
Logic, Language, and Analysis

Daniel Jackson

Software Abstractions

Softw
are A

bstractions     Jackson

computer science/software engineering

Software Abstractions
Logic, Language, and Analysis
Daniel Jackson

In Software Abstractions Daniel Jackson introduces a new approach to software design that
draws on traditional formal methods but exploits automated tools to find flaws as early as
possible. This approach—which Jackson calls “lightweight formal methods” or “agile model-
ing”—takes from formal specification the idea of a precise and expressive notation based on
a tiny core of simple and robust concepts but replaces conventional analysis based on theo-
rem proving with a fully automated analysis that gives designers immediate feedback. Jackson
has developed Alloy, a language that captures the essence of software abstractions simply and
succinctly, using a minimal toolkit of mathematical notions. The designer can use automated
analysis not only to correct errors but also to make models that are more precise and elegant.
This approach, Jackson says, can rescue designers from “the tarpit of implementation tech-
nologies” and return them to thinking deeply about underlying concepts. 

Software Abstractions introduces the key elements of the approach: a logic, which pro-
vides the building blocks of the language; a language, which adds a small amount of syntax
to the logic for structuring descriptions; and an analysis, a form of constraint solving that
offers both simulation (generating sample states and executions) and checking (finding coun-
terexamples to claimed properties). The book uses Alloy as a vehicle because of its simplici-
ty and tool support, but the book’s lessons are mostly language-independent, and could also
be applied in the context of other modeling languages. 

Daniel Jackson is Professor in the Department of Electrical Engineering and Computer Science
and leads the Software Design Group at the Computer Science and Artificial Intelligence Lab
at MIT.

“Abstraction is the essence of simple and effective software design, and logic is the essential
tool for exploring and validating abstractions. These basic insights, which have been labori-
ously rediscovered by many practicing programmers, are now accessible to students and pro-
fessionals at all levels of experience. Daniel Jackson supports his clear and elegant text with
a powerful logical analysis tool that brings his witty examples to life.”
—Tony Hoare, Senior Researcher, Microsoft

“Alloy’s streamlined combination of predicate logic and relational algebra makes modeling a
pleasure. I rely on the Alloy Analyzer, and this book shows how easy it is to start using it.”
—Pamela Zave, AT&T Research

“Alloy is to modeling what Excel is to office work: an incredibly powerful way to make mod-
els into concrete, tangible objects. Jackson’s book is essential for practitioners to master the
power of this new tool.”
—Alain Wegmann, Ecole Polytechnique Fédérale de Lausanne

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu

0-262-10114-9

49194Jackson  1/31/06  9:30 AM  Page 1

   



Software Abstractions: Logic, Language, and Analysis





Software 
Abstractions 

  
Logic, Language, 

and Analysis

Daniel Jackson 
 

The MIT Press 
Cambridge, Massachusetts 

London, England



© 2006  Daniel Jackson
All rights reserved. No part of this book may be reproduced in any form by 
any electronic or mechanical means (including photocopying, recording, or 
information storage and retrieval) without permission in writing from the 
publisher.
MIT Press books may be purchased at special quantity discounts for busi-
ness or sales promotion use. For information, please email special_sales@
mitpress.mit.edu or write to Special Sales Department, The MIT Press, 55 
Hayward Street, Cambridge, MA 02142.
This book was set in Adobe Warnock and ITC Officina Sans, by the author, 
using Adobe Indesign and his own software, on Apple computers. Diagrams 
were drawn with OmniGraffle Pro. Printed and bound in the United States 
of America. 

Library of Congress Cataloguing-in-Publication Data
Jackson, Daniel. 
Software abstractions : logic, language, and analysis / Daniel Jackson. 
  p. cm. 
Includes bibliographical references and index. 
ISBN 0-262-10114-9 (alk. paper) 
1. Computer software—Development. I. Title.
QA76.76.D47J29 2006  005.1—dc22  2005056155
10 9 8 7 6 5 4 3 2 1



to Claudia





Contents

Preface	 xi

Acknowledgments	 xv

1:	Introduction	 1

2:	A	Whirlwind	Tour	 5
2.1 Statics: Exploring States .........................................................................6
2.2 Dynamics: Adding Operations .............................................................9
2.3 Classification Hierarchy ...................................................................... 17
2.4 Execution Traces................................................................................... 22
2.5 Summary ................................................................................................ 28

3:	Logic	 33
3.1 Three Logics in One ............................................................................. 33
3.2 Atoms and Relations ............................................................................ 35
3.3 Snapshots ............................................................................................... 48
3.4 Operators ............................................................................................... 50
3.5 Constraints ............................................................................................. 69
3.6 Declarations and Multiplicity Constraints ...................................... 74
3.7 Cardinality Constraints ....................................................................... 80

4:	Language	 83
4.1 An Example: Self-Grandpas ............................................................... 83
4.2 Signatures and Fields ........................................................................... 91
4.3 Model Diagrams ................................................................................. 101
4.4 Types and Type Checking ................................................................. 107
4.5 Facts, Predicates, Functions, and Assertions ................................ 117
4.6 Commands and Scope ....................................................................... 127
4.7 Modules and Polymorphism ............................................................ 130
4.8 Integers and Arithmetic .................................................................... 134



viii contents

5:	Analysis	 139
5.1 Scope-Complete Analysis ................................................................. 139
5.2 Instances, Examples, and Counterexamples ................................. 144
5.3 Unbounded Universal Quantifiers .................................................. 155
5.4 Scope Selection and Monotonicity ................................................. 163

6:	Examples	 169
6.1 Leader Election in a Ring .................................................................. 169
6.2 Hotel Room Locking .......................................................................... 185
6.3 Media Asset Management ................................................................ 203
6.4 Memory Abstractions ........................................................................ 216

Appendix	A:	Exercises	 229
A.1 Logic Exercises .................................................................................... 230
A.2 Extending Simple Models ................................................................. 239
A.3 Classic Puzzles .................................................................................... 242
A.4 Metamodels ......................................................................................... 245
A.5 Small Case Studies .............................................................................. 247
A.6 Open-Ended Case Studies ................................................................ 251

Appendix	B:	Alloy	Language	Reference	 253
B.1 Lexical Issues ....................................................................................... 253
B.2 Namespaces ......................................................................................... 254
B.3 Grammar .............................................................................................. 255
B.4 Precedence and Associativity ........................................................... 257
B.5 Semantic Basis ..................................................................................... 258
B.6 Types and Overloading...................................................................... 260
B.7 Language Features .............................................................................. 265

Appendix	C:	Kernel	Semantics	 291
C.1 Semantics of the Alloy Kernel .......................................................... 291
C.2 Semantics of Integer Expressions and Formulas .......................... 293

Appendix	D:	Diagrammatic	Notation		 295



contents ix

Appendix	E:	Alternative	Approaches	 297
E.1 An Example .......................................................................................... 299
E.2 B ............................................................................................................. 306
E.3 OCL ....................................................................................................... 312
E.4 VDM ...................................................................................................... 318
E.5 Z ............................................................................................................. 324

References	 333

Index	 341





Preface

As a programmer working for Logica UK in London in the mid-1980’s, 
I became a passionate advocate of formal methods. Extrapolating from 
small successes with VDM and JSP, I was sure that widespread use of 
formal methods would bring an end to the software crisis.

One approach especially intrigued me. John Guttag and Jim Horning 
had developed a language, called Larch, which was amenable to a me-
chanical analysis. In a paper they’d written a few years earlier [21], and 
which is still not as widely known as it deserves to be, they showed how 
questions about a design might be answered automatically. In other 
words, we would have real software “blueprints”—a way to analyze the 
essence of the design before committing to code. I went to pursue my 
PhD with John at MIT, and have been a researcher ever since.

As a researcher though, I soon discovered that formal methods were not 
the silver bullet I’d hoped they would be. Formal models were hard to 
construct, and specifying every detail of a system was too hard. Theo-
rem proving, the kind of analysis that Larch relied on, could not be fully 
automated. Even now, after 20 more years of research, it still requires 
the careful guidance of a mathematical guru. In my doctoral work, 
therefore, I took a more conservative route, and worked on automatic 
detection of bugs in code.  But I kept an interest in the more ambitious 
world of formal methods and design analysis, and hoped one day to 
return to it.

In 1992, I visited Carnegie Mellon University. By then, I’d become en-
amored, like many in the formal methods community, with the Z lan-
guage. The inventors of Z had dispensed with many of the complexities 
of earlier languages, and based their language on the simplest notions of 
set theory. And yet Z was even less analyzable than Larch; the only tool 
in widespread use was a pretty printer and type checker.

On that visit, Ken McMillan showed me his SMV model checker: a tool 
that could check a state machine of a billion states in seconds, without 
any aid from the user whatsoever. I was awestruck.

With the invention of model checking, the reputation of formal methods 
changed almost overnight. The word “verification” became fashionable 
again, and the adoption of model-checking tools by chip manufactur-
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ers showed that engineers really could write formal models, and, if the 
benefit was great enough, would do it of their own accord.

But the languages of model checkers were not suitable for software. 
They were designed for handling the complexity that arises when a col-
lection of simple state machines interacts concurrently. In software 
design, complexity arises even in a single machine, from the complex 
structure of its state. Model checkers can’t handle this structure—not 
even the indirection that is the essence of all software design.

So I began to wonder: could the power of model checking be brought 
to a language like Z? Here were two cultures, an ocean apart: the gritty 
automation of SMV, reflecting the steel mills and smokestacks of Pitts-
burgh, the town of its invention, and the elegance and simplicity of Z, 
reflecting the beautiful quads of Oxford.

This book is the result of a 10-year effort to bridge this gap, to develop a 
language that captures the essence of software abstractions simply and 
succinctly, with an analysis that is fully automatic, and can expose the 
subtlest of flaws.

The language, Alloy, is deeply rooted in Z. Like Z, it describes all struc-
tures (in space and time) with a minimal toolkit of mathematical no-
tions, but its toolkit is even smaller and simpler than Z’s. Alloy was 
also strongly influenced by object modeling notations (such as those of 
OMT and Syntropy). Like them, it makes it easy to classify objects, and 
associate properties with objects according to the classification. Alloy 
supports “navigation expressions,” which are now a mainstay of object 
modeling, with a syntax that is particularly simple and uniform.

The analysis, embodied in the Alloy Analyzer, actually bears little re-
semblance to model checking, its original inspiration. Instead, it relies 
on recent advances in SAT (boolean satisfiability) technology.  The Al-
loy Analyzer translates constraints to be solved from Alloy into boolean 
constraints, which are fed to an off-the-shelf SAT solver. As solvers get 
faster, so Alloy’s analysis gets faster and scales to larger problems. Us-
ing the best solvers of today, the analyzer can examine spaces that are 
several hundred bits wide (that is, of 1060 cases or more). Hardware ad-
vances must also get some of the credit. Even had this technology been 
available 10 years ago, an analysis that takes only seconds on today’s 
machines would have taken an hour back then. (Incidentally, Alloy was 
by no means the first application of SAT to this kind of problem. SAT 
had been used for analyzing railway control systems [66], for checking 
hardware [67], and for planning [43, 15]. Since its adoption in Alloy [31], 
it has been incorporated into model checkers too [5].)
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The experience of exploring a software model with an automatic ana-
lyzer is at once thrilling and humiliating.  Most modelers have had the 
benefit of review by colleagues; it’s a sure way to find flaws and catch 
omissions. Few modelers, however, have had the experience of subject-
ing their models to continual, automatic review. Building a model incre-
mentally with an analyzer, simulating and checking as you go along, is 
a very different experience from using pencil and paper alone. The first 
reaction tends to be amazement: modeling is much more fun when you 
get instant, visual feedback. When you simulate a partial model, you see 
examples immediately that suggest new constraints to be added.

Then the sense of humiliation sets in, as you discover that there’s almost 
nothing you can do right. What you write down doesn’t mean exactly 
what you think it means. And when it does, it doesn’t have the conse-
quences you expected. Automatic analysis tools are far more ruthless 
than human reviewers. I now cringe at the thought of all the models I 
wrote (and even published) that were never analyzed, as I know how er-
ror-ridden they must be. Slowly but surely the tool teaches you to make 
fewer and fewer errors. Your sense of confidence in your modeling abil-
ity (and in your models!) grows.

You can use analysis to make models not only more correct but also 
more succinct and more elegant. When you want to rework a constraint 
in the model, you can ask the analyzer to check that the new and old 
constraint have the same meaning. This is like using unit tests to check 
refactoring in code, except that the analyzer typically checks billions of 
cases, and there are no test suites to write.

I sometimes call my approach “lightweight formal methods” [37], be-
cause it tries to obtain the benefits of traditional formal methods at 
lower cost, and without requiring a big initial investment. Models are 
developed incrementally, driven by the modeler’s perception of which 
aspects of the software matter most, and of where the greatest risks lie, 
and automated tools are exploited to find flaws as early as possible.

But at the same time as I have argued against some of the assumptions of 
traditional formal methods, my experience in the last decade—teaching 
software engineering to students at Carnegie Mellon and MIT, building 
tools with students, and consulting on industrial developments—has 
convinced me of the validity of their central premise. As Tony Hoare 
famously put it in his Turing Award lecture [29]:

There are two ways of constructing a software design: One way 
is to make it so simple there are obviously no deficiencies and 

volume1.indd   13 12/8/05   9:29:34 AM



xiv preface

the other way is to make it so complicated that there are no 
obvious deficiencies.

A commitment to simplicity of design means addressing the essence of 
design—the abstractions on which software is built—explicitly and up 
front. Abstractions are articulated, explained, reviewed and examined 
deeply, in isolation from the details of the implementation. This doesn’t 
imply a waterfall process, in which all design and specification precedes 
all coding. But developers who have experienced the benefits of this 
separation of concerns are reluctant to rush to code, because they know 
that an hour spent on designing abstractions can save days of refactor-
ing.

In this respect, the Alloy language and its analysis are a Trojan horse: an 
attempt to capture the attention of software developers, who are mired 
in the tar pit of implementation technologies, and to bring them back to 
thinking deeply about underlying concepts.

That is why I have chosen the title Software Abstractions for this book. 
The lure of coding, and pressure to deliver elaborate features on short 
schedules, often draw programmers away from designing abstractions 
to coping with the intricacies of transient technologies, and to invent-
ing clever tricks to overcome their limitations. If we focused instead on 
the underlying concepts, and struggled not for small performance gains 
or ever more complex features, but for simplicity and clarity, our soft-
ware would be more powerful, more dependable, and more enjoyable 
to use. Like the best artifacts of civil and mechanical engineering, the 
best software systems would be a marriage of utility and beauty. And as 
software designers, we’d have more fun: we’d spend less time working 
around basic structural flaws in our software, and our ideas would have 
more lasting impact.



Acknowledgments

I am deeply grateful to the many friends and colleagues who have helped 
in the writing of this book:

To Ilya Shlyakhter, who invented the modeling idiom that expresses dy-
namics by adding a column of state atoms to each relation (leading to 
the design of the signature construct, and making possible Alloy’s pre-
carious balance of expressiveness and tractability), and who designed 
and built the key algorithms of the Alloy Analyzer.

To Manu Sridharan, who contributed extensively to the language, de-
signed and implemented large parts of the analyzer, was an enthusiast 
for Alloy before we had credible examples, and has continued to help 
out despite having left MIT long ago.

To the many undergraduate and masters students who contributed to 
the tool implementation: Arturo Arizpe, Emily Chang, Joseph Cohen, 
Sam Daitch, Greg Dennis, David Kelman, Daniel Kokotov, Edmond 
Lau, Likuo Lin, Jesse Pavel, Uriel Schafer, Ian Schechter, Ning Song, 
Emina Torlak, Vincent Yeung, and Andrew Yip; and to those who were 
guinea pigs in evaluating Alloy in early case studies: Ryan Jazayeri, Sar-
fraz Khurshid, Edmond Lau, Robert Lee, SeungYong Albert Lee, Kartik 
Mani, Tina Nolte, Suresh Toby Segaran, Tucker Sylvestro, Mana Tagh-
diri, Allison Waingold, Hoe Teck Wee, and Jon Whitney; and to MIT’s 
UROP office for coordinating the undergraduate research program.

To the current members of my research group—Felix Chang, Greg 
Dennis, Jonathan Edwards, Lucy Mendel, Derek Rayside, Robert Seater, 
Mana Taghdiri, Emina Torlak, and Vincent Yeung—not only for their 
intellectual company, but for their many contributions to the Alloy proj-
ect big and small; especially to Derek who, on his own initiative, took 
on the task of resolving release problems and platform dependences; 
to Emina, now Alloy’s lead developer, and Vincent, for their continuing 
work on the Alloy Analyzer; to Jonathan, who led the design of Alloy’s 
new type system; to Robert, for his help teaching Alloy; and to Greg, 
for his work on the Alloy library modules and for answering queries 
from users. To Viktor Kuncak, for developing the theory behind the 

“unbounded universal quantifier” problem.

volume1.indd   15 12/8/05   9:29:34 AM



xvi acknowledgments

To my colleagues who have taught Alloy in their courses, especially Matt 
Dwyer, John Hatcliff, Cesare Tinelli, and Michael Huth, who developed 
extensive material when Alloy was much rougher than it is today.

To the readers who gave me comments and suggestions on drafts of the 
book: Paul Attie, Daniel Le Berre, Paulo Borba, Jin Song Dong, Rohit 
Gheyi, Tony Hoare, Michael Lutz, Tiago Massoni, Walden Mathews, 
Joe Moore, Sanjai Narain, David Naumann, Norman Ramsey, Mark Saa-
ltink, Martyn Thomas, and Mandana Vaziri; and especially to Michael 
Jackson, Jeremy Jacob, Viktor Kuncak, Butler Lampson, Chris Wallace, 
David Wilczynski, and Pamela Zave, who read the book in its entirety 
and together found something to fix on almost every page. They have 
saved me from many embarrassments and the reader from countless 
frustrations and confusions.

To the National Science Foundation, NASA, IBM, Microsoft, and Doug 
and Pat Ross, for their support of my research.

To Rod Brooks, Eric Grimson, John Guttag, Rafael Reif, and Victor Zue, 
for their role in creating the wonderful research and teaching environ-
ment that nurtured this work.

To Michael Butler, John Fitzgerald, Martin Gogolla, Peter Gorm Larsen, 
and Jim Woodcock for contributing solutions in their own languages to 
the hotel locking problem for appendix E.

To Bob Prior at MIT Press, for his confidence in this book, and his sage 
advice; to Katherine Almeida, its editor; and to Yasuyo Iguchi, design 
manager, for her advice on typography.

To my father, Michael Jackson, for his endless encouragement; for the 
inspiration he has been for me since I joined the family business; and for 
his tolerance of so many papers, and now a book, where rigor in logic 
often seems to take precedence over rigor in method. To my mother, 
Judy Jackson, the most prolific author in the family, whose uplifting 
emails continued to come even when replies became short and infre-
quent. To my brother, Adam Jackson, who insisted that my text be opti-
cally aligned (and showed me how to do it).

And finally, to my wife Claudia, to whom I dedicate this book, who has 
taught me so much, especially that analysis isn’t everything (and that 
the New Yorker is much more fun than the Economist). And to my chil-
dren Rachel, Rebecca and Akiva, who will grow up, I hope, in a world of 
better and simpler software than we have today. 

volume1.indd   16 12/8/05   9:29:34 AM



1:	Introduction

Software is built on abstractions. Pick the right ones, and programming 
will flow naturally from design; modules will have small and simple in-
terfaces; and new functionality will more likely fit in without extensive 
reorganization. Pick the wrong ones, and programming will be a series 
of nasty surprises: interfaces will become baroque and clumsy as they 
are forced to accommodate unanticipated interactions, and even the 
simplest of changes will be hard to make. No amount of refactoring, 
bar starting again from scratch, can rescue a system built on flawed 
concepts.

Abstractions matter to users too. Novice users want programs whose 
abstractions are simple and easy to understand; experts want abstrac-
tions that are robust and general enough to be combined in new ways. 
When good abstractions are missing from the design, or erode as the 
system evolves, the resulting program grows barnacles of complexity. 
The user is then forced to master a mass of spurious details, to develop 
workarounds, and to accept frequent, inexplicable failures.

The core of software development, therefore, is the design of abstrac-
tions. An abstraction is not a module, or an interface, class, or method; 
it is a structure, pure and simple—an idea reduced to its essential form. 
Since the same idea can be reduced to different forms, abstractions are 
always, in a sense, inventions, even if the ideas they reduce existed be-
fore in the world outside the software. The best abstractions, however, 
capture their underlying ideas so naturally and convincingly that they 
seem more like discoveries.

The process of software development should be straightforward. First, 
you design the abstractions, from a careful consideration of the prob-
lem to be solved and its likely future variants. Then you develop its 
embodiments in code: the interfaces and modules, data structures and 
algorithms (or in object-oriented parlance, the class hierarchy, datatype 
representations, and methods).

Unfortunately, this approach rarely works. The problem, as Bertrand 
Meyer once called it, is wishful thinking. You come up with a collection 
of abstractions that seem to be simple and robust. But when you imple-
ment them, they turn out to be incoherent and perhaps even inconsis-
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tent, and they crumble in complexity as you attempt to adapt them as 
the code grows.

Why are the flaws that escaped you at design time so blindingly obvious 
(and painful) at coding time? It is surely not because the abstractions 
you chose were perfect in every respect except for their realizability 
in code. Rather, it was because the environment of programming is so 
much more exacting than the environment of sketching design abstrac-
tions.  The compiler admits no vagueness whatsoever, and gross errors 
are instantly revealed by executing a few tests.

Recognizing the advantage of early application of tools, and the risk of 
wishful thinking, the approach known as “extreme programming” [4] 
eliminates design as a separate phase altogether. The design of the soft-
ware evolves with the code, kept in check by the rigors of type checking 
and unit tests.

But code is a poor medium for exploring abstractions. The demands of 
executability add a web of complexity, so that even a simple abstraction 
becomes mired in a bog of irrelevant details. As a notation for express-
ing abstractions, code is clumsy and verbose. To explore a simple global 
change, the designer may need to make extensive edits, often across 
several files. And pity the reviewer who has to critique design abstrac-
tions by poring over a code listing.

An alternative approach is to attack the design of abstractions head-on, 
with a notation chosen for ease of expression and exploration. By mak-
ing the notation precise and unambiguous, the risk of wishful think-
ing is reduced. This approach, known as formal specification, has had 
a number of major successes. Praxis, a British company that develops 
critical systems using a combination of formal specification and static 
analysis, offers a warranty on its products, boasts a defect rate an order 
of magnitude lower than the industry average, and achieves this level of 
quality at a comparable cost.

Why isn’t formal specification used more widely then? I believe that two 
obstacles have limited its appeal. The notations have had a mathemati-
cal syntax that makes them intimidating to software designers, even 
though, at heart, they are simpler than most programming languages. A 
second and more fundamental obstacle is a lack of tool support beyond 
type checking and pretty printing. Theorem provers have advanced dra-
matically in the last 20 years, but still demand more investment of effort 
than is feasible for most software projects, and force an attention to 
mathematical details that don’t reflect fundamental properties of the 
abstractions being explored.
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This book presents a new approach. It takes from formal specification 
the idea of a precise and expressive notation based on a tiny core of 
simple and robust concepts, but it replaces conventional analysis based 
on theorem proving with a fully automatic analysis that gives immedi-
ate feedback. Unlike theorem proving, this analysis is not “complete”: 
it examines only a finite space of cases. But because of recent advances 
in constraint-solving technology, the space of cases examined is usually 
huge—billions of cases or more—and it therefore offers a degree of cov-
erage unattainable in testing.

