KR
| ntroduction

to .
Dynamic Logic

Peter H. Schmitt

)

Universitidt Karlsruhe, Germany

Presentation at the ANU Logic & Automated Reasoning Summer School,

December, 2002

ANU Logic Summer School, December 2002 — p.1



Contents Kﬁy

- Reasoning about Programs: the DL Approach

ANU Logic Summer School, December 2002 — p.2



Contents Kﬁy

- Reasoning about Programs: the DL Approach

- Syntax and Semantics of Dynamic Logic

ANU Logic Summer School, December 2002 — p.2



Contents Kﬁy

- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic

- Axioms for Dynamic Logic

ANU Logic Summer School, December 2002 — p.2



Contents Kﬁy

- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic
- Axioms for Dynamic Logic

- Propositional Dynamic Logic

ANU Logic Summer School, December 2002 — p.2



Contents Kﬁy

- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic

- Axioms for Dynamic Logic

- Propositional Dynamic Logic

- Summary

ANU Logic Summer School, December 2002 — p.2



Reasoning About Programs K@Y

An
Example
Program int a,b, z;
ORM z = 0;
while (b! = 0)
{if ((b/2) +2 == 1)
{a =2x*aq;
b=10/2;}
else
{z =2+ a;
a=2x%a;
b=10/2;}

}
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Annotated Programs KR

The

int a, b, z;
Program 2 =0
“RM assert r=a ANy =0AN 2z =0;
with - _
. while(b! = 0)
annotations [ i ((b/2) +2 == b)
{a =2xa;
b=1b/2;}
else
{z =2+ a;
a=2%a;
b=1b/2;}
external variable assert }a *b+z=x%y;
assert b = 0;

assert z = x * y;
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The DL Approach K@Y

- Annotated programs use formulas within programs.
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The DL Approach K@Y

Annotated programs use formulas within programs.

Dynamic Logic uses programs within formulas.

Instead of placing annotation £ after program segment «,

we write [a]F' in DL.

Example
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TheFirst Proof Steps K@Y

Va,b,z,x,y (x=aANy=b— [2=0;QrMuwhie] 2=T*Yy)
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TheFirst Proof Steps K@Y

‘v’a,b,z,w,y (ZEICL/\y:b—> [&RM] Z:l)*y)
Va,b,z,x,y (x=aANy=b— [2=0;QrMuwhie] 2=T*Yy)
Va,b,z,z,y (r=aANy=b— |z=0|armwniel 2=x*y)

Va,b,z,x,y (x =aANy=bAz=0— |QRMwhile] 2=T*Yy )
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TheFirst Proof Steps K@Y

Va,b,z,x,y (xt =aAy=b— |apy] z=z%xy)
Va,b,z,x,y (x=aANy=b— [2=0;QrMuwhie] 2=T*Yy)
Va,b,z,z,y (r=aANy=b— |z=0|armwniel 2=x*y)
Va,b,z,x,y (x =aANy=bAz=0— |QRMwhile] 2=T*Yy )

Va...(x =aly =bAz =0 — |agpmwhile] (b=0Aaxb+2 =xxy))
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A Few More Proof Steps

KR

Va...(x =aly =bAz =0 — |agpmwhile] (b=0Aaxb+2 =xx*y))

Va...(x =aANy=bAz=0— [while(bl = 0){body}
and

Va...(xt=a/Ny=bAz=0— |while(b! = 0){body}

b=0)

a*xb+z=n2
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A Few M ore Proof

Steps K@Y

Va...(x =aly =bAz =0 — |agpmwhile] (b=0Aaxb+2 =xx*y))

Va...(t=aANy=bANz=0—
and
Va...(t=aANy=bANz=0—

Va...(t=aANy=bANz=0—
and

‘while(b! = 0){body}] b =0) okas

‘while(b! = 0){body}] axb+ z =1
axb+z=x%xy)

Va... (axb+z=xxy — [bodylaxb+z=xxy)
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A Few More Proof Steps K@Y

Va...(x =aly =bAz =0 — |agpmwhile] (b=0Aaxb+2 =xx*y))

Va...(rt=aANy=0Az=0— |[while(bl = 0){body}| b=10) okar
and
Va...(rt=aNy=0ANz=0— |[while(bl = 0){body}| axb+ 2z =2

