Introduction to Dynamic Logic

Peter H. Schmitt

Universität Karlsruhe, Germany

Presentation at the ANU Logic \& Automated Reasoning Summer School,
December, 2002

Contents

- Reasoning about Programs: the DL Approach

Contents

- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic

Contents

- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic
- Axioms for Dynamic Logic

Contents

- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic
- Axioms for Dynamic Logic
- Propositional Dynamic Logic

Contents

- Reasoning about Programs: the DL Approach
- Syntax and Semantics of Dynamic Logic
- Axioms for Dynamic Logic
- Propositional Dynamic Logic
- Summary

Reasoning About Programs

An
Example
Program
$\alpha_{\text {RM }}$
int a, b, z;
$z=0$;
while $(b!=0)$
$\{$ if $((b / 2) * 2==b)$ $\{a=2 * a$;
$b=b / 2 ;\}$
else

$$
\begin{aligned}
& \{z=z+a ; \\
& a=2 * a ; \\
& b=b / 2 ;\}
\end{aligned}
$$

\}

Annotated Programs

The
Program
$\alpha_{\text {RM }}$ with annotations

$$
\begin{aligned}
& \text { int } a, b, z \text {; } \\
& z=0 \text {; } \\
& \text { assert } x \doteq a \wedge y \doteq b \wedge z \doteq 0 \text {; } \\
& \text { whil }{ }^{\prime}(b!=0) \\
& \{\quad \text { if }((b / 2) * 2==b) \\
& \{a=2 * a ; \\
& b=b / 2 ;\} \\
& \text { else } \\
& \{z=z+a ; \\
& a=2 * a ; \\
& b=b / 2 ;\} \\
& \text { assert } a * b+z \doteq x * y \text {; } \\
& \text { \} } \\
& \text { assert } \mathrm{b} \doteq 0 \text {; } \\
& \operatorname{assert} \mathrm{z} \doteq \mathrm{x} * \mathrm{y} \text {; }
\end{aligned}
$$

The DL Approach

- Annotated programs use formulas within programs.

The DL Approach

- Annotated programs use formulas within programs.
- Dynamic Logic uses programs within formulas.

The DL Approach

- Annotated programs use formulas within programs.
- Dynamic Logic uses programs within formulas.
- Instead of placing annotation F after program segment α,

The DL Approach

- Annotated programs use formulas within programs.
- Dynamic Logic uses programs within formulas.
- Instead of placing annotation F after program segment α,
- we write $[\alpha] F$ in DL.

The DL Approach

- Annotated programs use formulas within programs.
- Dynamic Logic uses programs within formulas.
- Instead of placing annotation F after program segment α,
- we write $[\alpha] F$ in DL.
- Example

$$
\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[\alpha_{R M}\right] z \doteq x * y\right)
$$

The First Proof Steps

$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[\alpha_{R M}\right] z \doteq x * y\right)$

The First Proof Steps

$$
\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[\alpha_{R M}\right] z \doteq x * y\right)
$$

$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[z=0 ; \alpha_{R M w h i l e}\right] z \doteq x * y\right)$

The First Proof Steps

$$
\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[\alpha_{R M}\right] z \doteq x * y\right)
$$

$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[z=0 ; \alpha_{R M w h i l e}\right] z \doteq x * y\right)$
$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow[z=0]\left[\alpha_{R M w h i l e}\right] z \doteq x * y\right)$

The First Proof Steps

$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[\alpha_{R M}\right] z \doteq x * y\right)$
$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[z=0 ; \alpha_{R M w h i l e}\right] z \doteq x * y\right)$
$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow[z=0]\left[\alpha_{R M w h i l e}\right] z \doteq x * y\right)$
$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right] z \doteq x * y\right)$

The First Proof Steps

$$
\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[\alpha_{R M}\right] z \doteq x * y\right)
$$

$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow\left[z=0 ; \alpha_{R M w h i l e}\right] z \doteq x * y\right)$
$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \rightarrow[z=0]\left[\alpha_{R M w h i l e}\right] z \doteq x * y\right)$
$\forall a, b, z, x, y \quad\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right] z \doteq x * y\right)$
$\forall a \ldots\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right](b \doteq 0 \wedge a * b+z \doteq x * y)\right)$

A Few More Proof Steps

$\forall a \ldots\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right](b \doteq 0 \wedge a * b+z \doteq x * y)\right)$

A Few More Proof Steps

$\forall a \ldots\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right](b \doteq 0 \wedge a * b+z \doteq x * y)\right)$
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[$ while $(b!=0)\{b o d y\}] b \doteq 0)$
and
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[w h i l e(b!=0)\{b o d y\}] a * b+z \doteq a$

A Few More Proof Steps

$\forall a \ldots\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right](b \doteq 0 \wedge a * b+z \doteq x * y)\right)$
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[$ while $(b!=0)\{\operatorname{bod} y\}] b \doteq 0)$ oka? and
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[$ while $(b!=0)\{b o d y\}] a * b+z \doteq x$

A Few More Proof Steps

$\forall a \ldots\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right](b \doteq 0 \wedge a * b+z \doteq x * y)\right)$
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[$ while $(b!=0)\{b o d y\}] b \doteq 0)$ oka? and
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[$ while $(b!=0)\{b o d y\}] a * b+z \doteq x$
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow a * b+z \doteq x * y)$
and
$\forall a \ldots(a * b+z \doteq x * y \rightarrow[b o d y] a * b+z \doteq x * y)$

