
Logic, Language, and Analysis

Daniel Jackson

Software Abstractions

Softw
are A

bstractions Jackson

computer science/software engineering

Software Abstractions
Logic, Language, and Analysis
Daniel Jackson

In Software Abstractions Daniel Jackson introduces a new approach to software design that
draws on traditional formal methods but exploits automated tools to find flaws as early as
possible. This approach—which Jackson calls “lightweight formal methods” or “agile model-
ing”—takes from formal specification the idea of a precise and expressive notation based on
a tiny core of simple and robust concepts but replaces conventional analysis based on theo-
rem proving with a fully automated analysis that gives designers immediate feedback. Jackson
has developed Alloy, a language that captures the essence of software abstractions simply and
succinctly, using a minimal toolkit of mathematical notions. The designer can use automated
analysis not only to correct errors but also to make models that are more precise and elegant.
This approach, Jackson says, can rescue designers from “the tarpit of implementation tech-
nologies” and return them to thinking deeply about underlying concepts.

Software Abstractions introduces the key elements of the approach: a logic, which pro-
vides the building blocks of the language; a language, which adds a small amount of syntax
to the logic for structuring descriptions; and an analysis, a form of constraint solving that
offers both simulation (generating sample states and executions) and checking (finding coun-
terexamples to claimed properties). The book uses Alloy as a vehicle because of its simplici-
ty and tool support, but the book’s lessons are mostly language-independent, and could also
be applied in the context of other modeling languages.

Daniel Jackson is Professor in the Department of Electrical Engineering and Computer Science
and leads the Software Design Group at the Computer Science and Artificial Intelligence Lab
at MIT.

“Abstraction is the essence of simple and effective software design, and logic is the essential
tool for exploring and validating abstractions. These basic insights, which have been labori-
ously rediscovered by many practicing programmers, are now accessible to students and pro-
fessionals at all levels of experience. Daniel Jackson supports his clear and elegant text with
a powerful logical analysis tool that brings his witty examples to life.”
—Tony Hoare, Senior Researcher, Microsoft

“Alloy’s streamlined combination of predicate logic and relational algebra makes modeling a
pleasure. I rely on the Alloy Analyzer, and this book shows how easy it is to start using it.”
—Pamela Zave, AT&T Research

“Alloy is to modeling what Excel is to office work: an incredibly powerful way to make mod-
els into concrete, tangible objects. Jackson’s book is essential for practitioners to master the
power of this new tool.”
—Alain Wegmann, Ecole Polytechnique Fédérale de Lausanne

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu

0-262-10114-9

49194Jackson 1/31/06 9:30 AM Page 1

Software Abstractions: Logic, Language, and Analysis

Software
Abstractions

Logic, Language,

and Analysis

Daniel Jackson

The MIT Press
Cambridge, Massachusetts

London, England

© 2006 Daniel Jackson
All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.
MIT Press books may be purchased at special quantity discounts for busi-
ness or sales promotion use. For information, please email special_sales@
mitpress.mit.edu or write to Special Sales Department, The MIT Press, 55
Hayward Street, Cambridge, MA 02142.
This book was set in Adobe Warnock and ITC Officina Sans, by the author,
using Adobe Indesign and his own software, on Apple computers. Diagrams
were drawn with OmniGraffle Pro. Printed and bound in the United States
of America.

Library of Congress Cataloguing-in-Publication Data
Jackson, Daniel.
Software abstractions : logic, language, and analysis / Daniel Jackson.
 p. cm.
Includes bibliographical references and index.
ISBN 0-262-10114-9 (alk. paper)
1. Computer software—Development. I. Title.
QA76.76.D47J29 2006 005.1—dc22 2005056155
10 9 8 7 6 5 4 3 2 1

to Claudia

Contents

Preface	 xi

Acknowledgments	 xv

1:	Introduction	 1

2:	A	Whirlwind	Tour	 5
2.1 Statics: Exploring States ...6
2.2 Dynamics: Adding Operations ...9
2.3 Classification Hierarchy .. 17
2.4 Execution Traces... 22
2.5 Summary .. 28

3:	Logic	 33
3.1 Three Logics in One ... 33
3.2 Atoms and Relations .. 35
3.3 Snapshots ... 48
3.4 Operators ... 50
3.5 Constraints ... 69
3.6 Declarations and Multiplicity Constraints 74
3.7 Cardinality Constraints ... 80

4:	Language	 83
4.1 An Example: Self-Grandpas ... 83
4.2 Signatures and Fields ... 91
4.3 Model Diagrams ... 101
4.4 Types and Type Checking ... 107
4.5 Facts, Predicates, Functions, and Assertions 117
4.6 Commands and Scope ... 127
4.7 Modules and Polymorphism .. 130
4.8 Integers and Arithmetic .. 134

viii contents

5:	Analysis	 139
5.1 Scope-Complete Analysis ... 139
5.2 Instances, Examples, and Counterexamples 144
5.3 Unbounded Universal Quantifiers .. 155
5.4 Scope Selection and Monotonicity ... 163

6:	Examples	 169
6.1 Leader Election in a Ring .. 169
6.2 Hotel Room Locking .. 185
6.3 Media Asset Management .. 203
6.4 Memory Abstractions .. 216

Appendix	A:	Exercises	 229
A.1 Logic Exercises .. 230
A.2 Extending Simple Models ... 239
A.3 Classic Puzzles .. 242
A.4 Metamodels ... 245
A.5 Small Case Studies .. 247
A.6 Open-Ended Case Studies .. 251

Appendix	B:	Alloy	Language	Reference	 253
B.1 Lexical Issues ... 253
B.2 Namespaces ... 254
B.3 Grammar .. 255
B.4 Precedence and Associativity ... 257
B.5 Semantic Basis ... 258
B.6 Types and Overloading.. 260
B.7 Language Features .. 265

Appendix	C:	Kernel	Semantics	 291
C.1 Semantics of the Alloy Kernel .. 291
C.2 Semantics of Integer Expressions and Formulas 293

Appendix	D:	Diagrammatic	Notation		 295

contents ix

Appendix	E:	Alternative	Approaches	 297
E.1 An Example .. 299
E.2 B ... 306
E.3 OCL ... 312
E.4 VDM .. 318
E.5 Z ... 324

References	 333

Index	 341

Preface

As a programmer working for Logica UK in London in the mid-1980’s,
I became a passionate advocate of formal methods. Extrapolating from
small successes with VDM and JSP, I was sure that widespread use of
formal methods would bring an end to the software crisis.

One approach especially intrigued me. John Guttag and Jim Horning
had developed a language, called Larch, which was amenable to a me-
chanical analysis. In a paper they’d written a few years earlier [21], and
which is still not as widely known as it deserves to be, they showed how
questions about a design might be answered automatically. In other
words, we would have real software “blueprints”—a way to analyze the
essence of the design before committing to code. I went to pursue my
PhD with John at MIT, and have been a researcher ever since.

As a researcher though, I soon discovered that formal methods were not
the silver bullet I’d hoped they would be. Formal models were hard to
construct, and specifying every detail of a system was too hard. Theo-
rem proving, the kind of analysis that Larch relied on, could not be fully
automated. Even now, after 20 more years of research, it still requires
the careful guidance of a mathematical guru. In my doctoral work,
therefore, I took a more conservative route, and worked on automatic
detection of bugs in code. But I kept an interest in the more ambitious
world of formal methods and design analysis, and hoped one day to
return to it.

In 1992, I visited Carnegie Mellon University. By then, I’d become en-
amored, like many in the formal methods community, with the Z lan-
guage. The inventors of Z had dispensed with many of the complexities
of earlier languages, and based their language on the simplest notions of
set theory. And yet Z was even less analyzable than Larch; the only tool
in widespread use was a pretty printer and type checker.

On that visit, Ken McMillan showed me his SMV model checker: a tool
that could check a state machine of a billion states in seconds, without
any aid from the user whatsoever. I was awestruck.

With the invention of model checking, the reputation of formal methods
changed almost overnight. The word “verification” became fashionable
again, and the adoption of model-checking tools by chip manufactur-

xii preface

ers showed that engineers really could write formal models, and, if the
benefit was great enough, would do it of their own accord.

But the languages of model checkers were not suitable for software.
They were designed for handling the complexity that arises when a col-
lection of simple state machines interacts concurrently. In software
design, complexity arises even in a single machine, from the complex
structure of its state. Model checkers can’t handle this structure—not
even the indirection that is the essence of all software design.

So I began to wonder: could the power of model checking be brought
to a language like Z? Here were two cultures, an ocean apart: the gritty
automation of SMV, reflecting the steel mills and smokestacks of Pitts-
burgh, the town of its invention, and the elegance and simplicity of Z,
reflecting the beautiful quads of Oxford.

This book is the result of a 10-year effort to bridge this gap, to develop a
language that captures the essence of software abstractions simply and
succinctly, with an analysis that is fully automatic, and can expose the
subtlest of flaws.

The language, Alloy, is deeply rooted in Z. Like Z, it describes all struc-
tures (in space and time) with a minimal toolkit of mathematical no-
tions, but its toolkit is even smaller and simpler than Z’s. Alloy was
also strongly influenced by object modeling notations (such as those of
OMT and Syntropy). Like them, it makes it easy to classify objects, and
associate properties with objects according to the classification. Alloy
supports “navigation expressions,” which are now a mainstay of object
modeling, with a syntax that is particularly simple and uniform.

The analysis, embodied in the Alloy Analyzer, actually bears little re-
semblance to model checking, its original inspiration. Instead, it relies
on recent advances in SAT (boolean satisfiability) technology. The Al-
loy Analyzer translates constraints to be solved from Alloy into boolean
constraints, which are fed to an off-the-shelf SAT solver. As solvers get
faster, so Alloy’s analysis gets faster and scales to larger problems. Us-
ing the best solvers of today, the analyzer can examine spaces that are
several hundred bits wide (that is, of 1060 cases or more). Hardware ad-
vances must also get some of the credit. Even had this technology been
available 10 years ago, an analysis that takes only seconds on today’s
machines would have taken an hour back then. (Incidentally, Alloy was
by no means the first application of SAT to this kind of problem. SAT
had been used for analyzing railway control systems [66], for checking
hardware [67], and for planning [43, 15]. Since its adoption in Alloy [31],
it has been incorporated into model checkers too [5].)

preface xiii

The experience of exploring a software model with an automatic ana-
lyzer is at once thrilling and humiliating. Most modelers have had the
benefit of review by colleagues; it’s a sure way to find flaws and catch
omissions. Few modelers, however, have had the experience of subject-
ing their models to continual, automatic review. Building a model incre-
mentally with an analyzer, simulating and checking as you go along, is
a very different experience from using pencil and paper alone. The first
reaction tends to be amazement: modeling is much more fun when you
get instant, visual feedback. When you simulate a partial model, you see
examples immediately that suggest new constraints to be added.

Then the sense of humiliation sets in, as you discover that there’s almost
nothing you can do right. What you write down doesn’t mean exactly
what you think it means. And when it does, it doesn’t have the conse-
quences you expected. Automatic analysis tools are far more ruthless
than human reviewers. I now cringe at the thought of all the models I
wrote (and even published) that were never analyzed, as I know how er-
ror-ridden they must be. Slowly but surely the tool teaches you to make
fewer and fewer errors. Your sense of confidence in your modeling abil-
ity (and in your models!) grows.

You can use analysis to make models not only more correct but also
more succinct and more elegant. When you want to rework a constraint
in the model, you can ask the analyzer to check that the new and old
constraint have the same meaning. This is like using unit tests to check
refactoring in code, except that the analyzer typically checks billions of
cases, and there are no test suites to write.

I sometimes call my approach “lightweight formal methods” [37], be-
cause it tries to obtain the benefits of traditional formal methods at
lower cost, and without requiring a big initial investment. Models are
developed incrementally, driven by the modeler’s perception of which
aspects of the software matter most, and of where the greatest risks lie,
and automated tools are exploited to find flaws as early as possible.

But at the same time as I have argued against some of the assumptions of
traditional formal methods, my experience in the last decade—teaching
software engineering to students at Carnegie Mellon and MIT, building
tools with students, and consulting on industrial developments—has
convinced me of the validity of their central premise. As Tony Hoare
famously put it in his Turing Award lecture [29]:

There are two ways of constructing a software design: One way
is to make it so simple there are obviously no deficiencies and

volume1.indd 13 12/8/05 9:29:34 AM

xiv preface

the other way is to make it so complicated that there are no
obvious deficiencies.

A commitment to simplicity of design means addressing the essence of
design—the abstractions on which software is built—explicitly and up
front. Abstractions are articulated, explained, reviewed and examined
deeply, in isolation from the details of the implementation. This doesn’t
imply a waterfall process, in which all design and specification precedes
all coding. But developers who have experienced the benefits of this
separation of concerns are reluctant to rush to code, because they know
that an hour spent on designing abstractions can save days of refactor-
ing.

In this respect, the Alloy language and its analysis are a Trojan horse: an
attempt to capture the attention of software developers, who are mired
in the tar pit of implementation technologies, and to bring them back to
thinking deeply about underlying concepts.

That is why I have chosen the title Software Abstractions for this book.
The lure of coding, and pressure to deliver elaborate features on short
schedules, often draw programmers away from designing abstractions
to coping with the intricacies of transient technologies, and to invent-
ing clever tricks to overcome their limitations. If we focused instead on
the underlying concepts, and struggled not for small performance gains
or ever more complex features, but for simplicity and clarity, our soft-
ware would be more powerful, more dependable, and more enjoyable
to use. Like the best artifacts of civil and mechanical engineering, the
best software systems would be a marriage of utility and beauty. And as
software designers, we’d have more fun: we’d spend less time working
around basic structural flaws in our software, and our ideas would have
more lasting impact.

Acknowledgments

I am deeply grateful to the many friends and colleagues who have helped
in the writing of this book:

To Ilya Shlyakhter, who invented the modeling idiom that expresses dy-
namics by adding a column of state atoms to each relation (leading to
the design of the signature construct, and making possible Alloy’s pre-
carious balance of expressiveness and tractability), and who designed
and built the key algorithms of the Alloy Analyzer.

To Manu Sridharan, who contributed extensively to the language, de-
signed and implemented large parts of the analyzer, was an enthusiast
for Alloy before we had credible examples, and has continued to help
out despite having left MIT long ago.

To the many undergraduate and masters students who contributed to
the tool implementation: Arturo Arizpe, Emily Chang, Joseph Cohen,
Sam Daitch, Greg Dennis, David Kelman, Daniel Kokotov, Edmond
Lau, Likuo Lin, Jesse Pavel, Uriel Schafer, Ian Schechter, Ning Song,
Emina Torlak, Vincent Yeung, and Andrew Yip; and to those who were
guinea pigs in evaluating Alloy in early case studies: Ryan Jazayeri, Sar-
fraz Khurshid, Edmond Lau, Robert Lee, SeungYong Albert Lee, Kartik
Mani, Tina Nolte, Suresh Toby Segaran, Tucker Sylvestro, Mana Tagh-
diri, Allison Waingold, Hoe Teck Wee, and Jon Whitney; and to MIT’s
UROP office for coordinating the undergraduate research program.

To the current members of my research group—Felix Chang, Greg
Dennis, Jonathan Edwards, Lucy Mendel, Derek Rayside, Robert Seater,
Mana Taghdiri, Emina Torlak, and Vincent Yeung—not only for their
intellectual company, but for their many contributions to the Alloy proj-
ect big and small; especially to Derek who, on his own initiative, took
on the task of resolving release problems and platform dependences;
to Emina, now Alloy’s lead developer, and Vincent, for their continuing
work on the Alloy Analyzer; to Jonathan, who led the design of Alloy’s
new type system; to Robert, for his help teaching Alloy; and to Greg,
for his work on the Alloy library modules and for answering queries
from users. To Viktor Kuncak, for developing the theory behind the

“unbounded universal quantifier” problem.

volume1.indd 15 12/8/05 9:29:34 AM

xvi acknowledgments

To my colleagues who have taught Alloy in their courses, especially Matt
Dwyer, John Hatcliff, Cesare Tinelli, and Michael Huth, who developed
extensive material when Alloy was much rougher than it is today.

To the readers who gave me comments and suggestions on drafts of the
book: Paul Attie, Daniel Le Berre, Paulo Borba, Jin Song Dong, Rohit
Gheyi, Tony Hoare, Michael Lutz, Tiago Massoni, Walden Mathews,
Joe Moore, Sanjai Narain, David Naumann, Norman Ramsey, Mark Saa-
ltink, Martyn Thomas, and Mandana Vaziri; and especially to Michael
Jackson, Jeremy Jacob, Viktor Kuncak, Butler Lampson, Chris Wallace,
David Wilczynski, and Pamela Zave, who read the book in its entirety
and together found something to fix on almost every page. They have
saved me from many embarrassments and the reader from countless
frustrations and confusions.

To the National Science Foundation, NASA, IBM, Microsoft, and Doug
and Pat Ross, for their support of my research.

To Rod Brooks, Eric Grimson, John Guttag, Rafael Reif, and Victor Zue,
for their role in creating the wonderful research and teaching environ-
ment that nurtured this work.

To Michael Butler, John Fitzgerald, Martin Gogolla, Peter Gorm Larsen,
and Jim Woodcock for contributing solutions in their own languages to
the hotel locking problem for appendix E.

To Bob Prior at MIT Press, for his confidence in this book, and his sage
advice; to Katherine Almeida, its editor; and to Yasuyo Iguchi, design
manager, for her advice on typography.

To my father, Michael Jackson, for his endless encouragement; for the
inspiration he has been for me since I joined the family business; and for
his tolerance of so many papers, and now a book, where rigor in logic
often seems to take precedence over rigor in method. To my mother,
Judy Jackson, the most prolific author in the family, whose uplifting
emails continued to come even when replies became short and infre-
quent. To my brother, Adam Jackson, who insisted that my text be opti-
cally aligned (and showed me how to do it).

And finally, to my wife Claudia, to whom I dedicate this book, who has
taught me so much, especially that analysis isn’t everything (and that
the New Yorker is much more fun than the Economist). And to my chil-
dren Rachel, Rebecca and Akiva, who will grow up, I hope, in a world of
better and simpler software than we have today.

volume1.indd 16 12/8/05 9:29:34 AM

1:	Introduction

Software is built on abstractions. Pick the right ones, and programming
will flow naturally from design; modules will have small and simple in-
terfaces; and new functionality will more likely fit in without extensive
reorganization. Pick the wrong ones, and programming will be a series
of nasty surprises: interfaces will become baroque and clumsy as they
are forced to accommodate unanticipated interactions, and even the
simplest of changes will be hard to make. No amount of refactoring,
bar starting again from scratch, can rescue a system built on flawed
concepts.

Abstractions matter to users too. Novice users want programs whose
abstractions are simple and easy to understand; experts want abstrac-
tions that are robust and general enough to be combined in new ways.
When good abstractions are missing from the design, or erode as the
system evolves, the resulting program grows barnacles of complexity.
The user is then forced to master a mass of spurious details, to develop
workarounds, and to accept frequent, inexplicable failures.

The core of software development, therefore, is the design of abstrac-
tions. An abstraction is not a module, or an interface, class, or method;
it is a structure, pure and simple—an idea reduced to its essential form.
Since the same idea can be reduced to different forms, abstractions are
always, in a sense, inventions, even if the ideas they reduce existed be-
fore in the world outside the software. The best abstractions, however,
capture their underlying ideas so naturally and convincingly that they
seem more like discoveries.

The process of software development should be straightforward. First,
you design the abstractions, from a careful consideration of the prob-
lem to be solved and its likely future variants. Then you develop its
embodiments in code: the interfaces and modules, data structures and
algorithms (or in object-oriented parlance, the class hierarchy, datatype
representations, and methods).

Unfortunately, this approach rarely works. The problem, as Bertrand
Meyer once called it, is wishful thinking. You come up with a collection
of abstractions that seem to be simple and robust. But when you imple-
ment them, they turn out to be incoherent and perhaps even inconsis-

� introduction

tent, and they crumble in complexity as you attempt to adapt them as
the code grows.

Why are the flaws that escaped you at design time so blindingly obvious
(and painful) at coding time? It is surely not because the abstractions
you chose were perfect in every respect except for their realizability
in code. Rather, it was because the environment of programming is so
much more exacting than the environment of sketching design abstrac-
tions. The compiler admits no vagueness whatsoever, and gross errors
are instantly revealed by executing a few tests.

Recognizing the advantage of early application of tools, and the risk of
wishful thinking, the approach known as “extreme programming” [4]
eliminates design as a separate phase altogether. The design of the soft-
ware evolves with the code, kept in check by the rigors of type checking
and unit tests.

But code is a poor medium for exploring abstractions. The demands of
executability add a web of complexity, so that even a simple abstraction
becomes mired in a bog of irrelevant details. As a notation for express-
ing abstractions, code is clumsy and verbose. To explore a simple global
change, the designer may need to make extensive edits, often across
several files. And pity the reviewer who has to critique design abstrac-
tions by poring over a code listing.

An alternative approach is to attack the design of abstractions head-on,
with a notation chosen for ease of expression and exploration. By mak-
ing the notation precise and unambiguous, the risk of wishful think-
ing is reduced. This approach, known as formal specification, has had
a number of major successes. Praxis, a British company that develops
critical systems using a combination of formal specification and static
analysis, offers a warranty on its products, boasts a defect rate an order
of magnitude lower than the industry average, and achieves this level of
quality at a comparable cost.

Why isn’t formal specification used more widely then? I believe that two
obstacles have limited its appeal. The notations have had a mathemati-
cal syntax that makes them intimidating to software designers, even
though, at heart, they are simpler than most programming languages. A
second and more fundamental obstacle is a lack of tool support beyond
type checking and pretty printing. Theorem provers have advanced dra-
matically in the last 20 years, but still demand more investment of effort
than is feasible for most software projects, and force an attention to
mathematical details that don’t reflect fundamental properties of the
abstractions being explored.

introduction �

This book presents a new approach. It takes from formal specification
the idea of a precise and expressive notation based on a tiny core of
simple and robust concepts, but it replaces conventional analysis based
on theorem proving with a fully automatic analysis that gives immedi-
ate feedback. Unlike theorem proving, this analysis is not “complete”:
it examines only a finite space of cases. But because of recent advances
in constraint-solving technology, the space of cases examined is usually
huge—billions of cases or more—and it therefore offers a degree of cov-
erage unattainable in testing.

Moreover, unlike testing, this analysis requires no test cases. The user
instead provides a property to be checked, which can usually be ex-
pressed as succinctly as a single test case. A kind of exploration there-
fore becomes possible that combines the incrementality and immediacy
of extreme programming with the depth and clarity of formal specifica-
tion.

This volume introduces the key elements of the approach: a logic, a lan-
guage, and an analysis:

· The logic provides the building blocks of the language. All structures
are represented as relations, and structural properties are expressed
with a few simple but powerful operators. States and executions are
both described using constraints (“formulas” to the logician, and

“boolean expressions” to the programmer), allowing an incremen-
tal approach in which behavior can be refined by adding new con-
straints.

· The language adds a small amount of syntax to the logic for structur-
ing descriptions. To support classification, and incremental refine-
ment, it has a flexible type system that has subtypes and unions, but
requires no downcasts. A simple module system allows generic dec-
larations and constraints to be reused in different contexts.

· The analysis is a form of constraint solving. Simulation involves
finding instances of states or executions that satisfy a given prop-
erty. Checking involves finding a counterexample—an instance that
violates a given property. The search for instances is conducted in a
space whose dimensions are specified by the user in a “scope,” which
assigns a bound to the number of objects of each type. Even a small
scope defines a huge space, and thus often suffices to find subtle
bugs.

This book is aimed at software designers, whether they call them-
selves requirements analysts, specifiers, designers, architects, or pro-

� introduction

grammers. It should be suitable for advanced undergraduates, and for
graduate students in professional and research masters programs. No
prior knowledge of specification or modeling is assumed beyond a high-
school–level familiarity with the basic notions of set theory. Neverthe-
less, it is likely to appeal more to readers with some experience in soft-
ware development, and some background in modeling.

Throughout the book, I use the term “model” for a description of a soft-
ware abstraction. It’s not ideal, because a software abstraction need not
be a “model” of anything. But it’s shorter than “description,” and has
come to have a well established (and vague!) usage.

To keep the text short and to the point, I’ve relegated discussions of
trickier points and asides to question-and-answer sections that are in-
terspersed throughout the text. For the benefit of researchers, I’ve used
these sections also to explain some of the rationale behind the Alloy
language and modeling approach.

In the book’s appendices you’ll find a series of exercises designed to help
develop modeling and analysis skills; a reference manual for the Alloy
language; a summary of the semantics of the logic; and a comparison of
Alloy to some well-known alternatives.

There’s no better way to learn modeling than to do it. As you read the
book, I recommend that you try out the examples for yourself, and ex-
periment to see the effects of changes.

The Alloy Analyzer is freely available at http://alloy.mit.edu for a variety
of platforms. It can display its results in textual and graphical form, and
includes a visualization facility that lets you customize the graphical
output for the model at hand.

All the examples in the book are available for download at the book’s
website, http://softwareabstractions.org, along with other supplementary
material.

2:	A	Whirlwind	Tour

This chapter describes the incremental construction and analysis of a
small model. My intent is to explain just enough to impart the flavor of
the approach, so don’t expect to follow all the details.

I’ve chosen an example that should be familiar to most readers: the
design of an address book for an email client. Although I’ve kept the
model small to simplify the presentation, this example isn’t atypical in
the amount of effort involved. A ten-line program can’t do very much,
and has almost nothing in common with a thousand-line program. But
a ten-line model can be very useful, and doesn’t differ that much from
a hundred-line model, which is often all that’s needed to explore a dif-
ficult design issue.

By developing the example in a series of small additions and modifica-
tions, I’ve attempted to convey the lightweight and incremental spirit
of the approach. The immediacy of the feedback that the tool provides
is much harder to get across; to experience this, you’ll need to try the
example yourself, running analyses and seeing how they react to your
own modifications.

An email client’s address book is a little database that associates email
addresses with shorter names that are more convenient to use. The user
can create an alias for a correspondent—a nickname that can be used
in place of that person’s address, and which need not change when the
address itself changes. A group is like an alias but is associated with
an entire set of correspondents—the members of a family, for instance.
When defining a group, a user will often insert aliases rather than actual
email addresses, so that a change in a person’s email address can be cor-
rected in just one place, even if it appears implicitly in many groups.

The tour starts with a simple address book with aliases and no groups.
It shows how to declare the structure of the state of a system, and how
to generate sample instances of the state (section 2.1). Then it adds dy-
namic behavior, and shows how to model an operation with constraints,
how to simulate it, and how to check properties of operations (section
2.2).

The tour then takes a turn into more sophisticated territory. The state
of the address book is elaborated to allow names (that is, groups and

� a whirlwind tour

aliases) to refer to other names, forming naming chains of any length
(section 2.3). The model uses an idiom that design pattern afficionados
call Composite. The analyses of the simple address book are reapplied,
and now turn up some potential problems.

Finally, the model is extended with traces, so that now analyses and sim-
ulations show entire executions involving a series of operations, rather
than single operation steps (section 2.4). I included this section to show
the flexibility of the approach, especially for readers familiar with model
checking, although in practice it’s often fine just to analyze operations
one at a time.

2.1	 Statics:	Exploring	States

We’re going to explore a simple address book for an email client that
maintains a mapping from names to addresses. Here’s our first model:

module tour/addressBook1

sig Name, Addr {}
sig Book {
 addr: Name -> lone Addr
 }

That’s a complete Alloy model. It introduces three signatures—Name,
Addr, and Book—each representing a set of objects. The Book signature
has a field addr that maps names to addresses. In fact, addr is a three-way
mapping associating books, names, and addresses, containing the tuple
b -> n -> a when, in book b, name n is mapped to address a. The expression
b.addr denotes the mapping from names to addresses for book b.

The keyword lone in the declaration indicates multiplicity—in this case
that each name is mapped to at most one address. For now, we’re just
modeling simple aliases; later we’ll consider groups.

This model contains no commands, so there’s no analysis that can be
done (beyond simple static semantic and type checks). Our first analy-
sis will be to get some samples of the possible states. To do this, we add
a predicate, and a command to find an instance of the predicate:

pred show () {}
run show for 3 but 1 Book

The predicate has an empty body; later we’ll add some constraints. The
command specifies a scope that bounds the search for instances: in this
case, to at most three objects in each signature, except for Book, which

a whirlwind tour �

is limited to one object, since, for now, we’re only interested in seeing a
single address book. The scope is for the purpose of analysis alone; the
model doesn’t limit the size or number of address books.

Running the command produces the instance of fig. 2.1. Outputs can be
shown in a variety of forms, textual and graphical. Here, I’ve chosen to
have the output displayed as a graph, and I’ve instructed the analyzer
to “project” the instance on Book, which means that it shows a separate
graph for each book object.

You may wonder why this particular instance was chosen. In fact, the
tool’s selection of instances is arbitrary, and depending on the prefer-
ences you’ve set, may even change from run to run. In practice, though,
the first instance generated does tend to be a small one. This is useful,
because the small instances are often pathological, and thus more likely
to expose subtle problems. You can ask the tool to produce a series of
instances without repeats, but in our tour, we’ll always make do with
the first one.

This instance shows a single link from a name to an address. To see an
instance with more than one link, we can add a constraint to the predi-
cate:

pred show (b: Book) {
 #b.addr > 1
 }

fig. 2.1 Simulating the address book: a first instance.

� a whirlwind tour

So that we can talk about a particular book, I’ve added an argument b
of type Book to the predicate. The expression b.addr is the mapping from
names to addresses for this book, and #b.addr is the number of associa-
tions in this mapping. So the constraint asks for an instance in which
the book b has more than one name/address association.

Running the command again now gives the instance of fig. 2.2. We see
that our model allows two names (three in this case!) to map to one ad-
dress. Does our model allow one name to map to two addresses? If we
add a constraint asking for such a name

pred show (b: Book) {
 #b.addr > 1
 some n: Name | #n.(b.addr) > 1
 }

the analyzer tells us that the predicate show is now inconsistent—at least
in this scope—and has no instances. This is not surprising, since the
constraint we added contradicts the multiplicity in the declaration of
addr.

Even if we can’t have one name map to two addresses, we would like to
make sure that it’s possible to have more than one address in the ad-
dress book. So we replace the inconsistent constraint by a weaker one:

pred show (b: Book) {
 #b.addr > 1
 #Name.(b.addr) > 1
 }

fig. 2.2 A second address book instance.

a whirlwind tour �

Whereas the bad constraint used the expression n.(b.addr) for looking
up a single name n in address book b, this constraint uses Name.(b.addr)
for looking up the entire set of names. This expression therefore denotes
the set of all addresses that may result from lookups. One of the nice
features of Alloy is that the operators are defined very generally, and any
operator that can be applied to a scalar can also be applied to a set.

Running the command gives the instance of fig. 2.3. These little simu-
lations are useful because, with minimal effort on the user’s part, they
confirm that the model doesn’t inadvertently rule out obvious cases, and
they present other cases that might not have been considered at all.

So far, we’ve defined a state space and generated some sample states. It’s
time to look at some behaviors.

2.2	 Dynamics:	Adding	Operations

Let’s add to the model a description of what happens when an entry is
added to an address book:

pred add (b, b’: Book, n: Name, a: Addr) {
 b’.addr = b.addr + n -> a
 }

The predicate add, like the predicate show, is just a constraint. In this case,
though, it represents an operation, and describes dynamic behavior. Its

fig. 2.3 A third address book instance.

10 a whirlwind tour

arguments are an address book before the addition (b), an address book
after (b’), a name (n), and an address (a) the name is to be mapped to.
The constraint says that the address mapping in the new book is equal
to the address mapping in the old book, with the addition of a link from
the name to the address.

The way this operation is described will probably strike you as odd if
you’re used to imperative programming languages and haven’t seen
modeling languages before. There’s no explicit mutation here; instead,
the before and after states of the book are given different names (b and
b’), and the effect of the operation is captured by a property relating
them. Whereas a procedure in a program is operational, and describes
how to produce a change of state by modifying state components, Alloy
is declarative, and describes how to check whether a change of state is
valid, by comparing the before and after values.

Even though Alloy is declarative, it can still be executed much like an
operational language. To execute the operation, we run a command
such as

run add for 3 but 2 Book

This time we’ve limited the scope to just 2 books (for the before and
after values). The result, in fig. 2.4, shows the prestate (the state of the
book before the operation) above, and the poststate (the state after) be-
low. In the prestate, the book is empty; in the poststate, there is a new
link from Name0 to Addr0.

Note how the name node is marked with the label add_n and the address
node with add_a to show which objects are bound to the arguments n
and a of the add operation. These labels will become more important
later when they show witnesses to the violation of an assertion.

Following the same strategy we used for states, we can explore more
interesting transitions by adding constraints. We could elaborate the
predicate add itself, but it’s better to create a new predicate, making a
clear distinction between the operation itself and constraints written
for the purpose of exploration:

pred showAdd (b, b’: Book, n: Name, a: Addr) {
 add (b, b’, n, a)
 #Name.(b’.addr) > 1
 }

run showAdd for 3 but 2 Book

a whirlwind tour 11

The new predicate showAdd “invokes” the existing predicate add. The ef-
fect is no different from including the constraints of add directly (but it’s
more modular to do it this way). We’ve added a constraint that asks for
a transition in which the address book after has more than one address
mapped to (using the same constraint we used when simulating states).
The result is shown in fig. 2.5. Note that it’s just as easy to constrain the
state after as constraining the state before: the analyzer is “executing”
this operation backward.

Let’s move on, and write some more operations, for deleting entries,
and for lookup:

fig. 2.4 A generated transition for add.

1� a whirlwind tour

pred del (b, b’: Book, n: Name) {
 b’.addr = b.addr - n -> Addr
 }

fun lookup (b: Book, n: Name): set Addr {
 n.(b.addr)
 }

The deletion operation says that the after-book is the before-book with
all links from the name n to any address removed. The lookup operation
is written as a function rather than a predicate: its body is an expression
rather than a constraint, and says that the result of a lookup is whatever
set of addresses the name n maps to under the addr mapping of b.

fig. 2.5 A generated transition for showAdd.

a whirlwind tour 1�

We could simulate these operations too, but let’s do something differ-
ent, and write some assertions about how combinations of operations
in sequence behave. Our first assertion says that deletion is an undo
operation for addition:

assert delUndoesAdd {
 all b,b’,b“: Book, n: Name, a: Addr |
 add (b,b’,n,a) and del (b’,b”,n) implies b.addr = b“.addr
 }

An assertion is a constraint that is intended to be valid—that is, true for
all possible cases. This one says that an addition from book b resulting
in book b’, followed by a deletion using the same name n, results in a
book b“ whose address mapping is the same as that of the original book
b.

To check the assertion, we issue the following command to the ana-
lyzer:

check delUndoesAdd for 3

This instructs the analyzer to search not for an example, but for a coun-
terexample—a scenario in which the assertion is violated. And indeed,
it finds one, as shown in fig. 2.6. Strangely, there are only two distinct
states in this scenario. As the diagram at the bottom shows (produced
by the visualizer with different settings), b and b’, the values of the book
in the first and second states, are both Book0, shown above on the left.
The reason is that the name/address link to be added is already pres-
ent, so the execution of add has no effect. The execution of del, on the
other hand, removes the link, resulting in the empty book, shown on
the right.

Sometimes the failure of an assertion will point to a flaw in the model
proper. In this case, however, the model seems reasonable, and given
our decision to allow additions for existing entries, it’s not surprising
that deletion doesn’t act as an undo. (At least, it’s not surprising in ret-
rospect. Many of the issues raised by analysis are like bugs in code—
perfectly obvious once you’ve already seen them.) To check that our
hypothesis is right, we can modify the assertion, restricting the claim to
cases in which no entry already exists for the name n:

assert delUndoesAdd {
 all b,b’,b“: Book, n: Name, a: Addr |
 no n.(b.addr) and add (b,b’,n,a) and del (b’,b”,n)
 implies b.addr = b“.addr
 }

1� a whirlwind tour

Executing the check now finds no counterexample. The assertion may
still be invalid, though. Since the analyzer only considered cases involv-
ing three books, three names, and three addresses, it’s possible that
there is a counterexample involving more.

So we crank up the scope. There’s no point considering more than three
books, but we allow 10 names and 10 addresses:

check delUndoesAdd for 10 but 3 Book

Executing this takes longer than the previous analyses (about 3 seconds
on a 2GHz Macintosh G5). As you increase the scope, the space of cases
to consider grows dramatically. With 10 names and addresses, there
are 11 possibilities for each name, so the starting state alone has 1110
possible values. And because the operations don’t have to be written in
an executable style, the tool has to search over the possible values of all
three books, so there are over 1030 cases to consider.

Now you can see why this kind of analysis is more effective than testing.
Of course, the analyzer doesn’t construct and check each case individu-

fig. 2.6 A counterexample to delUndoesAdd.

a whirlwind tour 15

ally; even if it used only one processor cycle per case, 1030 cases would
still take longer than the age of the universe. By pruning the tree of pos-
sibilities, it can rule out large subspaces without examining them fully.

We still haven’t proved the assertion is valid. But, intuitively, it seems
very unlikely that, if there is a problem, it can’t be shown in a counter-
example with 10 names and addresses. How far to go is a pragmatic
judgment you have to make as a modeler. Eventually, as you increase the
scope, the analysis becomes intractable.

The tradeoff is no different in principle from the one you face when
deciding whether you’ve tested a program enough. In practice, though,
exhausting a scope of 10 gives more coverage of a model than hand-
written test cases ever could. Most flaws in models can be illustrated by
small instances, since they arise from some shape being handled incor-
rectly, and whether the shape belongs to a large or small instance makes
no difference. So if the analysis considers all small instances, most flaws
will be revealed. This observation, which I call the small scope hypoth-
esis, is the fundamental premise that underlies Alloy’s analysis.

There are many other examples of assertions in this “algebraic” style.
Here are two. The first checks that add is idempotent—that repeating an
addition has no effect:

assert addIdempotent {
 all b,b’,b“: Book, n: Name, a: Addr |
 add (b,b’,n,a) and add (b’,b”,n,a) implies b’.addr = b“.addr
 }

The second checks that add is local; that adding an entry for a name n
doesn’t affect the result of a lookup for a different name n’:

assert addLocal {
 all b,b’: Book, n,n’: Name, a: Addr |
 add (b,b’,n,a) and n != n’ implies lookup (b,n’) = lookup (b’,n’)
 }

Checking these assertions gives no counterexamples.

The final version of the model discussed in this section is shown in fig.
2.7. Note that it includes the simulation predicates and assertions and
their associated commands. These play the same role that test drivers
and stubs play for code; they are an integral part of the development.
When you make a change to a model, you can recheck the assertions
and rerun the simulations just as you would run regression tests after
modifying code.

1� a whirlwind tour

module tour/addressBook1

sig Name, Addr {}
sig Book {addr: Name -> lone Addr}

pred show (b: Book) {
 #b.addr > 1
 #Name.(b.addr) > 1
 }
run show for 3 but 1 Book

pred add (b, b’: Book, n: Name, a: Addr) {b’.addr = b.addr + n -> a}
pred del (b, b’: Book, n: Name) {b’.addr = b.addr - n -> Addr}
fun lookup (b: Book, n: Name): set Addr {n.(b.addr)}

pred showAdd (b, b’: Book, n: Name, a: Addr) {
 add (b, b’, n, a)
 #Name.(b’.addr) > 1
 }
run showAdd for 3 but 2 Book

assert delUndoesAdd {
 all b,b’,b“: Book, n: Name, a: Addr |
 no n.(b.addr) and
 add (b,b’,n,a) and del (b’,b”,n) implies b.addr = b“.addr
 }

assert addIdempotent {
 all b,b’,b“: Book, n: Name, a: Addr |
 add (b,b’,n,a) and add (b’,b”,n,a) implies b’.addr = b“.addr
 }

assert addLocal {
 all b,b’: Book, n,n’: Name, a: Addr |
 add (b,b’,n,a) and n != n’
 implies lookup (b,n’) = lookup (b’,n’)
 }

check delUndoesAdd for 10 but 3 Book
check addIdempotent for 3
check addLocal for 3 but 2 Book

fig. 2.7 Final version of model for simple address book.

a whirlwind tour 1�

2.3	 Classification	Hierarchy

In a realistic address book application, you can create an alias for an ad-
dress, and then use that alias as the target for another alias. And an alias
can name multiple targets, so that a group of addresses can be referred
to with a single name.

Rather than elaborating our existing model, we’ll just start afresh and
reuse fragments of the old model as needed. We start with a classifica-
tion hierarchy showing the various sets of objects and their relationship
to one another:

module tour/addressBook2

abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}

sig Alias, Group extends Name {}
sig Book {addr: Name -> Target}

Fig. 2.8 shows a model diagram, a graphical representation of the mod-
el’s declarations, generated automatically by the analyzer from the text
above. Note that the addr field of Book now maps names to targets. A

fig. 2.8 Model diagram for hierarchical address book.

1� a whirlwind tour

target is either just an address, as before, or a name itself; names are
either groups or aliases.

Just as we did for the simple address book, we can explore the state
space with simulation predicates. For example, if ask to see a nonempty
book

pred show (b: Book) {some b.addr}
run show for 3 but 1 Book

the analyzer responds with the instance of fig. 2.9, in which an alias
is mapped to itself. This is the first simulation we’ve done that clearly
reveals a flaw to be remedied. We add a fact—a constraint that’s as-
sumed always to hold—stating that, for any book, there is no name that
belongs to the set of targets reachable from the name itself:

fact {
 all b: Book | no n: Name | n in n.^(b.addr)
 }

The expression n.^(b.addr) denotes the targets reachable from n, using
the transitive closure ^(b.addr) of the address book mapping of b. You
can think of x.r as a navigation from object x through one application
of relation r, and x.^r as a navigation from object x through one or more
applications of r.

Facts like this, that apply to every member of a signature, are better
written as signature facts, in which the quantification, and the reference
to the particular member, are implicit:

fig. 2.9 First instance for hierarchical address book.

a whirlwind tour 1�

sig Book {addr: Name -> Target}
 {no n: Name | n in n.^addr}

Note that, like a reference to a field of a receiver in an object-oriented
program, addr now implicitly refers to this.addr, the address book map-
ping of an archetypal book, and the all quantifier has gone.

Running the command again, we now get a situation, shown in fig.
2.10, in which a group contains two addresses. We’d like to see an alias
mapped, so we change the predicate’s constraint to say that there should
be some targets resulting from mapping all aliases:

pred show (b: Book) {some Alias.(b.addr)}

Now, in fig. 2.11, we have an alias mapped to two addresses. This is un-
desirable; a name mapped to more than one target should be a group,
not an alias. So we add another fact:

sig Book {addr: Name -> Target}
 {
 no n: Name | n in n.^(addr)
 all a: Alias | lone a.addr
 }

Executing the command again, we see a new problem, shown in fig. 2.12:
an alias maps to an empty group. This means that if you look up a name,
you might get no addresses back at all, even though the name is in the

fig. 2.10 Second instance for hierarchical address book.

�0 a whirlwind tour

address book! In fact, many address book applications allow this, and
then (unhelpfully) report a failure only later when the message is sent.

Let’s make this issue explicit in our model. First, we elaborate the Book
signature to make explicit the set of names that are in the book, by add-
ing a field (names) to represent this set, and by changing the declaration
of the address mapping (addr) to say that it maps only names in this set,
and maps each to at least one target:

sig Book {
 names: set Name,
 addr: names -> some Target }
 {
 no n: Name | n in n.^(addr)
 all a: Alias | lone a.addr
 }

Then we add an assertion claiming that every lookup of a name in the
book yields some results:

assert lookupYields {
 all b: Book, n: b.names | some lookup (b,n)
 }

(We’ll define lookup shortly.) Checking this assertion will give a coun-
terexample just like fig. 2.12. The problem isn’t so easy to fix. We could
simply add a fact stating, for example, that groups can’t be empty. But

fig. 2.11 Third instance for hierarchical address book.

a whirlwind tour �1

it’s not obvious how to maintain such a property, so we’ll put it off for
now and return to it later.

Let’s update the operations to match the new, more elaborate address
book:

pred add (b, b’: Book, n: Name, t: Target) {b’.addr = b.addr + n -> t}
pred del (b, b’: Book, n: Name, t: Target) {b’.addr = b.addr - n -> t}
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}

The differences are minor. The add operation now takes a target rather
than an address, and del now also takes a target in addition to a name.
At first I didn’t see the need for the second argument of del, but while
exploring the model with the analyzer, I realized that without it you
wouldn’t be able to remove just one target from a group. The lookup
operation is more interesting now, being generalized to arbitrary depth:
it follows the address mapping any number of times, rather than just
once, obtaining a set of targets, which it then intersects with the set of
addresses, thus returning all addresses reachable from the name.

We can now check the old assertions. The assertion delUndoesAdd (with
the extra condition that the name added is not already mapped) still
passes, as does addIdempotent. But addLocal now fails, as shown in fig.
2.13. Note the labels indicating which objects act as witnesses to the
violation: n’ is Group1, whose associated addresses are changed by an add
applied to n, which is Group0. Now that we have indirection, changing

fig. 2.12 Fourth instance for hierarchical address book.

�� a whirlwind tour

the binding of one alias or group can affect another. This seems reason-
able, and we decide that the model doesn’t need to be fixed.

The final version of the model discussed in this section is shown in fig.
2.14.

2.4	 Execution	Traces

Let’s return to the problem of empty lookups—cases in which a name
that is in the address book corresponds to no addresses. This time, we’ll
examine not only the bad situations but also how they might arise.
Rather than considering the effect of individual steps, we consider en-
tire traces, consisting of multiple steps from an initial state.

The body of the model remains unchanged. All we need to do is add an
ordering on address books, constrained so that the first book satisfies
some initial conditions, and any adjacent books in the ordering are re-
lated by an operation.

fig. 2.13 Counterexample to addLocal for hierarchical address book.

a whirlwind tour ��

module tour/addressBook2

abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}

sig Alias, Group extends Name {}
sig Book {
 names: set Name,
 addr: names -> some Target }
 {
 no n: Name | n in n.^(addr)
 all a: Alias | lone a.addr
 }

pred add (b, b’: Book, n: Name, t: Target) {b’.addr = b.addr + n -> t}
pred del (b, b’: Book, n: Name, t: Target) {b’.addr = b.addr - n -> t}
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}

assert delUndoesAdd {
 all b,b’,b“: Book, n: Name, t: Target |
 no n.(b.addr) and
 add (b,b’,n,t) and del (b’,b”,n, t) implies b.addr = b“.addr
 }
check delUndoesAdd for 3

assert addIdempotent {
 all b,b’,b“: Book, n: Name, t: Target |
 add (b,b’,n,t) and add (b’,b”,n,t) implies b’.addr = b“.addr
 }
check addIdempotent for 3

assert addLocal {
 all b,b’: Book, n,n’: Name, t: Target |
 add (b,b’,n,t) and n != n’
 implies lookup (b,n’) = lookup (b’,n’)
 }
check addLocal for 3 but 2 Book

assert lookupYields {
 all b: Book, n: b.names | some lookup(b,n)
 }
check lookupYields for 4 but 1 Book

fig. 2.14 Final version of model for hierarchical address book.

�� a whirlwind tour

Here’s what the new model looks like (with ellipses for the old declara-
tions and operations):

module tour/addressBook3
open util/ordering [Book]

…
pred init (b: Book) {no b.addr}

fact traces {
 init (first ())
 all b: Book - last () | let b’ = next (b) |
 some n: Name, t: Target | add (b, b’, n, t) or del (b, b’, n, t)
 }

The ordering on books is provided by the library module util/ordering.
This module is generic—that is, it can order a set of any type—so when
opened it must be instantiated with a type (in this case, Book). The mod-
ule has its own signatures and fields, but is accessed through the func-
tions first, next and last, giving the first element in the order, the element
following a given element, and the last.

The predicate init gives the initial condition—that the address book is
empty. The fact traces specifies the constraints that make the ordering a
trace: that the initial condition holds for the first book in the trace, and
that any book b (except the last) and its successor b’ are related by the
constraints of the add or del operation.

To see a sample trace, we ask for an instance satisfying an empty predi-
cate:

pred show () {}
run show for 4

The analyzer generates the trace, shown in fig. 2.15, with three additions
in a row. The last one (making Group0 a member of Group1) is interesting:
it creates two routes to the same address. Again, we see how simula-
tion generates cases that are thought-provoking, even when they don’t
expose obvious flaws.

To investigate the empty lookup problem, we can check the same asser-
tion as before:

assert lookupYields {all b: Book, n: b.names | some lookup(b,n)}
check lookupYields for 3 but 4 Book

a whirlwind tour �5

fig. 2.15 Sample trace for hierarchical address book: each panel represents a state,
starting with the initial state in the top left, and moving clockwise around.

�� a whirlwind tour

This time, however, the set of books is constrained to form a trace, so
the counterexample, shown in fig. 2.16, shows how a sequence of opera-
tions can result in a bad state. Note the label lookupYields_n indicating
the witness to the violation—Group0. The violation actually occurs after
the very first step, in state Book1, so I’ve omitted the other two states. A
smaller scope would have sufficed.

The problem here is that add allows a meaningless alias—one that refers
to nothing—to be added to a group. To fix this, we might add a precon-
dition to add, saying that the target given must either be an address, or
else must resolve to at least one address on lookup:

pred add (b, b’: Book, n: Name, t: Target) {
 t in Addr or some lookup (b,t)
 b’.addr = b.addr + n -> t
 }

Checking the assertion again, we get the counterexample of fig. 2.17.
This time the problem is with deletion: we’ve deleted the last member of
a group. We can fix this, albeit in a rather draconian manner, by forbid-
ding such a deletion with a precondition:

fig. 2.16 Counterexample trace violating lookupYields with one step of add.

a whirlwind tour ��

fig. 2.17 Counterexample trace violating lookupYields with deletion of last member of
a group; each panel represents a state, starting with the initial state in the top left, and

moving clockwise around.

�� a whirlwind tour

pred del (b, b’: Book, n: Name, t: Target) {
 no b.addr.n or some n.(b.addr) - t
 b’.addr = b.addr - n -> t
 }

The precondition says that n isn’t itself mapped to, or it’s mapped to
some target besides t.

Now, no counterexample is found. So we crank up the scope to 6, and
analyze for all scenarios involving 6 targets and 6 address books:

check lookupYields for 6

This is a much larger space, and analysis takes almost 2 minutes, but still
no counterexample is found.

The final version of the model discussed in this section is shown in fig.
2.18.

2.5	 Summary

The purpose of this short tour wasn’t to demonstrate how much can
be accomplished with this style of modeling. Indeed, when you’ve read
this book and have had some practice, you’ll be able to write more so-
phisticated models of more interesting things. Its purpose was instead
to show how little you actually need to do to get some insight into a
software design problem. Our most complex model was only a page
long, but that was sufficient to explore some issues that arise in a real
system.

It’s easy to dismiss the kinds of issue we looked at as trivial and obvious.
They often are—in retrospect, at least. Indeed, the hardest, and most re-
warding, challenge in software design is reducing a mass of complicated,
incongruous details to a few simple generalities. Simplicity is the key to
good software design.

Looking back at this modeling exercise, it’s instructive to recall not so
much what we did, but what we didn’t do:

· We didn’t write an elaborate model, and only then analyze it. Our
first analysis was applied to a model less than ten lines long. We de-
veloped the model incrementally, as we explored it with the analyz-
er.

· We didn’t use any complicated mathematics or unfamiliar symbols.
The Alloy language is based on simple notions of basic logic, and a

a whirlwind tour ��

module tour/addressBook3
open util/ordering [Book]

abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}
sig Alias, Group extends Name {}

sig Book {
 names: set Name,
 addr: names -> some Target }
 {
 no n: Name | n in n.^(addr)
 all a: Alias | lone a.addr
 }

pred add (b, b’: Book, n: Name, t: Target) {
 t in Addr or some lookup(b,t)
 b’.addr = b.addr + n -> t
 }

pred del (b, b’: Book, n: Name, t: Target) {
 no b.addr.n or some n.(b.addr) - t
 b’.addr = b.addr - n -> t
 }

fun lookup (b: Book, n: Name): set Addr {
 n.^(b.addr) & Addr
 }

pred init (b: Book) {no b.addr}
fact traces {
 init (first ())
 all b: Book - last () | let b’ = next (b) |
 some n: Name, t: Target | add (b, b’, n, t) or del (b, b’, n, t)
 }

pred show () {}
run show for 4

assert lookupYields {
 all b: Book, n: b.names | some lookup (b,n)
 }
check lookupYields for 3 but 4 Book
check lookupYields for 6

fig. 2.18 Final version of model for traces over hierarchical address book.

�0 a whirlwind tour

special dot operator for navigating along relations, similar to (but
more flexible than) the dereferencing dot of Java.

· We didn’t need to write any executable code to get sample states, nor
even to get sample traces. A major advantage of this, which we didn’t
exploit in this tour, is that you can write a very partial description of
an operation that allows many different behaviors.

· We didn’t write any test cases. The assertions that we wrote are like
test oracles that check the result of a test. An assertion is rarely more
trouble to write than a single test case, but has the coverage of an
unimaginably huge test suite.

· We didn’t guide the analyzer in any way, beyond giving a scope to
bound the analysis. No proof steps, no lemmas, no heuristics to sug-
gest.

· We didn’t have to worry about false alarms. Although the analysis of
an assertion might not find a counterexample—because one only ex-
ists in a larger scope—it will never report a spurious one. (Of course,
it may still be irrelevant because the assertion wasn’t what we in-
tended, or the model didn’t express the behavior we had in mind.)

It’s also instructive to consider how this experience would have been
different if it had been conducted entirely by pencil on paper. Without
extraordinary discipline and perseverance, it’s hard to motivate yourself
to explore tricky issues, and even if we had done so, we probably would
not have articulated them in a form that was precise enough to share
with others (or for us to recall for ourselves later).

Alternatively, think about conducting this exercise in code, in a lan-
guage such as Java. We would have needed at least five files (just to
represent the classification hierarchy). The one-line lookup operation
would require a loop or recursion, accessing a hashtable, and accumu-
lating results in another data structure. The only analysis we could have
performed would have been the execution of a few fixed test cases—no
generation of arbitrary samples, no exhaustive checking within bounds,
no visual display of results.

2.5.1	 Questions

Is this style of modeling new?

Jim Horning and John Guttag described a very similar approach in a
paper in 1980, in which a theorem prover was used to answer questions

a whirlwind tour �1

interactively about a candidate design [21]. That paper was a major
source of inspiration for Alloy. The Z notation [65], developed at Ox-
ford in the 1980’s, was designed to encourage incremental specification,
as illustrated by many published Z examples. Several tools—such as
the USE tool for UML [71] and VDMTools [2]—animate specifications
by executing operations and evaluating constraints from given initial
states.

Aren’t the problems you explored trivial?

With hindsight, most software design problems are trivial. But if you
don’t address them head-on, trivial issues have a nasty habit of becom-
ing nontrivial. At the time of writing, most email clients I know of don’t
handle the issue of empty lookups very gracefully. The Apple mail client,
for example, lets you create empty groups and aliases in the address
book, but refuses (without an explanatory warning) to let you include
them in a message header. If you create a group whose sole member is
an empty alias, it allows you to include the group in a header, and pass-
es an ill-formed message to the SMTP server, which is then bounced
back.

How do you select the scope for an Alloy analysis?

Every command (to check an assertion or run a predicate) specifies a
scope that puts a bound on the number of elements of each signature.
There’s a tradeoff: a small scope may miss an instance, but a large scope
takes longer to analyze (and tends to produce larger, and less intelligible,
instances). So a good way to work is to start with a small scope, and in-
crease it if no instances are found. Often the scope on some signatures
is clear. For example, only two books are needed to analyze transitions
that involve a single state change from one value of an address book to
another.

Why isn’t a notion of execution built into Alloy?

Not hardwiring a particular notion of execution allows the notation to
be used in many different idioms. In chapter 6, for example, two ver-
sions of a model of a scheme for hotel locking are developed. One uses
the idiom of this chapter, in which the execution steps satisfy named
operations, but the operation names themselves are not part of the ex-
ecution; the other uses an idiom in which the execution is a sequence of
concrete, named events.

�� a whirlwind tour

Why don’t you just use diagrams?

Diagrams are very useful representations, but they’re limited in their
expressiveness. I often use a diagram to sketch the structure of a model,
and then transcribe it into Alloy text. Graphical input is not very con-
venient in practice: within a tool, it’s usually less work to enter text than
to draw a diagram, and it’s easier to exchange models in textual form.
Graphical output, on the other hand, is indispensable. The Alloy Ana-
lyzer can display instances in graphical form, or in textual form, or as an
expanding tree. It can also generate model diagrams from model text.

When the analyzer displays an example of a transition as a pair of graphs,
how do you know which is the prestate and which is the poststate?

The analyzer includes an editor for customizing visualizations. In the
visualizations I’ve chosen, the binding of pre- and poststate variables
b and b’ to atoms, such as Book0 and Book1, isn’t shown. Typically, the
atoms are bound in lexicographic order, so Book0 will be assigned to b,
and Book1 to b’, but this is easily confirmed by selecting a different visu-
alization, or by examining the output in textual form.

In a trace, are the states always in the order their names suggest?

Yes, when states are ordered, as the books were in the last version of
the model, the lexicographic order of the states will always match their
order in the trace. Here, for example, Book0 was the first state, Book1 the
second, and so on. This is because the tool uses a special symmetry-
breaking optimization for the library module util/ordering that ensures
that it always orders atoms in their lexicographic order. (See the discus-
sion following subsection 5.2.1 for more explanation.)

3:	Logic

At the core of every modeling language is a logic that provides the fun-
damental concepts. It must be small, simple, and expressive. A “work-
ing logic,” designed for expressing abstractions, unlike a logic designed
for theoretical investigations, cannot be completely minimal, but must
be flexible enough to allow the same idea to be expressed in different
ways.

This chapter introduces a relational logic that combines the quantifiers
of first-order logic with the operators of the relational calculus. It’s easy
to learn—especially if you’re familiar with basic set theory, or with rela-
tional query languages—and surprisingly powerful.

Although designed for software abstractions, the logic has been kept
free of any notions that would tie it to a particular programming lan-
guage or execution model. Its key characteristic, which distinguishes
it from traditional logics, is a generalization of the notion of relational
join. As in a relational database, a relation is a set of tuples. Sets are
represented as relations with a single column, and scalars as singleton
sets. Consequently, the same join operator can be applied to scalars,
sets, and relations, and changing the “multiplicity” of a relation (that is,
whether it maps an element to a scalar or a set) in its declaration does
not require a change to the constraints in which it appears. Dispensing
with the distinction between sets and scalars also makes constraints
more uniform and easier to write, and eliminates the problem of partial
function application, so there’s no need for special “undefined” values.
There are a few other novelties too, such as the ability to nest multiplici-
ties in declarations.

3.1	 Three	Logics	in	One

Our logic supports three different styles, which can be mixed and var-
ied at will. In the predicate calculus style, there are only two kinds of
expression: relation names, which are used as predicates, and tuples
formed from quantified variables.

In this style, the constraint that an address book, represented by a rela-
tion address from names to addresses, maps each name to at most one
address might be written

�� logic

all n: Name, d, d’: Address |
 n -> d in address and n -> d’ in address implies d = d’

In the navigation expression style, expressions denote sets, which are
formed by “navigating” from quantified variables along relations. In this
style, the same constraint becomes

all n: Name | lone n.address

In the relational calculus style, expressions denote relations, and there
are no quantifiers at all. Using operators we’ll define shortly, the con-
straint can be written

no ~address.address - iden

The predicate calculus style is usually too verbose, and the relational
calculus is often too cryptic. The most common style is therefore the
navigational one, with occasional uses of the other styles when appro-
priate.

Discussion

Which choice would you actually make for this constraint?

None of these. Multiplicity constraints of this kind are so common that
our logic has some special syntax that allows the constraint to be in-
cluded in a declaration. In this case, you’d write

address: Name -> lone Address

Where is the predicate calculus style used?

A common use is in comprehension expressions, which allow you to
construct a set or relation from a constraint. For example, if you have a
relation r that relates three elements from sets A, B and C, and you want
the columns instead in the order B, A, C, you can define a new relation
by comprehension:

r’ = {b: B, a: A, c: C | a -> b -> c in r}

The predicate calculus style can also be appealing when writing a very
subtle constraint, because it’s so concrete and straightforward, and the
quantifications often match a formulation of the constraint in natural
language.

logic �5

Where is the relational calculus style used?

Experienced modelers find it useful for some commonly recurring con-
straints that can be expressed more concisely this way, writing, for ex-
ample, no ^r & iden to say that the relation r is acyclic. Also, you might
write a constraint in the navigation style and notice that a quantified
variable can be “cancelled out.” For example, the constraint

all p: Person | p.uncle = p.parent.brother

can be written more concisely as

uncle = parent.brother

(so long as uncle and parent only map members of the set Person).

Do the styles have equivalent expressive power?

No. The navigational style is the most expressive. Predicate calculus
lacks transitive closure, so reachability properties can’t be expressed.
The relational calculus has no quantifiers, and not all occurrences of the
quantifiers of predicate calculus can be expressed purely relationally.

Does the style have an impact on the performance of the analysis?

Not in general. Basic modeling decisions about how many relations to
use, and how many columns each relation has, have a far bigger im-
pact.

3.2	 Atoms	and	Relations

All structures in our models will be built from atoms and relations, cor-
responding to the basic entities and the relationships between them.

3.2.1	 Atoms
An atom is a primitive entity that is

· indivisible: it can’t be broken down into smaller parts;

· immutable: its properties don’t change over time; and

· uninterpreted: it doesn’t have any built-in properties, the way num-
bers do, for example.

Elementary particles aside, very few things in the real world are atomic;
this is a modeling abstraction. So what do you do if you want to model

�� logic

something that is divisible, or mutable, or interpreted? You just intro-
duce relations to capture these properties as additional structure.

3.2.2	 Relations
A relation is a structure that relates atoms. It consists of a set of tuples,
each tuple being a sequence of atoms. You can think of a relation as a
table, in which each entry is an atom. The order of the columns matters,
but not the order of the rows. Each row must have an entry in every
column.

A relation can have any number of rows, called its size. Any size is pos-
sible, including zero. The number of columns in a relation is called its
arity, and must be one or more. Relations with arity one, two, and three
are said to be unary, binary, and ternary. A relation with arity of three
or more is a multirelation.

A unary relation corresponds to a table with one column; it represents
a set of atoms. A unary relation with only one tuple, corresponding to a
table with a single entry, represents a scalar .

Example. A set of names, a set of addresses, each of size 3, and a
set of address books of size 2:

Name = {(N0), (N1), (N2)}
Addr = {(D0), (D1), (D2)}
Book = {(B0), (B1)}

Example. Some scalars:

myName = {(N0)}
yourName = {(N1)}
myBook = {(B0)}

Example. A binary relation from names to addresses, for modeling
a world in which there is only one address book (and therefore no
need to model address books explicitly), with size 2:

address = {(N0, D0), (N1, D1)}

Example. A ternary relation (as used in chapter 2) from books to
names to addresses, for modeling a world in which there are mul-
tiple address books, each with its own name to address mapping:

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N1, D2), (B1, N2, D2)}

logic ��

Book B0 maps name N0 to address D0, and name N1 to address D1;
book B1 maps name N1 and name N2 to address D2. Fig. 3.1 shows
this relation as a table.

A relation with no tuples is empty. A unary relation with at most one
tuple—that is, a relation that is either a scalar or empty—is called an
option.

Example. An email application might store the user’s email address,
and, optionally, a distinct address used for the “reply-to” field of
messages. The former might be modelled as a scalar userAddress,
and the latter as an option replyAddress, which either contains an
address or is empty.

