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Reasoning About Programs

An
Example
Program
αRM

int a, b, z;
z = 0;
while (b! = 0)

{ if ((b/2) ∗ 2 == b)
{a = 2 ∗ a;
b = b/2; }

else
{z = z + a;
a = 2 ∗ a;
b = b/2; }

}
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Annotated Programs

The
Program
αRM

with
annotations

int a, b, z;
z = 0;
assert x

.
= a ∧ y

.
= b ∧ z

.
= 0;

while (b! = 0)
{ if ((b/2) ∗ 2 == b)

{a = 2 ∗ a;
b = b/2; }

else
{z = z + a;
a = 2 ∗ a;
b = b/2; }

assert a ∗ b + z
.
= x ∗ y ;

}
assert b

.
= 0;

assert z
.
= x * y;

external variable
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The DL Approach

- Annotated programs use formulas within programs.

- Dynamic Logic uses programs within formulas.

- Instead of placing annotation F after program segment α,

- we write [α]F in DL.

- Example

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.5



The DL Approach

- Annotated programs use formulas within programs.

- Dynamic Logic uses programs within formulas.

- Instead of placing annotation F after program segment α,

- we write [α]F in DL.

- Example

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.5



The DL Approach

- Annotated programs use formulas within programs.

- Dynamic Logic uses programs within formulas.

- Instead of placing annotation F after program segment α,

- we write [α]F in DL.

- Example

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.5



The DL Approach

- Annotated programs use formulas within programs.

- Dynamic Logic uses programs within formulas.

- Instead of placing annotation F after program segment α,

- we write [α]F in DL.

- Example

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.5



The DL Approach

- Annotated programs use formulas within programs.

- Dynamic Logic uses programs within formulas.

- Instead of placing annotation F after program segment α,

- we write [α]F in DL.

- Example

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.5



The First Proof Steps

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0;αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0][αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [αRMwhile] z

.
= x ∗ y )

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

ANU Logic Summer School, December 2002 – p.6



The First Proof Steps

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0;αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0][αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [αRMwhile] z

.
= x ∗ y )

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

ANU Logic Summer School, December 2002 – p.6



The First Proof Steps

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0;αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0][αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [αRMwhile] z

.
= x ∗ y )

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

ANU Logic Summer School, December 2002 – p.6



The First Proof Steps

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0;αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0][αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [αRMwhile] z

.
= x ∗ y )

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

ANU Logic Summer School, December 2002 – p.6



The First Proof Steps

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [αRM ] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0;αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b → [z = 0][αRMwhile] z

.
= x ∗ y )

∀a, b, z, x, y (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [αRMwhile] z

.
= x ∗ y )

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

ANU Logic Summer School, December 2002 – p.6



A Few More Proof Steps

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] b

.
= 0 ) okay

and
∀a . . . (x

.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] a ∗ b + z

.
= x ∗ y )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → a ∗ b + z

.
= x ∗ y ) okay

and
∀a . . . (a ∗ b + z

.
= x ∗ y → [body] a ∗ b + z

.
= x ∗ y )

∀a . . . (a ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

→ [a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

and
∀a . . . (a ∗ b + z

.
= x ∗ y ∧ (b/2) ∗ 2 6

.
= b

→ [z = z + a; a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.7



A Few More Proof Steps

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] b

.
= 0 )

okay

and
∀a . . . (x

.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] a ∗ b + z

.
= x ∗ y )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → a ∗ b + z

.
= x ∗ y ) okay

and
∀a . . . (a ∗ b + z

.
= x ∗ y → [body] a ∗ b + z

.
= x ∗ y )

∀a . . . (a ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

→ [a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

and
∀a . . . (a ∗ b + z

.
= x ∗ y ∧ (b/2) ∗ 2 6

.
= b

→ [z = z + a; a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.7



A Few More Proof Steps

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] b

.
= 0 ) okay

and
∀a . . . (x

.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] a ∗ b + z

.
= x ∗ y )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → a ∗ b + z

.
= x ∗ y ) okay

and
∀a . . . (a ∗ b + z

.
= x ∗ y → [body] a ∗ b + z

.
= x ∗ y )