Moreover, unlike testing, this analysis requires no test cases. The user 
instead provides a property to be checked, which can usually be ex-
pressed as succinctly as a single test case. A kind of exploration there-
fore becomes possible that combines the incrementality and immediacy 
of extreme programming with the depth and clarity of formal specifica-
tion.

This volume introduces the key elements of the approach: a logic, a lan-
guage, and an analysis:

· The logic provides the building blocks of the language. All structures 
are represented as relations, and structural properties are expressed 
with a few simple but powerful operators. States and executions are 
both described using constraints (“formulas” to the logician, and 

“boolean expressions” to the programmer), allowing an incremen-
tal approach in which behavior can be refined by adding new con-
straints.

· The language adds a small amount of syntax to the logic for structur-
ing descriptions. To support classification, and incremental refine-
ment, it has a flexible type system that has subtypes and unions, but 
requires no downcasts.  A simple module system allows generic dec-
larations and constraints to be reused in different contexts.

· The analysis is a form of constraint solving. Simulation involves 
finding instances of states or executions that satisfy a given prop-
erty. Checking involves finding a counterexample—an instance that 
violates a given property. The search for instances is conducted in a 
space whose dimensions are specified by the user in a “scope,” which 
assigns a bound to the number of objects of each type. Even a small 
scope defines a huge space, and thus often suffices to find subtle 
bugs.

This book is aimed at software designers, whether they call them-
selves requirements analysts, specifiers, designers, architects, or pro-
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grammers. It should be suitable for advanced undergraduates, and for 
graduate students in professional and research masters programs. No 
prior knowledge of specification or modeling is assumed beyond a high-
school–level familiarity with the basic notions of set theory. Neverthe-
less, it is likely to appeal more to readers with some experience in soft-
ware development, and some background in modeling.

Throughout the book, I use the term “model” for a description of a soft-
ware abstraction. It’s not ideal, because a software abstraction need not 
be a “model” of anything. But it’s shorter than “description,” and has 
come to have a well established (and vague!) usage.

To keep the text short and to the point, I’ve relegated discussions of 
trickier points and asides to question-and-answer sections that are in-
terspersed throughout the text. For the benefit of researchers, I’ve used 
these sections also to explain some of the rationale behind the Alloy 
language and modeling approach.

In the book’s appendices you’ll find a series of exercises designed to help 
develop modeling and analysis skills; a reference manual for the Alloy 
language; a summary of the semantics of the logic; and a comparison of 
Alloy to some well-known alternatives.

There’s no better way to learn modeling than to do it. As you read the 
book, I recommend that you try out the examples for yourself, and ex-
periment to see the effects of changes.

The Alloy Analyzer is freely available at http://alloy.mit.edu for a variety 
of platforms. It can display its results in textual and graphical form, and 
includes a visualization facility that lets you customize the graphical 
output for the model at hand.

All the examples in the book are available for download at the book’s 
website, http://softwareabstractions.org, along with other supplementary 
material.



2:	A	Whirlwind	Tour

This chapter describes the incremental construction and analysis of a 
small model. My intent is to explain just enough to impart the flavor of 
the approach, so don’t expect to follow all the details.

I’ve chosen an example that should be familiar to most readers: the 
design of an address book for an email client. Although I’ve kept the 
model small to simplify the presentation, this example isn’t atypical in 
the amount of effort involved. A ten-line program can’t do very much, 
and has almost nothing in common with a thousand-line program. But 
a ten-line model can be very useful, and doesn’t differ that much from 
a hundred-line model, which is often all that’s needed to explore a dif-
ficult design issue.

By developing the example in a series of small additions and modifica-
tions, I’ve attempted to convey the lightweight and incremental spirit 
of the approach. The immediacy of the feedback that the tool provides 
is much harder to get across; to experience this, you’ll need to try the 
example yourself, running analyses and seeing how they react to your 
own modifications.

An email client’s address book is a little database that associates email 
addresses with shorter names that are more convenient to use. The user 
can create an alias for a correspondent—a nickname that can be used 
in place of that person’s address, and which need not change when the 
address itself changes. A group is like an alias but is associated with 
an entire set of correspondents—the members of a family, for instance. 
When defining a group, a user will often insert aliases rather than actual 
email addresses, so that a change in a person’s email address can be cor-
rected in just one place, even if it appears implicitly in many groups.

The tour starts with a simple address book with aliases and no groups. 
It shows how to declare the structure of the state of a system, and how 
to generate sample instances of the state (section 2.1). Then it adds dy-
namic behavior, and shows how to model an operation with constraints, 
how to simulate it, and how to check properties of operations (section 
2.2).

The tour then takes a turn into more sophisticated territory. The state 
of the address book is elaborated to allow names (that is, groups and 
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aliases) to refer to other names, forming naming chains of any length 
(section 2.3). The model uses an idiom that design pattern afficionados 
call Composite. The analyses of the simple address book are reapplied, 
and now turn up some potential problems.

Finally, the model is extended with traces, so that now analyses and sim-
ulations show entire executions involving a series of operations, rather 
than single operation steps (section 2.4). I included this section to show 
the flexibility of the approach, especially for readers familiar with model 
checking, although in practice it’s often fine just to analyze operations 
one at a time.

2.1	 Statics:	Exploring	States

We’re going to explore a simple address book for an email client that 
maintains a mapping from names to addresses. Here’s our first model:

module tour/addressBook1

sig Name, Addr {}
sig Book {
 addr: Name -> lone Addr
 }

That’s a complete Alloy model. It introduces three signatures—Name, 
Addr, and Book—each representing a set of objects. The Book signature 
has a field addr that maps names to addresses. In fact, addr is a three-way 
mapping associating books, names, and addresses, containing the tuple 
b -> n -> a when, in book b, name n is mapped to address a. The expression 
b.addr denotes the mapping from names to addresses for book b.

The keyword lone in the declaration indicates multiplicity—in this case 
that each name is mapped to at most one address. For now, we’re just 
modeling simple aliases; later we’ll consider groups.

This model contains no commands, so there’s no analysis that can be 
done (beyond simple static semantic and type checks). Our first analy-
sis will be to get some samples of the possible states. To do this, we add 
a predicate, and a command to find an instance of the predicate:

pred show () {}
run show for 3 but 1 Book

The predicate has an empty body; later we’ll add some constraints. The 
command specifies a scope that bounds the search for instances: in this 
case, to at most three objects in each signature, except for Book, which 
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is limited to one object, since, for now, we’re only interested in seeing a 
single address book. The scope is for the purpose of analysis alone; the 
model doesn’t limit the size or number of address books.

Running the command produces the instance of fig. 2.1. Outputs can be 
shown in a variety of forms, textual and graphical. Here, I’ve chosen to 
have the output displayed as a graph, and I’ve instructed the analyzer 
to “project” the instance on Book, which means that it shows a separate 
graph for each book object.

You may wonder why this particular instance was chosen. In fact, the 
tool’s selection of instances is arbitrary, and depending on the prefer-
ences you’ve set, may even change from run to run. In practice, though, 
the first instance generated does tend to be a small one. This is useful, 
because the small instances are often pathological, and thus more likely 
to expose subtle problems. You can ask the tool to produce a series of 
instances without repeats, but in our tour, we’ll always make do with 
the first one.

This instance shows a single link from a name to an address. To see an 
instance with more than one link, we can add a constraint to the predi-
cate:

pred show (b: Book) {
 #b.addr > 1
 }

fig. 2.1  Simulating the address book: a first instance.
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So that we can talk about a particular book, I’ve added an argument b 
of type Book to the predicate. The expression b.addr is the mapping from 
names to addresses for this book, and #b.addr is the number of associa-
tions in this mapping. So the constraint asks for an instance in which 
the book b has more than one name/address association.

Running the command again now gives the instance of fig. 2.2. We see 
that our model allows two names (three in this case!) to map to one ad-
dress. Does our model allow one name to map to two addresses? If we 
add a constraint asking for such a name

pred show (b: Book) {
 #b.addr > 1
 some n: Name | #n.(b.addr) > 1
 }

the analyzer tells us that the predicate show is now inconsistent—at least 
in this scope—and has no instances. This is not surprising, since the 
constraint we added contradicts the multiplicity in the declaration of 
addr.

Even if we can’t have one name map to two addresses, we would like to 
make sure that it’s possible to have more than one address in the ad-
dress book. So we replace the inconsistent constraint by a weaker one:

pred show (b: Book) {
 #b.addr > 1
 #Name.(b.addr) > 1
 }

fig. 2.2  A second address book instance.
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Whereas the bad constraint used the expression n.(b.addr) for looking 
up a single name n in address book b, this constraint uses Name.(b.addr) 
for looking up the entire set of names. This expression therefore denotes 
the set of all addresses that may result from lookups. One of the nice 
features of Alloy is that the operators are defined very generally, and any 
operator that can be applied to a scalar can also be applied to a set.

Running the command gives the instance of fig. 2.3. These little simu-
lations are useful because, with minimal effort on the user’s part, they 
confirm that the model doesn’t inadvertently rule out obvious cases, and 
they present other cases that might not have been considered at all.

So far, we’ve defined a state space and generated some sample states. It’s 
time to look at some behaviors.

2.2	 Dynamics:	Adding	Operations

Let’s add to the model a description of what happens when an entry is 
added to an address book:

pred add (b, b’: Book, n: Name, a: Addr) {
 b’.addr = b.addr + n -> a
 }

The predicate add, like the predicate show, is just a constraint. In this case, 
though, it represents an operation, and describes dynamic behavior. Its 

fig. 2.3  A third address book instance.
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arguments are an address book before the addition (b), an address book 
after (b’), a name (n), and an address (a) the name is to be mapped to. 
The constraint says that the address mapping in the new book is equal 
to the address mapping in the old book, with the addition of a link from 
the name to the address.

The way this operation is described will probably strike you as odd if 
you’re used to imperative programming languages and haven’t seen 
modeling languages before. There’s no explicit mutation here; instead, 
the before and after states of the book are given different names (b and 
b’), and the effect of the operation is captured by a property relating 
them. Whereas a procedure in a program is operational, and describes 
how to produce a change of state by modifying state components, Alloy 
is declarative, and describes how to check whether a change of state is 
valid, by comparing the before and after values.

Even though Alloy is declarative, it can still be executed much like an 
operational language. To execute the operation, we run a command 
such as

run add for 3 but 2 Book

This time we’ve limited the scope to just 2 books (for the before and 
after values). The result, in fig. 2.4, shows the prestate (the state of the 
book before the operation) above, and the poststate (the state after) be-
low. In the prestate, the book is empty; in the poststate, there is a new 
link from Name0 to Addr0.

Note how the name node is marked with the label add_n and the address 
node with add_a to show which objects are bound to the arguments n 
and a of the add operation. These labels will become more important 
later when they show witnesses to the violation of an assertion.

Following the same strategy we used for states, we can explore more 
interesting transitions by adding constraints. We could elaborate the 
predicate add itself, but it’s better to create a new predicate, making a 
clear distinction between the operation itself and constraints written 
for the purpose of exploration:

pred showAdd  (b, b’: Book, n: Name, a: Addr) {
 add (b, b’, n, a)
 #Name.(b’.addr) > 1
 }

run showAdd for 3 but 2 Book



a whirlwind tour 11

The new predicate showAdd “invokes” the existing predicate add. The ef-
fect is no different from including the constraints of add directly (but it’s 
more modular to do it this way). We’ve added a constraint that asks for 
a transition in which the address book after has more than one address 
mapped to (using the same constraint we used when simulating states). 
The result is shown in fig. 2.5. Note that it’s just as easy to constrain the 
state after as constraining the state before: the analyzer is “executing” 
this operation backward.

Let’s move on, and write some more operations, for deleting entries, 
and for lookup:

fig. 2.4  A generated transition for add.
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pred del (b, b’: Book, n: Name) {
 b’.addr = b.addr - n -> Addr
 }

fun lookup (b: Book, n: Name): set Addr {
 n.(b.addr)
 }

The deletion operation says that the after-book is the before-book with 
all links from the name n to any address removed. The lookup operation 
is written as a function rather than a predicate: its body is an expression 
rather than a constraint, and says that the result of a lookup is whatever 
set of addresses the name n maps to under the addr mapping of b.

fig. 2.5  A generated transition for showAdd.
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We could simulate these operations too, but let’s do something differ-
ent, and write some assertions about how combinations of operations 
in sequence behave. Our first assertion says that deletion is an undo 
operation for addition:

assert delUndoesAdd {
 all b,b’,b“: Book, n: Name, a: Addr |
  add (b,b’,n,a) and del (b’,b”,n) implies b.addr = b“.addr
 }

An assertion is a constraint that is intended to be valid—that is, true for 
all possible cases. This one says that an addition from book b resulting 
in book b’, followed by a deletion using the same name n, results in a 
book b“ whose address mapping is the same as that of the original book 
b.

To check the assertion, we issue the following command to the ana-
lyzer:

check delUndoesAdd for 3

This instructs the analyzer to search not for an example, but for a coun-
terexample—a scenario in which the assertion is violated. And indeed, 
it finds one, as shown in fig. 2.6. Strangely, there are only two distinct 
states in this scenario. As the diagram at the bottom shows (produced 
by the visualizer with different settings), b and b’, the values of the book 
in the first and second states, are both Book0, shown above on the left. 
The reason is that the name/address link to be added is already pres-
ent, so the execution of add has no effect. The execution of del, on the 
other hand, removes the link, resulting in the empty book, shown on 
the right.

Sometimes the failure of an assertion will point to a flaw in the model 
proper. In this case, however, the model seems reasonable, and given 
our decision to allow additions for existing entries, it’s not surprising 
that deletion doesn’t act as an undo. (At least, it’s not surprising in ret-
rospect. Many of the issues raised by analysis are like bugs in code—
perfectly obvious once you’ve already seen them.) To check that our 
hypothesis is right, we can modify the assertion, restricting the claim to 
cases in which no entry already exists for the name n:

assert delUndoesAdd {
 all b,b’,b“: Book, n: Name, a: Addr |
  no n.(b.addr) and add (b,b’,n,a) and del (b’,b”,n)
    implies b.addr = b“.addr
 }
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Executing the check now finds no counterexample. The assertion may 
still be invalid, though. Since the analyzer only considered cases involv-
ing three books, three names, and three addresses, it’s possible that 
there is a counterexample involving more.

So we crank up the scope. There’s no point considering more than three 
books, but we allow 10 names and 10 addresses:

check delUndoesAdd for 10 but 3 Book

Executing this takes longer than the previous analyses (about 3 seconds 
on a 2GHz Macintosh G5). As you increase the scope, the space of cases 
to consider grows dramatically. With 10 names and addresses, there 
are 11 possibilities for each name, so the starting state alone has 1110 
possible values. And because the operations don’t have to be written in 
an executable style, the tool has to search over the possible values of all 
three books, so there are over 1030 cases to consider.

Now you can see why this kind of analysis is more effective than testing. 
Of course, the analyzer doesn’t construct and check each case individu-

fig. 2.6  A counterexample to delUndoesAdd.



a whirlwind tour 15

ally; even if it used only one processor cycle per case, 1030 cases would 
still take longer than the age of the universe. By pruning the tree of pos-
sibilities, it can rule out large subspaces without examining them fully.

We still haven’t proved the assertion is valid. But, intuitively, it seems 
very unlikely that, if there is a problem, it can’t be shown in a counter-
example with 10 names and addresses. How far to go is a pragmatic 
judgment you have to make as a modeler. Eventually, as you increase the 
scope, the analysis becomes intractable.

The tradeoff is no different in principle from the one you face when 
deciding whether you’ve tested a program enough. In practice, though, 
exhausting a scope of 10 gives more coverage of a model than hand-
written test cases ever could. Most flaws in models can be illustrated by 
small instances, since they arise from some shape being handled incor-
rectly, and whether the shape belongs to a large or small instance makes 
no difference. So if the analysis considers all small instances, most flaws 
will be revealed. This observation, which I call the small scope hypoth-
esis, is the fundamental premise that underlies Alloy’s analysis.

There are many other examples of assertions in this “algebraic” style. 
Here are two. The first checks that add is idempotent—that repeating an 
addition has no effect:

assert addIdempotent {
 all b,b’,b“: Book, n: Name, a: Addr |
  add (b,b’,n,a) and add (b’,b”,n,a) implies b’.addr = b“.addr
 }

The second checks that add is local; that adding an entry for a name n 
doesn’t affect the result of a lookup for a different name n’:

assert addLocal {
 all b,b’: Book, n,n’: Name, a: Addr |
  add (b,b’,n,a) and n != n’ implies lookup (b,n’) = lookup (b’,n’)
 }

Checking these assertions gives no counterexamples.

The final version of the model discussed in this section is shown in fig. 
2.7. Note that it includes the simulation predicates and assertions and 
their associated commands. These play the same role that test drivers 
and stubs play for code; they are an integral part of the development. 
When you make a change to a model, you can recheck the assertions 
and rerun the simulations just as you would run regression tests after 
modifying code.
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module tour/addressBook1

sig Name, Addr {}
sig Book {addr: Name -> lone Addr}

pred show (b: Book) {
 #b.addr > 1
 #Name.(b.addr) > 1
 }
run show for 3 but 1 Book

pred add (b, b’: Book, n: Name, a: Addr) {b’.addr = b.addr + n -> a}
pred del (b, b’: Book, n: Name) {b’.addr = b.addr - n -> Addr}
fun lookup (b: Book, n: Name): set Addr {n.(b.addr)}

pred showAdd  (b, b’: Book, n: Name, a: Addr) {
 add (b, b’, n, a)
 #Name.(b’.addr) > 1
 }
run showAdd for 3 but 2 Book

assert delUndoesAdd {
 all b,b’,b“: Book, n: Name, a: Addr |
  no n.(b.addr) and
    add (b,b’,n,a) and del (b’,b”,n) implies b.addr = b“.addr
 }

assert addIdempotent {
 all b,b’,b“: Book, n: Name, a: Addr |
  add (b,b’,n,a) and add (b’,b”,n,a) implies b’.addr = b“.addr
 }

assert addLocal {
 all b,b’: Book, n,n’: Name, a: Addr |
  add (b,b’,n,a) and n != n’
   implies lookup (b,n’) = lookup (b’,n’)
 }

check delUndoesAdd for 10 but 3 Book
check addIdempotent for 3
check addLocal for 3 but 2 Book

fig. 2.7  Final version of model for simple address book.
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2.3	 Classification	Hierarchy

In a realistic address book application, you can create an alias for an ad-
dress, and then use that alias as the target for another alias. And an alias 
can name multiple targets, so that a group of addresses can be referred 
to with a single name.

Rather than elaborating our existing model, we’ll just start afresh and 
reuse fragments of the old model as needed. We start with a classifica-
tion hierarchy showing the various sets of objects and their relationship 
to one another:

module tour/addressBook2

abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}

sig Alias, Group extends Name {}
sig Book {addr: Name -> Target}

Fig. 2.8 shows a model diagram, a graphical representation of the mod-
el’s declarations, generated automatically by the analyzer from the text 
above. Note that the addr field of Book now maps names to targets. A 

fig. 2.8  Model diagram for hierarchical address book.
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target is either just an address, as before, or a name itself; names are 
either groups or aliases.

Just as we did for the simple address book, we can explore the state 
space with simulation predicates. For example, if ask to see a nonempty 
book

pred show (b: Book) {some b.addr}
run show for 3 but 1 Book

the analyzer responds with the instance of fig. 2.9, in which an alias 
is mapped to itself. This is the first simulation we’ve done that clearly 
reveals a flaw to be remedied. We add a fact—a constraint that’s as-
sumed always to hold—stating that, for any book, there is no name that 
belongs to the set of targets reachable from the name itself:

fact {
 all b: Book | no n: Name | n in n.^(b.addr)
 }

The expression n.^(b.addr) denotes the targets reachable from n, using 
the transitive closure ^(b.addr) of the address book mapping of b. You 
can think of x.r as a navigation from object x through one application 
of relation r, and x.^r as a navigation from object x through one or more 
applications of r.

Facts like this, that apply to every member of a signature, are better 
written as signature facts, in which the quantification, and the reference 
to the particular member, are implicit:

fig. 2.9  First instance for hierarchical address book.
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sig Book {addr: Name -> Target}
 {no n: Name | n in n.^addr}

Note that, like a reference to a field of a receiver in an object-oriented 
program, addr now implicitly refers to this.addr, the address book map-
ping of an archetypal book, and the all quantifier has gone.

Running the command again, we now get a situation, shown in fig. 
2.10, in which a group contains two addresses. We’d like to see an alias 
mapped, so we change the predicate’s constraint to say that there should 
be some targets resulting from mapping all aliases:

pred show (b: Book) {some Alias.(b.addr)}

Now, in fig. 2.11, we have an alias mapped to two addresses. This is un-
desirable; a name mapped to more than one target should be a group, 
not an alias. So we add another fact:

sig Book {addr: Name -> Target}
 {
 no n: Name | n in n.^(addr)
 all a: Alias | lone a.addr
 }

Executing the command again, we see a new problem, shown in fig. 2.12: 
an alias maps to an empty group. This means that if you look up a name, 
you might get no addresses back at all, even though the name is in the 

fig. 2.10  Second instance for hierarchical address book.
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address book! In fact, many address book applications allow this, and 
then (unhelpfully) report a failure only later when the message is sent.

Let’s make this issue explicit in our model. First, we elaborate the Book 
signature to make explicit the set of names that are in the book, by add-
ing a field (names) to represent this set, and by changing the declaration 
of the address mapping (addr) to say that it maps only names in this set, 
and maps each to at least one target:

sig Book {
 names: set Name,
 addr: names -> some Target }
 {
 no n: Name | n in n.^(addr)
 all a: Alias | lone a.addr
 }

Then we add an assertion claiming that every lookup of a name in the 
book yields some results:

assert lookupYields {
 all b: Book, n: b.names | some lookup (b,n)
 }

(We’ll define lookup shortly.) Checking this assertion will give a coun-
terexample just like fig. 2.12. The problem isn’t so easy to fix. We could 
simply add a fact stating, for example, that groups can’t be empty. But 

fig. 2.11  Third instance for hierarchical address book.
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it’s not obvious how to maintain such a property, so we’ll put it off for 
now and return to it later.

Let’s update the operations to match the new, more elaborate address 
book:

pred add (b, b’: Book, n: Name, t: Target) {b’.addr = b.addr + n -> t}
pred del (b, b’: Book, n: Name, t: Target) {b’.addr = b.addr - n -> t}
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}

The differences are minor. The add operation now takes a target rather 
than an address, and del now also takes a target in addition to a name. 
At first I didn’t see the need for the second argument of del, but while 
exploring the model with the analyzer, I realized that without it you 
wouldn’t be able to remove just one target from a group. The lookup 
operation is more interesting now, being generalized to arbitrary depth: 
it follows the address mapping any number of times, rather than just 
once, obtaining a set of targets, which it then intersects with the set of 
addresses, thus returning all addresses reachable from the name.

We can now check the old assertions. The assertion delUndoesAdd (with 
the extra condition that the name added is not already mapped) still 
passes, as does addIdempotent. But addLocal now fails, as shown in fig. 
2.13. Note the labels indicating which objects act as witnesses to the 
violation: n’ is Group1, whose associated addresses are changed by an add 
applied to n, which is Group0. Now that we have indirection, changing 

fig. 2.12  Fourth instance for hierarchical address book.
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the binding of one alias or group can affect another. This seems reason-
able, and we decide that the model doesn’t need to be fixed.

The final version of the model discussed in this section is shown in fig. 
2.14.

2.4	 Execution	Traces

Let’s return to the problem of empty lookups—cases in which a name 
that is in the address book corresponds to no addresses. This time, we’ll 
examine not only the bad situations but also how they might arise. 
Rather than considering the effect of individual steps, we consider en-
tire traces, consisting of multiple steps from an initial state.