In the Alloy logic, all values are relations, so a tuple will be represented
by the relation containing it, in the same way that a scalar is represented
by a singleton set. We’ll therefore use the term tuple to describe a sin-
gleton relation—a relation containing exactly one tuple.

Example. Two scalars, and the tuple that associates them:

myName = {(N0)}
myAddress = {(A1)}
myLink = {(N0, A1)}

fig. 3.1 A ternary relation viewed as a table.

B0 N0

B0 N1 D1

B1 N1 D2

B1 N2 D2

D0

Book Name Addr

arity = 3

si
ze

 =
 4

�� logic

3.2.3	 Expressing	Structure	with	Relations
With relations, you can express structures in space and time, overcom-
ing the apparent limitations of atoms as a modeling construct.

Although the only objects in the logic are indivisible atoms, you can
model a composite object with atoms for the components and a relation
to bind them together.

Example. To say that directories can contain files, you could in-
troduce a relation contents that maps directories to the files they
contain, which would include the tuples (D0, F0) and (D0, F1) when
directory D0 contains the files F0 and F1.

Example. Hotel key cards, each holding two cryptographic keys,
can be modeled as a set Card of cards, a set Key of keys, and two
relations fst and snd from Card to Key. If a card C1 has K11 and K12 as
its first and second keys respectively, and a card C2 has K21 and K22,
the relations would have these values:

fst = {(C1, K11), (C2, K21)}
snd = {(C1, K12), (C2, K22)}

This is illustrated, for card C1, in fig. 3.2.

When the content of an object is itself a relation, a multirelation is used
to model containment.

C1

K11 K12

sndfstK11

K12

C1

fig. 3.2 A key card containing two keys (left)
represented with atoms and relations (right).

logic ��

Example. The relation addr mentioned in the previous section as-
sociates address books, names and addresses. Each address book
can be viewed as containing a name/address table.

Although atoms are immutable, you can model mutation, in which the
value of an object changes over time, by separating the identity of the
object and its value into separate atoms, and relating identities, values
and times.

Example. The history of values of some stocks might be represent-
ed by a relation value that includes the tuple (S0, V0, T0) if stock S0
has value V0 at time T0, and (S0, V1, T1) if it has value V1 at time T1.

Example. An address book’s changing contents could be modeled
with a relation addrT on names, addresses and times, with a value
such as

addrT = {(N0, D0, T0), (N1, D1, T0), (N2, D2, T1)}

if the book maps name N0 to addresses D0 and D1 at time T0, and
N2 to D2 at time T1.

When a model concerns only a single object and its changing value, a
set of atoms can be used for that object to represent its value at differ-
ent times.

Example. The addr relation of chapter 2 associated books, names
and addresses. It could be used to model a static world in which
there are several address books, each containing its own name/ad-
dress table. In fact, however, it was used to represent the changing
value of a single address book, with the book atoms playing the
same role as the time atoms of addrT.

Finally, although atoms are uninterpreted, you can give them properties
by introducing relations between them.

Example. The sequence numbers in a network protocol might be
represented by atoms of a set SeqNumber = {(N0), (N1), …}, and
ordered by a relation precedes, which contains the tuple (N0, N1)
when sequence number N0 comes before sequence number N1.

Example. The book atoms in the model of section 2.4 were or-
dered B0, B1, … with B0 representing the value of the book initially,
B1 the value after one step, and so on. The ordering was imposed
by importing a library module that includes a relation next map-
ping B0 to B1, B1 to B2, etc.

�0 logic

Example. Image-editing programs such as Adobe Photoshop al-
low you to apply color transformations to images. To explore the
particular properties of one transformation, one would need a de-
tailed model of colors and transformation functions. But to ex-
plore the abstractions underlying such a scheme, application of
transformations to partial image selections, combining transfor-
mations with layers, undoing and redoing transformations, and so
on, it may be sufficient to take a more abstract view, in which an
image is just a mapping from pixel locations to RGB values, and a
color transformation is a function from RGB values to RGB values.
A relation

transform = {(RGB0, RGB1), (RGB1, RGB0)}

might model the transformation that exchanges the RGB values RGB0
and RGB1.

Discussion

Are the names of the atoms significant?

No. Atom names never appear in models; they’re only used to describe
instances produced by simulation or checking. The Alloy Analyzer lets
you assign your own names to the atoms of each set, but by default uses
the full name of the set. So the atoms of Book will be Book0, Book1, and so
on, rather than B0, B1, and so on.

What does an expression such as {(N0, D0), (N1, D1)} mean?

It’s an expression in the language of traditional mathematics. In this
case, it denotes the set consisting of two tuples, the first tuple having N0
as its first element and D0 as its second element, and the second tuple
having N1 as its first element and D1 as its second element. The terms N0,
N1, D0, and D1 are names for atoms. None of this belongs to the logic it-
self; I’m using it just to explain the meaning of the fundamental notions.
In Alloy, you can’t refer to atoms explicitly at all. You could, however,
declare scalar variables N0, N1, D0, and D1, and then, as we shall see, this
relation could be denoted by the expression N0 -> D0 + N1 -> D1.

Why the extra parentheses in a set expression such as {(N0)}?

In Alloy, all structures are relations, and a set is simply a relation all of
whose tuples contain only one element. The set {N0} would be modeled
as this relation in Alloy; it cannot be represented directly. Because this
kind of expression never appears in a model, the extra syntax of the

logic �1

parentheses is not inconvenient. In fact, on the contrary, the unification
of sets and relations makes the syntax simpler, since there is no need to
convert between sets and relations, or between scalars and sets.

Can relations contain relations?

No. Our relations are flat, or first order, meaning that entries are always
atoms, and never themselves relations. Take the relation addr, from the
example of section 3.2.2, which we used to model the idea that address
books contain name/address mappings. In our flat representation, the
relation’s value was a ternary relation associating books, names and ad-
dresses:

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N1, D2), (B1, N2, D2)}

More conventionally, this might be represented as a function from ad-
dress books to a function from names to sets of addresses:

addrC =
 {(B0, {(N0, {D0}), (N1, {D1, D2})}),
 (B1, {(N1, {D2}), (N2, {D2})})}

The relation addrC is not directly representable in Alloy. We’ll see later
in this chapter (in subsection 3.4.3) that the name/address mapping for
book b, which would conventionally be written addrC(b), can be written
b.addr in Alloy.

Why not admit higher-order relations?

The restriction to flat relations makes the logic more tractable for analy-
sis. Flat relations, as the relational database community has discovered,
are expressive enough for almost all applications, and their simplicity
and uniformity is appealing. The lack of symmetry in addrC (above), for
example, means that it cannot be accessed from the right as easily as
from the left. The expression addr.a denotes the mapping from address
books to the names they use for address a, and addr.n.Addr denotes the
set of address books that have an entry for name n; for addrC, both would
require a more complex construction.

Is there a loss of expressive power in the restriction to flat relations?

Yes, there is, but it can usually be worked around. Almost always, a situ-
ation that seems to call for a higher-order relation can be reformulated
without one. Suppose we’re modeling the prerequisite structure of a
university course catalog, in which each course has a set of prerequisites,
and, for admission to a course, a student is required to have taken all the

�� logic

courses in at least one of the course’s prerequisites. In a higher-order
setting, this structure could be represented as a relation from courses
to sets of courses. For example, the relation

prereqC = {(C3, {(C0), (C1)}), (C3, {(C0), (C2)})}

would indicate that a student wanting to take course C3 must have taken
either C0 and C1, or C0 and C2. Simply flattening this relation to

prereqBad = {(C3, C0), (C3, C1), (C3, C2)}

won’t work, because it loses the grouping of the prerequisites. The so-
lution is to introduce a new set of atoms to model prerequisites, along
with a relation mapping prerequisites to their constituent courses:

prereq = {(C3, P0), (C3, P1)}
courses = {(P0, C0), (P0, C1), (P1, C0), (P1, C2)}

This retains the essential structure: course C3 now has two possible
prerequisites, P0, consisting of course C0 and C1, and P1, consisting of
course C0 and C2.

There is another respect, by the way, in which a higher-order relation is
more expressive than a flat relation. A function that maps atoms drawn
from a set A to sets of atoms drawn from a set B can include a map-
ping from an atom to the empty set, thus distinguishing an atom be-
ing mapped to nothing and an atom not being mapped at all. A binary
relation from atoms in A to atoms in B cannot make such a distinction.
Instead, you’d declare an additional set: the address books with empty
mappings, for example, would belong to the set Book but would not be
mapped by addr.

Why not include composite objects as a language construct?

Traditional specification languages such as VDM and Z allow you to
model composite objects directly with composite mathematical objects.
For example, an address book might be represented not as an atom,
but as a relation from names to addresses. A relationship between an
address book and another object would then be expressible only with
a higher-order relation. The reasons for excluding composite objects
in their own right are thus the reasons we’ve already given for prefer-
ring flat relations. Also, mathematical objects have no identity distinct
from their value; if you want to talk about the values of different address
books at different times, you need to introduce atoms representing the
identities of the books anyway.

logic ��

Can you really work without interpreted atoms such as the integers?

Yes, almost all the time. And it turns out that on most occasions that
you might think you need integers, it’s cleaner and more abstract to use
atoms of an uninterpreted type with some relations to give whatever
interpretation is needed. Alloy does actually support integers, albeit in
a limited way. You can take the size of a relation, add, subtract, and
compare integers (but not multiply or divide them). The treatment of
integers is explained in sections 3.7 and 4.8.

Can relations have infinite size and arity?

Nothing in our logic precludes relations of infinite size, but for all the
models we’ll look at, it’s sufficient to consider only finite instantiations.
A relation must have a finite arity, though.

Are multirelations useful in practice?

Yes, because relations are flat rather than nested, arities greater than two
are very common. To model execution traces of a system whose state
involves relationships will require ternary relations: two columns for
the relationship at a given time, and an additional column for the time.
Relations of arity four are less common; as an example, the states of a
network routing table might relate the host at which the table resides
(1), a second host that is the desired destination of an incoming packet
(2), the port to be used in forwarding the message (3), and the time at
which this table entry is present (4). Arities of five or greater are rare.

Why don’t the columns in a relation have names?

If you’re more familiar with relational databases than relational logic,
you may find it odd that the columns of a relation are identified by their
position rather than by name. In modeling, relations tend to have much
smaller arities than relations in a database; it’s rare for a relation to have
more than four columns. Moreover, in the constraints of a model, joins
tend to be applied to a relation on particular columns, in a particular
order. By arranging the columns carefully, almost all joins can be made
to be on the first or last column of a relation. Consequently, treating col-
umns positionally rather than by name is more convenient, and results
in more succinct and natural expressions.

volume1.indd 43 12/8/05 9:29:40 AM

�� logic

If the order of columns matters, how do you represent an unordered re-
lationship?

An unordered relationship can be represented in different ways. The
simplest way is to use a relation r (ordered, as always), and add a con-
straint r = ~r that makes it symmetric—the same forward and backward.
For example, spouse = ~spouse says that if you’re my spouse, I’m your
spouse. This trick may be philosophically dubious, but in practice it’s
fine, and much easier than introducing additional constructs.

Is the idea of treating scalars and sets as relations new?

No. It goes back to Tarski’s foundational work on the relational calculus
[70]. All of Tarski’s relations were binary, however, so his encoding was
a bit less natural: a set was a relation that mapped each atom in the set
to every possible atom. Rick Hehner’s “bunches” [27] have a similar fla-
vor, but unify scalars and sets in a new kind of algebraic structure.

Isn’t it confusing to treat scalars as sets?

On first encountering this idea, some people are disturbed. After all,
isn’t the distinction between a set and its elements the very founda-
tion of set theory? In a first-order logic, however, in which sets of sets
are never used, no confusion arises. And in practice, breaking down
the distinction between sets and scalars brings a nice uniformity. When
writing a navigation expression, you don’t have to worry about whether
an expression represents a set or a scalar. The grandfathers of person p,
for example, can be written p.parents.father, in which the dot operator is
applied to a scalar such as p in exactly the same way it is applied to a set
such as p.parents.

Combined with the treatment of partiality, this allows us to write p’s
mother-in-law as p.wife.mother + p.husband.mother (or equivalently as
p.(wife + husband).mother), without worrying that if p has no wife the ex-
pression p.wife may be undefined.

Which terms are Alloy specific, and which are standard in logic and set
theory?

All the terms introduced so far are standard, with the exception of mul-
tirelation (for a relation with more than two columns) and option (for a
set that is empty or singleton).

logic �5

Is Alloy’s option like the option of the ML programming language?

Rather than treating options as singleton or empty sets, most model-
ing and programming languages use a union type. ML’s option is such
a union: a tagged value that is either a scalar or some special null value.
For modeling, this is less convenient, because the tagging wraps the
value and changes its type. Consider, for example, a model of an email
application with a scalar userAddress representing the user’s address, and
an option replyAddress representing a separate address to be used in the

“reply-to” field of messages. In Alloy, these variables have the same type,
and can be combined and compared with set operators;

userAddress = replyAddress

for example, is true if replyAddress is defined and equal to userAddress. In
the traditional approach, the two variables have distinct types, and can-
not be compared without projecting replyAddress first.

So there aren’t really any scalars in Alloy?

Not in the standard sense. Whereas a conventional language would
distinguish a (a scalar), {a} (a singleton set containing a scalar), (a) (a
tuple), and {(a)} (a relation), Alloy treats them all as the same, and rep-
resents them as {(a)}.

Why is the term “option” useful? Isn’t every option either a scalar or emp-
ty?

The term is used to describe a variable whose value is unknown, rather
than a particular value, in the same way that you might refer to a “ve-
hicle” without knowing whether it’s a car or a truck. By definition, every
scalar is also an option; both are sets; and every set is a relation. But,
typically, you want to use the term that tells you most about a relation,
so you don’t call it a “relation” if you know it’s a set, or a “set” if you know
it’s a scalar.

�� logic

3.2.4	 Functional	and	Injective	Relations
A binary relation that maps each atom to at most one other atom is said
to be functional, and is called a function. A binary relation that maps at
most one atom to each atom is injective.

Example. Here are four possible values of a relation mapping
names to addresses, illustrated in figs. 3.3–3.6:

address1 = {(N0, D0), (N1, D1), (N2, D1)}
address2 = {(N0, D0), (N1, D1), (N1, D2)}
address3 = {(N0, D0), (N1, D1), (N2, D2)}
address4 = {(N0, D1), (N1, D1), (N1, D2)}

The first is functional but not injective; the second is injective but
not functional; the third is both functional and injective; and the
fourth is neither. An empty binary relation is functional and injec-
tive.

Discussion

Where does the idea of treating functions as relations come from?

The idea of treating functions as relations has been pioneered in mod-
eling by the specification language Z [65]. Its use goes back at least to
Zermelo and Fraenkel’s set theory (hence the “Z” in Z). Alloy is actually
more minimalist than Z. Although Z doesn’t distinguish functions and
relations, it does distinguish scalars, sets, and tuples from each other. In
Alloy, everything’s a relation.

fig. 3.3 Functional
but not injective.

N0

N1

N2

D0

D1

D2

N0

N1

N2

D0

D1

D2

N0

N1

N2

D0

D1

D2

N0

N1

N2

D0

D1

D2

fig. 3.4 Injective
but not functional.

fig. 3.5 Functional
and injective.

fig. 3.6 Neither
functional nor

injective.

logic ��

Is it standard to treat functions as relations?

No. Most other modeling languages distinguish functions from other
relations. In UML’s constraint language OCL [53], for example, navigat-
ing through an association can either produce an empty set or an unde-
fined value, depending on the multiplicity of the association.

Is an injective relation an injection?

The term “injection” is traditionally applied only to a relation that is
both functional and injective, so I try to avoid using it. Unfortunately,
there isn’t a common name for an injective relation.

3.2.5	 Domain	and	Range
The domain of a relation is the set of atoms in its first column; the range
is the set in the last column.

Example. A relation with its domain and range:

address = {(N0, D0), (N1, D1), (N2, D1)}
domain (address) = {(N0), (N1), (N2)}
range (address) = {(D0), (D1)}

A relation of higher arity has a domain and range too.

Example.

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)}
domain (addr) = {(B0), (B1)}
range (addr) = {(D0), (D1), (D2)}

Discussion

Are domain and range special operators?

No, but they are predefined for binary relations as functions in the Alloy
library. They’re easily expressed with the other operators (introduced
later): the domain and range of a binary relation r are r.univ and univ.r
respectively.

Are the domain and range functions commonly used?

They are used less frequently than in languages such as Z, because of
Alloy’s rich language of declarations (see section 3.6), which encourages
you to introduce sets that explicitly represent a relation’s domain and
range.

�� logic

What about total and partial functions?

The term “domain” is often used to refer to the set of atoms that might
be mapped by a relation or function. In that case, a total function is one
that maps every member of its domain. This notion requires that a set
be associated implicitly with a relation. (Alternatively, a total function
relation might be one that maps every atom in the universe, but this is
a very rare case.) Our logic is simpler than this: the relation is just its
tuples, and the domain and range of the relation are determined by this
set of tuples. I do occasionally use the terms “total” and “partial” infor-
mally, referring to whether a relation is total or partial over the set that
appears in its declaration.

3.3	 Snapshots

Particular values of sets and binary relations can be shown graphically
in a snapshot. You create a node for each atom, and draw an arc for each
tuple connecting the nodes corresponding to the first and second atoms
in the tuple. To show several relations, you label each tuple arc with the
relation it belongs to. Sets can be shown in two ways: either by an extra
label in a node naming a set it belongs to, or by drawing a labelled con-
tour around some nodes.

Example. A multilevel address book modeled by a relation address
mapping names to targets, where targets are names or addresses,
and names are aliases or groups, might be represented textually
by

address = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
Target = {(G0), (A0), (A1), (D0), (D1), (D2)}
Name = {(G0), (A0), (A1)}
Alias = {(A0), (A1)}
Group = {(G0)}
Addr = {(D0), (D1), (D2)}

or graphically by the snapshot of fig. 3.7.

Multirelations can be shown as graphs by projecting out one or more
columns. Projection takes two steps. Suppose just one column is being
projected out. In the first step, the column is moved to the front, so
that it becomes the first column of the relation; each tuple is permuted
accordingly. In the second step, the relation is split into an indexed col-
lection of relations. For each atom that appears in the first column, we
associate the relation consisting of all those tuples that begin with that

logic ��

atom, but with the atom removed. For an atom a and relation r, this new
relation is given by the expression a.r (using the join operator defined
in subsection 3.4.3).

Example. A world of several multilevel address books modeled by
the relation addr mapping books to names to targets, where targets
are names or addresses, and names are aliases or groups, might be
represented textually by

addr = {(B0, G0, A0), (B0, G0, A1), (B0, A0, D0), (B0, A1, D1),
 (B1, A0, D1)}
Book = {(B0), (B1)}

(and with appropriate assignments to the other sets as in the pre-
vious example.) Its projection onto the first column gives

B0.addr = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
B1.addr = {(A0, D1)}

which could be shown visually as two graphs, the one for B0 being
that of fig. 3.7 (but with addr for address).

Examples. All of the diagrams generated by the Alloy Analyzer in
chapter 2 are snapshots. The analyzer lets you customize how in-
stances are displayed; you can select a set and project all relations
in the instance onto the columns associated with that set. In this
case, a projection using the set Book was chosen. Under projection,

fig. 3.7 A sample snapshot.

G0

address
A0

A1

D0

D1address

address

address

D2

Target

Name

Group

Alias Addr

50 logic

a binary relation becomes a set; this is why, for example, the rela-
tion names from books to the names they map appears as a label in
fig. 2.13. The analyzer can show sets only by labeling nodes; it can’t
currently draw contours.

3.4	 Operators

The language of arithmetic consists of constants (such as 0, 1, 2 …) and
operators (such as +, -, ×). Likewise, the language of relations has its own
constants and operators.

Operators fall into two categories. For the set operators, the tuple struc-
ture of a relation is irrelevant; the tuples might as well be regarded as at-
oms. For the relational operators, the tuple structure is essential: these
are the operators that make relations powerful.

3.4.1	 Constants
There are three constants:

none empty set
univ universal set
iden identity

Note that none and univ, representing the set containing no atom and
every atom respectively, are unary. To denote the empty binary rela-
tion, you write none -> none, and for the universal relation that maps ev-
ery atom to every atom, univ -> univ (using the arrow operator defined in
subsection 3.4.3). The identity relation is binary, and contains a tuple
relating every atom to itself.

Example. For a model in which there are two sets

Name = {(N0), (N1), (N2)}
Addr = {(D0), (D1)}

the constants have the values

none = {}
univ = {(N0), (N1), (N2), (D0), (D1)}
iden = {(N0, N0), (N1, N1), (N2, N2), (D0, D0), (D1, D1)}

Note that iden relates all the atoms of the universe to themselves, not
just the atoms of some subset.

logic 51

Discussion

Are these constants implicitly parameterized by type?

No. In some modeling languages, these constants are actually indexed
collections of constants, and the appropriate instance must be selected
by some means, either implicit or explicit. In Z, for example, the identity
relation takes an explicit type parameter, and the empty relation is poly-
morphic. In Alloy, these constants are just three simple constants, with
the values of iden and univ determined by the values of all the declared
sets. Consequently, it’s rare to use iden and univ without qualification;
you’ll usually write s <: iden, for example, to give the identity relation on
the set s (using the restriction operator defined in subsection 3.4.3.6). If
you forget to do this, you may get some surprises. For example, iden in
r not only says that the relation r is reflexive but also that it maps every
atom in the universe, which is likely to be inconsistent with r’s declara-
tion.

Are these constants useful?

The identity relation is essential to the relational calculus style. For ex-
ample, the constraint no ^r & iden says that the relation r is acyclic. A
common use for the empty relation is for instantiating predicates (see
subsection 4.5.2) that take sets as arguments, as in the frame conditions
of section 6.2.

Aside from these cases, the constants are rarely used. To say a relation
is empty or non-empty, it’s better to use the expression quantifiers (ex-
plained in subsection 3.5.2) than the constant none, writing no r, for ex-
ample, rather than r = none. Universal relations are usually limited to
particular sets, so instead, you’d write Name -> Addr, for example, for the
relation that maps all names to all addresses.

Do the constants add any expressive power?

A subtle point for those interested in language design issues. You might
think that these constants could be omitted, and defined instead in a
library module. The universal relation can’t be defined in this way, since
all quantifiers and comprehensions require explicit bounds. You could
define the universal relation explicitly as the union of all the free set
variables (the top-level signatures; see subsection 4.2.1), but then you’d
have to change the definition whenever a new set is introduced.

The other two constants can in fact be defined. The identity relation,
for example, can be expressed as the comprehension {x, y: univ | x = y}.

5� logic

But they were included because it’s more convenient to use constants
than library functions, and because the analyzer can exploit their spe-
cial properties more readily this way.

3.4.2	 Set	Operators										
The set operators are

+ union
& intersection
- difference
in subset
= equality

and here is what they mean:

· a tuple is in p + q when it is in p or in q (or both);
· a tuple is in p & q when it is in p and in q;
· a tuple is in p - q when it is in p but not in q;
· p in q is true when every tuple of p is also a tuple of q;
· p = q is true when p and q have the same tuples.

These operators can be applied to any pair of relations so long as they
have the same arity. Because scalars are just singleton sets, the braces
used to form sets from scalars in traditional mathematical notation
aren’t needed. For scalars a and b, for example, the expression a + b de-
notes the set containing both a and b.

Examples. Given the following sets

Name = {(G0), (A0), (A1)}
Alias = {(A0), (A1)}
Group = {(G0)}
RecentlyUsed = {(G0), (A1)}

· Alias + Group = {(G0), (A0), (A1)}
 gives the set of atoms that are aliases or groups;

· Alias & RecentlyUsed = {(A1)}
 gives the set of atoms that are aliases and have been recently

used;

· Name - RecentlyUsed = {(A0)}
 gives the set of atoms that are names but have not been recently

used;

logic 5�

· RecentlyUsed in Alias
 says that every thing that has been recently used is an alias, and is

false, because of the tuple {(G0)}, which is recently used but not
an alias;

· RecentlyUsed in Name
 says that every thing that has been recently used is a name, and is

true;

· Name = Group + Alias
 says that every name is a group or an alias, and is true.

Examples. Given the following relations, representing portions of
an address book cached in memory and stored on disk,

cacheAddr = {(A0, D0), (A1, D1)}
diskAddr = {(A0, D0), (A1, D2)}

· cacheAddr + diskAddr = {(A0, D0), (A1, D1), (A1, D2)}
 is the relation that maps a name to an address if it’s mapped in

the cache or on disk;

· cacheAddr & diskAddr = {(A0, D0)}
 is the relation that maps a name to an address if it’s mapped in

the cache and on disk;

· cacheAddr - diskAddr = {(A1, D1)}
 is the relation that maps a name to an address if it’s mapped in

cache but not on disk;

· none in diskAddr
 says that the empty relation is contained in the relation diskAddr,

and is true, irrespective of the value of diskAddr;

· cacheAddr = diskAddr
 says that the mappings in the cache are the same as those on disk,

and is false, because of the tuple (A1, D1) in cacheAddr and (A1, D2)
in diskAddr.

Examples. Given the following scalars,

myName = {(N0)}
yourName = {(N1)}

· myName + yourName = {(N0), (N1)}
 is the set of atoms that are either my name or your name;

· myName = yourName
 says that my name is the same as your name, and is false;

5� logic

· yourName in none
 says that there is no name that is your name, and is false also.

Discussion

Is the set operator equals sign the one you used before?

No. Statements like cacheAddr = {(A0, D0), (A1, D1)} are used in this
chapter alone to explain the meaning of the logic, and always have an
Alloy expression on the left, and a description of a relation (in conven-
tional mathematical notation) on the right. In this case, the equals sign
is a special definitional symbol, and is not symmetric: it would make no
sense to write {(A0, D0), (A1, D1)} = cacheAddr.

A statement like Name = Group + Alias, on the other hand, is a constraint
in the Alloy logic, and the equals sign is the set operator defined in this
section. This equality notion is symmetric, and the statement is equiva-
lent to Group + Alias = Name. I could have used a different symbol for the
definitional equals, but that seemed a bit pedantic.

Is equality structural equality or reference equality?

A relation has no identity distinct from its value, so this distinction,
based on programming notions, doesn’t make sense here. If two rela-
tions have the same set of tuples, they aren’t two relations: they’re just
one and the same relation. An atom is nothing but its identity; two at-
oms are equal when they are the same atom. If you have a set of atoms
that represent composite objects (using some relations to map the at-
oms to their contents), you can define any notion of structural equality
you want explicitly, by introducing a new relation. (And for those C++
programmers out there: no, you can’t redefine the equals symbol in Al-
loy.)

Aren’t there type constraints on these operators?

Not the conventional ones. In some simply typed languages, such as Z,
the two arguments to a set operator must have the same type. So an ex-
pression such as Book + Addr, representing the union of the set of address
books and the set of addresses, would be illegal. In Alloy, such expres-
sions are not in general illegal, and can be put to good use. In modeling
the value of a Java variable v of type C, for example, you might introduce
a singleton set Null containing the null reference, and then declare

v: C + Null

logic 55

to say that v is either null or a reference in the set C. In type systems that
don’t allow unions of this form, it can be hard to express this constraint
with a declaration, and it may be necessary to weaken it to allow a refer-
ence to any class, or to distinguish null values of different types.

Alloy does impose some constraints, though. The arities of the argu-
ments must match, so an expression like addr + Name is illegal. And if
it can be shown, from declarations of variables alone, that an expres-
sion can be replaced by an empty relation without affecting the value
of the constraint in which it appears, that expression is deemed to be
ill-formed, even though its meaning is clear. For example, both Name
& Book and Name & (Alias + Book) would be ill-typed because the occur-
rences of Book in both (and also Name in the first) could be replaced by
none without affecting their meaning.

Why the keyword in?

The keyword in was carefully chosen for its ambiguity. Because scalars
are represented as singleton sets, in will sometimes denote membership
(between a scalar and a set, or a tuple and a relation), conventionally
written ∈, and sometimes subset (between two sets or two relations),
conventionally written ⊆.

3.4.3	 Relational	Operators
The relational operators are

-> arrow (product)
. dot (join)
[] box (join)
~ transpose
^ transitive closure
* reflexive-transitive closure
<: domain restriction
:> range restriction
++ override

3.4.3.1	 Arrow	Product			

The arrow product (or just product) p -> q of two relations p and q is the
relation you get by taking every combination of a tuple from p and a
tuple from q and concatenating them.

When p and q are sets, p -> q is a binary relation. If one of p or q has arity
of two or more, then p -> q will be a multirelation.

5� logic

When p and q are tuples, p -> q will also be a tuple. In particular, when p
and q are scalars, p -> q is a pair.

Example. Given the following names, addresses, and address book
mapping

n = {(N0)}
n’ = {(N1)}
d = {(D0)}
d’ = {(D1)}
address = {(N0, D0), (N1, D1)}

we have

· n -> d = {(N0, D0)}
 is the tuple mapping name n to address d;

· address = n -> d + n’ -> d’
 says that address maps n to d and n’ to d’ (and maps nothing else),

and is true.

Example. Given the following sets of names, addresses, and ad-
dress books

Name = {(N0), (N1)}
Addr = {(D0), (D1)}
Book = {(B0)}

we have

· Name -> Addr = {(N0, D0), (N0, D1), (N1, D0), (N1, D1)}
 is the relation mapping all names to all addresses;

· Book -> Name -> Addr =
 {(B0, N0, D0), (B0, N0, D1), (B0, N1, D0), (B0, N1, D1)}

 is the relation associating books, names and addresses in all pos-
sible ways.

Example. Given the following address book mappings and address
books

address = {(N0, D0), (N1, D1)}
address’ = {(N2, D2)}
b = {(B0)}
b’ = {(B1)}

b -> address + b’ -> address’ = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)}
is the relation that associates book b with the name-address map-
ping address, and b’ with address’.

logic 5�

3.4.3.2	 Dot	Join			

The quintessential relational operator is composition, or join. Let’s see
how to combine tuples before we combine relations. To join two tuples

s1 -> … -> sm

t1 -> … -> tn

you first check whether the last atom of the first tuple (that is, sm) match-
es the first atom of the second tuple (that is, t1). If not, the result is
empty—there is no join. If so, it’s the tuple that starts with the atoms of
the first tuple, and finishes with the atoms of the second, omitting just
the matching atom:

s1 ->… -> sm-1 -> t2 -> … -> tn

Examples. Here are some example of joins of tuples:

{(N0, A0)} . {(A0, D0)} = {(N0, D0)}
{(N0, D0)} . {(N0, D0)} = {}
{(N0, D0)} . {(D1)} = {}
{(N0)} . {(N0, D0)} = {(D0)}
{(N0, D0)} . {(D0)} = {(N0)}
{(B0)} . {(B0, N0, D0)} = {(N0, D0)}

The dot join (or just join) p.q of relations p and q is the relation you get by
taking every combination of a tuple in p and a tuple in q, and including
their join, if it exists. The relations p and q may have any arity, so long
as they aren’t both unary (since that would result in a relation with zero
arity).

When p and q are binary relations, p.q is their standard relational com-
position.

Example. Given a relation to that maps a message to the names it’s
intended to be sent to, and a relation address that maps names to
addresses

to = {(M0, N0), (M0, N2), (M1, N2), (M2, N3)}
address = {(N0, D0), (N0, D1), (N1, D1), (N1, D2), (N2, D3), (N4, D3)}

the relation to.address maps a message to the addresses it should
be sent to:

to.address = {(M0, D0), (M0, D1), (M0, D3), (M1, D3)}

and is illustrated in fig. 3.8 overleaf.

 logic

If p and q are functions, p.q will be a function too, and in this case dot is
equivalent to functional composition.

Examples. Given a function address mapping names to addresses,
a function user mapping an address to its username portion, and a
function host mapping an address to its hostname portion

address = {(N0, D0), (N1, D0), (N2, D2)}
user = {(D0, U0), (D1, U1), (D2, U2)}
host = {(D0, H0), (D1, H1), (D2, H2)}

the expressions address.user and address.host are the functions that
map a name to the corresponding user and host respectively:

fig. 3.8 A snapshot illustrating a dot join of two relations: feint
arcs for the relation to; dashed arcs for address; and solid arcs for

their join to.address.

M0 N0

N1

D0

D1M1

M2 N2

N3

N4

D2

D3

address

to

to.address

volume1.indd 58 12/8/05 9:29:43 AM

logic 5�

address.user = {(N0, U0), (N1, U0), (N2, U2)}
address.host = {(N0, H0), (N1, H0), (N2, H2)}

When s is a set, and r is a binary relation, s.r is the image of the set s un-
der the relation r; this image is the set you get if you follow the relation
r for each member of s, and collect together in a single set all the sets
that result. This is perhaps the most common use of dot, and is called
navigation in object modeling parlance.

When x is a scalar, and r is a binary relation, x.r is the set of atoms that x
maps to. For a function f and a scalar x in its domain, x.f is the scalar that
f maps x to. So in this case, join is like function application, but note that
x.f will be the empty set when x is not in the domain of f. Traditionally, a
function applied outside its domain gives no result at all, and an expres-
sion involving such an application may therefore be undefined. In our
logic, there are no undefined expressions.

You can navigate in both directions; s.r is the image of the set s going
forward through r, and r.s is the image going backward.

Example. Given a multilevel address book represented by a rela-
tion addr, and sets of aliases, groups, and addresses

address = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
Alias = {(A0), (A1)}
Group = {(G0)}
Addr = {(D0), (D1), (D2)}

we have the following expressions:

· Alias.address = {(D0), (D1)}
 the set of results obtained by looking up any alias in the address

book;

· Group.address = {(A0), (A1)}
 the set of results obtained by looking up any group in the address

book;

· address.Group = {}
 the set of names that when looked up in the address book yield

groups;

· address.Alias = {(G0)}
 the set of names that when looked up in the address book yield

aliases.

�0 logic

Joins of relations of higher arity are common too, especially the forms
x.q and q.x, where x is a scalar, and q is a multirelation.

Example. Given a particular address book b, and a ternary relation
addr associating books, names, and addresses

b = {(B0)}
addr = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)}

the expression b.addr is the name-address mapping for book b:

b.addr = {(N0, D0), (N1, D1)}

Example. Given a time t, and a ternary relation addr that contains
the triple n -> a -> t when name n maps to address a at time t

t = {(T1)}
addr = {(N0, D0, T0), (N0, D1, T1), (N1, D2, T0), (N1, D2, T1)}

the expression addr.t is the name-address mapping at time t:

addr.t = {(N0, D1), (N1, D2)}

Example. Given a relation addr of arity four that contains the tuple
b -> n -> a -> t when book b maps name n to address a at time t, and a
book b and a time t

addr = {(B0, N0, D0, T0), (B0, N0, D1, T1), (B0, N1, D2, T0),
 (B0, N1, D2, T1), (B1, N2, D3, T0), (B1, N2, D4, T1)}
t = {(T1)}
b = {(B0)}

the expression b.addr.t is the name-address mapping of book b at
time t:

b.addr.t = {(N0, D1), (N1, D2)}

Note that b.addr.t doesn’t need parentheses to indicate the order in
which the joins are applied. The expressions b.(addr.t) and (b.addr).
t are equivalent: you can project onto a particular book, and then
onto a particular time, or you can first select the time, and then
the book.

Discussion

Is dot join associative?

No. The expressions (a.b).c and a.(b.c) are not always equivalent, be-
cause one may be ill-formed and the other well-formed. Because of the

logic �1

dropped column, the arity of a join is always one less than the sum of
the arities of its arguments. If s and t are unary, and r is ternary, for
example, the expression t.r will be binary, and s.(t.r) will be unary. The
expression s.t, however, would have zero arity, and is thus illegal, so (s.t).
r is likewise illegal, and is not equivalent to s.(t.r).

But if two ways to parenthesize a join expression are both well formed—
as in the example just above—they will be equivalent. So a mistake in
placing parentheses won’t cause a model to have an unintended mean-
ing, and you can ignore the issue unless the type checker complains.
(Thanks to Somesh Jha for pointing this out.)

Is dot join the same as a database’s join?

Not quite. In relational database query languages, the join operator
matches columns by name rather than position, and the matching col-
umn is not dropped. You can define a more database-like join as follows.
Let id3 be the ternary identity relation

id3 = {a, b, c: univ | a = b and b = c}

and define

p ⊙ q = p.id3.q

Then p ⊙ q concatenates matching tuples like dot join, but retains the
matching elements like database join. It also provides a nice shorthand
for restrictions (introduced in section 3.4.3.6): s <: r and r :> s can be
written s ⊙ r and r ⊙ s. (Thanks to Butler Lampson for this insight.)

3.4.3.3	 Box	Join		

The box operator [] is semantically identical to join, but takes its argu-
ments in a different order, and has different precedence. The expres-
sion

e1 [e2]

has the same meaning as

e2.e1

Example. Given a relation address from names to addresses, and a
scalar n representing a name, the expression address[n] is equiva-
lent to n.address, and denotes the set of addresses that n is mapped
to.

Dot binds more tightly than box, however, so

�� logic

a.b.c [d]

is short for

d.(a.b.c)

The rationale for this operator is that it allows an syntactic distinction to
be made between dereferencing a field of a composite object (with dot
join) and performing an indexed lookup (with box join), even though
there is no semantic distinction between the two.

Example. Given a ternary relation addr associating books, names,
and addresses, the expression b.addr[n] denotes the set of addresses
associated with name n in book b, and is equivalent to n.(b.addr).

The choice of the box is motivated by analogy to array notation.

Example. In a model of a class C that has an array-valued field f, the
result of dereferencing x with field f, and then retrieving the object
at index i can be denoted x.f[i], just as in Java, or equivalently as
i.(x.f).

3.4.3.4	 Transpose	

The transpose ~r of a binary relation r takes its mirror image, forming a
new relation by reversing the order of atoms in each tuple.

Example. Given a relation representing an address book that maps
names to the addresses they stand for

address = {(N0, D0), (N1, D0), (N2, D2)}

its transpose is the relation that maps each address to the names
that stand for it:

~address = {(D0, N0), (D0, N1), (D2, N2)}

A binary relation r is symmetric if, whenever it contains the tuple a -> b,
it also contains the tuple b -> a, or more succinctly as a relational con-
straint:

~r in r

Taking the transpose of a symmetric relation has no effect. The symmet-
ric closure of r is the smallest relation that contains r and is symmetric,
and is equal to r + ~r.

Examples. A relation connects mapping hosts to the neighbors they
are connected to in a network would be symmetric if the connec-

logic ��

tions were bidirectional. The transpose of a relation wife mapping
men to their wives is the relation husband mapping women to their
husbands, and its symmetric closure is the relation spouse map-
ping each person to his or her spouse.

Some useful facts about transpose:

· s.~r is equal to r.s, and is the image of the set s navigating backward
through the relation r;

· r.~r is the relation that associates two atoms in the domain of the rela-
tion r when they map to a common element; when r is a function, r.~r
is the equivalence relation that equates atoms with the same image.

· r.~r in iden therefore says that r is injective, and ~r.r in iden says that r
is functional.

Example. If mother is the relation that maps a child to its mother,
the expression mother.~mother is the sibling relation that maps a
child to its siblings (and also to itself).

Discussion

Why did you write ~r in r to say that r is symmetric?

You might have expected ~r = r instead. The two conditions are equiva-
lent, but I prefer the first because (1) it matches the informal statement
more closely; (2) it follows the pattern of the conditions for reflexivity
and transitivity; and (3) it’s a good habit from an analysis perspective to
write constraints in their weakest form. Admittedly, this is a bit pedan-
tic, and it’s not unreasonable to expect a definition of symmetry to be
symmetric.

3.4.3.5	 Transitive	Closure		

A binary relation is transitive if, whenever it contains the tuples
a -> b and b -> c, it also contains a -> c, or more succinctly as a relational
constraint:

r.r in r

The transitive closure ̂ r of a binary relation r, or just the closure for short,
is the smallest relation that contains r and is transitive. You can com-
pute the closure by taking the relation, adding the join of the relation
with itself, then adding the join of the relation with that, and so on:

^r = r + r.r + r.r.r + …

�� logic

Example. A relation address representing an address book with
multiple levels (which maps aliases and groups to groups, aliases,
and addresses), and its transitive closure:

address =
 {(G0, A0), (G0, G1), (A0, D0), (G1, D0), (G1, A1), (A1, D1), (A2, D2)}

^address =
 {(G0, A0), (G0, G1), (A0, D0), (G1, D0), (G1, A1), (A1, D1), (A2, D2),
 (G0, D0), (G0, A1), (G1, D1),
 (G0, D1)}

I’ve broken the transitive closure into lines to indicate the contri-
bution from the relation itself (on the first line), from its square
address.address (on the second), and from its cube address.address.
address (on the third). Fig. 3.9 shows the closure graphically.

Viewing a relation as a graph, the transitive closure represents reach-
ability. Since the relation itself represents the paths that are one step
long, its square the paths that are two steps long, and so on, the closure

fig. 3.9 A snapshot illustrating transitive closure of a relation: the
feint arcs represent the relation address; the solid arcs are those that

are added to it to form its closure ^address.

G0 A0

G1

D0

A1

A2 D2

address

^address - address

D1

logic �5

relates one atom to another when they are connected by a path of any
length (except for zero).

A binary relation r is reflexive if it contains the tuple a -> a for every atom
a, or as a relational constraint,

iden in r

The reflexive-transitive closure *r is the smallest relation that contains r
and is both transitive and reflexive, and is obtained by adding the iden-
tity relation to the transitive closure:

*r = ^r + iden

From the graphical viewpoint, the reflexive-transitive closure relates
one atom to another when they are connected by a path of any length,
including zero.

Because iden relates every atom in the universe to itself (as explained in
section 3.4.1 and the discussion that follows it), the reflexive-transitive
closure will do so as well.

Discussion

Why does the reflexive-transitive closure associate “irrelevant” atoms?

Suppose a model has a set Book of books, a set Name of names, a set Addr
of addresses, a book b, and a relation addr mapping books to their con-
tents, with the following values:

Book = {(B0), (B1)}
Name = {(N0), (N1)}
Addr = {(D0), (D1)}
b = {(B0)}
addr = {(B0, N0, N1), (B0, N1, D0), (B1, N1, D1)}

Then the universe will contain all the atoms

univ = {(B0), (B1), (N0), (N1), (D0), (D1), (B0), (B1)}

and the identity relation will map each to itself:

iden = {(B0, B0), (B1, B1), (N0, N0), (N1, N1), (D0, D0), (D1, D1)}

The expression ^(b.addr), denoting the direct and indirect mapping of
names in book b to the names and addresses reachable, will map names
to names and addresses:

^(b.addr) = {(N0, N1), (N1, D0), (N0, D0)}

�� logic

The expression *(b.addr) will include the tuples of both these relations.
In addition to tuples such as (N0, N0), which are expected, it will also
includes tuples such as (B0, B0).

Although this seems odd, it follows naturally from the definition of re-
flexive-transitive closure and the identity relation. The alternative would
be to have sets implicitly associated with each relation that represent
the possible members of its domain and range, which would complicate
the logic.

In practice this is not a problem. Closures often appear in navigation
expressions, and the irrelevant self-tuples disappear in the join. For ex-
ample, the names and addresses reachable in zero or more steps from
a set of names friends would be denoted friends.*(b.addr), and would not
include any books, because friends and Book would be disjoint. If you
need to remove the extra tuples explicitly, you can always write s <: *r to
restrict the closure to map only atoms in the set s.

How many iterations can it take to form the closure of a relation?

For a finite universe, transitive closure needs only a finite unwinding,
limited by the length of the longest path in the graph. For some rela-
tions, the transitive closure requires very few unwindings even if the
universe is large. Stanley Milgram’s famous experiment in which he had
residents of Kansas attempt to get letters to residents of Boston via ac-
quaintances showed that it took on average only six steps for a letter to
arrive [52]. If six steps were really enough to connect any two people, it
would mean that the closure of the knows relation is the universal rela-
tion, and that it can be obtained in six unwindings.

3.4.3.6	 Domain	and	Range	Restrictions

The restriction operators are used to filter relations to a given domain
or range. The expression s <: r, formed from a set s and a relation r,
contains those tuples of r that start with an element in s. Similarly, r :> s
contains the tuples of r that end with an element in s.

Restrictions can be applied to relations of any arity of two or more, but
are most often applied to binary relations.

Examples. Given a relation representing a multilevel address book
and sets representing the aliases, groups, and addresses

address = {(G0, A0), (G0, G1), (A0, D0),
 (G1, D0), (G1, A1), (A1, D1), (A2, D2)}

logic ��

Alias = {(A0), (A1), (A2)}
Group = {(G0), (G1)}
Addr = {(D0), (D1), (D2)}

· address :> Addr = {(A0, D0), (G1, D0), (A1, D1), (A2, D2)}
 contains the entries that map names to addresses (and not to

other names);

· address :> Alias = {(G0, A0), (G1, A1)}
 contains the entries that map names to aliases;

· Group <: address = {(G0, A0), (G0, G1), (G1, D0), (G1, A1)}
 contains the entries that map groups.

Applying a restriction to a binary relation is like taking the image of a
set, but without dropping the matching elements. Put more formally, if
r is a binary relation, and s is a set, then

range (s <: r) = s.r
domain (r :> s) = r.s

The identity relation maps every atom in the universe to itself. Often,
what we want instead is a relation that maps every atom in some set s to
itself, which can be written s <: iden.

3.4.3.7	 Override

The override p ++ q of relation p by relation q is like the union, except that
the tuples of q can replace the tuples of p rather than just augmenting
them. Any tuple in p that matches a tuple in q by starting with the same
element is dropped. The relations p and q can have any matching arity
of two or more.

Example. An address book might be represented by two relations,
homeAddress and workAddress, mapping an alias to email addresses
at home and at work:

homeAddress = {(A0, D1), (A1, D2), (A2, D3)}
workAddress = {(A0, D0), (A1, D2)}

The preferred address for an alias, which is the work address if it
exists, and otherwise the home address, is given by

homeAddress ++ workAddress = {(A0, D0), (A1, D2), (A2, D3)}

Override can be defined in terms of simpler operators. Taking the over-
ride of p by q is equivalent to taking the union of q and what’s left of p
after removing the tuples that start with an element in the domain of q:

�� logic

p ++ q = p - (domain (q) <: p) + q

Override is useful for modeling insertions into map datatypes, and as-
signment-like statements in programs.

Example. Insertion of a key k with value v into a hashmap can be
modeled by representing the value of the map before and after as
two relations m and m’ from keys to values, satisfying

m’ = m ++ k -> v

Example. The environment e of an executing Java program can be
viewed (simplistically) as a relation mapping variables to object
references. The effect of an assignment

x = y

with a variable on both sides is

e’ = e ++ x -> y.e

where e and e’ are the values of the environment before and after
execution. The state of the heap at any point can be represented by
one relation for each field (that is, instance variable) of each class.
A setter statement such as

x.f = y

in which x and y are variables and f is a field can thus be described
by

f’ = f ++ x.e -> y.e

where f and f’ represent the values of the field f before and after
execution.

Discussion

What are the operator precedences?

Operators have a standard precedence ranking so that constraints aren’t
marred by masses of parentheses. The ranking follows the usual con-
ventions: unary operators (closure, transpose) precede binary opera-
tors; product operators (such as dot and arrow) precede sum operators
(plus, minus, intersect). The details are given in appendix B. All opera-
tors associate to the left.

logic ��

3.5	 Constraints

We’ve seen how to make a constraint from two expressions using the
comparison operators in and =. Larger constraints are made from small-
er constraints by combining them with the standard logical operators,
and by quantifying constraints that contain free variables over bind-
ings.

3.5.1	 Logical	Operators
There are two forms of each logical operator: a shorthand and a verbose
form (similar to the operators used in boolean expressions in program-
ming languages):

· not ! negation
· and && conjunction
· or || disjunction
· implies => implication
· else , alternative
· iff <=> bi-implication

The negation symbol can be combined with comparison operators, so
a != b is equivalent to not a = b, for example. The shorthand and the
verbose forms are completely interchangeable, so you can write a not =
b as well.

The else operator is used with the implication operator;

F implies G else H

is equivalent to

(F and G) or ((not F) and H)

Implications are often nested. The common idiom

C1 => F1 ,
C2 => F2 ,
C3 => F3

or equivalently

C1 implies F1
else C2 implies F2
else C3 implies F3

says that under condition C1, F1 holds, and if not, then under condition
C2, F2 holds, and if not, under condition C3, F3 holds.

�0 logic

Conjunctions of constraints are so common that we’ll often omit the
and operator, and wrap the entire collection of constraints in braces. So
{F G H} is equivalent to F and G and H.

Sometimes, it’s more natural to use a conditional expression than a con-
ditional formula. This takes the form

if C then E1 else E2

where C is a constraint, and E1 and E2 are expressions, and has the value
of E1 when C is true, and the value of E2 otherwise.

Examples. Suppose an address book is modeled with three rela-
tions: homeAddress and workAddress mapping an alias to email ad-
dresses at home and at work, and address mapping an alias to the
preferred address. To say that the preferred address for an alias
a is the work address if it exists, otherwise the home address, we
can write

some a.workAddress =>
 a.address = a.workAddress ,
 a.address = a.homeAddress

or, using an if-then-else expression

a.address =
 if some a.workAddress then a.workAddress else a.homeAddress

3.5.2	 Quantification					
A quantified constraint takes the form

Q x: e | F

where F is a constraint that contains the variable x, e is an expression
bounding x, and Q is a quantifier.

The forms of quantification in Alloy are

· all x: e | F F holds for every x in e;
· some x: e | F F holds for some x in e;
· no x: e | F F holds for no x in e;
· lone x: e | F F holds for at most one x in e;
· one x: e | F F holds for exactly one x in e.

To remember what lone means, it might help to think of it as being short
for “less than or equal to one.”

logic �1

Several variables can be bound in the same quantifier;

one x: e, y: e | F

for example, says that there is exactly one combination of values for x
and y that makes F true. Variables with the same bound can share a dec-
laration, so this constraint can also be written

one x, y: e | F

By using the keyword disj before the declaration, you can restrict the
bindings only to include ones in which the bound variables are disjoint
from one another, so

all disj x, y: e | F

means that F is true for any distinct combination of values for x and y.
(See subsection 3.5.3 for cases in which x and y are not scalars.)

Examples. Given a set Address of email addresses, Name of names,
and a relation address representing a multilevel address book map-
ping names to names and addresses,

· some n: Name, a: Address | a in n.address
 says that some name maps to some address (that is, the address

book is not empty);

· no n: Name | n in n.^address
 says that no name can be reached by lookups from itself (that is,

there are no cycles in the address book);

· all n: Name | lone d: Address | d in n.address
 says that every name maps to at most one address;

· all n: Name | no disj d, d’: Address | d + d’ in n.address
 says the same thing, but slightly differently: that for every name,

there is no pair of distinct addresses that are among the results
obtained by looking up the name.

Quantifiers can be applied to expressions too:

· some e e has some tuples;
· no e e has no tuples;
· lone e e has at most one tuple;
· one e e has exactly one tuple.

Note that some e and no e could be written e != none and e = none respec-
tively, but using the quantifiers makes the constraints more readable.

�� logic

Examples. Using the sets and relation from the previous example,

· some Name
 says that the set of names is not empty;

· some address
 says that the address book is not empty: there is some pair map-

ping a name to an address;

· no (address.Addr - Name)
 says that nothing is mapped to addresses except for names;

· all n: Name | lone n.address
 says that every name maps to at most one address (more suc-

cinctly than in the previous example);

· all n: Name | one n.address or no n.address
 says the same thing.

3.5.3	 Higher-order	Quantification
Quantified variables don’t have to be scalars; they can be sets, or even
multirelations. A logic that allows this is no longer “first order” and be-
comes “higher order.” Alloy includes such quantifications, but they can-
not always be analyzed (see subsection 5.2.2).

Examples. Higher-order quantifications are often useful for stat-
ing properties about operators:

· all s, t: set univ | s + t = t + s
 the union operator on sets is commutative;

· all p, q: univ lone -> lone univ | p.q: univ lone -> lone univ
 the join of two functions is a function too.

Discussion

Does Alloy allow freestanding declarations?

No. The declaration forms described in this section can be used for
quantified variables, and for fields, and can be used as formulas. But
top-level relation declarations are not supported, although they are un-
necessary (as explained in the discussion following section 4.2.2).

When can higher-order quantifications be analyzed?

Generally, the Alloy Analyzer cannot handle formulas that involve high-
er-order quantifications, so their use is discouraged. But in some useful

logic ��

cases, higher-order quantifiers can be eliminated by a scheme known
as “skolemization,” which turns a quantified variable into a free variable
whose value can then by found by constraint solving. See subsection
5.2.2 for more details.

What’s the difference between lone p: some X | F and some p: lone X | F?

Novices are sometimes confused by the difference between these quan-
tifications:

lone p: some X | F
some p: lone X | F

What makes these confusing is the use of the same keywords for the
quantifier and the bounding expression’s multiplicity. In the first case,
the quantifier is lone (at most one), and the multiplicity is some (one or
more), so p is constrained to be drawn from the nonempty subsets of
X, and the constraint says that F holds for at most one such subset p. In
the second case, the quantifier is some, and the multiplicity is lone, so the
constraint says that F holds for some option p, and is equivalent to

(some p: X | F) or (let p = none | F)

and is thus not really a higher-order quantification at all. I’ve never come
across a need for the first, but the second is occasionally useful.

3.5.4	 Let	Expressions	and	Constraints
When an expression appears repeatedly, or is a subexpression of a larger,
complicated expression, you can factor it out. The form

let x = e | A

is short for A with each occurrence of the variable x replaced by the ex-
pression e. The body of the let, A, and thus the form as a whole, can be a
constraint or an expression.

Example. Revisiting the address book with three relations—ho-
meAddress and workAddress mapping an alias to email addresses at
home and at work, and address mapping an alias to the preferred
address—we can say that the preferred address for an alias a is the
work address if it exists, otherwise the home address, by writing

all a: Alias |
 let w = a.workAddress |
 a.address = if some w then w else a.homeAddress

�� logic

or

all a: Alias |
 a.address =
 let w = a.workAddress |
 if some w then w else a.homeAddress

Discussion

Can let bindings be recursive?

No. They only provide a convenient shorthand, and don’t allow recur-
sive definitions. A variable introduced by a let on the left-hand side of
a binding cannot appear on the right-hand side of the same binding, or
one that precedes it in the same let construct.

3.5.5	 Comprehensions
Comprehensions make relations from properties. The comprehension
expression

{x1: e1, x2: e2, …, xn: en | F}

makes a relation with all tuples of the form x1 -> x2 -> … -> xn for which the
constraint F holds, and where the value of xi is drawn from the value of
the bounding set expression ei. Each expression ei must denote a set, and
not a relation of higher arity.

Examples. In a multilevel address book represented by a relation
address mapping names in the set Name to names and also to ad-
dresses in the set Addr,

· {n: Name | no n.^address & Addr}
 is the set of names that don’t resolve to any actual addresses;

· {n: Name, a: Addr | n -> a in ^address}
 is a relation mapping names to addresses that corresponds to the

multilevel lookup.

3.6	 Declarations	and	Multiplicity	Constraints

A declaration introduces a relation name. We’ve just seen how decla-
rations are used in quantified constraints and comprehensions. Free-
standing declarations of relation names make sense too, although we’ll
see in chapter 4 how, in the full Alloy language, these would instead be
declared within “signatures.”

logic �5

The notion of multiplicity is closely tied to the notion of declaration. It’s
not essential in a logic, but I’ve included it in this chapter because it’s so
useful, and can be explained independently of the structuring mecha-
nisms of Alloy.

3.6.1	 Declarations
A constraint of the form

relation-name : expression

is called a declaration. Its meaning is almost—a caveat soon—as if the
colon were replaced by the keyword in, so that it becomes a simple con-
straint saying that the relation named on the left has a value that is a
subset of the value of the bounding expression on the right. The bound-
ing expression is usually formed with unary relations and the arrow op-
erator, but any expression can be used.

Examples. The address relation, representing a single address book,
maps names to addresses:

address: Name -> Addr

The addr relation, representing a collection of address books, maps
books to names to addresses:

addr: Book -> Name -> Addr

A relation address representing a multilevel address book maps
names to names and addresses:

address: Name -> (Name + Addr)

The same relation can be declared in different ways, depending on how
much information you want to put in the declaration.

Example. A declaration saying that a relation address maps aliases
and groups to addresses and to aliases and groups

address: (Alias + Group) -> (Addr + Alias + Group)

and a stronger declaration of the same relation, saying, in addi-
tion, that aliases, unlike groups, are always mapped directly to ad-
dresses:

address: (Alias -> Addr) + (Group -> (Addr + Alias + Group))

Relations, not just sets, can appear on the right-hand side of declara-
tions too.

�� logic

Example. An address book might be represented with three rela-
tions, representing the home, work, and preferred addresses:

workAddress, homeAddress: Alias -> Addr
prefAddress: workAddress + homeAddress

3.6.2	 Set	Multiplicities
In the last subsection, I said that the meaning of a declaration

x: e

was almost the same as the meaning of a subset constraint

x in e

Now the caveat: the declaration can include multiplicity constraints,
which are sometimes implicit. Multiplicities are expressed with the
multiplicity keywords:

· set any number
· one exactly one
· lone zero or one
· some one or more

Note that one, lone, and some are the same keywords used for quantifica-
tion.

The meaning of a declaration depends on the arity of the bounding ex-
pression. If it denotes a set (that is, is unary), it can be prefixed by a
multiplicity keyword like this

x: m e

which constrains the size of the set x according to m. For a set-valued
bounding expression, omitting the keyword is the same as writing one.
So if no keyword appears, the declaration makes the variable a scalar.

Examples

· RecentlyUsed: set Name
 says that RecentlyUsed is a subset of the set Name;

· senderAddress: Addr
 says that senderAddress is a scalar in the set Addr;

· senderName: lone Name
 says that senderName is an option: either a scalar in the set Name,

or empty;

logic ��

· receiverAddresses: some Addr
 says that receiverAddresses is a nonempty subset of Addr.

The declarations of variables in quantified constraints are declarations
of exactly the same form, and follow the same rules. The only difference
is that quantifiers introduce variables that are bound within the body of
the quantified constraint; the other declarations we have seen introduce
free variables.

Example. The quantification we saw above,

some n: Name, a: Address | a in n.address

has two declarations, binding the scalars n and a.

3.6.3	 Relation	Multiplicities
When the bounding expression is a relation (that is, a relation with arity
greater than one), it may not be preceded by a multiplicity keyword. But
if the bounding expression is constructed with the arrow operator, mul-
tiplicities can appear inside it. Suppose the declaration looks like this:

r: A m -> n B

where m and n are multiplicity keywords (and where A and B are, for
now, sets). Then the relation r is constrained to map each member of A
to n members of B, and to map m members of A to each member of B.

Such a declaration can indicate the domain and range of the relation
(see subsection 3.2.5), and whether or not it is functional or injective
(see subsection 3.2.4):

· r: A -> one B
 a function whose domain is A;

· r: A one -> B
 an injective relation whose range is B;

· r: A -> lone B
 a function that is partial over the domain A;

· r: A one -> one B
 an injective function with domain A and range B, also called a

bijection from A to B;

· r: A some -> some B
 a relation with domain A and range B.

�� logic

Examples. Some declarations and their meaning:

· workAddress: Alias -> lone Addr
 The relation workAddress is a function that maps each member

of the set Alias to at most one member of the set Addr; each alias
represents at most one work address.

· homeAddress: Alias -> one Addr
 Each alias represents exactly one home address.

· members: Group lone -> some Addr
 An address belongs to at most one group, and a group contains at

least one address.

Multiplicities are just a shorthand, and can be replaced by standard
constraints; the multiplicity constraint in

r: A m -> n B

can be written as

all a: A | n a.r
all b: B | m r.b

but multiplicities are preferable because they are terser and easier to
read.

Example. The last declaration of the previous example

members: Group lone -> some Addr

can be replaced by

members: Group -> Addr

along with the constraints

all g: Group | some g.members
all a: Addr | lone members.a

The expressions A and B can be arbitrary expressions, and don’t have
to be relation names. They also don’t have to represent unary relations.
The rule is generalized simply by replacing “member” by “tuple.” Thus

r: A m -> n B

says that r maps m tuples in A to each tuple in B, and maps each tuple in
A to n tuples in B.

Example. The declaration

addr: (Book -> Name) -> lone Addr

logic ��

says that the relation addr associates at most one address with each
address book and name pair.

3.6.4	 Declaration	Constraints
Declarations usually introduce new names, but they can also be used
to impose constraints on relations that have already been declared, or
on arbitrary expressions. In this case, the only difference between a
declaration (using the colon operator) and a regular constraint (using
the subset operator in) is that the declaration imposes multiplicity con-
straints—for sets, even in the absence of multiplicity keywords (because
of the default multiplicity).

Example. For an address book represented by a relation address
mapping groups and aliases to addresses

address: (Group + Alias) -> Addr

an additional declaration might constrain each alias to map to at
most one address:

Alias <: address : Alias -> lone Addr

Declaration constraints are like any other formula, and can be com-
bined with logical operators, placed inside the body of quantifications,
and so on.

Example. Given a relation addr associating address books, names
and addresses, the constraint that each address book is injective
(that is, maps at most one name to an address) can be written

all b: Book | b.addr: Name lone -> Addr

3.6.5	 Nested	Multiplicities
Multiplicities can be nested. Suppose you have a declaration of the
form

r: A  -> (B m -> n C)

This means that, for each tuple in A, the corresponding tuples in B -> C
form a relation with the given multiplicity. In the case that A is a set, the
multiplicity constraint is equivalent to

all a: A | a.r : B m -> n C

Similarly,

r: (A m -> n B) -> C

�0 logic

will be equivalent to

all c: C | r.c : A m -> n B

Examples. The declaration

addr: Book -> (Name lone -> Addr)

says that, for any book, each address is associated with at most one
name, and is equivalent to

all b: Book | b.addr: Name lone -> Addr

whereas

addr: (Book -> Name) lone -> Addr

says that each address is associated with at most one book/name
combination. The first allows an address to have different names
in different books; the second does not.

3.7	 Cardinality	Constraints

The operator # applied to a relation gives the number of tuples it con-
tains, as an integer value. The following operators can be used to com-
bine and compare integers:

+ plus
- minus
= equals
< less than
> greater than
=< less than or equal to
>= greater than or equal to

Positive integer literals can appear as constants.

Example. For a relation address

address: (Group + Alias) -> Addr

mapping groups and aliases to addresses, the constraint that every
group has more than one address associated with it can be writ-
ten

all g: Group | #g.address > 1

logic �1

Example. Suppose an email program needs to break groups of ad-
dresses into smaller subgroups. Given a relation mapping groups
to the addresses they contain,

address: Group -> Addr

a second relation

split: Group -> Group

might map a group to its subgroups under the constraint that no
group is a subgroup of itself

no g: Group | g in g.split

that a group’s subgroups contain all its addresses

all g: split.Group | g.address = g.split.address

and that the subgroups are disjoint

all g: Group, disj g1, g2: g.split | no g1.address & g2.address

The cardinality constraints on the division into subgroups might
be that any group with more than 5 members is split up

all g: Group | #g.address > 5 implies some g.split

that no subgroup contains more than 5 members

all g: Group.split | #g.address =< 5

and that subgroups are of roughly equal size (differing from each
other by at most one)

all g: Group, disj g1, g2: g.split |
 #g1.address < #g2.address implies #g2.address = #g1.address + 1

The expression

sum x: e | ie

denotes the integer obtained by summing the values of the integer ex-
pression ie for all values of the scalar x drawn from the set e.

