rangle \exists x F)$
- $(\forall x \ [\pi]F) \leftrightarrow ([\pi]\forall x \ F)$



- $(\exists x \ \langle \pi \rangle F) \leftrightarrow (\langle \pi \rangle \exists x \ F)$
- $(\forall x \ [\pi]F) \leftrightarrow ([\pi]\forall x \ F)$
- $(\exists x \ [\pi]F) \rightarrow ([\pi]\exists x \ F)$



- $(\exists x \langle \pi \rangle F) \leftrightarrow (\langle \pi \rangle \exists x F)$
- $(\forall x \ [\pi]F) \leftrightarrow ([\pi]\forall x \ F)$
- $(\exists x \ [\pi]F) \rightarrow ([\pi]\exists x \ F)$
- $([\pi] \exists x \ F) \rightarrow (\exists x \ [\pi] F)$  if  $\pi$  is deterministic



- $(\exists x \langle \pi \rangle F) \leftrightarrow (\langle \pi \rangle \exists x F)$
- $(\forall x \ [\pi]F) \leftrightarrow ([\pi]\forall x \ F)$
- $(\exists x \ [\pi]F) \rightarrow ([\pi]\exists x \ F)$
- $([\pi] \exists x \ F) \rightarrow (\exists x \ [\pi] F)$  if  $\pi$  is deterministic
- $(\langle \pi \rangle \forall x \ F) \rightarrow (\forall x \ \langle \pi \rangle F)$



- $(\exists x \langle \pi \rangle F) \leftrightarrow (\langle \pi \rangle \exists x F)$
- $(\forall x \ [\pi]F) \leftrightarrow ([\pi]\forall x \ F)$
- $(\exists x \ [\pi]F) \rightarrow ([\pi]\exists x \ F)$
- $([\pi] \exists x \ F) \rightarrow (\exists x \ [\pi] F)$  if  $\pi$  is deterministic
- $(\langle \pi \rangle \forall x \ F) \to (\forall x \ \langle \pi \rangle F)$
- $(\forall x \ \langle \pi \rangle F) \rightarrow (\langle \pi \rangle \forall x \ F)$  if  $\pi$  is deterministic



- $(\exists x \langle \pi \rangle F) \leftrightarrow (\langle \pi \rangle \exists x F)$
- $(\forall x \ [\pi]F) \leftrightarrow ([\pi]\forall x \ F)$
- $(\exists x \ [\pi]F) \rightarrow ([\pi]\exists x \ F)$
- $([\pi] \exists x \ F) \rightarrow (\exists x \ [\pi] F)$  if  $\pi$  is deterministic
- $(\langle \pi \rangle \forall x \ F) \to (\forall x \ \langle \pi \rangle F)$
- $(\forall x \ \langle \pi \rangle F) \rightarrow (\langle \pi \rangle \forall x \ F)$  if  $\pi$  is deterministic
- $(\langle \pi \rangle (F \wedge G)) \to ((\langle \pi \rangle F) \wedge \langle \pi \rangle G)$



- $(\exists x \langle \pi \rangle F) \leftrightarrow (\langle \pi \rangle \exists x F)$
- $(\forall x \ [\pi]F) \leftrightarrow ([\pi]\forall x \ F)$
- $(\exists x \ [\pi]F) \rightarrow ([\pi]\exists x \ F)$
- $([\pi] \exists x \ F) \rightarrow (\exists x \ [\pi] F)$  if  $\pi$  is deterministic
- $(\langle \pi \rangle \forall x \ F) \to (\forall x \ \langle \pi \rangle F)$
- $(\forall x \ \langle \pi \rangle F) \rightarrow (\langle \pi \rangle \forall x \ F)$  if  $\pi$  is deterministic
- $(\langle \pi \rangle (F \wedge G)) \to ((\langle \pi \rangle F) \wedge \langle \pi \rangle G)$
- $(\langle \pi \rangle (F \wedge G)) \leftrightarrow ((\langle \pi \rangle F) \wedge \langle \pi \rangle G)$ if no free variable of *F* occurs in  $\pi$



#### - $\langle x = 1 \rangle \ x \doteq 1$



- $\langle x = 1 \rangle \ x \doteq 1$
- [while(true){ $\pi$ }] false

always true

- $\langle x = 1 \rangle \ x \doteq 1$
- [while(true){ $\pi$ }] false
- $\langle \pi \rangle true$

true if  $\pi$  terminates



always true

- $\langle x = 1 \rangle \ x \doteq 1$
- [while(true){ $\pi$ }] false
- $\langle \pi \rangle true$
- $\langle \pi_1 \rangle true \rightarrow \langle \pi_2 \rangle true$ terminates.

true if  $\pi$  terminates

says: if  $\pi_1$  terminates then  $\pi_2$ 



always true



# Axioms for of Dynamic Logic

ANU Logic Summer School, December 2002 - p.20

#### Sequents



1. A sequent is of the form

 $\Gamma \twoheadrightarrow \Delta$ 

where  $\Gamma$  and  $\Delta$  are sequences of formulas.