Va..(rt=ahNy=bNz=0— axb+z=xx*xy) okay

and

Va...(axb+z=x*xy — |[body]l axb+2z=x*xy)

Va...(axb+z=xxyN(b/2)x2 =0
—la=2%xa;b=0/2] axb+z=xx%xy)

and

Va...(axb+z=xxyN(b/2)«2#b

—z=z4+a;a=2%xa;b=0/2] axb+z=x%y)
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TheLast Proof Steps KRY

Va...(axb+z=xxyA(b/2)*2=0b
—la=2%a;b=0/2] axb+2=xxy)

and

Va...(axb+z=xxyN(b/2)*«2#b
—lz=z4a,a=2xa;b=b/2laxb+z=xx*xy)
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TheLast Proof Steps K@Y

Va...(axb+z=xxyA(b/2)*2=0b
—la=2%a;b=0/2] axb+2=xxy)

and

Va...(axb+z=xxyN(b/2)*«2#b
—lz=z+a,a=2%xa;b=0/2] axb+z=xx%xy)

Va...((2%a)*(b/2)+2z=xxyN(b/2)*x2=10>
— axb+z=xxy) okay
and
Va...(2xa)*(b/2)+z4+a=xxy A (b/2)*«2F#D
— axb+z=xxy) okay hereb/2=(b—-1)

ANU Logic Summer School, December 2002 — p.8



Formal | ntroduction
of

Dynamic Logic

KR



Syntax: Terms K@Y

Let > be a vocabulary (set of function - and relation symbols).
The set Termy IS defined as usual:
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Syntax: Terms K@Y
Let > be a vocabulary (set of function - and relation symbols).
The set Termy IS defined as usual:

Every variable x IS IN Termsy.

If fis an n-place function symbol in > and ¢; are terms in

Termy then
fty, ... tp) IS IN Termy.

We ignore types for simplicity.

ANU Logic Summer School, December 2002 — p.10



Syntax: Formulas K@Y

The sets Fmly, of formulas and IIs. of programs are defined by
mutual recursion

- If r € X Is an n-place relation symbol and ¢; € Termsy, then
r(ty,... ,ty) 1S 1IN Fmly.
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Syntax: Formulas K@Y

The sets Fmly, of formulas and IIs. of programs are defined by
mutual recursion

- If r € X Is an n-place relation symbol and ¢; € Termsy, then
r(ty,... ,ty) 1S 1IN Fmly.

- If t1,t9 are terms then ¢; = ¢ty IS In Fmly, .

- If F1, Fy € Fmly, then also
i1V Fy, Fi1 N\ Fy, Fy — Fy, =F, Vo Fy and 3z Fy.

- If Fis a formula in Fmly. and 7 € IIy, then
| Fand () F
are in Fmly .
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Syntax: Programs K@Y

- If ¢t € Termy and x a variable then x = ¢t is in Ily.
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Syntax: Programs K@Y

- If ¢t € Termy and x a variable then x = ¢t is in Ily.

- If m1,m € Iz then also 7 m IS In I p)y.

- If con 1s a quantifierfree formula in Fmls. and = € 11z, then
while (con) {r}

1S In Iy.
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Syntax: Programs K@Y

- If ¢t € Termy and x a variable then x = ¢t is in Ily.
- If m1,m € Iz then also 7 m IS In I p)y.
- If con 1s a quantifierfree formula in Fmls. and = € 11z, then
while (con) {r}
1S In Iy.

- If con 1s a quantifierfree formula in Fmly. and 71, m € Ils;
then

if (con) {m1} else {ma}
IS In Ils.
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Kripke Structures KR

A DL-Kripke structure
K=(50p)
consists of
- a set S of states (or worlds) and

- a function p that maps every program = to a binary relation
p(m)on S.

The p(7) are called called the accessibility relations.
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The State Space K@Y

For a Dynamic Logic with vocabulary X a state s € S of any
Kripke structure K is a pair

s = (A,pB)
where

- A Is a usual first-order structure for X that is fixed for all of
S.