∀a . . . (a ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

→ [a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

and
∀a . . . (a ∗ b + z

.
= x ∗ y ∧ (b/2) ∗ 2 6

.
= b

→ [z = z + a; a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.7



A Few More Proof Steps

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] b

.
= 0 ) okay

and
∀a . . . (x

.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] a ∗ b + z

.
= x ∗ y )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → a ∗ b + z

.
= x ∗ y )

okay

and
∀a . . . (a ∗ b + z

.
= x ∗ y → [body] a ∗ b + z

.
= x ∗ y )

∀a . . . (a ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

→ [a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

and
∀a . . . (a ∗ b + z

.
= x ∗ y ∧ (b/2) ∗ 2 6

.
= b

→ [z = z + a; a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.7



A Few More Proof Steps

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] b

.
= 0 ) okay

and
∀a . . . (x

.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] a ∗ b + z

.
= x ∗ y )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → a ∗ b + z

.
= x ∗ y ) okay

and
∀a . . . (a ∗ b + z

.
= x ∗ y → [body] a ∗ b + z

.
= x ∗ y )

∀a . . . (a ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

→ [a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

and
∀a . . . (a ∗ b + z

.
= x ∗ y ∧ (b/2) ∗ 2 6

.
= b

→ [z = z + a; a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.7



A Few More Proof Steps

∀a . . . (x
.
= a∧y

.
= b∧z

.
= 0 → [αRMwhile] (b

.
= 0∧a∗b+z

.
= x∗y) )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] b

.
= 0 ) okay

and
∀a . . . (x

.
= a ∧ y

.
= b ∧ z

.
= 0 → [while(b! = 0){body}] a ∗ b + z

.
= x ∗ y )

∀a . . . (x
.
= a ∧ y

.
= b ∧ z

.
= 0 → a ∗ b + z

.
= x ∗ y ) okay

and
∀a . . . (a ∗ b + z

.
= x ∗ y → [body] a ∗ b + z

.
= x ∗ y )

∀a . . . (a ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

→ [a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

and
∀a . . . (a ∗ b + z

.
= x ∗ y ∧ (b/2) ∗ 2 6

.
= b

→ [z = z + a; a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

ANU Logic Summer School, December 2002 – p.7



The Last Proof Steps

∀a . . . (a ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

→ [a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

and
∀a . . . (a ∗ b + z

.
= x ∗ y ∧ (b/2) ∗ 2 6

.
= b

→ [z = z + a; a = 2 ∗ a; b = b/2] a ∗ b + z
.
= x ∗ y )

∀a . . . ((2 ∗ a) ∗ (b/2) + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

→ a ∗ b + z
.
= x ∗ y ) okay

and
∀a . . . ((2 ∗ a) ∗ (b/2) + z + a

.
= x ∗ y ∧ (b/2) ∗ 2 6

.
= b

→ a ∗ b + z
.
= x ∗ y ) okay here b/2

.
= (b − 1)
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Formal Introduction

of

Dynamic Logic
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Syntax: Terms

Let Σ be a vocabulary (set of function - and relation symbols).

The set TermΣ is defined as usual:

Every variable x is in TermΣ.

If f is an n-place function symbol in Σ and ti are terms in
TermΣ then

f(t1, . . . , tn) is in TermΣ.

We ignore types for simplicity.
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Syntax: Formulas

The sets FmlΣ of formulas and ΠΣ of programs are defined by
mutual recursion

- If r ∈ Σ is an n-place relation symbol and ti ∈ TermΣ then
r(t1, . . . , tn) is in FmlΣ.

- If t1, t2 are terms then t1
.
= t2 is in FmlΣ .

- If F1, F2 ∈ FmlΣ then also
F1 ∨ F2, F1 ∧ F2, F1 → F2, ¬F1, ∀xF1 and ∃xF1.

- If F is a formula in FmlΣ and π ∈ ΠΣ then
[π]F and 〈π〉F

are in FmlΣ .