A Few More Proof Steps

$\forall a \ldots\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right](b \doteq 0 \wedge a * b+z \doteq x * y)\right)$
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[$ while $(b!=0)\{b o d y\}] b \doteq 0)$ oka? and
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[$ while $(b!=0)\{b o d y\}] a * b+z \doteq x$
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow a * b+z \doteq x * y)$ okay and
$\forall a \ldots(a * b+z \doteq x * y \rightarrow[b o d y] a * b+z \doteq x * y)$

A Few More Proof Steps

$\forall a \ldots\left(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow\left[\alpha_{R M w h i l e}\right](b \doteq 0 \wedge a * b+z \doteq x * y)\right)$
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[w h i l e(b!=0)\{b o d y\}] b \doteq 0)$ oka a and
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow[w h i l e(b!=0)\{b o d y\}] a * b+z \doteq a$
$\forall a \ldots(x \doteq a \wedge y \doteq b \wedge z \doteq 0 \rightarrow a * b+z \doteq x * y)$ okay
and
$\forall a \ldots(a * b+z \doteq x * y \rightarrow[b o d y] a * b+z \doteq x * y)$
$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b$

$$
\rightarrow[a=2 * a ; b=b / 2] a * b+z \doteq x * y)
$$

and
$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \neq b$

$$
\rightarrow[z=z+a ; a=2 * a ; b=b / 2] a * b+z \doteq x * y)
$$

The Last Proof Steps

$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b$

$$
\rightarrow[a=2 * a ; b=b / 2] a * b+z \doteq x * y)
$$

and

$$
\begin{aligned}
& \forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \neq b \\
& \quad \rightarrow[z=z+a ; a=2 * a ; b=b / 2] a * b+z \doteq x * y)
\end{aligned}
$$

The Last Proof Steps

$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b$

$$
\rightarrow[a=2 * a ; b=b / 2] a * b+z \doteq x * y)
$$

and
$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \neq b$
$\rightarrow[z=z+a ; a=2 * a ; b=b / 2] a * b+z \doteq x * y)$
$\forall a \ldots((2 * a) *(b / 2)+z \doteq x * y \wedge(b / 2) * 2 \doteq b$

$$
\rightarrow a * b+z \doteq x * y)
$$

and
$\forall a \ldots((2 * a) *(b / 2)+z+a \doteq x * y \wedge(b / 2) * 2 \neq b$

$$
\rightarrow a * b+z \doteq x * y)
$$

The Last Proof Steps

$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b$

$$
\rightarrow[a=2 * a ; b=b / 2] a * b+z \doteq x * y)
$$

and
$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \neq b$
$\rightarrow[z=z+a ; a=2 * a ; b=b / 2] a * b+z \doteq x * y)$
$\forall a \ldots((2 * a) *(b / 2)+z \doteq x * y \wedge(b / 2) * 2 \doteq b$

$$
\rightarrow a * b+z \doteq x * y) \quad \text { okay }
$$

and
$\forall a \ldots((2 * a) *(b / 2)+z+a \doteq x * y \wedge(b / 2) * 2 \neq b$

$$
\rightarrow a * b+z \doteq x * y)
$$

The Last Proof Steps

$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b$

$$
\rightarrow[a=2 * a ; b=b / 2] a * b+z \doteq x * y)
$$

and
$\forall a \ldots(a * b+z \doteq x * y \wedge(b / 2) * 2 \neq b$
$\rightarrow[z=z+a ; a=2 * a ; b=b / 2] a * b+z \doteq x * y)$
$\forall a \ldots((2 * a) *(b / 2)+z \doteq x * y \wedge(b / 2) * 2 \doteq b$

$$
\rightarrow a * b+z \doteq x * y) \quad \text { okay }
$$

and
$\forall a \ldots((2 * a) *(b / 2)+z+a \doteq x * y \wedge(b / 2) * 2 \neq b$

$$
\rightarrow a * b+z \doteq x * y) \quad \text { okay } \quad \text { here } b / 2 \doteq(b-1)
$$

Formal Introduction

of

Dynamic Logic

Syntax: Terms

Let Σ be a vocabulary (set of function - and relation symbols). The set Term ${ }_{\Sigma}$ is defined as usual:

Syntax: Terms

Let Σ be a vocabulary (set of function - and relation symbols). The set Term ${ }_{\Sigma}$ is defined as usual:

Every variable

Syntax: Terms

Let Σ be a vocabulary (set of function - and relation symbols). The set Term ${ }_{\Sigma}$ is defined as usual:

Every variable

If f is an n-place function symbol in Σ and t_{i} are terms in Terms then

$$
f\left(t_{1}, \ldots, t_{n}\right)
$$

is in Term ${ }_{\Sigma}$.

Syntax: Terms

Let Σ be a vocabulary (set of function - and relation symbols). The set Term ${ }_{\Sigma}$ is defined as usual:

Every variable

If f is an n-place function symbol in Σ and t_{i} are terms in Term $_{\Sigma}$ then

$$
f\left(t_{1}, \ldots, t_{n}\right)
$$

is in Term${ }_{\Sigma}$.

We ignore types for simplicity.

Syntax: Formulas

The sets Fml_{Σ} of formulas and Π_{Σ} of programs are defined by mutual recursion

- If $r \in \Sigma$ is an n-place relation symbol and $t_{i} \in \operatorname{Term}_{\Sigma}$ then $r\left(t_{1}, \ldots, t_{n}\right)$ is in Fml_{Σ}.