- A variable assignment 3 : Var — A that determines the
values of the program variables in state s

A = universe of A.
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Semanticsof DL Formulas(l) K&

For any state (A, ) of a Kripke structure IC define:

- t(A.8) for a term t is as usual.
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Semanticsof DL Formulas(l) K&

For any state (A, ) of a Kripke structure IC define:

- t(AB) for a term ¢ is as usual.
(AR () iff @0 APy e A

Bt =ty iff ) =AY

- (A B
- (A, B) E F'I1s defined as usual for connectives for first order
logic.
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Semanticsof DL Formulas(l) K&

For any state (A, ) of a Kripke structure IC define:

- t(AB) for a term ¢ is as usual.
(AR () iff @0 APy e A

7 .

(AR =1y iff P =

- (A, B) E F'I1s defined as usual for connectives for first order
logic.

- (A, B) = (p) it (A7) = F
for at least one pair ((A, 3), (A, ~)) of states in p(p)

- (A, B) = [plF it (A7) = F

for all pairs ((A, 3), (A,~)) of states in p(p).
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Semanticsof DL Formulas(I1) K

- pla = s) = {((A,B), (A, Bla/s))) | (A, 5) € S3.



Semantics of DL Formulas(l1) KGY
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- p(m1; 7o) consists of all pairs (3, )
such that (3,6) € p(m1) and (6,~) € p(m2) for some 6.
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- pla = s) = {((A,B), (A, Bla/s))) | (A, 5) € S3.

- p(m1; ) consists of all pairs (3, )
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Semantics of DL Formulas(l1) KGY

- pla = s) = {((A,B), (A, Bla/s))) | (A, 5) € S3.

- p(m1; 7o) consists of all pairs (3, )
such that (3,6) € p(m1) and (6,~) € p(m2) for some 6.
)

- _(fgcﬂﬁ) € p(if (Fo){m1 } else{ma}
|
B = Foand (5,v) € p(m1)
or

B = —~Fpyand (8,7) € p(m2)

We have simplified notation: 3 instead of (A, 3).
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Semantics of DL Formulas (111) KR

(8,7) € p(while(Fp){})

there is an n € N and there arelfiztates G; for 0 < i < n such that
1. Gy =5,

2. B =1,

3. BiEyfor0<i<n

4. B, =~y

5. (6i, Bix1) € p(m) for0 < i <n

ANU Logic Summer School, December 2002 — p.17



Some DL -Tautologies Kﬁ}’

General assumption: = does not occuir in .
- (Fz (MF) < ((m)3z F)

ANU Logic Summer School, December 2002 — p.18



Some DL -Tautologies Kﬁ}’

General assumption: = does not occuir in .
- (Fz (MF) < ((m)3z F)

- (Vo [7]F) < (|n]Ve F)



Some DL -Tautologies

KR

General assumption: = does not occuir in .

- (G (M) F) < ((m)3z F)
- (Vx|
- (dx |

-ﬂ--

F) o (]

-ﬂ--

F)— (]

-7T-

Vo F)

-ﬂ--

|3z F)

ANU Logic Summer School, December 2002 — p.18



Some DL -Tautologies Kg}’

General assumption: = does not occuir in .
- (Fz (MF) < ((m)3z F)

— (|r|Vx F)

( )
- (3z [7]F) — ([7] 32 F)
( )

— (dz [x]F) if 7 is deterministic
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Some DL -Tautologies
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- (o (7)F) o

- (x|

-ﬂ--

(Va
(

- ([7)3z F) —
(

F) o (]

ks

F)— (]

-7T-

- ((m)Vx F) —

((m)dz F)
|V F)
|3z F)
(Fz 7] F)

(Vo (m) F)

If 7 IS deterministic
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Some DL -Tautologies

General assumption: = does not occuir in .
- (Jz (M)F) < ({(m)3Jz F)

7|F) = (7]Ve F)
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(Va
(
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Some DL -Tautologies

General assumption: = does not occuir in .
- (z (m)F) <

- (x|

-ﬂ--

- (|r]3x F) —

F) o (]

ks

F)— (]

-7T-

- (Vo (m) F) —
- (MFAG)) —

(Va
(
(
- ((m)Vz F) —
(
(

((m)3dx F)
|V F)

|3z F)
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Some DL -Tautologies

General assumption: = does not occuir in .
- (Jz (M)F) < ({(m)3Jz F)