Example. The size of a group is the sum of the sizes of its sub-
groups:

all g: split.Group | #g.address = (sum g’: g.split | #g’.address)

�� logic

Discussion

How does Alloy distinguish the plus of union from the plus of arithme-
tic?

They are easily disambiguated from the context—in fact, by parsing
alone. Integers aren’t atoms, so the relational operators can’t be applied
to integer-valued expressions. Integers can be stored within relations,
using the special Int atoms described in section 4.8.

4:	Language

A language for describing software abstractions is more than just a logic.
You need ways to organize a model, to build larger models from smaller
ones, and to factor out components that can be used more than once.
There are also small syntactic details—such as shorthands for declara-
tions—that make a language usable in practice. And finally, there’s the
need to communicate with an analysis tool, by indicating which analy-
ses are to be performed.

This chapter explains the Alloy modeling language. It covers all aspects
of the language, and explains them informally by way of examples. A
more complete summary of Alloy is given in the reference manual,
which appears in appendix B.

Alloy is a small language. Some of its features are unique to Alloy, no-
tably signatures and the notion of scope. The rest—modules, polymor-
phism, parameterized functions, and so on—are standard features of
most programming and modeling languages, and have been designed
to be as conventional as possible.

4.1	 An	Example:	Self-Grandpas

There’s a popular song titled “I’m My Own Grandpa.” Let’s use Alloy to
find out how this could be. Take a look at the Alloy model of fig. 4.1.

The gross structure of a model consists of

· A module header that gives the module its name (line 1). Modules are
named as in Java: the full name of the module corresponds to its path
and filename in the file system. Alloy modules have the file extension

“.als” by default, so this module is stored in the file language/grandpa1.
als relative to the working directory of the analyzer.

· Some signature declarations, labeled by the keyword sig. Each signa-
ture represents a set of atoms, and may also introduce some fields,
each representing a relation.

· Some constraint paragraphs, labeled by the keywords fact, fun, pred
that record various forms of constraints and expressions.

�� language

· Some assertions, labeled by the keyword assert, that record properties
that are expected to hold.

· Some commands, labeled by the keywords run and check, which are
instructions to the analyzer to perform particular analyses.

The signature declarations set up a classification hierarchy. The declara-
tions of Man and Woman say that they extend the signature Person. This
means that they represent disjoint subsets of the set Person: no person is
both a man and a woman. Marking Person as abstract says that it has no
elements of its own that do not belong to its extensions; if omitted, the
declarations would allow a person that is neither a man nor a woman.

1 module language/grandpa1
2 abstract sig Person {
3 father: lone Man,
4 mother: lone Woman
5 }
6 sig Man extends Person {
7 wife: lone Woman
8 }
9 sig Woman extends Person {
10 husband: lone Man
11 }

12 fact {
13 no p: Person | p in p.^(mother + father)
14 wife = ~husband
15 }

16 assert NoSelfFather {
17 no m: Man | m = m.father
18 }
19 check NoSelfFather

20 fun grandpas (p: Person): set Person {
21 p.(mother + father).father
22 }
23 pred ownGrandpa (p: Person) {
24 p in grandpas (p)
25 }
26 run ownGrandpa for 4 Person

fig. 4.1 A first Alloy model: Can you be your own grandpa?

language �5

The fields of a signature declare relations whose domain is a subset of
the signature. So the field father declared within Person, for example, re-
lates persons to men. The keyword lone says that a person has at most
one father. Similarly, wife, for example, relates men to women.

A fact records a constraint that is assumed always to hold. The fact start-
ing on line 12 says that you can’t be your own ancestor (13) and that if
someone is your husband, you are his wife, and vice versa (14).

An assertion, marked by the keyword assert, introduces a constraint
that is intended to follow from the facts of the model. The command,
marked check, tells the analyzer to find a counterexample to the asser-
tion: that is, an instance that makes it false. In this case, the assertion
NoSelfFather, which says that nobody is his own father, is valid, and no
counterexamples are found.

A function defines a reusable expression. Having written the function
grandpas (20), we can now use grandpas (p) to refer to p’s grandpas, rath-
er than the more cumbersome expression p.(mother + father).father.

A predicate defines a reusable constraint. Having written the predicate
ownGrandpa (23), we can now use ownGrandpa (p) to say that p is his own
grandpa, rather than the constraint p in grandpas (p).

Finally, we come to the real action. The command run ownGrandpa for 4
(26) instructs the analyzer to attempt to find a solution to the constraint
ownGrandpa. The phrase for 4 is a scope setting: it limits the search to a
universe in which each top-level set (in this case, just Person) contains at
most four elements. When the scope setting is omitted, as in the check
for NoSelfFather, a default scope of 3 is used.

In fact, there is no action. The analyzer finds no solution within this
scope. This could mean that there is a solution in a larger scope, so we
might increase the scope, by replacing 4 with 10 in the run command,
for example. Again, no solution is found, and if we increase the scope
further, we’ll soon reach the point at which the analyzer is no longer
able to exhaust the space of possibilities within a reasonable time.

Under these circumstances, we might have instead cast the predicate as
an assertion:

assert NoSelfGrandpa {
 no p: Person | p in grandpas (p)
 }
check NoSelfGrandpa for 4 Person

�� language

When the analyzer finds no counterexample to an assertion, as here, it
reports success (as opposed to failure when a predicate is found to have
no instances).

Clearly, if it is possible to be your own grandpa, something must give:
either our definition of grandpa, or the constraint that you can’t be your
own ancestor. The first seems more plausible. Suppose we extend the
grandpa notion beyond biological grandpas to include grandpas by
marriage. Here’s our new definition of grandpa:

fun grandpas (p: Person): set Person {
 let parent = mother + father + father.wife +mother.husband |
 p.parent.parent & Man
 }

The let binds parent to the relation that maps a person to his or her
mother, father, father’s wife, and mother’s husband. The definition as
a whole says that your grandpa is any man who is your parent’s parent,
where “parent” now includes stepparents.

Running ownGrandpa, we now get a solution, shown in fig. 4.2. There are
two persons, Woman_0 and Man_0, who are mother and son, and also
wife and husband. This is not a solution appropriate for a popular song.

We can rule out incest by adding another fact:

no (wife + husband) & ^(mother + father)

I’ve written this constraint relationally. The expression mother + father
relates children to parents; its closure relates persons to their ancestors.
Finally, no p & q says that the relations p and q share no tuples, so the
constraint as a whole says that no person has a spouse who is also an
ancestor.

Now running ownGrandpa again, we get a more socially acceptable solu-
tion, shown in fig. 4.3. There are two couples, in which the wife in each
is the mother of the husband in the other. The person who is his own
grandpa, p, achieved this by having his stepson marry his mother.

The final version of the model, incorporating the new definition of
grandpa, and with the constraints ruling out incest, is given in fig. 4.4.
I’ve split the facts into separate paragraphs to show that it’s usually a
good idea to group constraints according to their role or origin, and to
give them suggestive names.

language ��

fig. 4.2 An inappropriate solution to ownGrandpa.

fig. 4.3 Another solution to ownGrandpa.

�� language

module language/grandpa2
abstract sig Person {
 father: lone Man,
 mother: lone Woman
 }
sig Man extends Person {
 wife: lone Woman
 }
sig Woman extends Person {
 husband: lone Man
 }

fact Biology {
 no p: Person | p in p.^(mother + father)
 }
fact Terminology {
 wife = ~husband
 }
fact SocialConvention {
 no (wife + husband) & ^(mother + father)
 }

assert NoSelfFather {
 no m: Man | m = m.father
 }
check NoSelfFather

fun grandpas (p: Person): set Person {
 let parent = mother + father + father.wife +mother.husband |
 p.parent.parent & Man
 }
pred ownGrandpa (p: Man) {
 p in grandpas (p)
 }
run ownGrandpa for 4 Person

fig. 4.4 Self-grandpas revisited.

language ��

Discussion

Where does the song “I’m My Own Grandpa” come from?

It was originally a skit written by Dwight Latham and Moe Jaffe for their
radio show in the 1930’s. Dwight Latham credited the idea to a book of
anecdotes by Mark Twain. They later expanded it into a song, which
was recorded in 1948 by “Lonzo and Oscar” (Ken Marvin and Rollin
Sullivan), and became a hit. You can find the text of the song, in Lonzo
and Oscar’s 1948 version, along with a recording of it being sung, at
http://www.wwco.com/gean/grandpa. The song’s scenario is not identical
to the one Alloy found, by the way: instead of having his stepson marry
his mother, the self-grandpa has his stepdaughter marry his father.

How do you construct relational formulas?

To the novice, the relational style can be hard to grasp. But it becomes
quite natural when you’re comfortable with it. I find it helpful to think
about sets of arrows rather than atoms and their relationships. For ex-
ample, to construct a formula such as

no (wife + husband) & ^(mother + father)

from the SocialConvention fact of 4.4, my thinking would go as follows.
The constraint to be expressed is that no person should marry a parent,
grandparent, and so on. This says that certain relationships are prohibit-
ed—some arrows should not exist—so the constraint will have the form
no e for some expression e. The prohibited relationship involves being
both a spouse and a parent or grandparent, and so on. This conjunction
suggests taking the intersection of two relations: there should not be
an arrow belonging to both. Now we need to express the two relations.
Being a spouse means being a wife or a husband; that tells us to take the
union of the relations wife and husband. The “so on” in “being a parent or
grandparent, and so on” suggests applying transitive closure to the par-
ent relation. A parent is a mother or a father, indicating another union.
Putting all this together gives the desired formula.

To increase your confidence that a constraint has the meaning you in-
tended, you can check an assertion that it is equivalent to a different
formulation. In this case, for example, you might compare the relational
formulation to one in a navigational style:

�0 language

pred SocialConvention () {
 no (wife + husband) & ^(mother + father)
 }

pred SocialConvention’ () {
 let parent = mother + father {
 no m: Man | some m.wife and m.wife in m.*parent.mother
 no w: Woman |
 some w.husband and w.husband in w.*parent.father
 }
 }

assert Same {
 SocialConvention () iff SocialConvention’()
 }
check Same

If the two formulations are not equivalent (within the scope), a coun-
terexample will be generated showing a family that satisfies one and not
the other.

Is there really a difference between running a predicate and checking an
assertion?

From an analysis perspective, there’s no fundamental difference between
assertions and predicates. Running a predicate involves searching for
an instance of its constraint; checking an assertion involves searching
for an instance of the negation of its constraint. So, checking an asser-
tion with a constraint C is equivalent to running a predicate with the
constraint not C.

But this blurs a vital methodological distinction, and in the design of Al-
loy I thought it was important to be able to factor out those properties
conjectured to follow from the rest. This idea of recording redundan-
cies explicitly in a model, and marking them as such, is due to John Gut-
tag and Jim Horning and was part of the Larch language [22].

If the Alloy Analyzer finds no counterexample to an assertion, does that
mean it is valid?

Not necessarily. It’s possible that there’s a counterexample in a larger
scope. But, in practice, as you increase the scope, the chance that a
counterexample remains does decrease. So you get some assurance, but
not in any absolute sense.

language �1

4.2	 Signatures	and	Fields

Now that you’ve seen at least one example in full, and have a rough idea
of how an Alloy model is organized, it’s time to look at the details of the
language. The rest of this chapter assumes you already understand the
logic of chapter 3, and concentrates on the larger structure in which
constraints are placed.

4.2.1	 Signatures
A signature introduces a set of atoms. The declaration

sig A {}

introduces a set named A. A signature is actually more than just a set,
because—as we’ll say in later sections—it can include declarations of
relations, and can introduce a new type implicitly. But it’s convenient to
use the term “signature” loosely to refer both to this larger structure and
to the set associated with it, so we’ll talk, for example, of the “elements
of the signature,” meaning the atoms contained in the set.

A set can be introduced as a subset of another set; thus

sig A1 extends A {}

introduces a set named A1 that is a subset of A. The signature A1 is an
extension or subsignature of A. A signature such as A that is declared
independently of any other is a top-level signature. The extensions of a
signature are mutually disjoint, as are top-level signatures. So given the
declarations

sig A {}
sig B {}
sig A1 extends A {}
sig A2 extends A {}

we can infer that A and B are disjoint, and A1 and A2 are disjoint (but not
that A = A1 + A2).

An abstract signature has no elements except those belonging to its ex-
tensions. So if we write

abstract sig A {}
sig A1 extends A {}
sig A2 extends A {}

�� language

for example, we have introduced three sets with the implicit con-
straints

A1 in A
A2 in A

because A1 and A2 extend A, and

A in A1 + A2

because A is abstract. So

A = A1 + A2

and A1 and A2 partition A.

The effect of a collection of signature declarations, some top-level, and
some as extensions, is thus to introduce a classification hierarchy. With
the addition of the constant univ, the universal set, which can be viewed
as an implicit abstract signature that all top-level signatures extend, this
hierarchy takes the form of a tree, with univ at its root, the top-level
signatures one level down, then their extensions, and so on. This tree
gives a primary classification to all atoms which is exploited in the type
system (see section 4.4).

Sometimes other, orthogonal, classifications are needed. To express
these, you can declare subset signatures, such as

sig A3 in A {}

which introduces a set A3 that is a subset of A. Subset signatures, unlike
extension signatures, are not necessarily mutually disjoint, so if you in-
troduce a second subset

sig A4 in A {}

then A3 and A4 may intersect, unless constrained not to.

A signature can be declared as a subset of a union of sets; given

sig C in A + B {}

every element of C belongs to A or to B. The union expression can list
any number of sets, but union is the only operator that can appear in a
signature declaration in this way.

Finally, a multiplicity keyword placed before a signature declaration
constrains the number of elements in the signature’s set; thus

m sig A {}

language ��

says that A has m elements. Declaring an abstract signature with scalar
extensions introduces an enumeration, so

abstract sig T {}
one sig A, B, C extends T {}

declares a set T with three elements, A, B, and C.

Example. A classification of targets in an address book into names
and addresses, with names further classified into aliases and
groups:

abstract sig Target {}
abstract sig Name extends Target {}
sig Alias, Group extends Name {}
sig Addr extends Target {}

Example.A set of pixels, each of which is red, green, or blue:

abstract sig Pixel {}
sig Red, Green, Blue extends Pixel {}

Example. An enumeration of traffic light colors:

abstract sig Color {}
one sig Red, Yellow, Green extends Color {}

Example. A file system whose objects are classified as files or di-
rectories, with aliases that are treated as files, and temporary ob-
jects, which may be files or directories:

abstract sig Object {}
sig File, Dir extends Object {}
sig Alias extends File {}
sig Temp in Object {}

Example. The same file system, described without making the set
of objects explicit, and with an explicit root directory:

sig File {}
sig Dir {}
one sig Root extends Dir {}
sig Alias extends File {}
sig Temp in File + Dir {}

�� language

Example. A classification of teas, first by country of origin and
then by variety:

sig Tea {}
sig IndiaTea, ChinaTea extends Tea {}
sig Assam, Darjeeling extends IndiaTea {}
sig Keemun, Lapsang extends ChinaTea {}

Example. A classification of teas that includes Earl Grey teas,
which may be China or India teas:

sig Tea {}
sig IndiaTea, ChinaTea extends Tea {}
sig EarlGrey in ChinaTea + IndiaTea {}

Discussion

Does Alloy have multiple inheritance?

Yes. Alloy can express multiple inheritance, but not entirely by declara-
tions—some explicit facts are needed. For example, you can’t say that
Jasmine tea is both flavored and a China tea by declarations alone; one
of these relationships must be stated explicitly as a fact. You might write,
for example,

sig Tea {}
sig ChinaTea extends Tea {}
sig FlavoredTea in Tea {}
sig JasmineTea extends ChinaTea {}
fact {JasmineTea in FlavoredTea}

which will have the desired effect.

Unions in declarations shouldn’t be confused with multiple inheritance.
The declaration

sig EarlGrey in ChinaTea + IndiaTea {}

says that Earl Grey is a China tea or an India tea. And it doesn’t express
uncertainty about the country of origin of Earl Grey tea. The signature
EarlGrey represents a set—the set of all Earl Grey teas—so the declara-
tion says that each member of that set is either a China tea or an India
tea.

language �5

Do singleton signatures correspond to atoms?

Singleton signatures, marked by the keyword one, represent singleton
sets— sets that contain a single element. In an instance, such a set will
correspond to a single atom. But it’s a mistake to think of singletons as
fundamentally different from other sets. In some modeling notations,
a model that includes singletons is viewed as a kind of hybrid model/
instance. This is unnecessary. The difference between a model and an
instance is that a model represents a set of instances, and so, in a model,
a singleton set isn’t bound to a particular atom, but could represent dif-
ferent atoms in different instances.

For example, a model of a file system that declares a singleton for the
root of the file system describes the collection of all possible file systems,
each with its own root. The roots of the different file systems can be
different atoms. When we use the term Root in the file system model,
we mean whatever atom is the root of the file system being described,
which can vary from file system to file system.

4.2.2	 Basic	Field	Declarations
Relations are declared as fields of signatures. Writing

sig A {f: e}

introduces a relation f whose domain is A, and whose range is given by
the expression e, as if a fact included the declaration constraint

f: A -> e

This constraint can be written equivalently as

all this: A | this.f : e

saying that if we had a particular element this in the set A, the set de-
noted by this.f would be a subset of e.

The second constraint is a better way to understand the declaration, be-
cause it gives the right meaning when multiplicity symbols are added
(see section 3.6). For a set e, the declaration

sig A {f: m e}

adds the constraint

all this: A | this.f : m e

which says that, for any this in A, this.f has m elements drawn from the
set e.

�� language

So

sig A {f: one e}
sig A {f: some e}
sig A {f: lone e}
sig A {f: set e}

say that this.f has one, at least one, at most one, and any number of ele-
ments from e. The default keyword, if omitted, is one, so

sig A {f: e}
sig A {f: one e}

are equivalent.

If the expression e denotes a relation (that is, its arity is two or more), it
may include multiplicity keywords within it. The same rule applies; the
declaration

sig A {f: e1 m -> n e2}

for example, gives the constraint

all this: A | this.f : e1 m -> n e2

which is interpreted according to the standard multiplicity rules (ex-
plained in section 3.6).

Example. A collection of teas, each with a single country of ori-
gin:

sig Tea {origin: Country}
sig Country {}

Example. A file system in which each directory contains any num-
ber of objects, and each alias points to exactly one object:

abstract sig Object {}
sig Directory extends Object {contents: set Object}
one sig Root extends Directory {}
sig File extends Object {}
sig Alias extends File {to: Object}

Example. A collection of weather forecasts, each of which has a
field weather associating every city with exactly one weather condi-
tion:

sig Forecast {weather: City -> one Weather}
sig City, Weather {}
one sig Rainy, Sunny, Cloudy extends Weather {}

language ��

Example. A collection of names in an address book, with a field ad-
dress that associates each name with at most one address or name:

sig Name {address: lone Addr + Name}
sig Addr {}

Example. A collection of address books, with a field addr associat-
ing each book with a partial function from names to addresses and
names:

sig Book {
 addr: Name -> lone (Addr + Name)
 }
sig Name {}
sig Addr {}

Example. A collection of traffic lights, each of which shows some
combination of colors at a given time:

sig TrafficLight {
 color: Color some -> Time
 }
abstract sig Color {}
one sig Red, Green, Yellow extends Color {}
sig Time

It become tedious to describe a signature S as “a collection of elements
of S,” so from now on, I’ll refer to the elements of a signature in the sin-
gular—as “an S”. Just remember that a signature represents potentially
any number of elements.

Discussion

Must all relations be declared as fields?

Yes: there are no top-level relation declarations in Alloy. If you want to
declare some relations that don’t belong naturally to any existing signa-
tures, you can simply declare them as fields of a singleton signature. In
a file system model, for example, a relation from names to objects that
models the results of a lookup might be declared as:

one sig Globals {
 lookup: Name -> Object
 }

and then referred to as Globals.lookup.

�� language

4.2.3	 Grouping	Fields
Fields can be grouped together so that they share a declaration expres-
sion. The keywords disj and part indicate that the group of fields are
mutually disjoint, or form a partition. So the declaration

sig A {disj f, g: e}

implies the constraint

all this: A | no this.f & this.g

and

sig A {part f, g: e}

implies the same constraint, and additionally

all this: A | e in this.f + this.g

Example. A cat has three names:

sig Cat {disj daily, peculiar, ineffable: Name}
sig Name {}

which are distinct from each other: for any cat c, c.daily, c.peculiar,
and c.ineffable are three different names.

Example. A cat regards all cats that aren’t friends as enemies:

sig Cat {part friends, enemies: set Cat}

Example. A traffic junction has one light (conceptually) in each
direction, which is assigned a single color in a given state:

sig Junction {northSouth, eastWest: LightState}
sig LightState {color: Light -> one Color}
sig Color, Light {}

4.2.4	 Dependent	Declarations
A field declaration’s bounding expression can be any Alloy expression,
with one restriction. If the expression appears in a declaration of a field
of a signature X, the only fields it can mention are those declared previ-
ously in X itself, or in one of the signatures of X’s supertypes.

Example. A cat’s three names, made distinct in another way:

sig Cat {
 daily: Name,
 peculiar: Name - daily,
 ineffable: Name - (daily + peculiar) }
sig Name {}

language ��

Example. An address book with three mappings from names to
addresses: one for home addresses, one for work addresses, and
one for the default, which is either the home address or the work
address:

sig Book {
 homeAddress, workAddress: Name -> lone Addr,
 address: homeAddress + workAddress
 }
sig Name, Addr {}

The declaration of address allows it to map a name to both home
and work address; to limit it to one, an additional constraint would
be added (in a signature fact, subsection 4.5.1, for example).

Example. A radio station that owns a set of frequencies for differ-
ent locations:

sig RadioStation {owns: set Freq, freq: Location -> one owns}
sig Freq, Location {}

Example. A zoom lens with a maximum aperture on its telephoto
setting that must be one of its possible aperture settings:

sig Lens {apertures: set FStop}
sig ZoomLens extends Lens {maxTeleAperture: apertures}
sig FStop {}

The constraint implicit in dependent declarations is slightly more elabo-
rate than for simple declarations in which only signatures appear in the
bounding expression. For

sig A {f: e}

the constraint is

all this: A | this.f in e’

where e’ is just like e, but has each field reference expanded. Every field
that appears in the expression e is regarded as a dereferencing of this, so
each occurrence of a field g is replaced by the expression this.g.

Example. The constraint arising from

sig Lens {apertures: set FStop}
sig ZoomLens extends Lens {maxTeleAperture: apertures}
sig FStop {}

is

all this: ZoomLens | this.maxTeleAperture in this.apertures

100 language

Discussion

Why can’t dependent declarations mention arbitrary fields?

The limitation makes models easier to typecheck, and perhaps also eas-
ier to read. They do rule out some useful cases. For example, we might
want to describe a radio station whose frequency is one permitted by
the class it belongs to as

sig RadioStation {class: StationClass, freq: class.band}
sig StationClass {band: set Freq}
sig Freq {}

but this is illegal. If mutual dependence were permitted, there could
be fields without unique types. For example, a declaration of a person
whose surname is one of the parents’ surnames

sig Person {surname: parents.surname, parents: set Person}

leaves the type of surname unconstrained. In all these cases, however,
the constraint can be added after the declaration, as explained in sub-
section 4.5.1. The radio station example can be written

sig RadioStation {class: StationClass, freq: Freq}
 {freq in class.band}
sig StationClass {band: set Freq}
sig Freq {}

and the surname example

sig Name {}
sig Person {surname: Name, parents: set Person}
 {surname in parents.surname}

Can dependent declarations get confusing?

Yes. A common mistake arises with closure. Suppose you want to specify
a peer-to-peer network in which each peer has a set of friends it’s con-
nected to directly, and a community of peers reachable from its friends.
This attempt at a signature declaration

sig Peer {
 friends: set Peer,
 community: set *friends
 }

language 101

will be rejected, because the mention of friends in the declaration of com-
munity is expanded to this.friends, which is a set, and not a binary rela-
tion. You might be tempted to write

sig Peer {
 friends: set Peer,
 community: *@friends
 }

using the special symbol @ to prevent expansion (see subsection 4.5.1).
This will be accepted, but it doesn’t mean what you might expect. The
expression *@friends denotes a binary relation, so community will be a
ternary relation! The correct way is to use the reserved word this to refer
to the particular peer:

sig Peer {
 friends: set Peer,
 community: set this.*@friends
 }

resulting in the implicit constraint

all this: Peer | this.community in this.*friends

The lesson is not to try so hard to squeeze all constraints into declara-
tions, and to write an explicit constraint instead:

sig Peer {friends, community: set Peer}
fact {community in *friends}

4.3	 Model	Diagrams

A model diagram declares some sets and binary relations, and imposes
some basic constraints on them. A diagram is a good way to convey the
outline of a model, but diagrams aren’t expressive enough to include
detailed constraints. Some people like to start with diagrams, and then
move to text; others prefer to start with text and use diagrams as il-
lustrations. The Alloy Analyzer can generate a model diagram from an
Alloy textual model; you can use this feature to help understand large
models, or to watch a model grow as you add new signatures.

Appendix D summarizes the diagrammatic notation.

10� language

4.3.1	 Multiplicity	Symbols
In a diagram, symbols are used instead of multiplicity keywords:

* any number
! exactly one
? zero or one
+ one or more

The default multiplicity is always *, so if no multiplicity symbols are
used, there are no implicit multiplicity constraints. You can attach mul-
tiplicities to a set (as a suffix to the label of a box) and to relations (as
prefixes and suffixes of labels on arrows).

4.3.2	 Boxes	and	Arrows
Each box represents a set of atoms. Boxes are connected in two ways.
Fat arrows, which have large, unfilled triangles as their arrowhead, de-
note subset relationships and are used to express the classification hier-
archy. Thin arrows, which have small, filled triangles as their arrowhead,
represent relations.

As shown in fig. 4.5, a box without an outgoing fat arrow corresponds to
a top-level signature. A box labeled A1 with a fat arrow connecting it to
a box labeled A corresponds to a signature A1 declared as an extension
of A. Labeling the fat arrow with the keyword in results in a subset signa-
ture rather than an extension. For an extension, you can also explicitly
label a fat arrow with the keyword extends.

You can mark a set as abstract (either by writing the keyword in the box,
or by italicizing the name) to indicate that it contains no elements ex-
cept those contained by its extending subsets.

A multiplicity symbol following the label of a box constrains the number
of elements in the set, as if the corresponding multiplicity keyword had
been written before the signature declaration. The default multiplicity
being *, there is no implicit constraint if omitted. A useful convention is
to draw a set with multiplicity ! or ? as an oval rather than a rectangle.

As shown in fig. 4.6, a line with a thin arrow from set A to set B denotes
a relation whose domain is contained in A and whose range is contained
in B. The label gives the name of the relation. The label can include mul-
tiplicity symbols; a label of the form

m R n

on an arc from A to B is like declaring a relation

language 10�

R: A m -> n B

with multiplicity keywords replacing multiplicity symbols.

An arc can have several labels. This is one reason that it’s convenient to
make the multiplicity symbols part of the label and not write them as
annotations on the ends of the arc: two relations with the same domain
and range can share the same arc even if they have different multiplici-
ties.

fig. 4.5 Examples of set boxes and subset relationships,
with their corresponding Alloy text.

A

A1

A

A1

in

sig A {}
sig A1 extends A {}

sig A {}
sig A1 in A {}

A

sig A {}

A

lone sig A {}

A
abstract

abstract sig A {}

A+

some sig A {}

10� language

4.3.3	 Expressions	and	Higher-Arity	Relations
You can show any expression that denotes a set or a binary relation in a
model diagram. Just use the expression as the label of the box or arrow
instead of a set or relation name.

A relation whose arity is greater than two cannot be shown directly. But
you can usually say everything you need to say by creating one or more
arcs and labeling them with appropriate expressions. For example, sup-
pose you have a relation

R: A -> B -> C

You might show this as an arc from B to C labeled A.R; or from A to B
labeled R.C.

To show the multiplicity of a relation like R, however, what you often
want is instead to show an archetypal expression such as a.R, where a is
a scalar in the set A. Labeling a relation arc

all v: be | e

means that the constraints implicit in the arc (due its source and target
sets and multiplicities) hold for the expression e, with v ranging over the
set given by be. So, for example, an arc labeled

all a: A | a.R !

(consisting of such a label combined with a multiplicity marking) from B
to C says that a.R is a function that maps every B to one C, for every a, as
if you’d written in textual for

all a: A | a.R : B -> one C

fig. 4.6 Relation arcs and their corresponding Alloy text.

A B
R

sig A {R: set B}

A B
m R n sig A {R: set B}

fact {R : A m -> n B}

language 105

In practice, the bound is almost always over a named set, and this nota-
tion is a bit clumsy. So as a convenient shorthand, a variable that ranges
over the set S is written instead as <S>. For the last example, then, we’d
write the label just as <A>.R.

Examples. Fig. 4.7 shows some examples of Alloy models and cor-
responding diagrams.

Discussion

Why doesn’t the diagrammatic notation map more directly to the textual
notation?

There is a fundamental difference between Alloy’s textual and diagram-
matic forms. The diagrammatic notation is flat; each relation belongs
no more to its source than its target. It thus makes sense to mark multi-
plicities at both ends. The textual notation, on the other hand, bundles
relations into signatures. It encourages viewing relations as fields of an
object, and the syntax doesn’t allow you to give multiplicities for the
elements of the signature itself. For example, the declaration

sig S {r: lone T}

says that r is a partial function—that is, it maps each S to at most one
T—but it doesn’t say anything about how many members of S map to
each T. You can add an explicit declaration formula, such as

fact {r : S lone -> lone T}

which makes the transpose of r a function too, but you can’t express this
in the declaration itself. The diagrammatic form doesn’t suffer from this
asymmetry.

An exact correspondence between textual and diagrammatic forms was
a design goal of an earlier version of Alloy [33], but was lost when sig-
natures were introduced.

Why don’t you use UML’s diagram syntax?

UML’s syntax has the advantage of familiarity to many people. But our
syntax has a more direct mapping to the Alloy textual language, and it’s
also easier to draw without specialized tools (since it uses only standard
shapes, and doesn’t require an arc to carry labels at different positions).

A common convention is to draw a shared fat arrowhead for subsets
that are disjoint, with a separate arrow for each orthogonal classifica-
tion. This is fine when working with drawings alone, but if you want to

10� language

fig. 4.7 Textual models and corresponding model diagrams.

Object

abstract sig Object {}
sig Directory extends Object {
 contents: set Object
 }
one sig Root extends Directory {}
sig File extends Object {}
sig Alias extends File {to: Object}

File Directory

Alias

to! contents

Root!

abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}
sig Alias, Group extends Name {}
sig Book {
 addr: Name -> lone Target
 }

Target

Name Addr

Alias Group

Book
<Book>.addr?

sig TrafficLight {
 color: Color some -> Time
 }
abstract sig Color {}
one sig Red, Yellow, Green
 extends Color {}

Color

Red! Yellow! Green!

Traffic
Light

Time

color.<Time>+

language 10�

convert such a diagram to Alloy’s textual notation, you’ll need to iden-
tify one of the classifications as primary, so that expressions can be giv-
en unique types. The secondary classification will have to be expressed
with subset arrows labeled in, and its disjointness properties will have
to recorded explicitly as facts.

Why is set the default multiplicity in diagrams?

A diagrammatic notation should be monotonic: as you embellish it, you
are adding and not removing constraints. Otherwise, if you stop along
the way, the diagram you have is incorrect, because it says things you
did not intend to say. It’s rare to write a textual model and omit all the
multiplicities, but with a diagram it’s common to sketch the gross struc-
ture first and then flesh it out with details. Some diagrammatic nota-
tions violate this principle, for example by using a regular line-end for
a multiplicity of “exactly one,” and a more elaborate line-end for weaker
multiplicities.

4.4	 Types	and	Type	Checking

Alloy’s type system has two functions. First, it allows the analyzer to
catch errors before any serious analysis is performed. The essential idea
is that an expression is erroneous if it can be shown to be redundant,
using types alone. This notion of error, although unconventional, is in
practice a reasonable match to intuition; it accepts and rejects expres-
sions much as you’d expect. Second, the type system is used to resolve
overloading. When different signatures have fields with the same name,
the type of an expression is used to determine which field of a given
name is meant.

4.4.1	 Basic	Types
Types are associated implicitly with signatures. A basic type is intro-
duced for each top-level signature and for each extension signature
(that is, a signature that extends another signature). When signature A1
extends signature A, the type associated with A1 is a subtype of the type
associated with A.

A subset signature does not have its own type, but acquires its parent’s
type. If declared as a subset of a union of signatures, its type is the union
of the types of its parents. Unions are explained in the next subsection.

Two basic types are said to overlap if one is a subtype of the other.

10� language

Example. The declarations

sig Tea {}
sig IndiaTea, ChinaTea extends Tea {}
sig Assam, Darjeeling extends IndiaTea {}
sig Keemun, Lapsang extends ChinaTea {}

result in the subtype hierarchy of fig. 4.8.

Example. The declaration of Temp in

fig. 4.8 Type hierarchy for teas.

Tea

IndiaTea ChinaTea

Assam Darjeeling Keemun Lapsang

fig. 4.9 Type hierarchy for a file system.

Object

File Directory

Temp
in

language 10�

sig Object {}
sig File, Directory extends Object {}
sig Temp in Object {}

results in the hierarchy of fig. 4.9. The set Temp does not have its
own type; its elements belong to the type Object. The types File and
Object overlap (because there are atoms that are both files and ob-
jects), but the types File and Directory do not.

4.4.2	 Relational	Types
Every expression has a relational type, consisting of a union of prod-
ucts:

 A1 -> B1 -> …
+ A2 -> B2 -> …
+ …

where each of the Ai, Bi, and so on, is a basic type. Each product term
must have as many basic types as the arity of the relation. A binary
relation’s type, for example, will look like this:

A1 -> B1 + A2 -> B2 + …

and a set’s type like this:

A1 + A2 + …

Note that the type of an expression is itself just an Alloy expression.
Types are inferred automatically so that the value of the type always
contains the value of the expression; that is, it’s an overapproximation.
This means that if two types have an empty intersection, the expressions
they were obtained from must also have an empty intersection.

Types are determined as follows:

First, the hierarchy of basic types is obtained from the signature decla-
rations.

Example. The signature declarations

abstract sig Object {}
sig Directory extends Object {}
one sig Root extends Directory {}
sig File extends Object {}
sig Alias extends File {}
sig Temp in Object {}

110 language

result in the basic types Object, File, Alias, Directory, and Root, with
File and Directory subtypes of Object, Alias a subtype of File, and Root
a subtype of Directory. The signature Temp is given the type Object.

Second, each field is given a type, by typing the bounding expression on
the right-hand side of the declaration.

Example. The fields to and contents in

sig Directory extends Object {contents: set Object}
sig Alias extends File {to: Object}

are given the types Alias -> Object and Directory -> Object respectively.

Third, the constraints of the model are examined, and a type is inferred
for each expression, using the types of signatures and fields, and the
types of quantified variables (which are inferred from the declarations
just like the types of fields).

Example. In the constraint

all d: Directory - Root | some d.~contents

the quantified variable d is given the type Directory, and then
d.~contents is given the type Directory also.

Determining the type of an expression is straightforward. For each re-
lational operator, there’s a corresponding rule. The rule for dot join, for
example, is

If the type of p contains a product P1 -> … -> Pn,
and the type of q contains a product Q1 -> Q2 -> … -> Qm,
and the basic types Pn and Q1 overlap,
then the type of p.q includes the product P1 ->  … -> Pn-1 -> Q2 -> … -> Qm

Note that this rule has the same form as the semantic rule for join itself.
This isn’t surprising, since the type is just an approximation of the value,
computed in the same way, but more crudely.

4.4.3	 Type	Errors
There are two kinds of type error. First, since our logic assumes that all
relations have a fixed arity, it is illegal to form expressions that would
give relations of mixed arity.

Examples. Given the declarations

sig Tea {origin: Country}
sig Country {}

language 111

the expression origin + Country would be illegal, since origin has arity
two, and Country has arity one.

Second, an expression is illegal if it can be shown, from the declara-
tions alone, to be redundant, or to contain a redundant subexpression.
A common and simple case is when an expression is redundant because
it is equal to the empty relation.

Examples. In the context of our file system

sig Object {}
sig Directory extends Object {contents: set Object}
sig File extends Object {}
sig Alias extends File {to: Object}

the following expressions are ill-typed:

· Directory & Alias, the set of objects that are both directories and aliases,
which must be empty, because these signatures are disjoint;

· Alias.contents, the contents of aliases, because contents is declared to
map only directories, and no directory is an alias, so this expression
likewise can be shown to be empty.

The type checker reasons only about types; it doesn’t distinguish the
signatures themselves from other expressions of the same type.

Example. The expression Alias - Object, the set of aliases that aren’t
objects, denotes the empty set, but the type checker will not reject
it, because an expression of the form A - O where A has type Alias
and O has type Object might not be empty.

In this type system, the subtype hierarchy is used primarily to deter-
mine whether types are disjoint. The asymmetry that you’d expect if
you’re familiar with subtypes in programming languages is not present.
In particular, the typing of an expression of the form s.r where s is a set
and r is a relation only requires s and the domain of r to overlap.

Examples. There are four possible relationships between a set and
a relation combined by dot:

· Exact match: Directory.contents is well-typed.
· Subtype: Root.contents is well-typed.
· Supertype: Object.contents is well-typed.
· Disjoint: File.contents is ill-typed.

Only the disjoint case is rejected, because it’s the only one that
always results in the empty set. Note that any of the other com-

11� language

binations may also result in an empty set, so distinguishing them
doesn’t make much sense.

Disjointness of subexpressions doesn’t always imply redundancy. The
arguments of a union expression can certainly be—and often are—dis-
joint.

Example. Even though the expression File & Directory is not well-
typed, the expression File + Directory is. It might be used in a version
of the file system in which no signature were declared for the set
of all objects:

sig Directory extends Object {contents: set File + Directory}
sig File {}
sig Alias {to: File + Directory}

A more subtle case of a type error due to redundancy arises when an
expression is not equal to the empty relation, but can be replaced by it
without affecting the meaning of an enclosing expression.

Example. The expression (Directory + Alias).contents is ill-typed, be-
cause aliases do not have contents; the mention of Alias is redun-
dant, and the expression could have been written equivalently as
Directory.contents.

Example. The expression Directory - Alias is ill-typed, because no
directory is an alias, so the mention of Alias is redundant. The ex-
pression Directory in Alias is ill-typed for a similar reason; it could
have been written equivalently as no Directory.

Discussion

Does the type checker ever issue false alarms?

No. Whenever you get a type error, there is some real redundancy in
your model that you will almost certainly want to eliminate. As we’ve
noted, types are just relational expressions of a particular form, and for
any expression e, its type expression Te will always denote a larger rela-
tion—that is, one containing at least the same tuples and maybe more.
This is what makes type checking sound. When checking an intersec-
tion expression, for example, if the resulting type is empty, the relation
represented by the expression must be empty—and therefore an error.

On the other hand, the type checker offers no guarantees. Traditional
type systems for programming languages are the other way round: they
guarantee no type errors will arise at runtime, but complain about pro-

language 11�

grams that will never in fact go wrong. In modeling, there’s no analogy
to runtime failures, so it’s not clear what guarantees would be useful.

Why does Alloy let you apply fields to supertypes?

Applying a field declared in a subtype to an expression that is known
only to belong to the supertype might have an empty result. But since
the result is not always empty, the Alloy type checker doesn’t forbid it,
or require some kind of cast. The rationale is that even applying a field
of the subtype itself might have an empty result, so there is no addi-
tional benefit to be gained from the burden of casts.

In an object-oriented programming language, things are very different.
If an expression is known to evaluate to an object of some class, then
any method declared in that class can be invoked successfully. The type
system can therefore make a guarantee, in such a situation, that there
will be no problem of invoking a method that is not declared. In a mod-
eling language like Alloy, however, the issue is navigating through rela-
tions, not calling methods, and because relations can be partial, there is
never a guarantee that the result will be nonempty. Moreover, an empty
result is not necessarily an error: that’s why the Alloy type system only
rules out expressions that are always empty rather than those that are
sometimes empty.

Where can I find out more about the type system?

The type system of Alloy is described in detail, with justifications of its
design, in a research paper [14]. An important property of the Alloy lan-
guage is that types are not required to give meaning to a model; the pa-
per explains how this is done with a simple extension of the semantics
to allow mixed-arity relations, and to treat unresolved fields as unions
of their possible resolvents.

4.4.4	 Field	Overloading
A signature defines a local namespace for its declarations, so you can
use the same field name in different signatures, and each occurrence
will refer to a different field. The only restriction is that if two signatures
share a field name, they mustn’t overlap (that is, potentially share ele-
ments, by one being a subtype of the other).

Field references are resolved automatically. When a field name appears
that could refer to multiple fields, the types of the candidate fields are
used to determine which field is meant. If more than one field is pos-
sible, an error is reported.

11� language

Example. Consider adding a field contents to the File signature of
our file system model, mapping a file to a set of blocks:

sig Object, Block {}
sig Directory extends Object {contents: set Object}
sig File extends Object {contents: set Block}

The occurrence of the field name contents in the constraint

all f: File | some f.contents

is trivially resolved, because if it were to refer to the field of Direc-
tory, the expression f.contents would be empty. On the other hand,
the occurrence in

all o: Object | some o.contents

is not resolved, and the constraint is rejected.

Example. Both singers and radio stations have bands:

sig Singer {band: Band}
sig RadioStation {band: set Freq}
sig Band, Freq {}

To say that radio stations don’t have overlapping (frequency) bands,
and that all (singing) bands have at least one singer, we can write,
without ambiguity,

no disj s, s’: RadioStation | some s.band & s’.band
all b: Band | some b.~band

Note how, in the first constraint, the field is resolved using the
first column of the relation, and in the second, using the second
column of the relation.

Resolution of overloading exploits the entire context in which a field
reference appears, and there are no syntactic constraints on how the
field must appear.

Example. The last constraint of the example above can be written
in any of these forms:

all b: Band | some b.~band
all b: Band | some band.b
all b: Band | some s: Singer | s->b in band

language 115

Example. More subtly, given the declarations

sig Object, Block {}
sig Directory extends Object {contents: set Object}
sig File extends Object {contents: set Block}

the occurrence of contents in this constraint

no o: Object | o in o.contents

is resolved to the field of Directory. If it were to refer to the field in
File, the expression o.contents would have type Block. Then, since o
has the type Object, and the types Object and Block are disjoint, the
constraint o in o.contents would be vacuously false.

Occasionally, an overloaded field name can’t be resolved, so you need
to disambiguate the name by elaborating the expression in which it ap-
pears (without changing the meaning). A simple way to do this that al-
ways works is to use the domain restriction operator, writing S <: f for
the field f appearing in signature S.

Example. A ring of network nodes, each linked by a relation next to
its successor, and holding a value that changes over time:

sig Node {next: Node, value: Value one -> Time}
sig Time {next: Time}
sig Value {}

To say that nodes form a ring, we can write

fact {all n: Node | Node in n.^next}

The time steps are ordered with a relation also called next. To say
that this relation is acyclic, we might try writing

fact {no ^next & iden}

but this will be rejected, because the reference to next is ambigu-
ous. To fix it, we can write

no ^(Time <: next) & iden

(although in practice, the ordering of time steps is a common idi-
om for which you’d use a library module instead.)

11� language

Discussion

Can fields be declared in subset signatures?

Yes, they can. Remember, though, that when you extend a signature
using the in keyword, the extensions are not subtypes, and need not
be disjoint. According to the no-overlapping rule, they therefore can’t
share field names. Even if you happen to know that they are in fact dis-
joint (because of some fact you’ve written), the type checker won’t know
and will reject your model. For example,

sig Name, Thing {}
sig Man in Thing {name: Name}
sig Island in Thing {name: Name}

is illegal, even if you add the fact

fact {no Man & Island}

Why can’t overlapping signatures share field names?

The consequence of this rule is that two fields with the same name must
always differ in the type of their first column. So fields with the same
name always have different types, and there is some context in which
they might be distinguished. If the same name could be used for fields
in two overlapping signatures, a more complicated rule would be re-
quired, and the standard trick using domain restriction to resolve field
references would not always work.

How does Alloy’s treatment of overloading relate to Java’s?

Resolving of overloading is used in languages like Java to allow the
names of fields and methods within a class to be chosen without regard
for the names chosen in other classes. But the resolving mechanism is
usually much simpler.

In Java, for example, field references can be overloaded, but they either
stand for self-references (that is, f, being short for this.f), or follow a dot
(as in x.f). In the former case, they resolve by default to fields of the class
in which they appear. In the latter, they are resolved using the type of
the expression preceding the dot. There’s no transpose operator—you
can’t navigate backward.

In Alloy, we want to be able to write an expression x.f in the equivalent
form f.~x, and to write x.(f + g) in place of x.f and x.g. This demands a
more flexible overloading scheme, which doesn’t rely on any particular

language 11�

syntactic form. Alloy’s mechanism for resolution therefore relies not
only on the field’s type and arity but also on the full context in which it
appears.

Is the domain restriction operator a special casting operator?

We saw that if you want the f field of type signature S, you can always
write S <: f and be sure there will be no ambiguity. The domain restric-
tion operator <: might seem to be a kind of cast. But don’t be misled into
thinking that there’s anything special happening here. You could equally
well write (S -> univ) & f instead of S <: f (at least as far as overloading
goes—it’s hardly an attractive form!).

This is an important consequence of the design of Alloy’s type system
[14]: it is implicit and adds no syntax of its own to the language. In fact,
Alloy can be regarded as an untyped language. Overloading doesn’t ac-
tually have to be resolved to understand the meaning of a constraint.
Each field name is taken to be a union of all the fields it might refer to.
When the name is unambiguous, the union will actually be equivalent
to the resolved field. So you don’t need to know anything about types to
read an Alloy model, but you do need to know a little in order to write
them.

4.5	 Facts,	Predicates,	Functions,	and	Assertions

The constraints of a model are organized into paragraphs. Assumptions
are placed in fact paragraphs; implications to be checked are placed in
assertions; constraints to be used in different contexts are packaged as
predicates; and reusable expressions are packaged as functions.

4.5.1	 Facts
Constraints that are assumed always to hold are recorded as facts. A
model can have any number of facts, each a paragraph of its own, la-
beled by the keyword fact, and consisting of a collection of constraints.
The order in which facts appear, and the order of constraints within a
fact, is immaterial. You can give a fact a unique mnemonic name.

Example. Radio stations with nonoverlapping frequency bands:

sig RadioStation {band: set Freq}
fact NoOverlapping {
 no disj s, s’: RadioStation | some s.band & s’.band
 }

11� language

Example. A file system that has no directory cycles, and in which
each object is reachable from the root, and has at most one par-
ent:

sig Object {}
sig Directory extends Object {contents: set Object}
one sig Root extends Directory {}
sig File extends Object {}
fact {
 no d: Directory | d in d.^contents
 Object in Root.*contents
 all o: Object | lone o.~contents
 }

Example. A traffic light system (model diagram in fig. 4.10), in
which, in every state, some light at each junction must show red:

sig LightState {color: Light -> one Color}
sig Light {}
abstract sig Color {}
one sig Red, Yellow, Green extends Color {}
sig Junction {lights: set Light}
fact {
 all s: LightState, j: Junction |
 some s.color.Red & j.lights
 }

Many facts are constraints that apply to each element of a signature’s set.
These can be recorded more succinctly as signature facts. A constraint
immediately following a signature is implicitly quantified over its ele-
ments, and each field reference is implicitly dereferenced, just like fields
mentioned in field declarations. So the signature fact F in

sig A {…} {F}

is equivalent to writing

sig A {…}
fact {all this: A | F’}

where F’ is just like F, but has each mention of a field g appearing in A or
one of its supertypes replaced by this.g.

Example. A network with hosts and links, none of which connects
a host to itself:

language 11�

sig Host {}
sig Link {from, to: Host}
fact {all x: Link | x.from != x.to}

can be expressed more succinctly as

sig Host {}
sig Link {from, to: Host} {from != to}

To prevent a field name from being expanded, you can prefix it with the
symbol @.

Example. A network in which each link has a corresponding link
in the other direction:

sig Host {}
sig Link {from, to: Host}
 {some x: Link | x.@from = to and x.@to = from}

This signature fact is short for

all this: Link |
 some x: Link |
 x.from = this.to and x.to = this.from

Without the @ symbols, it would instead be short for

fig. 4.10 Model diagram for a traffic light system.

Color

Red! Yellow! Green!

Light
State

Junction

<LightState>.color !
Light

lights

1�0 language

all this: Link |
 some x: Link |
 x.(this.from) = this.to and x.(this.to) = this.from

which doesn’t even typecheck.

The constraint implicit in a field declaration can be understood by treat-
ing the declaration as a formula that appears as a signature fact.

Example. The declarations

sig Book {
 homeAddress, workAddress: Name -> Addr,
 address: homeAddress + workAddress
 }
sig Name, Addr {}

can be written equivalently as

sig Book {
 homeAddress, workAddress, address: Name -> Addr }
 {
 address: homeAddress + workAddress
 }
sig Name, Addr {}

Accordingly, you can use the keyword this and the symbol @ in bound-
ing expressions of declarations, although this is rarely necessary.

Discussion

Are signature facts like class invariants in an object-oriented language?

Yes, often they play the same role: to express constraints about individ-
ual members of a set. But signature facts are more expressive, because
fields in Alloy can be “navigated” in any direction (so you can talk about
objects that point to this object), and because of the ability to quantify
in arbitrary ways. For the link examples, the first (“no link connects a
host to itself”) is like a class invariant, but the second (“every link has a
corresponding backlink”) is not.

In fact, it’s good practice to limit the use of signature facts to those
constraints that only apply to elements of the signature set. The implicit
quantification in signature facts can have unexpected consequences
otherwise, especially if you don’t mention any field of the signature. Per-
haps the most egregious and baffling example is this:

language 1�1

sig A {} {some A}

You may be surprised that there are instances of this model in which A
has no elements. Expanding the fact reveals what’s going on; the con-
straint

all this: A | some A

is vacuously true when A is empty, irrespective of the body of the quan-
tification. The lesson is to write the intended constraint in a freestand-
ing fact instead:

sig A {}
fact {some A}

where it now has the desired meaning (that A is nonempty), or to write
it equivalently as

some sig A {}

4.5.2	 Functions	and	Predicates	
Often, there are constraints that you don’t want to record as facts. You
might want to analyze the model with a constraint included and exclud-
ed; check whether a constraint follows from some other constraints; or
declare a constraint so it can be reused in different contexts. Predicates
package expressions for such purposes. Functions package expressions
for reuse.

A function is a named expression, with zero or more declarations for
arguments, and a declaration expression for the result. When the func-
tion is used, an expression must be provided for each argument; its
meaning is just the function’s expression, with each argument replaced
by its instantiating expression.

Example. A function defining the ways in which a traffic light may
change color:

abstract sig Color {}
one sig Red, Yellow, Green extends Color {}
fun colorSequence (): Color -> Color {
 Color <: iden + Red -> Green + Green -> Yellow + Yellow -> Red
 }

A predicate is a named constraint, with zero or more declarations for ar-
guments. When the predicate is used, an expression must be provided

1�� language

for each argument; its meaning is just the predicate’s constraint with
each argument replaced by its instantiating expression.

Example. A predicate constraining a junction so that all lights but
one at most are showing red:

sig Light {}
sig LightState {color: Light -> one Color}
sig Junction {lights: set Light}

fun redLights (s: LightState): set Light {s.color.Red}
pred mostlyRed (s: LightState, j: Junction) {
 lone j.lights - redLights(s)
 }

A predicate can be used to represent an operation, which describes a set
of state transitions, by constraining the relationship between pre- and
poststates.

Example. A rule describing how lights at a junction may change
color, in which s and s’ denote the before and after states respec-
tively:

1 pred trans (s, s’: LightState, j: Junction) {
2 lone x: j.lights | s.color[x] != s’.color[x]
3 all x: j.lights |
4 let step = s.color[x]-> s’.color[x] {
5 step in colorSequence ()
6 step in Red -> (Color - Red) => j.lights in redLights(s)
7 }
8 }

The constraints of this operation say that at most one light changes
(2), and that, for each light at the junction, the lights operate in
sequence (5), and if one turns from red to another color, then all
the others were showing red (6).

This operation illustrates nondeterminism. How the colors change
for the set of traffic lights in a junction is constrained, but it isn’t
fully determined. The predicate allows all the lights to remain the
same color, and it doesn’t say which light changes when all the
lights are red. Now if this operation can be shown to be safe, we
know that any operation that resolves these choices in accordance
with the given constraints is also safe.

language 1��

Alloy has a shorthand similar to the “receiver” convention of object-ori-
ented programming languages, for functions or predicates whose first
argument is a scalar. Rather than writing

pred f (x: X, y: Y, …) {… x …}

you can write

pred X::f (y: Y, …) {… this …}

with an implicit first argument referred to by the keyword this (and
similarly for functions). Whether or not the predicate or function is
declared in this way, it can be used in the form

x::f (y, …)

where x is taken as the first argument, y as the second, and so on.

Example. The function and predicate defined above

fun redLights (s: LightState): set Light {s.color.Red}
pred mostlyRed (s: LightState, j: Junction) {
 lone j.lights - redLights(s)
 }

can be written equivalently as

fun LightState::redLights (): set Light {s.color.Red}
pred LightState::mostlyRed (j: Junction) {
 lone j.lights - s::redLights()
 }

and the invocation expressions s::mostlyRed (j) and mostlyRed (s, j)
and equivalent, however the predicate mostlyRed is declared.

Discussion

How do you decide whether to use a predicate or a fact?

Recall that a predicate only holds when invoked; a fact always holds.
The general rule is therefore that assumptions that always hold go in
facts, but other constraints go in predicates. But this rule is a bit naive.
First of all, you can package constraints as predicates and then include
the predicates in facts. Second, you can actually dispense with facts al-
together, and insert what would have been facts as predicates through-
out. So the choice is more subtle.

1�� language

Because facts are global, they are very convenient. A constraint written
as a fact in just one place applies everywhere, assumed in every predi-
cate and assertion. The downside is a loss of control. Perhaps you want
to check an assertion without that constraint. You can of course simply
comment it out in the fact paragraph while checking that particular as-
sertion. But that’s clumsy; if there are two assertions and you want to
check one with and one without the constraint, you’ll need to be com-
menting and uncommenting the fact as you perform the analysis.

For this reason, a more verbose style is appealing, in which there are very
few facts, or none at all, and constraints are repeated in every context in
which they apply. By packaging the repeated constraints as predicates,
you only need to repeat the name of the predicate, and not the con-
straint itself. For small models, it’s convenient to use facts because they
make the model more succinct and are easily turned into predicates.
For large models, this more sophisticated approach often works best.

When is the receiver syntax used in practice?

Its benefit comes when you have an expression involving a sequence of
function applications. Then, instead of a nested expression such as

h (g (f (x, arg1), arg2), arg3)

in which the function names appear in reverse order of their applica-
tion, amid a mass of parentheses, you can write

x::f(arg1)::g(arg2)::h(arg3)

How are predicates and functions typechecked?

In the obvious way. When checking the body of a predicate or function,
the type checker assumes the formal parameters have the types declared.
When checking an invocation, the checker determines whether the type
of each actual argument and the type of the corresponding formal argu-
ment overlap. If they are disjoint, an error is reported.

4.5.3	 Assertions
An assertion is a constraint that is intended to follow from the facts of
the model. The analyzer checks assertions. If an assertion does not fol-
low from the facts, then either a design flaw has been exposed, or a mis-
formulation. Even assertions that do follow are useful to record, both
because they express properties in a different way, and because they
act like regression tests, so that if an error is introduced later, it may be
detected by checking assertions.

language 1�5

Examples. For a file system in which every object is reachable from
the root directory,

abstract sig Object {}
sig Directory extends Object {contents: set Object}
one sig Root extends Directory {}
sig File extends Object {}
fact {
 Object in Root.*contents
 }

a valid assertion that every object except the root is in some direc-
tory:

assert SomeDir {
 all o: Object - Root | some contents.o
 }

an invalid assertion that no object contains the root directory:

assert RootTop {
 no o: Object | Root in o.contents
 }

and a valid assertion that every file belongs to some directory:

assert FileInDir {
 all f: File | some contents.f
 }

Assertions can be entirely self-contained, without depending on any
facts, implicit or explicit, and can be declared in a model without any
signatures either. In this case, the assertion is a logical conjecture, in-
tended to be a tautology. Such assertions can be used to check math-
ematical properties of operators, or to experiment with different ways
to phrase a constraint.

Example. Assertions claiming that dot is associative for binary re-
lations (correctly), and that union and difference can be manipu-
lated like plus and minus in arithmetic (wrongly):

assert DotAssociative {
 all p, q, r: univ -> univ | (p.q).r = p.(q.r)
 }
assert BadUnionRule {
 all p, q, r: univ -> univ | p = q + r iff p - q = r
 }

1�� language

Assertions are often written using functions and predicates.

Example. The traffic light model of fig. 4.11 includes an assertion
Safe claiming that a key safety property is preserved by the transi-
tions: that if, at a junction, all but one light is red before the transi-
tion, then all but one light is red after.

Discussion

What are assertions used for in practice?

Typically, assertions play two different roles. Some express mundane
properties that aren’t interesting in their own right; they’re written
purely to detect flaws in the model. It’s surprising how effective even a
few such assertions can be in uncovering subtle flaws.

Take our traffic light system, for example. We might believe that we’ve
specified the system to a degree of detail that ensures that it’s determin-
istic: that is, every state has at most one successor. Determinism, in this
case, isn’t in itself an interesting property, but by checking it, we’ll find
holes in the model—places in which detail is missing.

Other assertions express truly essential properties, and are sometimes
more fundamental than the facts of the model. I’ve often found that the
development of the right assertions for a design gives me a completely
different view of what it’s all about that is much clearer and simpler than
the view I started with.

In the traffic light system, for example, there are properties that are
fundamental to its working and which motivate the entire design: for
example, that the lights properly guard the vehicles passing through, by
never showing more than one green light at a time.

Must assertions have names?

Like facts, assertions need not be named. But to check an assertion, you
need to refer to it in a command, so it’s rare to leave it anonymous.

Can a model have assertions but no facts?

A model can have assertions without any explicit facts (as the example
language/theorems demonstrated). Even in the absence of explicit facts,
there are usually facts implicit in the declarations of signatures.

language 1��

4.6	 Commands	and	Scope

To analyze a model, you write a command and instruct the tool to ex-
ecute it. A run command tells the tool to search for an instance of a
predicate. A check command tells it to search for a counterexample of
an assertion.

In addition to naming the predicate or assertion, you may also give a
scope that bounds the size of the instances or counterexamples that will

module language/lights

abstract sig Color {}
one sig Red, Yellow, Green extends Color {}
fun colorSequence (): Color -> Color {
 Color <: iden + Red -> Green + Green -> Yellow + Yellow -> Red
 }

sig Light {}
sig LightState {color: Light -> one Color}
sig Junction {lights: set Light}

fun redLights (s: LightState): set Light {s.color.Red}
pred mostlyRed (s: LightState, j: Junction) {
 lone j.lights - redLights(s)
 }

pred trans (s, s’: LightState, j: Junction) {
 lone x: j.lights | s.color[x] != s’.color[x]
 all x: j.lights |
 let step = s.color[x] -> s’.color[x] {
 step in colorSequence ()
 step in Red -> (Color - Red) => j.lights in redLights(s)
 }
 }

assert Safe {
 all s, s’: LightState, j: Junction |
 mostlyRed (s, j) and trans (s, s’, j) => mostlyRed (s’, j)
 }
check Safe

fig. 4.11 Traffic light model, with safety assertion.

1�� language

be considered. If you omit the scope, the tool will use the default scope
in which each top-level signature is limited to three elements.

Examples. The command

check Safe

in fig. 4.11 checks the safety of the traffic light system, by consider-
ing all transitions involving at most three light states, three junc-
tions, three lights, and three colors.

For the same model, the command

run trans

instructs the analyzer to find an example of a traffic light transi-
tion, using the same scope.

To specify a scope explicitly, you can give a bound for each signature
that corresponds to a basic type. You can give bounds on top-level sig-
natures, or on extension signatures, or even on a mixture of the two, so
long as whenever a signature has been given a bound, the bounds of
its parent and of any other extensions of the same parent can be deter-
mined.

Examples. Given these declarations of a file system

abstract sig Object {}
sig Directory extends Object {}
sig File extends Object {}
sig Alias extends File {}

and an assertion A, the following commands are well formed:

check A for 5 Object
check A for 4 Directory, 3 File
check A for 5 Object, 3 Directory
check A for 3 Directory, 3 Alias, 5 File

but this command is ill-formed

check A for 3 Directory, 3 Alias

because it leaves the bound on File unspecified.

You can set a default scope explicitly, and you can mix a specified de-
fault scope with explicit bounds for particular types, which override
and augment the default scope.

language 1��

Examples. The command

check A for 5

places a bound of 5 on all top-level types (in this case just Object).
The command

check A for 5 but 3 Directory

additionally places a bound of three on Directory, and a bound of
two on File by implication.

Whenever a signature’s size is determined by declarations, that size will
be used as an implicit override.

Example. Given the declarations of fig. 4.11, a command such as

check Safe for 2

will limit the signatures Junction, Light and LightState to two atoms
each, but will assign a size of exactly three to Color.

Keep in mind that a scope declaration only gives an upper bound on the
size of each set. If you want to prescribe the exact size, you can use the
keyword exactly.

Example. The command

check A for exactly 3 Directory, exactly 3 Alias, 5 File

limits File to at most 5 elements, but requires that Directory and
Alias have exactly 3 elements each.

Discussion

Is the scope determined by the size of the instances in the actual system?

Not usually. Occasionally, there is a resource bound in the actual system
that influences the choice of scope. In an analysis we performed of a
proton therapy installation, for example, there were exactly three treat-
ment rooms, so it made sense to limit the corresponding set to three
elements.

But more typically the scope is determined purely by analysis concerns:
an estimate of the size of instance that will be needed to find flaws (and
which will still allow tractable search). For example, you might check a
file system in a scope of 10 because you believe that’s sufficient to catch
almost all design flaws: that any bad scenario can most likely be illus-
trated in a file system with ten objects. The power of the analysis derives

1�0 language

from the fact that there are a huge number of possible file systems con-
taining ten objects, and your model will be checked for each of them.
But of course you don’t intend the model itself to have such a limitation:
a file system that can only hold ten objects would not be very useful.

Why must the scope be specified repeatedly in each command?

Separating scope settings from the model proper is a significant lan-
guage design decision. It prevents the model itself from being polluted
by analysis concerns, and allows the same model to be analyzed under
different scopes. The notion of scope is not unique to Alloy, but it tends
to be handled less systematically in other tools. Many model checkers
either hardwire the scope, or use global constants. A typical description
of a traffic light system would limit the number of traffic lights at a junc-
tion, and all analyses would be performed within this same limit. Worse,
the model will often hardwire a particular configuration. A model with
two traffic lights would not cover the case in which there is only one.

4.7	 Modules	and	Polymorphism

Alloy has a simple module system that allows you to split a model
among several modules, and make use of predefined libraries. Modules
correspond one-to-one with files. Every analysis is applied to a single
module; any other modules containing relevant model fragments must
be explicitly imported.

Each module has a path name that must match the path of its corre-
sponding file in the file system. Paths are interpreted with respect to a
collection of root directories, given as preferences in the tool.