Syntax: Formulas

The sets Fml_{Σ} of formulas and Π_{Σ} of programs are defined by mutual recursion

- If $r \in \Sigma$ is an n-place relation symbol and $t_{i} \in \operatorname{Term}_{\Sigma}$ then $r\left(t_{1}, \ldots, t_{n}\right)$ is in Fml_{Σ}.
- If t_{1}, t_{2} are terms then $t_{1} \doteq t_{2}$ is in Fml_{Σ}.

Syntax: Formulas

The sets Fml_{Σ} of formulas and Π_{Σ} of programs are defined by mutual recursion

- If $r \in \Sigma$ is an n-place relation symbol and $t_{i} \in \operatorname{Term}_{\Sigma}$ then $r\left(t_{1}, \ldots, t_{n}\right)$ is in Fml_{Σ}.
- If t_{1}, t_{2} are terms then $t_{1} \doteq t_{2}$ is in Fml_{Σ}.
- If $F_{1}, F_{2} \in \mathrm{Fml}_{\Sigma}$ then also
$F_{1} \vee F_{2}, F_{1} \wedge F_{2}, F_{1} \rightarrow F_{2}, \neg F_{1}, \forall x F_{1}$ and $\exists x F_{1}$.

Syntax: Formulas

The sets Fml_{Σ} of formulas and Π_{Σ} of programs are defined by mutual recursion

- If $r \in \Sigma$ is an n-place relation symbol and $t_{i} \in \operatorname{Term}_{\Sigma}$ then $r\left(t_{1}, \ldots, t_{n}\right)$ is in Fml_{Σ}.
- If t_{1}, t_{2} are terms then $t_{1} \doteq t_{2}$ is in Fml_{Σ}.
- If $F_{1}, F_{2} \in \mathrm{Fml}_{\Sigma}$ then also
$F_{1} \vee F_{2}, F_{1} \wedge F_{2}, F_{1} \rightarrow F_{2}, \neg F_{1}, \forall x F_{1}$ and $\exists x F_{1}$.
- If F is a formula in Fml_{Σ} and $\pi \in \Pi_{\Sigma}$ then

$$
[\pi] F \text { and }\langle\pi\rangle F
$$

are in Fml_{Σ}.

Syntax: Programs

- If $t \in \operatorname{Term}_{\Sigma}$ and x a variable then $x=t$ is in Π_{Σ}.

Syntax: Programs

- If $t \in \operatorname{Term}_{\Sigma}$ and x a variable then $x=t$ is in Π_{Σ}.
- If $\pi_{1}, \pi_{2} \in \Pi_{R M}$ then also $\pi_{1} ; \pi_{2}$ is in $\Pi_{R M}$.

Syntax: Programs

- If $t \in \operatorname{Term}_{\Sigma}$ and x a variable then $x=t$ is in Π_{Σ}.
- If $\pi_{1}, \pi_{2} \in \Pi_{R M}$ then also $\pi_{1} ; \pi_{2}$ is in $\Pi_{R M}$.
- If $c o n$ is a quantifierfree formula in Fml_{Σ} and $\pi \in \Pi_{R M}$ then

$$
\text { while (con) }\{\pi\}
$$

is in Π_{Σ}.

Syntax: Programs

- If $t \in \operatorname{Term}_{\Sigma}$ and x a variable then $x=t$ is in Π_{Σ}.
- If $\pi_{1}, \pi_{2} \in \Pi_{R M}$ then also $\pi_{1} ; \pi_{2}$ is in $\Pi_{R M}$.
- If $c o n$ is a quantifierfree formula in Fml_{Σ} and $\pi \in \Pi_{R M}$ then

$$
\text { while (con) }\{\pi\}
$$

is in Π_{Σ}.

- If $c o n$ is a quantifierfree formula in Fml_{Σ} and $\pi_{1}, \pi_{2} \in \Pi_{\Sigma}$ then

$$
\text { if (con) }\left\{\pi_{1}\right\} \text { else }\left\{\pi_{2}\right\}
$$

is in Π_{Σ}.

Kripke Structures

A DL-Kripke structure

$$
\mathcal{K}=(S, \rho)
$$

consists of

- a set S of states (or worlds) and
- a function ρ that maps every program π to a binary relation $\rho(\pi)$ on S.

The $\rho(\pi)$ are called called the accessibility relations.

The State Space

For a Dynamic Logic with vocabulary Σ a state $s \in S$ of any Kripke structure \mathcal{K} is a pair

$$
s=(\mathcal{A}, \beta)
$$

where

- \mathcal{A} is a usual first-order structure for Σ that is fixed for all of S.
- A variable assignment $\beta: \operatorname{Var} \rightarrow A$ that determines the values of the program variables in state s
$A=$ universe of \mathcal{A}.

Semantics of DL Formulas (I)

For any state (\mathcal{A}, β) of a Kripke structure \mathcal{K} define:

- $t^{(\mathcal{A}, \beta)}$ for a term t is as usual.

Semantics of DL Formulas (I)

For any state (\mathcal{A}, β) of a Kripke structure \mathcal{K} define:

- $t^{(\mathcal{A}, \beta)}$ for a term t is as usual.
$-(\mathcal{A}, \beta) \models r\left(t_{1}, \ldots, t_{k}\right) \quad$ iff $\quad\left(t_{1}^{(\mathcal{A}, \beta)}, \ldots, t_{k}^{(\mathcal{A}, \beta)}\right) \in r^{\mathcal{A}}$.