7|F) = (7]Ve F)

(V

- (3z [7]F) — ([7]3x F)

- ([7]3z F) — (Jz [n|F) if wis deterministic

- ((m)Va F) — (Vo (7)) F

- (Vo (m)F) — ((m)Va F

- ((M(FAG)) = (((m)F) A (m)G)
({(m)(FNG)) = ((m)F) Am)G)

If no free variable of F occurs in =

)
)

If 7 Is deterministic

KR



Further Examples K@Y

-(x=1Hxz=1 always true
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-(x=1Hxz=1 always true

- |while(true){n}] false always true
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Further Examples

- |while(true){n}] false

- (m)true

KR

always true
always true

true If © terminates
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Further Examples K@Y

-(x=1Hxz=1 always true
- |while(true){n}] false always true
- (m)true true if = terminates
- (m)true — (mo)true says: If 1 terminates then 5

terminates.
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Sequents K@Y

1. A sequent is of the form
[= A

where I and A are seguences of formulas.
2. Let K = (S, p) be a DL-Kripke structure, (A, 5) a state in S.

(A, 3) =T = Aiff(A4,8) = AT —\/A

KeET=A iff (A4,08)EAT—-VA
forall (A,3) € S.

4. A sequent I' = A is called universally valid if C =T" = A
holds for all Kripke structures C in the signature of the
sequent.
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Sequent Rules KRY

A seqguent rule is of the form

Fl—)Al Fl—)Al F’l—)All
FQ-)AQ FQ_)AQ

A sequent rule
Ih=A T'f—=A)
[y = Ay
Is sound if I'y = Ay is universally valid whenever I'y = A; and
[} = A are universally valid.
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Some Sound Seguent Rules K@Y

' ATH= AL A A2

T = A, A N
I AT = A A

I'> A Ay/z), A
= A, VoA, A

where y is not free in ', A, A’

T AT = A T.TV=A A AN
I T/ = AN
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The Axiom System .S, (1)

axiom

' F=F A
not-left

= FA
I'=F=A

not-right

I F=>A
['=>-F A

impl-left
I'=FA I'G=A

I'F—-G=A

KR

impl-right

I'FF= G A
I'=F — G, A

and-left

IVE,G= A
EANG= A

and-right
I'=FA I'=>G A

= FAG,A
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The Axiom System .5 (2) K

or-left where t is a ground term.
IF=A I''G—= A all-right
VFVG=A = F(c/z), A
or-right ['=VxF A
= F G A

where ¢ IS a new constant
'=FVGA symbol.

all-left
[ VaF, F(t/z) = A
['"VeF = A
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The Axiom System .5 (3) K

ex-right ex-left
['= 32F, F(t/z), A ['=> F(c/z), A
[I') = doF, A ' dxF' = A
where ¢ is ground term. where c Is a hew constant

symbol.
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The Axiom System S/" K@Y

all-left ex-right
['\VaF, F(X/z) > A ['—= 3gF, F(X /z),A
I''VaeF' = A [, = 32F A
where X Is a new variable. where X is a new variable.
all-right ex-left
= F(f(x1,...,2,)/x), A I'= F(f(x1,...,2,)/x), A
[ = VzF, A [, 3zF = A
where f is a new functions where f is a new functions
symbol and z,... ,x, are symbol and z1,... ,x, are

all free variables in Vo F'. all free variables In Vx F'.
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Proof in Sy K@Y

6 p(d),p(c) ax_lo)m p(c), Vyp(y)
impl-right

5 p(d) == p(c),p(c)—Vyp(y)
ex-right

1 p(d) —=> p(c),3z(p(z) — Vyp(y))
all-right

3 p(d) —=>  Vyp(y),Fz(p(z) — Yyp(y))
impl-right

2 —>  p(d)—Vyp(y), Fz(p(z) — Yyp(y))
ex-right

1 —>  Jz(p(x) — Vyp(y))
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Proof in S/ KR

closed by 7(X) = ¢

4 p(X) —> p(c), Jz(p(z) — Vyp(y))
all-right

3 p(X) —> Yyp(y), 3z (p(z) — Yyp(y))
impl-right

2 —> p(X)—=Vyp(y), Jz(p(x) — Yyp(y))
ex-right

1 —> Jz(p(x) — Vyp(y))
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The Assignment Rule K@Y