4.7.1	 Module	Declarations	and	Imports
The first line of every module is a module header of the form

module modulePathName

Every module that is used must have an explicit import immediately fol-
lowing the header, whose simplest form is

open modulePathName

Examples. A module that defines a predicate true of relations that
are acyclic:

module library/graphs
pred Acyclic (r: univ -> univ) {no ^r & iden}

language 1�1

and two uses, one in a model of a family:

module family
open library/graphs
sig Person {parents: set Person}
fact {Acyclic (parents)}

and one in a model of a file system:

module fileSystem
open library/graphs
sig Object {}
sig Directory extends Object {contents: set Object}
fact {Acyclic (contents)}

Modules have their own namespaces. A name clash between compo-
nents of different modules can be resolved by referring to components
with qualified names. A signature, predicate or function X in the mod-
ule with path name p has the qualified name p/X. Even if an unqualified
name would be unambiguous, the qualified name may still be used.

Example. A module that refers to the imported predicate Acyclic
using a qualified name to avoid a clash with a predicate of the
same name in the importing module:

module family
open library/graphs
sig Person {parents: set Person}
pred Acyclic () {library/graphs/Acyclic (parents)}

When path names get long, you can declare an alias for an imported
module

open modulePathName as alias

and refer to its components using the alias as a qualifier instead of the
path name.

Example. The same module, using an alias to shorten the reference
to the imported predicate Acyclic:

module family
open library/graphs as g
sig Person {parents: set Person}
pred Acyclic () {g/Acyclic (parents)}

1�� language

4.7.2	 Parametric	Modules
A module can be parameterized by one or more signature parameters,
given as a list of identifiers in brackets after the module name. Any im-
porting module must then instantiate each parameter with the name of
a signature. Parameterization is just a syntactic mechanism; the effect
of instantiating a module is just like importing a copy of the module
with the instantiating signature names substituted for the parameters
throughout.

Example. A parameterized module

module library/graphs [t]
pred Acyclic (r: t -> t) {no ^r & iden}

and two modules that use it

module family
open library/graphs [Person]
sig Person {parents: set Person}
fact {Acyclic (parents)}

module fileSystem
open library/graphs [Object]
sig Object {}
sig Directory extends Object {contents: set Object}
fact {Acyclic (contents)}

The most common use of parameterized modules is for generic data
structures, such as orderings, queues, lists, and trees. The type param-
eters represent the types of the elements held in the data structure.

Example. A parameterized list module:

module library/list [t]
sig List {}
sig NonEmptyList extends List {next: List, element: t}
fact Canonical {
 no disj p, p’: List | p.next = p’.next and p.element = p’.element
 }
fun List::first (): t {this.element}
fun List::rest (): List {this.next}
fun List::addFront (e: t): List {
 {p: List | p.next = this and p.element = e}
 }

language 1��

Any module declared with parameters could have been declared instead
without them, using univ. The advantage of parameters is that they allow
stronger type checking; the disadvantage is that they require a separate
instantiation for each use.

Discussion

When are module aliases useful?

Aliases are most useful when a parameterized module is imported more
than once with different instantiations of its parameters, in which case
the names of components will always need to be qualified. For example,
we might have a resource allocation module parameterized by resourc-
es and the users they are allocated to:

module general/resourceAllocation [user, resource]
…
pred Allocate (…) {…}

and used in a model of a train system:

module trainSystem
open general/resourceAllocation [Train, Track]
 as trainResource
open general/resourceAllocation [Track, Current]
 as trackResource

A name such as general/resourceAllocation[Train, Track]/Allocate now be-
comes trainResource/Allocate using the alias.

Can signature extensions cross module boundaries?

Yes. An importing module can extend a signature declared in an im-
ported module, and vice versa. Here, for example, is a module that adds
a name field to a signature:

module named [t]
sig named_t extends t {name: Name}
fact {all disj a, b: t | a.name != b.name}
fact {t = named_t}

Now if we write

open named [S]

for any signature S, any element x of S will now have a distinct name
x.name.

1�� language

4.8	 Integers	and	Arithmetic

Section 3.7 introduced expressions with integer values. Recall that #e is
an integer representing the number of tuples in the relation denoted by
e, and that such expressions can be combined with addition and sub-
traction, and compared.

Examples. A hand is “three of a kind” if it consists of three cards,
all of the same suit:

sig Card {suit: Suit}
sig Suit {}
pred ThreeOfAKind (hand: set Card) {
 #hand.suit = 1 and #hand = 3
 }

You may wonder whether integers can appear as atoms in relations. In-
tegers themselves are not atoms, but associated with each integer value
there is an integer atom that holds that integer value, allowing the inte-
ger effectively to be included in a relation.

For an integer-valued expression e, the expression Int e denotes the inte-
ger atom holding the integer value of e. Given an expression e denoting
a set of integer atoms, the integer-valued expression int e denotes the
sum of the integer values of those atoms. The keyword Int represents
the set of all integer atoms.

From a typechecking perspective, there is a type int associated with in-
teger-valued expressions, and a type Int representing sets of integer at-
oms. You can think of Int as a predefined signature, like univ. The special
operators can then be given these types:

int: Int -> int
Int: int -> Int

Example. A weighted graph, in which a field adj maps each node
to its adjacent nodes and their weights, with a constraint that self-
connections have zero weight:

sig Node {
 adj: Node -> lone Int
 }
fact {
 all n: Node |
 let w = n.adj[n] |
 some w => int w = 0
 }

language 1�5

Discussion

Why leave integers to the end?

Integers are actually not very useful. If you think you need them, think
again; there is often a more abstract description that matches the prob-
lem better. Just because integers appear in the problem domain does
not mean that they should be modeled as such. To figure out whether
integers are necessary, ask yourself what properties are actually relied
upon. For example, a communication protocol that numbers its mes-
sages may rely only on the numbers being distinct; or it may rely on
them increasing; or perhaps even being totally ordered. In none of these
cases should integers be used. Of course, if you have a heavily numeri-
cal problem, you’re likely to need integers (and more), but then Alloy is
probably not suitable anyway.

Does Alloy have a multiplication operator?

No, it doesn’t. Fortunately, it’s rarely needed in structural models. The
kinds of model that need multiplication tend to be heavily numerical,
and not well suited to Alloy anyway.

How are integers scoped in Alloy?

In scope specifications, a setting for Int limits the number of Int atoms,
whereas a setting for int gives the maximum bit-width for integers. For
example, a command that includes the scope

3 Int, 6 int

results in a search limited to at most three Int atoms, and involving in-
tegers from −31 to +31.

Is Alloy’s Int like Java’s Integer?

Yes. The distinction between Int and int in Alloy is very similar to Java’s
distinction between primitive integer values and Integer objects. It has
a different purpose though. If integer values were treated as atoms, we
would need an atom for every possible integer value within the scope,
which would make the analysis less tractable. The distinction could be
hidden syntactically, with implicit coercions between Int and int, but
then we wouldn’t be able to overload the + and - operators.

1�� language

Are integer objects unique to the values they carry?

Yes. The following assertion is valid:

assert UniqueInts {all i, j: Int | int i = int j => i = j}

What about booleans? Is there no boolean type in Alloy?

Alloy has no boolean type. At first sight, this is very strange, especially
for a language based on first-order logic. Formulas, of course, do have
boolean values, but expressions never do. To see why not, suppose Al-
loy had a boolean type that could be used in declarations such as

sig Phone {offhook, ringing: boolean}

The motivation for such a type would be to allow us to write constraints
like this:

all p: Phone | p.offhook => not p.ringing

But now we run into trouble. A term like p.ringing will in general denote
a set of booleans. So what will be the value of not p.ringing when the
set contains zero booleans, or more than one? There is no good way
out of this. Perhaps you could reject such expressions, and only allow
constraints, like the one above, in which they don’t appear? This is not
easy, because it involves reasoning about the domains of functions. Or
perhaps you could extend the interpretation of the standard logical op-
erators over sets of boolean values?

These problems are just a particular case of the old problem of partial
functions and their application, which are avoided in Alloy by offering
only relational image, and no function application (see the discussion in
subsection 3.4.3). Admitting a boolean type would reintroduce all that
complexity, because the boolean expressions involve function applica-
tions, for little benefit.

If you really want booleans, you can define a boolean type of your own:

module booleans
sig Boolean {}
one sig True, False extends Boolean {}

and now you can write the above constraint as

module phones
open booleans
sig Phone {offhook, ringing: Boolean}
fact {all p: Phone | p.offhook = True => not p.ringing = True}

language 1��

and, if you’re a real glutton for punishment, you could define extended
versions of the logical operators too, such as this version of negation,
which gives Not e as false when e is not a scalar:

…
fun Boolean::Not (): Boolean {if this = False then True else False}
..

and now you can write things like

…
fact {all p: Phone | Implies (p.offhook, Not (p.ringing)}

In fact, the Alloy library includes such a module. It’s useful when bool-
ean values must be closely modeled, for example in reasoning about
code. But for design modeling, this is the wrong approach. The way to
classify objects is not to associate them with boolean values using at-
tributes, but to declare subtypes:

sig Phone {calling: set Phone}
sig Offhook, Ringing extends Phone {}

Now the constraint that an offhook phone is not ringing is implicit in
the declarations. For a dynamic classification, you could associate with
each attribute the set of times at which it holds:

sig Phone {
 calling: Phone -> Time,
 offhook, ringing: set Time
 }

and the constraint now becomes

all t: Time | no offhook.t & ringing.t

Using set operators, constraints are more succinct than they would have
been with boolean attributes, without any of the complications.

5:	Analysis

The first principle is that you must not fool yourself, and you are the easi-
est person to fool.—Richard P. Feynman

Analysis brings software abstractions to life in three ways. First, it en-
courages you as you explore, by giving you concrete examples that re-
inforce intuition and suggest new scenarios. Second, it keeps you hon-
est, by helping you to check as you go along that what you write down
means what you think it means. And third, it can reveal subtle flaws that
you might not have discovered until much later (or not at all).

This chapter explains the form of analysis that underlies Alloy, and dis-
cusses its power and limitations. The key idea is the specification of a
scope, which bounds the sizes of the signatures, and exhaustive search
within the scope for examples or counterexamples.

5.1	 Scope-Complete	Analysis

5.1.1	 Instance	Finding	and	Undecidability	Compromises
Checking an assertion and running a predicate reduce to the same
analysis problem: finding some assignment of relations to variables that
makes a constraint true. So rather than referring to both problems, we’ll
refer just to the problem of checking assertions.

Alloy’s relational logic is undecidable. This means that it is impossible to
build an automatic tool that can tell you, with perfect reliability, whether
an assertion is valid—that is, holds for every possible assignment. Some
compromise is therefore necessary.

The traditional compromise is embodied in theorem proving. An auto-
matic theorem prover attempts to construct a proof that an assertion
holds. If it succeeds, the assertion is valid. If it fails, however, the asser-
tion may be valid or invalid. Unfortunately, it can be hard to tell whether
the failure to verify the assertion was due to a faulty assertion, to limita-
tions of the prover itself, or to a lack of appropriate guidance from the
user.

The analysis underlying Alloy, instance finding, makes a different com-
promise. Rather than attempting to construct a proof that an assertion

1�0 analysis

holds, it looks for a refutation, by checking the assertion against a huge
set of test cases, each being a possible assignment of relations to vari-
ables. If the assertion is found not to hold for a particular case, that case
is reported as a counterexample. If no counterexample is found, it’s still
possible that the assertion does not hold, and has a counterexample that
is larger than any of the test cases considered.

This compromise is a better match for lightweight modeling. Since the
analysis is applied repeatedly and incrementally throughout the devel-
opment of an abstraction, it will most often be presented with invalid
assertions. Instance finding is well suited to analyzing invalid asser-
tions because it generates counterexamples, which can usually be easily
traced back to the problem in the description, and because invalid as-
sertions tend to be analyzed much more quickly than valid ones (since
a valid assertion requires the entire space of possible instances to be
covered, whereas, for an invalid assertion, the analysis can stop when
the first instance has been found).

5.1.2	 The	Notion	of	Scope
To make instance finding feasible, a scope is defined that limits the size
of instances considered. The analysis effectively examines every in-
stance within the scope, and an invalid assertion will only slip through
unrefuted if its smallest counterexample is outside the scope.

You might think that a good strategy would be for the analyzer to start
with a small scope and increment it automatically until either a counter-
example has been found or some preset time limit has been exceeded.
But this presupposes a scope that is just a number. A richer notion of
scope turns out to be more useful, in which each signature is bounded
separately, under the user’s control. For example, an analysis of a rail-
way switching operation may call for a scope of only two states (the
before and after states), and only one junction, but a larger number of
track segments and trains.

The scope thus defines a multidimensional space of test cases, each di-
mension corresponding to the bound on a particular signature. Even a
small scope usually defines a huge space. In the default scope of 3, for
example, which assigns a bound of three to each signature, each binary
relation contributes 9 bits to the state (since each three elements of the
domain may or may not be associated with each three elements of the
range)—that is, a factor of 512. So a tiny model with only four relations
has a space of over a billion cases.

analysis 1�1

5.1.3	 The	Small	Scope	Hypothesis
Isn’t instance finding just testing? In a sense it is: the assertion is checked
against a finite set of cases that occupies only an infinitessimally small
proportion of the space of possible cases. Dijkstra’s dictum [13]

Program testing can be used to show the presence of bugs, but
never to show their absence

applies also to instance finding. But the weakness of testing goes be-
yond its inability to show the absence of bugs; it can’t usually show their
presence either. Most bugs in code elude testing, and the challenge in
writing test suites is to catch more of the bugs that are there, not to
show that no bugs remain (which is a very different, and even harder,
problem).

Instance finding has far more extensive coverage than traditional test-
ing, so it tends to be much more effective at finding bugs. In short:

Most bugs have small counterexamples.

That is, if an assertion is invalid, it probably has a small counterexample.
I call this the “small scope hypothesis,” and it has an encouraging impli-
cation: if you examine all small cases, you’re likely to find a counterex-
ample.

Discussion

What role do theorem provers have in analyzing software abstractions?

Theorem provers and instance finders play complementary roles. Once
the Alloy Analyzer has failed to find a counterexample to an assertion,
you could use a theorem prover to prove that the assertion holds in all
scopes. Completing a proof with the aid of a theorem prover usually
demands an effort an order of magnitude greater than the modeling ef-
fort that preceded it, so for most applications, it’s not cost-effective. For
checking safety-critical abstractions, however, the additional assurance
obtained from proof may be worthwhile.

Does analysis depend on having perfect assertions?

Some people assume that, without assertions that capture some platon-
ic “higher-level specification,” analysis is not worthwhile. On the con-
trary, even simple forms of analysis are beneficial. Simple simulation
predicates often generate surprising scenarios, and formulating basic
sanity checks as assertions can expose deep errors. Of course, if you

1�� analysis

can express the critical properties of a software design with assertions,
then you can use analysis to check them, and a lack of counterexamples
is more significant.

Is the primary purpose of analysis to expose subtle bugs?

The case for formal methods is often based on the prospect of catching
subtle bugs that elude testing. But in practice the less glamorous analy-
ses that are applied repeatedly during the development of an abstrac-
tion, and which keep the formal model in line with the designer’s intent,
are far more important. Software, unlike hardware, rarely fails because
of a single tiny but debilitating flaw. In almost all cases, software fails
because of poor abstractions that lead to a proliferation of bugs, one of
which happens to cause the failure.

What makes the logic undecidable?

First-order logic is undecidable, unless some severe restrictions are
placed on the constraints that can be written. For example, you can re-
strict the logic to “monadic” predicates (that is, predicates with only a
single argument), which in a relational setting eliminates relations, leav-
ing only sets and scalars. Alternatively, you can restrict how quantifiers
are used, for example allowing only certain “prefix” patterns in which
all quantifiers appear at the start of an assertion in a particular pattern
of existential and universal quantifiers. Eliminating quantifiers wouldn’t
make our logic decidable, however, because the relational calculus, con-
sisting of only binary relations and our relational operators (notably, dot
join) is undecidable. In short, there appears to be no practical logic that’s
rich enough to capture software abstractions that is still decidable.

For a gentle introduction to the notion of undecidability, see chapter 8
of David Harel’s book [25]. For a comprehensive treatment of the decid-
ability of first-order logic and its variants, see [6], which includes a nice
classification that is available also online in a short paper [20].

Why the term “instance”?

In standard mathematical terminology, an instance of a constraint is
called a “model,” and a tool that finds models is a “model finder.” But the
word “model” is so heavily overloaded that it seemed best to avoid it.

Is the idea of scope new?

A technique known as “model checking” was developed in the 1980’s
for analyzing protocols and hardware designs that could be expressed

volume1.indd 142 12/8/05 9:29:53 AM

analysis 1��

as finite state machines. The technique was so effective that it was soon
applied to unbounded systems, by constructing a description that ar-
tificially (and often somewhat arbitrarily) made the system finite. In
fact, this process is now seen as so fundamental to model checking that
people have come to think that this is what the word “model” refers to
in its name: a finite model of an infinite system. (The word was actually
intended in its mathematical sense, that the analysis checks whether
the state machine is a “model” of a temporal logic formula.) So the idea
of searching within finite bounds, relying—at least implicitly—on the
small scope hypothesis to find bugs, is not new.

What is perhaps new to Alloy is the separation of the scope specifi-
cation from the model proper, and the ability to adjust the scope in a
fine-grained manner. The separation prevents the model from being
polluted with analysis concerns, and makes it easy to run different
analyses with different scopes without adjusting the model itself. The
fine-grained control goes beyond static configuration parameters (such
as the number of processes in a network) to bounds on dynamically al-
located data (such as the number of messages in a queue, or the number
of objects in a heap).

What use is a design that only works in a small scope?

This question exposes a common misunderstanding of the notion of
scope. Of course a system that only worked when each type had no
more than a small number of elements would be useless. The point of
the small scope hypothesis is that systems that fail on large instances
almost always would fail on small ones with similar properties, even if
such small instances don’t occur in practice. So by checking all small
instances, we are effectively checking for large ones too.

What about resource allocation limits?

Implementations often have built-in resource allocation limits that
cause failures when crossed. This would seem to contradict the small
scope hypothesis, because the failures only occur on huge instances
that exceed the allocation limits. Abstractions don’t have these issues,
though, because resource allocation is either factored out, or represent-
ed more abstractly, either by a parameter in the model which can be set
arbitrarily low, or by nondeterministic behavior.

1�� analysis

Can you prove the small scope hypothesis?

No—that’s why I call it a hypothesis. It makes a claim about the asser-
tions that arise in practice, not the space of all possible assertions. One
can construct an invalid assertion whose smallest counterexample is
just beyond any given scope. Fortunately, inadvertent errors are rarely
so devious in practice. It’s important to bear in mind, nevertheless, that
instance finding is an incomplete analysis, and sometimes the scope
needed to find a bug is larger than intuition would suggest.

If there were a scope large enough to find a counterexample to any
invalid assertion, or even a way to compute a large enough scope on
an assertion-by-assertion basis, it would be possible—in principle at
least—to determine whether or not an assertion is valid. This would
contradict the undecidability of the logic, so it cannot be done. Never-
theless, there are subsets of first-order logic that have a “small model
theorem,” which allows a sufficient scope to be determined from the
structure of an assertion: an example relevant to modeling is the theory
of set-valued fields [45].

5.2	 Instances,	Examples,	and	Counterexamples

5.2.1	 Analysis	Constraints	and	Variables
When you run a predicate or check an assertion, the analyzer searches
for an instance of an analysis constraint: an assignment of values to the
variables of the constraint for which the constraint evaluates to true.

In the case of a predicate, the analysis constraint is the predicate’s con-
straint conjoined with the facts of the model—both the explicit facts
appearing in fact paragraphs, and the facts that are implicit in declara-
tions. An instance is an example: a scenario in which both the facts and
the predicate hold.

In the case of an assertion, the analysis constraint is the negation of
the assertion’s constraint conjoined with the facts of the model. An in-
stance is a counterexample: a scenario in which the facts hold but the
assertion does not (or, equivalently, a scenario in which the assertion
fails to follow from the facts).

The variables that are assigned in an instance comprise

· the sets associated with the signatures;
· the relations associated with the fields;
· and, for a predicate, its arguments.

analysis 1�5

Example. As a running example, we’ll use a version of the address
book taken from chapter 2, shown in fig. 5.1, which has the merit
of including every basic language construct. Each address book b
has a mapping b.addr from names not only to addresses, but also to
names (thus allowing multiple levels of indirection). The signature
Target is declared for the purpose of this generalization. The fact
says that these indirections never form cycles. The add operation
simply adds a mapping from a name to a target. The lookup func-
tion returns the set of addresses reachable from the name—that
is, the leaves of the tree. Finally, the assertion addLocal makes the
(incorrect) claim that an addition for a name n only affects lookups
for n itself.

For the command run add, the analysis variables are:

· the signatures Target, Addr, Name, and Book;
· the field addr; and
· the four arguments to the add predicate: b, b’, n, and t.

module analysis/addressBook

abstract sig Target {}
sig Addr extends Target {}
sig Name extends Target {}
sig Book {addr: Name -> Target}

fact Acyclic {all b: Book | no n: Name | n in n.^(b.addr)}
pred add (b, b’: Book, n: Name, t: Target) {
 b’.addr = b.addr + n -> t
 }
run add for 3 but 2 Book
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}

assert addLocal {
 all b,b’: Book, n,n’: Name, t: Target |
 add (b,b’,n,t) and n != n’ => lookup (b,n’) = lookup (b’,n’)
 }
check addLocal for 3 but 2 Book

fig. 5.1 An address book example.

1�� analysis

The analysis constraint is the conjunction of the constraints im-
plicit in the signatures

Name in Target
Addr in Target
no Name & Addr
Target in Name + Addr
no Book & Target

the constraints implicit in field and argument declarations

addr : Book -> Name -> Target
b: Book
n: Name
t: Target

the explicit facts, in this case just Acyclic

all b: Book | no n: Name | n in n.^(b.addr)

and the body of the predicate being run

b’.addr = b.addr + n -> t

Here is the first sample instance generated by running the com-
mand, being the case in which a name/address pair is added that
is already present:

Target = {(Addr_0), (Name_0)}
Addr = {(Addr_0)}
Name = {(Name_0)}
Book = {(Book_0), (Book_1)}
addr = {(Book_0, Name_0, Addr_0), (Book_1, Name_0, Addr_0)}
b = {(Book_0)}
b’ = {(Book_0)}
n = {(Name_0)}
t = {(Addr_0)}

For consistency, I’ve used the format of chapter 3, in which the ele-
ments of sets were parenthesized to remind the reader that, from
a semantic perspective, sets are represented in Alloy as relations.
The Alloy Analyzer’s textual output has a more conventional (and
slightly friendlier) format that uses the declarations of relations
to determine how they should be formatted. Fig. 5.2 shows three
forms of output offered by the analyzer: this textual form, a tree
form, and the diagrammatic form.

analysis 1��

module alloy/lang/univ
sig univ = {Addr_0, Book_0, Book_1, 
Name_0}
module analysis/addressBook
sig Target extends univ = {Addr_0, 
Name_0}
sig Addr extends Target = {Addr_0}
sig Name extends Target = {Name_0}
sig Book extends univ = {Book_0, 
Book_1}
  addr:  analysis/addressBook/Name  
    -> analysis/addressBook/Target =
      {Book_0 -> Name_0 -> Addr_0,
       Book_1 -> Name_0 -> Addr_0}
Skolem constants
add_b = Book_0
add_b’ = Book_0
add_n = Name_0
add_t = Addr_0

fig. 5.2 A generated instance for the run command of fig. 5.1,
as shown by the Alloy Analyzer in tree form (above left),

textual form (above right) and diagram form (below).

1�� analysis

For the command check addLocal, the variables include the signa-
tures and the field addr, but no predicate arguments. The analysis
constraint is the conjunction of the constraints implicit in signa-
ture and field declarations, and the explicit fact, as before, and ad-
ditionally, the negation of the assertion

some b,b’: Book, n,n’: Name, a: Addr |
 add (b,b’,n,a) and n != n’ and not lookup (b,n’) = lookup (b’,n’)

which becomes

some b,b’: Book, n,n’: Name, a: Addr |
 b’.addr = b.addr + n -> t
 and n != n’
 and not n.^(b.addr) & Addr = n’.^(b’.addr) & Addr

when the predicate add and the function lookup are expanded. A
counterexample to this assertion is shown graphically in Fig. 5.3 in
three different views produced by making different visualization
selections in the Alloy Analyzer, and using the projection facil-
ity as described in section 3.3. Note the labels that indicate which
atoms are the witnesses for the quantified variables: addLocal_b, for
example, is the witness for the variable b of addLocal. These are
skolem constants explained in subsection 5.2.2.

Discussion

Aren’t multiple values of a variable needed to handle pre- and post-
states?

No, no, no! In the variables for the analysis of addLocal, b and b’ are dis-
tinct variables; as far as the analyzer is concerned, they have no more in
common than any other pair of variables, even though they happen to
represent the before and after values of an address book.

So variables don’t actually vary?

That’s right. Our variables, like the variables in mathematics and physics
(and unlike variables in an imperative program), only vary in the sense
that they can be assigned a variety of values. It’s standard practice in
engineering to use different names to describe phenomena at differ-
ent points in time; it’s what makes reasoning by algebraic manipulation
possible. In computer science, the use of distinct names for describing
pre- and poststates goes back at least to the use of auxiliary variables in
Hoare logic.

analysis 1��

fig. 5.3 A generated instance for the check command of fig. 5.1,
as shown by the Alloy Analyzer in diagram form

with the default visualization settings (top),
projected onto the set Book (middle),

and with just Book atoms showing (bottom).

150 analysis

Why aren’t there primed variables for the poststate values of fields too?

That approach is taken by most modeling languages, especially Z [65].
The approach we’ve taken in this book is more like the approach taken
in physics, in which a time-varying phenomenon is modeled as a func-
tion from times to values. The addr field, for example, can be viewed as a
function with a value x.addr for each book x. The multiple address books
might represent distinct books at a given time, or — as in this case—the
same book at different times. In the leader election and hotel locking
examples of chapter 6, time is made fully explicit, and a time-varying
state component is modeled by a field f with times in the last column, so
that f.t represents the value at time t.

Is Alloy the first language to use this approach?

No. The approach was pioneered by John McCarthy in his situation cal-
culus [51].

How does the analysis work?

Every analysis involves solving a constraint: either finding an instance
(for a run command) or finding a counterexample (for a check). The Al-
loy Analyzer is therefore a constraint solver for the Alloy logic. In its
implementation, however, it is more of a compiler, because, rather than
solving the constraint directly, it translates the constraint into a boolean
formula and solves it using an off-the-shelf SAT solver.

SAT stands for “satisfiability”: a solution to a boolean formula is an
assignment of values to the formula’s boolean variables that “satisfies”
the formula. In the last decade, SAT solver technology has advanced
dramatically, and a state-of-the-art SAT solver can often solve a for-
mula containing thousands of boolean variables and millions of clauses.
The Alloy Analyzer is bundled with several SAT solvers, the fastest of
which are Chaff [55] and Berkmin [19], and a preference setting lets you
choose which is used.

The translation into a boolean formula is conceptually very simple.
Think about a particular value of a binary relation r from a set A to a
set B. This value can be represented as an adjacency matrix of 0’s and
1’s, with a 1 in row i and column j when the ith element of A is mapped
to the jth element of B. So the space of all possible values of r can be
represented by a matrix not of boolean values but of boolean variables.
A variable ri,j is placed in each position of the matrix. The dimensions
of these matrices are determined by the scope; if the scope bounds A by

analysis 151

3 and B by 4, for example, r will be a 3×4 matrix containing 12 boolean
variables, and having 212 possible values.

Now, for each relational expression, a matrix is created whose elements
are boolean expressions. For example, the expression corresponding to
p + q for binary relations p and q would have the expression pi,j ∨ qi,j in
row i and column j, because Ai is related by p + q to Bj when it is related by
p or by q. For each relational formula, a boolean formula is created. For
example, the formula corresponding to p in q would be the conjunction
of pi,j ⇒ qi,j over all values of i and j, because p in q holds if whenever p
relates Ai to Bj, then q does also.

The resulting boolean formula is passed to the SAT solver. If it finds no
solution, the Alloy Analyzer just reports that no instance or counterex-
ample has been found. If it does find a solution, the solution is mapped
back into an instance. If the variable ri,j is true, for example, the tuple
relating the ith element of A to the jth element of B will be included in
the value of the relation r.

In performing the translation from the Alloy logic to a boolean formula,
the Alloy Analyzer applies a variety of optimizations. The most signifi-
cant and interesting of these is symmetry breaking. Because atoms are
uninterpreted (see section 3.2), every Alloy model has a natural symme-
try: you can take any instance of a command and create another one by
permuting the atoms. This means that when an analysis constraint has
a solution, it actually has a whole set of solutions corresponding to all
the ways in which the atoms of the solution can be permuted. Concep-
tually, we can divide the space of assignments (possible solutions) into
equivalence classes, with two assignments belonging to the same class
if one can be permuted into the other. The solver need then only look
at one assignment in each equivalence class. Since there are very many
permutations, the equivalence classes are very large, and restricting the
search in this way can dramatically improve its performance.

In fact, the Alloy Analyzer influences the search only indirectly. It gen-
erates symmetry-breaking constraints from the model, and conjoins
them to the analysis constraint. If they were perfect, these constraints
would rule out all but one assignment in each equivalence class, but that
turns out to require very large symmetry-breaking constraints, which
would overload the solver and actually damage performance. The ana-
lyzer therefore generates a much smaller constraint, which breaks only
some of the symmetries, but in practice eliminates a very high propor-
tion (over 99%) of the assignments.

15� analysis

The simplest case of symmetry breaking applies when a model uses
util/ordering. This library module is used to impose an ordering on a
signature, and declares a relation next over the signature being ordered.
Since the atoms that are being ordered are interchangeable, they can
be ordered in their natural lexical order without any loss of generality.
This is why ordering a signature S with util/ordering will always order its
elements S0, S1, S2, etc., which is good not only for performance (since
other orders aren’t considered) but also for visualization.

The idea of writing models in a relational logic and using a constraint
solver to analyze them was first developed for a predecessor of Alloy
called Nitpick [35]. Nitpick’s tool worked by enumerating entire rela-
tion values, and had a rather elaborate symmetry-breaking scheme [34,
36]. A scheme for solving Nitpick formulas by reduction to satisfiability
was not very successful [11], because it used a BDD to represent the
boolean formula—a data structure that had worked very well in other
areas but was not a good match to relational logic.

The basic scheme of translation of Alloy to SAT was developed in 1997
[31, 32], and worked much better, largely due to a switch (suggested by
Greg Nelson) from BDD’s to SAT. The algorithms in the current version
of the Alloy Analyzer were developed primarily by Ilya Shlyakhter [64],
in particular this symmetry breaking scheme [63], and an optimization
for detecting opportunities for sharing in the generated formula.

5.2.2	 Skolemization
If the analysis constraint contains an existential quantifier, the analyzer
can often (depending on the exact form of the constraint) provide a
witness: a value for the quantified variable that makes the body of the
existentially quantified formula true. This is done by extending the set
of variables bound in the instance to include the quantified variables,
using a transformation known as skolemization.

Let’s start by seeing how an existential quantifier is handled without
skolemization. Suppose our analysis constraint has the form

some x: S | F

where S is a signature and F is some arbitrary constraint in which x ap-
pears. If the signature S is assigned a bound of k by the scope, it can be
represented by atoms

S1, S2, …, Sk

and the quantification can be expanded to

analysis 15�

F [S0/x] or F [S1/x] or … or F [Sn/x]

where F [Si /x] is the constraint F, with Si substituted for x. Note that the
variable x does not appear explicitly in this new constraint, so when an
instance is generated, it may not be clear which disjunct is true.

Skolemization takes the original analysis constraint, and instead of ex-
panding the quantifier, replaces the bound variable by a free variable,
giving

(sx: S) and F [sx/x]

where sx is a new free variable. It’s easy to see that this new analysis con-
straint will have an instance whenever the old one does, but it will be a
more helpful one, because it will assign a value to sx.

There’s nothing magical about skolemization. A free variable in the
analysis constraint—such as a signature or relation—is treated by the
constraint solver as if it were existentially quantified. Skolemization is
simply making implicit an explicit existential quantification.

Example. The analysis constraint for the check addLocal command
of fig. 5.1 includes

some b,b’: Book, n,n’: Name, a: Addr |
 add (b,b’,n,a) and n != n’
 and not lookup (b,n’) = lookup (b’,n’)

which can be skolemized to

b: Book and b’: Book and n: Name and n’: Name and a: Addr
and add (b,b’,n,a) and n != n’
and not lookup (b,n’) = lookup (b’,n’)

As noted in section 5.2.1, the counterexample to addLocal (shown
in fig. 5.2) includes the following bindings of skolem constants:

addLocal_b = Book_0
addLocal_b’ = Book_1
addLocal_n = Name_0
addLocal_n’ = Name_1
addLocal_t = Addr_0

The skolem constants are named by prefixing the corresponding
variables names with the names of the predicates or functions in
which they appear (and with an additional index if a name is used
more than once in the same lexical scope.)

15� analysis

The existential quantifier need not be outermost. Suppose the analysis
constraint takes the form

all x: S | some y: T | F

where S and T are signatures, and F again is some arbitrary constraint.
This can be skolemized to

(sy: S -> one T) and (all x: S | F [x.sy/y])

where F [x.sy/y] is the constraint F, but with each occurrence of y re-
placed by the expression x.sy.

This is more complicated, but the intuition is still straightforward. If
the original constraint has an instance, then there is a value for y that
makes F true for each value of x. This value of y can be regarded as being
obtained by applying a function sy to the appropriate value of x, so the
quantification over y can be eliminated by introducing such a function
as a variable whose value is to be determined.

Example. The analysis constraint for the run command in this
model

sig Name, Address {}
sig Book {addr: Name -> Address}
pred show () {
 all b: Book | some n: Name | some b.addr[n]
 }
run show for 3

can be skolemized to

(sn: Book -> one Name) and (all b: Book | some b.addr [b.sn])

whose instances will include a variable sn that’s a relation showing,
for each book b, a witness of a name b.sn that it maps.

Skolemization can be applied not only to scalars but also to sets and
relations. Nothing in the arguments above required the existentially
quantified variables to be scalars. In the simple case of an outermost
quantifier, the introduced variable becomes a set or relation. In the case
of an inner quantifier, the introduced variable is no longer a function,
but a relation (to obtain a set), or a multirelation (to obtain a relation).

analysis 155

Example. The analysis constraint for

assert BadUnionRule {
 all s, t, u: set univ | s = t + u iff s - t = u
 }
check BadUnionRule

skolemizes, after negation, to

ss: set univ and
st: set univ and
su: set univ and
not (ss = st + su iff ss - st = su)

and gives counterexamples that show witnesses for the bound
variables, such as

ss = {(U0)}
st = {(U0)}
su = {(U0)}

Discussion

What are the advantages of skolemization?

It has three advantages. First, it causes witnesses to be generated for
bound variables, as explained and illustrated in the previous section.
Second, it allows many higher-order quantifications—such as that of
the assertion BadUnionRule—to be analyzed that would otherwise not
be analyzable at all. Third, it tends to improve the performance of the
analysis even for first-order quantifications, because the unfolding as-
sociated with existential quantifiers grows constraints dramatically.

5.3	 Unbounded	Universal	Quantifiers

This section explains an important and subtle limitation of finite in-
stance finding. Fortunately, it doesn’t arise very often in practice, and it
leads to the presence of surprising counterexamples, rather than sur-
prising omissions (which would be far worse).

The problem arises when a signature is intended to represent all pos-
sible values of a composite structure. This contradicts the semantics of
Alloy, in which a signature denotes just some set of values. The contra-
diction only becomes apparent when universal quantification is used in
a particular way.

15� analysis

5.3.1	 Generator	Axioms	and	Exploding	Scopes
Suppose, for example, we want to check that sets are closed under
union—that is, the union of any two sets is also a set. We can represent
a set as an object by declaring the signature

sig Set {
 elements: set Element
 }

along with a signature for the elements

sig Element {}

Now we can write an assertion saying that, for any pair of sets s0 and s1,
a set s2 exists that contains the elements of both:

assert Closed {
 all s0, s1: Set | some s2: Set |
 s2.elements = s0.elements + s1.elements
 }

Running this in a default scope of 3

check Closed

gives counterexamples such as

Set = {(S0), (S1)}
Element = {(E0), (E1)}
s0 = {(S0)}
s1 = {(S1)}
elements = {(S0, E0), (S1, E1)}

in which s0 is the atom S0 containing E0, s1 is the atom S1 containing E1,
and there is no Set atom containing both elements.

What went wrong? Roughly speaking, the analyzer found a counter-
example that didn’t populate the signature Set with enough values; it’s
missing a Set atom, S2, say, that’s mapped by elements to E0 and E1.

To remedy all such problems, we could add a generator axiom forcing
Set to be fully populated, for example as a structural induction saying
that there is a set with no elements, and for each set and each element,
there is a set with the element added:

analysis 15�

fact SetGenerator {
 some s: Set | no s.elements
 all s: Set, e: Element |
 some s’: Set | s’.elements = s.elements + e
 }

Now we have a different problem, though: the scope explodes. If there
are k atoms in Element, there must be 2k atoms in Set. Or, to put it dif-
ferently, if we specify a scope that bounds Set by k, only instances in
which there are at most log k atoms in Element will be considered. In this
tiny example, it’s still possible to do some useful analysis: a scope of 4
elements and 16 sets should be sufficient to analyze some interesting
assertions.

But suppose that instead of sets, our model involved graphs:

sig Graph {
 adj: Node -> Node
 }

There are 2k × k distinct graphs over k nodes. So to consider graphs of
three nodes, the scope should bound Graph by 512.

Worse, in some cases, the generator axiom would require an infinite
number of atoms for the composite. A model of lists, for example, might
declare signatures for empty and nonempty lists

abstract sig List {}
one sig EmptyList extends List {}
sig NonEmptyList extends List {
 element: Element,
 rest: List
 }

and then force the existence of all possible lists with a generator axiom
such as

fact ListGenerator {
 all l: List, e: Element |
 some l’: List | l’.rest = l and l’.element = e
 }

Unless Element is empty, this axiom makes the model effectively incon-
sistent—since the only possible instances would be infinite. Any asser-
tion becomes valid, including patently false ones, such as

assert {all l: List | not l = l}

15� analysis

Discussion

In the set example, why did you declare Element?

The Set signature could have been declared with elements arbitrarily
drawn from the universe of atoms

sig Set {elements: set univ}

but this would allow sets to contain sets, introducing an orthogonal
complication. Another (better) option would have been to make the
declaration polymorphic in the element signature:

module analysis/paramSets [t]
sig Set {elements: set t}

Why introduce a signature for sets?

The assertion that sets are closed under union can be written

assert {
 all s0, s1: set univ | some s2: set univ | s2 = s0 + s1
 }

avoiding the need to introduce signatures at all. But the example was
intended to illustrate composite structures in general, of which sets are
just a particularly simple example, and other structures (such as lists
and sequences) are not built into Alloy the way sets and relations are.
Incidentally, even with the assertion in this form, the analysis doesn’t
scale well, because the analyzer has to ‘ground out’ the inner quantifier,
causing the same explosion as the generator axiom.

Are recursively defined lists common in Alloy models?

Not as common as you might expect, particularly if you’ve been in-
fluenced by functional programming languages such as Lisp, ML, and
Haskell, in which the list is the primary data structure. In Alloy, lists
include extraneous structure (the atoms representing the sublists), so
their use often indicates a failure of abstraction, especially when the
ordering of the elements is not relevant, and a simple set should have
been used instead.

List-like structures are useful occasionally, however; a path name in a
file system, for example, can be represented as a prefix and a directory
or filename, with the prefix defined recursively like the tail of a list.

analysis 15�

When an ordering is required, a simple relation suffices if duplicates
are not permitted; otherwise, a sequence modeled as a signature with a
field mapping indexes to elements

sig Seq {
 element: Index -> lone Element
 }

is better than a recursive list because it introduces less extraneous
structure.

Universal quantifiers over such sequences can suffer from the same
problems as lists. The Alloy library includes a sequence module with a
predicate that forces the existence of all sequences up to a given length
(namely, the scope of Index). This predicate must obviously be used with
care to avoid scope explosion. There’s no predicate for forcing all pos-
sible sequences to exist, because that would introduce a contradiction.

5.3.2	 Omitting	the	Generator	Axiom
You might wonder, given the depressing picture painted in the last sec-
tion, why Alloy is ever useful! There are three reasons why the problem
of generator axioms rarely arises in practice:

· The motivation for generator axioms in some other languages is to
ensure that every expression denotes a value. Because relations are
closed under all their operators by definition, no explicit generator
axioms are needed, and every relational expression in Alloy has a
value.

· Generator axioms are needed for mathematical objects, but most
signatures denote objects in the problem domain. In a model of a file
system, for example, you wouldn’t expect a generator axiom over the
signature representing directories, saying that a directory exists for
every possible combination of contents.

· Even when a generator axiom is appropriate, it can often be omitted.
So long as every universal quantifier is bounded, and only certain
expression forms are used, the analyzer will give the same results
whether or not the generator axiom is included. This is the bounded-
universal rule.

“Bounded” means that the quantified variable’s bounding expression
doesn’t mention the names of generated signatures (those signatures
for which we would have liked to write a generator axiom). The al-
lowed expression forms exclude relational transpose, and use dot joins

1�0 analysis

only with a set on the left and a relation on the right. These restrictions
ensure that universally quantified constraints can look only “inside”
structures—into the sublists of a list, for example, or the subtrees of a
tree—and thus can’t tell whether or not the generator axiom has been
applied.

Example. The analysis constraint in the problematic example from
the previous subsection

sig Set {
 elements: set Element
 }
assert Closed {
 all s0, s1: Set | some s2: Set |
 s2.elements = s0.elements + s1.elements
 }

after negation becomes

some s0, s1: Set |
 all s2: Set |
 not s2.elements = s0.elements + s1.elements

which is not in bounded-universal form, because the quantifica-
tion of s2 isn’t bounded. Checking this assertion therefore might
(and actually does) result in spurious counterexamples that would
not be present if a generator axiom for Set were added.

Example. In contrast, suppose we formulate an assertion in the
same model saying that union of sets is commutative:

sig Set {
 elements: set Element
 }
assert UnionCommutative {
 all s0, s1, s2: Set |
 s0.elements + s1.elements = s2.elements
 implies s1.elements + s0.elements = s2.elements
 }

The analysis constraint is

some s0, s1, s2: Set |
 s0.elements + s1.elements = s2.elements
 and not s1.elements + s0.elements = s2.elements

analysis 1�1

which is in bounded-universal form, since it contains no univer-
sal quantifiers. Checking this assertion will not produce spurious
counterexamples; it has its intended meaning even in the absence
of the generator axiom.

Perhaps the most serious consequence of this issue is that assertions
about preconditions, in which the precondition is asserted to be at least
as weak as some property, cannot generally be checked.

The declarative style of description is very powerful, but it has a down-
side: inadvertent overconstraint. A specification of an operation that is
intended to constrain only the values of the poststate may unintention-
ally constrain the prestate and arguments too, so that the operation is
not “total” and cannot be applied in some contexts. To mitigate this
risk, you might think you could assert that, for every prestate, there is at
least one poststate that the operation’s constraint admits. Unfortunately,
assertions in this form are not in the bounded universal category, and
thus may produce spurious counterexamples.

Example. Take the add operation of an address book

sig Name, Addr {}
sig Book {
 addr: Name -> Addr
 }
pred add (b, b’: Book, n: Name, a: Addr) {
 b’.addr = b.addr + n -> a
 }

and consider checking the following assertion:

assert AddTotal {
 all b: Book, n: Name, a: Addr |
 some b’: Book | add (b, b’, n, a)
 }
check AddTotal

You might think this is valid, since every map can be extended with
a new pair. In contrast, if instead the field addr were declared as

addr: Name -> lone Addr

so that at most one address can be associated with a name, you
would no longer expect the operation to be total, because, if pre-
sented with a new address for an existing name, it would not be

1�� analysis

possible to extend the address book without violating the multi-
plicity constraint.

Indeed, in this second case, the assertion would be invalid. Sur-
prisingly, it’s invalid in the first case too, and the analyzer will gen-
erate a counterexample such as

b = {(B0)}
n = {(N0}
a = {(A0)}
addr = {(B0, N0, A1)}

in which there is no Book to bind to b’ that will satisfy the operation
constraint.

The problem is that, for the assertion to have its intended meaning,
we need to ensure that all possible Book structures exist. Adding
an axiom to this effect is not practical, because for a scope of 3 for
Name and Addr, it would require a scope of 512 for Book! Omitting
the axiom is not acceptable either, because the assertion, which
reduces to

all b’: Book | not b’.addr = b.addr + n -> a

is not a bounded-universal formula.

Discussion

Does the bounded-universal rule allow an infinite model to be analyzed
by considering only finite cases?

Yes, that’s exactly what it allows. It’s not that surprising, however, since
the properties that fall in the bounded-universal category only “look
downward” into a finite part of an infinite instance.

Does that mean that a check in a finite scope applies automatically to
the infinite case?

No. It means that, if there is a counterexample to an assertion, then
there is a finite one in some scope. You can still miss a counterexample
because the scope is too small. For the example just discussed, it means
that checking the assertions in all finite scopes covers the case of an
imaginary analysis in which the generator axiom is included and the
scope is infinite. So, in short, it means that omitting the axiom and not
considering the infinite scope case doesn’t make it any more likely that
counterexamples will be missed.

analysis 1��

Can’t a universal quantifier be converted into an existential one by add-
ing negations?

No. The bounded-universal rule assumes that the formula is in a normal
form in which all quantifiers are outermost, and are not negated. A re-
search paper presents the rule in more detail and proves its soundness
in a general setting of algebraic datatypes and first-order logic [44].

5.4	 Scope	Selection	and	Monotonicity

The scope sets a bound on the size of each of the top-level signatures,
and, optionally, on subsignatures too (see section 4.6). An instance is
within a scope if each signature constrained by the scope has no more
elements than its associated bound permits.

To perform an analysis, the analyzer considers all candidate instances
within the scope. Of course, the number of candidates is usually so large
that an explicit enumeration would be infeasible. The analysis therefore
uses pruning techniques to rule out whole sets of candidate cases at
once. If it finds no instance, it is guaranteed that none exists within that
scope, although there might be one in a larger scope.

5.4.1	 Selecting	a	Scope
Selecting an appropriate scope can demand some careful thought. In
most cases, it makes sense to start with the default scope, which was
chosen to give a space small enough for analysis to terminate quickly,
but large enough to include interesting instances.

If an instance is found, it may immediately serve its purpose: for an as-
sertion, to expose a problem, or, for a predicate, to demonstrate consis-
tency, and illustrate an expected (or unexpected) case. But it may appear
to be more complicated than necessary, and before trying to assimilate
it, you may want to repeat the analysis on a smaller scope, which will
usually yield a smaller, and more intelligible, example.

If no instance is found, you may want to increase the scope in order to
obtain greater confidence that there is indeed no instance—that the as-
sertion being checked is valid or the predicate being run is inconsistent.
The larger the scope, the more confidence is warranted, but the longer
the analysis will take. At some point, the analysis becomes intolerably
slow. If it’s an analysis whose results are critical, you may want to set it
aside and run it overnight, perhaps on a larger machine. Often, however,

1�� analysis

a terminating analysis can be achieved in a few minutes for a scope that
gives adequate confidence.

What scope suffices to give adequate confidence? With experience, you’ll
develop a sense of the relationship between constraint complexity and
appropriate scope, and, for a particular model, you’ll discover how large
the scope must be to include known important cases. In the meantime,
here are some rough guidelines:

· Ensure that a signature’s bound is enough to accommodate any con-
stants you’ve declared belonging to it.

Example. An analysis constraint involving a path in a graph

some disj start, end: Node | …

requires Node to have at least two elements, to accommodate the
skolem variables start and end.

· Whenever possible, when you want to constrain the size of a set, you
should use signature multiplicity declarations, because the analyzer
uses multiplicities to generate warnings when the scope setting and
signature declarations are mutually inconsistent, or to override the
default scope when called for.

Example. If you write

sig Color {}
one sig Red, Green, Blue extends Color {}
pred show () {}
run show for 2

you’ll get a compilation error telling you that the scope of 2 for
Color is too low, because the subsignature declarations require it to
have at least three children. If you’d written instead

abstract sig Color {}
sig Red, Green, Blue extends Color {}
fact {one Red and one Green and one Blue}
pred show () {}
run show for 2

you’d get no error or warning message, and would need to execute
the command to discover that the model is inconsistent.

· If all relevant values of a signature are explicitly named as variables,
there’s no point setting a scope for that signature that is larger than
the number of variables.

analysis 1�5

Example. Running the add operation of our address book

sig Name, Address {}
sig Alias, Group extends Name {}
sig Book {addr: Name -> Address}
pred add (b, b’: Book, n: Name, a: Address) {
 b’.addr = b.addr + n -> a
 }
run add for 3 but 2 Book

requires no more than two books. On the other hand, analyses of
the show predicate for this graph model

sig Node {adj: Node}
fact {all n, n’: Node | n’ in n.*adj}
pred show () {some Node}
run show for 3

should not be limited to two nodes, because the variables n and n’
are universally quantified over all nodes.

· If an instance is expected to form a structure of a known shape, then
properties of that shape can suggest constraints on the scope set-
ting.

Example. A model of a railway might declare signatures for con-
nection points and track segments:

sig Point {}
sig Segment {from, to: Point}

To include the case of a junction at a connection point, it seems
likely that we’ll need at least three segments, and therefore at least
four points in total: one for the junction, and one for the other end
of each segment.

5.4.2	 Scope	Monotonicity
A scope specifies an upper bound on the size of a signature, not its exact
size. This gives the analysis a property called scope monotonicity, which
says simply that if an analysis constraint has an instance in some scope,
then it also has an instance in any larger scope.

Scope monotonicity is very important in practice, because it means that
if an assertion appears to be valid in a scope (that is, has no counterex-
amples), you don’t gain anything by repeating the analysis in smaller
scopes.

1�� analysis

The exactly keyword (explained in section 4.6) lets you specify that a
signature has some exact number of elements, and its use therefore vio-
lates scope monotonicity. It should be used with great care. In simula-
tion, it provides an easy way to force a more interesting instance to be
generated, but in checking, its use is not recommended.

Discussion

How big a scope is feasible in practice?

On a modestly equipped machine (say, a 1 GHz PowerMac with 1 GB
of memory), using the latest version of the Alloy Analyzer (2005), with
a model containing up to about 20 signatures and 20 or 30 fields, an
analysis in a scope of 5 to 10 is usually possible. During the incremental
development of a model, analyses in a scope of 3 usually suffice, and
terminate in less than a minute.

Isn’t a signature a Cartesian product? Doesn’t that explode the scope?

Many signatures (but not all) are introduced as a way of forming tuples.
For example, the signature

sig Coord {x: X, y: Y}

might be used to represent coordinates in a two-dimensional space. If
the signatures X and Y have sizes scope(X) and scope(Y) respectively, there
will need to be at least scope(X) × scope(Y) values of Coord to represent all
possible pairs.

You might think that this should determine the scope of Coord, and if
indeed this were the case, almost no analysis would be feasible. The
misunderstanding here is that the scope does not constrain the size of
the set of possible values. Rather it constrains the size of the set of val-
ues that can appear in the instance. If an assertion being checked had
a counterexample involving only one coordinate, it would be found in
a scope of 1, irrespective of how many possible values the combination
of fields of Coord can take. Similarly, if the analysis constraint involved
the intersection of two straight lines, a scope of 5 may suffice for Coord,
since it would include enough coordinates for the endpoints of the lines
and their intersection.

This difference between the set of values a structure may take and the
set that appears in an instance is the essence of the discussion of sec-
tion 5.3.

analysis 1��

Is a scope of zero possible?

Yes, a scope setting of zero is permitted, and is not necessarily nonsense.
The command

run P for 0

asks whether there is an instance of P in which the universe is empty. In
practice, this is rare: every file system has at least a root, for example.
But it is a good design principle to make as few assumptions as possible
about sets being nonempty. For example, a client-server system should
be able to handle the case in which there are no clients.

Often, this question, of whether or not sets can be empty, exposes fun-
damental issues in the design. Most text layout programs, for example,
assume that the style sheet includes at least one style. It would be pos-
sible to design a layout program in which not all paragraphs have styles,
and a style sheet could then be empty. This would make it easier to
handle the case of deleting a style: the program could simply retain all
the formatting of the paragraph but assign no style to it.

6:	Examples

This chapter contains four examples, each chosen to illustrate a differ-
ent kind of application:

· The first analyzes a well-known distributed algorithm for leader elec-
tion; it shows how to model local actions and check global properties,
using an idiom based on traces in which steps are modeled as predi-
cates.

· The second is about recodable locks on hotel room doors. It’s given
in two forms: first, using the same trace idiom, and second, using
a variant in which steps are modeled using explicit events. This ex-
ample is more interesting methodologically than the first, because
it’s not purely algorithmic: it involves making assumptions about the
behavior of other actors in the environment of the system (namely
the guests who check in and out).

· The third has a very different flavor, and is more typical of the kind
of modeling that software engineers do in practice. It explores the
interaction between two simple features of a program for viewing
media assets (such as photographs), and shows how design subtleties
can be exposed by thinking about simple algebraic properties.

· The fourth and final example illustrates the application of Alloy to a
textbook problem: justifying the correctness of a memory implemen-
tation using abstraction functions. It shows how Alloy can automate
a familiar analysis.

6.1	 Leader	Election	in	a	Ring

Many distributed protocols require one process to play the role of a
leader, coordinating the others. Assigning the leader in advance is not
feasible, so some mechanism is needed by which a collection of com-
municating processes running the same program can “elect” a leader on
the fly.

We’ll consider the case in which the processes form a ring. Since the
communication topology is symmetric, we must look elsewhere for an
asymmetry to exploit. We’ll assume that processes have unique identifi-
ers that are totally ordered; these might, for example, be the serial num-

1�0 examples

bers (the so-called MAC ID’s) of the network cards of the machines on
which they are running. The leader will be the process with the largest
identifier.

A simple and well-known protocol [8] has the processes pass their iden-
tifiers as Tokens around the ring in some direction (say clockwise). Each
process examines each identifier it receives. If the identifier is less than
its own identifier, it consumes the token. If the identifier is greater than
its own, it passes the token on. If the identifier equals its own identifier,
it knows the token must have passed all the way around the ring, so it
elects itself leader.

When modeling a distributed algorithm, you want to make as few as-
sumptions as possible about communications and scheduling. Obvious-
ly, the algorithm must work for all interleavings of process executions,
since the processes run concurrently. Ideally, it should also work when
messages are buffered between processes, reordered, or even dropped.

Rather than modeling explicit message buffers between the processes,
we’ll give each process a pool of tokens. In one step, a token can be
taken from the pool of one process and moved to the pool of its suc-
cessor in the ring. We’ll make arbitrary the selection of the token (to
model reordering), as well as the selection of which processes are in-
volved in a given step (to model concurrency). Message delivery will be
reliable, but it would be easy to modify the model to allow messages to
be dropped.

6.1.1	 Topology	and	State	Components
The complete model is shown in figs. 6.1 and 6.2, with a model diagram
in fig. 6.3. Let’s examine it bit by bit. First, we name the module and
import the library module for total ordering, applying it to a signature
that will be used to represent time steps, and to a signature representing
the processes in the ring:

module examples/ringElection
open util/ordering[Time] as TO
open util/ordering[Process] as PO

A special notion of process identifier isn’t needed; the atom represent-
ing the process will serve also as its identifier.

We declare a signature representing moments in time:

sig Time {}

examples 1�1

module examples/ringElection
open util/ordering[Time] as TO
open util/ordering[Process] as PO

sig Time {}
sig Process {
 succ: Process,
 toSend: Process -> Time,
 elected: set Time
 }
fact Ring {all p: Process | Process in p.^succ}

pred init (t: Time) {all p: Process | p.toSend.t = p}

pred step (t, t’: Time, p: Process) {
 let from = p.toSend, to = p.succ.toSend |
 some id: from.t {
 from.t’ = from.t - id
 to.t’ = to.t + (id - PO/prevs(p.succ))
 }
 }
pred skip (t, t’: Time, p: Process) {p.toSend.t = p.toSend.t’}

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
 all p: Process |
 step (t, t’, p) or step (t, t’, succ.p) or skip (t, t’, p)
 }

fact DefineElected {
 no elected.TO/first()
 all t: Time - TO/first()|
 elected.t =
 {p: Process | p in p.toSend.t - p.toSend.(TO/prev(t))}
 }

assert AtMostOneElected {lone elected.Time}
check AtMostOneElected for 3 Process, 7 Time

fig. 6.1 Leader election in a ring, part 1.

1�� examples

Each process has a successor process (its neighbor to one side in the
ring), a pool of process identifiers to be sent along around the ring, and
a set of times at which it regards itself elected as leader:

sig Process {
 succ: Process,
 toSend: Process -> Time,
 elected: set Time
 }

The Time signature doesn’t appear in the declaration of the succ field,
since the topology is static. Adding a Time column to a relation makes
it dynamic. Without the Time column, the field toSend would just model
a relation between processes, with p.toSend denoting a set of processes.
With the addition of the Time column, p.toSend becomes a relation, and
p.toSend.t is a set of processes associated with p at time t. Without the
Time column, elected would be a set of processes; with it, elected becomes
a relation, and elected.t is the set of processes that are elected leader at
time t (and p.elected the set of times at which process p is elected).

The processes are to form a ring. The declaration of succ ensures that
each process has exactly one successor, so all we need to add is the con-
straint that all processes are reachable from any process by following
succ repeatedly:

fact Ring {all p: Process | Process in p.^succ}

pred progress () {
 all t: Time - TO/last() | let t’ = TO/next (t) |
 some Process.toSend.t =>
 some p: Process | not skip (t, t’, p)
 }
assert AtLeastOneElected {
 progress () => some Elected.Time
 }

pred looplessPath () {no disj t, t’: Time | toSend.t = toSend.t’}
run looplessPath for 13 Time, 3 Process

fig. 6.2 Leader election in a ring, part 2.

examples 1��

fig. 6.3 Model diagram for leader election.

Process

Time

! succ ! toSend.<Time>

elected

Discussion

Why import a library module for a concept as simple as an ordering?

It’s always good to take standard notions and factor them out into li-
braries: it lowers the cognitive load of understanding a model when it
uses standard vocabulary and concepts, and it reduces the risk of mak-
ing mistakes—it’s possible to get even a simple ordering wrong. In this
case, there is also a performance advantage, since the symmetry break-
ing that is applied to util/ordering is hardwired into the implementation
of the analyzer, and relies on a property of orderings that could not be
inferred easily from the text of the library module.

Why does time appear explicitly in field declarations?

The alternative would be to include the notion of mutable fields in Al-
loy. This would complicated the language, and would tie the user to one
particular idiom. When time instants appear in relations like any other
atoms, the whole repertoire of relational operators can be applied. As
we’ll see, for example, the expression elected.Time represents the set of
processes that are elected at any time. Declaration constraints can be
used too, to express dynamic properties:

elected in Process lone -> Time

1�� examples

says that at most one process is elected at any time, and

toSend: (Process lone -> Process) -> Time

says that, at any time, each process identifier resides in the sending pool
of at most one process.

Why place the Time signature at the end of a field declaration?

At first, it might seem more natural to place the Time column at the
beginning of a field’s declaration expression, so that toSend, for example,
would be declared as

sig Process {toSend: Time -> Process}

rather than as

sig Process {toSend: Process -> Time}

In most cases, the only difference would be in the position of the argu-
ments of joins: the processes in the pool of process p at time t would
be p.toSend[t] (or t.(p.toSend)) for the first, and p.toSend.t for the second.
But note that in the first version, since toSend is a ternary relation with
Process in the first column, the Time column appears in the middle rather
than at the end. This becomes an inconvenience when you write expres-
sions with the relational operators.

If the second declaration form is used, the expression toSend.t denotes a
relation from Process to Process that maps p to q when p holds the identi-
fier of q in its pool at time t. This makes it easy to write constraints such
as

toSend.t = Process <: iden

which says that the relation is the identity on processes (and is in fact
the initialization condition we’ll see in subsection 6.1.2). Similarly, if the
ring topology had been dynamic

sig Process {succ: Process -> Time}

the condition that it be acyclic could easily be extended from

fact Ring {all p: Process | Process in p.^succ}

as currently written, for the model in which succ has no Time column,
to

fact Ring {all t: Time, p: Process | Process in p.^(succ.t)}

examples 1�5

Had the form of declaration in which the Time column appears in the
middle been used instead, these constraints could not have been writ-
ten so conveniently.

In short, then, the issue is whether the Time column appears on the out-
side of the relation or in the middle. If it occurs in the middle, you can’t
write a simple join expression to denote the value of the relation at a
given time t. Instead of succ.t, for example, you’d have to write some-
thing like

{p, q: Process | p -> t -> q in succ}

Why not place the Time signature first in a relation?

A better question, therefore, is why the Time column was written last
rather than first. Indeed, in this model, it would have made little differ-
ence had we written

sig Process {succ: Process}
sig Time {
 toSend: Process -> Process,
 elected: set Process
 }

in place of

sig Time {
sig Process {
 succ: Process,
 toSend: Process -> Time,
 elected: set Time
 }

In general, however, the difference is more significant. The first is remi-
niscent of object-oriented programming: it packages together all the
static and dynamic aspects of a single object, and it allows objects to
be classified using signature extension. The second is the idiom used in
most traditional modeling languages (such as Z and VDM), in which
there is a global state—and in fact the name State would be more appro-
priate than Time in this case. Its advantage is that it separates static and
dynamic aspects more cleanly, and supports a style of modeling (com-
mon in Z) in which the state is grown incrementally. This second idiom
is used in the media asset example of section 6.3.

1�� examples

6.1.2	 Protocol	Dynamics
The protocol itself is described in three stages. First, we record the initial
condition—that each process is ready to send only its own identifier:

pred init (t: Time) {
 all p: Process | p.toSend.t = p
 }

Second, we describe the allowed state transitions. In a given step, an ar-
bitrary identifier (id) is chosen from the pool associated with a process
(from) and moved to the pool associated with its successor (to):

pred step (t, t’: Time, p: Process) {
 let from = p.toSend, to = p.succ.toSend |
 some id: from.t {
 from.t’ = from.t - id
 to.t’ = to.t + (id - PO/prevs(p.succ))
 }
 }

The expression id - PO/prevs(p.succ) removes from the singleton set con-
taining the identifier id the set of all identifiers that precede p.succ. This
models the consumption of tokens: if the identifier in the token is great-
er than the identifier of the receiving process, it is placed in the pool
for forwarding; otherwise, it’s dropped. Don’t get confused by the two
distinct orderings here: the ordering of processes around the ring and
the ordering of identifiers. The expression p.succ denotes the identifier
successor of p in the ring; applying the function PO/prevs then gives the
set of process identifiers that precede it in the space of identifiers.

Third, we describe the designation of elected processes. At the first mo-
ment in time, no processes are elected; at other times, the set of pro-
cesses elected is the set of processes that just received their own identi-
fiers:

fact DefineElected {
 no elected.TO/first()
 all t: Time - TO/first()|
 elected.t = {p: Process | p in p.toSend.t - p.toSend.(TO/prev(t))}
 }

We might have treated elected like the token pool, initializing it within
init and updating it in step. Defining it this way, however, gives a cleaner
separation of concerns, and avoids the need for frame conditions.

examples 1��

Discussion

Why isn’t the notion of election sticky?

You might have noticed that the definition of election makes a process
elected only at the time instant at which it receives its own identifier. At
the next time instant, it will no longer be deemed elected. If you don’t
like this, you can change the model so that election is “sticky,” and a
process stays elected once elected.