Semantics of DL Formulas (I)

For any state (\mathcal{A}, β) of a Kripke structure \mathcal{K} define:

- $t^{(\mathcal{A}, \beta)}$ for a term t is as usual.
$-(\mathcal{A}, \beta) \models r\left(t_{1}, \ldots, t_{k}\right) \quad$ iff $\quad\left(t_{1}^{(\mathcal{A}, \beta)}, \ldots, t_{k}^{(\mathcal{A}, \beta)}\right) \in r^{\mathcal{A}}$.
- $(\mathcal{A}, \beta) \models t_{1}=t_{2} \quad$ iff $\quad t_{1}^{(\mathcal{A}, \beta)}=t_{2}^{(\mathcal{A}, \beta)}$

Semantics of DL Formulas (I)

For any state (\mathcal{A}, β) of a Kripke structure \mathcal{K} define:

- $t^{(\mathcal{A}, \beta)}$ for a term t is as usual.
$-(\mathcal{A}, \beta) \models r\left(t_{1}, \ldots, t_{k}\right) \quad$ iff $\quad\left(t_{1}^{(\mathcal{A}, \beta)}, \ldots, t_{k}^{(\mathcal{A}, \beta)}\right) \in r^{\mathcal{A}}$.
- $(\mathcal{A}, \beta) \models t_{1}=t_{2} \quad$ iff $\quad t_{1}^{(\mathcal{A}, \beta)}=t_{2}^{(\mathcal{A}, \beta)}$
- $(\mathcal{A}, \beta) \models F$ is defined as usual for connectives for first order logic.

Semantics of DL Formulas (I)

For any state (\mathcal{A}, β) of a Kripke structure \mathcal{K} define:

- $t^{(\mathcal{A}, \beta)}$ for a term t is as usual.
- $(\mathcal{A}, \beta) \models r\left(t_{1}, \ldots, t_{k}\right) \quad$ iff $\quad\left(t_{1}^{(\mathcal{A}, \beta)}, \ldots, t_{k}^{(\mathcal{A}, \beta)}\right) \in r^{\mathcal{A}}$.
- $(\mathcal{A}, \beta) \models t_{1}=t_{2} \quad$ iff $\quad t_{1}^{(\mathcal{A}, \beta)}=t_{2}^{(\mathcal{A}, \beta)}$
- $(\mathcal{A}, \beta) \models F$ is defined as usual for connectives for first order logic.
- $(\mathcal{A}, \beta) \models\langle p\rangle F$ iff $\quad(\mathcal{A}, \gamma) \models F$ for at least one pair $((\mathcal{A}, \beta),(\mathcal{A}, \gamma))$ of states in $\rho(p)$

Semantics of DL Formulas (I)

For any state (\mathcal{A}, β) of a Kripke structure \mathcal{K} define:

- $t^{(\mathcal{A}, \beta)}$ for a term t is as usual.
- $(\mathcal{A}, \beta) \models r\left(t_{1}, \ldots, t_{k}\right) \quad$ iff $\quad\left(t_{1}^{(\mathcal{A}, \beta)}, \ldots, t_{k}^{(\mathcal{A}, \beta)}\right) \in r^{\mathcal{A}}$.
- $(\mathcal{A}, \beta) \models t_{1}=t_{2} \quad$ iff $\quad t_{1}^{(\mathcal{A}, \beta)}=t_{2}^{(\mathcal{A}, \beta)}$
- $(\mathcal{A}, \beta) \models F$ is defined as usual for connectives for first order logic.
- $(\mathcal{A}, \beta) \models\langle p\rangle F$ iff $\quad(\mathcal{A}, \gamma) \models F$ for at least one pair $((\mathcal{A}, \beta),(\mathcal{A}, \gamma))$ of states in $\rho(p)$
- $(\mathcal{A}, \beta) \models[p] F$ iff $\quad(\mathcal{A}, \gamma) \models F$ for all pairs $((\mathcal{A}, \beta),(\mathcal{A}, \gamma))$ of states in $\rho(p)$.

Semantics of DL Formulas (II)

$$
-\rho(x:=s)=\left\{\left((\mathcal{A}, \beta),\left(\mathcal{A}, \beta\left[x / s^{(\mathcal{A}, \beta)}\right]\right)\right) \mid(\mathcal{A}, \beta) \in S\right\} .
$$

Semantics of DL Formulas (II)

- $\rho(x:=s)=\left\{\left((\mathcal{A}, \beta),\left(\mathcal{A}, \beta\left[x / s^{(\mathcal{A}, \beta)}\right]\right)\right) \mid(\mathcal{A}, \beta) \in S\right\}$.
- $\rho\left(\pi_{1} ; \pi_{2}\right)$ consists of all pairs (β, γ) such that $(\beta, \delta) \in \rho\left(\pi_{1}\right)$ and $(\delta, \gamma) \in \rho\left(\pi_{2}\right)$ for some δ.