The body of the model remains unchanged. All we need to do is add an 
ordering on address books, constrained so that the first book satisfies 
some initial conditions, and any adjacent books in the ordering are re-
lated by an operation.

fig. 2.13  Counterexample to addLocal for hierarchical address book.
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module tour/addressBook2

abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}

sig Alias, Group extends Name {}
sig Book {
 names: set Name,
 addr: names -> some Target }
 {
 no n: Name | n in n.^(addr)
 all a: Alias | lone a.addr
 }

pred add (b, b’: Book, n: Name, t: Target) {b’.addr = b.addr + n -> t}
pred del (b, b’: Book, n: Name, t: Target) {b’.addr = b.addr - n -> t}
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}

assert delUndoesAdd {
 all b,b’,b“: Book, n: Name, t: Target |
  no n.(b.addr) and
   add (b,b’,n,t) and del (b’,b”,n, t) implies b.addr = b“.addr
 }
check delUndoesAdd for 3

assert addIdempotent {
 all b,b’,b“: Book, n: Name, t: Target |
  add (b,b’,n,t) and add (b’,b”,n,t) implies b’.addr = b“.addr
 }
check addIdempotent for 3

assert addLocal {
 all b,b’: Book, n,n’: Name, t: Target |
  add (b,b’,n,t) and n != n’
   implies lookup (b,n’) = lookup (b’,n’)
 }
check addLocal for 3 but 2 Book

assert lookupYields {
 all b: Book, n: b.names | some lookup(b,n)
 }
check lookupYields for 4 but 1 Book

fig. 2.14  Final version of model for hierarchical address book.
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Here’s what the new model looks like (with ellipses for the old declara-
tions and operations):

module tour/addressBook3
open util/ordering [Book]

…
pred init (b: Book) {no b.addr}

fact traces {
 init (first ())
 all b: Book - last () | let b’ = next (b) |
  some n: Name, t: Target | add (b, b’, n, t) or del (b, b’, n, t)
 }

The ordering on books is provided by the library module util/ordering. 
This module is generic—that is, it can order a set of any type—so when 
opened it must be instantiated with a type (in this case, Book). The mod-
ule has its own signatures and fields, but is accessed through the func-
tions first, next and last, giving the first element in the order, the element 
following a given element, and the last.

The predicate init gives the initial condition—that the address book is 
empty. The fact traces specifies the constraints that make the ordering a 
trace: that the initial condition holds for the first book in the trace, and 
that any book b (except the last) and its successor b’ are related by the 
constraints of the add or del operation.

To see a sample trace, we ask for an instance satisfying an empty predi-
cate:

pred show () {}
run show for 4

The analyzer generates the trace, shown in fig. 2.15, with three additions 
in a row. The last one (making Group0 a member of Group1) is interesting: 
it creates two routes to the same address. Again, we see how simula-
tion generates cases that are thought-provoking, even when they don’t 
expose obvious flaws.

To investigate the empty lookup problem, we can check the same asser-
tion as before:

assert lookupYields {all b: Book, n: b.names | some lookup(b,n)}
check lookupYields for 3 but 4 Book
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fig. 2.15  Sample trace for hierarchical address book: each panel represents a state, 
starting with the initial state in the top left, and moving clockwise around.
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This time, however, the set of books is constrained to form a trace, so 
the counterexample, shown in fig. 2.16, shows how a sequence of opera-
tions can result in a bad state. Note the label lookupYields_n indicating 
the witness to the violation—Group0. The violation actually occurs after 
the very first step, in state Book1, so I’ve omitted the other two states. A 
smaller scope would have sufficed.

The problem here is that add allows a meaningless alias—one that refers 
to nothing—to be added to a group. To fix this, we might add a precon-
dition to add, saying that the target given must either be an address, or 
else must resolve to at least one address on lookup:

pred add (b, b’: Book, n: Name, t: Target) {
 t in Addr or some lookup (b,t)
 b’.addr = b.addr + n -> t
 }

Checking the assertion again, we get the counterexample of fig. 2.17. 
This time the problem is with deletion: we’ve deleted the last member of 
a group. We can fix this, albeit in a rather draconian manner, by forbid-
ding such a deletion with a precondition:

fig. 2.16  Counterexample trace violating lookupYields with one step of add.
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fig. 2.17  Counterexample trace violating lookupYields with deletion of last member of 
a group; each panel represents a state, starting with the initial state in the top left, and 

moving clockwise around.
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pred del (b, b’: Book, n: Name, t: Target) {
 no b.addr.n or some n.(b.addr) - t
 b’.addr = b.addr - n -> t
 }

The precondition says that n isn’t itself mapped to, or it’s mapped to 
some target besides t.

Now, no counterexample is found. So we crank up the scope to 6, and 
analyze for all scenarios involving 6 targets and 6 address books:

check lookupYields for 6

This is a much larger space, and analysis takes almost 2 minutes, but still 
no counterexample is found.

The final version of the model discussed in this section is shown in fig. 
2.18.

2.5	 Summary

The purpose of this short tour wasn’t to demonstrate how much can 
be accomplished with this style of modeling. Indeed, when you’ve read 
this book and have had some practice, you’ll be able to write more so-
phisticated models of more interesting things. Its purpose was instead 
to show how little you actually need to do to get some insight into a 
software design problem. Our most complex model was only a page 
long, but that was sufficient to explore some issues that arise in a real 
system.

It’s easy to dismiss the kinds of issue we looked at as trivial and obvious. 
They often are—in retrospect, at least. Indeed, the hardest, and most re-
warding, challenge in software design is reducing a mass of complicated, 
incongruous details to a few simple generalities. Simplicity is the key to 
good software design.

Looking back at this modeling exercise, it’s instructive to recall not so 
much what we did, but what we didn’t do:

· We didn’t write an elaborate model, and only then analyze it. Our 
first analysis was applied to a model less than ten lines long. We de-
veloped the model incrementally, as we explored it with the analyz-
er.

· We didn’t use any complicated mathematics or unfamiliar symbols. 
The Alloy language is based on simple notions of basic logic, and a 
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module tour/addressBook3
open util/ordering [Book]

abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}
sig Alias, Group extends Name {}

sig Book {
 names: set Name,
 addr: names -> some Target }
 {
 no n: Name | n in n.^(addr)
 all a: Alias | lone a.addr
 }

pred add (b, b’: Book, n: Name, t: Target) {
 t in Addr or some lookup(b,t)
 b’.addr = b.addr + n -> t
 }

pred del (b, b’: Book, n: Name, t: Target) {
 no b.addr.n or some n.(b.addr) - t
 b’.addr = b.addr - n -> t
 }

fun lookup (b: Book, n: Name): set Addr {
 n.^(b.addr) & Addr
 }

pred init (b: Book) {no b.addr}
fact traces {
 init (first ())
 all b: Book - last () | let b’ = next (b) |
  some n: Name, t: Target | add (b, b’, n, t) or del (b, b’, n, t)
 }

pred show () {}
run show for 4

assert lookupYields {
 all b: Book, n: b.names | some lookup (b,n)
 }
check lookupYields for 3 but 4 Book
check lookupYields for 6

fig. 2.18  Final version of model for traces over hierarchical address book.
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special dot operator for navigating along relations, similar to (but 
more flexible than) the dereferencing dot of Java.

· We didn’t need to write any executable code to get sample states, nor 
even to get sample traces. A major advantage of this, which we didn’t 
exploit in this tour, is that you can write a very partial description of 
an operation that allows many different behaviors.

· We didn’t write any test cases. The assertions that we wrote are like 
test oracles that check the result of a test. An assertion is rarely more 
trouble to write than a single test case, but has the coverage of an 
unimaginably huge test suite.

· We didn’t guide the analyzer in any way, beyond giving a scope to 
bound the analysis. No proof steps, no lemmas, no heuristics to sug-
gest.

· We didn’t have to worry about false alarms. Although the analysis of 
an assertion might not find a counterexample—because one only ex-
ists in a larger scope—it will never report a spurious one. (Of course, 
it may still be irrelevant because the assertion wasn’t what we in-
tended, or the model didn’t express the behavior we had in mind.)

It’s also instructive to consider how this experience would have been 
different if it had been conducted entirely by pencil on paper. Without 
extraordinary discipline and perseverance, it’s hard to motivate yourself 
to explore tricky issues, and even if we had done so, we probably would 
not have articulated them in a form that was precise enough to share 
with others (or for us to recall for ourselves later).

Alternatively, think about conducting this exercise in code, in a lan-
guage such as Java. We would have needed at least five files (just to 
represent the classification hierarchy). The one-line lookup operation 
would require a loop or recursion, accessing a hashtable, and accumu-
lating results in another data structure. The only analysis we could have 
performed would have been the execution of a few fixed test cases—no 
generation of arbitrary samples, no exhaustive checking within bounds, 
no visual display of results.

2.5.1	 Questions

Is this style of modeling new?

Jim Horning and John Guttag described a very similar approach in a 
paper in 1980, in which a theorem prover was used to answer questions 
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interactively about a candidate design [21]. That paper was a major 
source of inspiration for Alloy. The Z notation [65], developed at Ox-
ford in the 1980’s, was designed to encourage incremental specification, 
as illustrated by many published Z examples. Several tools—such as 
the USE tool for UML [71] and VDMTools [2]—animate specifications 
by executing operations and evaluating constraints from given initial 
states.

Aren’t the problems you explored trivial?

With hindsight, most software design problems are trivial. But if you 
don’t address them head-on, trivial issues have a nasty habit of becom-
ing nontrivial. At the time of writing, most email clients I know of don’t 
handle the issue of empty lookups very gracefully. The Apple mail client, 
for example, lets you create empty groups and aliases in the address 
book, but refuses (without an explanatory warning) to let you include 
them in a message header. If you create a group whose sole member is 
an empty alias, it allows you to include the group in a header, and pass-
es an ill-formed message to the SMTP server, which is then bounced 
back.

How do you select the scope for an Alloy analysis?

Every command (to check an assertion or run a predicate) specifies a 
scope that puts a bound on the number of elements of each signature. 
There’s a tradeoff: a small scope may miss an instance, but a large scope 
takes longer to analyze (and tends to produce larger, and less intelligible, 
instances). So a good way to work is to start with a small scope, and in-
crease it if no instances are found. Often the scope on some signatures 
is clear. For example, only two books are needed to analyze transitions 
that involve a single state change from one value of an address book to 
another.

Why isn’t a notion of execution built into Alloy?

Not hardwiring a particular notion of execution allows the notation to 
be used in many different idioms. In chapter 6, for example, two ver-
sions of a model of a scheme for hotel locking are developed. One uses 
the idiom of this chapter, in which the execution steps satisfy named 
operations, but the operation names themselves are not part of the ex-
ecution; the other uses an idiom in which the execution is a sequence of 
concrete, named events.
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Why don’t you just use diagrams?

Diagrams are very useful representations, but they’re limited in their 
expressiveness. I often use a diagram to sketch the structure of a model, 
and then transcribe it into Alloy text. Graphical input is not very con-
venient in practice: within a tool, it’s usually less work to enter text than 
to draw a diagram, and it’s easier to exchange models in textual form. 
Graphical output, on the other hand, is indispensable. The Alloy Ana-
lyzer can display instances in graphical form, or in textual form, or as an 
expanding tree. It can also generate model diagrams from model text.

When the analyzer displays an example of a transition as a pair of graphs, 
how do you know which is the prestate and which is the poststate?

The analyzer includes an editor for customizing visualizations. In the 
visualizations I’ve chosen, the binding of pre- and poststate variables 
b and b’ to atoms, such as Book0 and Book1, isn’t shown. Typically, the 
atoms are bound in lexicographic order, so Book0 will be assigned to b, 
and Book1 to b’, but this is easily confirmed by selecting a different visu-
alization, or by examining the output in textual form.

In a trace, are the states always in the order their names suggest?

Yes, when states are ordered, as the books were in the last version of 
the model, the lexicographic order of the states will always match their 
order in the trace. Here, for example, Book0 was the first state, Book1 the 
second, and so on. This is because the tool uses a special symmetry-
breaking optimization for the library module util/ordering that ensures 
that it always orders atoms in their lexicographic order. (See the discus-
sion following subsection 5.2.1 for more explanation.)



3:	Logic

At the core of every modeling language is a logic that provides the fun-
damental concepts. It must be small, simple, and expressive. A “work-
ing logic,” designed for expressing abstractions, unlike a logic designed 
for theoretical investigations, cannot be completely minimal, but must 
be flexible enough to allow the same idea to be expressed in different 
ways.

This chapter introduces a relational logic that combines the quantifiers 
of first-order logic with the operators of the relational calculus. It’s easy 
to learn—especially if you’re familiar with basic set theory, or with rela-
tional query languages—and surprisingly powerful.

Although designed for software abstractions, the logic has been kept 
free of any notions that would tie it to a particular programming lan-
guage or execution model. Its key characteristic, which distinguishes 
it from traditional logics, is a generalization of the notion of relational 
join. As in a relational database, a relation is a set of tuples. Sets are 
represented as relations with a single column, and scalars as singleton 
sets. Consequently, the same join operator can be applied to scalars, 
sets, and relations, and changing the “multiplicity” of a relation (that is, 
whether it maps an element to a scalar or a set) in its declaration does 
not require a change to the constraints in which it appears. Dispensing 
with the distinction between sets and scalars also makes constraints 
more uniform and easier to write, and eliminates the problem of partial 
function application, so there’s no need for special “undefined” values. 
There are a few other novelties too, such as the ability to nest multiplici-
ties in declarations.

3.1	 Three	Logics	in	One

Our logic supports three different styles, which can be mixed and var-
ied at will. In the predicate calculus style, there are only two kinds of 
expression: relation names, which are used as predicates, and tuples 
formed from quantified variables.

In this style, the constraint that an address book, represented by a rela-
tion address from names to addresses, maps each name to at most one 
address might be written
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all n: Name, d, d’: Address |
 n -> d in address and n -> d’ in address implies d = d’

In the navigation expression style, expressions denote sets, which are 
formed by “navigating” from quantified variables along relations. In this 
style, the same constraint becomes

all n: Name | lone n.address

In the relational calculus style, expressions denote relations, and there 
are no quantifiers at all. Using operators we’ll define shortly, the con-
straint can be written

no ~address.address - iden

The predicate calculus style is usually too verbose, and the relational 
calculus is often too cryptic. The most common style is therefore the 
navigational one, with occasional uses of the other styles when appro-
priate.

Discussion

Which choice would you actually make for this constraint?

None of these. Multiplicity constraints of this kind are so common that 
our logic has some special syntax that allows the constraint to be in-
cluded in a declaration. In this case, you’d write

address: Name -> lone Address

Where is the predicate calculus style used?

A common use is in comprehension expressions, which allow you to 
construct a set or relation from a constraint. For example, if you have a 
relation r that relates three elements from sets A, B and C, and you want 
the columns instead in the order B, A, C, you can define a new relation 
by comprehension:

r’ = {b: B, a: A, c: C |  a -> b -> c in r}

The predicate calculus style can also be appealing when writing a very 
subtle constraint, because it’s so concrete and straightforward, and the 
quantifications often match a formulation of the constraint in natural 
language.
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Where is the relational calculus style used?

Experienced modelers find it useful for some commonly recurring con-
straints that can be expressed more concisely this way, writing, for ex-
ample, no ^r & iden to say that the relation r is acyclic. Also, you might 
write a constraint in the navigation style and notice that a quantified 
variable can be “cancelled out.” For example, the constraint

all p: Person | p.uncle = p.parent.brother

can be written more concisely as

uncle = parent.brother

(so long as uncle and parent only map members of the set Person).

Do the styles have equivalent expressive power?

No. The navigational style is the most expressive. Predicate calculus 
lacks transitive closure, so reachability properties can’t be expressed. 
The relational calculus has no quantifiers, and not all occurrences of the 
quantifiers of predicate calculus can be expressed purely relationally.

Does the style have an impact on the performance of the analysis?

Not in general. Basic modeling decisions about how many relations to 
use, and how many columns each relation has, have a far bigger im-
pact.

3.2	 Atoms	and	Relations

All structures in our models will be built from atoms and relations, cor-
responding to the basic entities and the relationships between them.

3.2.1	 Atoms
An atom is a primitive entity that is

· indivisible: it can’t be broken down into smaller parts;

· immutable: its properties don’t change over time; and

· uninterpreted: it doesn’t have any built-in properties, the way num-
bers do, for example.

Elementary particles aside, very few things in the real world are atomic; 
this is a modeling abstraction. So what do you do if you want to model 
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something that is divisible, or mutable, or interpreted? You just intro-
duce relations to capture these properties as additional structure.

3.2.2	 Relations
A relation is a structure that relates atoms. It consists of a set of tuples, 
each tuple being a sequence of atoms. You can think of a relation as a 
table, in which each entry is an atom. The order of the columns matters, 
but not the order of the rows. Each row must have an entry in every 
column.

A relation can have any number of rows, called its size. Any size is pos-
sible, including zero. The number of columns in a relation is called its 
arity, and must be one or more. Relations with arity one, two, and three 
are said to be unary, binary, and ternary. A relation with arity of three 
or more is a multirelation.

A unary relation corresponds to a table with one column; it represents 
a set of atoms. A unary relation with only one tuple, corresponding to a 
table with a single entry, represents a scalar .

Example. A set of names, a set of addresses, each of size 3, and a 
set of address books of size 2:

Name = {(N0), (N1), (N2)}
Addr = {(D0), (D1), (D2)}
Book = {(B0), (B1)}

Example. Some scalars:

myName = {(N0)}
yourName = {(N1)}
myBook = {(B0)}

Example. A binary relation from names to addresses, for modeling 
a world in which there is only one address book (and therefore no 
need to model address books explicitly), with size 2:

address = {(N0, D0), (N1, D1)}

Example. A ternary relation (as used in chapter 2) from books to 
names to addresses, for modeling a world in which there are mul-
tiple address books, each with its own name to address mapping:

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N1, D2), (B1, N2, D2)}
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Book B0 maps name N0 to address D0, and name N1 to address D1; 
book B1 maps name N1 and name N2 to address D2. Fig. 3.1 shows 
this relation as a table.

A relation with no tuples is empty. A unary relation with at most one 
tuple—that is, a relation that is either a scalar or empty—is called an 
option.

Example. An email application might store the user’s email address, 
and, optionally, a distinct address used for the “reply-to” field of 
messages. The former might be modelled as a scalar userAddress, 
and the latter as an option replyAddress, which either contains an 
address or is empty.

In the Alloy logic, all values are relations, so a tuple will be represented 
by the relation containing it, in the same way that a scalar is represented 
by a singleton set. We’ll therefore use the term tuple to describe a sin-
gleton relation—a relation containing exactly one tuple.

Example. Two scalars, and the tuple that associates them:

myName = {(N0)}
myAddress = {(A1)}
myLink = {(N0, A1)}

fig. 3.1  A ternary relation viewed as a table.
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3.2.3	 Expressing	Structure	with	Relations
With relations, you can express structures in space and time, overcom-
ing the apparent limitations of atoms as a modeling construct.

Although the only objects in the logic are indivisible atoms, you can 
model a composite object with atoms for the components and a relation 
to bind them together.

Example. To say that directories can contain files, you could in-
troduce a relation contents that maps directories to the files they 
contain, which would include the tuples (D0, F0) and (D0, F1) when 
directory D0 contains the files F0 and F1.

Example. Hotel key cards, each holding two cryptographic keys, 
can be modeled as a set Card of cards, a set Key of keys, and two 
relations fst and snd from Card to Key. If a card C1 has K11 and K12 as 
its first and second keys respectively, and a card C2 has K21 and K22, 
the relations would have these values:

fst = {(C1, K11), (C2, K21)}
snd = {(C1, K12), (C2, K22)}

This is illustrated, for card C1, in fig. 3.2.

When the content of an object is itself a relation, a multirelation is used 
to model containment.

C1

K11 K12

sndfstK11

K12

C1

fig. 3.2  A key card containing two keys (left) 
represented with atoms and relations (right).
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Example. The relation addr mentioned in the previous section as-
sociates address books, names and addresses. Each address book 
can be viewed as containing a name/address table.

Although atoms are immutable, you can model mutation, in which the 
value of an object changes over time, by separating the identity of the 
object and its value into separate atoms, and relating identities, values 
and times.

Example. The history of values of some stocks might be represent-
ed by a relation value that includes the tuple (S0, V0, T0) if stock S0 
has value V0 at time T0, and (S0, V1, T1) if it has value V1 at time T1.

Example. An address book’s changing contents could be modeled 
with a relation addrT on names, addresses and times, with a value 
such as

addrT = {(N0, D0, T0), (N1, D1, T0), (N2, D2, T1)}

if the book maps name N0 to addresses D0 and D1 at time T0, and 
N2 to D2 at time T1.

When a model concerns only a single object and its changing value, a 
set of atoms can be used for that object to represent its value at differ-
ent times.

Example. The addr relation of chapter 2 associated books, names 
and addresses. It could be used to model a static world in which 
there are several address books, each containing its own name/ad-
dress table. In fact, however, it was used to represent the changing 
value of a single address book, with the book atoms playing the 
same role as the time atoms of addrT.

Finally, although atoms are uninterpreted, you can give them properties 
by introducing relations between them.

Example. The sequence numbers in a network protocol might be 
represented by atoms of a set SeqNumber = {(N0), (N1), …}, and 
ordered by a relation precedes, which contains the tuple (N0, N1) 
when sequence number N0 comes before sequence number N1.

Example. The book atoms in the model of section 2.4 were or-
dered B0, B1, … with B0 representing the value of the book initially, 
B1 the value after one step, and so on. The ordering was imposed 
by importing a library module that includes a relation next map-
ping B0 to B1, B1 to B2, etc.
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Example. Image-editing programs such as Adobe Photoshop al-
low you to apply color transformations to images. To explore the 
particular properties of one transformation, one would need a de-
tailed model of colors and transformation functions. But to ex-
plore the abstractions underlying such a scheme, application of 
transformations to partial image selections, combining transfor-
mations with layers, undoing and redoing transformations, and so 
on, it may be sufficient to take a more abstract view, in which an 
image is just a mapping from pixel locations to RGB values, and a 
color transformation is a function from RGB values to RGB values. 
A relation

transform = {(RGB0, RGB1), (RGB1, RGB0)}

might model the transformation that exchanges the RGB values RGB0 
and RGB1.

Discussion

Are the names of the atoms significant?

No. Atom names never appear in models; they’re only used to describe 
instances produced by simulation or checking. The Alloy Analyzer lets 
you assign your own names to the atoms of each set, but by default uses 
the full name of the set. So the atoms of Book will be Book0, Book1, and so 
on, rather than B0, B1, and so on.

What does an expression such as {(N0, D0), (N1, D1)} mean?

It’s an expression in the language of traditional mathematics. In this 
case, it denotes the set consisting of two tuples, the first tuple having N0 
as its first element and D0 as its second element, and the second tuple 
having N1 as its first element and D1 as its second element. The terms N0, 
N1, D0, and D1 are names for atoms. None of this belongs to the logic it-
self; I’m using it just to explain the meaning of the fundamental notions. 
In Alloy, you can’t refer to atoms explicitly at all. You could, however, 
declare scalar variables N0, N1, D0, and D1, and then, as we shall see, this 
relation could be denoted by the expression N0 -> D0 + N1 -> D1.

Why the extra parentheses in a set expression such as {(N0)}?

In Alloy, all structures are relations, and a set is simply a relation all of 
whose tuples contain only one element. The set {N0} would be modeled 
as this relation in Alloy; it cannot be represented directly. Because this 
kind of expression never appears in a model, the extra syntax of the 
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parentheses is not inconvenient. In fact, on the contrary, the unification 
of sets and relations makes the syntax simpler, since there is no need to 
convert between sets and relations, or between scalars and sets.