ANU Logic Summer School, December 2002 – p.11



Syntax: Formulas

The sets FmlΣ of formulas and ΠΣ of programs are defined by
mutual recursion

- If r ∈ Σ is an n-place relation symbol and ti ∈ TermΣ then
r(t1, . . . , tn) is in FmlΣ.

- If t1, t2 are terms then t1
.
= t2 is in FmlΣ .

- If F1, F2 ∈ FmlΣ then also
F1 ∨ F2, F1 ∧ F2, F1 → F2, ¬F1, ∀xF1 and ∃xF1.

- If F is a formula in FmlΣ and π ∈ ΠΣ then
[π]F and 〈π〉F

are in FmlΣ .

ANU Logic Summer School, December 2002 – p.11



Syntax: Formulas

The sets FmlΣ of formulas and ΠΣ of programs are defined by
mutual recursion

- If r ∈ Σ is an n-place relation symbol and ti ∈ TermΣ then
r(t1, . . . , tn) is in FmlΣ.

- If t1, t2 are terms then t1
.
= t2 is in FmlΣ .

- If F1, F2 ∈ FmlΣ then also
F1 ∨ F2, F1 ∧ F2, F1 → F2, ¬F1, ∀xF1 and ∃xF1.

- If F is a formula in FmlΣ and π ∈ ΠΣ then
[π]F and 〈π〉F

are in FmlΣ .

ANU Logic Summer School, December 2002 – p.11



Syntax: Formulas

The sets FmlΣ of formulas and ΠΣ of programs are defined by
mutual recursion

- If r ∈ Σ is an n-place relation symbol and ti ∈ TermΣ then
r(t1, . . . , tn) is in FmlΣ.

- If t1, t2 are terms then t1
.
= t2 is in FmlΣ .

- If F1, F2 ∈ FmlΣ then also
F1 ∨ F2, F1 ∧ F2, F1 → F2, ¬F1, ∀xF1 and ∃xF1.

- If F is a formula in FmlΣ and π ∈ ΠΣ then
[π]F and 〈π〉F

are in FmlΣ .

ANU Logic Summer School, December 2002 – p.11



Syntax: Programs

- If t ∈ TermΣ and x a variable then x = t is in ΠΣ.

- If π1,π2 ∈ ΠRM then also π1;π2 is in ΠRM .

- If con is a quantifierfree formula in FmlΣ and π ∈ ΠRM then

while (con) {π}

is in ΠΣ.

- If con is a quantifierfree formula in FmlΣ and π1, π2 ∈ ΠΣ

then
if (con) {π1} else {π2}

is in ΠΣ.
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Kripke Structures

A DL-Kripke structure
K = (S, ρ)

consists of

- a set S of states (or worlds) and

- a function ρ that maps every program π to a binary relation
ρ(π) on S.

The ρ(π) are called called the accessibility relations.
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The State Space

For a Dynamic Logic with vocabulary Σ a state s ∈ S of any
Kripke structure K is a pair

s = (A, β)

where

- A is a usual first-order structure for Σ that is fixed for all of
S.

- A variable assignment β : V ar → A that determines the
values of the program variables in state s

A = universe of A.
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Semantics of DL Formulas (I)

For any state (A, β) of a Kripke structure K define:

- t(A,β) for a term t is as usual.

- (A, β) |= r(t1, . . . , tk) iff (t
(A,β)
1 , . . . , t

(A,β)
k ) ∈ rA.

- (A, β) |= t1 = t2 iff t
(A,β)
1 = t

(A,β)
2

- (A, β) |= F is defined as usual for connectives for first order
logic.

- (A, β) |= 〈p〉F iff (A, γ) |= F
for at least one pair ((A, β), (A, γ)) of states in ρ(p)

- (A, β) |= [p]F iff (A, γ) |= F
for all pairs ((A, β), (A, γ)) of states in ρ(p).
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Semantics of DL Formulas (II)

- ρ(x := s) = {((A, β), (A, β[x/s(A,β)])) | (A, β) ∈ S}.

