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Abstract

Computing with biological macromolecules, such as DNA, is fundamentally a physical/chemical pro-
cess. The DNA chemistry introduces a level of complexity that makes reliable, e�cient, and scalable
computations a challenge. All the chemical and thermodynamic factors have to be analyzed and con-
trolled in order for the molecular algorithm to produce the intended result. For instance, a computation
based on DNA requires that the problem instance be encoded in single strands of DNA and that these
strands react as planned, that molecular biology protocols, such as PCR or a�nity separation, correctly
extract the result, and that su�cient 
exibility remains so that worthwhile computations can be done.
In this paper, various thermodynamic and chemical constraints on DNA computing are enumerated. A
similarity measure, based on Gibb's free energy of formation, is de�ned to judge the goodness of DNA
encodings. Finally, the DNA computation problem for implementing molecular algorithms is de�ned,
and it is likely that it is as di�cult as the combinatorial optimization problems they are intended to
solve.

1 Introduction

To solve hard combinatorial optimization (NP-complete[1]) problems, Adleman[2] introduced a method that
utilized single-stranded DNA molecules (oligonucleotides) and techniques from molecular biology[3]. The
method, essentially, involves three steps: 1) Encoding: an encoding that maps a problem instance onto
a collection of oligonucleotides, 2) Reaction: template matching reactions, or hybridizations, between the
oligonucleotides that do the massively parallel search for a solution, along with ligation, and 3) Extraction:
using basic biotech techniques[3] such as polymerase chain reaction (PCR), gel electrophoresis, and a�nity
separtation, to make the results known.

In Adleman's solution to the Hamiltonian Path Problem (HP)[2], the vertices and edges of the
graph are encoded in oligonucleotides. DNA representations of paths through the graph are formed as the
vertex oligonucleotides hybridize with the edge oligonucleotides. If the proper hybridizations occur, the DNA
representation of the Hamiltonian path can be extracted with a�nity separation and PCR. Since Adleman's
pioneering work, numerous applications and algorithms have been proposed for DNA based computing[4, 5,
6, 7, 8]. In Adleman's algorithm, the fundamental reaction is hybridization between oligonucleotides that are
Watson-Crick complements[2]. Hybridization to target strands on magnetic beads was used to extract the
result. Subsequent proposals have continued to rely on the mechanism of hybridization to do the computation
and extraction[4, 5, 6, 7, 8]. Other key chemical processes are ligation and PCR.
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The complexity in Adleman's algorithm originates in the design of a set of oligonucleotides, both
their sequence and concentrations, that will hybridize in preferred alignments, and a set of molecular biology
protocols that will extract the desired result. The potential for mishybridizations between oligonucleotides
necessitates that sequences be designed of prevent them[9], which in turn, bounds the size of the problem.
Increasing the size of the problem requires exponentially increasing amounts of DNA which soon makes
implementation impractical[10]. PCR can, also, be error-prone[11], and extraction, likewise, is di�cult to
do error-free[12]. Each of these steps involves the optimization of chemical and thermodynamic factors in
order for the molecular algorithm to function as planned.

In general, molecular algorithms using DNA will use chemical steps which require some optimization
in order for the computation to take place. For example, in splicing systems[13, 14], which have also been
implemented in the lab[15], the fundamental reaction is enzymatic. Restriction enzymes cut double-stranded
DNA molecules at locations of speci�c base sequence. The molecules are reassembled through hybridization
and ligation of the pieces. It has been shown that these mechanisms are capable of producing regular
languages over the set of DNA molecules. The chemical di�culty in splicing systems is in matching the
optimal reactions conditions of di�erent restriction enzymes, controlling the enzymatic reactions themselves,
which are in general incomplete, and in extracting the result.

For any computation using biological macromolecules or enzymes, an issue is the feasibility of achiev-
ing the computation within the limits imposed by the thermodynamics and chemistry of the underlying
molecular system. Examples of these physical constraints are:

1. Reaction Conditions (e. g. time, temperature, solution)

2. Unwanted reactions (interactions) between oligonucleotides, enzymes, or other chemical constituents
of the system.

3. Concentrations of the chemical constituents of the system.

4. Fidelity of the molecular biology protocols.

Taking all these into account, along with the original goal of producing a computational result, leads to what
might be called the DNA Computation Problem. In what follows, the focus for discussion will be Adleman's
molecular algorithm. Chemical and thermodynamic constraints on this algorithm will be discussed. A
similarity measure based on the Gibb's free energy of hybrid formation is de�ned and suggested as an
appropriate measure of the goodness of DNA encodings of problem instances. Finally, the DNA computation
problem is de�ned and its computational complexity discussed.