Can relations contain relations?

No. Our relations are flat, or first order, meaning that entries are always 
atoms, and never themselves relations. Take the relation addr, from the 
example of section 3.2.2, which we used to model the idea that address 
books contain name/address mappings. In our flat representation, the 
relation’s value was a ternary relation associating books, names and ad-
dresses:

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N1, D2), (B1, N2, D2)}

More conventionally, this might be represented as a function from ad-
dress books to a function from names to sets of addresses:

addrC =
 {(B0, {(N0, {D0}), (N1, {D1, D2})}),
  (B1, {(N1, {D2}), (N2, {D2})})}

The relation addrC is not directly representable in Alloy. We’ll see later 
in this chapter (in subsection 3.4.3) that the name/address mapping for 
book b, which would conventionally be written addrC(b), can be written 
b.addr in Alloy.

Why not admit higher-order relations?

The restriction to flat relations makes the logic more tractable for analy-
sis. Flat relations, as the relational database community has discovered, 
are expressive enough for almost all applications, and their simplicity 
and uniformity is appealing. The lack of symmetry in addrC (above), for 
example, means that it cannot be accessed from the right as easily as 
from the left. The expression addr.a denotes the mapping from address 
books to the names they use for address a, and addr.n.Addr denotes the 
set of address books that have an entry for name n; for addrC, both would 
require a more complex construction.

Is there a loss of expressive power in the restriction to flat relations?

Yes, there is, but it can usually be worked around. Almost always, a situ-
ation that seems to call for a higher-order relation can be reformulated 
without one. Suppose we’re modeling the prerequisite structure of a 
university course catalog, in which each course has a set of prerequisites, 
and, for admission to a course, a student is required to have taken all the 
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courses in at least one of the course’s prerequisites. In a higher-order 
setting, this structure could be represented as a relation from courses 
to sets of courses. For example, the relation

prereqC = {(C3, {(C0), (C1)}), (C3, {(C0), (C2)})}

would indicate that a student wanting to take course C3 must have taken 
either C0 and C1, or C0 and C2. Simply flattening this relation to

prereqBad = {(C3, C0), (C3, C1), (C3, C2)}

won’t work, because it loses the grouping of the prerequisites. The so-
lution is to introduce a new set of atoms to model prerequisites, along 
with a relation mapping prerequisites to their constituent courses:

prereq = {(C3, P0), (C3, P1)}
courses = {(P0, C0), (P0, C1), (P1, C0), (P1, C2)}

This retains the essential structure: course C3 now has two possible 
prerequisites, P0, consisting of course C0 and C1, and P1, consisting of 
course C0 and C2.

There is another respect, by the way, in which a higher-order relation is 
more expressive than a flat relation. A function that maps atoms drawn 
from a set A to sets of atoms drawn from a set B can include a map-
ping from an atom to the empty set, thus distinguishing an atom be-
ing mapped to nothing and an atom not being mapped at all. A binary 
relation from atoms in A to atoms in B cannot make such a distinction. 
Instead, you’d declare an additional set: the address books with empty 
mappings, for example, would belong to the set Book but would not be 
mapped by addr.

Why not include composite objects as a language construct?

Traditional specification languages such as VDM and Z allow you to 
model composite objects directly with composite mathematical objects. 
For example, an address book might be represented not as an atom, 
but as a relation from names to addresses. A relationship between an 
address book and another object would then be expressible only with 
a higher-order relation. The reasons for excluding composite objects 
in their own right are thus the reasons we’ve already given for prefer-
ring flat relations. Also, mathematical objects have no identity distinct 
from their value; if you want to talk about the values of different address 
books at different times, you need to introduce atoms representing the 
identities of the books anyway.
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Can you really work without interpreted atoms such as the integers?

Yes, almost all the time. And it turns out that on most occasions that 
you might think you need integers, it’s cleaner and more abstract to use 
atoms of an uninterpreted type with some relations to give whatever 
interpretation is needed. Alloy does actually support integers, albeit in 
a limited way. You can take the size of a relation, add, subtract, and 
compare integers (but not multiply or divide them). The treatment of 
integers is explained in sections 3.7 and 4.8.

Can relations have infinite size and arity?

Nothing in our logic precludes relations of infinite size, but for all the 
models we’ll look at, it’s sufficient to consider only finite instantiations. 
A relation must have a finite arity, though.

Are multirelations useful in practice?

Yes, because relations are flat rather than nested, arities greater than two 
are very common. To model execution traces of a system whose state 
involves relationships will require ternary relations: two columns for 
the relationship at a given time, and an additional column for the time. 
Relations of arity four are less common; as an example, the states of a 
network routing table might relate the host at which the table resides 
(1), a second host that is the desired destination of an incoming packet 
(2), the port to be used in forwarding the message (3), and the time at 
which this table entry is present (4). Arities of five or greater are rare.

Why don’t the columns in a relation have names?

If you’re more familiar with relational databases than relational logic, 
you may find it odd that the columns of a relation are identified by their 
position rather than by name. In modeling, relations tend to have much 
smaller arities than relations in a database; it’s rare for a relation to have 
more than four columns. Moreover, in the constraints of a model, joins 
tend to be applied to a relation on particular columns, in a particular 
order. By arranging the columns carefully, almost all joins can be made 
to be on the first or last column of a relation. Consequently, treating col-
umns positionally rather than by name is more convenient, and results 
in more succinct and natural expressions.
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If the order of columns matters, how do you represent an unordered re-
lationship?

An unordered relationship can be represented in different ways. The 
simplest way is to use a relation r (ordered, as always), and add a con-
straint r = ~r that makes it symmetric—the same forward and backward. 
For example, spouse = ~spouse says that if you’re my spouse, I’m your 
spouse. This trick may be philosophically dubious, but in practice it’s 
fine, and much easier than introducing additional constructs.

Is the idea of treating scalars and sets as relations new?

No. It goes back to Tarski’s foundational work on the relational calculus 
[70]. All of Tarski’s relations were binary, however, so his encoding was 
a bit less natural: a set was a relation that mapped each atom in the set 
to every possible atom. Rick Hehner’s “bunches” [27] have a similar fla-
vor, but unify scalars and sets in a new kind of algebraic structure.

Isn’t it confusing to treat scalars as sets?

On first encountering this idea, some people are disturbed. After all, 
isn’t the distinction between a set and its elements the very founda-
tion of set theory? In a first-order logic, however, in which sets of sets 
are never used, no confusion arises. And in practice, breaking down 
the distinction between sets and scalars brings a nice uniformity. When 
writing a navigation expression, you don’t have to worry about whether 
an expression represents a set or a scalar. The grandfathers of person p, 
for example, can be written p.parents.father, in which the dot operator is 
applied to a scalar such as p in exactly the same way it is applied to a set 
such as p.parents.

Combined with the treatment of partiality, this allows us to write p’s 
mother-in-law as p.wife.mother + p.husband.mother (or equivalently as 
p.(wife + husband).mother), without worrying that if p has no wife the ex-
pression p.wife may be undefined.

Which terms are Alloy specific, and which are standard in logic and set 
theory?

All the terms introduced so far are standard, with the exception of mul-
tirelation (for a relation with more than two columns) and option (for a 
set that is empty or singleton).
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Is Alloy’s option like the option of the ML programming language?

Rather than treating options as singleton or empty sets, most model-
ing and programming languages use a union type. ML’s option is such 
a union: a tagged value that is either a scalar or some special null value. 
For modeling, this is less convenient, because the tagging wraps the 
value and changes its type. Consider, for example, a model of an email 
application with a scalar userAddress representing the user’s address, and 
an option replyAddress representing a separate address to be used in the 

“reply-to” field of messages. In Alloy, these variables have the same type, 
and can be combined and compared with set operators;

userAddress = replyAddress

for example, is true if replyAddress is defined and equal to userAddress. In 
the traditional approach, the two variables have distinct types, and can-
not be compared without projecting replyAddress first.

So there aren’t really any scalars in Alloy?

Not in the standard sense. Whereas a conventional language would 
distinguish a (a scalar), {a} (a singleton set containing a scalar), (a) (a 
tuple), and {(a)} (a relation), Alloy treats them all as the same, and rep-
resents them as {(a)}.

Why is the term “option” useful? Isn’t every option either a scalar or emp-
ty?

The term is used to describe a variable whose value is unknown, rather 
than a particular value, in the same way that you might refer to a “ve-
hicle” without knowing whether it’s a car or a truck. By definition, every 
scalar is also an option; both are sets; and every set is a relation. But, 
typically, you want to use the term that tells you most about a relation, 
so you don’t call it a “relation” if you know it’s a set, or a “set” if you know 
it’s a scalar.
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3.2.4	 Functional	and	Injective	Relations
A binary relation that maps each atom to at most one other atom is said 
to be functional, and is called a function. A binary relation that maps at 
most one atom to each atom is injective.

Example. Here are four possible values of a relation mapping 
names to addresses, illustrated in figs. 3.3–3.6:

address1 = {(N0, D0), (N1, D1), (N2, D1)}
address2 = {(N0, D0), (N1, D1), (N1, D2)}
address3 = {(N0, D0), (N1, D1), (N2, D2)}
address4 = {(N0, D1), (N1, D1), (N1, D2)}

The first is functional but not injective; the second is injective but 
not functional; the third is both functional and injective; and the 
fourth is neither. An empty binary relation is functional and injec-
tive.

Discussion

Where does the idea of treating functions as relations come from?

The idea of treating functions as relations has been pioneered in mod-
eling by the specification language Z [65]. Its use goes back at least to 
Zermelo and Fraenkel’s set theory (hence the “Z” in Z). Alloy is actually 
more minimalist than Z. Although Z doesn’t distinguish functions and 
relations, it does distinguish scalars, sets, and tuples from each other. In 
Alloy, everything’s a relation.

fig. 3.3  Functional 
but not injective.
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fig. 3.4  Injective 
but not functional.

fig. 3.5  Functional 
and injective.

fig. 3.6  Neither 
functional nor 

injective.
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Is it standard to treat functions as relations?

No. Most other modeling languages distinguish functions from other 
relations. In UML’s constraint language OCL [53], for example, navigat-
ing through an association can either produce an empty set or an unde-
fined value, depending on the multiplicity of the association.

Is an injective relation an injection?

The term “injection” is traditionally applied only to a relation that is 
both functional and injective, so I try to avoid using it. Unfortunately, 
there isn’t a common name for an injective relation.

3.2.5	 Domain	and	Range
The domain of a relation is the set of atoms in its first column; the range 
is the set in the last column.

Example. A relation with its domain and range:

address = {(N0, D0), (N1, D1), (N2, D1)}
domain (address) = {(N0), (N1), (N2)}
range (address) = {(D0), (D1)}

A relation of higher arity has a domain and range too.

Example.

addr = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)}
domain (addr) = {(B0), (B1)}
range (addr) = {(D0), (D1), (D2)}

Discussion

Are domain and range special operators?

No, but they are predefined for binary relations as functions in the Alloy 
library. They’re easily expressed with the other operators (introduced 
later): the domain and range of a binary relation r are r.univ and univ.r 
respectively.

Are the domain and range functions commonly used?

They are used less frequently than in languages such as Z, because of 
Alloy’s rich language of declarations (see section 3.6), which encourages 
you to introduce sets that explicitly represent a relation’s domain and 
range.
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What about total and partial functions?

The term “domain” is often used to refer to the set of atoms that might 
be mapped by a relation or function. In that case, a total function is one 
that maps every member of its domain. This notion requires that a set 
be associated implicitly with a relation. (Alternatively, a total function 
relation might be one that maps every atom in the universe, but this is 
a very rare case.) Our logic is simpler than this: the relation is just its 
tuples, and the domain and range of the relation are determined by this 
set of tuples. I do occasionally use the terms “total” and “partial” infor-
mally, referring to whether a relation is total or partial over the set that 
appears in its declaration.

3.3	 Snapshots

Particular values of sets and binary relations can be shown graphically 
in a snapshot. You create a node for each atom, and draw an arc for each 
tuple connecting the nodes corresponding to the first and second atoms 
in the tuple. To show several relations, you label each tuple arc with the 
relation it belongs to. Sets can be shown in two ways: either by an extra 
label in a node naming a set it belongs to, or by drawing a labelled con-
tour around some nodes.

Example. A multilevel address book modeled by a relation address 
mapping names to targets, where targets are names or addresses, 
and names are aliases or groups, might be represented textually 
by

address = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
Target = {(G0), (A0), (A1), (D0), (D1), (D2)}
Name = {(G0), (A0), (A1)}
Alias = {(A0), (A1)}
Group = {(G0)}
Addr = {(D0), (D1), (D2)}

or graphically by the snapshot of fig. 3.7.

Multirelations can be shown as graphs by projecting out one or more 
columns. Projection takes two steps. Suppose just one column is being 
projected out. In the first step, the column is moved to the front, so 
that it becomes the first column of the relation; each tuple is permuted 
accordingly. In the second step, the relation is split into an indexed col-
lection of relations. For each atom that appears in the first column, we 
associate the relation consisting of all those tuples that begin with that 
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atom, but with the atom removed. For an atom a and relation r, this new 
relation is given by the expression a.r (using the join operator defined 
in subsection 3.4.3).

Example. A world of several multilevel address books modeled by 
the relation addr mapping books to names to targets, where targets 
are names or addresses, and names are aliases or groups, might be 
represented textually by

addr = {(B0, G0, A0), (B0, G0, A1), (B0, A0, D0), (B0, A1, D1),
 (B1, A0, D1)}
Book = {(B0), (B1)}

(and with appropriate assignments to the other sets as in the pre-
vious example.) Its projection onto the first column gives

B0.addr = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
B1.addr = {(A0, D1)}

which could be shown visually as two graphs, the one for B0 being 
that of fig. 3.7 (but with addr for address).

Examples. All of the diagrams generated by the Alloy Analyzer in 
chapter 2 are snapshots. The analyzer lets you customize how in-
stances are displayed; you can select a set and project all relations 
in the instance onto the columns associated with that set. In this 
case, a projection using the set Book was chosen. Under projection, 

fig. 3.7  A sample snapshot.
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a binary relation becomes a set; this is why, for example, the rela-
tion names from books to the names they map appears as a label in 
fig. 2.13. The analyzer can show sets only by labeling nodes; it can’t 
currently draw contours.

3.4	 Operators

The language of arithmetic consists of constants (such as 0, 1, 2 …) and 
operators (such as +, -, ×). Likewise, the language of relations has its own 
constants and operators.

Operators fall into two categories. For the set operators, the tuple struc-
ture of a relation is irrelevant; the tuples might as well be regarded as at-
oms. For the relational operators, the tuple structure is essential: these 
are the operators that make relations powerful.

3.4.1	 Constants
There are three constants:

none  empty set
univ  universal set
iden  identity

Note that none and univ, representing the set containing no atom and 
every atom respectively, are unary. To denote the empty binary rela-
tion, you write none -> none, and for the universal relation that maps ev-
ery atom to every atom, univ -> univ (using the arrow operator defined in 
subsection 3.4.3). The identity relation is binary, and contains a tuple 
relating every atom to itself.

Example. For a model in which there are two sets

Name = {(N0), (N1), (N2)}
Addr = {(D0), (D1)}

the constants have the values

none = {}
univ = {(N0), (N1), (N2), (D0), (D1)}
iden = {(N0, N0), (N1, N1), (N2, N2), (D0, D0), (D1, D1)}

Note that iden relates all the atoms of the universe to themselves, not 
just the atoms of some subset.
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Discussion

Are these constants implicitly parameterized by type?

No. In some modeling languages, these constants are actually indexed 
collections of constants, and the appropriate instance must be selected 
by some means, either implicit or explicit. In Z, for example, the identity 
relation takes an explicit type parameter, and the empty relation is poly-
morphic. In Alloy, these constants are just three simple constants, with 
the values of iden and univ determined by the values of all the declared 
sets. Consequently, it’s rare to use iden and univ without qualification; 
you’ll usually write s <: iden, for example, to give the identity relation on 
the set s (using the restriction operator defined in subsection 3.4.3.6). If 
you forget to do this, you may get some surprises. For example, iden in 
r not only says that the relation r is reflexive but also that it maps every 
atom in the universe, which is likely to be inconsistent with r’s declara-
tion.

Are these constants useful?

The identity relation is essential to the relational calculus style. For ex-
ample, the constraint no ^r & iden says that the relation r is acyclic. A 
common use for the empty relation is for instantiating predicates (see 
subsection 4.5.2) that take sets as arguments, as in the frame conditions 
of section 6.2.

Aside from these cases, the constants are rarely used. To say a relation 
is empty or non-empty, it’s better to use the expression quantifiers (ex-
plained in subsection 3.5.2) than the constant none, writing no r, for ex-
ample, rather than r = none. Universal relations are usually limited to 
particular sets, so instead, you’d write Name -> Addr, for example, for the 
relation that maps all names to all addresses.

Do the constants add any expressive power?

A subtle point for those interested in language design issues. You might 
think that these constants could be omitted, and defined instead in a 
library module. The universal relation can’t be defined in this way, since 
all quantifiers and comprehensions require explicit bounds. You could 
define the universal relation explicitly as the union of all the free set 
variables (the top-level signatures; see subsection 4.2.1), but then you’d 
have to change the definition whenever a new set is introduced.

The other two constants can in fact be defined. The identity relation, 
for example, can be expressed as the comprehension {x, y: univ | x = y}. 



5� logic

But they were included because it’s more convenient to use constants 
than library functions, and because the analyzer can exploit their spe-
cial properties more readily this way.

3.4.2	 Set	Operators										
The set operators are

+  union
&  intersection
-  difference
in  subset
=  equality

and here is what they mean:

· a tuple is in p + q when it is in p or in q (or both);
· a tuple is in p & q when it is in p and in q;
· a tuple is in p - q when it is in p but not in q;
· p in q is true when every tuple of p is also a tuple of q;
· p = q is true when p and q have the same tuples.

These operators can be applied to any pair of relations so long as they 
have the same arity. Because scalars are just singleton sets, the braces 
used to form sets from scalars in traditional mathematical notation 
aren’t needed. For scalars a and b, for example, the expression a + b de-
notes the set containing both a and b.

Examples. Given the following sets

Name = {(G0), (A0), (A1)}
Alias = {(A0), (A1)}
Group = {(G0)}
RecentlyUsed = {(G0), (A1)}

· Alias + Group = {(G0), (A0), (A1)}
 gives the set of atoms that are aliases or groups;

· Alias & RecentlyUsed = {(A1)}
 gives the set of atoms that are aliases and have been recently 

used;

· Name - RecentlyUsed = {(A0)}
 gives the set of atoms that are names but have not been recently 

used;



logic 5�

· RecentlyUsed in Alias
 says that every thing that has been recently used is an alias, and is 

false, because of the tuple {(G0)}, which is recently used but not 
an alias;

· RecentlyUsed in Name
 says that every thing that has been recently used is a name, and is 

true;

· Name = Group + Alias
 says that every name is a group or an alias, and is true.

Examples. Given the following relations, representing portions of 
an address book cached in memory and stored on disk,

cacheAddr = {(A0, D0), (A1, D1)}
diskAddr = {(A0, D0), (A1, D2)}

· cacheAddr + diskAddr =  {(A0, D0), (A1, D1), (A1, D2)}
 is the relation that maps a name to an address if it’s mapped in 

the cache or on disk;

· cacheAddr & diskAddr =  {(A0, D0)}
 is the relation that maps a name to an address if it’s mapped in 

the cache and on disk;

· cacheAddr - diskAddr =  {(A1, D1)}
 is the relation that maps a name to an address if it’s mapped in 

cache but not on disk;

· none in diskAddr
 says that the empty relation is contained in the relation diskAddr, 

and is true, irrespective of the value of diskAddr;

· cacheAddr = diskAddr
 says that the mappings in the cache are the same as those on disk, 

and is false, because of the tuple (A1, D1) in cacheAddr and (A1, D2) 
in diskAddr.

Examples. Given the following scalars,

myName = {(N0)}
yourName = {(N1)}

· myName + yourName = {(N0), (N1)}
 is the set of atoms that are either my name or your name;

· myName = yourName
 says that my name is the same as your name, and is false;
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· yourName in none
 says that there is no name that is your name, and is false also.

Discussion

Is the set operator equals sign the one you used before?

No. Statements like cacheAddr = {(A0, D0), (A1, D1)} are used in this 
chapter alone to explain the meaning of the logic, and always have an 
Alloy expression on the left, and a description of a relation (in conven-
tional mathematical notation) on the right. In this case, the equals sign 
is a special definitional symbol, and is not symmetric: it would make no 
sense to write {(A0, D0), (A1, D1)} = cacheAddr.

A statement like Name = Group + Alias, on the other hand, is a constraint 
in the Alloy logic, and the equals sign is the set operator defined in this 
section. This equality notion is symmetric, and the statement is equiva-
lent to Group + Alias = Name. I could have used a different symbol for the 
definitional equals, but that seemed a bit pedantic.

Is equality structural equality or reference equality?

A relation has no identity distinct from its value, so this distinction, 
based on programming notions, doesn’t make sense here. If two rela-
tions have the same set of tuples, they aren’t two relations: they’re just 
one and the same relation. An atom is nothing but its identity; two at-
oms are equal when they are the same atom. If you have a set of atoms 
that represent composite objects (using some relations to map the at-
oms to their contents), you can define any notion of structural equality 
you want explicitly, by introducing a new relation.  (And for those C++ 
programmers out there: no, you can’t redefine the equals symbol in Al-
loy.)

Aren’t there type constraints on these operators?

Not the conventional ones. In some simply typed languages, such as Z, 
the two arguments to a set operator must have the same type. So an ex-
pression such as Book + Addr, representing the union of the set of address 
books and the set of addresses, would be illegal. In Alloy, such expres-
sions are not in general illegal, and can be put to good use. In modeling 
the value of a Java variable v of type C, for example, you might introduce 
a singleton set Null containing the null reference, and then declare

v: C + Null
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to say that v is either null or a reference in the set C. In type systems that 
don’t allow unions of this form, it can be hard to express this constraint 
with a declaration, and it may be necessary to weaken it to allow a refer-
ence to any class, or to distinguish null values of different types.

Alloy does impose some constraints, though. The arities of the argu-
ments must match, so an expression like addr + Name is illegal. And if 
it can be shown, from declarations of variables alone, that an expres-
sion can be replaced by an empty relation without affecting the value 
of the constraint in which it appears, that expression is deemed to be 
ill-formed, even though its meaning is clear. For example, both Name 
& Book and Name & (Alias + Book) would be ill-typed because the occur-
rences of Book in both (and also Name in the first) could be replaced by 
none without affecting their meaning.

Why the keyword in?

The keyword in was carefully chosen for its ambiguity. Because scalars 
are represented as singleton sets, in will sometimes denote membership 
(between a scalar and a set, or a tuple and a relation), conventionally 
written ∈, and sometimes subset (between two sets or two relations), 
conventionally written ⊆.

3.4.3	 Relational	Operators
The relational operators are

->  arrow (product)
.  dot (join)
[]  box (join)
~  transpose
^  transitive closure
*  reflexive-transitive closure
<:  domain restriction
:>  range restriction
++  override

3.4.3.1	 Arrow	Product			

The arrow product (or just product) p -> q of two relations p and q is the 
relation you get by taking every combination of a tuple from p and a 
tuple from q and concatenating them.

When p and q are sets, p -> q is a binary relation. If one of p or q has arity 
of two or more, then p -> q will be a multirelation.
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When p and q are tuples, p -> q will also be a tuple. In particular, when p 
and q are scalars, p -> q is a pair.