2. Let  $\mathcal{K} = (S, \rho)$  be a DL-Kripke structure,  $(\mathcal{A}, \beta)$  a state in S.

$$(\mathcal{A},\beta)\models\Gamma \twoheadrightarrow \Delta \text{ iff } (\mathcal{A},\beta)\models \bigwedge \Gamma \longrightarrow \bigvee \Delta$$

3.

$$\mathcal{K} \models \Gamma \twoheadrightarrow \Delta \quad \text{iff} \quad (\mathcal{A}, \beta) \models \bigwedge \Gamma \longrightarrow \bigvee \Delta$$
for all  $(\mathcal{A}, \beta) \in S$ .

4. A sequent  $\Gamma \rightarrow \Delta$  is called *universally valid* if  $\mathcal{K} \models \Gamma \rightarrow \Delta$  holds for all Kripke structures  $\mathcal{K}$  in the signature of the sequent.

#### **Sequent Rules**



A sequent rule is of the form

$$\frac{\Gamma_1 \to \Delta_1}{\Gamma_2 \to \Delta_2} \quad \text{or} \quad \frac{\Gamma_1 \to \Delta_1 \quad \Gamma'_1 \to \Delta'_1}{\Gamma_2 \to \Delta_2}$$

A sequent rule

$$\begin{array}{ccc} \Gamma_1 \twoheadrightarrow \Delta_1 & \Gamma_1' \twoheadrightarrow \Delta_1' \\ \hline \Gamma_2 \twoheadrightarrow \Delta_2 \end{array}$$

is sound if  $\Gamma_2 \rightarrow \Delta_2$  is universally valid whenever  $\Gamma_1 \rightarrow \Delta_1$  and  $\Gamma'_1 \rightarrow \Delta'_1$  are universally valid.

#### **Some Sound Sequent Rules**



1. 
$$\Gamma^{1}, A, \Gamma^{1} \rightarrow \Delta^{1}, A, \Delta^{2}$$
  
2.  $\Gamma, \Gamma' \rightarrow \Delta, A, \Delta'$   
3.  $\Gamma \rightarrow \Delta, A(y/x), \Delta'$  where y is not free in  $\Gamma, \Delta, \Delta'$   
4.  $\Gamma, A, \Gamma' \rightarrow \Delta$   $\Gamma, \Gamma' \rightarrow \Delta, A, \Delta'$ 



#### **The Axiom System** $S_0$ (2)



or-left

$$\begin{array}{ccc} \Gamma, F \twoheadrightarrow \Delta & \Gamma, G \twoheadrightarrow \Delta \\ \hline \Gamma, F \lor G \twoheadrightarrow \Delta \end{array}$$

or-right

$$\Gamma \twoheadrightarrow F, G, \Delta$$
$$\Gamma \twoheadrightarrow F \lor G, \Delta$$

all-left

$$\frac{\Gamma, \forall xF, F(t/x) \rightarrow \Delta}{\Gamma, \forall xF \rightarrow \Delta}$$

where t is a ground term.

all-right

$$\frac{\Gamma \twoheadrightarrow F(c/x), \Delta}{\Gamma \twoheadrightarrow \forall xF, \Delta}$$

where c is a new constant symbol.

## The Axiom System $S_0$ (3)



ex-right

 $\Gamma \rightarrow \exists x F, F(t/x), \Delta$  $\Gamma, \rightarrow \exists x F, \Delta$ 

where t is ground term.

where c is a new constant symbol.

 $\frac{\Gamma \twoheadrightarrow F(c/x), \Delta}{\Gamma, \exists x F \twoheadrightarrow \Delta}$ 

ex-left

**The Axiom System**  $S_0^{fv}$ 



all-left

$$\frac{\Gamma, \forall xF, F(X/x) \rightarrow \Delta}{\Gamma, \forall xF \rightarrow \Delta}$$

where X is a new variable. all-right

$$\frac{\Gamma \twoheadrightarrow F(f(x_1, \dots, x_n)/x), \Delta}{\Gamma \twoheadrightarrow \forall xF, \Delta}$$

where f is a new functions symbol and  $x_1, \ldots, x_n$  are all free variables in  $\forall xF$ . ex-right

$$\frac{\Gamma \twoheadrightarrow \exists xF, F(X/x), \Delta}{\Gamma, \twoheadrightarrow \exists xF, \Delta}$$

where X is a new variable. ex-left

$$\frac{\Gamma \twoheadrightarrow F(f(x_1, \dots, x_n)/x), \Delta}{\Gamma, \exists x F \twoheadrightarrow \Delta}$$

where f is a new functions symbol and  $x_1, \ldots, x_n$  are all free variables in  $\forall xF$ .