2 Thermodynamic and Chemical Constraints

The pool of DNA oligonucleotides that represent the instance of the problem must meet several conditions.
In a hybridization reaction, individual base pairs (bp) hydrogen bond in a highly speci�c way, with the
purine base adenine (A) binding with the pyrimidine thymine (T), and the purine guanine (G) binding
with the pyrimidine cytosine (C). These base pairs are the Watson-Crick complements of each other, and
ideally, oligonucleotide hybridizations occur only between Watson-Crick complements. Depending upon
several factors, however, base pairs that are not Watson-Crick complements can occur in hybridized DNA
molecules[16]. The e�ect of the hybridization reaction conditions on the potential for non-Watson-Crick base
pairs in a hybridized molecule is to introduce a possibility of error in both the reaction and extraction steps.
In addition, oligonucleotides can shift out of their designed alignments and hybridize. Though these shifted
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alignments would not produce a false positive, they do use up oligonucleotide in wasteful reactions, and if
enough occur, could produce a false negative.

Factors that in
uence the stringency of hybridization include the base sequences of the hybridizing
oligonucleotides, the location of potential mismatches, the concentrations of the reactant oligos, the temper-
ature of the reaction, the length of the oligonucleotides, and solvent concentrations[17]. These factors can
be summarized in the melting temperature parameter, Tm. The melting temperature is the temperature
at which 50% of the oligos are melted or single stranded. As reaction temperature increases, an increasing
percentage of hybrids melt. For oligos in solution, the melting temperature is given by[18],

Tm =
�H�

�S� +R ln([Ct]=4)
; (1)

where �H� is the enthalpy, �S� is the entropy, R is the gas constant, and [Ct] is the total molar strand
concentration. Melting curves measured by UV absorbance techniques. Single-stranded oligos will absorb
UV radiation, and therefore, as the temperature is increased, an increase in absorbance indicates melting.
The width of the melting curve for equimolar complementary oligonucleotides is

�T =
6RT 2

m

�H�
: (2)

If the reaction temperature for the hybridization, Tr, is greater than Tm +�T=2, then, the oligos involved
in that reaction will not hybridize, and no errors from that mismatch are possible. Therefore, to prevent
unwanted hybridizations, their Tm+�T=2 should be less than the reaction temperature, Tr. This condition
should hold for all possible binding con�gurations between oligos that are not wanted. In addition, we
want the desired hybridizations to occur, and in su�cient number to enable an e�cient and detectable
computation. Therefore, for a desired hybridization, its Tm should be greater than the reaction temperature.

In addition, the oligonucleotide pool has to meet criteria associated with the reaction kinetics and
thermodynamics of hybridization. As pointed out in [19], because of chemical e�ects, there is a possibility
that certain graphs will be more di�cult to solve with DNA than others. The essential reaction in a DNA
computation is the hybridization reaction, as expressed by

a+ b *) c; (3)

where a and b are oligonucleotides, c is the double-stranded hybridization product, and the*) indicates that
the reactions are reversible. Assuming constant volume, the thermodynamic parameter that describes the
state of the DNA computer at equilibrium is the Gibb's free energy, G[20]. The change in G for a small
change in the chemical components is

dG =

kX
i=1

�
@G

@ni

�
T;P;nj 6=i

dni; (4)

where ni is the mole number of the ith of k components in the system. The chemical potential of component
i is de�ned as

�i �

�
@G

@ni

�
T;P;nj 6=i

: (5)

Reactions can be exothermic or endothermic. Exothermic reactions produce heat or the capacity for work,
dG < 0. Endothermic reactions require heat or work input to proceed, and thus, dG > 0. The sign of dG
determines whether the reaction can be spontaneous or not, and its direction (Table 1). Therefore, dG is
the driving force for the reaction, and ultimately, will determined what reaction products are formed, and in
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what concentrations they occur. The reaction will be driven towards chemical equilibrium, where the rates
to the left and right of *) in Eq. 3 are equal, and dG = 0. The condition for chemical equilibrium isX

i

�idni = 0: (6)

For a general chemical reaction of species, Ai[20],

0*)
X
i

�iAi; (7)

where the �i are the stoichiometric coe�cients, which are negative for reactants and positive for products.
The change in the amount of a species, Ai, in the reaction is proportional to the �i, dni = �id�, where the
constant of proportionally is called the extent of the reaction, �. Substitution for dni into Eq. 6 produces
another condition on chemical equilibrium, X

i

�i�i = 0: (8)

The change in G with the extent of the reaction is

dG

d�
=
X
i

�i�i; (9)

which is zero at equilibrium.