Semantics of DL Formulas (II)

- $\rho(x:=s)=\left\{\left((\mathcal{A}, \beta),\left(\mathcal{A}, \beta\left[x / s^{(\mathcal{A}, \beta)}\right]\right)\right) \mid(\mathcal{A}, \beta) \in S\right\}$.
- $\rho\left(\pi_{1} ; \pi_{2}\right)$ consists of all pairs (β, γ) such that $(\beta, \delta) \in \rho\left(\pi_{1}\right)$ and $(\delta, \gamma) \in \rho\left(\pi_{2}\right)$ for some δ.
- $\left((\beta, \gamma) \in \rho\left(\operatorname{if}\left(F_{0}\right)\left\{\pi_{1}\right\}\right.\right.$ else $\left.\left\{\pi_{2}\right\}\right)$
iff
$\beta \models F_{0}$ and $(\beta, \gamma) \in \rho\left(\pi_{1}\right)$
or
$\beta \models \neg F_{0}$ and $(\beta, \gamma) \in \rho\left(\pi_{2}\right)$

Semantics of DL Formulas (II)

- $\rho(x:=s)=\left\{\left((\mathcal{A}, \beta),\left(\mathcal{A}, \beta\left[x / s^{(\mathcal{A}, \beta)}\right]\right)\right) \mid(\mathcal{A}, \beta) \in S\right\}$.
- $\rho\left(\pi_{1} ; \pi_{2}\right)$ consists of all pairs (β, γ) such that $(\beta, \delta) \in \rho\left(\pi_{1}\right)$ and $(\delta, \gamma) \in \rho\left(\pi_{2}\right)$ for some δ.
- $\left((\beta, \gamma) \in \rho\left(\operatorname{iff}\left(F_{0}\right)\left\{\pi_{1}\right\}\right.\right.$ else $\left.\left\{\pi_{2}\right\}\right)$
iff
$\beta \models F_{0}$ and $(\beta, \gamma) \in \rho\left(\pi_{1}\right)$
or
$\beta \models \neg F_{0}$ and $(\beta, \gamma) \in \rho\left(\pi_{2}\right)$
We have simplified notation: β instead of (\mathcal{A}, β).

Semantics of DL Formulas (III)

$$
(\beta, \gamma) \in \rho\left(\underset{\text { iff }}{\operatorname{while}}\left(F_{0}\right)\{\pi\}\right)
$$

there is an $n \in \mathbb{N}$ and there are states β_{i} for $0 \leq i \leq n$ such that

1. $\beta_{0}=\beta$,
2. $\beta_{n}=\gamma$,
3. $\beta_{i} \models F_{0}$ for $0 \leq i<n$
4. $\beta_{n} \models \neg F_{0}$
5. $\left(\beta_{i}, \beta_{i+1}\right) \in \rho(\pi)$ for $0 \leq i<n$

Some DL-Tautologies

General assumption: x does not occuir in π.

- $(\exists x\langle\pi\rangle F) \leftrightarrow(\langle\pi\rangle \exists x F)$

Some DL-Tautologies

General assumption: x does not occuir in π.

- $(\exists x\langle\pi\rangle F) \leftrightarrow(\langle\pi\rangle \exists x F)$
- $(\forall x[\pi] F) \leftrightarrow([\pi] \forall x F)$

Some DL-Tautologies

General assumption: x does not occuir in π.

- $(\exists x\langle\pi\rangle F) \leftrightarrow(\langle\pi\rangle \exists x F)$
- $(\forall x[\pi] F) \leftrightarrow([\pi] \forall x F)$
$-(\exists x[\pi] F) \rightarrow([\pi] \exists x F)$

Some DL-Tautologies

General assumption: x does not occuir in π.

- $(\exists x\langle\pi\rangle F) \leftrightarrow(\langle\pi\rangle \exists x F)$
- $(\forall x[\pi] F) \leftrightarrow([\pi] \forall x F)$
- $(\exists x[\pi] F) \rightarrow([\pi] \exists x F)$
- $([\pi] \exists x F) \rightarrow(\exists x[\pi] F) \quad$ if π is deterministic

Some DL-Tautologies

General assumption: x does not occuir in π.

- $(\exists x\langle\pi\rangle F) \leftrightarrow(\langle\pi\rangle \exists x F)$
- $(\forall x[\pi] F) \leftrightarrow([\pi] \forall x F)$
- $(\exists x[\pi] F) \rightarrow([\pi] \exists x F)$
- $([\pi] \exists x F) \rightarrow(\exists x[\pi] F) \quad$ if π is deterministic
- $(\langle\pi\rangle \forall x F) \rightarrow(\forall x\langle\pi\rangle F)$

Some DL-Tautologies

General assumption: x does not occuir in π.

- $(\exists x\langle\pi\rangle F) \leftrightarrow(\langle\pi\rangle \exists x F)$
- $(\forall x[\pi] F) \leftrightarrow([\pi] \forall x F)$
- $(\exists x[\pi] F) \rightarrow([\pi] \exists x F)$
- $([\pi] \exists x F) \rightarrow(\exists x[\pi] F) \quad$ if π is deterministic
- $(\langle\pi\rangle \forall x F) \rightarrow(\forall x\langle\pi\rangle F)$
- $(\forall x\langle\pi\rangle F) \rightarrow(\langle\pi\rangle \forall x F) \quad$ if π is deterministic

Some DL-Tautologies

General assumption: x does not occuir in π.

- $(\exists x\langle\pi\rangle F) \leftrightarrow(\langle\pi\rangle \exists x F)$
- $(\forall x[\pi] F) \leftrightarrow([\pi] \forall x F)$
- $(\exists x[\pi] F) \rightarrow([\pi] \exists x F)$
- $([\pi] \exists x F) \rightarrow(\exists x[\pi] F) \quad$ if π is deterministic
- $(\langle\pi\rangle \forall x F) \rightarrow(\forall x\langle\pi\rangle F)$
- $(\forall x\langle\pi\rangle F) \rightarrow(\langle\pi\rangle \forall x F) \quad$ if π is deterministic
- $(\langle\pi\rangle(F \wedge G)) \rightarrow((\langle\pi\rangle F) \wedge\langle\pi\rangle G)$

Some DL-Tautologies

General assumption: x does not occuir in π.