- ρ(π1;π2) consists of all pairs (β, γ)
such that (β, δ) ∈ ρ(π1) and (δ, γ) ∈ ρ(π2) for some δ.

- ((β, γ) ∈ ρ(if(F0){π1} else{π2})
iff
β |= F0 and (β, γ) ∈ ρ(π1)
or
β |= ¬F0 and (β, γ) ∈ ρ(π2)

We have simplified notation: β instead of (A, β).
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Semantics of DL Formulas (III)

(β, γ) ∈ ρ(while(F0){π})
iff

there is an n ∈

�

and there are states βi for 0 ≤ i ≤ n such that

1. β0 = β,

2. βn = γ,

3. βi |= F0 for 0 ≤ i < n

4. βn |= ¬F0

5. (βi, βi+1) ∈ ρ(π) for 0 ≤ i < n
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Some DL-Tautologies

General assumption: x does not occuir in π.

- (∃x 〈π〉F ) ↔ (〈π〉∃x F )

- (∀x [π]F ) ↔ ([π]∀x F )

- (∃x [π]F ) → ([π]∃x F )

- ([π]∃x F ) → (∃x [π]F ) if π is deterministic

- (〈π〉∀x F ) → (∀x 〈π〉F )

- (∀x 〈π〉F ) → (〈π〉∀x F ) if π is deterministic

- (〈π〉(F ∧ G)) → ((〈π〉F ) ∧ 〈π〉G)

- (〈π〉(F ∧ G)) ↔ ((〈π〉F ) ∧ 〈π〉G)
if no free variable of F occurs in π
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Further Examples

- 〈x = 1〉 x
.
= 1 always true

- [while(true){π}] false always true

- 〈π〉true true if π terminates

- 〈π1〉true → 〈π2〉true says: if π1 terminates then π2

terminates.
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Axioms for

of

Dynamic Logic
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Sequents

1. A sequent is of the form

Γ ∆

where Γ and ∆ are sequences of formulas.
2. Let K = (S, ρ) be a DL-Kripke structure, (A, β) a state in S.

(A, β) |= Γ ∆ iff (A, β) |=
∧

Γ →
∨

∆

3.
K |= Γ ∆ iff (A, β) |=

∧
Γ →

∨
∆

for all (A, β) ∈ S.

4. A sequent Γ ∆ is called universally valid if K |= Γ ∆
holds for all Kripke structures K in the signature of the
sequent.
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Sequent Rules

A sequent rule is of the form

Γ1 ∆1

Γ2 ∆2
or

Γ1 ∆1 Γ′
1 ∆′

1

Γ2 ∆2

A sequent rule
Γ1 ∆1 Γ′

1 ∆′
1

Γ2 ∆2

is sound if Γ2 ∆2 is universally valid whenever Γ1 ∆1 and

Γ′
1 ∆′

1 are universally valid.
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Some Sound Sequent Rules

1.
Γ1, A,Γ1 ∆1, A,∆2

2.
Γ,Γ′ ∆, A,∆′

Γ,¬A,Γ′ ∆,∆′

3.
Γ ∆, A(y/x),∆′

Γ ∆,∀xA,∆′
where y is not free in Γ,∆,∆′

4.
Γ, A,Γ′ ∆ Γ,Γ′ ∆, A,∆′

Γ,Γ′ ∆,∆′
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The Axiom System S0 (1)

axiom

Γ, F F,∆

not-left

Γ, F,∆

Γ,¬F ∆

not-right

Γ, F ∆

Γ ¬F,∆

impl-left

Γ F,∆ Γ, G ∆

Γ, F → G ∆

impl-right

Γ, F G,∆

Γ F → G,∆

and-left

Γ, F,G ∆

Γ, F ∧ G ∆

and-right

Γ F,∆ Γ G,∆

Γ F ∧ G,∆
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The Axiom System S0 (2)

or-left

Γ, F ∆ Γ, G ∆

Γ, F ∨ G ∆

or-right

Γ F,G,∆

Γ F ∨ G,∆

all-left

Γ,∀xF, F (t/x) ∆

Γ,∀xF ∆

where t is a ground term.