Example. Given the following names, addresses, and address book 
mapping

n = {(N0)}
n’ = {(N1)}
d = {(D0)}
d’ = {(D1)}
address = {(N0, D0), (N1, D1)}

we have

· n -> d = {(N0, D0)}
 is the tuple mapping name n to address d;

· address = n -> d + n’ -> d’
 says that address maps n to d and n’ to d’ (and maps nothing else), 

and is true.

Example. Given the following sets of names, addresses, and ad-
dress books

Name = {(N0), (N1)}
Addr = {(D0), (D1)}
Book = {(B0)}

we have

· Name -> Addr = {(N0, D0), (N0, D1), (N1, D0), (N1, D1)}
 is the relation mapping all names to all addresses;

· Book -> Name -> Addr =  
 {(B0, N0, D0), (B0, N0, D1), (B0, N1, D0), (B0, N1, D1)}

 is the relation associating books, names and addresses in all pos-
sible ways.

Example. Given the following address book mappings and address 
books

address = {(N0, D0), (N1, D1)}
address’ = {(N2, D2)}
b = {(B0)}
b’ = {(B1)}

b -> address + b’ -> address’ = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)} 
is the relation that associates book b with the name-address map-
ping address, and b’ with address’.
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3.4.3.2	 Dot	Join			

The quintessential relational operator is composition, or join. Let’s see 
how to combine tuples before we combine relations. To join two tuples

s1 -> … -> sm

t1 -> … -> tn

you first check whether the last atom of the first tuple (that is, sm) match-
es the first atom of the second tuple (that is, t1). If not, the result is 
empty—there is no join. If so, it’s the tuple that starts with the atoms of 
the first tuple, and finishes with the atoms of the second, omitting just 
the matching atom:

s1 ->… -> sm-1 -> t2 -> … -> tn

Examples. Here are some example of joins of tuples:

{(N0, A0)} . {(A0, D0)} = {(N0, D0)}
{(N0, D0)} . {(N0, D0)} = {}
{(N0, D0)} . {(D1)} = {}
{(N0)} . {(N0, D0)} = {(D0)}
{(N0, D0)} . {(D0)} = {(N0)}
{(B0)} . {(B0, N0, D0)} = {(N0, D0)}

The dot join (or just join) p.q of relations p and q is the relation you get by 
taking every combination of a tuple in p and a tuple in q, and including 
their join, if it exists. The relations p and q may have any arity, so long 
as they aren’t both unary (since that would result in a relation with zero 
arity).

When p and q are binary relations, p.q is their standard relational com-
position.  

Example. Given a relation to that maps a message to the names it’s 
intended to be sent to, and a relation address that maps names to 
addresses

to = {(M0, N0), (M0, N2), (M1, N2), (M2, N3)}
address = {(N0, D0), (N0, D1), (N1, D1), (N1, D2), (N2, D3), (N4, D3)}

the relation to.address maps a message to the addresses it should 
be sent to:

to.address = {(M0, D0), (M0, D1), (M0, D3), (M1, D3)}

and is illustrated in fig. 3.8 overleaf.
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If p and q are functions, p.q will be a function too, and in this case dot is 
equivalent to functional composition.

Examples. Given a function address mapping names to addresses, 
a function user mapping an address to its username portion, and a 
function host mapping an address to its hostname portion

address = {(N0, D0), (N1, D0), (N2, D2)}
user = {(D0, U0), (D1, U1), (D2, U2)}
host = {(D0, H0), (D1, H1), (D2, H2)}

the expressions address.user and address.host are the functions that 
map a name to the corresponding user and host respectively:

fig. 3.8  A snapshot illustrating a dot join of two relations: feint 
arcs for the relation to; dashed arcs for address; and solid arcs for 

their join to.address.
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address.user = {(N0, U0), (N1, U0), (N2, U2)}
address.host = {(N0, H0), (N1, H0), (N2, H2)}

When s is a set, and r is a binary relation, s.r is the image of the set s un-
der the relation r; this image is the set you get if you follow the relation 
r for each member of s, and collect together in a single set all the sets 
that result. This is perhaps the most common use of dot, and is called 
navigation in object modeling parlance. 

When x is a scalar, and r is a binary relation, x.r is the set of atoms that x 
maps to. For a function f and a scalar x in its domain, x.f is the scalar that 
f maps x to. So in this case, join is like function application, but note that 
x.f will be the empty set when x is not in the domain of f. Traditionally, a 
function applied outside its domain gives no result at all, and an expres-
sion involving such an application may therefore be undefined. In our 
logic, there are no undefined expressions.

You can navigate in both directions; s.r is the image of the set s going 
forward through r, and r.s is the image going backward.

Example. Given a multilevel address book represented by a rela-
tion addr, and sets of aliases, groups, and addresses

address = {(G0, A0), (G0, A1), (A0, D0), (A1, D1)}
Alias = {(A0), (A1)}
Group = {(G0)}
Addr = {(D0), (D1), (D2)}

we have the following expressions:

· Alias.address = {(D0), (D1)}
 the set of results obtained by looking up any alias in the address 

book;

· Group.address = {(A0), (A1)}
 the set of results obtained by looking up any group in the address 

book;

· address.Group = {}
 the set of names that when looked up in the address book yield 

groups;

· address.Alias = {(G0)}
 the set of names that when looked up in the address book yield 

aliases.
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Joins of relations of higher arity are common too, especially the forms 
x.q and q.x, where x is a scalar, and q is a multirelation.

Example. Given a particular address book b, and a ternary relation 
addr associating books, names, and addresses

b = {(B0)}
addr = {(B0, N0, D0), (B0, N1, D1), (B1, N2, D2)}

the expression b.addr is the name-address mapping for book b:

b.addr = {(N0, D0), (N1, D1)}

Example. Given a time t, and a ternary relation addr that contains 
the triple n -> a -> t when name n maps to address a at time t

t = {(T1)}
addr = {(N0, D0, T0), (N0, D1, T1), (N1, D2, T0), (N1, D2, T1)}

the expression addr.t is the name-address mapping at time t:

addr.t = {(N0, D1), (N1, D2)}

Example. Given a relation addr of arity four that contains the tuple 
b -> n -> a -> t when book b maps name n to address a at time t, and a 
book b and a time t

addr = {(B0, N0, D0, T0), (B0, N0, D1, T1), (B0, N1, D2, T0),
 (B0, N1, D2, T1), (B1, N2, D3, T0), (B1, N2, D4, T1)}
t = {(T1)}
b = {(B0)}

the expression b.addr.t is the name-address mapping of book b at 
time t:

b.addr.t = {(N0, D1), (N1, D2)}

Note that b.addr.t doesn’t need parentheses to indicate the order in 
which the joins are applied. The expressions b.(addr.t) and (b.addr).
t are equivalent: you can project onto a particular book, and then 
onto a particular time, or you can first select the time, and then 
the book.

Discussion

Is dot join associative?

No. The expressions (a.b).c and a.(b.c) are not always equivalent, be-
cause one may be ill-formed and the other well-formed. Because of the 
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dropped column, the arity of a join is always one less than the sum of 
the arities of its arguments. If s and t are unary, and r is ternary, for 
example, the expression t.r will be binary, and s.(t.r) will be unary. The 
expression s.t, however, would have zero arity, and is thus illegal, so (s.t).
r is likewise illegal, and is not equivalent to s.(t.r).

But if two ways to parenthesize a join expression are both well formed—
as in the example just above—they will be equivalent. So a mistake in 
placing parentheses won’t cause a model to have an unintended mean-
ing, and you can ignore the issue unless the type checker complains. 
(Thanks to Somesh Jha for pointing this out.)

Is dot join the same as a database’s join?

Not quite. In relational database query languages, the join operator 
matches columns by name rather than position, and the matching col-
umn is not dropped. You can define a more database-like join as follows. 
Let id3 be the ternary identity relation

id3 = {a, b, c: univ | a = b and b = c}

and define

p ⊙ q = p.id3.q

Then p ⊙ q concatenates matching tuples like dot join, but retains the 
matching elements like database join. It also provides a nice shorthand 
for restrictions (introduced in section 3.4.3.6): s <: r and r :> s can be 
written s ⊙ r and r ⊙ s. (Thanks to Butler Lampson for this insight.)

3.4.3.3	 Box	Join		

The box operator [] is semantically identical to join, but takes its argu-
ments in a different order, and has different precedence. The expres-
sion

e1 [e2]

has the same meaning as

e2.e1

Example. Given a relation address from names to addresses, and a 
scalar n representing a name, the expression address[n] is equiva-
lent to n.address, and denotes the set of addresses that n is mapped 
to.

Dot binds more tightly than box, however, so
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a.b.c [d]

is short for

d.(a.b.c)

The rationale for this operator is that it allows an syntactic distinction to 
be made between dereferencing a field of a composite object (with dot 
join) and performing an indexed lookup (with box join), even though 
there is no semantic distinction between the two.

Example. Given a ternary relation addr associating books, names, 
and addresses, the expression b.addr[n] denotes the set of addresses 
associated with name n in book b, and is equivalent to n.(b.addr).

The choice of the box is motivated by analogy to array notation.

Example. In a model of a class C that has an array-valued field f, the 
result of dereferencing x with field f, and then retrieving the object 
at index i can be denoted x.f[i], just as in Java, or equivalently as 
i.(x.f).

3.4.3.4	 Transpose	

The transpose ~r of a binary relation r takes its mirror image, forming a 
new relation by reversing the order of atoms in each tuple.

Example. Given a relation representing an address book that maps 
names to the addresses they stand for

address = {(N0, D0), (N1, D0), (N2, D2)}

its transpose is the relation that maps each address to the names 
that stand for it:

~address = {(D0, N0), (D0, N1), (D2, N2)}

A binary relation r is symmetric if, whenever it contains the tuple a -> b, 
it also contains the tuple b -> a, or more succinctly as a relational con-
straint:

~r in r

Taking the transpose of a symmetric relation has no effect. The symmet-
ric closure of r is the smallest relation that contains r and is symmetric, 
and is equal to r + ~r.

Examples. A relation connects mapping hosts to the neighbors they 
are connected to in a network would be symmetric if the connec-
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tions were bidirectional. The transpose of a relation wife mapping 
men to their wives is the relation husband mapping women to their 
husbands, and its symmetric closure is the relation spouse map-
ping each person to his or her spouse.

Some useful facts about transpose:

· s.~r is equal to r.s, and is the image of the set s navigating backward 
through the relation r;

· r.~r is the relation that associates two atoms in the domain of the rela-
tion r when they map to a common element; when r is a function, r.~r 
is the equivalence relation that equates atoms with the same image.

· r.~r in iden therefore says that r is injective, and ~r.r in iden says that r 
is functional.

Example. If mother is the relation that maps a child to its mother, 
the expression mother.~mother is the sibling relation that maps a 
child to its siblings (and also to itself ).

Discussion

Why did you write ~r in r to say that r is symmetric?

You might have expected ~r = r instead. The two conditions are equiva-
lent, but I prefer the first because (1) it matches the informal statement 
more closely; (2) it follows the pattern of the conditions for reflexivity 
and transitivity; and (3) it’s a good habit from an analysis perspective to 
write constraints in their weakest form. Admittedly, this is a bit pedan-
tic, and it’s not unreasonable to expect a definition of symmetry to be 
symmetric.

3.4.3.5	 Transitive	Closure		

A binary relation is transitive if, whenever it contains the tuples 
a -> b and b -> c, it also contains a -> c, or more succinctly as a relational 
constraint:

r.r in r

The transitive closure ̂ r of a binary relation r, or just the closure for short, 
is the smallest relation that contains r and is transitive. You can com-
pute the closure by taking the relation, adding the join of the relation 
with itself, then adding the join of the relation with that, and so on:

^r = r + r.r + r.r.r + …
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Example. A relation address representing an address book with 
multiple levels (which maps aliases and groups to groups, aliases, 
and addresses), and its transitive closure:

address =
  {(G0, A0), (G0, G1), (A0, D0), (G1, D0), (G1, A1), (A1, D1), (A2, D2)}

^address =
 {(G0, A0), (G0, G1), (A0, D0), (G1, D0), (G1, A1), (A1, D1), (A2, D2),
 (G0, D0), (G0, A1), (G1, D1),
 (G0, D1)}

I’ve broken the transitive closure into lines to indicate the contri-
bution from the relation itself (on the first line), from its square 
address.address (on the second), and from its cube address.address.
address (on the third). Fig. 3.9 shows the closure graphically.

Viewing a relation as a graph, the transitive closure represents reach-
ability. Since the relation itself represents the paths that are one step 
long, its square the paths that are two steps long, and so on, the closure 

fig. 3.9  A snapshot illustrating transitive closure of a relation: the 
feint arcs represent the relation address; the solid arcs are those that 

are added to it to form its closure ^address.
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relates one atom to another when they are connected by a path of any 
length (except for zero).

A binary relation r is reflexive if it contains the tuple a -> a for every atom 
a, or as a relational constraint,

iden in r

The reflexive-transitive closure *r is the smallest relation that contains r 
and is both transitive and reflexive, and is obtained by adding the iden-
tity relation to the transitive closure:  

*r = ^r + iden

From the graphical viewpoint, the reflexive-transitive closure relates 
one atom to another when they are connected by a path of any length, 
including zero.

Because iden relates every atom in the universe to itself (as explained in 
section 3.4.1 and the discussion that follows it), the reflexive-transitive 
closure will do so as well.

Discussion

Why does the reflexive-transitive closure associate “irrelevant” atoms?

Suppose a model has a set Book of books, a set Name of names, a set Addr 
of addresses, a book b, and a relation addr mapping books to their con-
tents, with the following values:

Book = {(B0), (B1)}
Name = {(N0), (N1)}
Addr = {(D0), (D1)}
b = {(B0)}
addr = {(B0, N0, N1), (B0, N1, D0), (B1, N1, D1)}

Then the universe will contain all the atoms

univ = {(B0), (B1), (N0), (N1), (D0), (D1), (B0), (B1)}

and the identity relation will map each to itself:

iden = {(B0, B0), (B1, B1), (N0, N0), (N1, N1), (D0, D0), (D1, D1)}

The expression ^(b.addr), denoting the direct and indirect mapping of 
names in book b to the names and addresses reachable, will map names 
to names and addresses:

^(b.addr) = {(N0, N1), (N1, D0), (N0, D0)}
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The expression *(b.addr) will include the tuples of both these relations. 
In addition to tuples such as (N0, N0), which are expected, it will also 
includes tuples such as (B0, B0).

Although this seems odd, it follows naturally from the definition of re-
flexive-transitive closure and the identity relation. The alternative would 
be to have sets implicitly associated with each relation that represent 
the possible members of its domain and range, which would complicate 
the logic.

In practice this is not a problem. Closures often appear in navigation 
expressions, and the irrelevant self-tuples disappear in the join. For ex-
ample, the names and addresses reachable in zero or more steps from 
a set of names friends would be denoted friends.*(b.addr), and would not 
include any books, because friends and Book would be disjoint. If you 
need to remove the extra tuples explicitly, you can always write s <: *r to 
restrict the closure to map only atoms in the set s.

How many iterations can it take to form the closure of a relation?

For a finite universe, transitive closure needs only a finite unwinding, 
limited by the length of the longest path in the graph. For some rela-
tions, the transitive closure requires very few unwindings even if the 
universe is large. Stanley Milgram’s famous experiment in which he had 
residents of Kansas attempt to get letters to residents of Boston via ac-
quaintances showed that it took on average only six steps for a letter to 
arrive [52]. If six steps were really enough to connect any two people, it 
would mean that the closure of the knows relation is the universal rela-
tion, and that it can be obtained in six unwindings.

3.4.3.6	 Domain	and	Range	Restrictions

The restriction operators are used to filter relations to a given domain 
or range. The expression s <: r, formed from a set s and a relation r, 
contains those tuples of r that start with an element in s. Similarly, r :> s 
contains the tuples of r that end with an element in s.

Restrictions can be applied to relations of any arity of two or more, but 
are most often applied to binary relations.

Examples. Given a relation representing a multilevel address book 
and sets representing the aliases, groups, and addresses

address = {(G0, A0), (G0, G1), (A0, D0),
      (G1, D0), (G1, A1), (A1, D1), (A2, D2)}
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Alias = {(A0), (A1), (A2)}
Group = {(G0), (G1)}
Addr = {(D0), (D1), (D2)}

· address :> Addr = {(A0, D0), (G1, D0), (A1, D1), (A2, D2)}
 contains the entries that map names to addresses (and not to 

other names);

· address :> Alias = {(G0, A0), (G1, A1)}
 contains the entries that map names to aliases;

· Group <: address = {(G0, A0), (G0, G1), (G1, D0), (G1, A1)}
 contains the entries that map groups.

Applying a restriction to a binary relation is like taking the image of a 
set, but without dropping the matching elements. Put more formally, if 
r is a binary relation, and s is a set, then

range (s <: r) = s.r
domain (r :> s) = r.s

The identity relation maps every atom in the universe to itself. Often, 
what we want instead is a relation that maps every atom in some set s to 
itself, which can be written s <: iden.

3.4.3.7	 Override

The override p ++ q of relation p by relation q is like the union, except that 
the tuples of q can replace the tuples of p rather than just augmenting 
them. Any tuple in p that matches a tuple in q by starting with the same 
element is dropped. The relations p and q can have any matching arity 
of two or more.

Example. An address book might be represented by two relations, 
homeAddress and workAddress, mapping an alias to email addresses 
at home and at work:

homeAddress = {(A0, D1), (A1, D2), (A2, D3)}
workAddress = {(A0, D0), (A1, D2)}

The preferred address for an alias, which is the work address if it 
exists, and otherwise the home address, is given by

homeAddress ++ workAddress = {(A0, D0), (A1, D2), (A2, D3)}

Override can be defined in terms of simpler operators. Taking the over-
ride of p by q is equivalent to taking the union of q and what’s left of p 
after removing the tuples that start with an element in the domain of q:
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p ++ q = p - (domain (q) <: p) + q

Override is useful for modeling insertions into map datatypes, and as-
signment-like statements in programs.

Example. Insertion of a key k with value v into a hashmap can be 
modeled by representing the value of the map before and after as 
two relations m and m’ from keys to values, satisfying

m’ = m ++ k -> v

Example. The environment e of an executing Java program can be 
viewed (simplistically) as a relation mapping variables to object 
references. The effect of an assignment

x = y

with a variable on both sides is

e’ = e ++ x -> y.e

where e and e’ are the values of the environment before and after 
execution. The state of the heap at any point can be represented by 
one relation for each field (that is, instance variable) of each class. 
A setter statement such as

x.f = y

in which x and y are variables and f is a field can thus be described 
by

f’ = f ++ x.e -> y.e

where f and f’ represent the values of the field f before and after 
execution.

Discussion

What are the operator precedences?

Operators have a standard precedence ranking so that constraints aren’t 
marred by masses of parentheses. The ranking follows the usual con-
ventions: unary operators (closure, transpose) precede binary opera-
tors; product operators (such as dot and arrow) precede sum operators 
(plus, minus, intersect). The details are given in appendix B. All opera-
tors associate to the left.
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3.5	 Constraints

We’ve seen how to make a constraint from two expressions using the 
comparison operators in and =. Larger constraints are made from small-
er constraints by combining them with the standard logical operators, 
and by quantifying constraints that contain free variables over bind-
ings.

3.5.1	 Logical	Operators
There are two forms of each logical operator: a shorthand and a verbose 
form (similar to the operators used in boolean expressions in program-
ming languages):

· not ! negation
· and && conjunction
· or  || disjunction
· implies => implication
· else , alternative
· iff  <=> bi-implication

The negation symbol can be combined with comparison operators, so 
a != b is equivalent to not a = b, for example. The shorthand and the 
verbose forms are completely interchangeable, so you can write a not = 
b as well.

The else operator is used with the implication operator;

F implies G else H

is equivalent to

(F and G) or ((not F) and H)

Implications are often nested. The common idiom

C1 => F1 ,
C2 => F2 ,
C3 => F3

or equivalently

C1 implies F1
else C2 implies F2
else C3 implies F3

says that under condition C1, F1 holds, and if not, then under condition 
C2, F2 holds, and if not, under condition C3, F3 holds.



�0 logic

Conjunctions of constraints are so common that we’ll often omit the 
and operator, and wrap the entire collection of constraints in braces. So 
{F G H} is equivalent to F and G and H.

Sometimes, it’s more natural to use a conditional expression than a con-
ditional formula. This takes the form

if C then E1 else E2

where C is a constraint, and E1 and E2 are expressions, and has the value 
of E1 when C is true, and the value of E2 otherwise.

Examples. Suppose an address book is modeled with three rela-
tions: homeAddress and workAddress mapping an alias to email ad-
dresses at home and at work, and address mapping an alias to the 
preferred address. To say that the preferred address for an alias 
a is the work address if it exists, otherwise the home address, we 
can write

some a.workAddress =>
  a.address = a.workAddress ,
  a.address = a.homeAddress

or, using an if-then-else expression

a.address =
 if some a.workAddress then a.workAddress else a.homeAddress

3.5.2	 Quantification					
A quantified constraint takes the form

Q x: e | F

where F is a constraint that contains the variable x, e is an expression 
bounding x, and Q is a quantifier.

The forms of quantification in Alloy are

· all x: e | F  F holds for every x in e;
· some x: e | F F holds for some x in e;
· no x: e | F  F holds for no x in e;
· lone x: e | F F holds for at most one x in e;
· one x: e | F F holds for exactly one x in e.

To remember what lone means, it might help to think of it as being short 
for “less than or equal to one.”
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Several variables can be bound in the same quantifier;

one x: e, y: e  | F

for example, says that there is exactly one combination of values for x 
and y that makes F true. Variables with the same bound can share a dec-
laration, so this constraint can also be written

one x, y: e  | F

By using the keyword disj before the declaration, you can restrict the 
bindings only to include ones in which the bound variables are disjoint 
from one another, so

all disj x, y: e  | F

means that F is true for any distinct combination of values for x and y. 
(See subsection 3.5.3 for cases in which x and y are not scalars.)

Examples. Given a set Address of email addresses, Name of names, 
and a relation address representing a multilevel address book map-
ping names to names and addresses,

· some n: Name, a: Address | a in n.address
 says that some name maps to some address (that is, the address 

book is not empty);

· no n: Name | n in n.^address
 says that no name can be reached by lookups from itself (that is, 

there are no cycles in the address book);

· all n: Name | lone d: Address | d in n.address
 says that every name maps to at most one address;

· all n: Name | no disj d, d’: Address | d + d’ in n.address
 says the same thing, but slightly differently: that for every name, 

there is no pair of distinct addresses that are among the results 
obtained by looking up the name.

Quantifiers can be applied to expressions too:

· some e e has some tuples;
· no e e has no tuples;
· lone e e has at most one tuple;
· one e e has exactly one tuple.

Note that some e and no e could be written e != none and e = none respec-
tively, but using the quantifiers makes the constraints more readable.
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Examples. Using the sets and relation from the previous example,

· some Name
 says that the set of names is not empty;

· some address
 says that the address book is not empty: there is some pair map-

ping a name to an address;

· no (address.Addr - Name)
 says that nothing is mapped to addresses except for names;

· all n: Name | lone n.address
 says that every name maps to at most one address (more suc-

cinctly than in the previous example);

· all n: Name | one n.address or no n.address
 says the same thing.

3.5.3	 Higher-order	Quantification
Quantified variables don’t have to be scalars; they can be sets, or even 
multirelations. A logic that allows this is no longer “first order” and be-
comes “higher order.” Alloy includes such quantifications, but they can-
not always be analyzed (see subsection 5.2.2).

Examples. Higher-order quantifications are often useful for stat-
ing properties about operators:

· all s, t: set univ | s + t = t + s
 the union operator on sets is commutative;

· all p, q: univ lone -> lone univ | p.q: univ lone -> lone univ
 the join of two functions is a function too.

Discussion

Does Alloy allow freestanding declarations?