- $(\exists x\langle\pi\rangle F) \leftrightarrow(\langle\pi\rangle \exists x F)$
- $(\forall x[\pi] F) \leftrightarrow([\pi] \forall x F)$
- $(\exists x[\pi] F) \rightarrow([\pi] \exists x F)$
- $([\pi] \exists x F) \rightarrow(\exists x[\pi] F) \quad$ if π is deterministic
- $(\langle\pi\rangle \forall x F) \rightarrow(\forall x\langle\pi\rangle F)$
- $(\forall x\langle\pi\rangle F) \rightarrow(\langle\pi\rangle \forall x F) \quad$ if π is deterministic
- $(\langle\pi\rangle(F \wedge G)) \rightarrow((\langle\pi\rangle F) \wedge\langle\pi\rangle G)$
- $(\langle\pi\rangle(F \wedge G)) \leftrightarrow((\langle\pi\rangle F) \wedge\langle\pi\rangle G)$
if no free variable of F occurs in π

Further Examples

$-\langle x=1\rangle x \doteq 1$

Further Examples

$-\langle x=1\rangle x \doteq 1$

- [while(true) $\{\pi\}]$ false
always true
always true

Further Examples

$-\langle x=1\rangle x \doteq 1$

- [while(true) $\{\pi\}]$ false
- $\langle\pi\rangle$ true
always true always true
true if π terminates

Further Examples

$-\langle x=1\rangle x \doteq 1$

- [while(true) $\{\pi\}]$ false
- $\langle\pi\rangle$ true
- $\left\langle\pi_{1}\right\rangle$ true $\rightarrow\left\langle\pi_{2}\right\rangle$ true terminates.
always true
always true
true if π terminates
says: if π_{1} terminates then π_{2}

Axioms for

of

Dynamic Logic

Sequents

1. A sequent is of the form

$$
\Gamma \rightarrow \Delta
$$

where Γ and Δ are sequences of formulas.
2. Let $\mathcal{K}=(S, \rho)$ be a DL-Kripke structure, (\mathcal{A}, β) a state in S.

$$
(\mathcal{A}, \beta) \models \Gamma \rightarrow \Delta \text { iff }(\mathcal{A}, \beta) \models \bigwedge \Gamma \rightarrow \bigvee \Delta
$$

3.

$$
\begin{array}{lll}
\mathcal{K} \models \Gamma \rightarrow \Delta \quad \text { iff } & (\mathcal{A}, \beta) \models \wedge \Gamma \rightarrow \bigvee \Delta \\
& \text { for all }(\mathcal{A}, \beta) \in S .
\end{array}
$$

4. A sequent $\Gamma \rightarrow \Delta$ is called universally valid if $\mathcal{K} \models \Gamma \rightarrow \Delta$ holds for all Kripke structures \mathcal{K} in the signature of the sequent.

Sequent Rules

A sequent rule is of the form

$$
\frac{\Gamma_{1} \rightarrow \Delta_{1}}{\Gamma_{2} \rightarrow \Delta_{2}} \quad \text { or } \quad \frac{\Gamma_{1} \rightarrow \Delta_{1} \quad \Gamma_{1}^{\prime} \rightarrow \Delta_{1}^{\prime}}{\Gamma_{2} \rightarrow \Delta_{2}}
$$

A sequent rule

$$
\frac{\Gamma_{1} \rightarrow \Delta_{1} \Gamma_{1}^{\prime} \rightarrow \Delta_{1}^{\prime}}{\Gamma_{2} \rightarrow \Delta_{2}}
$$

is sound if $\Gamma_{2} \rightarrow \Delta_{2}$ is universally valid whenever $\Gamma_{1} \rightarrow \Delta_{1}$ and $\Gamma_{1}^{\prime} \rightarrow \Delta_{1}^{\prime}$ are universally valid.

Some Sound Sequent Rules

1.

$$
\overline{\Gamma^{1}, A, \Gamma^{1} \rightarrow \Delta^{1}, A, \Delta^{2}}
$$

2. $\frac{\Gamma, \Gamma^{\prime} \rightarrow \Delta, A, \Delta^{\prime}}{\Gamma, \neg A, \Gamma^{\prime} \rightarrow \Delta, \Delta^{\prime}}$
3. $\frac{\Gamma \rightarrow \Delta, A(y / x), \Delta^{\prime}}{\Gamma \rightarrow \Delta, \forall x A, \Delta^{\prime}}$
where y is not free in $\Gamma, \Delta, \Delta^{\prime}$
4. $\frac{\Gamma, A, \Gamma^{\prime} \rightarrow \Delta \quad \Gamma, \Gamma^{\prime} \rightarrow \Delta, A, \Delta^{\prime}}{\Gamma, \Gamma^{\prime} \rightarrow \Delta, \Delta^{\prime}}$