It’s not just a question of dropping the second term in the comprehen-
sion, by the way, so that the definition of election reads

elected.t = {p: Process | p in p.toSend.t}

rather than

elected.t = {p: Process | p in p.toSend.t - p.toSend.(TO/prev(t))}

If you’re not sure why, try running the commands in the Alloy Analyzer
and see what happens.

6.1.3	 Introducing	Traces
There are two properties we’d like to check: that at most one leader gets
elected, and that some leader is eventually elected. We could use Alloy
to automate a traditional inductive analysis. For the first property, we’d
formulate an invariant, and use Alloy to check that the invariant implies
the property, and is maintained at every step. For the second property,
we’d find some integer metric, and use Alloy to check that it decreases
in each step, and that reaching zero implies election.

Instead, we’ll take an approach that requires less insight, and allows the
properties to be checked directly. An instance of the model so far in-
volves a set of states. By adding a single fact, we can form these states
into an execution trace. We can then formulate assertions directly about
traces. If an assertion is invalid, a counterexample will be a trace show-
ing how it is violated.

Here is the trace constraint:

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
 all p: Process |
 step (t, t’, p) or step (t, t’, succ.p) or skip (t, t’, p)
 }

1�� examples

It says that the initial condition holds for the first moment in time, and
that for any subsequent time, each process p either takes a step, or its
predecessor succ.p takes a step, or it does nothing. Doing nothing is
modeled as an operation:

pred skip (t, t’: Time, p: Process) {
 p.toSend.t = p.toSend.t’
 }

Discussion

Why does the trace constraint allow a predecessor to take a step?

The trace constraint gives three possibilities for a process p:

step (t, t’, p) or step (t, t’, succ.p) or skip (t, t’, p)

When a process p takes a step from time t to time t’, the predicate step
(t, t’, p) holds. This means that an identifier moves from the pool of p to
the pool of its successor process. The successor process therefore expe-
riences a state change also. Its state change is described by the same step
predicate, but applied to its predecessor. Without the second predicate
invocation, it would not be possible to satisfy the constraint, because
the successor process would either have to skip, or to be the source of a
token transfer itself, neither of which is compatible with being a target
of a token transfer. The run command would catch this error, and report
an inconsistency.

Alternatively, I could have written a simpler trace constraint

some p: Process |
 step (t, t’, p) and all p’: Process - (p + p.succ) | skip (t, t’, p)

saying that in each step a process makes a move, and there is no state
change at any other process except for this process and its successor.
The disadvantage of this formulation is that it only allows one process
pair to take a move at once. The implicit concurrency of the original
version, aside from being more general, also has the advantage that it
allows more to happen in shorter traces, so that analyses in a smaller
scope are more meaningful.

Why must an operation take two time arguments?

Given that the step and skip operations are always applied to a time in-
stant and its successor, you may wonder why they don’t declare a single
argument t, and then define t’ as TO/next(t) inside the body of the predi-

examples 1��

cate. The motivation here is separation of concerns: it seems better to
commit the model to the traces idiom in only one small place rather
than in every operation, so that a change to a different idiom would be
easy.

6.1.4	 Dynamic	Analysis
It’s good to start with a simple simulation, to check that the model isn’t
overconstrained. For example, we might ask to see an execution in
which some process gets elected:

pred show () {
 some elected
 }
run show for 3 Process, 4 Time

We’ve picked a scope of three processes—the smallest interesting ring—
and four times, because the leader’s token will have to go all the way
around, so there must be at least one more time instant than processes.
A sample trace generated by the analyzer is shown in fig. 6.4: the iden-
tifier of process P2 goes all the way round, before any other identifiers
have been sent.

Having established that the model is at least consistent, we might move
on to checking some properties. The purpose of the protocol is to reach
a state in which exactly one leader is elected. When possible, it’s best to
split a property into subproperties and check them individually. This
makes it easier to diagnose what went wrong if a property doesn’t hold.
So we’ll consider two properties separately: that there be at most and at
least one elected process.

Here is an assertion claiming that there is at most one elected process:

assert AtMostOneElected {
 lone elected.Time
 }
check AtMostOneElected for 3 Process but 7 Time

The expression elected.Time denotes the set of processes elected at any
time, so the assertion says not only that there is at most one process
elected at any time, which could have been written

all t: Time | lone elected.t

but, more strongly, that the election doesn’t change from one process
to another. The scope in this assertion limits the analysis to a ring of 3

1�0 examples

fig. 6.4 A sample trace for ring election: the initial state is
in the panel at the top left; execution proceeds through the

panels clockwise.

examples 1�1

processes and 7 time instants. The AtMostOneElected assertion is valid,
and no counterexamples are found.

Here is the assertion claiming that there is at least one elected process:

assert AtLeastOneElected {
 some t: Time | some elected.t
 }
check AtLeastOneElected for 3 but 7 Time

This second assertion is invalid; it has a counterexample in which noth-
ing happens at all. The problem is including the skip operation, which
allows every process to skip in every step!

To fix this problem, we can force progress by insisting that whenever
some process has a nonempty identifier pool, some process (not neces-
sarily the same one) must make a move. We write this as a predicate

pred progress () {
 all t: Time - TO/last() |
 let t’ = TO/next (t) |
 some Process.toSend.t =>
 some p: Process | not skip (t, t’, p)
 }

and then condition the assertion on this predicate holding:

assert AtLeastOneElected {
 progress () => some Elected.Time
 }
check AtLeastOneElected for 3 Process, 7 Time

The scope of 7 time instants is actually the smallest that is guaranteed
to produce a leader. To find this scope, I simply started with a smaller
scope and increased it until no counterexample was generated for the
assertion.

Discussion

Are the processes always placed in the ring in the order of their process
identifiers?

No. They appear in that order in fig. 6.4 because of the Alloy Analyzer’s
symmetry-breaking optimization (see the discussion following section
5.2.1). Since atoms are interchangeable, you can take any instance (or
counterexample) of a command and create another one by permuting
the atoms. A mathematician would say “there is no loss of generality”

1�� examples

in ordering the processes around the ring P0, P1, P2, etc., because the
description of the scheme never refers to particular atoms.

The analyzer exploits this to reduce the search, by imposing a constraint
on succ. The same trick is used in the ordering relation of the module
util/ordering: this is why time instants in traces always come out in order.
If the model explicitly compared the two relations, it would no longer
be valid to break symmetry in both cases, so the analyzer will back off,
and no longer include the symmetry-breaking constraint on succ. To see
this, add

fact DifferentOrder {
 all p: Process | p.succ != PO/next(p)
 }

and the simulation will show a ring in which the identifiers appear out
of order.

How can AtLeastOneElected be valid? Doesn’t the scope allow shorter trac-
es?

The symmetry breaking associated with the ordering module (men-
tioned in the discussion following subsection 6.1.1) actually forces the
ordered set to contain the maximum number of atoms the scope per-
mits. So our two commands have the same effect they would have if
written with an exact scope:

check AtMostOneElected for exactly 3 Process, exactly 7 Time
check AtLeastOneElected for exactly 3 Process, exactly 7 Time

Is this a violation of scope monotonicity? If so, does it matter?

Yes, it is a violation, and yes, it matters (at least in some respects). For
checking AtLeastOneElected, the exact scope is necessary for the signa-
ture Time; this kind of eventuality property is never scope monotonic.
For checking AtMostOneElected, on the other hand, the exact scope is not
desirable, because it’s conceivable that there are bad traces (in which
two processes get elected) that cannot be extended to the full length
required by the scope. Unfortunately, it’s not possible to check that this
doesn’t happen (see section 5.3).

Another undesirable consequence of the exact scope, this time for both
commands, is that it forces an exact number of processes in the ring. It
would be easy, however, to adjust the model so that analysis in a scope
of k considers all rings with up to k processes, by introducing a subsig-
nature like this:

examples 1��

sig Process {}
sig RingProcess extends Process {
 succ: RingProcess,
 toSend: RingProcess -> Time,
 elected: set Time
 }
fact Ring {all p: RingProcess | RingProcess in p.^succ}

thereby imposing the multiplicity constraint of succ and the fact ring
only on the subset of processes that appear in the ring.

6.1.5	 Computing	Machine	Diameter
Exhaustive analysis within a scope is justified by the small scope hy-
pothesis, and usually seems like a reasonable way to catch most bugs.
For example, if this protocol has no counterexamples for rings of size
five, it seems unlikely to be harboring a bug. But the bounding of traces
seems less compelling.

For the AtLeastOneElected assertion, we’re looking for witnesses to elec-
tion, so increasing the trace length won’t result in new counterexamples.
For the AtMostOneElected assertion, however, we may reasonably worry
that we’re missing a bug that is manifested only in a longer trace than
the ones the analysis considered.

One question we might ask about the sufficiency of the scope is whether
we consider traces long enough to cover all reachable states. If so, we
can rest assured that no bugs are missed because of inadequate trace
length when analyzing an assertion such as AtMostOneElected, since the
assertion is a claim about states, and every reachable state will be con-
sidered.

The diameter of a state machine is the maximum distance of a state
from an initial state, where the distance between two states is the small-
est number of execution steps that can take you from one to the other.
In general, calculating the diameter of a modeled state machine is not
possible using Alloy. But often we can find an upper bound.

Here’s how it works. We write a predicate whose instances are loopless
paths—traces in which a given state is visited at most once. The behav-
ior of our protocol depends only on the identifier pools, so we’ll regard
two time instants in a trace as having equivalent states when their pools
are equal:

1�� examples

pred looplessPath () {
 no disj t, t’: Time | toSend.t = toSend.t’
 }

Now we simply ask for an instance of this predicate for increasing trace
lengths. Running the command

run looplessPath for 3 Process, 12 Time

produces a solution, but

run looplessPath for 3 Process, 13 Time

does not. So there is no trace involving 13 time instants that has no loop
in it. We can therefore conclude that a scope of 12 for Time is sufficient to
reach all states of the protocol for a three-node ring. In other words, for
a scope of 3 for Process, there is nothing to be gained by increasing the
scope for Time further: with respect to Time, the analysis is complete.

Discussion

How does the expressiveness of Alloy’s trace assertions compare to tem-
poral logics?

Since the instances of the model are traces, the assertions are compa-
rable to linear temporal logic (LTL) rather than computation tree logic
(CTL), which would require instances that are tree structures. For soft-
ware

Any LTL property can easily be expressed in first-order logic, as dem-
onstrated by the reduction of LTL to satisfiability known as “bounded
model checking” [5]. First-order logic is more expressive than temporal
logics, although the additional power—at least for the temporal aspects
doesn’t seem necessary.

The filtering of traces to those satisfying the progress property is a clas-
sic example of a class of properties known as “fairness properties” that
are not expressible in CTL. In general, LTL seems better suited to de-
scribing temporal properties of software than CTL.

How does Alloy compare to model checkers for this kind of analysis?

Model checkers are generally capable of exhausting an entire state space.
In an Alloy trace analysis, only traces of bounded length are considered,
and the bound is generally small. An upper bound on the diameter can
sometimes be obtained, as explained, for small systems. The Alloy ap-
proach is therefore less capable of establishing the absence of bugs, but

examples 1�5

when there is a bug, it may be more rapidly found by Alloy’s SAT-based
analysis than by model checking, because of the depth-first nature of
SAT solving.

The machine description language of most model checkers is very
low-level, so describing a protocol such as this tends to be much more
challenging. Unlike Alloy, model checkers depend on the topology of
processes being fixed, and cannot perform analyses for arbitrary to-
pologies.

Also, although Zohar Manna and Amir Pnueli’s pioneering formula-
tion of linear temporal logic [50] included a non-temporal quantifier,
it seems to have been omitted from many model checkers. This means
that you cannot express relationships between the values of state com-
ponents at different points in time—for example, that an operation in-
crements a counter, or leaves some state component unchanged.

6.2	 Hotel	Room	Locking

Most hotels now issue disposable room keys; when you check out, you
can take your key with you. How, then, can the hotel prevent you from
reentering your room after it has been assigned to someone else? The
trick is recodable locks, which have been in use in hotels since the 1980’s,
initially in mechanical form, but now almost always electronic.

The idea is that the hotel issues a new key to the next occupant, which
recodes the lock, so that previous keys will no longer work. The lock
is a simple, stand-alone unit (usually battery-powered), with a mem-
ory holding the current key combination. A hardware device, such as
a feedback shift register, generates a sequence of pseudorandom num-
bers. The lock is opened either by the current key combination, or by its
successor; if a key with the successor is inserted, the successor is made
to be the current combination, so that the old combination will no lon-
ger be accepted.

This scheme requires no communication between the front desk and
the door locks. By synchronizing the front desk and the door locks ini-
tially, and by using the same pseudorandom generator, the front desk
can keep its records of the current combinations in step with the doors
themselves.

1�� examples

6.2.1	 State	Components	and	Key	Ordering
Let’s model and analyze this scheme. We’ll use the same idiom as in the
leader election example, adding a time atom in the last column of a re-
lation to make it time-dependent, and ordering time atoms into traces.
To represent the key generators, we’ll posit a single global ordering on
keys, with the room locks holding disjoint subsets of the keys. Here’s
the module header:

module examples/hotel
open util/ordering[Time] as TO
open util/ordering[Key] as KO

We declare signatures for the keys and the time instants:

sig Key {}
sig Time {}

The signature Key refers to the key combinations; we’ll use the term card
to refer to the physical key that a guest inserts into a lock.

Each room has a set of keys, and a current key at a given time:

sig Room {
 keys: set Key,
 currentKey: keys one -> Time
 }

fig. 6.5 Model diagram for the hotel locking system.

Room

Guest

? keys
Key

currentKey.<Time> !

keys.<Time>

<FrontDesk>.lastKey.<Time> ?

<FrontDesk>.occupant.<Time>

examples 1��

No key belongs to more than one room lock:

fact DisjointKeySets {
 Room <: keys : Room lone -> Key
 }

The front desk is modeled as a singleton signature. Its purpose is simply
to group together two relations: lastKey, mapping a room to the last key
combination that was issued for that room, and occupant, mapping a
room to the guests that have been assigned to it:

one sig FrontDesk {
 lastKey: (Room -> lone Key) -> Time,
 occupant: (Room -> Guest) -> Time
 }

The multiplicity constraint of lone in lastKey is to accommodate the state
prior to initialization in which rooms do not yet have keys associated
with them. This looseness is not in fact necessary, since the initializa-
tion will be imposed on the very first state, but it’s always wise to err on
the side of underconstraint.

A guest holds a set of keys at a given time:

sig Guest {
 keys: Key -> Time
 }

A model diagram for the declarations we’ve written is shown in fig.6.5.

The fundamental operation of the recodable locks is the generation of
the successor key. We can model this as a simple function that, given a
key k and a set of keys ks, finds the smallest key (under the global order-
ing) that follows k and belongs to ks:

fun nextKey (k: Key, ks: set Key): set Key {
 KO/min (KO/nexts (k) & ks)
 }

Discussion

How does the constraint in DisjointKeySets have its claimed meaning?

The constraint

Room <: keys : Room lone -> Key

1�� examples

is a “declaration constraint” (see subsection 3.6.4) saying that the keys
field mapping rooms to their keys is injective. The expression on the left
denotes the keys relation of the Room signature (see subsection 4.4.4);
without the restriction to Room, it can be confused with the field in Guest
of the same name. The multiplicity keyword lone in the declaration ex-
pression on the right says that at most one room is mapped to each
key.

6.2.2	 Hotel	Operations
The dynamic behavior is described by operations for each of the interac-
tions between the guests and hotel staff and the system.

In the initial state, no guests hold keys, the roster at the front desk shows
no rooms as occupied, and the record of each room’s key at the front
desk is synchronized with the current combination of the lock itself:

pred init (t: Time) {
 no Guest.keys.t
 no FrontDesk.occupant.t
 all r: Room | FrontDesk.lastKey.t [r] = r.currentKey.t
 }

This initialization is nontrivial to implement. It is the only operation
that requires communication between the locks and the front desk. In
practice, it could be done by using a special card to reset each lock.

The successful entry of a guest into a room is described by this opera-
tion:

1 pred entry (t, t’: Time, g: Guest, r: Room, k: Key) {
2 k in g.keys.t
3 let ck = r.currentKey |
4 (k = ck.t and ck.t’ = ck.t) or
5 (k = nextKey(ck.t, r.keys) and ck.t’ = k)
6 noRoomChangeExcept (t, t’, r)
7 noGuestChangeExcept (t, t’, none)
8 noFrontDeskChange (t, t’)
9 }

The operation consists of a precondition (that the key used to open the
lock be one of the keys the guest is holding, line 2), a postcondition (that
the key on the card either matches the lock’s current key, and the lock is
unchanged, or matches its successor, in which case the lock is advanced,
lines 4 and 5), and some frame conditions (that there are no changes to
the state of another room, or to the set of keys held by guests, or to the
records at the front desk, lines 6 to 8).

examples 1��

Here are the frame conditions:

pred noFrontDeskChange (t, t’: Time) {
 FrontDesk.lastKey.t = FrontDesk.lastKey.t’
 FrontDesk.occupant.t = FrontDesk.occupant.t’
 }

pred noRoomChangeExcept (t, t’: Time, rs: set Room) {
 all r: Room - rs | r.currentKey.t = r.currentKey.t’
 }

pred noGuestChangeExcept (t, t’: Time, gs: set Guest) {
 all g: Guest - gs | g.keys.t = g.keys.t’
 }

Finally, there are operations for checking in and checking out. Checking
out is simpler; it just requires that the room be occupied by that guest,
and then records it as empty:

pred checkout (t, t’: Time, g: Guest) {
 let occ = FrontDesk.occupant {
 some occ.t.g
 occ.t’ = occ.t - Room -> g
 }
 FrontDesk.lastKey.t = FrontDesk.lastKey.t’
 noRoomChangeExcept (t, t’, none)
 noGuestChangeExcept (t, t’, none)
 }

Checking in is more interesting:

1 pred checkin (t, t’: Time, g: Guest, r: Room, k: Key) {
2 g.keys.t’ = g.keys.t + k
3 let occ = FrontDesk.occupant {
4 no occ.t [r]
5 occ.t’ = occ.t + r -> g
6 }
7 let lk = FrontDesk.lastKey {
8 lk.t’ = lk.t ++ r -> k
9 k = nextKey (lk.t [r], r.keys)
10 }
11 noRoomChangeExcept (t, t’, none)
12 noGuestChangeExcept (t, t’, g)
13 }

It requires that the room have no current occupant (4), and its effect is
to deliver the key to the guest (2), record the guest as the new occupant

1�0 examples

of the room (5), and to update the front desk record of the room’s last
key (8). The new key is the successor of the last key in the sequence as-
sociated with the room’s lock (9).

Finally, as in the leader election example, we add a fact ensuring that in-
stances of the model will be traces, namely that the initialization holds
in the first time instant, and that any pair of consecutive time instants
are related by an entry, a checkin or a checkout:

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
 some g: Guest, r: Room, k: Key |
 entry (t, t’, g, r, k)
 or checkin (t, t’, g, r, k)
 or checkout (t, t’, g)
 }

Discussion

Where is the case handled in which a guest is denied access to a room?

Nowhere. It’s ruled out by the precondition of the entry operation. Since
our goal is to check for unauthorized access, there’s no need to model
it. If we were interested, for example, in how locks audit successful and
failed attempts at access, we would want to include it.

Why is the precondition in checkin distributed throughout the opera-
tion?

An operation’s constraints can be separated into pre- and postcondi-
tions, or they can be organized around state components. I chose the
latter approach here, because it avoids repeating the let statements or
extending their scope.

6.2.3	 Analysis
We’d like to check that no unauthorized entries can occur. Here is an
attempt at an assertion to this effect:

assert NoBadEntry {
 all t: Time, r: Room, g: Guest, k: Key | let t’ = TO/next(t) |
 let o = FrontDesk.occupant.t [r] |
 entry (t, t’, g, r, k) and some o => g in o
 }

examples 1�1

It says that if guest g enters room r at time t, and the front desk records
r as occupied, then g is a recorded occupant of r.

To check the assertion, we issue a command such as

check NoBadEntry for 3 but 2 Room, 2 Guest, 5 Time

Initially, it’s good to start with a small scope, to get feedback as rapidly
as possible. In this command, the default scope is set to 3, which in this
command bounds only Key, the bounds on the other types being given
as exceptions. Since it seemed likely that a problem would be exposed
with only two guests and their rooms, the scope assigns only 2 to Guest
and Room. A bound of 5 was chosen for Time, because at least 4 time
instants are needed to execute each operation just once.

This analysis generates a counterexample, shown in fig. 6.6, correspond
to the following scenario:

· Initially, the current key of Room0 is K0, which is also reflected in the
front desk’s record.

· Guest0 checks in to Room0 and receives key K1, and the occupancy
roster at the front desk is updated accordingly.

· Guest0 checks out, and the occupancy roster is cleared.

· Guest1 checks in to Room0 and receives key K2; the occupancy roster at
the front desk is updated accordingly; and K2 is recorded as the last
key assigned to Room0.

· Guest0 presents K1 to the lock of Room0, and is admitted.

The problem is that the lock isn’t recoded until the new guest inserts the
card with the new key. So a previous occupant can enter the room not
only after checking out but even after a new guest has checked in.

Denial of unauthorized entry can only be guaranteed, therefore, on the
assumption that there is no intervening event between a guest checking
in and entering the room. This assumption can be added as a fact:

fact NoIntervening {
 all t: Time - TO/last() | let t’ = TO/next (t), t“ = TO/next(t’) |
 all g: Guest, r: Room, k: Key |
 checkin (t, t’, g, r, k) => (entry (t’, t”, g, r, k) or no t“)
 }

It says that if a checkin occurs at any time t except for the last time in
a trace, then either it is followed immediately by an entry, or there is

1�� examples

fig. 6.6 A sample trace showing unauthorized entry.

examples 1��

no subsequent time step (because the checkin is the last event in the
trace).

With this fact included, there is now no counterexample. To gain greater
confidence, we increase the scope first to 7 time instants and 3 rooms
and guests:

check NoBadEntry for 3 but 3 Room, 3 Guest, 7 Time

which terminates without a counterexample in about 2 seconds (on a
2.5GHz PowerBook G5), and then to 9 time instants and 5 keys:

check NoBadEntry for 5 but 3 Room, 3 Guest, 9 Time

which terminates without a counterexample in just under a minute.

The full model is shown in figs. 6.7–6.9.

Discussion

Does your fix require that the new occupant be dragged to the room im-
mediately after checkin?

No. The added fact merely records an assumption about the world. If
the assumption is false, the security guarantee is undermined.

Why does the BadEntry assertion have the extra hypothesis that the room
be occupied?

The purpose of the locking scheme is to protect occupants from each
other, not to protect the hotel from its occupants. If you remove that
hypothesis, the analyzer will generate a counterexample in which a
guest checks out, and then immediately reenters the room.

Isn’t the essence of the problem that an occupant doesn’t really take own-
ership of a room until entering it for the first time?

Absolutely. This idea could be expressed more elegantly perhaps in the
following way. Rather than using the front desk’s occupancy roster, the
notion of occupancy would be defined in terms of that first entry, in the
same way that election is defined in the leader election protocol. There
would then be no need for the additional assumption.

Isn’t this problem rather messy?

Yes. It’s representative of most problems involving requirements that
are situated in the real world, and can’t be handled effectively by the

1�� examples

module examples/hotel
open util/ordering[Time] as TO
open util/ordering[Key] as KO

sig Key, Time {}

sig Room {
 keys: set Key,
 currentKey: keys one -> Time
 }
fact DisjointKeySets {
 Room <: keys : Room lone -> Key
 }

one sig FrontDesk {
 lastKey: (Room -> lone Key) -> Time,
 occupant: (Room -> Guest) -> Time
 }

sig Guest {
 keys: Key -> Time
 }

fun nextKey (k: Key, ks: set Key): set Key {
 KO/min (KO/nexts (k) & ks)
 }

pred init (t: Time) {
 no Guest.keys.t
 no FrontDesk.occupant.t
 all r: Room | FrontDesk.lastKey.t [r] = r.currentKey.t
 }

pred entry (t, t’: Time, g: Guest, r: Room, k: Key) {
 k in g.keys.t
 let ck = r.currentKey |
 (k = ck.t and ck.t’ = ck.t) or
 (k = nextKey(ck.t, r.keys) and ck.t’ = k)
 noRoomChangeExcept (t, t’, r)
 noGuestChangeExcept (t, t’, none)
 noFrontDeskChange (t, t’)
 }

fig. 6.7 Hotel locking model, part 1.

examples 1�5

pred checkout (t, t’: Time, g: Guest) {
 let occ = FrontDesk.occupant {
 some occ.t.g
 occ.t’ = occ.t - Room -> g
 }
 FrontDesk.lastKey.t = FrontDesk.lastKey.t’
 noRoomChangeExcept (t, t’, none)
 noGuestChangeExcept (t, t’, none)
 }

pred checkin (t, t’: Time, g: Guest, r: Room, k: Key) {
 g.keys.t’ = g.keys.t + k
 let occ = FrontDesk.occupant {
 no occ.t [r]
 occ.t’ = occ.t + r -> g
 }
 let lk = FrontDesk.lastKey {
 lk.t’ = lk.t ++ r -> k
 k = nextKey (lk.t [r], r.keys)
 }
 noRoomChangeExcept (t, t’, none)
 noGuestChangeExcept (t, t’, g)
 }

pred noFrontDeskChange (t, t’: Time) {
 FrontDesk.lastKey.t = FrontDesk.lastKey.t’
 FrontDesk.occupant.t = FrontDesk.occupant.t’
 }

pred noRoomChangeExcept (t, t’: Time, rs: set Room) {
 all r: Room - rs | r.currentKey.t = r.currentKey.t’
 }

pred noGuestChangeExcept (t, t’: Time, gs: set Guest) {
 all g: Guest - gs | g.keys.t = g.keys.t’
 }

fig. 6.8 Hotel locking model, part 2.

1�� examples

traditional treatment of requirements as just like specifications, but at
a “higher level.” Michael Jackson has developed a systematic theory of
requirements called “problem frames” that explains how to structure
and reason about software development problems that involve interac-
tion between a system and its environment. His theory also explains
the distinction between simply observable events (such as entering the
room) and events that are better characterized by definition (such as
acquiring occupancy). The ideas that are most relevant to this example
can be found in several of the short pieces in his essay collection [38]
(in particular “Definitions,” “Designations,” “Domains,” “Machines,” and

“Requirements”), and are elaborated more fully in his book on problem
frames [39].

What does this analysis say about hotel rooms in practice?

When you enter the room for the first time, you should use your own
key. If a bellhop lets you in with a master key, the lock will not be re-

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
 some g: Guest, r: Room, k: Key |
 entry (t, t’, g, r, k)
 or checkin (t, t’, g, r, k)
 or checkout (t, t’, g)
 }

assert NoBadEntry {
 all t: Time, r: Room, g: Guest, k: Key | let t’ = TO/next(t) |
 let o = FrontDesk.occupant.t [r] |
 entry (t, t’, g, r, k) and some o => g in o
 }

fact NoIntervening {
 all t: Time - TO/last() | let t’ = TO/next (t), t“ = TO/next(t’) |
 all g: Guest, r: Room, k: Key |
 checkin (t, t’, g, r, k) => (entry (t’, t”, g, r, k) or no t“)
 }

check NoBadEntry for 5 but 3 Room, 3 Guest, 9 Time

fig. 6.9 Hotel locking model, part 3.

examples 1��

coded, and any valuables you leave in the room will be vulnerable until
the next time you reenter the room.

6.2.4	 An	Event-Based	Variation
We’ve seen how Alloy doesn’t have a fixed idiom for modeling state ma-
chines, so you’re free to use whatever idiom works best for the model
at hand. To illustrate this freedom, figs. 6.10–6.12 show a variation of
the hotel locking model of figs. 6.7–6.9. The state space and the transi-
tions are exactly the same, but this model uses events rather than opera-
tions.

Instead of writing a predicate for each operation, a signature is declared
whose atoms represent a set of events. For example, the Checkin sig-
nature represents the set of all events in which a guest checks in. The
constraints that were in the predicate now appear instead as signature
facts.

Arguments to operation predicates now become fields of the event sig-
natures. The signature hierarchy can be used to factor out common ar-
guments; thus RoomKeyEvent is the set of events that involve a room and
a key, in addition to pre- and poststates and a guest.

The Traces fact takes a rather different form in this model:

1 fact Traces {
2 init (TO/first ())
3 all t: Time - TO/last() | let t’ = TO/next (t) |
4 some e: Event {
5 e.pre = t and e.post = t’
6 currentKey.t != currentKey.t’ => e in Entry
7 occupant.t != occupant.t’ => e in Checkin + Checkout
8 (lastKey.t != lastKey.t’ or keys.t != keys.t’)
9 => e in Checkin
10 }
11 }

As before, the first constraint (line 2) says that the initial condition holds
at the first time instant. The quantified constraint says that, for any pair
of consecutive time instants, there is an event from one to the other
(5), and that, if certain state changes occur, an event in a particular set
must happen. For example, if the occupant relation changes, then either
a Checkin or a Checkout event must have occurred (7).

1�� examples

module examples/hotelEvents
open util/ordering[Time] as TO
open util/ordering[Key] as KO

sig Key, Time {}

sig Room {
 keys: set Key,
 currentKey: keys one -> Time
 }
fact DisjointKeySets {
 Room <: keys : Room lone -> Key
 }

one sig FrontDesk {
 lastKey: (Room -> lone Key) -> Time,
 occupant: (Room -> Guest) -> Time
 }

sig Guest {
 keys: Key -> Time
 }

fun nextKey (k: Key, ks: set Key): set Key {
 KO/min (KO/nexts (k) & ks)
 }

pred init (t: Time) {
 no Guest.keys.t
 no FrontDesk.occupant.t
 all r: Room | FrontDesk.lastKey.t [r] = r.currentKey.t
 }

abstract sig Event {
 pre, post: Time,
 guest: Guest
 }

abstract sig RoomKeyEvent extends Event {
 room: Room,
 key: Key
 }

fig. 6.10 An event-based variation of the hotel locking model, part 1.

examples 1��

sig Entry extends RoomKeyEvent {} {
 key in guest.keys.pre
 let ck = room.currentKey |
 (key = ck.pre and ck.post = ck.pre) or
 (key = nextKey(ck.pre, room.keys) and ck.post = key)
 }

sig Checkin extends RoomKeyEvent {} {
 keys.post = keys.pre + guest -> key
 let occ = FrontDesk.occupant {
 no occ.pre [room]
 occ.post = occ.pre + room -> guest
 }
 let lk = FrontDesk.lastKey {
 lk.post = lk.pre ++ room -> key
 key = nextKey (lk.pre [room], room.keys)
 }
 }

sig Checkout extends Event {} {
 let occ = FrontDesk.occupant {
 some occ.pre.guest
 occ.post = occ.pre - Room -> guest
 }
 }

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
 some e: Event {
 e.pre = t and e.post = t’
 currentKey.t != currentKey.t’ => e in Entry
 occupant.t != occupant.t’ => e in Checkin + Checkout
 (lastKey.t != lastKey.t’ or keys.t != keys.t’)
 => e in Checkin
 }
 }

fig. 6.11 An event-based variation of the hotel locking model, part 2.

�00 examples

The NoIntervening fact becomes easier to express in this style:

1 fact NoIntervening {
2 all c: Checkin |
3 c.post = TO/last ()
4 or some e: Entry {
5 e.pre = c.post
6 e.room = c.room
7 e.guest = c.guest
8 }
9 }

It says that every Checkin event is either the last event to occur (3), or
is followed immediately by some Entry event with the same room and
guest (4).

One major advantage of this idiom is that, because events are atoms,
it’s easier to tell which events are occurring in traces output by the ana-
lyzer. Fig. 6.13 shows a counterexample corresponding to that of fig. 6.6,
which is produced when the NoIntervening fact is omitted. I’ve chosen
a visualizer setting that shows events in their prestates, so the event in
each snapshot is the one that is about to occur.

assert NoBadEntry {
 all e: Entry | let o = FrontDesk.occupant.(e.pre) [e.room] |
 some o => e.guest in o
 }
check NoBadEntry for 5 but 3 Room, 3 Guest, 9 Time, 8 Event

fact NoIntervening {
 all c: Checkin |
 c.post = TO/last ()
 or some e: Entry {
 e.pre = c.post
 e.room = c.room
 e.guest = c.guest
 }
 }

fig. 6.12 An event-based variation of the hotel locking model, part 3.

examples �01

Discussion

What are the attractions of this style of modeling?

Making events concrete produces nicer visualizations, and allows some
properties to be written more succinctly and directly. Another ad-
vantage is that signature extension can be used to factor out common
properties of events. Here, we used this only to share the declarations
of event arguments, but it could be used in other ways—for example,
to declare more traditional frame conditions and share them between
event classes. This kind of sharing is easier to express between signa-
tures than between predicates, because predicates are explicitly param-
eterized, but signature extension (like inheritance in an object-oriented
language, and like schema inclusion in Z) works with free variables.

Could you have written the frame conditions more traditionally?

Yes, the frame conditions from the previous version could have been
incorporated verbatim. I used the more unusual style of frame condi-
tion to emphasize the flexibility that an idiomless language like Alloy
gives you.

Who invented this style of frame condition?

The basic idea is due to Ray Reiter [57], and was elaborated in the con-
text of software modeling in collaboration with Alex Borgida and John
Mylopoulos [7].

When is this style of frame condition suitable?

It works well exactly when conventional frame conditions are most
cumbersome. Suppose we have m state components, and k operations,
each of which modifies just one state component. Then in the conven-
tional style, each operation would require a frame condition for each of
the m − 1 state components that remains unchanged, so there would
be k × (m − 1) equalities in total. Reiter’s scheme, on the other hand,
requires just one implication for each operation, m in total, saying that
if a particular state component changed, then its associated operation
must have occurred.

In contrast, if every operation modifies every state component but one,
traditional frame conditions will require only one equality per opera-
tion, giving a total of k, whereas Reiter’s scheme would require m impli-
cations each listing k − 1 operation names in the consequent.

�0� examples

examples �0�

With respect to this simple comparison, Reiter’s scheme is equivalent
to the use of “modifies” clauses that indicate, for each operation, which
state components may change. The advantage of Reiter’s scheme, how-
ever, is that it requires no extra-logical notions, and can accommodate
more complex forms, such as frame conditions that are dependent on
the state in which an operation is invoked.

6.3	 Media	Asset	Management

For organizing a large collection of media files, such as photos, mov-
ies, or soundtracks, the built-in facilities of a file system are usually not
good enough. Applications for “media asset management” allow you to
view large collections in thumbnail form; to move, rename, copy and
backup files; to attach labels and captions; to generate webpages; and so
on. The main advantages over the standard file system’s interface is that
you can form catalogs that crosscut the directory structure, and apply
batch operations to collections of files at once.

This example is a model of a few of the essential functions of one of the
popular applications, iView Media Pro. I developed it to illustrate how
modeling can give you insight into very basic functions: the kind that
seem obvious at first glance, but are subtler when examined carefully.
This kind of modeling is ideally performed in the early stages of devel-
oping a program such as Media Pro, but is also useful later, when new
functionality threatens to compromise the clarity of the key abstrac-
tions.

fig. 6.13 (Left and above) A sample trace showing unauthorized entry for the event-
based variation.

�0� examples

Although I’d used (and been impressed by) Media Pro for several years,
when I constructed this model, I hadn’t understood the details of the
basic functions. I was motivated by occasional unpleasant surprises
that made me wonder whether they might have been designed differ-
ently. From the modeling experience, I came to the conclusion that the
design was eminently sensible, and that aside from the addition of an
undo facility, I found no opportunity for an improvement in the under-
lying abstractions.

Constructing and analyzing the model gave me a number of insights. It
would belabor them to show the model in its intermediate forms, and to
attempt to explain how they arose. Instead, I’ll present the final version
of the model, with a separate summary of the insights gained.

6.3.1	 Catalog	and	Application	State
The state of the entire application consists of a set of open catalogs (each
with its own state, which we’ll come to shortly), a current catalog, and a
cut buffer holding a set of assets:

module examples/assets
sig ApplicationState {
 catalogs: set Catalog,
 catalogState: catalogs -> one CatalogState,
 currentCatalog: catalogs,
 buffer: set Asset
 }
sig Catalog, Asset {}

The role of a catalog in Media Pro is like the role of a document in a
word processor, and the cut buffer is primarily for moving assets be-
tween catalogs. The presence of an asset in a catalog is a purely organi-
zational notion; the location of the asset’s file on disk is not affected by
its movement among catalogs.

An individual catalog’s state (shown as a model diagram in fig. 6.14)
consists of its assets, which are partitioned into assets that are shown
and assets that are hidden, and a selection, which is either undefined or
is a set of assets:

sig CatalogState {
 assets: set Asset,
 part hidden, showing: set assets,
 selection: set assets + Undefined
 }
one sig Undefined {}

examples �05

The hiding and showing of assets is a mechanism that allows the user
to focus on a particular subset. Some of the batch actions (such as cut/
copy, rename, rebuild thumbnail) are applied only to selected assets;
others (such as webpage generation) are applied to all the assets that are
showing. Typical usage often involves selecting a set of assets, hiding
them (or the others), and then selecting a subset again, or performing
some action.

Because it would be undesirable for actions to be applied to assets that
are hidden, the selected assets must always be showing. So we record an
invariant saying that the selection is either undefined, or is a nonempty
set of assets that are showing:

pred catalogInv (cs: CatalogState) {
 cs.selection = Undefined
 or (some cs.selection and cs.selection in cs.showing)
 }

The invariant on the whole state simply applies this invariant to the state
of each catalog:

pred appInv (xs: ApplicationState) {
 all cs: xs.catalogs | catalogInv (xs.catalogState[cs])
 }

6.3.2	 Operations
We’ll model the operations associated with hiding and showing assets,
and the operations of the cut buffer.

fig. 6.14 Model diagram for the catalog state declarations.

Asset
Catalog
State

assets

hidden, showing

Undefined

AssetOr
Undefined

selection

�0� examples

To show the assets that are selected, and hide the rest, the user executes
the “show selected” command:

pred showSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.showing = cs.selection
 cs’.selection = cs.selection
 cs’.assets = cs.assets
 }

Note the precondition that the selection be defined. If no asset is se-
lected, the command’s menu entry is grayed out.

To hide the selected assets and show the rest, the user executes the “hide
selected” command:

pred hideSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.hidden = cs.hidden + cs.selection
 cs’.selection = Undefined
 cs’.assets = cs.assets
 }

The asymmetry between these operations is a bit surprising at first. The
show command replaces the set of shown assets, and leaves the selec-
tion unchanged. The hide command, in contrast, augments the set of
hidden assets, and clears the selection.

The cut command is described by this operation:

1 pred cut (xs, xs’: ApplicationState) {
2 let cs = xs.currentCatalog.(xs.catalogState), sel = cs.selection {
3 sel != Undefined
4 xs’.buffer = sel
5 some cs’: CatalogState {
6 cs’.assets = cs.assets - sel
7 cs’.showing = cs.showing - sel
8 cs’.selection = Undefined
9 xs’.catalogState =
10 xs.catalogState ++ xs.currentCatalog -> cs’
11 }
12 }
13 xs’.catalogs = xs.catalogs
14 xs’.currentCatalog = xs.currentCatalog
15 }

examples �0�

Its precondition is that the selection is defined (3). Its effect is to replace
the contents of the buffer with the selection (4), to remove the selected
assets from the catalog (6) and from the set of shown assets (7), and to
clear the selection (8). All these actions are performed in the context of
the current catalog; to make this clear, a variable is introduced for the
current catalog’s state (2). Only the current catalog has a change of state
(10). Finally, two frame conditions (13, 14) say that neither the set of
open catalogs nor the choice of current catalog is changed.

The paste operation is similar:

16 pred paste (xs, xs’: ApplicationState) {
17 let cs = xs.currentCatalog.(xs.catalogState), buf = xs.buffer {
18 xs’.buffer = buf
19 some cs’: CatalogState {
20 cs’.assets = cs.assets + buf
21 cs’.showing = cs.showing + (buf - cs.assets)
22 cs’.selection = buf - cs.assets
23 xs’.catalogState =
24 xs.catalogState ++ xs.currentCatalog -> cs’
25 }
26 }
27 xs’.catalogs = xs.catalogs
28 xs’.currentCatalog = xs.currentCatalog
29 }

It has no precondition (since the buffer, unlike the selection, can be
empty but cannot be undefined). Its effect is to add the assets in the
buffer to the assets of the current catalog (20); and to augment the set
of shown assets with the new assets that have been added (21), which
also become selected (22).

6.3.3	 Analyses
In our previous examples, the assertions we checked captured essential
properties: that one leader is elected, that no unauthorized entry occurs,
and so on. This example is more typical of what happens in practice. No
single property seems to capture the essence of the design, but there are
a number of simple sanity checks that can be formulated, and which can
be very effective in exposing errors and confusions.

One simple and common class of sanity checks is that operations pre-
serve invariants. For example, we can check that if the invariant on cata-

�0� examples

log state holds before the hide command is issued, then it will also hold
after:

assert HidePreservesInv {
 all cs, cs’: CatalogState |
 catalogInv (cs) and hideSelected (cs, cs’) => catalogInv (cs’)
 }
check HidePreservesInv

This check is sufficient to expose the error of not clearing the selection.
Suppose that the operation were to read

pred hideSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.hidden = cs.hidden + cs.selection
 cs’.selection = cs.selection
 cs’.assets = cs.assets
 }

instead of

pred hideSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.hidden = cs.hidden + cs.selection
 cs’.selection = Undefined
 cs’.assets = cs.assets
 }

The analyzer would then produce a counterexample in which the opera-
tion results in a hidden asset being selected.

Another class of useful sanity checks involves algebraic properties. Here,
for example, we might expect the cut and paste actions to be inverses
of one another, so that each acts as an undo for the other. We can assert
that a cut followed by a paste results in a final state equivalent to the
initial state:

assert CutPaste {
 all xs, xs’, xs“: ApplicationState |
 appInv (xs) and cut (xs, xs’) and paste (xs’, xs”)
 => sameApplicationState (xs, xs“)
 }
check CutPaste

where equivalence is defined as follows:

examples �0�

pred sameApplicationState (xs, xs’: ApplicationState) {
 xs’.catalogs = xs.catalogs
 all c: xs.catalogs |
 sameCatalogState (c.(xs.catalogState), c.(xs’.catalogState))
 xs’.currentCatalog = xs.currentCatalog
 xs’.buffer = xs.buffer
 }

pred sameCatalogState (cs, cs’: CatalogState) {
 cs’.assets = cs.assets
 cs’.showing = cs.showing
 cs’.selection = cs.selection
 }

The assertion is invalid, for a rather inconsequential reason: the cut re-
places the contents of the buffer, and the paste doesn’t retrieve the old
contents (which it would if the cut buffer were a stack, as in the emacs
text editor). To confirm that this is the only reason, we can comment
out the line

xs’.buffer = xs.buffer

in sameApplicationState, rerun the analysis, and note that a counterex-
ample is no longer found.

Similarly, we can check a paste followed by a cut:

assert PasteCut {
 all xs, xs’, xs“: ApplicationState |
 (appInv (xs) and paste (xs, xs’) and cut (xs’, xs”))
 => sameApplicationState (xs, xs“)
 }
check PasteCut

This also fails, because of the change to the selection. Commenting out
the line

cs’.selection = cs.selection

in sameCatalogState confirms that there are no additional problems (but
see subsection 6.3.4 below).

Sometimes, when writing an operation, a property to check comes to
mind. For example, noting that the paste operation adds to the set of
shown assets, we might assert that it has no effect on the hidden set of
the current catalog:

�10 examples

assert PasteNotAffectHidden {
 all xs, xs’: ApplicationState |
 (appInv (xs) and paste (xs, xs’)) =>
 let c = xs.currentCatalog |
 xs’.catalogState[c].hidden = xs.catalogState[c].hidden
 }
check PasteNotAffectHidden

This assertion is valid.

Figs. 6.15–6.17 bring together the parts of the model that have been
discussed.

module examples/assets
sig Catalog, Asset {}
sig ApplicationState {
 catalogs: set Catalog,
 catalogState: catalogs -> one CatalogState,
 currentCatalog: catalogs,
 buffer: set Asset
 }
sig CatalogState {
 assets: set Asset,
 part hidden, showing: set assets,
 selection: set assets + Undefined
 }
one sig Undefined {}

pred catalogInv (cs: CatalogState) {
 cs.selection = Undefined
 or (some cs.selection and cs.selection in cs.showing)
 }
pred appInv (xs: ApplicationState) {
 all cs: xs.catalogs | catalogInv (xs.catalogState[cs])
 }

fig. 6.15 Media asset model, state and invariants.

examples �11

pred showSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.showing = cs.selection
 cs’.selection = cs.selection
 cs’.assets = cs.assets
 }
pred hideSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.hidden = cs.hidden + cs.selection
 cs’.selection = Undefined
 cs’.assets = cs.assets
 }

pred cut (xs, xs’: ApplicationState) {
let cs = xs.currentCatalog.(xs.catalogState), sel = cs.selection {
 sel != Undefined
 xs’.buffer = sel
 some cs’: CatalogState {
 cs’.assets = cs.assets - sel
 cs’.showing = cs.showing - sel
 cs’.selection = Undefined
 xs’.catalogState =
 xs.catalogState ++ xs.currentCatalog -> cs’
 }
 }
xs’.catalogs = xs.catalogs
xs’.currentCatalog = xs.currentCatalog
}
pred paste (xs, xs’: ApplicationState) {
 let cs = xs.currentCatalog.(xs.catalogState), buf = xs.buffer {
 xs’.buffer = buf
 some cs’: CatalogState {
 cs’.assets = cs.assets + buf
 cs’.showing = cs.showing + (buf - cs.assets)
 cs’.selection = buf - cs.assets
 xs’.catalogState =
 xs.catalogState ++ xs.currentCatalog -> cs’
 }
 }
 xs’.catalogs = xs.catalogs
 xs’.currentCatalog = xs.currentCatalog
 }

fig. 6.16 Media asset model, operations.

�1� examples

assert HidePreservesInv {
 all cs, cs’: CatalogState |
 catalogInv (cs) and hideSelected (cs, cs’) => catalogInv (cs’)
 }
check HidePreservesInv

assert CutPaste {
 all xs, xs’, xs“: ApplicationState |
 appInv (xs) and cut (xs, xs’) and paste (xs’, xs”)
 => sameApplicationState (xs, xs“)
 }
check CutPaste

pred sameApplicationState (xs, xs’: ApplicationState) {
 xs’.catalogs = xs.catalogs
 all c: xs.catalogs |
 sameCatalogState (c.(xs.catalogState), c.(xs’.catalogState))
 xs’.currentCatalog = xs.currentCatalog
 xs’.buffer = xs.buffer
 }

pred sameCatalogState (cs, cs’: CatalogState) {
 cs’.assets = cs.assets
 cs’.showing = cs.showing
 cs’.selection = cs.selection
 }

assert PasteNotAffectHidden {
 all xs, xs’: ApplicationState |
 (appInv (xs) and paste (xs, xs’)) =>
 let c = xs.currentCatalog |
 xs’.catalogState[c].hidden = xs.catalogState[c].hidden
 }
check PasteNotAffectHidden

fig. 6.17 Media asset model, assertions.

examples �1�

6.3.4	 Insights
The construction and analysis of this little model gave me some insights
into the mechanisms of selecting, showing, and hiding:

· The selection is not just a set; it’s either undefined, or a set contain-
ing one or more assets. This prevents you from selecting zero as-
sets (for which there seems to be no purpose), and from issuing the
command to show the selected assets when none are selected, which
would cause all assets to be hidden.

· The show and hide commands, as noted, are asymmetric. The show
command replaces the set of shown assets, and leaves the selection
unchanged. The hide command, in contrast, augments the set of hid-
den assets, and clears the selection. This reflects another asymmetry:
that the selection is always of assets that are showing. If the show
command were to augment rather than replace, it would have no ef-
fect! Or, put another way, both commands are really about hiding:
the hide command hides the assets selected, and the show command
hides the assets that are shown but not selected.

· Executing the paste command leaves the pasted assets selected. This
allows some degree of undo by a subsequent cut, although the undo
isn’t complete because the original selection is lost.

· The case in which a paste is executed and the cut buffer shares assets
with the catalog is surprisingly subtle. Initially, I got it wrong, and
wrote

pred paste (xs, xs’: ApplicationState) {
 xs’.catalogs = xs.catalogs
 xs’.currentCatalog = xs.currentCatalog
 let cs = xs.currentCatalog.(xs.catalogState), buf = xs.buffer {
 xs’.buffer = buf
 some cs’: CatalogState {
 cs’.assets = cs.assets + buf
 cs’.showing = cs.showing + buf
 cs’.selection = buf
 xs’.catalogState =
 xs.catalogState ++ xs.currentCatalog -> cs’
 }
 }
 }

�1� examples

so that the set of shown assets is augmented by, and the selection
is replaced by, the entire contents of the buffer, rather than the
buffer restricted to those assets not already in the catalog. Both
assertions PasteNotAffectHidden and PasteCut failed for unexpected
reasons. The former failed because pasting an asset that was al-
ready hidden caused it to be shown (and thus removed from the
hidden set); the latter failed additionally because the resulting se-
lection included the originally present assets, so a subsequent cut
leaves the catalog with fewer assets than it started with before the
paste-cut sequence. An experiment with Media Pro revealed the
more complicated design of paste, which seems wise, because it
preserves the algebraic property PasteCut (at least ignoring the se-
lection) which most users probably expect to hold.

Discussion

Is the existential quantifier in the cut and paste operations needed to al-
locate fresh catalog state?

No. No notion of allocation is necessary in a declarative specification.
Instead of writing

pred cut (xs, xs’: ApplicationState) {
 some cs’: CatalogState {
 cs’.assets = expression
 xs’.catalogState = xs.catalogState ++ xs.currentCatalog -> cs’
 }
 …
 }

we could equally well have written

pred cut (xs, xs’: ApplicationState) {
 let cs’ = xs’.catalogState [xs.currentCatalog] |
 cs’.assets = expression
 all c: Catalog - xs.currentCatalog |
 xs’.catalogState [c] = xs.catalogState [c]
 …
 }

but the existential quantifier is convenient because it allows the rela-
tional override operator to be used.

examples �15

Aren’t your insights rather trivial?

Perhaps some readers will think I’m making a mountain out of a mole-
hill; after all, none of the issues I discuss are “showstoppers,” which if
confused in the design could not be fixed later. The point, rather, is that
to make a dependable and usable application you need to get all these
things right eventually.

Can usability issues really be addressed in the abstract?

Of course some design issues, especially those involving usability, can-
not be resolved in the abstract. But that’s no reason to ignore them dur-
ing design. Focusing on them early will catch many problems, even if
not all, and will save you a lot of reworking later. Moreover, a usability
study is most effective when viewed as an experiment in which a hy-
pothesis is being tested. If you don’t have a coherent design with clean
abstractions, you don’t have a hypothesis. You can’t tweak an incoher-
ent user interface design into a usable and elegant one any more than
you can test a pile of spaghetti code into a robust code base.

�1� examples

6.4	 Memory	Abstractions

Memory systems have long been a favorite subject for modeling and
analysis. This example is included to show the application of Alloy to a
well-understood problem. As a pedagogical example, it illustrates the
use of nondeterminism (in the descriptions of flushing and loading), of
abstraction functions for relating models at different levels of abstrac-
tion, and of Alloy’s module system to separate the models from one
another and from the checks that relate them.

6.4.1	 Abstract	Memory
A model of a simple abstract memory is shown in fig. 6.18. The module
is parameterized by Addr, the set of addresses, and Data, the set of data
values that can be stored. The Memory signature represents the possible
states of the memory. The Canonicalize fact ensures that memories with
the same contents are represented by the same atom.

The contents of the memory are modeled by the field data mapping ad-
dresses to data values. The mapping is a partial function; each address
maps to at most one data value. The initialization of the memory is
described by the predicate init: the memory is initially empty, with no
mappings at all. Later, in subsection 6.4.3, we’ll relate this model to a
less abstract model in which there is always a data value for every ad-
dress, set arbitrarily at the start.

Writes to the memory are described by the write predicate. The data
mapping of the new memory (m’) is the data mapping of the old memory
(m) overridden by the mapping from the address a to the data value d.

Reads, described by the read predicate, are more interesting. If there is
a data value associated with the address being looked up, that value is
returned. Otherwise, the value is unconstrained, and any value may be
returned.

Two examples of simple checks that can be applied to this model are,
first, that a read of an address returns the value just written:

assert WriteRead {
 all m, m’: Memory, a: Addr, d1, d2: Data |
 write (m, m’, a, d1) and read (m’, a, d2) => d1 = d2
 }
check WriteRead

and, second, that performing a second identical write has no effect:

examples �1�

assert WriteIdempotent {
 all m, m’, m“: Memory, a: Addr, d: Data |
 write (m, m’, a, d) and write (m’, m”, a, d) => m’ = m“
 }
check WriteIdempotent

Discussion

Why canonicalize the memory values?

The alternative would be to introduce a predicate, sameMemory say, that
evaluates to true when applied to two memories with identical data
mappings. This predicate would then be used in place of equality tests.
Either approach works fine, but canonicalization is slightly more con-
venient, because it avoids the error of forgetting to use the equivalence
predicate rather than equality, and because instances generated by the
analyzer are easier to understand, since memories with different names
are always structurally different.

module examples/abstractMemory [Addr, Data]

sig Memory {
 data: Addr -> lone Data
 }

fact Canonicalize {
 no disj m, m’: Memory | m.data = m’.data
 }

pred init (m: Memory) {
 no m.data
 }

pred write (m, m’: Memory, a: Addr, d: Data) {
 m’.data = m.data ++ a -> d
 }

pred read (m: Memory, a: Addr, d: Data) {
 let d’ = m.data [a] | some d’ implies d = d’
 }

fig. 6.18 Simple abstract memory.

�1� examples

Why doesn’t read take a second memory argument?

Since read does not change the state of the memory, there is no need to
have a second argument, m’ say, to represent the poststate. Sometimes,
however, this is preferable. In a less abstract model in which the read
operation might load data to a cache from main memory, the second
argument would be required. To check that model against this abstract
model, it would be convenient to have the second argument in the ab-
stract model too, to avoid a separate check that the loading read does
not affect the abstract state.

6.4.2	 Cache	Memory
A model of a simple cache memory is shown in fig. 6.19. This time, the
signature representing the system states (cacheMemory) has two fields
mapping addresses to data values, one for the main memory and one
for the cache.

Both reading and writing involve only the cache. The write operation al-
ters the cache and leaves the main memory unchanged. The read opera-
tion returns the data value from the cache, and has a precondition that
such a value exist. The idea is that prior to executing a read, the system
may execute a load if necessary to bring the requested address into the
cache. Prior to a write, it may execute a flush to make room in the cache
for the new entry.

The load and flush operations are nondeterministic. Rather than specify-
ing a particular caching policy, they cover all policies by leaving open
the question of which entries are loaded and flushed.

The WriteRead and WriteIdempotent checks could be applied to this model
too (with the references to the signature Memory replaced by references
to CacheSystem). More interesting checks involve loading and flushing.
For example, we can check that a load interposed between a read and a
write has no observable effect:

assert LoadNotObservable {
 all c, c’, c“: CacheSystem, a1, a2: Addr, d1, d2, d3: Data |
 {
 read (c, a2, d2)
 write (c, c’, a1, d1)
 load (c’, c”)
 read (c“, a2, d3)
 } implies d3 = (if a1 = a2 then d1 else d2)
 }
check LoadNotObservable

examples �1�

module examples/cacheMemory [Addr, Data]

sig CacheSystem {
 main, cache: Addr -> lone Data
 }

pred init (c: CacheSystem) {
 no c.main + c.cache
 }

pred write (c, c’: CacheSystem, a: Addr, d: Data) {
 c’.main = c.main
 c’.cache = c.cache ++ a -> d
 }

pred read (c: CacheSystem, a: Addr, d: Data) {
 some d
 d = c.cache [a]
 }

pred load (c, c’: CacheSystem) {
 some addrs: set c.main.Data - c.cache.Data |
 c’.cache = c.cache ++ addrs <: c.main
 c’.main = c.main
 }

pred flush (c, c’: CacheSystem) {
 some addrs: some c.cache.Data {
 c’.main = c.main ++ addrs <: c.cache
 c’.cache = c.cache - addrs -> Data
 }
 }

fig. 6.19 Cache memory.

This assertion says that if a read, write, load, and read are performed in
that order, then the data value returned from the second read will either
match the value written (if the second read address matches the write
address), or the value read initially (if it does not).

No counterexample is found; the assertion is valid. On the other hand,
suppose we’d made a mistake in specifying the load operation, allowing
any entries to be copied to the cache from main memory, irrespective of
whether their addresses match addresses of entries in the cache:

��0 examples

pred load (c, c’: CacheSystem) {
 some addrs: set Addr |
 c’.cache = c.cache ++ addrs <: c.main
 c’.main = c.main
 }

The analyzer now finds a counterexample showing fresh values in the
cache (which have yet to be flushed) being overwritten.

Discussion

Why no canonicalization of memory values for the caching version?

This model, unlike the previous one of the abstract memory, does not
include a canonicalization fact. Our example involves no comparisons
of cache memories, but it will involve comparisons of abstract memo-
ries (when we check that loading and flushing have no abstract effect).

6.4.3	 Fixed-Size	Memory
In the abstract memory model of subsection 6.4.1, the memory grows
dynamically as writes to new addresses are made, even though the set of
possible addresses is fixed. For a memory implemented in hardware, a
more realistic model, shown in fig. 6.20, assigns a value to every address
in every state.

The initialization predicate is now empty: any initial assignment of data
values is allowed, so long as the multiplicity of the declaration of the
field data is obeyed, so that each address has a defined data value as-
sociated with it. The read operation no longer distinguishes the case of
whether the address is present, and simply returns the data value for the
given address.

This model could be subjected to the same kind of internal analyses as
the abstract memory model—nothing new here.

6.4.4	 A	Quick	Introduction	to	Abstraction	Functions
We’ve now seen three variants of the memory model: an abstract mem-
ory model, and two more concrete models, one accommodating arbi-
trary initialization, and one describing caching. If we observed the be-
haviors of these two, we would expect them to conform to the abstract
model. That is, if all you could see was which operations occurred, the
addresses passed to them, and the data values passed into the write op-
eration and out of the read, every execution of one of the concrete sys-

examples ��1

module examples/fixedSizeMemory [Addr, Data]
sig Memory {
 data: Addr -> one Data
 }

pred init (m: Memory) {
 }

pred write (m, m’: Memory, a: Addr, d: Data) {
 m’.data = m.data ++ a -> d
 }

pred read (m: Memory, a: Addr, d: Data) {
 d = m.data [a]
 }

fig. 6.20 Fixed-size memory.

tems would be indistinguishable from some execution of the abstract
system.

To determine whether a concrete operation

pred concreteOp (s, s’: State) {…}

produces behaviors acceptable to an abstract operation

pred abstractOp (s, s’: State) {…}

we can assert that every transition of the concrete operation is a transi-
tion of the abstract one:

assert Refinement {
 all s, s’: State | concreteOp (s, s’) => abstractOp (s, s’)
 }

For example, we could check that the write operation from our abstract
model

pred write (m, m’: Memory, a: Addr, d: Data) {
 m’.data = m.data ++ a -> d
 }

meets the more abstract description

pred writeWeak (m, m’: Memory, a: Addr, d: Data) {
 m’.data [a] = d
 }

��� examples

which (unhelpfully) allows corruption on every address except the one
written, with the assertion

assert WriteRefinement {
 all m, m’: Memory, a: Addr, d: Data |
 write (m, m’, a, d) => writeWeak (m, m’, a, d)
 }

To compare across memory models, however, this simple approach
won’t work: the operations compared apply to different state spaces. A
classic paper by Tony Hoare [28] introduced a solution to this problem
that is now well-known and widely used. An abstraction function is de-
fined that maps concrete states to corresponding abstract states.

Suppose our operations are

pred concreteOp (s, s’: ConcreteState) {…}
pred abstractOp (s, s’: AbstractState) {…}

Then we try to find an abstraction function

fun alpha (s: ConcreteState): AbstractState {…}

that makes this assertion valid:

assert AbstractionRefinement {
 all s, s’: ConcreteState |
 concreteOp (s, s’) => abstractOp (alpha(s), alpha(s’))
 }

If such an abstraction function can be found, the observable behaviors
of the concrete model—in which everything is visible except the state
itself—will conform to the abstract model.

Discussion

What exactly is the notion of conformance here?

We’re using trace inclusion as the yardstick. A trace is an execution his-
tory: a sequence of events, each representing a single step in which an
operation fires. An event can be described in full by the name of the op-
eration and the values taken by the inputs and outputs in that step. Note
that the pre- and poststates are not part of the event, because they are
regarded as invisible from outside. Each machine, abstract and concrete,
has a trace set that summarizes its behavior. The concrete machine con-
forms to the abstract machine if its trace set is a subset of the trace set
of the abstract model.

examples ���

If the concrete machine conforms in this way, it never does anything
bad. On the other hand, conformance doesn’t guarantee that it does
anything good. In particular, the concrete machine that has no traces at
all conforms to any abstract machine! To ensure that good things hap-
pen, the notion of conformance needs to be extended. If each operation
represents a request for service and its fulfillment, we might require
that the concrete operations be just as applicable: that is, whenever a
trace can be extended with an event in the abstract machine, there is
a corresponding event in the concrete machine (or, more generally, an
appropriate sequence of events). This would ensure that the concrete
machine never refuse to respond to a request that the abstract machine
would have responded to.

This kind of extension is not easily formulated or checked in Alloy, be-
cause it requires an unbounded universal quantification over states.
The assertion we’d need would say something like this: for every con-
crete prestate, the concrete operation is applicable (that is, there exists
a concrete poststate satisfying the operation constraint) whenever the
correspond abstract operation is applicable. This existential quantifier
over the concrete poststate becomes an unbounded universal quantifier
when it’s negated to find counterexamples, so it can’t be handled by Al-
loy. See section 5.3 for a detailed discussion of this problem.

Does the abstraction function method always work?

The method is sound, which means that if you can find an abstraction
function that satisfies the refinement condition, then it follows that the
concrete machine conforms to the abstract machine. It’s not complete,
however: just because the concrete machine conforms does not im-
ply that an abstraction function exists. The problem with the standard
method arises only rarely, when the abstract and concrete machines
exhibit nondeterminism at different points but with the same observ-
able effect.

The method can be made complete in one of two ways. You can general-
ize to an abstraction relation, but this isn’t desirable for Alloy, because it
requires an unbounded universal quantification. Alternatively, you can
augment the concrete model with additional state variables in a way
that doesn’t alter the observable behavior, but makes it possible to find
an abstraction function. Two kinds of variables are added, history and
prophecy variables, depending on whether the troublesome nondeter-
minism is resolved earlier or later in the concrete machine. Use of a
history variable is illustrated below, in subsection 6.4.6.

��� examples

What if you pick the wrong abstraction function?

It doesn’t matter what function you pick, so long as it satisfies the re-
finement condition, and one additional condition. It must be total, so
that it gives an interpretation for every concrete state. This condition is
not easily checked in Alloy, because it requires an unbounded univer-
sal (see section 5.3), but you can often write the abstraction function
in such a way that it’s easy to see that it’s total, and you can simulate it
(just by running the function in the Alloy Analyzer) to check that it’s
consistent.

Must the abstraction function really map every concrete state?

Not necessarily. You can introduce an invariant. So long as every con-
crete operation preserves the invariant—easily checked in Alloy (see
section 6.3.1)—the refinement condition can be restricted to those pr-
estates that satisfy it, and then the abstraction function need only map
them.