No. The declaration forms described in this section can be used for 
quantified variables, and for fields, and can be used as formulas. But 
top-level relation declarations are not supported, although they are un-
necessary (as explained in the discussion following section 4.2.2).

When can higher-order quantifications be analyzed?

Generally, the Alloy Analyzer cannot handle formulas that involve high-
er-order quantifications, so their use is discouraged. But in some useful 
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cases, higher-order quantifiers can be eliminated by a scheme known 
as “skolemization,” which turns a quantified variable into a free variable 
whose value can then by found by constraint solving. See subsection 
5.2.2 for more details.

What’s the difference between lone p: some X | F and some p: lone X | F?

Novices are sometimes confused by the difference between these quan-
tifications:

lone p: some X | F
some p: lone X | F

What makes these confusing is the use of the same keywords for the 
quantifier and the bounding expression’s multiplicity. In the first case, 
the quantifier is lone (at most one), and the multiplicity is some (one or 
more), so p is constrained to be drawn from the nonempty subsets of 
X, and the constraint says that F holds for at most one such subset p. In 
the second case, the quantifier is some, and the multiplicity is lone, so the 
constraint says that F holds for some option p, and is equivalent to

(some p: X | F) or (let p = none | F)

and is thus not really a higher-order quantification at all. I’ve never come 
across a need for the first, but the second is occasionally useful.

3.5.4	 Let	Expressions	and	Constraints
When an expression appears repeatedly, or is a subexpression of a larger, 
complicated expression, you can factor it out. The form

let x = e | A

is short for A with each occurrence of the variable x replaced by the ex-
pression e. The body of the let, A, and thus the form as a whole, can be a 
constraint or an expression.

Example. Revisiting the address book with three relations—ho-
meAddress and workAddress mapping an alias to email addresses at 
home and at work, and address mapping an alias to the preferred 
address—we can say that the preferred address for an alias a is the 
work address if it exists, otherwise the home address, by writing

all a: Alias |
 let w =  a.workAddress |
  a.address = if some w then w else a.homeAddress
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or

all a: Alias |
  a.address =
  let w = a.workAddress |
   if some w then w else a.homeAddress

Discussion

Can let bindings be recursive?

No. They only provide a convenient shorthand, and don’t allow recur-
sive definitions. A variable introduced by a let on the left-hand side of 
a binding cannot appear on the right-hand side of the same binding, or 
one that precedes it in the same let construct.

3.5.5	 Comprehensions
Comprehensions make relations from properties. The comprehension  
expression

{x1: e1, x2: e2, …, xn: en | F}

makes a relation with all tuples of the form x1 -> x2 -> … -> xn for which the 
constraint F holds, and where the value of xi is drawn from the value of 
the bounding set expression ei. Each expression ei must denote a set, and 
not a relation of higher arity.

Examples. In a multilevel address book represented by a relation 
address mapping names in the set Name to names and also to ad-
dresses in the set Addr,

· {n: Name | no n.^address & Addr}
 is the set of names that don’t resolve to any actual addresses;

· {n: Name, a: Addr | n -> a in ^address}
 is a relation mapping names to addresses that corresponds to the 

multilevel lookup.

3.6	 Declarations	and	Multiplicity	Constraints

A declaration introduces a relation name. We’ve just seen how decla-
rations are used in quantified constraints and comprehensions. Free-
standing declarations of relation names make sense too, although we’ll 
see in chapter 4 how, in the full Alloy language, these would instead be 
declared within “signatures.”
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The notion of multiplicity is closely tied to the notion of declaration. It’s 
not essential in a logic, but I’ve included it in this chapter because it’s so 
useful, and can be explained independently of the structuring mecha-
nisms of Alloy.

3.6.1	 Declarations
A constraint of the form

relation-name : expression

is called a declaration. Its meaning is almost—a caveat soon—as if the 
colon were replaced by the keyword in, so that it becomes a simple con-
straint saying that the relation named on the left has a value that is a 
subset of the value of the bounding expression on the right. The bound-
ing expression is usually formed with unary relations and the arrow op-
erator, but any expression can be used.

Examples. The address relation, representing a single address book, 
maps names to addresses:

address: Name -> Addr

The addr relation, representing a collection of address books, maps 
books to names to addresses:

addr: Book -> Name -> Addr

A relation address representing a multilevel address book maps 
names to names and addresses:

address: Name -> (Name + Addr)

The same relation can be declared in different ways, depending on how 
much information you want to put in the declaration.

Example. A declaration saying that a relation address maps aliases 
and groups to addresses and to aliases and groups

address: (Alias + Group) -> (Addr + Alias + Group)

and a stronger declaration of the same relation, saying, in addi-
tion, that aliases, unlike groups, are always mapped directly to ad-
dresses:

address: (Alias -> Addr) + (Group -> (Addr + Alias + Group))

Relations, not just sets, can appear on the right-hand side of declara-
tions too.
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Example. An address book might be represented with three rela-
tions, representing the home, work, and preferred addresses:

workAddress, homeAddress: Alias -> Addr
prefAddress: workAddress + homeAddress

3.6.2	 Set	Multiplicities
In the last subsection, I said that the meaning of a declaration

x: e

was almost the same as the meaning of a subset constraint

x in e

Now the caveat: the declaration can include multiplicity constraints, 
which are sometimes implicit. Multiplicities are expressed with the 
multiplicity keywords:

· set any number
· one exactly one
· lone zero or one
· some one or more

Note that one, lone, and some are the same keywords used for quantifica-
tion.

The meaning of a declaration depends on the arity of the bounding ex-
pression. If it denotes a set (that is, is unary), it can be prefixed by a 
multiplicity keyword like this

x: m e

which constrains the size of the set x according to m. For a set-valued 
bounding expression, omitting the keyword is the same as writing one. 
So if no keyword appears, the declaration makes the variable a scalar.

Examples

· RecentlyUsed: set Name
 says that RecentlyUsed is a subset of the set Name;

· senderAddress: Addr
 says that senderAddress is a scalar in the set Addr;

· senderName: lone Name
 says that senderName is an option: either a scalar in the set Name, 

or empty;
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· receiverAddresses: some Addr
 says that receiverAddresses is a nonempty subset of Addr.

The declarations of variables in quantified constraints are declarations 
of exactly the same form, and follow the same rules. The only difference 
is that quantifiers introduce variables that are bound within the body of 
the quantified constraint; the other declarations we have seen introduce 
free variables.

Example. The quantification we saw above,

some n: Name, a: Address | a in n.address

has two declarations, binding the scalars n and a.

3.6.3	 Relation	Multiplicities
When the bounding expression is a relation (that is, a relation with arity 
greater than one), it may not be preceded by a multiplicity keyword. But 
if the bounding expression is constructed with the arrow operator, mul-
tiplicities can appear inside it. Suppose the declaration looks like this:

r: A m -> n B

where m and n are multiplicity keywords (and where A and B are, for 
now, sets). Then the relation r is constrained to map each member of A 
to n members of B, and to map m members of A to each member of B.

Such a declaration can indicate the domain and range of the relation 
(see subsection 3.2.5), and whether or not it is functional or injective 
(see subsection 3.2.4):

· r: A -> one B
 a function whose domain is A;

· r: A one -> B
 an injective relation whose range is B;

· r: A -> lone B
 a function that is partial over the domain A;

· r: A one -> one B
 an injective function with domain A and range B, also called a 

bijection from A to B;

· r: A some -> some B
 a relation with domain A and range B.
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Examples. Some declarations and their meaning:

· workAddress: Alias -> lone Addr
 The relation workAddress is a function that maps each member 

of the set Alias to at most one member of the set Addr; each alias 
represents at most one work address.

· homeAddress: Alias -> one Addr
 Each alias represents exactly one home address.

· members: Group lone -> some Addr
 An address belongs to at most one group, and a group contains at 

least one address.

Multiplicities are just a shorthand, and can be replaced by standard 
constraints; the multiplicity constraint in

r: A m -> n B

can be written as

all a: A | n a.r
all b: B | m r.b

but multiplicities are preferable because they are terser and easier to 
read.

Example. The last declaration of the previous example

members: Group lone -> some Addr

can be replaced by

members: Group -> Addr

along with the constraints

all g: Group | some g.members
all a: Addr | lone members.a

The expressions A and B can be arbitrary expressions, and don’t have 
to be relation names. They also don’t have to represent unary relations. 
The rule is generalized simply by replacing “member” by “tuple.” Thus

r: A m -> n B

says that r maps m tuples in A to each tuple in B, and maps each tuple in 
A to n tuples in B.

Example. The declaration

addr: (Book -> Name) -> lone Addr
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says that the relation addr associates at most one address with each 
address book and name pair.

3.6.4	 Declaration	Constraints
Declarations usually introduce new names, but they can also be used 
to impose constraints on relations that have already been declared, or 
on arbitrary expressions. In this case, the only difference between a 
declaration (using the colon operator) and a regular constraint (using 
the subset operator in) is that the declaration imposes multiplicity con-
straints—for sets, even in the absence of multiplicity keywords (because 
of the default multiplicity).

Example. For an address book represented by a relation address 
mapping groups and aliases to addresses

address: (Group + Alias) -> Addr

an additional declaration might constrain each alias to map to at 
most one address:

Alias <: address : Alias -> lone Addr

Declaration constraints are like any other formula, and can be com-
bined with logical operators, placed inside the body of quantifications, 
and so on.

Example. Given a relation addr associating address books, names 
and addresses, the constraint that each address book is injective 
(that is, maps at most one name to an address) can be written

all b: Book | b.addr: Name lone -> Addr

3.6.5	 Nested	Multiplicities
Multiplicities can be nested. Suppose you have a declaration of the 
form

r: A  -> (B m -> n C)

This means that, for each tuple in A, the corresponding tuples in B -> C 
form a relation with the given multiplicity. In the case that A is a set, the 
multiplicity constraint is equivalent to

all a: A | a.r : B m -> n C

Similarly,

r: (A m -> n B) -> C
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will be equivalent to

all c: C | r.c : A m -> n B

Examples. The declaration

addr: Book -> (Name lone -> Addr)

says that, for any book, each address is associated with at most one 
name, and is equivalent to

all b: Book | b.addr: Name lone -> Addr

whereas

addr: (Book -> Name) lone -> Addr

says that each address is associated with at most one book/name 
combination. The first allows an address to have different names 
in different books; the second does not.

3.7	 Cardinality	Constraints

The operator # applied to a relation gives the number of tuples it con-
tains, as an integer value. The following operators can be used to com-
bine and compare integers:

+  plus
-  minus
=  equals
<  less than
>  greater than
=<  less than or equal to
>=  greater than or equal to

Positive integer literals can appear as constants.

Example. For a relation address

address: (Group + Alias) -> Addr

mapping groups and aliases to addresses, the constraint that every 
group has more than one address associated with it can be writ-
ten

all g: Group | #g.address > 1
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Example. Suppose an email program needs to break groups of ad-
dresses into smaller subgroups. Given a relation mapping groups 
to the addresses they contain,

address: Group -> Addr

a second relation 

split: Group -> Group

might map a group to its subgroups under the constraint that no 
group is a subgroup of itself

no g: Group | g in g.split

that a group’s subgroups contain all its addresses

all g: split.Group | g.address = g.split.address

and that the subgroups are disjoint

all g: Group, disj g1, g2: g.split | no g1.address & g2.address

The cardinality constraints on the division into subgroups might 
be that any group with more than 5 members is split up

all g: Group | #g.address > 5 implies some g.split

that no subgroup contains more than 5 members

all g: Group.split | #g.address =< 5

and that subgroups are of roughly equal size (differing from each 
other by at most one)

all g: Group, disj g1, g2: g.split |
  #g1.address < #g2.address implies #g2.address = #g1.address + 1

The expression

sum x: e | ie

denotes the integer obtained by summing the values of the integer ex-
pression ie for all values of the scalar x drawn from the set e.

Example. The size of a group is the sum of the sizes of its sub-
groups:

all g: split.Group | #g.address = (sum g’: g.split | #g’.address)
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Discussion

How does Alloy distinguish the plus of union from the plus of arithme-
tic?

They are easily disambiguated from the context—in fact, by parsing 
alone. Integers aren’t atoms, so the relational operators can’t be applied 
to integer-valued expressions. Integers can be stored within relations, 
using the special Int atoms described in section 4.8.
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A language for describing software abstractions is more than just a logic. 
You need ways to organize a model, to build larger models from smaller 
ones, and to factor out components that can be used more than once. 
There are also small syntactic details—such as shorthands for declara-
tions—that make a language usable in practice. And finally, there’s the 
need to communicate with an analysis tool, by indicating which analy-
ses are to be performed.

This chapter explains the Alloy modeling language. It covers all aspects 
of the language, and explains them informally by way of examples. A 
more complete summary of Alloy is given in the reference manual, 
which appears in appendix B.

Alloy is a small language. Some of its features are unique to Alloy, no-
tably signatures and the notion of scope.  The rest—modules, polymor-
phism, parameterized functions, and so on—are standard features of 
most programming and modeling languages, and have been designed 
to be as conventional as possible.

4.1	 An	Example:	Self-Grandpas

There’s a popular song titled “I’m My Own Grandpa.” Let’s use Alloy to 
find out how this could be. Take a look at the Alloy model of fig. 4.1.

The gross structure of a model consists of

· A module header that gives the module its name (line 1). Modules are 
named as in Java: the full name of the module corresponds to its path 
and filename in the file system. Alloy modules have the file extension 

“.als” by default, so this module is stored in the file language/grandpa1.
als relative to the working directory of the analyzer.

· Some signature declarations, labeled by the keyword sig. Each signa-
ture represents a set of atoms, and may also introduce some fields, 
each representing a relation.

· Some constraint paragraphs, labeled by the keywords fact, fun, pred 
that record various forms of constraints and expressions.
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· Some assertions, labeled by the keyword assert, that record properties 
that are expected to hold.

· Some commands, labeled by the keywords run and check, which are 
instructions to the analyzer to perform particular analyses.

The signature declarations set up a classification hierarchy. The declara-
tions of Man and Woman say that they extend the signature Person. This 
means that they represent disjoint subsets of the set Person: no person is 
both a man and a woman. Marking Person as abstract says that it has no 
elements of its own that do not belong to its extensions; if omitted, the 
declarations would allow a person that is neither a man nor a woman.

1 module language/grandpa1
2 abstract sig Person {
3  father: lone Man,
4  mother: lone Woman
5  }
6 sig Man extends Person {
7  wife: lone Woman
8  }
9 sig Woman extends Person {
10  husband: lone Man
11  }

12 fact {
13  no p: Person | p in p.^(mother + father)
14  wife = ~husband
15  }

16 assert NoSelfFather {
17  no m: Man | m = m.father
18  }
19 check NoSelfFather

20 fun grandpas (p: Person): set Person {
21  p.(mother + father).father
22  }
23 pred ownGrandpa (p: Person) {
24  p in grandpas (p)
25  }
26 run ownGrandpa for 4 Person

fig. 4.1  A first Alloy model: Can you be your own grandpa?
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The fields of a signature declare relations whose domain is a subset of 
the signature. So the field father declared within Person, for example, re-
lates persons to men. The keyword lone says that a person has at most 
one father. Similarly, wife, for example, relates men to women.

A fact records a constraint that is assumed always to hold. The fact start-
ing on line 12 says that you can’t be your own ancestor (13) and that if 
someone is your husband, you are his wife, and vice versa (14).

An assertion, marked by the keyword assert, introduces a constraint 
that is intended to follow from the facts of the model. The command, 
marked check, tells the analyzer to find a counterexample to the asser-
tion: that is, an instance that makes it false. In this case, the assertion 
NoSelfFather, which says that nobody is his own father, is valid, and no 
counterexamples are found.

A function defines a reusable expression. Having written the function 
grandpas (20), we can now use grandpas (p) to refer to p’s grandpas, rath-
er than the more cumbersome expression p.(mother + father).father.

A predicate defines a reusable constraint. Having written the predicate 
ownGrandpa (23), we can now use ownGrandpa (p) to say that p is his own 
grandpa, rather than the constraint p in grandpas (p).

Finally, we come to the real action. The command run ownGrandpa for 4 
(26) instructs the analyzer to attempt to find a solution to the constraint 
ownGrandpa. The phrase for 4 is a scope setting: it limits the search to a 
universe in which each top-level set (in this case, just Person) contains at 
most four elements. When the scope setting is omitted, as in the check 
for NoSelfFather, a default scope of 3 is used.

In fact, there is no action. The analyzer finds no solution within this 
scope. This could mean that there is a solution in a larger scope, so we 
might increase the scope, by replacing 4 with 10 in the run command, 
for example. Again, no solution is found, and if we increase the scope 
further, we’ll soon reach the point at which the analyzer is no longer 
able to exhaust the space of possibilities within a reasonable time.

Under these circumstances, we might have instead cast the predicate as 
an assertion:

assert NoSelfGrandpa {
 no p: Person | p in grandpas (p)
 }
check NoSelfGrandpa for 4 Person
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When the analyzer finds no counterexample to an assertion, as here, it 
reports success (as opposed to failure when a predicate is found to have 
no instances).

Clearly, if it is possible to be your own grandpa, something must give: 
either our definition of grandpa, or the constraint that you can’t be your 
own ancestor. The first seems more plausible. Suppose we extend the 
grandpa notion beyond biological grandpas to include grandpas by 
marriage. Here’s our new definition of grandpa:

fun grandpas (p: Person): set Person {
  let parent = mother + father + father.wife +mother.husband |
    p.parent.parent & Man
 }

The let binds parent to the relation that maps a person to his or her 
mother, father, father’s wife, and mother’s husband. The definition as 
a whole says that your grandpa is any man who is your parent’s parent, 
where “parent” now includes stepparents.

Running ownGrandpa, we now get a solution, shown in fig. 4.2. There are 
two persons, Woman_0 and Man_0, who are mother and son, and also 
wife and husband. This is not a solution appropriate for a popular song.

We can rule out incest by adding another fact:

no (wife + husband) & ^(mother + father)

I’ve written this constraint relationally. The expression mother + father 
relates children to parents; its closure relates persons to their ancestors. 
Finally, no p & q says that the relations p and q share no tuples, so the 
constraint as a whole says that no person has a spouse who is also an 
ancestor.

Now running ownGrandpa again, we get a more socially acceptable solu-
tion, shown in fig. 4.3. There are two couples, in which the wife in each 
is the mother of the husband in the other. The person who is his own 
grandpa, p, achieved this by having his stepson marry his mother.

The final version of the model, incorporating the new definition of 
grandpa, and with the constraints ruling out incest, is given in fig. 4.4. 
I’ve split the facts into separate paragraphs to show that it’s usually a 
good idea to group constraints according to their role or origin, and to 
give them suggestive names.
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fig. 4.2  An inappropriate solution to ownGrandpa.

fig. 4.3  Another solution to ownGrandpa.
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module language/grandpa2
abstract sig Person {
 father: lone Man,
 mother: lone Woman
 }
sig Man extends Person {
 wife: lone Woman
 }
sig Woman extends Person {
 husband: lone Man
 }

fact Biology {
 no p: Person | p in p.^(mother + father)
 }
fact Terminology {
 wife = ~husband
 }
fact SocialConvention {
  no (wife + husband) & ^(mother + father)
  }

assert NoSelfFather {
 no m: Man | m = m.father
 }
check NoSelfFather

fun grandpas (p: Person): set Person {
 let parent = mother + father + father.wife +mother.husband |
  p.parent.parent & Man
 }
pred ownGrandpa (p: Man) {
 p in grandpas (p)
 }
run ownGrandpa for 4 Person

fig. 4.4  Self-grandpas revisited.
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Discussion

Where does the song “I’m My Own Grandpa” come from?

It was originally a skit written by Dwight Latham and Moe Jaffe for their 
radio show in the 1930’s. Dwight Latham credited the idea to a book of 
anecdotes by Mark Twain. They later expanded it into a song, which 
was recorded in 1948 by “Lonzo and Oscar” (Ken Marvin and Rollin 
Sullivan), and became a hit. You can find the text of the song, in Lonzo 
and Oscar’s 1948 version, along with a recording of it being sung, at 
http://www.wwco.com/gean/grandpa. The song’s scenario is not identical 
to the one Alloy found, by the way: instead of having his stepson marry 
his mother, the self-grandpa has his stepdaughter marry his father.

How do you construct relational formulas?

To the novice, the relational style can be hard to grasp. But it becomes 
quite natural when you’re comfortable with it. I find it helpful to think 
about sets of arrows rather than atoms and their relationships. For ex-
ample, to construct a formula such as

no (wife + husband) & ^(mother + father)

from the SocialConvention fact of 4.4, my thinking would go as follows. 
The constraint to be expressed is that no person should marry a parent, 
grandparent, and so on. This says that certain relationships are prohibit-
ed—some arrows should not exist—so the constraint will have the form 
no e for some expression e. The prohibited relationship involves being 
both a spouse and a parent or grandparent, and so on. This conjunction 
suggests taking the intersection of two relations: there should not be 
an arrow belonging to both. Now we need to express the two relations. 
Being a spouse means being a wife or a husband; that tells us to take the 
union of the relations wife and husband. The “so on” in “being a parent or 
grandparent, and so on” suggests applying transitive closure to the par-
ent relation. A parent is a mother or a father, indicating another union. 
Putting all this together gives the desired formula.

To increase your confidence that a constraint has the meaning you in-
tended, you can check an assertion that it is equivalent to a different 
formulation. In this case, for example, you might compare the relational 
formulation to one in a navigational style:
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pred SocialConvention () {
 no (wife + husband) & ^(mother + father)
 }

pred SocialConvention’ () {
 let parent = mother + father {
  no m: Man | some m.wife and m.wife in m.*parent.mother
  no w: Woman |
   some w.husband and w.husband in w.*parent.father
  }
 }

assert Same {
 SocialConvention () iff SocialConvention’()
 }
check Same

If the two formulations are not equivalent (within the scope), a coun-
terexample will be generated showing a family that satisfies one and not 
the other.

Is there really a difference between running a predicate and checking an 
assertion?

From an analysis perspective, there’s no fundamental difference between 
assertions and predicates. Running a predicate involves searching for 
an instance of its constraint; checking an assertion involves searching 
for an instance of the negation of its constraint. So, checking an asser-
tion with a constraint C is equivalent to running a predicate with the 
constraint not C.

But this blurs a vital methodological distinction, and in the design of Al-
loy I thought it was important to be able to factor out those properties 
conjectured to follow from the rest. This idea of recording redundan-
cies explicitly in a model, and marking them as such, is due to John Gut-
tag and Jim Horning and was part of the Larch language [22].

If the Alloy Analyzer finds no counterexample to an assertion, does that 
mean it is valid?

Not necessarily. It’s possible that there’s a counterexample in a larger 
scope. But, in practice, as you increase the scope, the chance that a 
counterexample remains does decrease. So you get some assurance, but 
not in any absolute sense.
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4.2	 Signatures	and	Fields

Now that you’ve seen at least one example in full, and have a rough idea 
of how an Alloy model is organized, it’s time to look at the details of the 
language. The rest of this chapter assumes you already understand the 
logic of chapter 3, and concentrates on the larger structure in which 
constraints are placed.

4.2.1	 Signatures
A signature introduces a set of atoms. The declaration

sig A {}

introduces a set named A. A signature is actually more than just a set, 
because—as we’ll say in later sections—it can include declarations of 
relations, and can introduce a new type implicitly. But it’s convenient to 
use the term “signature” loosely to refer both to this larger structure and 
to the set associated with it, so we’ll talk, for example, of the “elements 
of the signature,” meaning the atoms contained in the set.