['(c/a),a =t(c/a) = F,A(c/a)
['=(a=t)F A

where a IS a variable and ¢ a term, ¢ a new variable.
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The Assignment Rule K@Y

['(c/a),a =t(c/a) = F,A(c/a)
['=(a=t)F A

where a IS a variable and ¢ a term, ¢ a new variable.
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The Assignment Rule K@Y

['(c/a),a =t(c/a) = F,A(c/a)
['=(a=t)F A

where a IS a variable and ¢ a term, ¢ a new variable.

Example

axb+z=xxyA(b/2)*x2=1D
= (a=2%xa;b=0b/2) axb+z=xxy
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The Assignment Rule K@Y

['(c/a),a =t(c/a) = F,A(c/a)
['=(a=t)F A

where a IS a variable and ¢ a term, ¢ a new variable.

Example

cxb+z=xxyA(b/2)*x2=bNa=2xc
= (b=0/2) axb+z=xx%xYy
axb+z=xxyN(b/2)*x2=1D

= (a=2%xa;b=0b/2) axb+z=xxy

ANU Logic Summer School, December 2002 — p.30



The Assignment Rule K@Y

['(c/a),a =t(c/a) = F,A(c/a)
['=(a=t)F A

where a IS a variable and ¢ a term, ¢ a new variable.

Example

cxd+z=xxyAN(d/2)x2=dNa=2xcNb=d/2
= axb+z=xx*xy
cxbt+z=xxyAN(b/2)x2=bANa=2xc
= (b=0b/2) axb+z=xxy
axb+z=xxyN(b/2)x2=0b
= (a=2%a;b=0b/2) axb+2z=1xx*y
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A Branching Rule KR

I', fFop = <7T1>F,A ', —Fy = <7T2>F,A
[ = (if (Fy){m}else{m}) F, A
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A WhileRule K

=1 I[Fy={(m)I T,I,-Fy=F A
[ = (while(Fp) {7 F, A
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Propositional
Dynamic Logic

PDL

KR



PDL Formulas K

The sets Fmlpp;, of formulas and I1pp;, of programs are
defined by:

- If p Is a propositional variable then

p
IS N Fmlppr
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PDL Formulas K

The sets Fmlpp;, of formulas and I1pp;, of programs are
defined by:

- If p Is a propositional variable then

p
IS N Fmlppr

- If [1, Fy € Fmlpp; then also
F1V Fy, F1 N By, I — by, —F7,
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PDL Formulas K

The sets Fmlpp;, of formulas and I1pp;, of programs are
defined by:

- If p Is a propositional variable then

p
IS N Fmlppr

- If [1, Fy € Fmlpp; then also
F1V Fy, F1 N By, I — by, —F7,

- If Fisaformulain Fmlppr and « € Illppy then
| F and () F
arein Fmlppr .
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PDL Programs Kﬁ)’

- If my Is an atomic program then
o
1S N Ilppr.
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PDL Programs Kﬁ)’

- If my Is an atomic program then
o
1S N Ilppr.

- If m1,m € llppy, then also
15 T2
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PDL Programs

- If my Is an atomic program then

0
1S N Ilppr.
- If m1,m € llppy, then also
1, T2
- If m € lIppr then
7_‘_*

KR
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PDL Programs Kﬁ)’

If 79 IS an atomic program then

0
1S N Ilppr.
- If m1,m € llppy, then also
1, T2
- If m € lIppr then
7_‘_*

If 71,7 € IlIppy then also
71 U 79
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PDL Programs Kﬁ)’

If 79 IS an atomic program then
o
1S N Ilppr.

If 71,7 € IlIppy, then also
15 T2

If 7 € Illppy, then

If 71,7 € IlIppy then also
71 U 79

If F € Fmlppy then
(F7)
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Literature K

- David Harel  First-Order Dynamic Logic
Lecture Notes in Computer Science, Vol. 68, 1979
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- Dexter Kozen and Jerzy Tiuryn Chapter on Logics of
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791-840
Elsevier, Amsterdam, 1990
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