6.4.5	 Abstraction	Function	for	Cache	Memory
To check the cache model against the abstract model, we create a new
Alloy module:

module examples/checkCache [Addr, Data]
open cacheMemory [Addr, Data] as cache
open abstractMemory [Addr, Data] as amemory

We then declare an abstraction function, saying that the abstract mem-
ory associated with a cache system is obtained by taking the contents of
the main memory, and overriding them with the contents of the cache:

fun alpha (c: CacheSystem): Memory {
 {m: Memory | m.data = c.main ++ c.cache}
 }

Now we can write the assertions to check the operations. For read and
write, we have:

assert ReadOK {
 all c: CacheSystem, a: Addr, d: Data, m: Memory |
 cache/read (c, a, d) and m = alpha (c)
 => amemory/read (m, a, d)
 }
check ReadOK

examples ��5

assert WriteOK {
 all c, c’: CacheSystem, a: Addr, d: Data, m, m’: Memory |
 cache/write (c, c’, a, d)
 and m = alpha (c) and m’ = alpha (c’)
 => amemory/write (m, m’, a, d)
 }
check WriteOK

The load and flush operations don’t have counterparts in the abstract
model; their effect should not even be detectable from an abstract per-
spective. So we check them against the abstract operation that does
nothing:

assert LoadOK {
 all c, c’: CacheSystem, m, m’: Memory |
 cache/load (c, c’)
 and m = alpha (c) and m’ = alpha (c’)
 => m = m’
 }
check LoadOK

assert FlushOK {
 all c, c’: CacheSystem, m, m’: Memory |
 cache/flush (c, c’)
 and m = alpha (c) and m’ = alpha (c’)
 => m = m’
 }
check FlushOK

6.4.6	 History	Variables
Showing that fixed-size memory conforms to the abstract model is im-
possible with an abstraction function alone. But the fixed-size memory
does indeed conform: the arbitrary initial values correspond to the ad-
dresses in the abstract memory that have no data values associated with
them, and when a read operation returns one of these arbitrary values,
the abstract model would allow it, because, in the abstract setting, the
address would have been missing from the mapping—a case in which
the abstract read operation does not constrain the value returned.

Unfortunately, however, after the initial state, you can no longer tell by
looking at the fixed-size memory’s address/data mapping which ad-
dresses have been written to, and which still hold their initial junk val-

��� examples

ues. A solution to this dilemma is to extend the model with an extra
state component that maintains this distinction, as shown in fig. 6.21.

This state component, unwritten, is called a history variable, because it
holds additional history about the behavior—in this case the set of ad-
dresses that have not yet been written to.

Now, using the augmented state, we can formulate an abstraction func-
tion, and check the operations as before, but using the augmented con-
crete model rather than the original one. The new abstraction function
and the refinement assertions are shown in fig. 6.22.

Discussion

Why is an abstraction function needed at all for the fixed-size memory?
Doesn’t its state match the state of the abstract memory?

The state of the cache model clearly differs from the state of the abstract
model, because it separates the memory into two mappings. But you
may wonder whether the fixed-size memory state is different: like the
abstract memory, the state comprises a single field called data mapping
addresses to data values.

First, distinct signatures represent distinct sets of atoms, even if their
fields have the same name. The ability to use fields of the same name is
a convenience—a form of overloading that Alloy resolves automatically.
Alloy doesn’t permit two distinct signatures with the same name; even
though both of these are called Memory, they are declared in different
modules, so their full names are unique.

Second, even if we rewrote the models so that the fixed-size and ab-
stract memories shared the same state signature, an abstraction func-
tion would still be needed. Consider checking the initialization predi-
cates. The abstract memory requires the address/data mapping to be
empty initially, whereas the fixed-size memory requires it to be full!

The issue here is that, even if the names of the two state spaces match,
and they are represented by the same set of atoms, a single state can
have different interpretations in the two models. In fact, to interpret
a state of the fixed-size memory in terms of the abstract memory, we
need to distinguish addresses that have been written, and addresses that
still hold their arbitrary values from initialization. This is what led us to
introduce the history variable. Even in the absence of the history vari-
able, an abstraction function is needed to bridge two state spaces when
their interpretations differ. As another example, think of testing one

examples ���

arithmetic implementation against another in which the byte order-
ing differs: the testing framework will need to apply conversions, even
though both implementations represent an integer as a byte.

Why did you write the abstraction function as a predicate rather than
as a function?

Simply to illustrate a different style; it’s still a function, even though it’s
defined implicitly. The predicate form is perhaps preferable because it
doesn’t use the set comprehension. You might think that defining the
abstraction function as an Alloy function (as in subsection 6.4.5) en-
sures that it is truly a function from concrete to abstract states. Unfor-
tunately, this isn’t true: if the comprehension property is badly written, a
single concrete state might map to a set of more than one abstract state.
You’d still have a function in the sense of the Alloy keyword (because the
result is a single set of abstract states) but you wouldn’t have an abstrac-
tion function, because the mapping from states to states would not be
one-to-one.

module examples/fixedSizeMemory_H [Addr, Data]
open fixedSizeMemory [Addr, Data] as memory

sig Memory_H extends memory/Memory {
 unwritten: set Addr
 }

pred init (m: Memory_H) {
 memory/init (m)
 m.unwritten = Addr
 }

pred read (m: Memory_H, a: Addr, d: Data) {
 memory/read (m, a, d)
 }

pred write (m, m’: Memory_H, a: Addr, d: Data) {
 memory/write (m, m’, a, d)
 m’.unwritten = m.unwritten - a
 }

fig. 6.21 Extension of fixed-size memory model with a history variable.

��� examples

module examples/checkFixedSize [Addr, Data]
open fixedSizeMemory_H [Addr, Data] as fmemory
open abstractMemory [Addr, Data] as amemory

pred alpha (fm: fmemory/Memory, am: amemory/Memory) {
 am.data = fm.data - (fm.unwritten -> Data)
 }

assert initOK {
 all fm: fmemory/Memory, am: amemory/Memory |
 fmemory/init (bm) and alpha (bm, am)
 => amemory/init (am)
 }
check initOK

assert readOK {
 all fm: fmemory/Memory, a: Addr, d: Data,
 am: amemory/Memory |
 fmemory/read (fm, a, d) and alpha (fm, am))
 => amemory/read (am, a, d)
 }
check readOK

assert writeOK {
 all fm, fm’: fmemory/Memory, a: Addr, d: Data,
 am: amemory/Memory |
 fmemory/write (fm, fm’, a, d)
 and alpha (fm, am) and alpha (fm’, am’)
 => amemory/write (am, am’, a, d)
 }
check writeOK

fig. 6.22 Abstraction function and refinement assertions
for history-extended machine.

Appendix	A:	Exercises

These exercises are divided into sections. The exercises in the early sec-
tions are designed to help develop skills in using relational logic and the
basic linguistic constructs of Alloy, so they tend to be more mathemati-
cal in flavor. The exercises in the later sections are more open-ended,
and more characteristic of what modeling involves in practice.

The exercises of section A.1 assume only chapter 3 as background, and
do not require any familiarity with the language constructs of 4. Nev-
ertheless, most readers will enjoy the exercises more, and learn more
from them, if they experiment with the Alloy Analyzer as they go along.
I’ve therefore provided templates that show how to use the analyzer in
each exercise without requiring knowledge of the full language.

The exercises of the remaining sections can all be attempted after read-
ing only chapters 3 and 4, except for A.5.3 which refers to an example
in chapter 6.

Exercises that are easy and should not require any deep thinking are
marked with a small heart (♥). Exercises that are particularly challeng-
ing are marked with a small clubs symbol (♣).

��0 appendix a: exercises

A.1	 Logic	Exercises

The exercises in this section give practice in writing expressions and
constraints in the relational logic. They don’t require any knowledge
of the full Alloy language, but many of them show how to embed the
expressions and constraints within an Alloy model, so that you can use
the analyzer to generate instances and give you concrete feedback.

♥A.1.1 Properties of Binary Relations

The following Alloy model constrains a binary relation to have a collec-
tion of standard properties:

module exercises/properties

pred show () {
 some r: univ -> univ {
 some r -- nonempty
 r.r in r -- transitive
 no iden & r -- irreflexive
 ~r in r -- symmetric
 ~r.r in iden -- functional
 r.~r in iden -- injective
 univ in r.univ -- total
 univ in univ.r -- onto
 }
 }
run show for 4

A finite binary relation cannot have all these properties at once. Which
individual properties, if eliminated, allow the remaining properties to
be satisfied? For each such property eliminated, give an example of a
relation that satisfies the rest.

You can use the Alloy Analyzer to help you. The run command instructs
the analyzer to search for an instance satisfying the constraints in a uni-
verse of at most 4 atoms. To eliminate a property, just comment it out
(with two hyphens in a row at the start of the line).

♥A.1.2 Relational and Predicate Calculus Styles

The properties in problem A.1.1 were written in a relational calculus
style. Rewrite each in a predicate calculus style instead. For example,
the non-emptiness property can be reformulated as

appendix a: exercises ��1

some x, y: univ | x -> y in r

Each of your reformulations can be cast as an Alloy assertion, so you
can use the analyzer to check it. For example, to check the reformula-
tion of non-emptiness, you would write

assert ReformulateNonEmptinessOK {
 all r: univ -> univ |
 some r iff (some x, y: univ | x -> y)
 }
check ReformulateNonEmptinessOK

and then execute the check to see if there are counterexamples—values
of the relation r that satisfy one formulation but not the other.

♥A.1.3 Relational Properties in Modeling

Suppose you are modeling each of the following relationships as a bi-
nary relation. What properties (drawn from the list in problem A.1.1)
would you expect each to have?

(a) the sibling relationship, between children with the same parents;

(b) the links relationship, between a host on a network and the hosts it
is linked to;

(c) the contains relationship, between a directory in a file system and its
contents;

(d) the group relationship, between graphical elements in a drawing
program and groups (collections of elements that are selected and
deselected together);

(e) the sameGroup relationship, between graphical elements in the same
group;

(f) the supersedes relationship, between a file in one file system and a
file in another file system, which holds when the first file is a newer
version of the second file.

(g) the substitutableFor relationship, between two components, when
the first can be substituted for the second in any system in some
class; for example, one power supply may be substituted for another
if it provides the same voltage and at least as much power.

��� appendix a: exercises

♥A.1.4 Refactoring Navigation Expressions

When writing “navigation expressions,” you may notice repeated subex-
pressions that can be factored out, making the overall expression more
succinct. For example, the expression p.mother.brother + p.father.brother,
denoting p’s uncle, can be written instead as p.(mother + father).brother.
Simplifications like this rely on the assumption that certain algebraic
identities hold, such as

(a) distributivity of join over union: s.(p + q) = s.p + s.q;

(b) distributivity of join over difference: s.(p - q) = s.p - s.q; and

(c) distributivity of join over intersection: s.(p & q) = s.p & s.q

for a given set s and binary relations p and q.

For each putative identity, say whether it holds, and if not, give a coun-
terexample.

Here is an example of how you might check the first using the Alloy
Analyzer:

module exercises/distribution
assert union {
 all s: set univ, p, q: univ -> univ | s.(p + q) = s.p + s.q
 }
check union for 4

The command tells the analyzer to find a counterexample within a uni-
verse of 4 elements. When you find that a property does not hold, try
and obtain the smallest counterexample you can, by reducing the scope
(for example, replacing for 4 by for 2).

A.1.5 Characterizing Trees

A tree is a relation that satisfies some properties. What exactly are these
properties? Express them in relational logic, and illustrate with a few
examples.

Here is a template to help you:

module exercises/tree
pred isTree (r: univ -> univ) { … }
run isTree for 4

Just replace the ellipsis with some constraints on the relation r, and ex-
ecute the command to visualize some sample instances. You may need
to add some constraints to make the instances nontrivial.

appendix a: exercises ���

A.1.6 Spanning Trees

A spanning tree of a graph is a tree-like subgraph that covers all the
nodes. Make this definition precise, and give an example of a graph with
two distinct spanning trees.

Here is a template to help you:

module exercises/spanning
pred isTree (r: univ -> univ) { … }
pred spans (r1, r2: univ -> univ) { … }
pred show (r, t1, t2: univ -> univ) {
 spans (t1, r) and isTree (t1)
 spans (t2, r) and isTree (t2)
 t1 not = t2
 }
run show for 3

Hint: It’s up to you whether you consider the graph and trees to be di-
rected or undirected. The undirected case is a bit trickier, and more in-
teresting.

Spanning trees have many uses. In networks, they’re often used to set
up connections. In the Firewire protocol, for example, a spanning tree is
automatically discovered, and the root of the tree becomes a leader that
coordinates communication.

A.1.7 Characterizing Rings

Some communication protocols organize nodes in a network into a ring,
with links from node to node forming a circle. Characterize, as simply
and concisely as you can, the constraints on next, the relation from node
to node, that ensures that it forms a ring.

Here is a sample Alloy model into which you can insert the constraints,
and then execute the command to see if the instances you obtain are
indeed rings:

module exercises/ring
sig Node {next: set Node}
pred isRing () {
 … your constraints here
 }
run isRing for exactly 4 Node

��� appendix a: exercises

♣A.1.8 Defining Acyclicity for an Undirected Graph

An undirected graph can be represented as a binary relation, con-
strained to be symmetric. Write constraints on such a relation that rule
out cycles. Here is a suitable template:

module exercises/undirected
sig Node {adjs: set Node}
pred acyclic () {
 adjs = ~adjs
 … your constraints here
 }
run acyclic for 4

A.1.9 Axiomatizing Transitive Closure

Transitive closure is not axiomatizable in first-order logic. In short, that
means that if you want to express it, you need a special operator, be-
cause it can’t be defined in terms of other operators. Here’s a bogus
attempt to do just that; your challenge is to use the Alloy Analyzer to
find the flaw.

Recall that the transitive closure of a binary relation r is the smallest
transitive relation R that includes r. Let’s say R is a transitive cover of r if
R is transitive and includes r. To ensure that R is the smallest transitive
cover, we can say that removing any tuple a -> b from R gives a relation
that is not a transitive cover of r. Formalize this by completing the fol-
lowing template:

module exercises/closure

pred transCover (R, r: univ -> univ) {
 … your constraints here
 }
pred transClosure (R, r: univ -> univ) {
 transCover (R, r)
 … your constraint here
 }

assert Equivalence {
 all R, r: univ -> univ | transClosure (R, r) iff R = ^r
 }
check Equivalence for 3

Now execute the command, examine the counterexample, and explain
what the bug is. The official definition of UML 1.0 had this problem.

appendix a: exercises ��5

A.1.10 Address Book Constraints and Expressions

In this exercise, you’ll get some practice writing expressions and con-
straints for a simple multilevel address book. Consider a set Addr of ad-
dresses, and a set Name consisting of two disjoint subsets Alias and Group.
The mapping from names to addresses is represented by a relation ad-
dress, but a name can map not only to an address but also to a name.

First, write the following invariants—constraints which you’d expect an
address book to satisfy:

(a) There are no cycles; if you resolve a name repeatedly, you never
reach the same name again.

(b) All names eventually map to an address.

Second, write the following simulation constraints, which you might
add during the exploration of a model in order to see more interesting
instances:

(c) The address book has at least two levels.

(d) Some groups are non-empty.

Finally, write expressions for each of the following, without using com-
prehension syntax:

(e) the set of names that are members of groups;

(f) the set of groups that are empty;

(g) the mapping from aliases to the addresses they refer to, directly or
indirectly;

(h) the mapping from names to addresses which, when a name maps
to some addresses directly, and some other addresses indirectly, in-
cludes only the direct addresses.

Here’s how to use the analyzer to help you with this problem. Take the
following template, which declares the various sets and the address rela-
tion, and fill in the invariants and simulation constraints:

module exercises/addressBook1

abstract sig Name {
 address: set Addr + Name
 }
sig Alias, Group extends Name {}
sig Addr {}

��� appendix a: exercises

fact {
 … invariants
 }
pred show () {
 … simulation constraints
 }
run show for 3

As you fill them in, execute the run command; the tool will generate
sample instances. Then, when you have an interesting instance, enter a
candidate expression into the evaluator, and the tool will show you its
value for that particular instance. You may find that you need to add
more simulation constraints to obtain an instance that nicely illustrates
the meaning of an expression.

A.1.11 Modeling The Tube

In this exercise, you’ll write some generic constraints about railway
lines, and then apply them to the London Underground.

The diagram of fig. A.1 shows a simplified portion of the London Un-
derground. (You can find the real thing at http://tube.tfl.gov.uk/.) There
are three lines shown: the Jubilee line running north to south from
Stanmore to Waterloo; the Central Line running west to east from West
Ruislip and Ealing Broadway to Epping; and the Circle line running
clockwise through Baker Street. The snapshot of fig. A.2 shows an in-
stance of an Alloy model that corresponds to it.

Let’s model all the stations in a railway as the set Station. A particular
line Line will be represented as a set of stations Line served by that line,
with the same name as the line, and a binary relation line over those sta-
tions, with the same name but starting with a lower case letter.

Formalize each of these statements in the Alloy logic:

(a) Station S is served by line L1 but not by line L2.

(b) Line L forms a circle.

(c) Line L forms a straight line.

(d) Line L is a straight line, until it branches into two straight lines at
station S.

(e) The ends of line L are stations S1 (at the start) and S2 (at the end).

(f) It is possible to travel from station S1 to station S2 on line L.

appendix a: exercises ���

fig. a.1 A simplified portion of the London Underground.

Stanmore

Baker Street

Epping

West Ruislip

Ealing Broadway

Westminster

Waterloo

Notting Hill Gate

Bond Street

Liverpool Street

North Acton

fig. a.2 An instance generated by the Alloy Analyzer corresponding to fig. A.1.

��� appendix a: exercises

(g) At station S, two branches of L merge into one.

(h) [Hard!] If you get on an L line train at station S1, you will eventually
reach station S2.

(i) Now construct a model of the portion of the Underground shown
in fig. A.1, and run the Alloy Analyzer to see if you can obtain a
snapshot similar to that shown in fig. A.2.

Here is a template to show you how to use the analyzer for this prob-
lem:

module exercises/tube

abstract sig Station {
 jubilee, central, circle: set Station
 }
sig Jubilee, Central, Circle in Station {}
one sig
 Stanmore, BakerStreet, BondStreet, Westminster, Waterloo,
 WestRuislip, EalingBroadway, NorthActon, NottingHillGate,
 LiverpoolStreet, Epping
 extends Station {}

fact {
 … your constraints here
 }
pred show () {}
run show

Just write the constraints in the body of the fact, and execute the com-
mand to generate sample instances. The constraints you need are instan-
tiations of the generic constraints. For example, the generic constraint S
in L says that station S is served by line L; you might write here

BakerStreet in Jubilee

to say that Baker Street is served by the Jubilee line. If you have read
chapter 4, you could write the model more elegantly by defining func-
tions and predicates for the generic constraints. Don’t cheat by just en-
tering the instance directly, for example by writing

jubilee = Stanmore -> BakerStreet + BakerStreet -> BondStreet …

If you do this you won’t have a model that is true of the Underground
as a whole, because it won’t accommodate additional, intermediate sta-

appendix a: exercises ���

tions. Worse, you’ll miss the opportunity to use the analyzer to find er-
rors in your generic constraints.

A.2	 Extending	Simple	Models

The problems in this section exercise the full Alloy language, but give
you the initial structure of the model.

A.2.1 Telephone Switch Connections

Consider the following model of connections in a telephone network:

module exercises/phones

sig Phone {
 requests: set Phone,
 connects: lone Phone
 }

The signature Phone represents a set of telephones. For a phone p,
p.requests is a set of phones that p is requesting connections to, some of
which may have been granted, and p.connects is the phone that p is cur-
rently connected to (or none).

(a) Simulate the model by adding a predicate and running it. Add some
constraints to the predicate to ensure that you don’t get boring cas-
es; for example, you might say that there should be some requests
and some connections.

(b) Add two invariants: that every connection has a matching request
(on the assumption that requests don’t disappear until the connec-
tions they spawned are torn down), and that there are no conference
calls (in which a phone is involved in more than one connection).

(c) Now incorporate call forwarding, by extending the state with a
new relation forward from phones to phones, where p.forward, if non-
empty, is the phone that an incoming call to p should be forwarded
to. Change the constraint relating requests and connects to account
for forwarding. Simulate some interesting examples of call forward-
ing, adding some extra simulation constraints if necessary.

��0 appendix a: exercises

A.2.2 Invariant Preservation in an Address Book

In this problem, you are given a model of a simple address book pro-
gram, with operations to add, delete,viol and look up a name, and an
invariant characterizing the address book’s well-formedness properties.
Your task is to show that the add and delete operations break the invari-
ant, and to fix them by strengthening their preconditions.

Here is the basic model:

module exercises/addressBook2

sig Addr, Name {}
sig Book {
 addr: Name -> (Name + Addr)
 }

pred inv (b: Book) {
 let addr = b.addr |
 all n: Name {
 n not in n.^addr
 some addr.n => some n.^addr & Addr
 }
 }

pred add (b, b’: Book, n: Name, t: Name + Addr) {
 b’.addr = b.addr + n -> t
 }
pred del (b, b’: Book, n: Name, t: Name + Addr) {
 b’.addr = b.addr - n -> t
 }
fun lookup (b: Book, n: Name): set Addr {
 n.^(b.addr) & Addr
 }

Note that names are mapped both to addresses and to other names, re-
sulting in a multilevel lookup.

The invariant says that no name should map to itself, directly or indi-
rectly, and that if a name is itself mapped to, then the name is mapped,
directly or indirectly, to at least one address. An operation is said to pre-
serve an invariant if, when invoked in any state satisfying the invariant,
it always results in another state satisfying the invariant.

(a) The invariant is defined formally in the predicate inv. Explain in
words, informally, what the invariant says.

appendix a: exercises ��1

(b) Generate some examples of address books that satisfy the invariant,
and some examples that violate it in different ways. To do this, you’ll
need to add predicates and commands to run them.

(c) Generate some examples of executions of the operations, again by
adding and running appropriate predicates.

(d) Find counterexamples showing that neither add nor delete preserves
the invariant. To do this, you’ll need to define assertions that invoke
the operations and the invariant, and commands to check them. Re-
duce the scope if necessary to obtain the smallest counterexample
possible.

(e) Elaborate the two operations with additional preconditions—con-
straints on the prestates—that ensure the invariant is preserved,
and rerun the preservation check to show that you have succeeded.
Increase the scope to give you more confidence, and briefly justify
your choice of scope.

(f) Rerun your simulations from (c) to check that you haven’t inadver-
tently overconstrained the operations.

A.2.3 Inmate Assignments

A program is needed to assign inmates to cells in a prison. The assign-
ment must avoid placing two inmates in the same cell if they are mem-
bers of different gangs.

Here is a suitable template:

module exercises/prison

sig Gang {members: set Inmate}
sig Inmate {room: Cell}
sig Cell {}

pred safe () {
 … your constraints here
 }

pred show () {
 … your constraints here
 }
run show

(a) Complete the predicate safe characterizing a safe assignment, and
generate examples of both safe and unsafe assignments by running

��� appendix a: exercises

the simulation predicate show, with appropriate invocations of safe
as its constraint.

(b) Write a new predicate called happy, saying that gang members only
share cells with members of the same gang. A safe assignment is not
necessarily a happy assignment. By writing an assertion and a com-
mand to check it, find a counterexample, and explain why not.

(c) Add a constraint as a fact that ensures that safety will indeed imply
happiness. Run your simulation predicate again to make sure that
you haven’t introduced an inconsistency, and check the assertion
again to make sure it now has no counterexample.

A.3	 Classic	Puzzles

The exercises in this section give practice in writing Alloy and structur-
ing small models.

♥A.3.1 A Surprising Syllogism

A song by Doris Day goes

 “Everybody loves my baby
 but my baby don’t love nobody but me.”

David Gries has pointed out that, from a strictly logical point of view,
this implies “I am my baby.” Check this, by formalizing the song as some
constraints, and Gries’s inference as an assertion. Then modify the con-
straints to express what Doris Day probably meant, and show that the
assertion now has a counterexample.

♥A.3.2 Ceilings and Floors

A song by Paul Simon goes

 “One man’s ceiling is another man’s floor.”

Does this imply that one man’s floor is another man’s ceiling? Formalize
the two constraints in Alloy, and check an assertion that the first implies
the second. If you get counterexamples that don’t make sense because
of implicit assumptions, add them as new constraints, and check again.

appendix a: exercises ���

A.3.3 Barber Paradox

Consider the set of all sets that do not contain themselves as members.
Does it contain itself? This paradox was discovered by Bertrand Rus-
sell in 1901, and revealed an inconsistency in Frege’s naive set theory.
A variant of the paradox, also attributed to Bertrand Russell, asks: in a
village in which the barber shaves every man who doesn’t shave himself,
who shaves the barber?

Here’s a statement of the paradox in Alloy:

module exercises/barbers
sig Man {shaves: set Man}
one sig Barber extends Man {}
fact {
 Barber.shaves = {m: Man | m not in m.shaves}
 }

(a) Use the analyzer to show that the model is indeed inconsistent, at
least for a village of small size.

(b) Feminists have noted that the paradox disappears if the existence
of women is acknowledged. Make a new version of the model that
classifies villagers into men (who need to be shaved) and women
(who don’t), and show that there is now a simple solution.

(c) A more drastic solution, noted by Edsger Dijkstra [12], is to allow
the possibility of there being no barber. Modify the original model
accordingly, and show that there is now a solution.

(d) Finally, try a variant of the original model that allows multiple bar-
bers, and show there is again a solution.

♥A.3.4 Halmos’s Handshaking Problem

This is a famous problem invented by the mathematician Paul Halmos
[24]. Solving the problem by constructing a logical argument is quite
challenging, but finding a solution with Alloy is easy.

Alice and Bob invited four other couples over for a party. Some
of them knew each other and some didn’t; some were polite
and some were not. So there was some handshaking, although
not every pair of guests shook hands (and of course nobody
shook her own hand or her partner’s hand). Being curious, Al-
ice went round and asked at the end of the party how many
hands each person had shaken. She got nine different answers
from the nine people. How many hands did Bob shake?

��� appendix a: exercises

(a) Solve the problem by modeling it in Alloy, and using the analyzer to
find a solution.

(b) Solving for 10 people will take longer than solving for 4 or 6, so use a
smaller number until your confident that your model makes sense.

(c) Might there be another solution, in which Bob shook a different
number of hands? Extend your model to allow this to be checked.
You might want to refactor it a bit so that the two candidate solu-
tions don’t lead to two sets of almost identical constraints.

A.3.5 Goat, Cabbage, Wolf

A farmer wants to ferry across a river a goat, a cabbage, and a wolf, but
his boat only has room for him to take one at a time. If he leaves the goat
with the cabbage, the goat will eat it; if he leaves the goat with the wolf,
the goat will be eaten. How does he do it? Solve the problem by model-
ing it in Alloy, and using the analyzer to find a solution.

Hint: the standard distribution of Alloy includes a module util/ordering
that defines a total ordering. You may find it useful in ordering the steps
the farmer takes.

♣A.3.6 Surgeon’s Gloves

Another famous problem by Paul Halmos. A surgeon must operate on
three patients, but has only two pairs of gloves. There must be no cross-
contamination: the surgeon must not come into contact with the blood
of any patient, and no patient must come into contact with the blood of
another patient. The surgeon needs two hands to work. How does she
do it?

Express this problem in Alloy, and use the analyzer to find a solution.

Hint: There are 4 things that need covering (3 patients and one surgeon).
The gloves offer 4 resources. The formalization of this problem is much
trickier than for the handshake problem. You’ll need to express the con-
straints that the surgeon has to be able to handle the patients (via gloves);
to express how contamination is passed on; and the no-contamination
condition itself. You might want to associate with each operation a pre
and poststate, each of which carries a contamination relation that says
what has contaminated what.

appendix a: exercises ��5

A.4	 Metamodels

The exercises in this section give practice in constructing metamodels.
A metamodel is a model of a collection of models. It need not share the
qualities of the models it captures. For example, a metamodel of state
machines doesn’t have to be dynamic itself: a state machine is just a
structure that can be given a dynamic interpretation.

A.4.1 State Machine Definition

A state machine has one or more initial states, and a transition relation
connecting each state to its successors. Construct an Alloy model of a
state machine, and, by adding constraints and having the analyzer solve
them, generate a variety of examples of machines:

(a) a deterministic machine, in which each state has at most one succes-
sor;

(b) a nondeterministic machine, in which some states have more than
one successor;

(c) a machine with unreachable states;

(d) a machine without unreachable states;

(e) a connected machine in which every state is reachable from every
other state;

(f) a machine with a deadlock: a reachable state that has no succes-
sors;

(g) a machine with a livelock: the possibility of an infinite execution in
which a state that is always reachable is never reached.

♣A.4.2 State Machine Simulation

Consider two state machines M1 and M2 with labeled transitions. A rela-
tion r from the states of M1 to the states of M2 is a simulation of M1 in M2
if and only if

· whenever r relates a state s1 in M1 to a state s2 in M2, and M1 has a
transition labeled a from s1 to s1’, M2 also has a transition labeled a
from s2 to s2’ for some s2’ related by r to s1’, and

· whenever s1 is an initial state of M1, there is an initial state s2 of M2
where s1 and s2 are related by r.

��� appendix a: exercises

The relation r is a bisimulation if, in addition, ~r is a simulation of M2 in
M1.

A trace of a state machine is a finite sequence of transition labels formed
by starting in an initial state and following a path along transitions. The
behaviour of a machine can be described by the set of traces it exhibits.

(h) Construct an Alloy model of a state machine with traces, and simu-
lation relations, and generate some examples of machines with their
associated trace sets.

(i) Add the notion of simulation, and generate some examples of ma-
chines related by simulations.

(j) If there is simulation between two machines, must they have the
same trace set? Use Alloy to check this hypothesis. How about a
bisimulation?

A.4.3 Metamodel of Alloy

Write an Alloy model of Alloy models. Limit your model to signatures
and fields and the relationships between them. To show that your mod-
el is sufficiently rich to describe itself, add simulation constraints to get
the tool to generate an instance that corresponds to it.

A.4.4 Metamodel of Java

Construct and explore a metamodel of Java, as follows. First, model
the class/interface hierarchy, treating classes and interfaces as atoms
that are related to one another by relations such as extends and imple-
ments. Then model the declarations of instance variables by associating
a source and target class or interface with each. Now model the heap
itself as a collection of objects, each of which has an assigned runtime
type, and write the constraints that ensure that the heap is well-typed.
Use the analyzer to generate some interesting examples.

appendix a: exercises ���

A.5	 Small	Case	Studies

The exercises in this section involve the construction of small models in
well-defined settings.

♣A.5.1 Unix File System

In this exercise, you’ll model how pathnames are resolved in the Unix
file system, and you’ll check some simple properties.

In the Unix file system, each file is represented by an inode. The inode
includes some basic properties of the file (permission bits, file type, and
so on), and has a sequence of ten addresses that point to disk blocks
containing the file’s data.

In addition, there are three further indirect addresses. The first involves
one extra level of indirection: it points to a block containing addresses,
rather than data, of blocks which hold the data. The second involves
two levels of indirection: it points to an address block that points to ad-
dress blocks that point to data blocks. The third involves three levels.

All the inodes are stored in an array called the inode table. The index of
a given inode in this array is its inumber. A directory is represented as
a file whose data consists of a list of inumber/filename pairs. The root
directory is associated with some fixed inumber.

Files and directories have pathnames. The empty pathname / corre-
sponds to the root directory. In general, given a pathname p denoting
a directory d, the pathname p/n denotes the file or directory named n
in directory d. To resolve a pathname, the file system starts at the root
directory, and looks up the prefix of the file’s pathname. This gives an
inumber, which it then looks up in the inode table. The inode obtained
is either the file or directory required (if no more of the pathname re-
mains), or another directory, for which the process is repeated (on the
rest of the pathname).

This description intentionally includes details that are not relevant to
how pathnames are resolved. For example, you will need to consider
whether the order of addresses in an inode matters, and if not, what
simpler structure than a sequence would suffice.

(a) Start by building a model of the basic structure of inodes, inumbers
and blocks. Ignore indirect addressing. Explore some sample struc-
tures by writing simulation constraints, adding any invariants that
you discover you omitted.

��� appendix a: exercises

(b) Build a model of pathnames, treating a pathname as a list, consist-
ing of a name (the first element) and a pathname (the rest). Explore
some sample pathnames by writing simulation constraints, adding
any invariants that you discover you omitted.

(c) Now you’re going to combine the two parts of your model, and de-
fine a function that models lookup: given a pathname, it will return
a set of inodes. You’ll want to define lookup recursively, but Alloy
functions cannot be recursive. Instead, you can declare a relation
corresponding to the lookup, which is defined by a constraint in
which the relation name appears on both sides.

(d) Formulate and check two assertions: that each pathname resolves
to at most one inode, and that no two distinct pathnames resolve
to the same inode. Which of these did you expect to hold? If your
analysis reveals flaws in your model, correct them.

(e) Finally, add the notion of indirect addressing. Try to do it in a mod-
ular fashion, with as little disruption as possible to your model of
name lookup.

♣A.5.2 Railway Switching

In this exercise, you’ll construct a simple model of a railway switch-
ing system, and you’ll check that a switching policy ensures no colli-
sions. You’ll make some simplifying assumptions, for example, that a
train occupies one track segment at a time, but you’ll learn techniques
that apply in general, especially how to model a physical environment
that allows many arbitrary behaviors (in this case the train movements),
and how to separate the requirement (that no collisions occur) from as-
sumptions (that drivers obey signals).

(a) Model the track layout as a collection Segment of track segments,
with a relation next from Segment to Segment. Segments are physically
disjoint, touching each other only at their endpoints, and are direc-
tional, with trains assumed to travel from one endpoint to the other.
The endpoints are not represented explicitly, though. Instead, we
are representing the connection of the exit end of s1 to the entrance
end of s2 by next mapping s1 to s2. Generate some sample layouts,
and obtain some nice visualizations using the Alloy Analyzer.

(b) To model the possibility of collision, we might just say that two
trains can collide only when they are on the same segment. For a
more general notion, which allows for the possibility of a collision

appendix a: exercises ���

between trains on segments that are, for example, parallel to each
other, we can declare a relation overlaps that represents, very ab-
stractly, the physical layout of the track, mapping a segment s1 to
a segment s2 when it would be dangerous for one train to be on s1
and another to be on s2 at the same time. What properties would
you expect this relation to have: is it reflexive, symmetric, transi-
tive? Add the relation to your model, along with a fact recording
whichever of these properties you think should hold.

(c) Now you’re going to introduce time-varying state. Declare a sig-
nature Train to represent a set of trains, and a signature TrainState,
with a relation on from Train to Segment to represent their positions.
(Remember that each train can occupy only a single segment.) De-
fine an additional field occupied in TrainState that holds the set of
segments occupied by trains. Generate and visualize some sample
states; you’ll probably want to use coloring to indicate the occupied
the segments.

(d) To describe all physically possible train movements, introduce an
operation on TrainState that takes as arguments two train states
(representing the pre- and poststates), and a set of trains that move,
and constrains the train states so that, in this step, each train that
moves passes from a segment to one of its successors under the
next relation. Generate and visualize some sample executions of this
operation.

(e) To model the signaling system, introduce a signature GateState with
a field closed whose value is a set of segments, representing those
segments beyond which a train is not supposed to travel. Note that
there’s no need to introduce gates or lights as explicit atoms. Write
a predicate that captures legal movements whose arguments are a
GateState, a TrainState and a set of Trains that move.

(f) Write a safety condition on TrainState saying that trains never oc-
cupy overlapping segments, and generate some sample states that
satisfy and violate the condition.

(g) The hardest part is designing the mechanism—the policy that de-
termines when gates should be closed. Rather than prescribing ex-
actly when and which gates should be closed, we want to write a
condition that imposes some minimal conditions. In this way, we’ll
actually be checking a whole family of possible mechanisms. Write
the policy as a predicate that takes as arguments a GateState and a

�50 appendix a: exercises

TrainState. It may say, for example, that if several occupied segments
share a successor, then at most one can have an open gate.

(h) Finally, put all the parts together: write an assertion that says that
when the trains move, if the mechanism obeys the gate policy, and
the train movements are legal, then a collision does not occur (that
is, the system does not transition from a safe state to an unsafe
state). Check this assertion, and if you find counterexamples, study
them carefully, and adjust your model. Most likely, your gate policy
will be at fault.

(i) When you are satisfied that the gate policy works as expected (pre-
venting collisions), make sure that you have not overconstrained
the model, by generating and visualizing some interesting train
movements.

♣A.5.3 Hotel Locking

In this exercise, you’ll build a model of a hotel locking scheme similar to
the one described in section 6.2.

In this scheme, described in US Patent 4511946, each keycard holds
two separate numbers acting as keys. Each lock likewise has two keys.
When the first key on the card matches the first key in the lock, and
the second key on the card matches the second key in the lock, the
lock opens. When the first key on the card matches the second key in
the lock, the door also opens, but the lock is rekeyed with its first and
second keys matching the first and second keys of the card respectively.
The front desk holds a record of the last key issued for each room, and
in addition a set of keys that have been issued. A new card is formed by
using the last key issued as the first key, and a fresh key for the second.

(a) Construct a model of this scheme, with operations for checking in,
checking out, and entering a room, and use the Alloy Analyzer to
generate some scenarios.

(b) Formulate a safety condition that captures the purpose of the
scheme—denying access to intruders—and check the model against
this condition, reporting any counterexample you find.

(c) This analysis is likely to reveal errors in your model or safety con-
dition. Correct them, check that the safety condition is satisfied,
and—to ensure that you have not inadvertently overconstrained the
model—regenerate your initial scenarios (at least those that are still
valid).

appendix a: exercises �51

(d) Suppose the hotel guest can make new cards, using the keys from
cards obtained legitimately. Alter the entry operation accordingly,
and check that the safety condition still holds.

(e) Suppose the scheme is changed so that the door unlocks when the
first key on the card matches the first key in the lock (and in this
case ignores the second key). Show that in this case, the scheme is
susceptible to attack by a dishonest guest who makes new cards.

A.6	 Open-Ended	Case	Studies

Here are some ideas for small case studies in modeling and analysis.
They are ordered roughly according to difficulty, easiest first, and might
each take between a couple of hours and a few days of work, depending
on the depth of the study and the complexity of features considered.

(a) Organizational Structure. Model the structure of the organization
in which you work, and generate sample instances of the structure.
Consider how there might be different, cross-cutting structures for
different kinds of function, and explore how these are related to one
another.

(b) Folders in an email client. Model the folder structure of an email
client, with mailboxes containing messages, and folders containing
mailboxes, along with operations for moving messages around and
altering the folder hierarchy. Consider carefully how to handle spe-
cial mailboxes, such as an inbox for incoming messages, boxes for
messages to be sent and already sent, a box for draft messages, and
a box of deleted messages. What properties do these special boxes
share with regular boxes and with each other? Do they typically
have additional properties?

(c) Conference Calling. View a phone system as a collection of endpoints
and a centralized database that maintains information about which
endpoints are connected to each other. Model the structure of this
database, along with the operations that modify it when a confer-
ence call is established, when endpoints are added and dropped, etc.
Simulate some interesting scenarios, and formulate and check some
assertions.

(d) Do/undo/redo. Model a standard mechanism for undoing and re-
doing actions in an application, and analyze it against some funda-
mental properties formulated as assertions.

�5� appendix a: exercises

(e) Trash. Model an operating system’s “trash” or “deleted items” folder
to which deleted items are moved and from which they can be rein-
stated. You might want to compare the design in different systems.
In Mac OSX, the notion is quite simple: items can be moved out
of the trash, but there is no function to reinstate a file or folder in
its old location. Windows, in contrast, offers much more elaborate
functionality. Can you characterize the essence of trashing as a col-
lection of assertions that relate the basic operations (eg., of creation,
deletion, undeletion, etc.) algebraically?

(f) Domain Name System. Model and analyze the structure of host
names in the standard domain name system, the structure of DNS
databases, and the mechanism for resolving names. What kinds of
guarantee does DNS offer?

(g) Elevator control. Consider a bank of elevators that serves some
number of floors. Can you construct a model that describes how
elevators behave in response to requests purely in terms of declara-
tive rules? For example, a rule might be: an elevator cannot pass a
floor without stopping if there is a request to stop a that floor that
came from the pressing of a button within the elevator itself.

(h) Version control. Model the abstract view underlying a version con-
trol system (such as CVS or Subversion), and the mechanisms it
uses. Formulate some critical properties and check them.

(i) Layers in Photoshop. Construct an abstract model of Adobe Pho-
toshop’s layer functionality, in which an image can be constructed
from a stack of layers, each consisting either of a matrix of pixels,
or of a transformation function applied to the result of the layers
beneath.

Appendix	B:		
Alloy	Language	Reference

B.1	 Lexical	Issues

The permitted characters are the printing characters of the ASCII char-
acter set, with the exception of

· backslash \
· backquote `

and, of the ASCII nonprinting characters, only space, horizontal tab,
carriage return, and linefeed. Since the encoding of linebreaks varies
across platforms, the Alloy Analyzer accepts any of the standard com-
binations of carriage and linefeed.

The nonalphanumeric symbols are used as operators or for punctuation,
with the exception of

· dollar sign $;
· percent sign %;
· question mark ?;
· underscore _;
· single and double quote marks (‘ and “).

Dollar, percent and question mark are reserved for use in future ver-
sions of the language. Underscore and quotes may be used in identifiers.
Single and double quote marks (numbered 39 and 34 in ASCII) should
not be confused with typographic quote marks and the prime mark,
which are not acceptable characters. If text is prepared in a word pro-
cessor, ensure that a ‘smart quotes’ feature is not active, since it might
generate typographic quote marks from simple ones.

Characters between -- or // and the end of the line, and from /* to */, are
treated as comments. Multiple-line comments may not be nested.

Noncomment text is broken into tokens by the following separators:

· whitespace (space, tab, linebreak);
· nonalphanumeric characters (except for underscore and quote

marks).

�5� appendix b: alloy language reference

The meaning of the text is independent of its format; in particular, line-
breaks are treated as whitespace just like spaces and tabs.

Keywords and identifiers are case sensitive.

Identifiers may include any of the alphabetic characters, and, except as
the first character, numbers, underscores, question mark and exclama-
tion point, and quote marks. A hyphen may not appear in an identifier,
since it is treated as an operator.

A numeric constant consists of a sequence of digits between 0 and 9,
whose first digit is not zero.

The following sequences of characters are recognized as single tokens:

· the double colon :: used for receiver syntax;
· the implication operator =>;
· the integer comparison operators >= and =<;
· the product arrow ->;
· the restriction operators <: and :>;
· the relational override operator ++;
· conjunction && and disjunction ||;
· the comment markings --, //, /* and */.

The negated operators (such as !=) are not treated as single tokens, so
they may be written with whitespace between the negation and com-
parison operators.

The following are reserved as keywords and may not be used for identi-
fiers:

abstract all and as assert
but check disj else exactly
extends fact for fun iden
if iff implies in Int
int let lone module no
none not one open or
part pred run set sig
some sum then univ

B.2	 Namespaces

Each identifier belongs to a single namespace. There are three namespac-
es:

· module names and module aliases;

appendix b: alloy language reference �55

· signatures, fields, paragraphs (facts, functions, predicates and asser-
tions), and bound variables (arguments to functions and predi-
cates, and variables bound by let and quantifiers);

· command names.

Identifiers in different namespaces may share names without risk of
name conflict. Within a namespace, the same name may not be used for
different identifiers with one exception: bound variables may shadow
each other, and may shadow field names. Conventional lexical scoping
applies; the innermost binding applies.

B.3	 Grammar

The grammar uses the standard BNF operators:

· x* for zero or more repetitions of x;
· x+ for one or more repetitions of x;
· x | y for a choice of x or y;
· [x] for an optional x.

In addition,

· x,* means zero or more comma-separated occurrences of x;
· x,+ means one or more comma-separated occurrences of x.

To avoid confusion with grammar symbols, square brackets, star, plus
and the vertical bar are set in bold type when they are to be interpreted
as terminals.

Every name ending Id is an identifier, and is to be treated as a terminal.
The terminal number represents a numeric constant.

module ::= header import* paragraph*
header ::= module [path] moduleId [[sigId,+]]
path ::= directoryId / [path]
import ::= open [path] moduleId [[sigRef,*]] [as aliasId]

paragraph ::=
 sigDecl | factDecl | funDecl | predDecl | assertDecl | runCmd | check-
Cmd

sigDecl ::=
 [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
 | [mult] sig sigID,+ in sigRef sigBody
sigBody ::= { decl,* } [constraintSeq]

�5� appendix b: alloy language reference

factDecl ::= fact [factId] constraintSeq
assertDecl ::= assert [assertId] constraintSeq
funDecl ::= fun [sigRef ::] funId (decl,*) : declExpr { expr }
predDecl ::= pred [sigRef ::] predId (decl,*) constraintSeq

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]
checkCmd ::= [commandId :] check assertRef [scope]

scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int

decl ::= [part | disj] varId,+ : declExpr
letDecl ::= varId = expr
declExpr ::= declSetExpr | declRelExpr
declSetExpr ::= [mult] expr
declRelExpr ::= declRelExpr’ [mult] -> [mult] declRelExpr’
declRelExpr’ ::= declRelExpr | expr
mult ::= lone | one | some

expr ::= [@] varId | sigRef | this |
 | none | univ | iden
 | unOp expr | expr binOp expr | expr[expr]
 | { decl,+ | [constraint] }
 | let letDecl,+ | expr
 | if constraint then expr else expr
 | Int intExpr
 | [expr ::] funRef (expr,*)
 | (expr)

intExpr ::= number | # expr | sum expr | int expr
 | if constraint then intExpr else intExpr
 | intExpr intOp intExpr
 | let letDecl,… | intExpr
 | sum decl,+ | intExpr
 | (intExpr)
intOp ::= + | -

appendix b: alloy language reference �5�

constraintBody ::= constraintSeq | | constraint
constraintSeq ::= { constraint* }
constraint ::= expr [neg] compOp expr
 | quantifier expr
 | intExpr [neg] intCompOp intExpr
 | neg constraint | constraint logicOp constraint
 | constraint thenOp constraint [elseOp constraint]
 | quantifier decl,+ constraintBody
 | let letDecl,+ constraintBody
 | [expr ::] predRef (expr,*)
 | expr : declExpr
 | constraintSeq
 | (constraint)

thenOp ::= implies | =>
elseOp ::= else | ,

neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^
compOp ::= in | =

intCompOp ::= < | > | = | =< | >=

funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId
sigRef ::= [moduleRef] sigId | Int | univ
moduleRef ::= [path] moduleId [[sigRef,*]] / | aliasId /

B.4	 Precedence	and	Associativity

The precedence order for logical operators, tightest first, is

· negation operators: ! and not;
· conjunction: && and and;
· implication: =>, <=>, implies and iff;
· disjunction: || and or.

�5� appendix b: alloy language reference

The precedence order for expression operators, tightest first, is

· unary operators: ~, ^ and *;
· dot join: . ;
· restriction operators: <: and :>;
· brackets join: [];
· arrow product: ->;
· intersection: &;
· override: ++;
· union and difference: + and -.

Note that in particular dot binds more tightly than brackets, so a.b[c] is
parsed as (a.b)[c].

All binary operators associate to the left, with the exception of implica-
tion, which associates to the right. So, for example, p => q => r is parsed
as p => (q => r), and a.b.c is parsed as (a.b).c.

In an implication, an else-clause is associated with its closest then-
clause. So the constraint

p => q => r, s

for example, is parsed as

p => (q => r, s)

B.5	 Semantic	Basis

B.5.1	 Instances	and	Meaning
A model’s meaning is several collections of instances. An instance is a
binding of values to variables. Typically, a single instance represents a
state, or a pair of states (corresponding to execution of an operation),
or an execution trace. The language has no built-in notion of state ma-
chines, however, so an instance need not represent any of these things.

The collections of instances assigned to a model are:

· A set of core instances associated with the facts of the model, and
the constraints implicit in the signature declarations. These in-
stances have as their variables the signatures and their fields, and
they bind values to them that make the facts and declaration con-
straints true.

· For each function or predicate, a set of those instances for which the
facts and declaration constraints of the model as a whole are true,

appendix b: alloy language reference �5�

and additionally the constraint of the function or predicate is true.
The variables of these instances are those of the core instances, ex-
tended with the arguments of the function or predicate.

· For each assertion, a set of those instances for which the facts and
declaration constraints of the model as a whole are true, but for
which the constraint of the assertion is false.

A model without any core instances is inconsistent, and almost certainly
erroneous. A function or predicate without instances is likewise incon-
sistent, and is unlikely to be useful. An assertion is expected not to have
any instances: the instances are counterexamples, which indicate that
the assertion does not follow from the facts.

The Alloy Analyzer finds instances of a model automatically by search
within finite bounds (specified by the user as a scope; see subsection
B.7.5 below). Because the search is bounded, failure to find an instance
does not necessarily mean that one does not exist. But instances that
are found are guaranteed to be valid.

B.5.2	 Relational	Logic
Alloy is a first-order relational logic. The values assigned to variables,
and the values of expressions evaluated in the context of a given in-
stance, are relations. These relations are first order: that is, they consist
of tuples whose elements are atoms (and not themselves relations).

Alloy has no explicit notion of sets, scalars, or tuples. A set is simply
a unary relation; a scalar is a singleton, unary relation; and a tuple is
a singleton relation. The type system distinguishes sets from relations
because they have different arity, but does not distinguish tuples and
scalars from more general relations.

There is no function application operator. Relational join is used in its
place, and is syntactically cleaner that it would be in a language that
distinguished sets and scalars. For example, given a relation f that is
functional, and x and y constrained to be scalars, the constraint

x.f = y

constrains the image of x under the relation f to be the set y. So long as
x is in the domain of f, this constraint will have the same meaning as it
would if the dot were interpreted as function application, f as a func-
tion, and x and y as scalar-typed variables. But if x is out of the domain
of f, the expression x.f will evaluate to the empty set, and since y is con-
strained to be a scalar (that is, a singleton set), the constraint as a whole

��0 appendix b: alloy language reference

will be false. In a language with function application, various meanings
are possible, depending on how partial functions are handled. An ad-
vantage of the Alloy approach is that it sidesteps this issue.

The declaration syntax of Alloy has been designed so that familiar forms
have their expected meaning. Thus, when X is a set, the quantified con-
straint

all x: X | F

has x range over scalar values. That is, the constraint F is evaluated for
bindings of x to singleton subsets of X.

The syntax of Alloy does in fact admit higher-order quantifications. For
example, the assertion that join is associative over binary relations may
be written

assert {all p, q, r: univ -> univ | (p.q).r = p.(q.r)}

Many such constraints become first order when presented for analysis,
since (as here) the quantified variables can be skolemized away. If a con-
straint remains truly higher order, the Alloy Analyzer will warn the user
that analysis is likely to be infeasible.

Alloy provides rudimentary support for integers. There is a class of ex-
pressions whose values are integers. Integer values may not be bound to
variables in instances, but there is a special class of integer atoms that
are associated with primitive integer values, and which may appear in
relations that are bound to variables like any other atoms. See subsec-
tion B.7.7 for more details.

B.6	 Types	and	Overloading

Alloy’s type system was designed with a different aim from that of a
programming language. There is no notion in a modeling language of a

“runtime error,” so type soundness is not an issue. Instead, the type sys-
tem is designed to allow as many reasonable models as possible, with-
out generating false alarms, while still catching prior to analysis those
errors that can be explained in terms of the types of declared fields and
variables alone.

We expect most users to be able to ignore the subtleties of the type sys-
tem. Error messages reporting that an expression is ill-typed are never
spurious, and always correspond to a real error. Messages reporting
failure to resolve an overloaded field reference can always be handled
by a small and systematic modification, explained below.

appendix b: alloy language reference ��1

B.6.1	 Type	Errors
Three kinds of type error are reported:

· An arity error indicates an attempt to apply an operator to an expres-
sion of the wrong arity, or to combine expressions of incompatible
arity. Examples include taking the closure of a nonbinary relation;
restricting a relation to a non-set; taking the union, intersection, or
difference, or comparing with equality or subset, two relations of dif-
ferent arity.

· A disjointness error indicates an expression in which two relations
are combined in such a way that the result will always be the empty
relation, irrespective of their value. Examples include taking the in-
tersection of two relations that do not intersect; joining two relations
that have no matching elements; and restricting a relation with a set
disjoint from it. Applying the overriding operator to disjoint rela-
tions also generates a disjointess error, even though the result may
not be the empty relation, since the relations are expected to overlap
(a union sufficing otherwise).

· A redundancy error indicates that an expression (usually appearing
in a union expression) is redundant, and could be dropped without
affecting the value of the enclosing constraint. Examples include ex-
pressions such as (a + b) & c and constraints such as c in a + b, where
one of a or b is disjoint from c.

Note that unions of disjoint types are permitted, because they might
not be erroneous. Thus the expression (a + b).c, for example, will be type
correct even if a and b have disjoint types, so long as the type of the
leftmost column of c overlaps with the types of the right-hand columns
of both a and b.

B.6.2	Field	Overloading
Fields of signatures may be overloaded. That is, two distinct signatures
may have fields of the same name, so long as the signatures do not rep-
resent sets that overlap. Field references are resolved automatically.

Resolution of overloading exploits the full context of an expression, and
uses the same information used by the type checker. Each possible re-
solving of an overloaded reference is considered. If there is exactly one
that would not generate a type error, it is chosen. If there is more than
one, an error message is generated reporting an ambiguous reference.

��� appendix b: alloy language reference

Resolution takes advantage of all that is known about the types of the
possible resolvents, including arity, and the types of all columns (not
only the first). Thus, in contrast to the kind of resolution used for field
dereferencing in object-oriented languages (such as Java), the reference
to f in an expression such as x.f can be resolved not only by using the
type of x but by using in addition the context in which the entire expres-
sion appears. For example, if the enclosing expression were a+x.f, the
reference f could be resolved by the arity of a.

If a field reference cannot be resolved, it is easy to modify the expression
so that it can be. If a field reference f is intended to refer to the field f de-
clared in signature S, one can replace a reference to f by the expression
S <: f. This new expression has the same meaning, but is guaranteed to
resolve the reference, since only the f declared in S will produce a non-
empty result. Note that this is not a special casting syntax. It relies only
on the standard semantics of the domain restriction operator.

B.6.3	Subtypes
The type system includes a notion of subtypes. This allows more errors
to be caught, and permits a finer-grained namespace for fields.

The type of any expression is a union type consisting of the union of
some relation types. A relation type is a product of basic types. A basic
type is either a signature type, the predefined universal type univ, or the
predefined empty type none. The basic types form a lattice, with univ as
its maximal, and none as its minimal, element. The lattice is obtained
from the forest of trees of declared signature types, augmented with
the subtype relationship between top-level types and univ, and between
none and all signature types.

The union consisting of no relation types is used in type checking to
represent ill-typed expressions, and is distinct from the union consist-
ing of a relation type that is a product of none’s (which is used for expres-
sions constructed with the constant none, representing an intentionally
empty relation).

The semantics of subtyping is very simple. If one signature is a subtype
of another, it represents a subset. The immediate subtypes of a signa-
ture are disjoint. Two subtypes therefore overlap only if one is, directly
or indirectly, a subtype of the other. The type system computes a type
for an expression that is an approximation to its value. Consider, for
example, the join

e1 . e2

appendix b: alloy language reference ���

where the subexpressions have types

e1 : A -> B
e2 : C -> D

If the basic types B and C do not overlap, the join gives rise to a disjoint-
ness error. Otherwise, one of B or C must be a subtype of the other. The
type of the expression as a whole will be A -> D.

No casts are needed, either upward or downward. If a field f is declared
in a signature S, and sup and sub are respectively variables whose types
are a supertype and subtype of S, both sup.f and sub.f will be well-typed.
In neither case is the expression necessarily empty. In both cases it may
be empty: if sup is not in S or f is declared to be partial and sub is outside
its domain. On the other hand, if d is a variable whose type D is disjoint
from the type of S—for example, because both S and D are immediate
subtypes of some other signature—the expression d.f will be ill-typed,
since it must always evaluate to the empty relation.

B.6.4	Functions	and	Predicates
Invocations of functions and predicates are type-checked by ensuring
that the actual argument expressions are not disjoint from the formal
arguments. The types of formals are not used to resolve overloading of
field names in actual expressions.

The constraints implicit in the declarations of arguments of functions
and predicates are conjoined to the body constraint when a function
or predicate is run. When a function or predicate is invoked, however,
these implicit constraints are ignored. You should therefore not rely on
such declaration constraints to have a semantic effect; they are intended
as redundant documentation. A future version of Alloy may include a
checking scheme that determines whether actual expressions have val-
ues compatible with the declaration constraints of formals.

B.6.5	 Integers	and	Type	Checking
Only integer expressions take on primitive integer values. The parser
distinguishes between relational expressions and integer expressions,
so type information is not needed to resolve the overloading of the plus
and minus operators (which act as addition and subtraction for integer
expressions, and union and difference for relational expressions). In a
constraint such as

S + S =1

��� appendix b: alloy language reference

the plus symbol will be parsed as a relational operator (and the # op-
erator will be applied to the entire left-hand side), since otherwise the
constraint as a whole would not be syntactically valid.

The Int type, which represents the predefined signature for integer-car-
rying objects, is treated by the type system like any other basic type. It is
disjoint from all other basic types except for the universal type univ.

B.6.6	Multiplicity	Keywords
Alloy uses the following multiplicity keywords shown with their inter-
pretations:

· lone: zero or one;
· one: exactly one;
· some: one or more.

To remember that lone means zero or one, it may help to think of the
word as short for “less than or equal to one.”

These keywords are used in several contexts:

· as quantifiers in quantified constraints: the constraint one x: S | F, for
example, says that there is exactly one x that satisfies the constraint
F;

· as quantifiers in quantified expressions: the constraint lone e, for ex-
ample, says that the expression e denotes a relation with containing
at most one tuple;

· in set declarations: the declaration x: some S, for example, where S
has unary type, declares x to be a set of elements drawn from S that is
nonempty;

· in relation declarations: the declaration r: A one -> one B, for example,
declares r to be a one-to-one relation from A to B.

· in signature declarations: the declaration one sig S {…}, for example,
declares S to be a signature whose set contains exactly one element.

When declaring a set variable, the default is one, so in a declaration x:
X in which X has unary type, x will be constrained to be a scalar. In this
case, the set keyword overrides the default.

appendix b: alloy language reference ��5

B.7	 Language	Features

B.7.1	 Module	Structure
The productions discussed in this section are

module ::= header import* paragraph*
header ::= module [path] moduleId [[sigId,+]]
import ::= open [path] moduleId [[sigRef,*]] [as aliasId]
paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl
 | runCmd | checkCmd
path ::= id / [path]
sigRef ::= [moduleRef] sigId | Int | univ
moduleRef ::= [path] moduleId [[sigRef,*]] | aliasId
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId

An Alloy model consists of one or more files, each containing a single
module. One “main” module is presented for analysis; it imports other
modules directly (through its own imports) or indirectly (through im-
ports of imported modules).

A module consists of a header identifying the module, some imports,
and some paragraphs:

module ::= header import* paragraph*

A model can be contained entirely within one module, in which case
no imports are necessary. A module without paragraphs is syntactically
valid but useless.

The paragraphs of a module are signatures, facts, functions, predicates,
assertions, run commands, and check commands:

paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl
 | runCmd | checkCmd

Signatures represent sets and are assigned values in analysis; they
therefore play a role similar to static variables in a programming lan-
guage. Facts, functions, and predicates are packagings of constraints.
Commands are used to instruct the Alloy Analyzer to perform various
analyses. A module exports as components all paragraphs except for
commands; only the commands of the main module are relevant in an
analysis.

��� appendix b: alloy language reference

A module is named by a path and a module identifier, and may be pa-
rameterized by one or more signature parameters:

header ::= module [path] moduleId [[sigId,+]]
path ::= id / [path]

The path must correspond to the directory location of the module’s file
with respect to a default root directory. A set of root directories may be
specified in the Alloy Analyzer, so that libraries and domain-specific
models, for example, may be kept in different locations. A module with
the module identifier m must be stored in the file named m.als.

A separate import is needed for each imported module. It gives the path
and name of the imported module, instantiations of its parameters (if
any), and optionally an alias:

import ::= open [path] moduleId [[sigRef,*]] [as aliasId]
sigRef ::= [moduleRef] sigId | Int | univ

There must be an instantiating signature parameter for each parameter
of the imported module. An instantiating signature may be a type, sub-
type, or subset, or one of the predefined types Int and univ. If the im-
ported module declares a signature that is an extension of a signature
parameter, instantiating that parameter with a subset or with Int will be
an error.

A single module may be imported more than once. The result is not to
create multiple copies of the same module, but rather to make a single
module available under different names.

A component of an imported module is referred to by its qualified name,
consisting of the module reference and the component name:

sigRef ::= [moduleRef] sigId | Int | univ
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId

When a component reference would be ambiguous, it must be qualified.
Components declared in the same module in which they are referenced
need not be qualified. A module may also be given an alias when im-
ported to allow more succinct qualified names. If an alias is declared,
the regular module name may not be used.

The module reference may be either the path and module identifier of
the imported module along with any instantiating parameters (exactly

appendix b: alloy language reference ���

as it appears in the import statement), or an alias if one was declared in
the import:

moduleRef ::= [path] moduleId [[sigRef,*]] / | aliasId /

Paragraphs may appear in a module in any order. There is no require-
ment of definition before use. The order of import statements is also
immaterial, even if one provides instantiating parameters to another.

The signature Int is a special predefined signature representing integers,
and can be used without an explicit import.

A module may not contain references to components of another mod-
ule that it does not import, even if that module is imported along with
it in another module.

Module names occupy their own namespace, and may thus coincide
with the names of signatures, paragraphs, arguments, or variables with-
out conflict.

B.7.2	 Signature	Declarations
The productions discussed in this section are

sigDecl ::=
 [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
 | [mult] sig sigID,+ in sigRef sigBody
sigRef ::= [moduleRef] sigId | Int
sigBody ::= { decl,* } [constraintSeq]
constraintSeq ::= { constraint* }
moduleRef ::= [path] moduleId [[sigRef,*]] | aliasId
mult ::= lone | one | some

A signature represents a set of atoms. There are two kinds of signature.
A signature declared using the in keyword is a subset signature:

sigDecl ::= [mult] sig sigID,+ in sigRef sigBody

All other signatures are type signatures:

sigDecl ::= [abstract] [mult] sig sigID,+ [extends sigRef] sigBody

A type signature plays the role of a type or subtype in the type system. A
type signature that does not extend another signature is a top-level sig-
nature, and its type is a top-level type. A signature that extends another
signature is said to be a subsignature of the signature it extends, and its
type is taken to be a subtype of the type of the signature extended. A sig-
nature may not extend itself, directly or indirectly. The type signatures

��� appendix b: alloy language reference

therefore form a type hierarchy whose structure is a forest: a collection
of trees rooted in the top-level types.

Top-level signatures represent mutually disjoint sets, and subsignatures
of a signature are mutually disjoint. Any two distinct type signatures
are thus disjoint unless one extends the other, directly or indirectly, in
which case they overlap.

A subset signature represents a set of elements that is a subset of the
union of its parents: the signatures listed in its declaration. These may
be subset or type signatures. A subset signature may not be extended,
and subsets of a signature are not necessarily mutually disjoint. A sub-
set signature may not be its own parent, directly or indirectly. The sub-
set signatures and their parents therefore form a directed acyclic graph,
rooted in type signatures. The type of a subset signature is in general
a union of top-level types or subtypes, consisting of the parents of the
subset that are types, and the types of the parents that are subsets.