�G A+B *) AB
< 0 Reaction proceeds to right
> 0 Reaction proceeds to left
= 0 Equilibrium

Table 1: Direction of reaction according to sign of change in free energy.

The free energy change can be written as[20]

dG

d�
= �G� +RT logQ; (10)

where �G� is the free energy change under ideally dilute standard conditions, and RT logQ is a correction
term for nonstandard conditions, with T the temperature and R the gas constant. The correction term for
the solution of reacting oligos is

Q =
Y
i

a�ii ; (11)

where ai is the activity of component i. The activity is de�ned as

ai = exp

�
(�i � ��i )

RT

�
; (12)

where ��i is the chemical potential in the standard state of an ideally dilute solution[20]. Next, an activity
coe�cient is de�ned that is the ratio of the activity to the mole fraction,


i = ai=�i; (13)
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where the mole fraction is �i = (ni)=(
P

i ni), and
PP

i �i = 1 for P species. Through Eq. 10 and 13, the free
energy change is related to the concentrations of the reaction components. At equilibrium, dG=d� = 0, and
the equilibrium constant is

Keq =
Y
i

(a(i;eq))
�i = exp(��G�=RT ); (14)

where a(i;eq) are the equilibrium activities. For an ideally dilute solution, 
i = 1, ai = �i, and the thermo-
dynamic parameters are expressed directly in terms of the mole fractions. In what follows, an ideally dilute
solution is assumed.

Returning to Eq. 3, the equilibrium constant in terms of the mole fractions of the reactant oligonu-
cleotides and the hybridization product is

Keq =
[c]

[a][b]
= exp

�
��G�

RT

�
; (15)

where [ ] indicates the mole fraction. Therefore, the free energy change for the hybridization of Eq. 3
will determine the concentrations of the product formed, whether it is a desired hybridization product, a
mismatched hybridization, or a hybridization with a shifted alignment. For a proper encoding of a problem
instance, the free energy change for desired hybridizations should be maximized (more negative), and the
free energy change for undesired hybridizations minimized (more positive). In addition, since �G� = �S��
T�S�, the melting temperature is very closely related to the free energy, and therefore, the free energy seems
a likely candidate for characterizing the strength of a hybridization attraction between two oligonucleotides.

Another factor which can a�ect the results of a DNA computation is coupling among a set of hy-
bridization reactions. In Adleman's algorithm[2], paths through the graph are represented by DNA molecules
that are formed by successive hybridization reactions. The equilibrium constant for a series of hybridizations
is proportional to the product of the individual hybridization equilibrium constants. Therefore, unfavorable
Reactions can be driven forward by coupling to favorable reactions. For instance, let

a+ b *) c; (16)

c+ d *) e; (17)

be a pair of coupled hybridization reactions. Therefore, the total equilibrium constant for the �nal product
e is,

Keq
e / Keq

ab �Keq
cd : (18)

This means that mishybridizations can be coupled with favorable hybridization to produce unforseen hy-
bridization products. In addition, in certain graphs, if the molecule representing the Hamiltonian path is
less favorable energetically than other paths, then,they will be formed preferentially over the Hamiltonian
path. In fact, their relative concentrations will be

[other path]

[HP]
/
Keq

other path

Keq

HP
: (19)

Therefore, the encoding must account for these type of e�ects as well. In particular, relative concentrations
of reaction components are potentially important for extraction operations.

Therefore, the requirements on a \good" encoding are:

1. The encoding adequately represents the problem instance.

2. The encoding enables extraction of the result.
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3. Designed hybridizations are energetically favorable, while unplanned hybridizations are energetically
unfavorable.

4. The encoding takes into account factors related to chemical e�ects, such as free energy coupling and
kinetics, that are produced by the speci�c problem instance.

A pool of oligonucleotides for DNA computing should ful�ll these criteria. Some of these constraints, par-
ticularly those associated with the last item, would have to be accounted for by most DNA computing
schemes.

3 A Similarity Measure for Encodings

Various criteria have been proposed for the prevention of unwanted hybridization errors by a DNA encoding.
In [21, 9], the Hamming distance between oligonucleotides was proposed to preclude the possibility of errors.
A new metric[22] which considered errors from shifting oligonucleotides relative to each other has been
developed. The problem with these distances is that they fail to capture all the complexity and criteria
associated with the DNA chemistry. Therefore, in what follows, it is proposed that the Gibb's free energy is
the appropriate measure for the strength of a hybridization attraction. The free energy is the driving force for
the reaction, and takes into account or is related to most of the chemical requirements on an encoding. These
are the melting temperature, coupled reactions, and equilibrium concentrations of hybridization products.