# **Proof in** $S_0$



 $6 \quad p(d), p(c) \xrightarrow{} p(c), \forall yp(y)$  | impl-right  $p(d) \xrightarrow{} p(c), p(c) \rightarrow \forall yp(y)$  | ex-right  $p(d) \xrightarrow{} p(c), \exists x(p(x) \rightarrow \forall yp(y))$  | all-right  $\gamma(d) \xrightarrow{} \forall yp(y), \exists x(p(x) \rightarrow \forall yp(y))$  | impl-right  $\rightarrow p(d) \rightarrow \forall yp(y), \exists x(p(x) \rightarrow \forall yp(y))$  | ex-right  $\rightarrow \exists x(p(x) \rightarrow \forall yp(y))$ 









$$\frac{\Gamma(c/a), a \doteq t(c/a) \twoheadrightarrow F, \Delta(c/a)}{\Gamma \twoheadrightarrow \langle a = t \rangle F, \Delta}$$

where a is a variable and t a term, c a new variable.



$$\frac{\Gamma(c/a), a \doteq t(c/a) \twoheadrightarrow F, \Delta(c/a)}{\Gamma \twoheadrightarrow \langle a = t \rangle F, \Delta}$$

where a is a variable and t a term, c a new variable.



$$\frac{\Gamma(c/a), a \doteq t(c/a) \twoheadrightarrow F, \Delta(c/a)}{\Gamma \twoheadrightarrow \langle a = t \rangle F, \Delta}$$

where a is a variable and t a term, c a new variable.

$$a * b + z \doteq x * y \land (b/2) * 2 \doteq b$$
  

$$\Rightarrow \langle a = 2 * a; b = b/2 \rangle \ a * b + z \doteq x * y$$



$$\frac{\Gamma(c/a), a \doteq t(c/a) \twoheadrightarrow F, \Delta(c/a)}{\Gamma \twoheadrightarrow \langle a = t \rangle F, \Delta}$$

where a is a variable and t a term, c a new variable.

$$c * b + z \doteq x * y \land (b/2) * 2 \doteq b \land a \doteq 2 * c$$

$$\rightarrow \langle b = b/2 \rangle a * b + z \doteq x * y$$

$$a * b + z \doteq x * y \land (b/2) * 2 \doteq b$$

$$\rightarrow \langle a = 2 * a; b = b/2 \rangle a * b + z \doteq x * y$$



$$\frac{\Gamma(c/a), a \doteq t(c/a) \twoheadrightarrow F, \Delta(c/a)}{\Gamma \twoheadrightarrow \langle a = t \rangle F, \Delta}$$

where a is a variable and t a term, c a new variable.

$$c * d + z \doteq x * y \land (d/2) * 2 \doteq d \land a \doteq 2 * c \land b \doteq d/2$$

$$\Rightarrow a * b + z \doteq x * y$$

$$c * b + z \doteq x * y \land (b/2) * 2 \doteq b \land a \doteq 2 * c$$

$$\Rightarrow \langle b = b/2 \rangle a * b + z \doteq x * y$$

$$a * b + z \doteq x * y \land (b/2) * 2 \doteq b$$

$$\Rightarrow \langle a = 2 * a; b = b/2 \rangle a * b + z \doteq x * y$$

# **A Branching Rule**



 $\Gamma, F_0 \rightarrow \langle \pi_1 \rangle F, \Delta \quad \Gamma, \neg F_0 \rightarrow \langle \pi_2 \rangle F, \Delta$  $\Gamma \rightarrow \langle if(F_0) \{ \pi_1 \} else\{ \pi_2 \} \rangle F, \Delta$ 

## A While Rule



# $\begin{array}{c|c} \Gamma \twoheadrightarrow I & I, F_0 \twoheadrightarrow \langle \pi \rangle I & \Gamma, I, \neg F_0 \twoheadrightarrow F, \Delta \\ \hline & \Gamma \twoheadrightarrow \langle \mathrm{while}(F_0)\{\pi\} \rangle F, \Delta \end{array}$