The Axiom System S_{0} (1)

axiom

$$
\overline{\Gamma, F \rightarrow F, \Delta}
$$

not-left

$$
\frac{\Gamma, \rightarrow F, \Delta}{\Gamma, \neg F \rightarrow \Delta}
$$

not-right

$$
\frac{\Gamma, F \rightarrow \Delta}{\Gamma \rightarrow \neg F, \Delta}
$$

impl-left

$$
\frac{\Gamma \rightarrow F, \Delta \quad \Gamma, G \rightarrow \Delta}{\Gamma, F \rightarrow G \rightarrow \Delta}
$$

impl-right

$$
\frac{\Gamma, F \rightarrow G, \Delta}{\Gamma \rightarrow F \rightarrow G, \Delta}
$$

and-left

$$
\frac{\Gamma, F, G \rightarrow \Delta}{\Gamma, F \wedge G \rightarrow \Delta}
$$

and-right

$$
\frac{\Gamma \rightarrow F, \Delta \quad \Gamma \rightarrow G, \Delta}{\Gamma \rightarrow F \wedge G, \Delta}
$$

The Axiom System S_{0} (2)

where t is a ground term.

$$
\frac{\Gamma, F \rightarrow \Delta \quad \Gamma, G \rightarrow \Delta}{\Gamma, F \vee G \rightarrow \Delta}
$$

or-right

$$
\frac{\Gamma \rightarrow F, G, \Delta}{\Gamma \rightarrow F \vee G, \Delta}
$$

all-right

$$
\frac{\Gamma \rightarrow F(c / x), \Delta}{\Gamma \rightarrow \forall x F, \Delta}
$$

where c is a new constant symbol.
all-left

$$
\frac{\Gamma, \forall x F, F(t / x) \rightarrow \Delta}{\Gamma, \forall x F \rightarrow \Delta}
$$

The Axiom System S_{0} (3)

ex-right

$$
\frac{\Gamma \rightarrow \exists x F, F(t / x), \Delta}{\Gamma, \rightarrow \exists x F, \Delta}
$$

where t is ground term.
ex-left

$$
\frac{\Gamma \rightarrow F(c / x), \Delta}{\Gamma, \exists x F \rightarrow \Delta}
$$

where c is a new constant symbol.

The Axiom System $S_{0}^{f v}$

all-left

$$
\frac{\Gamma, \forall x F, F(X / x) \rightarrow \Delta}{\Gamma, \forall x F \rightarrow \Delta}
$$

where X is a new variable.
all-right

$$
\frac{\Gamma \rightarrow F\left(f\left(x_{1}, \ldots, x_{n}\right) / x\right), \Delta}{\Gamma \rightarrow \forall x F, \Delta}
$$

where f is a new functions symbol and x_{1}, \ldots, x_{n} are all free variables in $\forall x F$.
ex-right

$$
\frac{\Gamma \rightarrow \exists x F, F(X / x), \Delta}{\Gamma, \rightarrow \exists x F, \Delta}
$$

where X is a new variable. ex-left

$$
\frac{\Gamma \rightarrow F\left(f\left(x_{1}, \ldots, x_{n}\right) / x\right), \Delta}{\Gamma, \exists x F \rightarrow \Delta}
$$

where f is a new functions symbol and x_{1}, \ldots, x_{n} are all free variables in $\forall x F$.

Proof in S_{0}

Proof in $S_{0}^{f v}$

closed by $\tau(X)=c$

The Assignment Rule

$$
\frac{\Gamma(c / a), a \doteq t(c / a) \rightarrow F, \Delta(c / a)}{\Gamma \rightarrow\langle a=t\rangle F, \Delta}
$$

where a is a variable and t a term, c a new variable.

The Assignment Rule

$$
\frac{\Gamma(c / a), a \doteq t(c / a) \rightarrow F, \Delta(c / a)}{\Gamma \rightarrow\langle a=t\rangle F, \Delta}
$$

where a is a variable and t a term, c a new variable.
Example

The Assignment Rule

$$
\frac{\Gamma(c / a), a \doteq t(c / a) \rightarrow F, \Delta(c / a)}{\Gamma \rightarrow\langle a=t\rangle F, \Delta}
$$

where a is a variable and t a term, c a new variable.
Example

$$
\begin{aligned}
& a * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b \\
\rightarrow & \langle a=2 * a ; b=b / 2\rangle a * b+z \doteq x * y
\end{aligned}
$$

The Assignment Rule

$$
\frac{\Gamma(c / a), a \doteq t(c / a) \rightarrow F, \Delta(c / a)}{\Gamma \rightarrow\langle a=t\rangle F, \Delta}
$$

where a is a variable and t a term, c a new variable.
Example

$$
\begin{gathered}
c * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b \wedge a \doteq 2 * c \\
\rightarrow\langle b=b / 2\rangle a * b+z \doteq x * y \\
a * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b \\
\rightarrow\langle a=2 * a ; b=b / 2\rangle a * b+z \doteq x * y
\end{gathered}
$$

The Assignment Rule

$$
\frac{\Gamma(c / a), a \doteq t(c / a) \rightarrow F, \Delta(c / a)}{\Gamma \rightarrow\langle a=t\rangle F, \Delta}
$$

where a is a variable and t a term, c a new variable.
Example

$$
\begin{gathered}
c * d+z \doteq x * y \wedge(d / 2) * 2 \doteq d \wedge a \doteq 2 * c \wedge b \doteq d / 2 \\
\rightarrow a * b+z \doteq x * y \\
\rightarrow * * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b \wedge a \doteq 2 * c \\
\rightarrow\langle b=b / 2\rangle a * b+z \doteq x * y \\
a * b+z \doteq x * y \wedge(b / 2) * 2 \doteq b \\
\rightarrow\langle a=2 * a ; b=b / 2\rangle a * b+z \doteq x * y
\end{gathered}
$$