A set can be introduced as a subset of another set; thus

sig A1 extends A {}

introduces a set named A1 that is a subset of A. The signature A1 is an 
extension or subsignature of A. A signature such as A that is declared 
independently of any other is a top-level signature. The extensions of a 
signature are mutually disjoint, as are top-level signatures. So given the 
declarations

sig A {}
sig B {}
sig A1 extends A {}
sig A2 extends A {}

we can infer that A and B are disjoint, and A1 and A2 are disjoint (but not 
that A = A1 + A2).

An abstract signature has no elements except those belonging to its ex-
tensions. So if we write

abstract sig A {}
sig A1 extends A {}
sig A2 extends A {}
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for example, we have introduced three sets with the implicit con-
straints

A1 in A
A2 in A

because A1 and A2 extend A, and

A in A1 + A2

because A is abstract. So

A = A1 + A2

and A1 and A2 partition A.

The effect of a collection of signature declarations, some top-level, and 
some as extensions, is thus to introduce a classification hierarchy. With 
the addition of the constant univ, the universal set, which can be viewed 
as an implicit abstract signature that all top-level signatures extend, this 
hierarchy takes the form of a tree, with univ at its root, the top-level 
signatures one level down, then their extensions, and so on. This tree 
gives a primary classification to all atoms which is exploited in the type 
system (see section 4.4).

Sometimes other, orthogonal, classifications are needed. To express 
these, you can declare subset signatures, such as

sig A3 in A {}

which introduces a set A3 that is a subset of A. Subset signatures, unlike 
extension signatures, are not necessarily mutually disjoint, so if you in-
troduce a second subset

sig A4 in A {}

then A3 and A4 may intersect, unless constrained not to.

A signature can be declared as a subset of a union of sets; given

sig C in A + B {}

every element of C belongs to A or to B. The union expression can list 
any number of sets, but union is the only operator that can appear in a 
signature declaration in this way.

Finally, a multiplicity keyword placed before a signature declaration 
constrains the number of elements in the signature’s set; thus

m sig A {}
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says that A has m elements. Declaring an abstract signature with scalar 
extensions introduces an enumeration, so

abstract sig T {}
one sig A, B, C extends T {}

declares a set T with three elements, A, B, and C.

Example. A classification of targets in an address book into names 
and addresses, with names further classified into aliases and 
groups:

abstract sig Target {}
abstract sig Name extends Target {}
sig Alias, Group extends Name {}
sig Addr extends Target {}

Example.A set of pixels, each of which is red, green, or blue:

abstract sig Pixel {}
sig Red, Green, Blue extends Pixel {}

Example. An enumeration of traffic light colors:

abstract sig Color {}
one sig Red, Yellow, Green extends Color {}

Example. A file system whose objects are classified as files or di-
rectories, with aliases that are treated as files, and temporary ob-
jects, which may be files or directories:

abstract sig Object {}
sig File, Dir extends Object {}
sig Alias extends File {}
sig Temp in Object {}

Example. The same file system, described without making the set 
of objects explicit, and with an explicit root directory:

sig File {}
sig Dir {}
one sig Root extends Dir {}
sig Alias extends File {}
sig Temp in File + Dir {}
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Example. A classification of teas, first by country of origin and 
then by variety:

sig Tea {}
sig IndiaTea, ChinaTea extends Tea {}
sig Assam, Darjeeling extends IndiaTea {}
sig Keemun, Lapsang extends ChinaTea {}

Example. A classification of teas that includes Earl Grey teas, 
which may be China or India teas:

sig Tea {}
sig IndiaTea, ChinaTea extends Tea {}
sig EarlGrey in ChinaTea + IndiaTea {}

Discussion

Does Alloy have multiple inheritance?

Yes. Alloy can express multiple inheritance, but not entirely by declara-
tions—some explicit facts are needed. For example, you can’t say that 
Jasmine tea is both flavored and a China tea by declarations alone; one 
of these relationships must be stated explicitly as a fact. You might write, 
for example,

sig Tea {}
sig ChinaTea extends Tea {}
sig FlavoredTea in Tea {}
sig JasmineTea extends ChinaTea {}
fact {JasmineTea in FlavoredTea}

which will have the desired effect.

Unions in declarations shouldn’t be confused with multiple inheritance. 
The declaration

sig EarlGrey in ChinaTea + IndiaTea {}

says that Earl Grey is a China tea or an India tea. And it doesn’t express 
uncertainty about the country of origin of Earl Grey tea. The signature 
EarlGrey represents a set—the set of all Earl Grey teas—so the declara-
tion says that each member of that set is either a China tea or an India 
tea.
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Do singleton signatures correspond to atoms?

Singleton signatures, marked by the keyword one, represent singleton 
sets— sets that contain a single element. In an instance, such a set will 
correspond to a single atom. But it’s a mistake to think of singletons as 
fundamentally different from other sets. In some modeling notations, 
a model that includes singletons is viewed as a kind of hybrid model/
instance. This is unnecessary. The difference between a model and an 
instance is that a model represents a set of instances, and so, in a model, 
a singleton set isn’t bound to a particular atom, but could represent dif-
ferent atoms in different instances.

For example, a model of a file system that declares a singleton for the 
root of the file system describes the collection of all possible file systems, 
each with its own root. The roots of the different file systems can be 
different atoms. When we use the term Root in the file system model, 
we mean whatever atom is the root of the file system being described, 
which can vary from file system to file system.

4.2.2	 Basic	Field	Declarations
Relations are declared as fields of signatures. Writing

sig A {f: e}

introduces a relation f whose domain is A, and whose range is given by 
the expression e, as if a fact included the declaration constraint

f: A -> e

This constraint can be written equivalently as

all this: A | this.f : e

saying that if we had a particular element this in the set A, the set de-
noted by this.f would be a subset of e.

The second constraint is a better way to understand the declaration, be-
cause it gives the right meaning when multiplicity symbols are added 
(see section 3.6). For a set e, the declaration

sig A {f: m e}

adds the constraint

all this: A | this.f : m e

which says that, for any this in A, this.f has m elements drawn from the 
set e.
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So

sig A {f: one e}
sig A {f: some e}
sig A {f: lone e}
sig A {f: set e}

say that this.f has one, at least one, at most one, and any number of ele-
ments from e. The default keyword, if omitted, is one, so

sig A {f: e}
sig A {f: one e}

are equivalent.

If the expression e denotes a relation (that is, its arity is two or more), it 
may include multiplicity keywords within it. The same rule applies; the 
declaration

sig A {f: e1 m -> n e2}

for example, gives the constraint

all this: A | this.f : e1 m -> n e2

which is interpreted according to the standard multiplicity rules (ex-
plained in section 3.6).

Example. A collection of teas, each with a single country of ori-
gin:

sig Tea {origin: Country}
sig Country {}

Example. A file system in which each directory contains any num-
ber of objects, and each alias points to exactly one object:

abstract sig Object {}
sig Directory extends Object {contents: set Object}
one sig Root extends Directory {}
sig File extends Object {}
sig Alias extends File {to: Object}

Example. A collection of weather forecasts, each of which has a 
field weather associating every city with exactly one weather condi-
tion:

sig Forecast {weather: City -> one Weather}
sig City, Weather {}
one sig Rainy, Sunny, Cloudy extends Weather {}
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Example. A collection of names in an address book, with a field ad-
dress that associates each name with at most one address or name:

sig Name {address: lone Addr + Name}
sig Addr {}

Example. A collection of address books, with a field addr associat-
ing each book with a partial function from names to addresses and 
names:

sig Book {
 addr: Name -> lone (Addr + Name)
 }
sig Name {}
sig Addr {}

Example. A collection of traffic lights, each of which shows some 
combination of colors at a given time:

sig TrafficLight {
 color: Color some -> Time
 }
abstract sig Color {}
one sig Red, Green, Yellow extends Color {}
sig Time

It become tedious to describe a signature S as “a collection of elements 
of S,” so from now on, I’ll refer to the elements of a signature in the sin-
gular—as “an S”. Just remember that a signature represents potentially 
any number of elements.

Discussion

Must all relations be declared as fields?

Yes: there are no top-level relation declarations in Alloy. If you want to 
declare some relations that don’t belong naturally to any existing signa-
tures, you can simply declare them as fields of a singleton signature. In 
a file system model, for example, a relation from names to objects that 
models the results of a lookup might be declared as:

one sig Globals {
 lookup: Name -> Object
 }

and then referred to as Globals.lookup.
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4.2.3	 Grouping	Fields
Fields can be grouped together so that they share a declaration expres-
sion. The keywords disj and part indicate that the group of fields are 
mutually disjoint, or form a partition. So the declaration

sig A {disj f, g: e}

implies the constraint

all this: A | no this.f & this.g

and

sig A {part f, g: e}

implies the same constraint, and additionally

all this: A | e in this.f + this.g

Example. A cat has three names:

sig Cat {disj daily, peculiar, ineffable: Name}
sig Name {}

which are distinct from each other: for any cat c, c.daily, c.peculiar, 
and c.ineffable are three different names.

Example. A cat regards all cats that aren’t friends as enemies:

sig Cat {part friends, enemies: set Cat}

Example. A traffic junction has one light (conceptually) in each 
direction, which is assigned a single color in a given state:

sig Junction {northSouth, eastWest: LightState}
sig LightState {color: Light -> one Color}
sig Color, Light {}

4.2.4	 Dependent	Declarations
A field declaration’s bounding expression can be any Alloy expression, 
with one restriction. If the expression appears in a declaration of a field 
of a signature X, the only fields it can mention are those declared previ-
ously in X itself, or in one of the signatures of X’s supertypes.

Example. A cat’s three names, made distinct in another way:

sig Cat {
 daily: Name,
 peculiar: Name - daily,
 ineffable: Name - (daily + peculiar) }
sig Name {}
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Example. An address book with three mappings from names to 
addresses: one for home addresses, one for work addresses, and 
one for the default, which is either the home address or the work 
address:

sig Book {
 homeAddress, workAddress: Name -> lone Addr,
 address: homeAddress + workAddress
 }
sig Name, Addr {}

The declaration of address allows it to map a name to both home 
and work address; to limit it to one, an additional constraint would 
be added (in a signature fact, subsection 4.5.1, for example).

Example. A radio station that owns a set of frequencies for differ-
ent locations:

sig RadioStation {owns: set Freq, freq: Location -> one owns}
sig Freq, Location {}

Example. A zoom lens with a maximum aperture on its telephoto 
setting that must be one of its possible aperture settings:

sig Lens {apertures: set FStop}
sig ZoomLens extends Lens {maxTeleAperture: apertures}
sig FStop {}

The constraint implicit in dependent declarations is slightly more elabo-
rate than for simple declarations in which only signatures appear in the 
bounding expression. For

sig A {f: e}

the constraint is

all this: A | this.f in e’

where e’ is just like e, but has each field reference expanded. Every field 
that appears in the expression e is regarded as a dereferencing of this, so 
each occurrence of a field g is replaced by the expression this.g.

Example. The constraint arising from

sig Lens {apertures: set FStop}
sig ZoomLens extends Lens {maxTeleAperture: apertures}
sig FStop {}

is

all this: ZoomLens | this.maxTeleAperture in this.apertures
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Discussion

Why can’t dependent declarations mention arbitrary fields?

The limitation makes models easier to typecheck, and perhaps also eas-
ier to read. They do rule out some useful cases. For example, we might 
want to describe a radio station whose frequency is one permitted by 
the class it belongs to as

sig RadioStation {class: StationClass, freq: class.band}
sig StationClass {band: set Freq}
sig Freq {}

but this is illegal. If mutual dependence were permitted, there could 
be fields without unique types. For example, a declaration of a person 
whose surname is one of the parents’ surnames

sig Person {surname: parents.surname, parents: set Person}

leaves the type of surname unconstrained. In all these cases, however, 
the constraint can be added after the declaration, as explained in sub-
section 4.5.1. The radio station example can be written

sig RadioStation {class: StationClass, freq: Freq}
 {freq in class.band}
sig StationClass {band: set Freq}
sig Freq {}

and the surname example

sig Name {}
sig Person {surname: Name, parents: set Person}
 {surname in parents.surname}

Can dependent declarations get confusing?

Yes. A common mistake arises with closure. Suppose you want to specify 
a peer-to-peer network in which each peer has a set of friends it’s con-
nected to directly, and a community of peers reachable from its friends. 
This attempt at a signature declaration

sig Peer {
 friends: set Peer,
 community: set *friends
 }
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will be rejected, because the mention of friends in the declaration of com-
munity is expanded to this.friends, which is a set, and not a binary rela-
tion. You might be tempted to write

sig Peer {
 friends: set Peer,
 community: *@friends
 }

using the special symbol @ to prevent expansion (see subsection 4.5.1). 
This will be accepted, but it doesn’t mean what you might expect. The 
expression *@friends denotes a binary relation, so community will be a 
ternary relation! The correct way is to use the reserved word this to refer 
to the particular peer:

sig Peer {
 friends: set Peer,
 community: set this.*@friends
 }

resulting in the implicit constraint

all this: Peer | this.community in this.*friends

The lesson is not to try so hard to squeeze all constraints into declara-
tions, and to write an explicit constraint instead:

sig Peer {friends, community: set Peer}
fact {community in *friends}

4.3	 Model	Diagrams

A model diagram declares some sets and binary relations, and imposes 
some basic constraints on them. A diagram is a good way to convey the 
outline of a model, but diagrams aren’t expressive enough to include 
detailed constraints. Some people like to start with diagrams, and then 
move to text; others prefer to start with text and use diagrams as il-
lustrations. The Alloy Analyzer can generate a model diagram from an 
Alloy textual model; you can use this feature to help understand large 
models, or to watch a model grow as you add new signatures.

Appendix D summarizes the diagrammatic notation.
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4.3.1	 Multiplicity	Symbols
In a diagram, symbols are used instead of multiplicity keywords:

*  any number
!  exactly one
? zero or one
+  one or more

The default multiplicity is always *, so if no multiplicity symbols are 
used, there are no implicit multiplicity constraints. You can attach mul-
tiplicities to a set (as a suffix to the label of a box)  and to relations (as 
prefixes and suffixes of labels on arrows).

4.3.2	 Boxes	and	Arrows
Each box represents a set of atoms. Boxes are connected in two ways. 
Fat arrows, which have large, unfilled triangles as their arrowhead, de-
note subset relationships and are used to express the classification hier-
archy. Thin arrows, which have small, filled triangles as their arrowhead, 
represent relations.

As shown in fig. 4.5, a box without an outgoing fat arrow corresponds to 
a top-level signature. A box labeled A1 with a fat arrow connecting it to 
a box labeled A corresponds to a signature A1 declared as an extension 
of A. Labeling the fat arrow with the keyword in results in a subset signa-
ture rather than an extension. For an extension, you can also explicitly 
label a fat arrow with the keyword extends.

You can mark a set as abstract (either by writing the keyword in the box, 
or by italicizing the name) to indicate that it contains no elements ex-
cept those contained by its extending subsets.

A multiplicity symbol following the label of a box constrains the number 
of elements in the set, as if the corresponding multiplicity keyword had 
been written before the signature declaration. The default multiplicity 
being *, there is no implicit constraint if omitted. A useful convention is 
to draw a set with multiplicity !  or ? as an oval rather than a rectangle.

As shown in fig. 4.6, a line with a thin arrow from set A to set B denotes 
a relation whose domain is contained in A and whose range is contained 
in B. The label gives the name of the relation. The label can include mul-
tiplicity symbols; a label of the form

m R n

on an arc from A to B is like declaring a relation
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R: A m -> n B

with multiplicity keywords replacing multiplicity symbols.

An arc can have several labels. This is one reason that it’s convenient to 
make the multiplicity symbols part of the label and not write them as 
annotations on the ends of the arc: two relations with the same domain 
and range can share the same arc even if they have different multiplici-
ties.

fig. 4.5  Examples of set boxes and subset relationships, 
with their corresponding Alloy text.

A

A1

A

A1

in

sig A {}
sig A1 extends A {}

sig A {}
sig A1 in A {}

A

sig A {}

A

lone sig A {}

A
abstract

abstract sig A {}

A+

some sig A {}
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4.3.3	 Expressions	and	Higher-Arity	Relations
You can show any expression that denotes a set or a binary relation in a 
model diagram. Just use the expression as the label of the box or arrow 
instead of a set or relation name.

A relation whose arity is greater than two cannot be shown directly. But 
you can usually say everything you need to say by creating one or more 
arcs and labeling them with appropriate expressions. For example, sup-
pose you have a relation

R: A -> B -> C

You might show this as an arc from B to C labeled A.R; or from A to B 
labeled R.C.

To show the multiplicity of a relation like R, however, what you often 
want is instead to show an archetypal expression such as a.R, where a is 
a scalar in the set A. Labeling a relation arc

all v: be | e

means that the constraints implicit in the arc (due its source and target 
sets and multiplicities) hold for the expression e, with v ranging over the 
set given by be. So, for example, an arc labeled

all a: A | a.R  !

(consisting of such a label combined with a multiplicity marking) from B 
to C says that a.R is a function that maps every B to one C, for every a, as 
if you’d written in textual for

all a: A | a.R : B -> one C

fig. 4.6  Relation arcs and their corresponding Alloy text.

A B
R

sig A {R: set B}

A B
m R n sig A {R: set B}

fact {R : A m -> n B}



language 105

In practice, the bound is almost always over a named set, and this nota-
tion is a bit clumsy. So as a convenient shorthand, a variable that ranges 
over the set S is written instead as <S>. For the last example, then, we’d 
write the label just as <A>.R.

Examples. Fig. 4.7 shows some examples of Alloy models and cor-
responding diagrams.

Discussion

Why doesn’t the diagrammatic notation map more directly to the textual 
notation?

There is a fundamental difference between Alloy’s textual and diagram-
matic forms. The diagrammatic notation is flat; each relation belongs 
no more to its source than its target. It thus makes sense to mark multi-
plicities at both ends. The textual notation, on the other hand, bundles 
relations into signatures. It encourages viewing relations as fields of an 
object, and the syntax doesn’t allow you to give multiplicities for the 
elements of the signature itself. For example, the declaration

sig S {r: lone T}

says that r is a partial function—that is, it maps each S to at most one 
T—but it doesn’t say anything about how many members of S map to 
each T. You can add an explicit declaration formula, such as

fact {r : S lone -> lone T}

which makes the transpose of r a function too, but you can’t express this 
in the declaration itself. The diagrammatic form doesn’t suffer from this 
asymmetry.

An exact correspondence between textual and diagrammatic forms was 
a design goal of an earlier version of Alloy [33], but was lost when sig-
natures were introduced.

Why don’t you use UML’s diagram syntax?

UML’s syntax has the advantage of familiarity to many people. But our 
syntax has a more direct mapping to the Alloy textual language, and it’s 
also easier to draw without specialized tools (since it uses only standard 
shapes, and doesn’t require an arc to carry labels at different positions).

A common convention is to draw a shared fat arrowhead for subsets 
that are disjoint, with a separate arrow for each orthogonal classifica-
tion. This is fine when working with drawings alone, but if you want to 
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fig. 4.7  Textual models and corresponding model diagrams.

Object

abstract sig Object {}
sig Directory extends Object {
  contents: set Object
  }
one sig Root extends Directory {}
sig File extends Object {}
sig Alias extends File {to: Object}

File Directory

Alias

to! contents

Root!

abstract sig Target {}
sig Addr extends Target {}
abstract sig Name extends Target {}
sig Alias, Group extends Name {}
sig Book {
  addr: Name -> lone Target
  }

Target

Name Addr

Alias Group

Book
<Book>.addr?

sig TrafficLight {
  color: Color some -> Time
  }
abstract sig Color {}
one sig Red, Yellow, Green
  extends Color {}

Color

Red! Yellow! Green!

Traffic
Light

Time

color.<Time>+
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convert such a diagram to Alloy’s textual notation, you’ll need to iden-
tify one of the classifications as primary, so that expressions can be giv-
en unique types. The secondary classification will have to be expressed 
with subset arrows labeled in, and its disjointness properties will have 
to recorded explicitly as facts.

Why is set the default multiplicity in diagrams?

A diagrammatic notation should be monotonic: as you embellish it, you 
are adding and not removing constraints. Otherwise, if you stop along 
the way, the diagram you have is incorrect, because it says things you 
did not intend to say. It’s rare to write a textual model and omit all the 
multiplicities, but with a diagram it’s common to sketch the gross struc-
ture first and then flesh it out with details. Some diagrammatic nota-
tions violate this principle, for example by using a regular line-end for 
a multiplicity of “exactly one,” and a more elaborate line-end for weaker 
multiplicities.

4.4	 Types	and	Type	Checking

Alloy’s type system has two functions. First, it allows the analyzer to 
catch errors before any serious analysis is performed. The essential idea 
is that an expression is erroneous if it can be shown to be redundant, 
using types alone. This notion of error, although unconventional, is in 
practice a reasonable match to intuition; it accepts and rejects expres-
sions much as you’d expect. Second, the type system is used to resolve 
overloading. When different signatures have fields with the same name, 
the type of an expression is used to determine which field of a given 
name is meant.

4.4.1	 Basic	Types
Types are associated implicitly with signatures. A basic type is intro-
duced for each top-level signature and for each extension signature 
(that is, a signature that extends another signature). When signature A1 
extends signature A, the type associated with A1 is a subtype of the type 
associated with A.

A subset signature does not have its own type, but acquires its parent’s 
type. If declared as a subset of a union of signatures, its type is the union 
of the types of its parents. Unions are explained in the next subsection.

Two basic types are said to overlap if one is a subtype of the other.
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Example. The declarations

sig Tea {}
sig IndiaTea, ChinaTea extends Tea {}
sig Assam, Darjeeling extends IndiaTea {}
sig Keemun, Lapsang extends ChinaTea {}

result in the subtype hierarchy of fig. 4.8.

Example. The declaration of Temp in

fig. 4.8  Type hierarchy for teas.

Tea

IndiaTea ChinaTea

Assam Darjeeling Keemun Lapsang

fig. 4.9  Type hierarchy for a file system.

Object

File Directory

Temp
in
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sig Object {}
sig File, Directory extends Object {}
sig Temp in Object {}

results in the hierarchy of fig. 4.9. The set Temp does not have its 
own type; its elements belong to the type Object. The types File and 
Object overlap (because there are atoms that are both files and ob-
jects), but the types File and Directory do not.

4.4.2	 Relational	Types
Every expression has a relational type, consisting of a union of prod-
ucts:

 A1 -> B1 -> …
+ A2 -> B2 -> …
+ …

where each of the Ai, Bi, and so on, is a basic type. Each product term 
must have as many basic types as the arity of the relation. A binary 
relation’s type, for example, will look like this:

A1 -> B1 + A2 -> B2 + …

and a set’s type like this:

A1 + A2 + …

Note that the type of an expression is itself just an Alloy expression. 
Types are inferred automatically so that the value of the type always 
contains the value of the expression; that is, it’s an overapproximation. 
This means that if two types have an empty intersection, the expressions 
they were obtained from must also have an empty intersection.

Types are determined as follows:

First, the hierarchy of basic types is obtained from the signature decla-
rations.

Example. The signature declarations

abstract sig Object {}
sig Directory extends Object {}
one sig Root extends Directory {}
sig File extends Object {}
sig Alias extends File {}
sig Temp in Object {}
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result in the basic types Object, File, Alias, Directory, and Root, with 
File and Directory subtypes of Object, Alias a subtype of File, and Root 
a subtype of Directory. The signature Temp is given the type Object.

Second, each field is given a type, by typing the bounding expression on 
the right-hand side of the declaration.

Example. The fields to and contents in

sig Directory extends Object {contents: set Object}
sig Alias extends File {to: Object}

are given the types Alias -> Object and Directory -> Object respectively.

Third, the constraints of the model are examined, and a type is inferred 
for each expression, using the types of signatures and fields, and the 
types of quantified variables (which are inferred from the declarations 
just like the types of fields).