ANU Logic Summer School, December 2002 - p.32



# **Propositional**

# **Dynamic Logic**

PDL

ANU Logic Summer School, December 2002 - p.33

# **PDL Formulas**



The sets  $\operatorname{Fml}_{PDL}$  of formulas and  $\Pi_{PDL}$  of programs are defined by:

p

- If  $\boldsymbol{p}$  is a propositional variable then

is in  $Fml_{PDL}$ 

# **PDL Formulas**



The sets  $\operatorname{Fml}_{PDL}$  of formulas and  $\Pi_{PDL}$  of programs are defined by:

p

- If  $\boldsymbol{p}$  is a propositional variable then

is in  $\operatorname{Fml}_{PDL}$ 

- If  $F_1, F_2 \in \operatorname{Fml}_{PDL}$  then also  $F_1 \vee F_2, F_1 \wedge F_2, F_1 \to F_2, \neg F_1$ ,

# **PDL Formulas**



The sets  $\operatorname{Fml}_{PDL}$  of formulas and  $\Pi_{PDL}$  of programs are defined by:

p

- If  $\boldsymbol{p}$  is a propositional variable then

is in  $\operatorname{Fml}_{PDL}$ 

- If  $F_1, F_2 \in \operatorname{Fml}_{PDL}$  then also  $F_1 \lor F_2, F_1 \land F_2, F_1 \to F_2, \neg F_1$ ,
- If F is a formula in  $\operatorname{Fml}_{PDL}$  and  $\pi \in \Pi_{PDL}$  then  $[\pi]F$  and  $\langle \pi \rangle F$

are in  $\operatorname{Fml}_{PDL}$ .



- If  $\pi_0$  is an atomic program then

 $\pi_0$ 

is in  $\Pi_{PDL}$ .

KGX

- If  $\pi_0$  is an atomic program then

 $\pi_0$ 

is in  $\Pi_{PDL}$ .

- If  $\pi_1, \pi_2 \in \prod_{PDL}$  then also

 $\pi_1;\pi_2$ 

- If  $\pi_0$  is an atomic program then

is in  $\Pi_{PDL}$ .

- If  $\pi_1, \pi_2 \in \Pi_{PDL}$  then also

 $\pi_1;\pi_2$ 

 $\pi^*$ 

 $\pi_0$ 

- If  $\pi \in \Pi_{PDL}$  then



- If  $\pi_0$  is an atomic program then  $\pi_0$ 

is in  $\Pi_{PDL}$ .

- If  $\pi_1, \pi_2 \in \Pi_{PDL}$  then also

 $\pi_1;\pi_2$ 

 $\pi^*$ 

- If  $\pi \in \Pi_{PDL}$  then

- If  $\pi_1, \pi_2 \in \Pi_{PDL}$  then also

 $\pi_1 \cup \pi_2$ 



- If  $\pi_0$  is an atomic program then

is in  $\Pi_{PDL}$ .

- If  $\pi_1, \pi_2 \in \Pi_{PDL}$  then also

- If  $\pi \in \Pi_{PDL}$  then

- If  $\pi_1, \pi_2 \in \prod_{PDL}$  then also

 $\pi_1 \cup \pi_2$ 

(F?)

- If  $F \in \operatorname{Fml}_{PDL}$  then

ANU Logic Summer School, December 2002  $-~{
m p.35}$ 



 $\pi_0$ 

 $\pi_1; \pi_2$ 

 $\pi^*$ 



- David Harel *First-Order Dynamic Logic* Lecture Notes in Computer Science, Vol. 68, 1979



- David Harel *First-Order Dynamic Logic* Lecture Notes in Computer Science, Vol. 68, 1979
- David Harel Chapter on Dynamic Logic
   in: Handbook of Philosophical Logic, Vol II, pages 497 -604
   D Reidel 1084

D.Reidel, 1984



- David Harel *First-Order Dynamic Logic* Lecture Notes in Computer Science, Vol. 68, 1979
- David Harel Chapter on Dynamic Logic
   in: Handbook of Philosophical Logic, Vol II, pages 497 -604
   D.Reidel, 1984
- Dexter Kozen and Jerzy Tiuryn Chapter on Logics of Programs
   in: Handbook of Theoretical Computer Science, pages 791–840
   Elsevier, Amsterdam, 1990



- David Harel *First-Order Dynamic Logic* Lecture Notes in Computer Science, Vol. 68, 1979
- David Harel Chapter on Dynamic Logic
   in: Handbook of Philosophical Logic, Vol II, pages 497 -604
   D.Reidel, 1984
- Dexter Kozen and Jerzy Tiuryn Chapter on Logics of Programs
   in: Handbook of Theoretical Computer Science, pages 791–840
   Elsevier, Amsterdam, 1990
- David Harel, Dexter Kozen, and Jerzy Tiuryn Dynamic Logic The MIT Press, 2000