A Branching Rule

$$
\frac{\Gamma, F_{0} \rightarrow\left\langle\pi_{1}\right\rangle F, \Delta \quad \Gamma, \neg F_{0} \rightarrow\left\langle\pi_{2}\right\rangle F, \Delta}{\Gamma \rightarrow\left\langle\operatorname{if}\left(F_{0}\right)\left\{\pi_{1}\right\} \text { else }\left\{\pi_{2}\right\}\right\rangle F, \Delta}
$$

A While Rule

$$
\frac{\Gamma \rightarrow I \quad I, F_{0} \rightarrow\langle\pi\rangle I \quad \Gamma, I, \neg F_{0} \rightarrow F, \Delta}{\Gamma \rightarrow\left\langle\operatorname{while}\left(F_{0}\right)\{\pi\}\right\rangle F, \Delta}
$$

Propositional

Dynamic Logic

PDL

PDL Formulas

The sets $\mathrm{Fml}_{P D L}$ of formulas and $\Pi_{P D L}$ of programs are defined by:

- If p is a propositional variable then
is in $\mathrm{Fml}_{P D L}$

PDL Formulas

The sets $\mathrm{Fml}_{P D L}$ of formulas and $\Pi_{P D L}$ of programs are defined by:

- If p is a propositional variable then
is in $\mathrm{Fml}_{P D L}$
- If $F_{1}, F_{2} \in \mathrm{Fml}_{P D L}$ then also
$F_{1} \vee F_{2}, F_{1} \wedge F_{2}, F_{1} \rightarrow F_{2}, \neg F_{1}$,

PDL Formulas

The sets $\mathrm{Fml}_{P D L}$ of formulas and $\Pi_{P D L}$ of programs are defined by:

- If p is a propositional variable then
is in $\mathrm{Fml}_{P D L}$
- If $F_{1}, F_{2} \in \mathrm{Fml}_{P D L}$ then also
$F_{1} \vee F_{2}, F_{1} \wedge F_{2}, F_{1} \rightarrow F_{2}, \neg F_{1}$,
- If F is a formula in $\mathrm{Fml}_{P D L}$ and $\pi \in \Pi_{P D L}$ then $[\pi] F$ and $\langle\pi\rangle F$
are in $\mathrm{Fml}_{P D L}$.

PDL Programs

- If π_{0} is an atomic program then π_{0}
is in $\Pi_{P D L}$.

PDL Programs

- If π_{0} is an atomic program then

$$
\pi_{0}
$$

is in $\Pi_{P D L}$.

- If $\pi_{1}, \pi_{2} \in \Pi_{P D L}$ then also

$$
\pi_{1} ; \pi_{2}
$$

PDL Programs

- If π_{0} is an atomic program then

$$
\pi_{0}
$$

is in $\Pi_{P D L}$.

- If $\pi_{1}, \pi_{2} \in \Pi_{P D L}$ then also

$$
\pi_{1} ; \pi_{2}
$$

- If $\pi \in \Pi_{P D L}$ then

$$
\pi^{*}
$$

PDL Programs

- If π_{0} is an atomic program then

$$
\pi_{0}
$$

is in $\Pi_{P D L}$.

- If $\pi_{1}, \pi_{2} \in \Pi_{P D L}$ then also

$$
\pi_{1} ; \pi_{2}
$$

- If $\pi \in \Pi_{P D L}$ then

$$
\pi^{*}
$$

- If $\pi_{1}, \pi_{2} \in \Pi_{P D L}$ then also

$$
\pi_{1} \cup \pi_{2}
$$

PDL Programs

- If π_{0} is an atomic program then

$$
\pi_{0}
$$

is in $\Pi_{P D L}$.

- If $\pi_{1}, \pi_{2} \in \Pi_{P D L}$ then also

$$
\pi_{1} ; \pi_{2}
$$

- If $\pi \in \Pi_{P D L}$ then

$$
\pi^{*}
$$

- If $\pi_{1}, \pi_{2} \in \Pi_{P D L}$ then also

$$
\pi_{1} \cup \pi_{2}
$$

- If $F \in \mathrm{Fml}_{P D L}$ then
(F?)

Literature

- David Harel First-Order Dynamic Logic Lecture Notes in Computer Science, Vol. 68, 1979

Literature

- David Harel First-Order Dynamic Logic Lecture Notes in Computer Science, Vol. 68, 1979
- David Harel Chapter on Dynamic Logic in: Handbook of Philosophical Logic, Vol II, pages 497604
D.Reidel, 1984

Literature

- David Harel First-Order Dynamic Logic Lecture Notes in Computer Science, Vol. 68, 1979
- David Harel Chapter on Dynamic Logic in: Handbook of Philosophical Logic, Vol II, pages 497604
D.Reidel, 1984
- Dexter Kozen and Jerzy Tiuryn Chapter on Logics of

Programs
in: Handbook of Theoretical Computer Science, pages 791-840
Elsevier, Amsterdam, 1990

Literature

- David Harel First-Order Dynamic Logic Lecture Notes in Computer Science, Vol. 68, 1979
- David Harel Chapter on Dynamic Logic in: Handbook of Philosophical Logic, Vol II, pages 497604
D.Reidel, 1984
- Dexter Kozen and Jerzy Tiuryn Chapter on Logics of

Programs
in: Handbook of Theoretical Computer Science, pages 791-840
Elsevier, Amsterdam, 1990

- David Harel, Dexter Kozen, and Jerzy Tiuryn Dynamic Logic The MIT Press, 2000