An abstract signature, marked abstract, is constrained to hold only those
elements that belong to one of the signatures that extends it. If there are
no extensions, the marking has no effect. The intent is that an abstract
signature represents a classification of elements that is refined further
by more ‘concrete’ signatures. If it has no extensions, the abstract key-
word is likely an indication that the model is incomplete.

Any multiplicity keyword (with the exception of set, since it has no ef-
fect) may be associated with a signature, and constrains the signature’s
set to have the number of elements specified by the multiplicity.

The body of a signature declaration consists of declarations of fields and
an optional signature fact constraining the elements of the signature:

sigBody ::= { decl,* } [constraintSeq]

A subtype signature inherits the fields of the signature it extends, along
with any fields that signature inherits. A subset signature inherits the
fields of its parent signatures, along with their inherited fields.

A signature may not declare a field whose name conflicts with the name
of an inherited field. Moreover, two subset signatures may not declare
a field of the same name if their types overlap. This ensures that two
fields of the same name can only be declared in disjoint signatures, and
there is always a context in which two fields of the same name can be
distinguished. If this were not the case, some overloadings would never
be resolvable.

appendix b: alloy language reference ���

Like any other fact, the signature fact is a constraint that always holds.
Unlike other facts, however, a signature fact is implicitly quantified over
the signature set. Given the signature declaration

sig S {…} { F }

the signature fact F is interpreted as if one had written an explicit fact

fact { all this: S | F’ }

where F’ is like F, but has each reference to a field f of S (whether de-
clared or inherited) replaced by this.f. Prefixing a field name with the
special symbol @ suppresses this implicit expansion.

Declaring multiple signatures at once in a single signature declaration is
equivalent to declaring each individually. Thus the declaration

sig A, B extends C {f: D}

for example, introduces two subsignatures, A and B, of C, and for each
declares a field f.

B.7.3	 Declarations
The productions discussed in this section are

decl ::= [part | disj] varId,+ : declExpr
declExpr ::= declSetExpr | declRelExpr
declSetExpr ::= [mult] expr
declRelExpr ::= declRelExpr’ [mult] -> [mult] declRelExpr’
declRelExpr’ ::= declRelExpr | expr
mult ::= lone | one | some

The same declaration syntax is used for fields of signatures, arguments
to functions and predicates, and quantified variables, all of which we
shall here refer to as variables. The interpretation for fields, which is
slightly different, is explained second.

A declaration introduces one or more variables, and constrains their
values and type:

decl ::= [part | disj] varId,+ : declExpr

A declaration has two effects:

· Semantically, it constrains the value a variable can take. The relation
denoted by the variable (on the left) is constrained to be a subset
of the relation denoted by the declaration expression (on the right).
When more than one variable is declared at once, the keywords disj

��0 appendix b: alloy language reference

and part may be used. The keyword disj constrains the declared vari-
ables to be mutually disjoint. The keyword part constrains them addi-
tionally to form a partition of the relation denoted by the declaration
expression. Multiplicity constraints, explained below, constrain the
value of a variable further.

· For the purpose of type checking, a declaration gives the variable a
type. A type is determined for the declaration expression, and that
type is assigned to the variable. Any variable that appears in the dec-
laration expression must have been declared already, either earlier
in the sequence of declarations in which this declaration appears, or
earlier elsewhere. For a quantified variable, this means within an en-
closing quantifier; for a field of a signature, this means that the field
is inherited; for a function or predicate argument, this means in the
argument declarations of the enclosing function or predicate.

Note that the declaration expression of a field declaration in a signature
may not refer to fields declared in other signatures, unless they are in-
herited.

The declaration expression is an arbitrary expression. If the expression
denotes a set (that is, a unary relation), it may be prefixed by a multiplic-
ity keyword:

declExpr ::= [mult | set] expr
mult ::= lone | one | some

If the keyword is omitted, the declared variable is constrained by default
to be a scalar (that is, to be a singleton set). The keyword set eliminates
this constraint; lone weakens it to allow the variable to denote an “op-
tion”: either a singleton set or the empty set; some constrains the vari-
able to denote a nonempty set; and one has no effect, being equivalent
to omission.

If the expression does not denote a set (that is, its arity is two or more),
multiplicity keywords may not be used as a prefix. If the expression is
formed with the arrow operator, the arrow itself may be elaborated with
multiplicity keywords:

declRelExpr ::= declRelExpr’ [mult] -> [mult] declRelExpr’
declRelExpr’ ::= declRelExpr | expr
mult ::= lone | one | some

If the declaration expression has the form e1 m->n e2, where m and n are
multiplicity keywords, the declaration imposes a multiplicity constraint
on the declared variable. An arrow expression of this form denotes the

appendix b: alloy language reference ��1

relation whose tuples are concatenations of the tuples in e1 and the
tuples in e2. If the marking n is present, the relation denoted by the
declared variable is required to contain, for each tuple t1 in e1, n tuples
that begin with t1. If the marking m is present, the relation denoted by
the declared variable is required to contain, for each tuple t2 in e2, m
tuples that end with t2. The markings are interpreted as follows:

· lone means zero or one;
· one means exactly one;
· some means one or more.

When the expressions e1 and e2 are unary, these reduce to familiar no-
tions. For example, a declaration expression of the form X -> one Y makes
the variable a total function from X to Y; the expression X -> lone Y makes
it an partial function; and X one -> one Y makes it a bijection.

Multiplicity markings can be used in nested arrow expressions. For ex-
ample, a declaration of the form

r: e1 m -> n (e2 m’ -> n’ (e3)

produces the constraints described above (due to the multiplicity key-
words m and n), but it produces additional constraints (due to m’ and n’).
The constraints for the nested expression are the same multiplicity con-
straints as for a top-level arrow expression, but applied to each image of
a tuple under the declared relation that produces a value for the nested
expression. For example, if e1 denotes a set, the constraint is equivalent
to the constraint of the declaration

all x: e1 | x.r : e2 m’ -> n’ (e3

If e1 is not a set, the quantification must range over the appropriate
tuples. For example, if e1 is binary, the constraint would be equivalent
to the constraint of the declaration

all x, y: univ | x->y in e1 => x.(y.r) : e2 m’ -> n’ (e3

Declarations within a signature have essentially the same interpretation.
But for a field f, the declaration constraints apply not to f itself but to
this.f : that is, to the value obtained by dereferencing an element of the
signature with f. Thus, for example, the declaration

sig S {f: e}

does not constrain f to be a subset of e (as it would if f were a regular
variable), but rather implies

all this: S | this.f in e

��� appendix b: alloy language reference

Moreover, any field appearing in e is expanded according to the rules of
signature facts (see section B.7.2). A similar treatment applies to mul-
tiplicity constraints and disj/part. In this case, for example, if e denotes
a unary relation, the implicit multiplicity constraint will make this.f a
scalar, so that f itself will denote a total function on S.

Type checking of fields has the same flavor. The field f is not assigned the
type e, but rather the type of the expression S -> e. That is, the domain of
the relation f has the type S, and this.f has the same type as e.

B.7.4	 Constraint	Paragraphs
The productions discussed in this section are

factDecl ::= fact [factId] constraintSeq
predDecl ::= pred [sigRef ::] predId (decl,*) constraintSeq
funDecl ::= fun [sigRef ::] funId (decl,*) : declExpr { expr }
assertDecl ::= assert [assertId] constraintSeq
constraintSeq ::= { constraint* }
constraint ::= … | [expr ::] predRef (expr,*)
expr ::= … | [expr ::] funRef (expr,*)

A fact is a constraint that always holds. A predicate is a template for a
constraint that can be instantiated in different contexts. A function is a
template for an expression. An assertion is a constraint that is intended
to follow from the facts of a model; it is thus an intentional redundancy.
Assertions can be checked by the Alloy Analyzer; functions and predi-
cates can be simulated.

A fact can be named for documentation purposes. An assertion can be
named or anonymous, but since a command to check an assertion must
name it, an anonymous assertion cannot be checked. Functions and
predicates must always be named.

A fact consists of an optional name and a constraint, given as a sequence
of constraints, which are implicitly conjoined:

factDecl ::= fact [factId] constraintSeq

A predicate declaration consists of the name of the predicate, some
argument declarations, and a constraint, given as a sequence of con-
straints, which are implicitly conjoined:

predDecl ::= pred [sigRef ::] predId (decl,*) constraintSeq

The argument declarations may include a first argument declared anon-
ymously. When a predicate is declared in the form

appendix b: alloy language reference ���

pred S::f (…) {…}

the first argument is taken to be a scalar of signature S, which is referred
to within the body of the predicate using the keyword this, as if the dec-
laration had been written

pred f (this: S, …) {…}

A function declaration consists of the name of the function, some argu-
ment declarations, and an expression:

funDecl ::= fun [sigRef ::] funId (decl,*) : declExpr { expr }

The argument declarations include a declaration expression for the re-
sult of the function, corresponding to the value of the expression. The
first argument may be declared anonymously, exactly as for predicates.

A predicate may be invoked as a constraint by providing an expression
for each argument:

constraint ::= [expr ::] predRef (expr,*)

A function likewise may be invoked as an expression by providing an
expression for each argument:

expr ::= [expr ::] funRef (expr,*)

Invocation can be viewed as textual inlining. An invocation of a pred-
icate gives a constraint which is obtained by taking the constraint of
the predicate’s body, and replacing the formal arguments by the cor-
responding expressions of the invocation. Likewise, invocation of a
function gives an expression obtained by taking the expression of the
function’s body, and replacing the formal arguments of the function by
the corresponding expressions of the invocation. Recursive invocations
are not currently supported.

A function or predicate invocation may present its first argument in
receiver position. So instead of writing

p (a, b, c)

for example, one can write

a::p (b, c)

The form of invocation is not constrained by the form of declaration.
Although often a function or predicate will be both declared with an
anonymous receiver argument and used with receiver syntax, this is not
necessary. The first argument may be presented as a receiver irrespec-

��� appendix b: alloy language reference

tive of the format of declaration, and the first argument may be declared
anonymously irrespective of the format of use. In particular, it can be
convenient to invoke a function or predicate in receiver form when the
first argument is not a scalar, even though it cannot be declared with
receiver syntax in that case.

Within a module, no two constraint paragraphs may be declared with
the same name, nor may a constraint paragraph have the same name as
a signature.

B.7.5	 Commands
The productions discussed in this section are

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]
checkCmd ::= [commandId :] check assertRef [scope]
scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
sigRef ::= [moduleRef] sigId | Int | univ

A command is an instruction to the Alloy Analyzer to perform an analy-
sis. Analysis involves constraint solving: finding an instance that satis-
fies a constraint. A run command causes the analyzer to search for an
example that witnesses the consistency of a function or a predicate. A
check command causes it to search for a counterexample showing that
an assertion does not hold.

A command to run a function or predicate consists of an optional com-
mand name, the keyword run, a reference to the function or predicate,
and, optionally, a scope specification:

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]

Similarly, a command to check an assertion consists of an optional
command name, the keyword check, a reference to the assertion, and,
optionally, a scope specification:

checkCmd ::= [commandId :] check assertRef [scope]

appendix b: alloy language reference ��5

The command name is used in the user interface of the Alloy Analyzer
(or at the command line) to select the command to be executed. In the
graphical user interface, the command is selected from a pop-up menu;
the only reason for the command name is to allow commands to be
more easily recognized when there are many commands for the same
assertion, function, or predicate. No two commands in a module may
have the same command names.

As explained in section B.5, analysis always involves solving a constraint.
For a predicate with body constraint P, the constraint solved is

P and F and D

where F is the conjunction of all facts, and D is the conjunction of all
declaration constraints, including the declarations of the predicate’s ar-
guments. Note that when the predicate’s body is empty, the constraint
is simply the facts and declaration constraints of the model. An empty
predicate is often a useful starting point in analysis to determine wheth-
er the model is consistent, and, if so, to examine some of its instances.

For a function named f whose body expression is E, the constraint solved
is

f = E and F and D

where F is the conjunction of all facts, and D is the conjunction of all
declaration constraints, including the declarations of the function argu-
ments. The variable f stands for the value of the expression.

Note that the declaration constraints of a predicate or function are used
when that function or predicate is run, but are ignored when the predi-
cate or function is invoked.

For an assertion whose body constraint is A, the constraint solved is

F and D and not A

namely the negation of

F and D implies A

where F is the conjunction of all facts, and D is the conjunction of all
declaration constraints.

An instance found by the analyzer will assign values to the following
variables:

· the signatures and fields of the model;

��� appendix b: alloy language reference

· for an instance of a predicate or function, the arguments of the func-
tion or predicate, one of which will be named this if the first argu-
ment is declared anonymously;

· for an instance of function, a variable denoting the value of the ex-
pression, with the same name as the function itself.

The analyzer may also give values to skolem constants as witnesses for
existential quantifications. Whether it does so, and whether existentials
inside universals are skolemized, depends on preferences set by the
user.

The search for an instance is conducted within a scope, which is speci-
fied as follows:

scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
sigRef ::= [moduleRef] sigId | Int | univ

The scope specification of a command places bounds on the sizes of the
sets assigned to type signatures, thus making the search finite. Only
type signatures are involved; subset signatures may not be bounded in
a scope specification. For the rest of this section, “signature” should be
read as synonymous with “type signature.”

The bounds are determined as follows:

· If no scope specification is given, a default scope of 3 elements is
used: each top-level signature is constrained to represent a set of
at most 3 elements.

· If the scope specification takes the form for N, a default of N is used
instead.

· If the scope specification takes the form for N but …, every signature
listed following but is constrained by its given bound, and any top-
level signature whose bound is not given implicitly is bounded by
the default N.

· Otherwise, for an explicit list without a default, each signature listed
is constrained by the given bound.

Implicit bounds are determined as follows:

· If an abstract signature has no explicit bound, but its subsignatures
have bounds, implicit or explicit, its bound is the sum of those of
its subsignatures.

· If an abstract signature has a bound, explicit or by default, and all
but one of its subsignatures have bounds, implicit or explicit, the

appendix b: alloy language reference ���

bound of the remaining subsignature is the difference between the
abstract signature’s bound and the sum of the bounds of the other
subsignatures.

· A signature declared with the multiplicity keyword one has a bound
of 1.

· If an implicit bound cannot be determined for a signature by these
rules, the signature has no implicit bound.

If a scope specification uses the keyword exactly, the bound is taken to
be both an upper and lower bound on the cardinality of the signature.
The rules for implicit bounds are adjusted accordingly. For example, an
abstract signature whose subsignatures are constrained exactly will
likewise be constrained exactly.

The scope specification must be

· consistent: at most one bound must be associated with any signature,
implicitly, explicitly, or by default;

· complete: every top-level signature must have a bound;
· uniform: a signature without a bound may not have a subsignature

that has a bound.

By default, the predefined signature Int is limited to 3 elements, so that
there may be at most 3 integer objects appearing in an instance or coun-
terexample. The bound on the integer values represented by these inte-
ger objects, and on the values of integer expressions, may be altered by
assigning a bound to int. A bound of k for int limits integer values to be
between 0 and 2k −. Its default is 5, so integers by default range from 0
to 31.

B.7.6	Expressions
The productions discussed in this section are

expr ::= [@] varId | sigRef | this |
 | none | univ | iden
 | unOp expr | expr binOp expr | expr[expr]
 | { decl,+ | [constraint] }
 | let letDecl,+ | expr
 | if constraint then expr else expr
 | (expr)
letDecl ::= varId = expr
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^

��� appendix b: alloy language reference

There are two kinds of expression in Alloy: relational expressions and
integer expressions. When mentioned without qualification, the term

“expression” refers to a relational expression.

Every relational expression denotes a relation. A set is represented as
a relation of arity one, and a scalar is represented as a singleton set. A
tuple is a singleton relation.

Alloy’s analysis involves finding solutions to constraints. For any candi-
date instance that may be a solution to the constraint, each expression
of the constraint has a value given by the instance’s bindings of values
to variables.

An expression may consist simply of a variable name, signature refer-
ence, or the special argument this:

expr ::= [@] varId | sigRef | this |

If the variable denotes a field name, its value is the value bound to that
field in the instance being evaluated. In contexts in which field names
are implicitly dereferenced—that is, in signature declaration expres-
sions and signature facts—the prefix @ preempts dereferencing (see
subsection B.7.2). If there is more than one field of the given name, the
reference is resolved, or rejected if ambiguous (see section B.6).

If a variable denotes a quantified or let-bound variable, its value is de-
termined by the binding. If the variable is an argument of a function or
predicate, the analysis at hand must be a run of that function or predicate
(since if the function or predicate is invoked, its meaning is obtained by
inlining and the argument has been replaced) and the variable’s value is
bound speculatively to each possible value during search.

An expression may be a relational constant:

expr ::= none | univ | iden

The three constants none, univ, and iden denote respectively the empty
unary relation (that is, the set containing no elements), the universal
unary relation (the set containing every element), and the identity rela-
tion (the binary relation that relates every element to itself).

Note that univ and iden are interpreted over the universe of all atoms. So
a constraint such as

iden in r

will be unsatisfiable unless the relation r has type univ -> univ. To say that
r is a reflexive relation, you might write instead

appendix b: alloy language reference ���

t <: iden in r

for example, where r has type t -> t.

An expression may be a compound expression:

expr ::= unOp expr | expr binOp expr | expr[expr]
binOp ::= + | - | & | . | ->
unOp ::= ~ | * | ^

The value of a compound expression is obtained from the values of its
constituents by applying the operator given. The meanings of the opera-
tors are as follows:

· ~e: transpose of e;
· ^e: transitive closure of e;
· *e: reflexive-transitive closure of e;
· e1 + e2: union of e1 and e2;
· e1 - e2: difference of e1 and e2;
· e1 & e2: intersection of e1 and e2;
· e1 . e2: join of e1 and e2;
· e2 [e1]: join of e1 and e2;
· e1 -> e2: product of e1 and e2;
· e2 <: e1: domain restriction of e1 to e2;
· e1 :> e2: range restriction of e1 to e2;
· e1 ++ e2: relational override of e1 by e2.

For the first three (the unary operators), e is required to be binary. For
the set theoretic operations (union, difference, and intersection) and for
relational override, the arguments are required to have the same arity.
For the restriction operators, the argument e2 is required to be a set.

Note that e1[e2] is equivalent to e2.e1, but the dot and brackets opera-
tors have different precedence.

The transpose of a relation is its mirror image: the relation obtained by
reversing each tuple. The transitive closure of a relation is the smallest
enclosing relation that is transitive (that is, relates a to c whenever there
is a b such that it relates a to b and b to c). The reflexive-transitive closure
of a relation is the smallest enclosing relation that is transitive and re-
flexive (that is, includes the identity relation).

The union, difference, and intersection operators are the standard set
theoretic operators, applied to relations viewed as sets of tuples. The
union of e1 and e2 contains every tuple in e1 or in e2; the intersection of
e1 and e2 contains every tuple in both e1 and in e2; the difference of e1
and e2 contains every tuple in e1 but not in e2.

��0 appendix b: alloy language reference

The join of two relations is the relation obtained by taking each com-
bination of a tuple from the first relation and a tuple from the second
relation, and if the last element of the first tuple matches the first ele-
ment of the second tuple, including the concatenation of the two tuples,
omitting the matching elements.

The product of two relations is the relation obtained by taking each com-
bination of a tuple from the first relation and a tuple from the second
relation, and including their concatenation.

The domain restriction of e1 to e2 contains all tuples in e1 that start with
an element in the set e2. The range restriction of e1 to e2 contains all
tuples in e1 that end with an element in the set e2. These operators are
especially handy in resolving overloading (see section B.6).

The relational override of e1 by e2 contains all tuples in e2, and addi-
tionally, any tuples of e1 whose first element is not the first element of
a tuple in e2.

An expression may be a comprehension expression:

expr ::= { decl,+ | [constraint] }

The expression

{x1: e1, x2: e2, … | F}

denotes the relation obtained by taking all tuples x1 -> x2 -> … in which
x1 is drawn from the set e1, x2 is drawn from the set e2, and so on, and
the constraint F holds. The expressions e1, e2, and so on, must be unary,
and may not be prefixed by multiplicity keywords. More general dec-
laration forms are not permitted, except for the use of the disj and part
keywords.

An expression may be a let expression:

expr ::= let letDecl,+ | expr
letDecl ::= varId = expr

The expression

let v1 = e1, v2 = e2, … | e

is equivalent to the expression e, but with each bound variable v1, v2, etc.
replaced by its assigned expression e1, e2, etc. Variables appearing in let
declaration expressions must have been previously declared. Recursive
bindings are not permitted.

appendix b: alloy language reference ��1

An expression may be an if expression:

expr ::= if constraint then expr else expr

The expression

if F then e1 else e2

has the value of expression e1 when the constraint F is true, and the
value of expression e2 otherwise.

The meaning of an invocation expression

expr ::= [expr ::] funRef (expr,*)

is explained in section B.7.4.

The meaning of the Integer expression

expr ::= Int intExpr

is explained in section B.7.7.

An expression may be parenthesized to force a particular ordering of
application of operators:

expr ::= (expr)

B.7.7	 Integers
The productions discussed in this section are

constraint ::= intExpr [neg] intCompOp intExpr
expr ::= Int intExpr
intExpr ::= number | # expr | sum expr | int expr
 | if constraint then intExpr else intExpr
 | intExpr intOp intExpr
 | let letDecl,… | intExpr
 | sum decl,+ | intExpr
 | (intExpr)
intOp ::= + | -
intCompOp ::= < | > | = | =< | >=

There are two kinds of integers in Alloy. The predefined signature Int
denotes a set of integer-carrying objects that may appear as atoms in
relations. Integer operators may not be applied to these objects directly.
Integer expressions are distinguished syntactically from relational ex-
pressions, and have primitive integer values which may be combined

��� appendix b: alloy language reference

and compared using arithmetic operators. Primitive integer values may
not appear as atoms in relations, and cannot be quantified over.

Distinct integer objects never carry the same primitive integer value. So
the following assertion always holds:

assert IntegersCanonical {no disj i, j: Int | int i = int j}

A primitive integer value may be obtained from a relational expression
whose value is a set of integer objects:

intExpr ::= sum expr | int expr

Both integer expressions int e and sum e have an integer value that is the
sum of the integer values associated with integer objects in the set de-
noted by the relational expression e. There is no semantic difference be-
tween the two. The intent is that sum be used to indicate explicitly that
the expression is expected not to be a singleton. Usually, the int operator
will be applied to an expression denoting a single Integer object, but it is
defined over a set of Integer objects so that it always has a value.

A primitive integer value may be obtained from a relational expression
of any type using a cardinality expression:

intExpr ::= # expr

The integer expression #e has an integer value corresponding to the car-
dinality of e—that is, the number of tuples in the relation denoted by the
relational expression e.

A numeric constant may be used as an integer expression:

intExpr ::= number

A numeric constant is a sequence of one or more digits, of which the
first is not zero.

Integers may be combined using standard arithmetic operators for ad-
dition and subtraction:

intExpr ::= intExpr intOp intExpr
intOp ::= + | -

The integer expression i + j evaluates to the sum of the values of the inte-
ger expressions i and j; the integer expression i - j evaluates to the value
of the integer expression i minus the value of the integer expression j.
Note that the plus and minus symbols are overloaded: they are treated
as arithmetic operators within integer expressions, and as relational op-
erators within relational expressions.

appendix b: alloy language reference ���

A sum expression computes the sum of the values of an integer expres-
sion over a range of bindings:

intExpr ::= sum decl,+ | intExpr

The integer expression

sum x: X, y: Y, … | ie

evaluates to the sum of the values that the integer expression ie can take
for all distinct bindings of the variables x, y, and so on. The most general
declaration forms are permitted, although analysis may not be feasible
when the bindings are not first order.

If-then-else and let can be applied to integer expressions:

intExpr ::=
 if constraint then intExpr else intExpr
 | let letDecl,… | intExpr

with the same meaning as for relational expressions, but with integer
values instead.

Integer valued expressions can be compared:

constraint ::= intExpr [neg] intCompOp intExpr
intCompOp ::= < | > | = | =< | >=

The meaning of the comparison operators is as follows:

· The constraint i = j is true when the integer expressions i and j have
the same value.

· The constraint i < j is true when i is less than j.
· The constraint i > j is true when i is greater than j.
· The constraint i =< j is true when i is less than or equal to j.
· The constraint i >= j is true when i is greater than or equal to j.

The “less than or equal to” operator is written unconventionally with the
equals symbol first so that it does not have the appearance of an arrow,
which might be confused with a logical implication.

A constraint in which the comparison operator is negated,

e1 not op e2

is equivalent to the constraint obtained by moving the negation out-
side:

not e1 op e2

��� appendix b: alloy language reference

The negation operators ! and not have the same meaning.

Integer objects are obtained from integer values with the Int operator:

expr ::= Int intExpr

The expression Int ie denotes the Integer object associated with the val-
ue of the integer expression ie; it is equivalent to

{i: Int | int i = ie}

It is possible that, in a particular analysis, the scope is too small to pro-
vide such an integer. In that case, Int ie denotes the empty set. Note that
because no two integer-carrying objects hold the same integer value, it
will never denote a set of more than one object.

B.7.8	 Constraints
The productions discussed in this section are

constraint ::=
 quantifier expr
 | expr [neg] compOp expr
 | neg constraint | constraint logicOp constraint
 | constraint thenOp constraint [elseOp constraint]
 | quantifier decl,+ constraintBody
 | let letDecl,+ constraintBody
 | expr : declExpr
 | constraintSeq
 | (constraint)
constraintBody ::= constraintSeq | | constraint
constraintSeq ::= { constraint* }
letDecl ::= varId = expr
thenOp ::= implies | =>
elseOp ::= else | ,
neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
mult ::= lone | one | some
compOp ::= in | : | =
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr

Elementary constraints are formed by applying quantifiers to relational
expressions, or by comparing relational or integer expressions.

appendix b: alloy language reference ��5

A quantified expression takes the form

constraint ::= quantifier expr
quantifier ::= all | no | mult
mult ::= lone | one | some

Its meaning depends on the quantifier chosen:

· The constraint no e is true when e evaluates to a relation containing
no tuple.

· The constraint some e is true when e evaluates to a relation contain-
ing one or more tuple.

· The constraint lone e is true when e evaluates to a relation containing
at most one tuple.

· The constraint one e is true when e evaluates to a relation containing
exactly one tuple.

The constraint all e is rejected by a static semantic check: it has no
meaning.

A comparison constraint takes the form

constraint ::= expr [neg] compOp expr
compOp ::= in | =

Its meaning depends on the comparison operator:

· The constraint e1 in e2 is true when the relation that e1 evaluates to
is a subset of the relation that e2 evaluates to.

· The constraint e1 = e2 is true when the relation that e1 evaluates to
the same relation as e2.Equality:operator defined:

Note that relational equality is extensional: two relations are equal when
they contain the same tuples.

A constraint in which the comparison operator is negated,

e1 not op e2

is equivalent to the constraint obtained by moving the negation out-
side:

not e1 op e2

The negation operators ! and not have the same meaning.

Comparisons on integer expressions are covered in subsection B.7.7.

��� appendix b: alloy language reference

A negated constraint takes the form

constraint ::= neg constraint
neg ::= not | !

The constraint not F is true when the constraint F is false, and vice versa.
The negation operators not and ! are interchangeable.

A compound constraint combines smaller constraints with logical op-
erators:

constraint ::=
 constraint logicOp constraint
 | constraint thenOp constraint [elseOp constraint]
logicOp ::= && | || | iff | <=> | and | or
thenOp ::= implies | =>
elseOp ::= else | ,

The meaning of the logical operators is as follows:

· The constraint F and G is true when F is true and G is true.
· The constraint F or G is true when one or both of F and G are true.
· The constraint F iff G is true when F and G are both false or both

true.
· The constraint F implies G is true when F is false or G is true.
· The constraint F implies G else H is true when both F and G are true, or

when F is false and H is true.

The logical operators may be written interchangeably as symbols: && for
and, || for or, => for implies, <=> for iff, and a comma (,) for else.

A constraint sequence is a sequence of constraints enclosed in braces:

constraint ::= constraintSeq
constraintSeq ::= { constraint* }

The constraint

{ F G H … }

is equivalent to the conjunction

F and G and H and …

If the sequence contains no constraints, the constraint is true.

A quantified constraint consists of one or more declarations and a
body:

constraint ::= quantifier decl,+ constraintBody

appendix b: alloy language reference ���

constraintBody ::= constraintSeq | | constraint
constraintSeq ::= { constraint* }
quantifier ::= all | no | mult
mult ::= lone | one | some

It makes no difference whether the constraint body is a single constraint
preceded by a vertical bar, or a constraint sequence. The two forms are
provided so that the vertical bar can be omitted when the body is a
sequence of constraints. Some users prefer to use the bar in all cases,
writing, for example,

all x: X | { F }

Others prefer never to use the bar, and use the braces even when the
constraint sequence consists of only a single constraint:

all x: X { F }

These forms are all acceptable and are interchangeable.

The meaning of the constraint depends on the quantifier:

· The constraint all x: e | F is true when the constraint F is true for all
bindings of the variable x.

· The constraint no x: e | F is true when the constraint F is true for no
bindings of the variable x.

· The constraint some x: e | F is true when the constraint F is true for
one or more bindings of the variable x.

· The constraint lone x: e | F is true when the constraint F is true for at
most one binding of the variable x.

· The constraint one x: e | F is true when the constraint F is true for
exactly one binding of the variable x.

The range and type of the bound variable is determined by its declara-
tion (see subsection B.7.3). In a sequence of declarations, each declared
variable may be bound by the declarations or previously declared vari-
ables. For example, in the constraint

all x: e, y: S - x | F

the variable x varies over the values of the expression e (assumed to
represent a set), and the variable y varies over all elements of the set S
except for x. When more than one variable is declared, the quantifier is
interpreted over bindings of all variables. For example,

one x: X, y: Y | F

��� appendix b: alloy language reference

is true when there is exactly one binding that assigns values to x and
y that makes F true. So although a quantified constraint with multiple
declarations may be regarded, for some quantifiers, as a shorthand for
nested constraints, each with one declaration, this is not in general true.
Thus

all x: X, y: Y | F

is short for

all x: X | all y: Y | F

but

one x: X, y: Y | F

is not short for

one x: X | one y: Y | F

A quantified constraint may be higher-order: that is, it may bind non-
scalar values to variables. Whether the constraint is analyzable will de-
pend on whether it can be skolemized by the analyzer, and if not, how
large the scope is.

A let constraint allows a variable to be introduced, to highlight an im-
port subexpression or make the constraint shorter by factoring out a
repeated subexpression:

constraint ::= let letDecl,+ constraintBody
letDecl ::= varId = expr

The constraint

let x1 = e1, x2 = e2, … | F

is equivalent to the constraint F with each occurrence of the bound
variable x1 replaced by the expression e1, x2 by e2, and so on. Like all
declarations, let declarations are interpreted in order, and may not be
recursive.

Predicate invocation is discussed in subsection B.7.4.

A declaration constraint allows a multiplicity constraint to be placed on
an expression:

constraint ::= declConstraint
declConstraint ::= expr : declExpr
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr

appendix b: alloy language reference ���

Declaration constraints are useful for two reasons. First, they allow mul-
tiplicity constraints to be placed on arbitrary expressions, where decla-
rations themselves only allow them to be placed on variables. Thus,

p.q : t one -> one t

for example, says that the join of p and q is a bijection. Second, they al-
low additional multiplicity constraints to be expressed that cannot be
expressed in declarations. For example, the relation r of type A -> B can
be declared as a field of A:

sig A {r: set B}

Since the declaration constraints apply to the relations this.r, they can-
not constrain the multiplicity of the relation from B’s perspective. To say
that r maps at most one A to each B, one could add as a fact the declara-
tion constraint

r: A lone -> B

Another deficiency of declarations that can be overcome is that they
only allow multiplicities around one arrow to be given. For a relation p
of type A -> B -> C, a declaration of the form

all r: A -> some (B -> C) | …

makes r total on A. The constraint that R maps a pair from A -> B to each
element of C cannot be expressed in this declaration because it requires
a different parsing of the expression, associating the arrows to the left
rather than the right. To express this constraint, one could use a decla-
ration constraint like this:

all r: A -> some (B -> C) | r: (A -> B) some -> C => …

A constraint may be parenthesized to force a particular ordering of ap-
plication of operators:

constraint ::= (constraint)

Appendix	C:		
Kernel	Semantics

This appendix gives a succinct definition of the underlying logic in terms
of the operators of conventional set theory.

An Alloy model comprises, in essence, a collection of declarations of
relations (the signatures and their fields), and a collection of named for-
mulas. The meaning of the model is a set of instances, for each named
formula, each instance assigning a relational value to each of the de-
clared relations. Here, we’ll consider a simplified language consisting
only of simple formulas, and we’ll define the meaning of a formula as
a function from instances to boolean values; the set of instances de-
scribed is then, implicitly, those instances on which the function evalu-
ates to true. Although this language is much smaller than the full Alloy
language, it captures its semantic essence, and it is relatively straight-
forward to translate the constructs of the full language into it.

C.1	 Semantics	of	the	Alloy	Kernel

The syntax of formulas is given by these productions:

formula ::= elemFormula | compFormula | quantFormula
elemFormula ::= expr in expr | expr = expr
compFormula ::= not formula | formula and formula
quantFormula ::= all var : expr | formula

and the syntax of expressions by:

expr ::= rel | var | none | expr binop expr | unop expr
binop ::= + | & | - | . | ->
unop ::= ~ | ^

The syntactic category rel represents free relation variables (the signa-
tures and fields), whereas var represents variables bound by quantifiers.
The constants iden and univ are not defined here, since they depend on
the context of the model’s declarations (univ denoting the union of the
top-level signatures, and iden the identity relation over that union).

��� appendix c: kernel semantics

In standard denotational style, we’ll define a function M that interprets
formulas, mapping a formula in the context of an instance to a boolean
value, and a function M that interprets expressions, mapping an expres-
sion in the context of an instance to a relation value:

M: Formula, Instance → Boolean
E: Expression, Instance → RelationValue

An instance is a function from relation variables to relation values. A
relation value is a set of tuples of atoms, and all the tuples in a particular
relation value can be assumed to contain the same number of elements
(although in fact this constraint is unnecessary [14].

Here are the definitions of the formula operators:

M[not f]i = ¬ M[f]i
M[f and g]i = M[f]i ∧ M[g]i
M[all x: e | f]i = ∧{M[f] (i ⊕ x↦ v) | v ⊆ E[e]i ∧ #v = 1}
M[p in q]i = E[p]i ⊆ E[q]i
M[p = q]i = (E[p]i = E[q]i)

The universally quantified formula is true for an instance i when its body
is true for every instance in which i is extended by an assignment of
some singleton subset of the value of the bounding expression to the
quantified variable. We are assuming here that bounding expressions
are unary, so that these subsets represent scalars.

The in operator is just conventional subset; it is given the ambiguous
name “in” so that it can serve naturally as both a membership operator,
relating an element to a set or a tuple to a relation, and as a subset op-
erator, relating one set or relation to another. Equality is simply subset
in both directions; it is included here just to make it clear that equality
is the simple conventional notion of equality of sets or relations, with
none of the distinctions between identity and contents often made in
object-oriented languages.

Here are the definitions of the expression operators:

E[none]i = ∅
E[p + q]i = E[p]i ∪ E[q]i
E[p & q]i = E[p]i ∩ E[q]i
E[p - q]i = E[p]i ∖ E[q]i
E[p . q]i =
 {(p1,..,pn-1, q2,..,qm) | (p1,..,pn) ∈ E[p]i ∧ (q1,..,qm) ∈ E[q]i ∧ pn = q1}
E[p -> q]i = {(p1,..,pn, q1,..,qm) | (p1,..,pn) ∈ E[p]i ∧ (q1,..,qm) ∈ E[q]i}
E[~p]i = {(p2, p1) | (p1, p2) ∈ E[p]i}
E[^p]i = {(x, y) | ∃p1,…pn | (x, p1), (p1, p2),  … (pn, y) ∈ E[p]i}

appendix c: kernel semantics ���

The +, & and - operators are the standard set operators – union, intersec-
tion and difference. The ~ and ^ are the standard relational operators for
transpose and transitive closure, defined over binary relations. Dot is
a generalized relational composition (or join), and arrow is a cartesian
product. Note that all these operators are total, so there are no unde-
fined expressions in Alloy.

Finally, the value of an expression containing just a relation name is the
value assigned to that relation by the instance:

E[r]i = i(r)

If the relation name is ambiguous (because fields of different signatures
have the same name), the meaning is simply the union of the values
assigned by the instance to each of the relations that the name might
refer to.

C.2	 Semantics	of	Integer	Expressions	and	Formulas

Alloy supports integers to a limited degree. The elements of the lan-
guage extension can be summarized by these productions:

intExpr ::= number | # expr | sum expr | int expr | intExpr intOp
intExpr
intFormula ::= intExpr intCompOp intExpr
intCompOp ::= < | > | = | =< | >=
intOp ::= + | -
number = 0 | 1 | ..
expr ::= .. | Int intExpr

An intExpr is an expression whose value is an integer; the semantics of
formulas involving such expressions is completely standard. Such an
expression is obtained either from an integer literal, by combining other
such expressions, or by applying one of the three operators #, sum and
int to an Alloy relational expression. The operator # is the cardinality
operator; the meaning of # e is simply the number of tuples in e.

For the expressions int e and sum e, type checking ensures that the re-
lational expression e denotes a unary relation (that is, a set) of atoms
of a special predefined type Int. Each atom in the set Int is associated
with an integer value by a relation I2i; this relation is considered a free
variable like an explicitly declared relation, and is likewise given a value
by an instance. Both expressions int e and sum e actually have the same
meaning: their value is the sum of the integer values associated by I2i

��� appendix c: kernel semantics

with the atoms in the set e. But when int is used, the relational expres-
sion is assumed to denote a scalar, and when sum is used, the relational
expression is assumed to denote a set that may contain more than one
Int atom. Currently, the Alloy Analyzer does not check this, however.

A relational value can be obtained from an integer value by applying
the operator Int. The meaning of Int ie is the set of atoms in Int whose
value is mapped to the integer value of ie by the relation I2i. Since I2i is
constrained to be an injective function, this set contains at most one
element. In Alloy terminology, therefore, Int ie is an option, denoting
either a scalar (when there is an Int atom associated with the integer ie),
or an empty set (otherwise).

In an analysis, the scope setting bounds separately the size of the set
Int and the bit width of the largest positive and negative integer. This
allows cases to be handled in which the number of integers stored in
relations is much smaller than the size of the largest integer value. Lim-
iting the range of integers makes exhaustive analysis possible, at a cost:
the standard semantics for integers cannot be preserved. In particular,
generation axioms (for example, that every integer has a successor) do
not apply: the formula

all i: Int | some j: Int | int j = int i + 1

is not valid. Consequently, analyses involving integers may produce
spurious instances. The same problem arises whenever a signature is
intended to represent a set for which a generator axiom would be de-
sirable but cannot be expressed without eliminating all finite instances
(see [44] and section 5.3).

Appendix	D:		
Diagrammatic	Notation	

S

S

S m

S m

S

S1 S2

extends in

S

S1 S2

in

S is a set

S is an abstract set:
all its elements are contained
by subsets that extend it

S is a set with multiplicity m

abstract
S

Multiplicity symbols
* any number (default)
? zero or one
! exactly one
+ one or more

S is a set with multiplicity m ;
if present, m must be ? or !
and defaults to ! if missing

S1 and S2 are subsets of S,
and are disjoint;
no label means extends

S1 and S2 are subsets of S
and are not necessarily disjoint
from each other (or from other sets
that extend S)

��� appendix d: diagrammatic notation

S T
m R n

S T
m (all v: be | e) n

R is a relation from S to T with multiplicities m and n,
corresponding to the textual constraint R: S m -> n T ;
R may be any relational expression

For any value of variable v drawn from bounding expression be,
expression e denotes a relation from S to T with multiplicities m
and n, corresponding to the constraint all v: be | e: S m -> n T

S T
m e n

When e is an expression in which the special form <C> occurs,
for an expression C denoting a set, the occurrence of e in the
label is short for all v: C | e' where e' is e with <C> replaced by v

Appendix	E:		
Alternative	Approaches

The models in this appendix were contributed by Michael Butler, John
Fitzgerald, Martin Gogolla, Peter Gorm Larsen, and Jim Woodcock, and
are included here with their permission.

Alloy is only one of several approaches to the modeling and analysis
of software abstractions. This appendix briefly describes four of these
alternatives: B, OCL, VDM, and Z. Its purpose is both to help those
in search of an approach that matches their needs, and—for readers
already familiar with other approaches—to highlight the respects in
which they differ from Alloy.

I chose these four approaches because of their ability to capture com-
plex structure succinctly and abstractly. They are all well known, and
each has an active and enthusiastic community of users and research-
ers. Other modeling and analysis approaches can be used effectively for
software design in specialized domains: there are many model checkers,
for example, that can check protocols and concurrent algorithms, but
they are not considered here since (with the exception of FDR) they
tend to have only rudimentary support for structuring of data.

Some features are common to all the approaches, including Alloy. They
all offer a notation that can capture software abstractions more suc-
cinctly and directly than a programming language can; all of them, de-
spite differences in syntax and semantics, view the state in terms of clas-
sical mathematical structures, such as sets and relations, and describe
behaviors declaratively, using constraints. Lightweight tools are avail-
able for all of them, in which constraints are evaluated against concrete
cases, and new tool projects are underway for all these approaches that
are likely to extend their power and applicability greatly.

At the same time, there are important differences. B is more operational
in flavor; its notation is more like an abstract programming language
than a specification language. OCL has a very different syntax from the
others, reminiscent of Smalltalk. In B and VDM, and to some extent Z
and OCL, a particular notion of state machine is hardwired, in contrast
to Alloy, which is designed to support a variety of idioms, each as easy

��� appendix e: alternative approaches

(or difficult!) to express as the others. B, VDM and Z were designed
more with proof in mind than lightweight analysis, and so, unlike Alloy
and OCL, are supported by specialized theorem provers.

All these languages predate Alloy, which has benefited greatly from their
experience. Alloy was designed for similar applications, but with more
emphasis on automatic analysis. In pursuit of this goal, the language
was stripped down to the bare essentials of structural modeling, and
was developed hand-in-hand with its analysis. Any feature that would
thwart analysis was excluded. Consequently, Alloy’s analysis is more
powerful than the lightweight analyses offered by the other approaches,
which (with the exception of ProB) are mostly “animators” that execute
a model on given test cases. Unlike an animator, the Alloy Analyzer does
not require the user to provide initial conditions and inputs; it does not
restrict the language to an executable subset; and, because it covers the
entire space within the scope, it is more effective at uncovering subtle
bugs. The idea of analysis is built in to the language itself: assertions
can be recorded as part of a specification, and the scopes (which bound
the analysis) are confined to commands. The other approaches use tool-
specific extensions instead.

Another goal in the design of Alloy was to be unusually small and
simple; it has fewer concepts than the other languages, and is in some
respects more flexible. For example, Alloy unifies all data structuring
within the notion of a relation; it uses the same relational join for index-
ing, dereferencing structures and applying functions; its signatures can
simulate the schemas of Z and the classes of OCL; and its assertions can
express invariant preservations, refinements and temporal properties
over traces.

These benefits are not, of course, without some cost. Alloy is less expres-
sive than the other languages. Whereas Alloy’s structures are strictly
first order, B, VDM and Z all support higher-order structures and quan-
tifications. Carroll Morgan’s well known telephone switching specifica-
tion [54] in Z, for example, represents the connections as a set of sets of
endpoints. Such a structure is not directly representable in Alloy; you’d
need to model the connections as a relation between endpoints, or as a
set of connection atoms, each mapped to its endpoints. Morgan’s inge-
nious characterization of the behavior of the switch, with a higher-order
formula constraining the connection structure to be maximal, would
not be expressible at all in Alloy. A more significant (but less fundamen-
tal) deficiency of Alloy in this regard is its relatively poor support for
sequences and integers.

appendix e: alternative approaches ���

Aside from occupying a different point in the spectrum of expressive-
ness versus analyzability, the other languages naturally have their own
particular merits. B offers a more direct path to implementation; OCL
is integrated with UML, the modeling language of choice for many
companies; VDM supports both explicit and implicit forms of model-
ing; and Z has higher-order features that have been found very useful in
the structuring of large specifications.

A single problem is used to illustrate all the approaches. For each al-
ternative approach, a model was constructed by an expert. Michael
Butler developed the B version, using the ProB tool; Martin Gogolla
developed the OCL version using the USE tool; Peter Gorm Larsen and
John Fitzgerald developed the VDM version using VDMTools; and Jim
Woodcock developed the Z version using the Z/Eves theorem prover
and the Jaza animator. Unfortunately, there was not sufficient space to
include all their work in full. In particular, Martin Gogolla wrote a sec-
ond model showing that OCL could accommodate the “time-instant”
idiom used in the Alloy specification as easily as the standard pre/post
idiom, and constructed an ASSL procedure for generating test cases
automatically; and Jim Woodcock proved precondition theorems for all
operations, and the NoIntruder assertion with the help of Z/Eves.

E.1	 An	Example

To illustrate the different approaches, we’ll use an example of a scheme
for recodable hotel-door locks, similar to (but simpler than) the one
that appears in chapter 6. The purpose of the modeling and analysis is to
determine whether the scheme is effective in preventing unauthorized
access. An Alloy model is shown in figs. E.1 and E.2.

Fig. E.1 shows the declarations of the components of the state space,
and the initialization. Each key card is marked with two keys (line 5);
these markings are fixed, and do not change over time. The remaining
components are time-varying, as can be seen by the presence of the
Time column in their declarations: the current key for each room (8);
the front desk record of keys issued so far (11), and of which keys were
issued for which rooms in the immediately previous checkin (12); and
the set of cards held by each guest (15).

At initialization, the record at the front desk associating keys with
rooms matches the current keys of the room locks themselves (18), no
keys have been issued, and no guests hold cards (19).

�00 appendix e: alternative approaches

Fig. E.2 shows the operations corresponding to checking in and enter-
ing a room, the definition of execution traces, and an assertion express-
ing the intended effect of the scheme in terms of denied access.

When a guest g checks in at the front desk to a room g, the guest is given
a card (5) whose first key is the last key that was issued for that room
(3), and whose second key is fresh (4). The desk’s records are updated
accordingly (6, 7). There is no change to the keys in the locks (9).

A guest can enter a room so long as he or she is holding a card (12)
whose first or second key matches the current key of the room’s lock. If
the second key matches, the lock’s key remains the same (14); if the first
key matches, the lock is recoded with the second key (15). No chang-
es are made to the front desk’s records (17) or to the sets of keys that
guests hold (18).

To shorten the example, no operation is given for checking out. The
use of a key by a new guest should invalidate previously issued keys, so

1 module hotel
2 open util/ordering [Time]

3 sig Key, Time {}
4 sig Card {
5 fst, snd: Key
6 }
7 sig Room {
8 key: Key one -> Time
9 }
10 one sig Desk {
11 issued: Key -> Time,
12 prev: (Room -> lone Key) -> Time
13 }
14 sig Guest {
15 cards: Card -> Time
16 }

17 pred init (t: Time) {
18 Desk.prev.t = key.t
19 no issued.t and no cards.t
20 }

fig. e.1 Hotel locking example, in Alloy: part 1.

appendix e: alternative approaches �01

1 pred checkin (t, t’: Time, r: Room, g: Guest) {
2 some c: Card {
3 c.fst = r.(Desk.prev.t)
4 c.snd not in Desk.issued.t
5 cards.t’ = cards.t + g -> c
6 Desk.issued.t’ = Desk.issued.t + c.snd
7 Desk.prev.t’ = Desk.prev.t ++ r -> c.snd
8 }
9 key.t = key.t’
10 }

11 pred enter (t, t’: Time, r: Room, g: Guest) {
12 some c: g.cards.t |
13 let k = r.key.t {
14 c.snd = k and key.t’ = key.t
15 or c.fst = k and key.t’ = key.t ++ r -> c.snd
16 }
17 issued.t = issued.t’ and prev.t = prev.t’
18 cards.t = cards.t’
19 }

20 fact Traces {
21 init (first())
22 all t: Time - last () |
23 some g: Guest, r: Room |
24 checkin (t, next(t), r, g) or enter (t, next(t), r, g)
25 }

26 assert NoIntruder {{
27 no t1: Time, disj g, g’: Guest, r: Room |
28 let t2 = next(t1), t3 = next(t2), t4 = next (t3) {
29 enter (t1, t2, r, g)
30 enter (t2, t3, r, g’)
31 enter (t3, t4, r, g)
32 }
33 }
34 check NoIntruder for 3 but 6 Time, 1 Room, 2 Guest

fig. e.2 Hotel locking example, in Alloy: part 2.

�0� appendix e: alternative approaches

whenever a guest checks in, the previous occupant is implicitly checked
out.

If you’re reading this appendix before you’ve read the rest of the book, a
few comments about Alloy might be helpful:

· A signature introduces a set, and some relations that have that set
as their first column. For example, the declaration for sig Card intro-
duces the set Card of key cards, and two relations, fst and snd, from
Card to Key.

· Multiplicities of relations are sometimes implicit, as in the declara-
tion of fst and snd, each of which maps a Card to one Key, and some-
times explicit using keywords, as in the declaration of key in Room,
which for a given room, maps one element of Key to each element of
Time. The keyword lone means at most one (and can be read “less than
or equal to one”), so the declaration of prev says that, for a given Desk,
and at a given Time, each Room is associated with at most one Key.

· The dot operator is relational join. Scalars are treated semantically
as singleton sets, and sets are treated as unary relations. Thus cards.t
is the relation that associates elements of Guest with elements of Card
at time t, c.fst is the first key of card c, and r.key.t is the current key of
room r at time t.

· The arrow operator -> is a cartesian product, and is used in the op-
erations to form tuples; + is union; - is difference; and ++ is relational
override.

Importing the built-in ordering module (fig. E.1, line 2) introduces a to-
tal ordering on time steps, the elements of the signature Time. The Traces
fact (fig. E.2, line 20) constrains the ordering so that the initialization
condition holds in the first state, and so that any state (except the last)
and its successor are related by either the checkin or the enter operation.

The assertion (26) claims that three enter events cannot occur in se-
quence for the same room, with the intervening one performed by one
guest, and the first and third by another. In other words, two guests
can’t use the same room at the same time.

The check command for this assertion instructs the analyzer to consider
all traces involving 3 cards, 3 keys, 6 time instants, one room and two
guests. Executing it produces a counterexample trace in 2 seconds (on a
PowerMac G5), consisting of the following steps (shown graphically in
the visualizer’s output of fig. E.3):

appendix e: alternative approaches �0�

· Initially, the room Room0 holds key Key0 in its lock, and the desk asso-
ciates the room with the key, but holds no record of previously issued
keys. Note that the room has been marked with the label NoIntruder_r:
it will be the witness to the violation of the assertion NoIntruder, cor-
responding to the quantified variable r.

· In the second state, following a checkin, Guest0 has acquired a card
whose first and second keys are Key0 and Key1 respectively, and the
desk has recorded Key0 as issued. Note that the guest has been la-
beled NoIntruder_g, indicating that this guest will be the witness play-
ing the role of the variable g in the assertion.

· In the third state, following another checkin, a second guest, Guest1,
has acquired a card whose first and second keys are Key1 and Key0 re-
spectively—the same keys as Guest0, but in a different order—and the
desk has recorded Key1 as issued. This new guest has been marked
with the label NoIntruder_g’, indicating that it will be the witness play-
ing the role of the variable g’ in the assertion—the intruder.

· In the fourth state, the first entry has occurred—of Guest0—and the
room key has been changed to Key1.

· In the fifth state, the second, illegal, entry has occurred—of Guest1—
and the room key has been changed back to Key0.

· In the sixth and final state, the third entry has occurred—of Guest0
again—and the room key has been changed back to Key1.

The fault lies in the initial condition. Because Key0, the initial key of
Room0, was not recorded as having been issued, it was possible to issue
it twice, thus setting up the cycle. The keys already in the locks should
have been recorded as issued initially:

pred init (t: Time) {
 Desk.prev.t = key.t
 Desk.issued.t = Room.key.t and no cards.t
 }

With this change, the analysis exhausts the entire space without finding
a counterexample. For greater confidence, we can increase the scope.
Extending the scope to 4 keys and cards, 7 time instants, two guests and
one room

check NoIntruder for 4 but 7 Time, 2 Guest, 1 Room

reveals another counterexample, in which a guest checks in twice, with
another guest checking in between the two. These two guests can then

�0� appendix e: alternative approaches

fig. e.3 Counterexample to assertion of fig. E.2. Each panel corresponds to a state;
execution beings in the top left, and continues from the bottom of the left-hand to the

top of the right-hand page.

appendix e: alternative approaches �05

�0� appendix e: alternative approaches

perform the 3 entries in violation of the assertion. We can fix this prob-
lem by only allowing guests to check in if they have returned cards they
used previously. This can be modeled by changing one line of the checkin
operation from

cards.t’ = cards.t + g -> c

to

cards.t’ = cards.t ++ g -> c

where the override operator now causes the guest’s set of cards to be
replaced, rather than augmented, by the new one. Now no counterex-
ample is found, and we can increase the scope yet further for more con-
fidence. With at most 6 cards and keys, 12 time instants, and 3 guests
and rooms

check NoIntruder for 6 but 12 Time, 3 Guest, 3 Room

the space is exhausted in just under a minute. Of course, we have not
proved the assertion to hold, and it is possible (though unlikely) that
there is a counterexample in a larger scope. In a critical setting, it might
make sense to attempt to prove the assertion at this point. Theorem
provers can be applied to all of the approaches discussed here, even
though our focus is on more lightweight tools. B and Z in particular
are supported by readily available proof tools that are tailored to their
particular forms.

E.2	 B

B was designed by Jean-Raymond Abrial, one of the earliest contribu-
tors to Z. It comprises a language (AMN) and a method for obtaining
implementations from abstract models by stepwise refinement. Start-
ing with a very abstract machine, details are added one layer at a time,
until a machine is obtained that can be translated directly into code. If
each refinement step is valid, the resulting code is guaranteed to meet
the top-level specification.

B is aimed primarily at the development of critical systems, and has
been applied on a number of industrial projects. Its best known applica-
tion to date was in a braking system for the Paris Metro.

The standard reference is Abrial’s book [1]. More introductory texts are
available [61, 76, 46], as well as a collection of case studies [62].

appendix e: alternative approaches �0�

E.2.1	 Modeling	Notions	of	B
B’s specification language, Abstract Machine Notation (AMN), reveals
its focus in its name: a system is viewed (as in VDM and Z) as a state
machine with operations over a global state. A model consists of a series
of set declarations (akin to Alloy’s signatures or Z’s given sets); declara-
tions of state components (called “variables”); an invariant on the state;
an initialization condition; and a collection of operations.

State components are structured with sets and relations, as in Z; unlike
in Alloy, higher-order structures are permitted. AMN does not separate
type constraints from other, more expressive, invariants, so type check-
ing has a heuristic flavor.

As in VDM, the precondition of an operation is explicit. In contrast
to all the other approaches, the postcondition is not given as a logical
formula, but as a collection of substitutions. A substitution is like an
assignment statement, and can change the entire value of a state vari-
able or update the value of a relation at a particular point. To partially
constrain a state variable, one can assign to it an arbitrary value drawn
from a set characterized by a formula.

The rationale for this style of specification is that it makes theorem
proving easier: in manipulating operations syntactically, the postcondi-
tion can be treated literally as a substitution. The more operational style
is also more familiar to programmers, and it makes more explicit the
presence of non-determinism. Being programmatic in style, it is also
more readily converted into an imperative program. The drawback is
less flexibility in comparison to the other languages, and less support
for incrementality: you have to give a substitution for every state vari-
able (where, in Alloy for example, you can simulate an operation when
constraints have been written for only some of the state components).

E.2.2	 Sample	Model	in	B
A version of the hotel locking model in B is shown in 3 figures: the top-
level abstract machine in fig. E.4, and a refinement in figs. E.5 and E.6.

The abstract model (fig. E.4) has only a single state component—the
room occupancy roster—which is updated by the Checkin operation, and
guards the Enter operation. The special symbol +-> indicates a partial
function; B and Z use a collection of special arrows in place of the mul-
tiplicity markings of Alloy and OCL.

�0� appendix e: alternative approaches

B makes a distinction between the precondition of an operation and its
guard. When invoked in a state in which the guard is false, an operation
blocks; in contrast, an operation should never be invoked unless the
precondition holds (and if invoked, any outcome may result). For the
Enter operation, for example, the precondition says that the arguments
should be a guest and a room; the guard says that the operation cannot
proceed unless the guest is in the occupancy roster for that room.

1 MACHINE hotel1

2 SETS
3 GUEST = {g1,g2} ;
4 ROOM = {r1,r2}

5 VARIABLES alloc

6 INVARIANT
7 alloc : ROOM +-> GUEST

8 INITIALISATION alloc := {}

9 OPERATIONS

10 CheckIn(g,r) =
11 PRE
12 g:GUEST & r:ROOM
13 THEN
14 SELECT
15 r /: dom(alloc)
16 THEN
17 alloc(r) := g
18 END
19 END ;

20 Enter(g,r) =
21 PRE g:GUEST & r:ROOM THEN
22 SELECT
23 r |->g : alloc
24 THEN
25 skip
26 END
27 END ;

fig. e.4 B model: most abstract machine.

appendix e: alternative approaches �0�

The basic sets are given particular values in this specification to set
bounds for analysis with the ProB tool. This is just like an Alloy scope
specification, but is set globally rather than on a command-by-com-
mand basis.

The refined model in figs. E.5 and E.6 has exactly the same structure.
The claim that this model, hotel2, refines the more abstract one, hotel1, is
an assertion to be checked by a tool.

In this model, the state is more complex, since it includes the mecha-
nism with cards and locks. The state is described as a collection of sets
and relations, as in Alloy, OCL and Z. The expression POW(e) denotes
the powerset of e—the set of sets of elements drawn from e—and the
colon in each declaration denotes set membership. A declaration such
as

key: POW(KEY)

is thus equivalent to the Alloy declaration

key: set KEY

even the right-hand expression is higher-order in B but not in Alloy.
The arrow symbols >-> and –> denote injective and total functions re-
spectively. The constraint of line 13 says that the first and second keys
of a given card must be distinct. Including this as an invariant means
that the operations are expected to preserve it. Although semantically
this invariant is treated no differently from the declarations of ckey1 and
ckey2 that precede it, type checking distinguishes them, and will fail if
their order is reversed, with the invariant placed before the declara-
tions.

Declaring ckey1 and ckey2 as state variables means that an operation can
be defined that changes the keys on a card. They might have been de-
clared instead as constants (as in the Alloy, OCL, and VDM models),
which would rule this out.

The initialization condition illustrates non-determinism. The ANY clause
binds an arbitrary set of keys to ks, and an arbitrary function from rooms
to keys to f; the arrow symbol in the declaration of this function makes
it injective, ensuring that no key is assigned to more than one room. The
body of the clause assigns the set of keys to key, and the function to lock
and prev. Note how the assignment of the non-deterministically chosen
f to these two variables has the same effect as the equality

Desk.prev.t = key.t

�10 appendix e: alternative approaches

in the Alloy model, ensuring that the room-key record at the front desk
matches the keys of the actual locks, whatever it may be.

In this refined model, the Entry operation is split in two: Enter1 for the
normal case, and Enter2 for the case in which the lock is recoded. In the
other approaches, this is expressed with disjunction; in B, a non-deter-
ministic choice operator could be used to the same effect.

1 REFINEMENT hotel2

2 REFINES hotel1

3 SETS
4 KEY = {k1,k2,k3,k4} ;
5 CARD = {c1,c2,c3}

6 VARIABLES
7 alloc, key, cArd, ckey1, ckey2, lock, prev, guest

8 INVARIANT
9 key : POW(KEY) &
10 cArd : POW(CARD) &
11 ckey1 : cArd >-> key &
12 ckey2 : cArd >-> key &
13 !c.(c: cArd => ckey1(c) /= ckey2(c)) &
14 guest : cArd –> GUEST &
15 lock : ROOM >-> key &
16 prev : ROOM >-> key

17 INITIALISATION
18 ANY ks, f WHERE
19 ks : POW(KEY) &
20 f : ROOM >-> ks
21 THEN
22 key := ks ||
23 lock := f ||
24 prev := f ||
25 cArd, ckey1, ckey2, guest, alloc := {}, {}, {}, {}, {}
26 END
27

fig. e.5 B model: state and initialization for refined machine.

appendix e: alternative approaches �11

1 OPERATIONS

2 CheckIn(g,r) =
3 PRE g:GUEST & r:ROOM THEN
4 ANY c, k WHERE
5 r : ROOM & r /: dom(alloc) &
6 c : CARD & c /: cArd &
7 k : KEY & k /: key
8 THEN
9 ckey1(c) := prev(r) ||
10 ckey2(c) := k ||
11 guest(c) := g ||
12 prev(r) := k ||
13 key := key \/ {k} ||
14 cArd := cArd \/ {c} ||
15 alloc(r) := g
16 END
17 END ;
18
19 Enter1(g,r) =
20 PRE g:GUEST & r:ROOM THEN
21 ANY c, k WHERE
22 c:CARD & k:KEY &
23 c |-> g : guest &
24 ckey1(c) = lock(r)
25 THEN
26 lock(r) := ckey2(c)
27 END
28 END ;
29
30 Enter2(g,r) =
31 PRE g:GUEST & r:ROOM THEN
32 ANY c, k WHERE
33 c:CARD & k:KEY &
34 c |-> g : guest &
35 ckey2(c) = lock(r)
36 THEN
37 skip
38 END
39 END ;

fig. e.6 B model: operations for refined machine.

�1� appendix e: alternative approaches

E.2.3	 Tools	for	B
Two commercial tools are available for B: Atelier-B from Steria, and the
B-Toolkit from B-Core. Both focus on theorem proving and code gen-
eration, but also provide an animator for lightweight analysis.

ProB [49] is a very different tool. It offers very similar functionality to
the Alloy Analyzer; of all the tools associated with these alternative ap-
proaches, it is the only one that can generate counterexamples to asser-
tions fully automatically. B does not have a facility for defining arbitrary
assertions, so ProB focuses on checking the proof obligations that are
generated by invariants and refinement claims. Refinement is checked
over traces rather than inductively over operations, so the user need
not find an inductive invariant. ProB can also check the refinement re-
lationship between a B model and a more abstract description written
in the CSP process algebra.

E.3	 OCL

OCL, the Object Constraint Language, is the constraint language of
UML. It was developed by Jos Warmer and Anneke Klepper, based on
Steve Cook and John Daniels’s Syntropy language [10] and on modeling
work done at IBM. Their book [73] provides an accessible overview. As
part of UML, the language is an Object Management Group standard;
the most recent specification is available online [53].

The early design of OCL placed less emphasis on precise semantics than
the other approaches. Many researchers, in particular those associated
with the Precise UML Group, worked to produce a formal semantics for
OCL, but since the language was already standardized, it was too late to
eliminate its complexities. So although OCL was designed in the hope
that it would be simpler than languages such as VDM and Z, it actually
ended up more complicated.

Our discussion is based on a variant of OCL designed by Mark Rich-
ters and Martin Gogolla [59, 58]. It has a formal semantics; a type sys-
tem that supports subtyping; and a powerful animator and testing tool
called USE.

When OCL was brought into the UML standard, it was viewed as an
annotation language for UML class diagrams, so it was not given its
own textual notation for declarations. This means that an OCL model,

appendix e: alternative approaches �1�

according to the standard, would have to include a UML diagram for
the declarations of classes and relations—an inconvenience, especially
for small models. The USE variant of OCL includes a textual notation
for declarations, and thus overcomes this problem.