all-right

Γ F (c/x),∆

Γ ∀xF,∆

where c is a new constant
symbol.
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The Axiom System S0 (3)

ex-right

Γ ∃xF, F (t/x),∆

Γ, ∃xF,∆

where t is ground term.

ex-left

Γ F (c/x),∆

Γ,∃xF ∆

where c is a new constant
symbol.
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The Axiom System Sfv
0

all-left

Γ,∀xF, F (X/x) ∆

Γ,∀xF ∆

where X is a new variable.

all-right

Γ F (f(x1, . . . , xn)/x),∆

Γ ∀xF,∆

where f is a new functions
symbol and x1, . . . , xn are
all free variables in ∀xF .

ex-right

Γ ∃xF, F (X/x),∆

Γ, ∃xF,∆

where X is a new variable.

ex-left

Γ F (f(x1, . . . , xn)/x),∆

Γ,∃xF ∆

where f is a new functions
symbol and x1, . . . , xn are
all free variables in ∀xF .
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Proof in S0

axiom
6 p(d), p(c) p(c),∀yp(y)

5 p(d) p(c), p(c)→∀yp(y)

4 p(d) p(c), ∃x(p(x) → ∀yp(y))

3 p(d) ∀yp(y),∃x(p(x) → ∀yp(y))

2 p(d)→∀yp(y),∃x(p(x) → ∀yp(y))

1 ∃x(p(x) → ∀yp(y))

ex-right

impl-right

all-right

ex-right

impl-right
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Proof in Sfv
0

closed by τ(X) = c

4 p(X) p(c),∃x(p(x) → ∀yp(y))

3 p(X) ∀yp(y),∃x(p(x) → ∀yp(y))

2 p(X)→∀yp(y),∃x(p(x) → ∀yp(y))

1 ∃x(p(x) → ∀yp(y))

ex-right

impl-right

all-right
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The Assignment Rule

Γ(c/a), a
.
= t(c/a) F,∆(c/a)

Γ 〈a = t〉F,∆

where a is a variable and t a term, c a new variable.

Example
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The Assignment Rule

Γ(c/a), a
.
= t(c/a) F,∆(c/a)

Γ 〈a = t〉F,∆

where a is a variable and t a term, c a new variable.

Example

c ∗ d + z
.
= x ∗ y ∧ (d/2) ∗ 2

.
= d ∧ a

.
= 2 ∗ c ∧ b

.
= d/2

a ∗ b + z
.
= x ∗ y

c ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b ∧ a

.
= 2 ∗ c

〈b = b/2〉 a ∗ b + z
.
= x ∗ y

a ∗ b + z
.
= x ∗ y ∧ (b/2) ∗ 2

.
= b

〈a = 2 ∗ a; b = b/2〉 a ∗ b + z
.
= x ∗ y
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A Branching Rule

Γ, F0 〈π1〉F,∆ Γ,¬F0 〈π2〉F,∆

Γ 〈if(F0){π1} else{π2}〉F,∆
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A While Rule

Γ I I, F0 〈π〉I Γ, I,¬F0 F,∆

Γ 〈while(F0){π}〉F,∆
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Propositional

Dynamic Logic

PDL
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PDL Formulas

The sets FmlPDL of formulas and ΠPDL of programs are
defined by:

- If p is a propositional variable then
p

is in FmlPDL

- If F1, F2 ∈ FmlPDL then also
F1 ∨ F2, F1 ∧ F2, F1 → F2, ¬F1,

- If F is a formula in FmlPDL and π ∈ ΠPDL then
[π]F and 〈π〉F

are in FmlPDL .
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PDL Programs

- If π0 is an atomic program then
π0

is in ΠPDL.

- If π1,π2 ∈ ΠPDL then also
π1;π2

- If π ∈ ΠPDL then
π∗

- If π1,π2 ∈ ΠPDL then also
π1 ∪ π2

- If F ∈ FmlPDL then
(F?)
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