Similarity measures have been applied to problems in molecular biology[23, 24]. The application
that has the most relevance to the encoding problem is that of alignment of two sequences. An alignment is
an insertion of spaces in arbitrary locations so that two sequences, which may be of di�erent initial length,
are the same �nal length[23]. For each possible alignment between two sequences, a score is computed
based on whether each column in the alignment contains a match, a mismatch, or a space. The similarity
between two sequences in the maximum score over all alignments. The number of alignments between two
sequences is exponential[24]. Nevertheless, dynamic programming[24] can be used to compute the similarity
with quadratic complexity[23]. This alignment problem from molecular biology has much in common with
the problem of determining a good encoding for a DNA computation. For an oligonucleotide encoding of
a problem, we want to check all possible alignments between the oligonucleotides for hybridization. Unlike
the traditional alignment problem, however, to measure the strength of a hybridization potential, we have
to measure similarity under Watson-Crick complementation, and incorporate into the similarity measure the
thermodynamic cost associated with hybridization of a given alignment.

The similarity measure is de�ned more precisely as follows[23, 24]. u; t are two sequences over a
given alphabet �. By inserting spaces in u and t, a pair of new sequences u

0

and t
0

is obtained. An alignment
�(u

0

; t
0

) between u and t must satisfy the following properties:

� ju
0

j = jt
0

j.

� u is obtained by removing all the spaces from u
0

.

� t is obtained by removing all the spaces from t
0

.

� Spaces cannot be stacked atop one another.

Next, we de�ne an additive scoring system for an alignment. Typically, the scoring system, (p; g), consists
of a function p : � � � ! R, which assigns a score to each pair of symbols in an alignment, and a space
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penalty, g (typically < 0) which penalizes spaces. The similarity, then, is

s(u; t) = max�2A(u;t) score(�); (20)

where A(u; t) is the set of all possible alignments.

The primary energetic factor for hybridization is not the energy of the hydrogen bonding between
nucleotide bases, but is the nearest neighbor base stacking energies[18]. These base stacking energies must
be measured, and are not unique. Nevertheless, from an energetic point of view, they are the parameters
of choice to determine the potential for hybridiztion between oligonucleotides. Recently measured values for
these parameters are given in Table 2[25].

Sequence �H� �S� �G�37
(kcal/mol) (eu) (kcal/mol)

AA/TT -8.4 -23.6 -1.02
AT/TA -6.5 -18.8 -0.73
TA/AT -6.3 -18.5 -0.60
CA/GT -7.4 -19.3 -1.38
GT/CA -8.6 -23.0 -1.43
CT/GA -6.1 -16.1 -1.16
GA/CT -7.7 -20.3 -1.46
CG/GC -10.1 -25.5 -2.09
GC/CG -11.1 -28.4 -2.28
GG/CC -6.7 -15.6 -1.77

Table 2: Thermodynamic parameters for DNA helix initiation and propagation in 1 M NaCl. Sequences are
given 5

0

! 3
0

=3
0

! 5
0

. [25].

To de�ne an appropriate similarity measure for hybridization, we take as our alphabet all possible
nearest neighbor pairs of nucleotide bases. Then, the cost measure is associated, in the case of perfect
Watson-Crick complements, with the thermodynamic parameters (�G�) of Table 2. Mismatched base pairs
could also be assigned a thermodynamic cost[17, 26, 27]. Spaces at the end of strings would be associated
with the thermodynamic parameters associated with dangling ends[17, 26]. Spaces in the middle of the
string would be bulge loops, with an associated thermodynamic penalty[17, 26] All the factors are added
to produce a total free energy of hybridization for a particular alignment. Therefore, with this similarity
measure, each alignment would have a cost associated with it, this cost would be the Gibb's free energy of
formation at a standard temperature, and the similarity would be the maximum free energy, and therefore,
would represent the most energetically favorable alignment for hybridization.

Typically[24], a similarity measure has the following properties:

p(a; a) > 08 a 2 � (21)

p(a; b) < 0 for some a; b 2 �: (22)

The purpose is to reward similar symbols from the alphabet, and penalize di�erent symbols from the alphabet.
For the encoding, however, the purpose is to reward Watson-Crick complements and penalize non-Watson-
Crick complement sequences. Therefore, the proposed cost operator between two symbols is

p(a; br) = �G�a=br ; (23)
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where br indicates the reverse Watson-Crick complement.