E.3.1	 Basic	Notions	of	OCL
An OCL model consists of a description of a state space (given in terms
of classes, attributes and associations), some invariants, and a collection
of operations. As in VDM, operations separate pre- and postconditions,
and include invariants implicitly. In addition, however, OCL allows ar-
bitrary predicates to be packaged, and in this respect, it has more in
common with Alloy; the idiom used in the Alloy model, with explicit
time instants, for example, can be cast fairly easily into OCL.

Like Alloy, OCL models the state with a collection of sets and relations.
Surprisingly, however, a something-to-many relation, mapping an atom
to more than one atom, is treated semantically not as a flat relation but
rather as a function to sets, resulting in a model whose style is more
reminiscent of VDM than of Alloy or Z. This gives a strong direction-
ality to the relations of OCL; they cannot be traversed backwards. An
association is thus accessed not as a single relation, but as a pair of re-
lations derived from it called roles, one for navigation in each direction.

The multiplicity of a role is part of its type. Navigation is function ap-
plication, and results in a set or scalar depending on the multiplicity (in
contrast to Alloy, in which navigation is relational image, and always
yields a set). The advantage of this is that the type checker can detect
errors in which a navigation assumes a role to have a multiplicity in-
compatible with its declaration. The disadvantages are that multiplici-
ties behave differently from explicit constraints that say the same thing;
changing a role’s multiplicities alters its type, and may require compen-
sating changes where it is used; and conversions are needed between
sets and scalars.

OCL has no transitive closure operator. To allow a multi-step naviga-
tion through a relation, therefore, it allows predicates and functions to
be defined recursively. This brings useful expressiveness, but it has a
downside: predicates no longer have a simple logical interpretation, but
require a least fixpoint semantics. As a result, an OCL tool can’t use a
constraint solver in the style of the Alloy Analyzer or ProB, since it will
generate spurious cases corresponding to non-minimal solutions.

�1� appendix e: alternative approaches

In two respects, OCL is very different from the other approaches. First,
its syntax stacks variable bindings in the style of Smalltalk, and treats
the first argument of operators as privileged. Appropriately, it has a no-
tion of context within which references to an archetypal member of a
class are implicit. Second, like an object-oriented programming lan-
guage, OCL distinguishes a class from the set of objects associated with
it. This makes reflection possible, which is useful for metamodeling, but
it also complicates the language.

The underlying datatypes of OCL are defined in library modules, which
play a similar role in OCL to the mathematical toolkit in Z. In contrast,
the basic types are built into the language in Alloy, B and VDM. This
decision has some subtle implications for the type system. For example,
unlike Alloy’s type checker, a type checker for OCL cannot exploit the
meaning of the set and relational operators, but must rely on their de-
clared type alone.

An expression’s value must belong to one of the library types. Since re-
lations are not included, this means that, in contrast to the other lan-
guages, an expression cannot denote a relation. This does not reduce
the expressiveness of the language, since arbitrary quantifications are
allowed, but it does make some constraints more verbose.

E.3.2	 Sample	Model	in	OCL
An OCL version of the hotel locking model is shown in figs. E.7 and
E.8.

The first figure, E.7, shows the declarations of classes and associations.
The class Desk is included to provide a context for the state component
representing the set of issued keys. As in the Alloy model, there is only
one instance of Desk; this constraint is recorded as the invariant oneDesk.
Note the use of the expression Desk.allInstances, meaning the set of in-
stances of the class Desk; it would be illegal to write

Desk->size=1

instead because Desk denotes a class and not a set.

An association is a relation, and it may have any arity, as indicated by the
number of roles: fst and snd have two roles and are binary, for example,
whereas prev is ternary. This model follows the convention that a role of
an association a that maps to instances of class c is named c4a.

For a binary association, the two roles are just binary relations that are
transposes of one another. For a ternary relation, however, a role de-

appendix e: alternative approaches �15

notes a pair of binary relations, one for each possible source of a navi-
gation (there being two other classes involved); and, in general, for an
association with k roles, each role denotes k-1 distinct binary relations,
with the appropriate relation selected according to the context.

Given a desk d, for example, the expression d.key4prev denotes the set of
keys held at desk d as previous keys of some room; likewise d.room4prev
denote the sets of rooms that have previous keys associated with them
at desk d.

Roles give only a simplified view of higher-arity relations, which is not
fully expressive. If there were more than one desk, one could not write
an expression like Alloy’s d.prev[r] for the previous key of room r at desk
d. Fortunately, there is only a single desk, so the problem does not arise.
When a truly higher-arity relation is needed in OCL, a different ap-
proach must be used, in which the relation is represented explicitly as a
set of tuples. Richters explains this in section 4.9.2 of his thesis [58].

The second figure, E.8, shows the declaration of the class Room, and the
definitions of the operations for checking in and entering a room. The
operations are declared within the context of the Room class; this gives
each an implicit argument that can be referred to by the keyword self,
and which, unlike Alloy’s this, can be omitted. The expression

self.key4prev

on line 5, for example, denoting the previous key associated with the
room in context, could be written instead as just key4prev—a shorthand
not available in Alloy, since it would denote the relation as a whole.

Each operation has preconditions and postconditions that can be bro-
ken into separate, named clauses to allow a tool to give feedback about
which clause is violated when checking a test case against the model. In
a postcondition, roles and attributes that refer to values in the prestate
are marked with the suffix @pre. The constraint

g.card4cards = g.card4cards@pre->including(c) and

for example, says that the set of cards associated with the guest g in the
poststate is the set in the prestate with the card c added.

The constraint

self.key4prev=Set{c.key4snd}

on line 20 in the postcondition of checkin says that, in the poststate, the
previous key is recorded to be the second key of the card. The Set key-

�1� appendix e: alternative approaches

1 model hotel

2 class Key end
3 class Card end
4 class Guest end

5 class Desk end
6 constraints
7 context Desk inv oneDesk: Desk.allInstances->size=1

8 association fst between
9 Card [*] role card4fst
10 Key [1] role key4fst
11 end

12 association snd between
13 Card [*] role card4snd
14 Key [1] role key4snd
15 end

16 association key between
17 Room [*] role room4key
18 Key [1] role key4key
19 end

20 association prev between
21 Desk [*] role desk4prev
22 Room [*] role room4prev
23 Key [0..1] role key4prev
24 end

25 association issued between
26 Desk [*] role desk4issued
27 Key [*] role key4issued
28 end

29 association cards between
30 Guest [*] role guest4cards
31 Card [*] role card4cards
32 end

fig. e.7 OCL model: state declaration.

appendix e: alternative approaches �1�

1 class Room
2 operations

3 init()
4 post prev_eq_key:
5 self.key4prev = Set{self.key4key}
6 post issued_eq_room_key:
7 Desk.allInstances.key4issued = Room.allInstances.key4key
8 post no_cards:
9 Card.allInstances.guest4cards->isEmpty

10 checkin(g:Guest)
11 pre key_exists:
12 Key.allInstances->exists(k| Desk.allInstances.key4issued->excludes(k))
13 post fst_snd_ok_cards_issued_prev_updated:
14 Card.allInstances->exists(c|
15 self.key4prev->includes(c.key4fst) and
16 Desk.allInstances.key4issued->excludes(c.key4snd) and
17 g.card4cards = g.card4cards@pre->including(c) and
18 Desk.allInstances->forAll(d|
19 d.key4issued = d.key4issued@pre->including(c.key4snd)) and
20 self.key4prev = Set{c.key4snd})
21 post key_unchanged:
22 self.key4key@pre = self.key4key

23 enter(g:Guest)
24 pre key_matches:
25 g.card4cards->exists(c|
26 let k = key4key in c.key4snd = k or c.key4fst = k
27 post key_updated:
28 g.card4cards->exists(c|
29 let k = key4key in
30 (c.key4snd = k and self.key4key = self.key4key@pre) or
31 (c.key4fst = k and self.key4key = c.key4snd))
32 post issued_unchanged:
33 Desk.allInstances->forAll(d|d.key4issued@pre = d.key4issued)
34 post prev_unchanged:
35 Room.allInstances->forAll(r|
36 self.desk4prev@pre = self.desk4prev
37 and self.key4prev@pre = self.key4prev)
38 post cards_unchanged:
39 Card.allInstances->forAll(c|c.guest4cards@pre = c.guest4cards)

40 end

fig. e.8 OCL model: operations.

�1� appendix e: alternative approaches

word lifts the element c.key4snd to a set. You might think it’s not nec-
essary here, since the roles key4prev and key4snd have multiplicities of
[0..1] and [1] respectively, which are type compatible. For a ternary re-
lation, however, the multiplicity of a role r does not indicate the size of
the set that x.r might represent. Rather, it indicates how many instances
of that type are associated with a combination of instances of the other
types. In this case, if there were multiple desks, self.key4prev might con-
tain more than one key, despite the multiplicity, so any value equated to
it must be a set and not a scalar.

E.3.3	 Tools	for	OCL
Many tools are available for OCL. Some, such as Octopus (from Klasse
Objecten, the company founded by Anneke Kleppe), are standalone
tools; others are components in larger tools for model-driven devel-
opment, such as the OCL component of Borland’s Together Designer.
Typical features are syntax and type checking, interpretation of OCL
constraints over test cases, and generation of code in Java, SQL, etc,
from OCL expressions.

Fewer tools support design-time analysis. The most powerful in this
class seems to be the USE tool from the University of Bremen [71]. It
offers an environment in which a modeler can construct test cases and
evaluate OCL expressions and constraints over them. Recently, a facil-
ity for enumerating snapshots with user-provided generators has been
added [18], which allows an exhaustive search over a finite space of cas-
es in the style of Alloy. Its user interface integrates OCL with the graphi-
cal object model of UML, supporting visual editing of declarations and
diagrammatic display of snapshots and executions.

With the USE tool, Martin Gogolla was able to simulate scenarios and
uncover flaws, including the initialization error in the first variant of the
Alloy model.

E.4	 VDM

VDM stands for the “Vienna Development Method,” so called because
it grew out of work at IBM’s Vienna Laboratory on programming lan-
guage definition in the 1970’s. The method, developed by Cliff Jones and
Dines Bjørner, comprises a specification language and an approach to
refining specifications into code. Many of the basic principles and ideas
of logic-based specification first appeared in VDM.

appendix e: alternative approaches �1�

Nowadays, the term “VDM” usually refers to the language, for which
the classic reference is Jones’s book [41]. The latest version of the lan-
guage, VDM-SL (the VDM Specification Language), was standardized
by ISO in the 1990’s [47]; it has two syntaxes, one ASCII-based (used by
most VDM tools), and one using special mathematical symbols.

VDM has been used in a variety of industrial settings; recent applica-
tions have included the development of electronic trading systems, se-
cure smart cards and the Dutch flower auction system.

Two recent books explain the process of modeling in VDM; the first
[16] uses the standardized language, VDM-SL, and the second [17] uses
VDM++, an extension that includes object-oriented features and con-
currency. Both books include case studies, and stress the use of light-
weight tool technology for aiding dialog between engineers and domain
experts. A paper by Jones discusses the rationale behind the design of
VDM [42].

E.4.1	 Basic	Notions	of	VDM
A VDM specification describes a state machine comprising a set of
states and a collection of operations. The states are given by a top-level
declaration and auxiliary declarations to introduce any composite types
that it uses. Each declaration can be accompanied by an invariant.

Operations have separate pre- and postconditions. Each operation
must be implementable, meaning that the postcondition admits at least
one poststate for each prestate satisfying the precondition. If an opera-
tion is written in an explicit style (that is, with a postcondition consist-
ing of assignments to poststate components), it will be implementable
by construction. The invariants, as in Alloy, OCL and Z, are implicitly
included in the pre- and postconditions. Explicit operations must be
preserve invariants.

The pre- and postcondition of one operation can be used in another by
operation quotation, which treats the operation much like a pair of Al-
loy predicates. Validation conjectures play the role of Alloy’s assertions,
and are formulated in a tool-specific language extension, rather than in
the VDM language itself.

In contrast to Alloy, B, OCL and Z (and in common with languages
aimed more at describing code interfaces, such as JML [48] and the
Larch interface languages [23]), VDM has frame conditions indicating
which state variables may be read or written by an operation. A frame
condition can make an operation much more succinct (since there is

��0 appendix e: alternative approaches

no need to mention components that don’t change), and may make it
easier to read at a glance. The downside is that frame conditions assume
a more restrictive form of specification than languages such as Alloy
and Z permit; you can’t, for example, add redundant components to the
state that are defined in terms of other components without changing
all the operations.

E.4.2	 Sample	Model	in	VDM
A VDM version of the hotel locking model is shown in two parts: the
type declarations in fig. E.9, and the operations in fig. E.10.

The type declarations begin with the declaration of Key, Room and Guest
as “token” types, meaning that they denote sets of uninterpreted atoms.
In contrast, Card and Desk are declared as record types. The special type
Hotel corresponding to the global state is also a record type. Each type
may be followed by an invariant; that of Desk (line 11), for example, says
that the set of rooms that have a previous key associated with them is a
subset of the set of rooms for which keys have been issued.

Alloy, in contrast, has no composite types (except for relations). The use
of record types has benefits and drawbacks. The primary benefit is that
a constructor can be used to create a fresh value (as in line 8), where Al-
loy requires a set comprehension or existential quantifier (as in line 2 of
fig. E.2). The drawbacks are extra notation (note VDM’s dot in c.fst but
the brackets in locks(r)) and the problems they create for analysis.

Records can often be represented with signatures in Alloy, but the lack
of constructors lies at the heart of the unbounded universals problem
described in section 5.3. A record has no identity distinct from its value,
so the VDM model does not distinguish two cards held by different
guests that happen to have the same keys.

The more general, higher-order nature of VDM can be seen in the state
invariant on line 16. The formula

dunion {{c.fst, c.snd} | c in set dunion rng h.guests}
 subset h.desk.issued

says that the first and second keys on cards held by guests must be re-
corded as issued at the desk. Because the expression h.guests is a func-
tion from guests to sets of cards, its range, rng h.guests, is a set of sets,
which must be flattened by taking a distributed union before determin-
ing whether card c belongs. In Alloy, sets of sets are not expressible, and
this constraint would be written instead as

appendix e: alternative approaches ��1

all t: Time | Guest.cards.t.(fst + snd) in Desk.issued.t

The time variable t plays the role of the state variable h in the VDM
specification. Its placement is an artifact of the idiom chosen, and it
would precede rather than follow the field names if the state were mod-
eled as a signature instead, as in the memory or media asset examples
of chapter 6.

An operation has a listing of arguments and their types, frame condi-
tions, a precondition and a postcondition. Note how frame conditions
shorten their associated postcondition; in Enter, for example, because
only the locks components is writeable, there is no need for equalities
on the other components, as in lines 17 and 18 of the Alloy model of
fig. E.2.

The explicit precondition makes it easier to see when an operation ap-
plies, but it can make the operation more verbose: note how the pre-
condition of Enter (line 17) is repeated in the postcondition, since the
existential quantifier cannot span both.

VDM’s pre- and postconditions are just logical formulas, like the body
of an Alloy predicate. Unlike Alloy, and like the other approaches (al-
though to a lesser extent Z), VDM assumes a particular state machine
idiom, and provides special syntax to support it. The state declaration,
unlike the other type declarations, defines a mutable structure, whose
components have separate values in the pre- and poststate of an opera-
tion. The values of a component c in the pre- and poststates are referred
to as c~ and c respectively. The special symbol & separates a quantifier’s
binding from its body.

This is convenient but less flexible than Alloy’s approach. All mutations
are confined to the top-level components of the state; you could not, for
example, make cards mutable in order to model modifications to exist-
ing cards by hackers (as you could in Alloy by adding a time column
to the relations of Card). VDM++, however, allows all structures to be
mutable.

VDM distinguishes sets from relations. So where Alloy would use the
single operator + for all unions, VDM uses union on sets and munion
on maps. Being higher-order, it requires set former brackets to distin-
guish maps from tuples and sets from their elements. The initialization
condition on line 21, for example, equates the range of the mapping
from guests to sets of cards to {{}}—the set containing just the empty
set—and writing {} here instead would mean something different. Simi-

��� appendix e: alternative approaches

larly, the expressions used to extend the maps guests and locks require set
brackets for one (as in {r |-> new_k}) but not the other ({g |-> {new_c}}).

To apply an animator (such as that of the VDMTools) to an operation, it
must be written in an explicit form. An example, for the Checkin opera-
tion, is shown in fig. E.11. The existential quantifier has been replaced
by a let statement; the constraints of the postcondition have been re-
placed by assignments; and the frame condition is no longer necessary.
This notation is very similar to B.

1 types
2 Key = token;
3 Room = token;
4 Guest = token;

5 Card ::
6 fst : Key
7 snd : Key;
8 Desk ::
9 issued : set of Key
10 prev : map Room to Key
11 inv d == rng d.prev subset d.issued;

12 state Hotel of
13 desk : Desk
14 locks : map Room to Key
15 guests : map Guest to set of Card
16 inv h ==
17 dom h.desk.prev subset dom h.locks and
18 dunion {{c.fst, c.snd} | c in set dunion rng h.guests}
19 subset h.desk.issued
20 init h == h.desk.issued = rng h.locks and
21 h.desk.prev = h.locks and rng h.guests = {{}}
22 end

fig. e.9 VDM model: type declarations.

appendix e: alternative approaches ���

1 operations
2 CheckIn(g:Guest,r:Room)
3 ext wr desk : Desk
4 wr guests : map Guest to set of Card
5 pre r in set dom desk.prev
6 post exists new_k:Key &
7 new_k not in set desk~.issued and
8 let new_c = mk_Card(desk~.prev(r),new_k) in
9 desk.issued = desk~.issued union {new_k} and
10 desk.prev = desk~.prev ++ {r |-> new_k} and
11 if g in set dom guests
12 then guests = guests~ ++ {g |-> guests~(g) union {new_c}}
13 else guests = guests~ munion {g |-> {new_c}};

14 Enter(r:Room,g:Guest)
15 ext wr locks : map Room to Key
16 rd guests : map Guest to set of Card
17 pre r in set dom locks and g in set dom guests and
18 exists c in set guests(g) & c.fst = locks(r) or c.snd = locks(r)
19 post exists c in set guests(g) &
20 c.fst = locks(r) and locks = locks~ ++ {r |-> c.snd} or
21 c.snd = locks(r) and locks = locks~;

fig. e.10 VDM model: operations.

1 CheckInExpl: Guest * Room ==> ()
2 CheckInExpl(g,r) ==
3 let new_k:Key be st new_k not in set desk.issued in
4 let new_c = mk_Card(desk.prev(r),new_k) in (
5 desk.issued := desk.issued union {new_k};
6 desk.prev := desk.prev ++ {r |-> new_k};
7 guests := if g in set dom guests
8 then guests ++ {g |-> guests(g) union {new_c}}
9 else guests munion {g |-> {new_c}}
10)
11 pre r in set dom desk.prev;

fig. e.11 VDM model: operations.

��� appendix e: alternative approaches

E.4.3	 Tools	for	VDM
Under the guidance of Peter Gorm Larsen, IFAD—a Danish company
that offered VDM consulting in the 1990’s—developed VDMTools, a
toolkit for both VDM-SL and VDM++. It included a type checker and
theorem prover, and, for an executable subset of VDM, a facility for
simulating and testing specifications, and a code generator. The tool-
kit is now owned by CSK Corporation of Japan. New tool support for
VDM++ is being developed under the Overture open source initiative.

E.5	 Z

Z was developed at Oxford University in the 1980’s. It has been very
influential in education and research, and has been applied successfully
on several large projects, notably by Oxford University and IBM on the
CICS system, in a series of projects by Praxis Critical Systems, and to
the security verification of the Mondex electronic purse developed by
NatWest Bank (the first ever product certified to ITSEC Level 6) [69,
68]. Z’s clean and simple semantic foundation was an inspiration for the
design of Alloy.

Although the language has been standardized by ISO [30], the version
described in Mike Spivey’s book [65] continues to be the most popular.
Many books have been written about Z, including textbooks [40, 56, 74,
75], case study collections [26], and a guide to style [3].

E.5.1	 Basic	Notions	of	Z
Z, like Alloy, is at heart just a logic, augmented with some syntactic
constructs to make it easy to describe software abstractions. In Al-
loy, these constructs are the signature, for packaging declarations, and
facts/predicates/functions for packaging constraints. In Z, the same
construct—the schema is used both to package declarations and con-
straints. The language of schemas, called the schema calculus, is rich
enough to support a wide variety of idioms.

In practice, though, a particular idiom—called variously the “Oxford
style,” the “IBM style,” and the “established strategy” [3]—has been ad-
opted in almost all Z specifications since the earliest days. A collection
of syntactic conventions have grown around it, and have become a de
facto part of the language itself. The operator for combining operations
by sequential composition, for example, assumes the use of this idiom;
without it, the operator will not have the expected meaning.

appendix e: alternative approaches ��5

Z, unlike B, does not have a built-in notion of refinement, and indeed
many Z users view it as a system modeling language, and have no intent
to prove conformance of their code to the model. There is, however, a
well-established theory of refinement for Z, and the language is well-
suited to developments by stepwise refinement. Woodcock’s book [74]
is an accessible introduction to this approach.

The sample model shown here is the first, most abstract, model in a
development by refinement. Like the abstract B model of fig. E.4, it de-
termines entry to the room by examining the room roster; in a subse-
quent refinement (not shown here), entry is determined by keys and
locks alone. The abstract Z model does not, however, omit mention of
keys and locks entirely: the recoding key on the card is selected on en-
try (rather than when checking in). The refinement will move this non-
deterministic choice backwards in time to the checkin, with the same
justification used for the example of section 6.4.6.

A Z specification is built as a series of schema declarations. A decla-
ration has two parts: a series of variable declarations, and a predicate
constraining them. When a reference is made to a previously declared
scheme, both its variable declarations and predicate are incorporated
implicitly. A schema representing state typically builds on previous
state schemas by adding new components and constraining the state
further with additional invariants. A schema representing an operation
may incorporate state schemas for the pre- and poststates, or it may
extend a previous operation schema, adding constraints to make its be-
haviour more specific.

Because incorporating a schema brings the variables it declares into
scope, there is often no explicit declaration for a variable that appears
in a schema’s predicate. As a result, Z specifications can be very suc-
cinct—sometimes mysteriously so. Exactly the same power, with the
same potential for succinctness and obscurity, is found in the inheri-
tance mechanisms of object-oriented programming languages, and in
Alloy’s signature extension mechanism (which was, incidentally, de-
signed explicitly to support schema-style structuring).

In the Oxford style, state invariants are declared with the state declara-
tions and are thus incorporated implicitly into operations, as in VDM,
and in marked contrast to B, where invariants must be shown to be
preserved by operations. Preconditions of operations are not separated
from postconditions. It is regarded as good style for the precondition
to appear explicitly in the operation schema, but it is not necessary.
In place of the implementability check of VDM, a Z specifier derives

��� appendix e: alternative approaches

a precondition from an operation schema and compares it to the one
expected.

Sets and relations are the predominant datatypes in Z. In this respect,
Z is similar to B—which is not surprising, since B’s inventor, Jean-Ray-
mond Abrial, was one of the early developers of Z (and had worked
before that on database semantics). For both Z and B, sets are seen as
fundamental and relations as derived; Z is so named because of its roots
in ZF (Zermelo-Fraenkel) set theory. Alloy is also based on sets and re-
lations, but its logic is more influenced by the relational formalisms of
Tarski’s calculus [70] and Codd’s relational database model [9], with sets
regarded as a special case of relations.

Like VDM, however, Z does include record types. The same schema
construct that is used syntactically for grouping declarations together
can be used semantically to declare a ‘schema type’, whose values are
bindings of values to field names. Schema types are more powerful than
Alloy’s signatures, because they provide constructors. Unlike signatures,
however, schemas have no subtyping. One schema can be defined as
an extension of another schema, but the types of the two schemas are
unrelated. For example, if you declared a schema for a file system ob-
ject, and extended it into two other schemas corresponding to files and
folders, you would not be able to insert an instance of the file or folder
schema into a set or relation declared over file system objects.

Z has a distinctive appearance, with boxes drawn around schemas, and
its own collection of mathematical symbols. Here we use the “horizon-
tal form,” which, although less elegant, can be produced without special
layout tools.

E.5.2	 Sample	Model	in	Z
A Z specification of the hotel locking problem is shown in figs. E.12,
E.13 and E.14.

The first figure (E.12) shows the declaration of the state and initializa-
tion. Guests, keys and rooms are declared as given sets: uninterpreted
sets of atoms that become the basis for type checking. A global variable
initkeys is declared that represents the function associating room locks
with the initial values of their keys. A Msg datatype is declared to repre-
sent the possible outcomes of operations.

Hotel is our first schema declaration. It introduces 3 variables that will
represent the state components of the system: firsttime, a set of rooms;
key, a function from rooms to keys (representing the keys held in their

appendix e: alternative approaches ���

locks in a particular state); and guest, a function from rooms to guests
(representing the occupancy roster). The kind of arrow indicates the
multiplicities: that key is a partial injection, and guest is a partial func-
tion.

This model, because it is the first in a development by refinement, will
describe exactly when an entry should be permitted, and when a lock
should be rekeyed; a later refinement would describe the mechanism
by which entry is determined by checking keys. This explains the first-
time component, which did not appear in the Alloy model, but is used
to mark the set of rooms which, when subsequently entered, should
have their locks recoded (since a new guest will be entering for the first
time).

[Guest, Key, Room]

initkeys: Room ↣ Key;

Msg ::= okay
 | room_already_allocated
 | guest_already_registered
 | room_not_allocated
 | wrong_guest
 | key_not_fresh

Hotel ≙ [
 firsttime: ℙ Room
 key: Room ↣ Key
 guest: Room ↛ Guest
]

InitHotel ≙ [
 Hotel’
 |
 firsttime’ = ∅
 key’ = initkeys
 guest’ = ∅
]

fig. e.12 State and initialization in Z.

��� appendix e: alternative approaches

InitHotel, the second schema, describes the initialization. Unlike Hotel
which included only variable declarations, this schema has both dec-
larations and a predicate. The declarations are those of Hotel, imported

1 Checkin0 ≙ [
2 Δ Hotel
3 g?: Guest
4 r?: Room
5 |
6 r? ∉ dom guest
7 g? ∉ ran guest
8 firsttime’ = firsttime ∪ {r?}
9 key’ = key
10 guest’ = guest ∪ {r? ↦ g?}
11]

12 EnterFst ≙ [
13 Δ Hotel
14 g?: Guest
15 r?: Room
16 k?: Key
17 |
18 r? ∈ firsttime
19 r? ∈ dom guest
20 guest r? = g?
21 k? ∉ ran key
22 firsttime’ = firsttime \ {r?}
23 key’ = key ⊕ {r? ↦ k?}
24 guest’ = guest
25]

26 EnterSnd ≙ [
27 Ξ Hotel
28 g?: Guest
29 r?: Room
30 |
31 r? ∈ dom guest
32 guest r? = g?
33 r? ∉ firsttime
34]

fig. e.13 Checkin and Enter operations in Z.

appendix e: alternative approaches ���

by mentioning the schema’s name. Notice the prime mark appended to
the name. This is called decoration; its effect is to include not exactly
the declarations of Hotel, but versions in which each variable is likewise
primed. These primed variables are used in Z to refer to the values of
state components after execution of an operation (in this case, the ini-
tialization).

A schema predicate is just a constraint, formed by conjoining the con-
straints on each line. Each line’s constraint is a simple mathematical
formula, with the equals sign denoting equality (and not assignment).
So there is no semantic significance to the ordering of the terms in these
equations, and we could reverse each equation without changing its
meaning. This specification has been written, however, in a form that
suggests how it might be executed, with the primed variables on the
left. This allows it to be animated using a tool such as Jaza. The same
rationale explains why the initialization equates keys’ to the previously
declared function initkeys, just as the corresponding component was
initialized in the B model (on line 23 of fig. E.5). A more traditional Z
style would simply not mention keys’, leaving its value unconstrained.

The second figure (E.13) shows the checkin and entry operations for
normal cases; the exceptional cases are described in separate operations
in the next figure. There are three schemas corresponding to checking
in, and two forms of entry—one which recodes the lock, and one which
does not.

The first two, Checkin0 and EnterFst, mention Δ Hotel in their declarations.
This is a schema, defined implicitly by convention, that includes Hotel
and Hotel’, thus introducing standard and primed versions of each state
variable, to represent the state components before and after execution.
The third schema, EnterSnd, mentions Ξ Hotel. This refers to a similar
schema, also including Hotel and Hotel’, but additionally a constraint
equating each state variable to its primed version. Its use, therefore, in-
dicates an operation that has no effect on the state.

Each operation also declares some variables decorated with question
marks. By convention, these represent input arguments; semantically,
they are no different from the variables representing the state compo-
nents. When an operation schema is used elsewhere, these arguments
are bound by a syntactic substitution that replaces every occurrence of
an argument variable in the schema with a variable name from the new
context. In comparison to the explicit parameterization of Alloy, this
can be a bit awkward: an expression cannot be substituted for a variable,
so if no variable already exists for the actual argument, it must be de-

��0 appendix e: alternative approaches

clared with an existential quantifier. On the other hand, when the actual
and formal arguments have the same name, no substitution is necessary
and the resulting text is uncluttered by argument lists.

Z does not distinguish pre- and postconditions syntactically, and there
is no need to make preconditions explicit at all. It is regarded as good
style to list preconditions in full, however, above the constraints of the
postcondition. The precondition of Checkin0, for example, is that r? is
not in the domain of guest, and g? is not in its range—that is, the room
requested is not already occupied, and the guest is not already assigned
to another room. This stylistic guideline is not generally checkable by
simple syntactic means, since the explicit precondition might admit
states for which the postcondition cannot be satisfied, so that the actual
precondition is stronger. A theorem asserting that the operation has the
expected precondition can be formulated. For Checkin0, this theorem is:

Success ≙ [m!: Msg | m! = okay]

EnterRoomNotAllocated ≙ [
 Ξ Hotel
 r?: Room
 m!: Msg
 |
 r? ∉ dom guest
 m! = room_not_allocated
]

EnterWrongGuest ≙ [
 Ξ Hotel
 g?: Guest
 r?: Room
 m!: Msg
 |
 r? ∈ dom guest
 guest r? ≠ g?
 m! = wrong_guest
]

Enter ≙ EnterFst ∧ Success ∨ EnterSnd ∧ Success ∨
 EnterRoomNotAllocated ∨ EnterWrongGuest

fig. e.14 Variant operations in Z.

appendix e: alternative approaches ��1

Theorem preCheckin0
 ∀ Hotel; g?: Guest; r?: Room |
 r? ∉ dom guest ∧ g? ∉ ran guest ∙ pre Checkin0

This kind of theorem is not expressible in Alloy, as explained in section
5.3. Unintentional overconstraint is mitigated instead by simulating the
operation.

The operation predicates are unsurprising. Checkin0, for example, adds
to the guest relation a mapping from r? to g?; EnterFst recodes the lock
by overriding the key relation with a mapping from r? to the new key k?.
Note that, as in Alloy and OCL, a state variable that is unmentioned is
unconstrained, so if a component is unchanged, an explicit equality is
needed (as in line 24).

The third figure, E.14, shows how the behavior of these operations is
augmented to cover exceptional cases. The schema Success simply intro-
duces an output argument m! and equates it to the message okay. The
next two schemas specify the conditions under which an entry should
be regarded as impermissible, because the room has not been allocated
to a guest at all, or because the guest attempting entry is not the legiti-
mate occupant. These conditions are expressed as preconditions, and
are accompanied by postconditions that constrain the value of the mes-
sage accordingly.

Finally, a schema is declared that brings the different cases together: En-
ter is an operation that describes all the scenarios of attempted entry to
a room. Note its assembly using just disjunction and conjunction. This
simplicity is a consequence of operations being no more than logical
formulas. Alloy took this idea from Z, and thus supports the same kind
of structuring.

E.5.3	 Tools	for	Z
Most tool support for Z has focused on theorem proving. The most
widely used proof tools are ProofPower (from Lemma 1 Ltd), and Z/
Eves, a front-end to the Eves theorem prover (from ORA Canada). The
sample model was analyzed with Z/Eves. The tool can calculate precon-
ditions and perform “domain checks” (which ensure that partial func-
tions are never applied outside their domains), as well as performing
general theorem proving. Although many steps in a proof are executed
automatically, complex theorems tend to require guidance from an ex-
perienced user.

��� appendix e: alternative approaches

A number of animators have been built for Z. The sample model was
tested using Jaza [72], an animator developed by Mark Utting at the
University of Waikato. Jaza can execute operations written in an explicit
style, and can do a certain amount of constraint solving over small do-
mains. The entire sample model above can be handled in Jaza. We noted
how the initialization, for example, assigns the global function initkeys
to keys’ rather than leaving it unconstrained; this allows the initializa-
tion to be executed given a value of initkeys by the user. Like the USE
tool and the animator of the VDMTools, Jaza can evaluate expressions,
check given states against invariants and transitions against operations,
and can simulate an execution trace with the user selecting operations
and providing input arguments.

References

[1] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge, UK, Cambridge University Press, 1996.

[2] Sten Agerhold and Peter Gorm Larsen. The IFAD VDM tools: Light-
weight formal methods. In Dieter Hutter, Werner Stephan, Paolo Tra-
verso, Markus Ullmann (eds.), Applied Formal Methods—FM-Trends 98,
International Workshop on Current Trends in Applied Formal Methods,
Boppard, Germany, October 1998. Lecture Notes in Computer Science,
Vol. 1641, Berlin, Springer-Verlag, 1999, pp. 326–329.

[3] Rosalind Barden, Susan Stepney and David Cooper. Z in Practice. Engle-
wood Cliffs, New Jersey, Prentice-Hall, 1995.

[4] Kent Beck. Extreme Programming Explained. Boston, Addison Wesley,
1999.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Rance Cleaveland (ed.),
Tools and Algorithms for Construction and Analysis of Systems, Neth-
erlands, March 1999. Lecture Notes in Computer Science, Vol. 1579,
Berlin, Springer-Verlag, 1999, pp. 193–207.

[6] Egon Börger, Erich Grädel and Yuri Gurevich. The Classical Decision
Problem. Berlin, Springer-Verlag, 1997.

[7] Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame
problem in procedure specifications. IEEE Transactions on Software
Engineering, 21(10):785–798, 1995.

[8] E.J.H. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Communica-
tions of the ACM, 22(5):281–283, 1979.

[9] E. F. Codd. A relational model of data for large shared data banks. Com-
munications of the ACM, 13(6):377-387, 1970.

[10] Steve Cook and John Daniels. Designing Object Systems: Object-Ori-
ented Modelling with Syntropy. Englewood Cliffs, New Jersey, Prentice-
Hall, 1994.

[11] Craig A. Damon, Daniel Jackson and Somesh Jha. Checking relational
specifications with binary decision diagrams. In Proceedings of 4th
ACM SIGSOFT Conference on Foundations of Software Engineering, San
Francisco, CA, October 1996, pp. 70–80.

��� references

[12] Edsger W. Dijkstra. Where is Russell’s paradox?, EWD-923A, May 1985.
Available at http://www.cs.utexas.edu/users/EWD.

[13] Edsger W. Dijkstra. On the Reliability of Mechanisms. In Notes on
Structured Programming, EWD249, Second Edition, April 1970. Avail-
able at http://www.cs.utexas.edu/users/EWD.

[14] Jonathan Edwards, Daniel Jackson, and Emina Torlak. A type system for
object models. In Proceedings of ACM SIGSOFT Conference on Founda-
tions of Software Engineering, Newport Beach, CA, November 2004.

[15] Michael Ernst, Todd Millstein, and Daniel Weld. Automatic SAT-com-
pilation of planning problems. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence, Nagoya, 1997. Morgan
Kaufmann Publishers, 1997.

[16] John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical
Tools and Techniques for Software Development. Cambridge, UK, Cam-
bridge University Press, 1998.

[17] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and
Marcel Verhoef. Validated Designs for Object-Oriented Systems. Berlin,
Springer-Verlag, 2005.

[18] Martin Gogolla, Jörn Bohling, and Mark Richters. Validation of UML
and OCL models by automatic snapshot generation. In Grady Booch,
Perdita Stevens, and Jonathan Whittle (eds.), Proceedings of Sixth Inter-
national Conference on the Unified Modeling Language, San Francisco,
2003. Lecture Notes in Computer Science, Vol. 2863, Berlin, Springer-
Verlag, 2003, pp. 265–279.

[19] Eugene Goldberg and Yakov Novikov. BerkMin: a Fast and Robust SAT-
Solver. In Proceedings of the Conference on Design, Automation and Test
in Europe, Paris, 2002. Washington, DC, IEEE Computer Society, pp.
142–149.

[20] Erich Grädel. Decidable fragments of first-order and fixed-point logic:
from prefix-vocabulary classes to guarded logics. In Proceedings of
Kalmär Workshop on Logic and Computer Science, Szeged, 2003. Avail-
able at http://www-mgi.informatik.rwth-aachen.de/Publications/pub/
graedel/Gr-kalmar03.ps.

[21] John Guttag and James J. Horning. Formal specification as a design tool.
In Proceedings of the Seventh ACM SIGPLAN-SIGACT Symposium on
Principles of Programming, Las Vegas, 1980, pp. 251–261.

[22] John V. Guttag and James J. Horning. Preliminary report on the Larch
Shared Language. Technical Report MIT/LCS/TR-307, MIT Laboratory
for Computer Science, Cambridge, MA, 1983.

references ��5

[23] John V. Guttag and James J. Horning. Introduction to LCL: A Larch/C
interface language. Research Report 74, Digital Equipment Corporation
Systems Research Center, Palo Alto, CA, July 1991. Available at: http://
gatekeeper.research.compaq.com/pub/DEC/SRC/research-reports/abstracts/
src-rr-074.html.

[24] Paul R. Halmos. Problems for Mathematicians, Young and Old. Math-
ematical Association of America, 1991.

[25] David Harel. Algorithmics: The Spirit of Computing. Reading, MA, Addi-
son-Wesley. 1st ed., 1987; 2nd ed., 1992; 3rd ed. (with Yishai Feldman),
2004.

[26] Ian Hayes, editor. Specification Case Studies. London, Prentice Hall
International (UK), 1987.

[27] Eric C.R. Hehner. Bunch theory: a simple set theory for computer sci-
ence. Information Processing Letters, 12(1):26–30, 1981.

[28] C.A.R. Hoare. Proof of correctness of data representations. Acta Infor-
matica. 1:271–281, 1972.

[29] C.A.R. Hoare. The emperor’s old clothes. Communications of the ACM,
24(2):75–83, 1981.

[30] Information technology – Z formal specification notation – Syntax, type
system and semantics. International Standard ISO/IEC 13568, July 2002.

[31] Daniel Jackson. Boolean compilation of relational specifications. Tech-
nical Report MIT-LCS-TR-735, MIT Laboratory for Computer Science,
Cambridge, MA, December 1997.

[32] Daniel Jackson. An intermediate design language and its analysis. In
Proceedings of ACM SIGSOFT Conference on Foundations of Software
Engineering, Lake Buena Vista, FL, November 1998, pp. 121–130.

[33] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology, 11(2):256–290,
2002.

[34] Daniel Jackson, Craig A. Damon, and Somesh Jha. Faster checking of
software specifications. In Proceedings of ACM Conference on Principles
of Programming Languages, St. Petersburg Beach, FL, January 1996, pp.
79–90.

[35] Daniel Jackson and Craig A. Damon. Elements of style: analyzing a soft-
ware design feature with a counterexample detector. IEEE Transactions
on Software Engineering, 22(7):484–495, 1996.

[36] Daniel Jackson, Somesh Jha, and Craig A. Damon. Isomorph-free model
enumeration: a new method for checking relational specifications. ACM

��� references

Transactions on Programming Languages and Systems. 20(2):302–343,
1998.

[37] Daniel Jackson and Jeannette Wing. Lightweight formal methods. In
Hossein Saiedian (ed.), Roundtable contribution to: An invitation to
formal methods, IEEE Computer, 29(4):16–30, 1996.

[38] Michael Jackson. Software Requirements and Specifications: A Lexicon
of Software Practice, Principles and Prejudices. Boston, Addison Wesley,
1995.

[39] Michael Jackson. Problem Frames: Analyzing and Structuring Software
Development Problems. Boston, Addison Wesley Professional, 2000.

[40] Jonathan Jacky. The Way of Z: Practical Programming with Formal
Methods. Cambridge, UK, Cambridge University Press, 1996.

[41] Cliff Jones. Systematic Software Development Using VDM, 2nd ed.,
Englewood Cliffs, New Jersey, Prentice-Hall, 1990.

[42] Cliff B. Jones. Scientific decisions which characterize VDM. In Proceed-
ings of the 1999 World Congress on Formal Methods in the Development
of Computing Systems, Toulouse, France, September 1999. Jeannette
Wing, Jim Woodock, and Jim Davies (eds.), Lecture Notes in Computer
Science, Vol. 1708, Berlin, Springer-Verlag, 1999, pp. 28–47.

[43] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings
of the Tenth European Conference on Artificial Intelligence, Vienna, 1992.
John Wiley & Sons, 1992, pp. 359–363.

[44] Viktor Kuncak and Daniel Jackson. Relational analysis of algebraic
datatypes. In Proceedings of Foundations of Software Engineering, Lis-
bon, September 2005.

[45] Viktor Kuncak and Martin Rinard. Decision procedures for set-valued
fields. In Proceedings of First International Workshop on Abstract Inter-
pretation of Object-Oriented Languages, Paris, 2005.

[46] Kevin Lano and Howard Haughton. Specification in B: An Introduction
using the B Toolkit. London, Imperial College Press, 1996.

[47] P.G. Larsen, B.S. Hansen, H. Brunn, N. Plat, H. Toetenel, D. J. An-
drews, J. Dawes, G. Parkin et al. Information technology – Programming
languages, their environments and system software interfaces – Vienna
Development Method – Specification Language – Part 1: Base language.
International Standard ISO/IEC 13817-1, December 1996.

[48] Gary T. Leavens, Albert L. Baker and Clyde Ruby. JML: a notation for
detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds
(eds.), Behavioral Specifications of Businesses and Systems, Chapter 12,
pp. 175–188, Amsterdam, Kluwer, 1999.

references ���

[49] Michael Leuschel and Michael Butler. ProB: a model checker for B. In
Proceedings of International Symposium of Formal Methods Europe, Pisa,
2003. Lecture Notes in Computer Science, Vol. 2805, Berlin, Springer-
Verlag, 2003, pp. 855–874.

[50] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Berlin, Springer-Verlag, 1992.

[51] John McCarthy. Situations, actions, and causal laws. Technical Report,
Stanford University, Stanford, CA, 1963. Reprinted in Marvin Minsky
(ed.), Semantic Information Processing, Cambridge, MA, MIT Press,
1968.

[52] Stanley Milgram. The small world problem. Psychology Today, 2:60-67,
1967.

[53] Object Management Group. UML 2.0 OCL Specification. OMG Final
Adopted Specification, ptc/03-10-14. October 2003. Available at http://
www.omg.org/docs/ptc/03-10-14.pdf.

[54] Carroll Morgan. Telephone network. In [26], pp. 73–87.

[55] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Salik. 2001.
Chaff: engineering an efficient SAT solver. In Proceedings of the 38th
Conference on Design Automation, Las Vegas, June 2001. New York,
ACM Press, pp. 530–535.

[56] Ben Potter, David Till and Jane Sinclair. An Introduction to Formal
Specification and Z. 2nd ed. Upper Saddle River, NJ, Prentice Hall PTR,
1996.

[57] Raymond Reiter. The frame problem in the situation calculus: a simple
solution (sometimes) and a completeness result for goal regression. In
V. Lifschitz, (ed.), Artificial Intelligence and the Mathematical Theory of
Computation: Papers in Honor of John McCarthy, San Diego, Academic
Press, 1991, pp. 359–380.

[58] Mark Richters. A Precise Approach to Validating UML Models and OCL
Constraints. PhD thesis, Universitaet Bremen. Berlin, Logos Verlag,
BISS Monographs, No. 14, 2002.

[59] Mark Richters and Martin Gogolla. On formalizing the UML object
constraint language OCL. In Proceedings of 17th International Confer-
ence on Conceptual Modeling, Singapore, 1998. Tok Wang Ling, Sudha
Ram, and Mong Li Lee (eds.), Lecture Notes in Computer Science, Vol.
1507, Berlin, Springer-Verlag, 1998, pp. 449–464.

[60] Mark Richters and Martin Gogolla. Validating UML models and OCL
constraints. In Proceedings of Third International Conference on the
Unified Modeling Language: Advancing the Standard, York, UK, Oc-

��� references

tober 2000. Andy Evans, Stuart Kent, and Bran Selic (eds.), Lecture
Notes in Computer Science, Vol. 1939, Berlin, Springer-Verlag, 2000, pp.
265–277.

[61] Steve Schneider. The B-Method: An Introduction. Cornerstones of Com-
puting Series, Hampshire, UK, Palgrave, 2001.

[62] Emil Sekerinski and Kaisa Sere, eds. Program Development by Refine-
ment : Case Studies Using the B Method. Formal Approaches to Com-
puting and Information Technology Series, Berlin, Springer-Verlag,
1999.

[63] Ilya Shlyakhter. Generating effective symmetry-breaking predicates for
search problems. In Proceedings of LICS 2001 Workshop on Theory and
Applications of Satisfiability Testing, June 2001, Boston, MA. Henry
Kautz and Bart Selman (eds.), Electronic Notes in Discrete Mathemat-
ics, Vol. 9, 2001.

[64] Ilya Shlyakhter. Declarative symbolic pure-logic model checking. PhD
Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA. February 2005.

[65] J. Michael Spivey. The Z Notation: A Reference Manual, 2nd ed. Upper
Saddle River, NJ, Prentice Hall, 1992.

[66] G. Stalmarck and M. Saflund. Modeling and verifying systems and soft-
ware in propositional logic. In Proceedings of International Conference
on Safety of Computer Control Systems. Oxford, Pergamon Press, 1990,
pp. 31–36.

[67] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combi-
national test generation using satisfiability. Technical Report M92/112,
Departement of Electrical Engineering and Computer Science, Univer-
sity of California at Berkeley, Berkeley, CA, October 1992.

[68] Susan Stepney, David Cooper and Jim Woodcock. More powerful Z
data refinement: pushing the state of the art in industrial refinement.
In Proceedings of Z User Meeting, Berlin, Germany, 1998. Jonathan P.
Bowen, Andreas Fett, and Michael G. Hinchey (eds): ZUM ’98: The Z
Formal Specification Notation, Lecture Notes in Computer Science, Vol.
1493, Berlin, Springer-Verlag, 1998, pp. 284–307.

[69] Susan Stepney, David Cooper, and Jim Woodcock. An electronic purse:
specification, refinement, and proof. Technical Monograph PRG-126,
Oxford University Computing Laboratory, Oxford, July 2000.

[70] Alfred Tarski and Steven Givant. A formalization of set theory without
variables. American Mathematical Society Colloquium Publications,
Vol. 41, 1987.

references ���

[71] USE: A UML-based specification environment. University of Bremen,
Germany. Available at http://www.db.informatik.uni-bremen.de/
projects/USE/.

[72] Mark Utting. The Jaza Animator. University of Waikato, New Zealand.
Available at: http://www.cs.waikato.ac.nz/~marku/jaza.

[73] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Get-
ting Your Models Ready for MDA. Boston, Addison-Wesley, 2003.

[74] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and
Proof. Upper Saddle River, NJ, Prentice Hall, 1996.

[75] John Wordsworth. Software Development With Z: A Practical Approach
to Formal Methods in Software Engineering. Boston, Addison-Wesley,
1992.

[76] John Wordsworth. Software Engineering With B. Boston, Addison Wes-
ley Longman, 1996.

Symbols
! (not) 69, 284, 286
(cardinality) 80, 282
&& (and) 69, 286
& (intersection) 52, 279
* (reflexive transitive closure) 65, 279
+ (in signature declaration) 92
+ (integer plus) 80, 282
+ (union) 52, 279
++ (override) 67–68, 279
- (difference) 52, 279
- (integer minus) 80, 282
-> (product) 55, 279
. (join) 57, 279
< (less than) 80, 283
<=> (iff) 69, 286
= (equals) 52, 285
= (integer equals) 80, 283
=< (less than or equal to) 80, 283
=> (implies) 69, 286
> (greater than) 80, 283
>= (greater than or equal to) 80, 283
@ (suppress expansion) 119, 269, 278
[] (join) 61, 279
^ (transitive closure) 63–65, 279
|| (or) 69, 286
~ (transpose) 62, 279

A
Abrial, Jean-Raymond 306, 326
Abstraction function 220
Abstractions

not well expressed in code 2
why key to software design xiv, 1

abstract keyword 84, 91, 93, 102, 254,
268

Abstract signature 91, 93, 102, 268,
276

Acyclicity
constraint 35, 115, 130
exercise 234

Address book
informal description 5

Algebraic property 15, 208, 214
Alias

for module 131
in address book 5

all keyword 70, 254, 285, 286
Alloy Analyzer 4, 150–152
Alloy grammar 255
AMN (Abstract Machine Notation)

307
Analysis

cf. manual review xiii, 30
mechanism 150–152
vs. theorem proving 15

Analysis constraint 144
Analysis variable 144
and keyword 69, 254, 286
Arithmetic 134
Arity

defined 36
error 110, 261
highest used in practice 43

Arrow product
defined 55, 280
universal relation 51

as keyword 131, 254, 266
Assertion

anonymous 126

Index

��� index

defined 124
first example 13

assert keyword 124, 254, 272
Assignment

modeled with override 68
Associativity 257
Atelier-B 312
Atom

defined 35
integer 134
naming of 40

B
B-Toolkit 312
Backward execution 11
Bar, in quantification 287
Barber Paradox 243
BDD (Binary Decision Diagram) 152
Berkmin 150
bi-implication 69
Binary relation 36
Bjorner, Dines 318
B method 306
Boolean

not a type in Alloy 136
Borgida, Alex 201
Box join

defined 61
Bunch theory 44
but keyword 129, 254, 276
Butler, Michael 297

C
Canonicalization 216, 217, 220, 282
Cardinality

constraint 80
expression 282
operator 80, 134

Cartesian product 166
Chaff 150

check keyword 127, 128, 150, 254,
274

Classification
hierarchy 92

Classification hierarchy 17
Class invariant 120
Closure

not axiomatizable 234
symmetric 62
transitive 63–65, 279

Colon
in declaration constraint 79

Command
defined 127, 274
first example 6

Comment syntax 253
Composite objects

as language construct 42
Composite pattern 6, 17
Composition

with join 57
Comprehension

defined 74, 280
to define identity 51

Concurrency 178
Conditional expression 70, 281
Conjunction

implicit 70, 286
Constants

of Alloy logic 50
Constraint

analysis 144
comparison 285
compound 286
declaration 288
defined 69, 284
let 288
negated 286
paragraph 272
quantified 286
sequence 286

index ���

Containment
modeling with multirelation 38

Cook, Steve 312
Counterexample 140, 144, 274

first example 13
spurious 161

CTL (Computation tree logic) 184

D
Daniels, John 312
Day, Doris 242
Declaration

defined 74, 269
dependent 98
no top-level 97
role in analysis 144, 146
signature 267

Declaration constraint
defined 79, 288
examples 79, 173, 187

Declarative
vs. operational 10

Diagram
generated by Alloy Analyzer 32
model 101
use in modeling 32

Diameter of state machine 183
Difference operator 52, 279
Dijkstra, E.W. 141
disj keyword 71, 98, 254, 270, 280
Disjointness error 261
Domain

in definition of override 67
of relation defined 47
related to restriction 67

Domain restriction
defined 66, 280
resolve overloading 51, 115, 117

Dot join
defined 57

E
else keyword 69, 254, 281, 286
Empty set

as constant in logic 50
Equality

operator defined 52
structural vs. reference 54
vs. definitional symbol 54

Errors 261
Event-based idiom 197
exactly keyword 129, 166, 254, 276,

277
Exact scope 182
Example 144, 274
Expression

cardinality 282
conditional 281
defined 277
in model diagram 104
Integer 281
invocation 281
let 283
qualified 285
redundant 110
sum 81, 283

extends keyword 91, 102, 107, 254,
267

Extreme programming 2

F
Fact

defined 117, 272
first example 18
role in analysis 144
signature 18, 118–120, 120, 268
vs. predicate 123

fact keyword 117, 254, 272
Fairness 184
Feynman, Richard 139

��� index

Field
constraint implicit in declaration

120
defined 95
inherited 268
overloading 113, 261

Filtering properties 184
First-order logic

Alloy limited to 41
vs. temporal logics 184

Fitzgerald, John 297
for keyword 127, 254, 276
Formal methods

lightweight xiii
not silver bullet xi
obstacles to adoption 2

Frame condition 176, 189, 201
examples 207
Reiter style 201

Function
Alloy construct defined 121, 263
as relation 46
first example 12
higher-order 41
total and partial 48

Functional relation 46
defined with identity 63

Function application
with join 59

fun keyword 121, 254, 272, 273

G
Generator axiom 156
Generic module

first example 24
overview 130, 266

Goat, cabbage, wolf 244
Gogolla, Martin 297, 312, 318
Grammar of Alloy 255
Grandpa, self 83
Gries, David 242

Group, in address book 5
Guttag, John xi, 30, 90

H
Halmos, Paul 243, 244
Handshaking problem 243
Harel, David 142
Hehner, Eric 44
Higher-order

quantification 72
structures 41

History variable 225
Hoare, C.A.R. xiii
Horning, James J. xi, 30, 90
Hotel locking

example 185, 299
exercise 250

I
iden keyword 50, 254, 278
Identifiers 254
Identity relation

defined 50
over universe 50, 65
with restriction 67

Idiom
event-based 197
explicit time 150, 172, 173, 178,

186
incremental state 204
not hardwired 31
traces 22, 177, 302

if-then-else 69
IFAD 324
if expression 281
iff keyword 69, 254, 286
if keyword 69, 254, 281
implies keyword 69, 254, 286
Importing modules 130

index ��5

in
choice of keyword 55
in signature declaration 91, 267
keyword 254
operator defined 52, 285

Inductive analysis 177
Initial condition 176
Injection 47
Injective relation

defined with identity 63
Instance

choice by analyzer 7
choice of term 142
defined 144, 258
first example 7
from command 274
large and small 143

Instance finding 140
Integer 134, 263, 281

and interpreted set 43
constant 282
scope 135

Interpreted set 39–40
Intersection operator 52, 279
Int keyword 82, 134, 135–139, 254,

264, 267, 277, 281
int keyword 134, 135–139, 254, 281
Invariant

preservation 177, 208, 224, 298,
309, 319, 325

preservation (exercise) 240
Invocation expression 281
iView Media Pro 203

J
Jackson, Michael 193
Java

Integer 135
metamodel (exercise) 246
overloading in 116

Jaza 332

Jha, Somesh 61
JML (Java Modeling Language) 319
Join

by position not column name 43
compared to database 61
defined 57, 61, 280
distributivity (exercise) 232
higher arity 60
not associative 60
typing rule 110

Jones, Cliff 318
JSP xi

K
Kleppe, Anneke 312

L
Lampson, Butler 61
Larch specification language xi, 90,

319
Larsen, Peter Gorm 297
Leader election example 169
Let

constraint 73, 288
expression 73, 283
not recursive 74

Let expression 280
let keyword 254
Lexical issues 253
Library module 130
Lightweight formal methods xiii
List 157, 158
Logic

first order 33, 41, 44, 136, 142,
144, 163, 184, 234

higher order 41, 42, 72, 155, 260,
288, 298

relational 259–260
London Underground (exercise) 236
lone keyword 254

��� index

as multiplicity 34, 73, 76, 96, 102,
264, 267, 269

as quantifier 70, 73, 285, 286
LTL (Linear temporal logic) 184

M
Machine diameter 183
Manna, Zohar 185
McCarthy, John 150
McMillan, Ken xi
Media asset management example

203
Memory example 216
Metamodels

exercises 245
Meyer, Bertrand 1
Milgram, Stanley 66
Model

meaning of term 4
term avoided 142

Model checking 142, 184
not suitable for software xii
scope implicit 130
SMV xi

Model diagram
defined 101
examples 17, 106, 119, 173, 186,

187, 205
first example 17

Modifies clause 203
Module

alias 131, 267
defined 130
import 130, 266–267
parametric 132, 266–267
rationale 173
structure 83, 265

module keyword 130, 254, 265
Multiple inheritance 94
Multiplication 135

Multiplicity
default in diagram 107
defined 74, 264
in diagrams 102
in field declaration 95
in signature declaration 92
keywords 270
nested 79

Multirelation
Alloy-specific term 44
defined 36
in model diagram 104
useful in practice 43

Mutation 39
atoms immutable 35–36

Mylopoulos, John 201

N
Namespace 254
Navigation

backward 59
exercise 232
expression style 34–35
with join 59

Negation 69, 254, 283
Nelson, Greg 152
Nitpick 152
no keyword 70, 254, 285, 286
none keyword 50, 254, 262, 278
not keyword 69, 254, 283, 286
Null values 45

O
OCL (Object Constraint Language)

47, 312
Octopus tool 318
OMT (Object Modeling Technique)

xii

index ���

one keyword 254
as multiplicity 76, 96, 102, 264,

267, 269, 277
as quantifier 70, 285, 286

open keyword 130, 254, 266
Operation 9, 122
Operational

vs. declarative 10
Operators

logical 69, 286
precedence 68, 257
relational 50, 279

Option
Alloy-specific term 44
defined 37
describes variable not value 45
in Alloy compared to ML 45

Ordering
symmetry breaking 152, 173, 182
with library module 24

or keyword 69, 254, 286
Overapproximation 109
Overlapping 107, 268
Overlapping types 113
Overloading 113, 260, 261
Override

defined 67–68, 280
Overture initiative 324

P
Pair 56
Paradox, Russell’s 243
Parametric module 132, 266
Parentheses 281, 289
Partial function 48

no undefined application 59
part keyword 98, 254, 270, 280
Pnueli, Amir 185
Polymorphism 132
Postcondition 188
Poststate 10, 32, 148, 197, 222

Praxis Critical Systems 2, 324
Precedence 68, 257
Precondition

examples 26, 188, 206, 207, 218
implicit 190
not computable 161

Predicate
Alloy construct 121, 263, 272
first example 6
invoking 11
operation 122
vs. fact 123

Predicate calculus 33–35
exercise 230

pred keyword 121, 123, 254, 272
Prerequisites example 41–42
Prestate 10, 32, 148, 197, 222
Problem frames 193
ProB tool 309, 312
Product operator 55, 280
Progress

predicate 181
property 184

Projection
defined 48–49
example 148
of Book instance 7

ProofPower 331

Q
Qualified name 131, 266
Quantification 70, 286

higher order 72
implicit in signature fact 120
nested 288
skolemized away 152
unbounded universal 155

R
Railway switching (exercise) 248

��� index

Range
of relation defined 47
related to restriction 67

Range restriction
defined 66, 280

Reachability
expressed with closure 64

Receiver
object-oriented 19
syntax in Alloy 123, 124, 273

Recodable lock 185
Redundancy error 110, 261
Refactoring xiii, 89
Reflexive

relation 65
transitive closure 65, 279

Refutation 140
Regression testing

with assertions 15
Reiter, Raymond 201
Relation

as table 36
constant 278
declared as field 95
defined 36–48
empty 37
functional 46, 63
higher-order 41
infinite 43
injective 46, 47, 63
in model diagram 102
naming of columns 43
properties (exercise) 230, 231
reflexive 65
size 36
total and partial 48
transitive 63
undirected (exercise) 234
universal 92
unordered 44

Relational calculus 34–35, 44
exercise 230

hints on using 89
Relational composition

with join 57
Relational logic 259
Relational operators 55
Requirements

vs. specification 193
Resource limits 143
Restriction

domain 280
range 280

Restriction operator
defined 66
resolve overloading 51, 115, 117

Richters, Mark 312
Ring (exercise) 233
run keyword 127, 128, 150, 254, 274
Russell’s Paradox 243
Russell, Bertrand 243

S
Sanity check 207
SAT solvers xii, 150, 184
Scalar

as unary relation 36
describes variable not value 45
modeled as relations 44

Scope 140, 276
and generator axioms 156–163
default 85, 128, 163, 164, 276
defined 127
exact 129, 166, 182
first example 6
monotonicity 165, 182
of zero 167
selecting 31, 163
small scope hypothesis 15, 144
specification 276

Self-grandpa 83
Semantics 291

index ���

Set
as unary relation 36, 44
in model diagram 102
operators 52
universal 92

set keyword 76, 96, 102, 254, 268, 269
Shlyakhter, Ilya 152
sig keyword 91, 254, 264, 267, 269
Signature

abstract 91, 93, 102, 268, 276
bounds in scope 128
declaration 267
defined 91, 267
extension 91, 107
fact 120, 268
first example 6
overlapping 107, 268
singleton 95
subset 92, 102, 107, 116, 267
subsignature 91, 267
top-level 91, 92, 128
type 267

Simon, Paul 242
Simplicity xiv
Situation calculus 150
Size of relation 36
Skolem constant 10, 147, 276
Skolemization 152, 260, 288
Small model theorem 144
Small scope hypothesis 15, 141, 144
Smalltalk 314
Snapshots 48
some keyword 254

as multiplicity 73, 76, 96, 102, 264,
267, 269

as quantifier 70, 73, 285, 286
Spanning tree (exercise) 233
Specification

vs. requirements 193
Spivey, J. Michael 324
State machine

meta model (exercise) 245

simulation (exercise) 245
subsection

Subset
operator 285
signature 268

Subset
operator 52

Subsignature 91, 267
Subtype 107, 113, 262, 267
sum keyword 81, 254, 282, 283
Supertype 113
Surgeon’s gloves problem 244
Symmetric

closure 62
relation 62

Symmetry breaking 32, 151, 173, 181,
182

Syntropy xii, 312

T
Tarski, Alfred 44
Temporal logic 184
Ternary relation 36
Test cases 3, 30
Testing

inadequacy of 141
less effective than analysis 14

then keyword 254, 281
Theorem proving

limitations xi, 2
role in analysis 141
vs. instance finding 139

this keyword 95, 99, 120, 123
Time

arguments to operation 178
as column of relation 150, 172,

173–175, 186
Together Designer tool 318
Total function 48
Trace

analysis 22–28, 177

�50 index

constraint 24, 29, 190, 197, 301,
302

inclusion 222
order of states 32

Tractability 130
Transitive

closure defined 63–65, 279
 closure not axiomatizable 234
relation 63

Transpose 62, 279
Tree properties (exercise) 232
Tuple 56

defined 37
Type 107, 260

basic 107
checking of predicate 124
error 110, 261
from declaration 270
overlap 107
redundancy 54, 110
relational 109
union 45, 54, 262

Type checking 263

U
UML (Unified Modeling Language)

47
bug in closure definition 234
diagram notation 105

Unary relation 36
Unbounded universals 155
Undecidability 139, 142
Undefined expressions avoided 59
Uninterpreted sets 35–36
Union operator 52, 279
Union type 45, 54, 262
Universal relation

defined 50
Universal set 92
univ keyword 50, 254, 260, 262, 264,

266, 278

Unix file system (exercise) 247
USE tool 31, 312
Utting, Mark 332

V
Validity 139
Variable, analysis 144, 148
VDM (Vienna Development Method)

xi, 31, 42, 175, 318
VDM++ 319
VDM-SL 319
VDMTools 31, 324, 332

W
Warmer, Jos 312
Website 4
Witness 152
Woodcock, Jim 297, 325

Z
Z/Eves 331
Zermelo-Fraenkel set theory 46, 326
Z notation xi, 31, 42, 46, 47, 51, 54,

150, 175