Another advantage of the similarity measure de�ned above is that it is related to a distance metric[23,
24]. The distance, d(u; t), and similarity, s(u; t) are related by

s(u; t) + d(u; t) =
M

2
(m+ n); (24)

where u and t are sequences of length m and n, respectively, and M is an arbitrary constant.

4 The DNA Computation Problem

The goal of DNA computing is to implement algorithms in reactions among biological molecules. In so
doing, the hope is to tap the generative power that is evident in the biological machinery of life. This is a
thread that runs from cellular automata[28, 29] to genetic algorithms[30] and arti�cial neural networks[31].
At the very least, one would want to utilize the massive number of molecules for quicker solution of very
di�cult problems. In a DNA computer, a molecular solution will be reached. The important question is if
that solution in vitro corresponds to the desired algorithmic solution. A similar situation exists when algo-
rithmic descriptions of certain natural phenomena are attempted. For instance, computation of the folding
of proteins[32], or the minimum energy state of a spin glass[33] are known to be NP-complete. Nevertheless,
the actual protein folds in a fraction of the time that an algorithm would require to compute it. Therefore,
given the chemical and thermodynamic factors that in
uence and constrain a DNA computation, a question
occurs about how di�cult it really is to implement algorithms in molecular systems. So far, it seems that
the molecular implementation has di�ered for each problem[5, 6, 8], and when one says \molecular imple-
mentation," the actual laboratory procedures that produced a valid solution are meant, not the theoretical
molecular algorithms. Therefore, in this section, the complexity of implementing algorithms in biomolecular
systems is discussed. The process of converting an algorithm into a biomolecular systems is called the DNA
Computation Problem.

DNA Computation Problem (DCP)

Instance 1 A DNA computer D = (S;M; f), where S and M are �nite sets of DNA molecules, and
f : S ! M is a mapping that represents a set of biomolecular operations (enzymatic reactions, PCR,
gel electrophoresis, etc ...), and an algorithm, A, problem �, and problem instance I.

Question 1 Is there a D that implements the application of A to I?

According to Church's thesis, there are any number of equivalent approaches to the notion of an
algorithm, or �nite procedure, i. e. Turing Machines, �-calculus. For the current discussion, the model is
restricted to �nite automata. While not as powerful as Turing Machines et al., DNA implementations of
�nite automaton have been based on both Adleman's algorithm and splicing systems[13, 34, 35, 36].

As part of the DNA implementation of the �nite automata, it would have to be determined if the
�nite automata and its DNA implementation recognized the same languages. Determining the inequivalence
of �nite state automata is a problem that is known to be NP-hard[1]. Therefore, DCP contains as a subset
NP-hard problems, and therefore, is itself NP-hard.

Other aspects of DCP could involve di�cult problems. Most signi�cantly, the set of molecules M
represent the reaction products produced by the chemical steps represented by f . Many chemical and physical
interactions are possible between the chemical constituents of a DNA computer, as outlined above. Because
of this, a DNA computer is similar to a frustrated physical system, like a spin glass[37]. Implementation
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of an algorithm might require that the minimum energy state be computed for the collection of chemical
constituents, and if the DNA computer is a frustrated system, this problem would more than likely be
NP-complete, as it is for spin glasses[33] and protein folding[32].

5 Conclusion

Given the di�culty of implementing DNA algorithms, what are the prospects for DNA based computing.
Three possibilities present themselves: 1) Applications that do not require encodings have been suggested[38].
These applications might involve solution of problems in molecular biology and biotechnology with DNA
computations. 2) DNA computing can continue down the track it has followed till now, and rely upon
less than optimum implementations. It could be that implementations that are good enough for speci�c
applications could be found with less e�ort. 3) Applications, such as arti�cial immune systems, evolutionary
programs, and associative memories could be implemented in a DNA computer. These applications take
advantage of the fuzziness of DNA chemistry to produce variation, fault tolerance, pattern recognition, and
associative capabilities into the computation.

Adleman[2] developed a DNA based technique for the solution of a NP-complete problem. The
massive parallelism of DNA hybridizations evoked a hope that these hard problems would be tractable in a
DNA based computer. Implementing DNA based algorithms, however, has turned out to be very di�cult,
and there is evidence that it is just as hard as the original problems that they were intended to solve. The
di�culty in the implementation originates in checking and controlling the many constraints imposed by the
DNA chemistry. Failure to do so can produce molecular algorithms whose results are not those intended.
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