Example. In the constraint

all d: Directory - Root | some d.~contents

the quantified variable d is given the type Directory, and then 
d.~contents is given the type Directory also.

Determining the type of an expression is straightforward. For each re-
lational operator, there’s a corresponding rule. The rule for dot join, for 
example, is

If the type of p contains a product P1 -> … -> Pn,
and the type of q contains a product Q1 -> Q2 -> … -> Qm,
and the basic types Pn and Q1 overlap,
then the type of p.q includes the product P1 ->  … -> Pn-1 -> Q2 -> … -> Qm

Note that this rule has the same form as the semantic rule for join itself. 
This isn’t surprising, since the type is just an approximation of the value, 
computed in the same way, but more crudely.

4.4.3	 Type	Errors
There are two kinds of type error. First, since our logic assumes that all 
relations have a fixed arity, it is illegal to form expressions that would 
give relations of mixed arity.

Examples. Given the declarations

sig Tea {origin: Country}
sig Country {}



language 111

the expression origin + Country would be illegal, since origin has arity 
two, and Country has arity one.

Second, an expression is illegal if it can be shown, from the declara-
tions alone, to be redundant, or to contain a redundant subexpression. 
A common and simple case is when an expression is redundant because 
it is equal to the empty relation.

Examples. In the context of our file system

sig Object {}
sig Directory extends Object {contents: set Object}
sig File extends Object {}
sig Alias extends File {to: Object}

the following expressions are ill-typed:

· Directory & Alias, the set of objects that are both directories and aliases, 
which must be empty, because these signatures are disjoint;

· Alias.contents, the contents of aliases, because contents is declared to 
map only directories, and no directory is an alias, so this expression 
likewise can be shown to be empty.

The type checker reasons only about types; it doesn’t distinguish the 
signatures themselves from other expressions of the same type.

Example. The expression Alias - Object, the set of aliases that aren’t 
objects, denotes the empty set, but the type checker will not reject 
it, because an expression of the form A - O where A has type Alias 
and O has type Object might not be empty.

In this type system, the subtype hierarchy is used primarily to deter-
mine whether types are disjoint. The asymmetry that you’d expect if 
you’re familiar with subtypes in programming languages is not present. 
In particular, the typing of an expression of the form s.r where s is a set 
and r is a relation only requires s and the domain of r to overlap.

Examples. There are four possible relationships between a set and 
a relation combined by dot:

· Exact match: Directory.contents is well-typed.
· Subtype: Root.contents is well-typed.
· Supertype: Object.contents is well-typed.
· Disjoint: File.contents is ill-typed.

Only the disjoint case is rejected, because it’s the only one that 
always results in the empty set. Note that any of the other com-
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binations may also result in an empty set, so distinguishing them 
doesn’t make much sense.

Disjointness of subexpressions doesn’t always imply redundancy. The 
arguments of a union expression can certainly be—and often are—dis-
joint.

Example. Even though the expression File & Directory is not well-
typed, the expression File + Directory is. It might be used in a version 
of the file system in which no signature were declared for the set 
of all objects:

sig Directory extends Object {contents: set File + Directory}
sig File {}
sig Alias  {to: File + Directory}

A more subtle case of a type error due to redundancy arises when an 
expression is not equal to the empty relation, but can be replaced by it 
without affecting the meaning of an enclosing expression.

Example. The expression (Directory + Alias).contents is ill-typed, be-
cause aliases do not have contents; the mention of Alias is redun-
dant, and the expression could have been written equivalently as 
Directory.contents.

Example. The expression Directory - Alias is ill-typed, because no 
directory is an alias, so the mention of Alias is redundant. The ex-
pression Directory in Alias is ill-typed for a similar reason; it could 
have been written equivalently as no Directory.

Discussion

Does the type checker ever issue false alarms?

No. Whenever you get a type error, there is some real redundancy in 
your model that you will almost certainly want to eliminate. As we’ve 
noted, types are just relational expressions of a particular form, and for 
any expression e, its type expression Te will always denote a larger rela-
tion—that is, one containing at least the same tuples and maybe more. 
This is what makes type checking sound. When checking an intersec-
tion expression, for example, if the resulting type is empty, the relation 
represented by the expression must be empty—and therefore an error.

On the other hand, the type checker offers no guarantees. Traditional 
type systems for programming languages are the other way round: they 
guarantee no type errors will arise at runtime, but complain about pro-
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grams that will never in fact go wrong. In modeling, there’s no analogy 
to runtime failures, so it’s not clear what guarantees would be useful.

Why does Alloy let you apply fields to supertypes?

Applying a field declared in a subtype to an expression that is known 
only to belong to the supertype might have an empty result. But since 
the result is not always empty, the Alloy type checker doesn’t forbid it, 
or require some kind of cast. The rationale is that even applying a field 
of the subtype itself might have an empty result, so there is no addi-
tional benefit to be gained from the burden of casts.

In an object-oriented programming language, things are very different. 
If an expression is known to evaluate to an object of some class, then 
any method declared in that class can be invoked successfully. The type 
system can therefore make a guarantee, in such a situation, that there 
will be no problem of invoking a method that is not declared. In a mod-
eling language like Alloy, however, the issue is navigating through rela-
tions, not calling methods, and because relations can be partial, there is 
never a guarantee that the result will be nonempty. Moreover, an empty 
result is not necessarily an error: that’s why the Alloy type system only 
rules out expressions that are always empty rather than those that are 
sometimes empty. 

Where can I find out more about the type system?

The type system of Alloy is described in detail, with justifications of its 
design, in a research paper [14]. An important property of the Alloy lan-
guage is that types are not required to give meaning to a model; the pa-
per explains how this is done with a simple extension of the semantics 
to allow mixed-arity relations, and to treat unresolved fields as unions 
of their possible resolvents.

4.4.4	 Field	Overloading
A signature defines a local namespace for its declarations, so you can 
use the same field name in different signatures, and each occurrence 
will refer to a different field. The only restriction is that if two signatures 
share a field name, they mustn’t overlap (that is, potentially share ele-
ments, by one being a subtype of the other).

Field references are resolved automatically. When a field name appears 
that could refer to multiple fields, the types of the candidate fields are 
used to determine which field is meant. If more than one field is pos-
sible, an error is reported.
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Example. Consider adding a field contents to the File signature of 
our file system model, mapping a file to a set of blocks:

sig Object, Block {}
sig Directory extends Object {contents: set Object}
sig File extends Object {contents: set Block}

The occurrence of the field name contents in the constraint

all f: File | some f.contents

is trivially resolved, because if it were to refer to the field of Direc-
tory, the expression f.contents would be empty. On the other hand, 
the occurrence in

all o: Object | some o.contents

is not resolved, and the constraint is rejected.

Example. Both singers and radio stations have bands:

sig Singer {band: Band}
sig RadioStation {band: set Freq}
sig Band, Freq {}

To say that radio stations don’t have overlapping (frequency) bands, 
and that all (singing) bands have at least one singer, we can write, 
without ambiguity,

no disj s, s’: RadioStation | some s.band & s’.band
all b: Band | some b.~band

Note how, in the first constraint, the field is resolved using the 
first column of the relation, and in the second, using the second 
column of the relation.

Resolution of overloading exploits the entire context in which a field 
reference appears, and there are no syntactic constraints on how the 
field must appear.

Example. The last constraint of the example above can be written 
in any of these forms:

all b: Band | some b.~band
all b: Band | some band.b
all b: Band | some s: Singer | s->b in band
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Example. More subtly, given the declarations

sig Object, Block {}
sig Directory extends Object {contents: set Object}
sig File extends Object {contents: set Block}

the occurrence of contents in this constraint

no o: Object | o in o.contents

is resolved to the field of Directory. If it were to refer to the field in 
File, the expression o.contents would have type Block. Then, since o 
has the type Object, and the types Object and Block are disjoint, the 
constraint o in o.contents would be vacuously false.

Occasionally, an overloaded field name can’t be resolved, so you need 
to disambiguate the name by elaborating the expression in which it ap-
pears (without changing the meaning). A simple way to do this that al-
ways works is to use the domain restriction operator, writing S <: f for 
the field f appearing in signature S.

Example. A ring of network nodes, each linked by a relation next to 
its successor, and holding a value that changes over time:

sig Node {next: Node, value: Value one -> Time}
sig Time {next: Time}
sig Value {}

To say that nodes form a ring, we can write

fact {all n: Node | Node in n.^next}

The time steps are ordered with a relation also called next. To say 
that this relation is acyclic, we might try writing

fact {no ^next & iden}

but this will be rejected, because the reference to next is ambigu-
ous. To fix it, we can write

no ^(Time <: next) & iden

(although in practice, the ordering of time steps is a common idi-
om for which you’d use a library module instead.)
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Discussion

Can fields be declared in subset signatures?

Yes, they can. Remember, though, that when you extend a signature 
using the in keyword, the extensions are not subtypes, and need not 
be disjoint. According to the no-overlapping rule, they therefore can’t 
share field names. Even if you happen to know that they are in fact dis-
joint (because of some fact you’ve written), the type checker won’t know 
and will reject your model. For example,

sig Name, Thing {}
sig Man in Thing {name: Name}
sig Island in Thing {name: Name}

is illegal, even if you add the fact

fact {no Man & Island}

Why can’t overlapping signatures share field names?

The consequence of this rule is that two fields with the same name must 
always differ in the type of their first column. So fields with the same 
name always have different types, and there is some context in which 
they might be distinguished. If the same name could be used for fields 
in two overlapping signatures, a more complicated rule would be re-
quired, and the standard trick using domain restriction to resolve field 
references would not always work.

How does Alloy’s treatment of overloading relate to Java’s?

Resolving of overloading is used in languages like Java to allow the 
names of fields and methods within a class to be chosen without regard 
for the names chosen in other classes. But the resolving mechanism is 
usually much simpler.

In Java, for example, field references can be overloaded, but they either 
stand for self-references (that is, f, being short for this.f), or follow a dot 
(as in x.f). In the former case, they resolve by default to fields of the class 
in which they appear. In the latter, they are resolved using the type of 
the expression preceding the dot. There’s no transpose operator—you 
can’t navigate backward.

In Alloy, we want to be able to write an expression x.f in the equivalent 
form f.~x, and to write x.(f + g) in place of x.f and x.g. This demands a 
more flexible overloading scheme, which doesn’t rely on any particular 
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syntactic form. Alloy’s mechanism for resolution therefore relies not 
only on the field’s type and arity but also on the full context in which it 
appears.

Is the domain restriction operator a special casting operator?

We saw that if you want the f field of type signature S, you can always 
write S <: f and be sure there will be no ambiguity. The domain restric-
tion operator <: might seem to be a kind of cast. But don’t be misled into 
thinking that there’s anything special happening here. You could equally 
well write (S -> univ) & f instead of S <: f (at least as far as overloading 
goes—it’s hardly an attractive form!).

This is an important consequence of the design of Alloy’s type system 
[14]: it is implicit and adds no syntax of its own to the language. In fact, 
Alloy can be regarded as an untyped language. Overloading doesn’t ac-
tually have to be resolved to understand the meaning of a constraint. 
Each field name is taken to be a union of all the fields it might refer to. 
When the name is unambiguous, the union will actually be equivalent 
to the resolved field. So you don’t need to know anything about types to 
read an Alloy model, but you do need to know a little in order to write 
them.

4.5	 Facts,	Predicates,	Functions,	and	Assertions

The constraints of a model are organized into paragraphs. Assumptions 
are placed in fact paragraphs; implications to be checked are placed in 
assertions; constraints to be used in different contexts are packaged as 
predicates; and reusable expressions are packaged as functions.

4.5.1	 Facts
Constraints that are assumed always to hold are recorded as facts. A 
model can have any number of facts, each a paragraph of its own, la-
beled by the keyword fact, and consisting of a collection of constraints. 
The order in which facts appear, and the order of constraints within a 
fact, is immaterial. You can give a fact a unique mnemonic name.

Example. Radio stations with nonoverlapping frequency bands:

sig RadioStation {band: set Freq}
fact NoOverlapping {
 no disj s, s’: RadioStation | some s.band & s’.band
 }
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Example. A file system that has no directory cycles, and in which 
each object is reachable from the root, and has at most one par-
ent:

sig Object {}
sig Directory extends Object {contents: set Object}
one sig Root extends Directory {}
sig File extends Object {}
fact {
 no d: Directory | d in d.^contents
 Object in Root.*contents
 all o: Object | lone o.~contents
 }

Example. A traffic light system (model diagram in fig. 4.10), in 
which, in every state, some light at each junction must show red:

sig LightState {color: Light -> one Color}
sig Light {}
abstract sig Color {}
one sig Red, Yellow, Green extends Color {}
sig Junction {lights: set Light}
fact {
 all s: LightState, j: Junction |
  some s.color.Red & j.lights
 }

Many facts are constraints that apply to each element of a signature’s set. 
These can be recorded more succinctly as signature facts. A constraint 
immediately following a signature is implicitly quantified over its ele-
ments, and each field reference is implicitly dereferenced, just like fields 
mentioned in field declarations. So the signature fact F in

sig A {…}  {F}

is equivalent to writing

sig A {…}
fact {all this: A | F’}

where F’ is just like F, but has each mention of a field g appearing in A or 
one of its supertypes replaced by this.g.

Example. A network with hosts and links, none of which connects 
a host to itself:
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sig Host {}
sig Link {from, to: Host}
fact {all x: Link | x.from != x.to}

can be expressed more succinctly as

sig Host {}
sig Link {from, to: Host} {from != to}

To prevent a field name from being expanded, you can prefix it with the 
symbol @.

Example. A network in which each link has a corresponding link 
in the other direction:

sig Host {}
sig Link {from, to: Host}
 {some x: Link | x.@from = to and x.@to = from}

This signature fact is short for

all this: Link |
 some x: Link |
  x.from = this.to and x.to = this.from

Without the @ symbols, it would instead be short for

fig. 4.10  Model diagram for a traffic light system.
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all this: Link |
 some x: Link |
  x.(this.from) = this.to and x.(this.to) = this.from

which doesn’t even typecheck.

The constraint implicit in a field declaration can be understood by treat-
ing the declaration as a formula that appears as a signature fact.

Example. The declarations

sig Book {
 homeAddress, workAddress: Name -> Addr,
 address: homeAddress + workAddress
 }
sig Name, Addr {}

can be written equivalently as

sig Book {
 homeAddress, workAddress, address: Name -> Addr }
 {
 address: homeAddress + workAddress
 }
sig Name, Addr {}

Accordingly, you can use the keyword this and the symbol @ in bound-
ing expressions of declarations, although this is rarely necessary.

Discussion

Are signature facts like class invariants in an object-oriented language?

Yes, often they play the same role: to express constraints about individ-
ual members of a set. But signature facts are more expressive, because 
fields in Alloy can be “navigated” in any direction (so you can talk about 
objects that point to this object), and because of the ability to quantify 
in arbitrary ways. For the link examples, the first (“no link connects a 
host to itself”) is like a class invariant, but the second (“every link has a 
corresponding backlink”) is not.

In fact, it’s good practice to limit the use of signature facts to those 
constraints that only apply to elements of the signature set. The implicit 
quantification in signature facts can have unexpected consequences 
otherwise, especially if you don’t mention any field of the signature. Per-
haps the most egregious and baffling example is this:
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sig A {} {some A}

You may be surprised that there are instances of this model in which A 
has no elements. Expanding the fact reveals what’s going on; the con-
straint

all this: A | some A

is vacuously true when A is empty, irrespective of the body of the quan-
tification. The lesson is to write the intended constraint in a freestand-
ing fact instead:

sig A {}
fact {some A}

where it now has the desired meaning (that A is nonempty), or to write 
it equivalently as

some sig A {}

4.5.2	 Functions	and	Predicates	
Often, there are constraints that you don’t want to record as facts. You 
might want to analyze the model with a constraint included and exclud-
ed; check whether a constraint follows from some other constraints; or 
declare a constraint so it can be reused in different contexts. Predicates 
package expressions for such purposes. Functions package expressions 
for reuse.

A function is a named expression, with zero or more declarations for 
arguments, and a declaration expression for the result. When the func-
tion is used, an expression must be provided for each argument; its 
meaning is just the function’s expression, with each argument replaced 
by its instantiating expression.

Example. A function defining the ways in which a traffic light may 
change color:

abstract sig Color {}
one sig Red, Yellow, Green extends Color {}
fun colorSequence (): Color -> Color {
 Color <: iden + Red -> Green + Green -> Yellow + Yellow -> Red
 }

A predicate is a named constraint, with zero or more declarations for ar-
guments. When the predicate is used, an expression must be provided 
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for each argument; its meaning is just the predicate’s constraint with 
each argument replaced by its instantiating expression.

Example. A predicate constraining a junction so that all lights but 
one at most are showing red:

sig Light {}
sig LightState {color: Light -> one Color}
sig Junction {lights: set Light}
 
fun redLights (s: LightState): set Light {s.color.Red}
pred mostlyRed (s: LightState, j: Junction) {
 lone j.lights - redLights(s)
 }

A predicate can be used to represent an operation, which describes a set 
of state transitions, by constraining the relationship between pre- and 
poststates.

Example. A rule describing how lights at a junction may change 
color, in which s and s’ denote the before and after states respec-
tively:

1 pred trans (s, s’: LightState, j: Junction) {
2  lone x: j.lights | s.color[x] != s’.color[x]
3  all x: j.lights |
4   let step = s.color[x]-> s’.color[x] {
5    step in colorSequence ()
6    step in Red -> (Color - Red) => j.lights in redLights(s)
7   }
8  }

The constraints of this operation say that at most one light changes 
(2), and that, for each light at the junction, the lights operate in 
sequence (5), and if one turns from red to another color, then all 
the others were showing red (6).

This operation illustrates nondeterminism. How the colors change 
for the set of traffic lights in a junction is constrained, but it isn’t 
fully determined. The predicate allows all the lights to remain the 
same color, and it doesn’t say which light changes when all the 
lights are red. Now if this operation can be shown to be safe, we 
know that any operation that resolves these choices in accordance 
with the given constraints is also safe.



language 1��

Alloy has a shorthand similar to the “receiver” convention of object-ori-
ented programming languages, for functions or predicates whose first 
argument is a scalar. Rather than writing

pred f (x: X, y: Y, …) {… x …}

you can write

pred X::f (y: Y, …) {… this …}

with an implicit first argument referred to by the keyword this (and 
similarly for functions). Whether or not the predicate or function is 
declared in this way, it can be used in the form

x::f (y, …)

where x is taken as the first argument, y as the second, and so on.

Example. The function and predicate defined above

fun redLights (s: LightState): set Light {s.color.Red}
pred mostlyRed (s: LightState, j: Junction) {
 lone j.lights - redLights(s)
 }

can be written equivalently as

fun LightState::redLights (): set Light {s.color.Red}
pred LightState::mostlyRed (j: Junction) {
 lone j.lights - s::redLights()
 }

and the invocation expressions s::mostlyRed (j) and mostlyRed (s, j) 
and equivalent, however the predicate mostlyRed is declared.

Discussion

How do you decide whether to use a predicate or a fact?

Recall that a predicate only holds when invoked; a fact always holds. 
The general rule is therefore that assumptions that always hold go in 
facts, but other constraints go in predicates. But this rule is a bit naive. 
First of all, you can package constraints as predicates and then include 
the predicates in facts. Second, you can actually dispense with facts al-
together, and insert what would have been facts as predicates through-
out. So the choice is more subtle.
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Because facts are global, they are very convenient. A constraint written 
as a fact in just one place applies everywhere, assumed in every predi-
cate and assertion. The downside is a loss of control. Perhaps you want 
to check an assertion without that constraint. You can of course simply 
comment it out in the fact paragraph while checking that particular as-
sertion. But that’s clumsy; if there are two assertions and you want to 
check one with and one without the constraint, you’ll need to be com-
menting and uncommenting the fact as you perform the analysis.

For this reason, a more verbose style is appealing, in which there are very 
few facts, or none at all, and constraints are repeated in every context in 
which they apply. By packaging the repeated constraints as predicates, 
you only need to repeat the name of the predicate, and not the con-
straint itself. For small models, it’s convenient to use facts because they 
make the model more succinct and are easily turned into predicates. 
For large models, this more sophisticated approach often works best.

When is the receiver syntax used in practice?

Its benefit comes when you have an expression involving a sequence of 
function applications. Then, instead of a nested expression such as

h (g (f (x, arg1), arg2), arg3)

in which the function names appear in reverse order of their applica-
tion, amid a mass of parentheses, you can write

x::f(arg1)::g(arg2)::h(arg3)

How are predicates and functions typechecked?

In the obvious way. When checking the body of a predicate or function, 
the type checker assumes the formal parameters have the types declared. 
When checking an invocation, the checker determines whether the type 
of each actual argument and the type of the corresponding formal argu-
ment overlap. If they are disjoint, an error is reported.

4.5.3	 Assertions
An assertion is a constraint that is intended to follow from the facts of 
the model. The analyzer checks assertions. If an assertion does not fol-
low from the facts, then either a design flaw has been exposed, or a mis-
formulation. Even assertions that do follow are useful to record, both 
because they express properties in a different way, and because they 
act like regression tests, so that if an error is introduced later, it may be 
detected by checking assertions.
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Examples. For a file system in which every object is reachable from 
the root directory,

abstract sig Object {}
sig Directory extends Object {contents: set Object}
one sig Root extends Directory {}
sig File extends Object {}
fact {
 Object in Root.*contents
 }

a valid assertion that every object except the root is in some direc-
tory:

assert SomeDir {
 all o: Object - Root | some contents.o
 }

an invalid assertion that no object contains the root directory:

assert RootTop {
 no o: Object | Root in o.contents
 }

and a valid assertion that every file belongs to some directory:

assert FileInDir {
 all f: File | some contents.f
 }

Assertions can be entirely self-contained, without depending on any 
facts, implicit or explicit, and can be declared in a model without any 
signatures either. In this case, the assertion is a logical conjecture, in-
tended to be a tautology. Such assertions can be used to check math-
ematical properties of operators, or to experiment with different ways 
to phrase a constraint.

Example. Assertions claiming that dot is associative for binary re-
lations (correctly), and that union and difference can be manipu-
lated like plus and minus in arithmetic (wrongly):

assert DotAssociative {
 all p, q, r: univ -> univ | (p.q).r = p.(q.r)
 }
assert BadUnionRule {
 all p, q, r: univ -> univ | p = q + r  iff p - q = r
 }
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Assertions are often written using functions and predicates.

Example. The traffic light model of fig. 4.11 includes an assertion 
Safe claiming that a key safety property is preserved by the transi-
tions: that if, at a junction, all but one light is red before the transi-
tion, then all but one light is red after.

Discussion

What are assertions used for in practice?

Typically, assertions play two different roles. Some express mundane 
properties that aren’t interesting in their own right; they’re written 
purely to detect flaws in the model.  It’s surprising how effective even a 
few such assertions can be in uncovering subtle flaws.

Take our traffic light system, for example. We might believe that we’ve 
specified the system to a degree of detail that ensures that it’s determin-
istic: that is, every state has at most one successor. Determinism, in this 
case, isn’t in itself an interesting property, but by checking it, we’ll find 
holes in the model—places in which detail is missing.

Other assertions express truly essential properties, and are sometimes 
more fundamental than the facts of the model. I’ve often found that the 
development of the right assertions for a design gives me a completely 
different view of what it’s all about that is much clearer and simpler than 
the view I started with.

In the traffic light system, for example, there are properties that are 
fundamental to its working and which motivate the entire design: for 
example, that the lights properly guard the vehicles passing through, by 
never showing more than one green light at a time.

Must assertions have names?

Like facts, assertions need not be named. But to check an assertion, you 
need to refer to it in a command, so it’s rare to leave it anonymous.

Can a model have assertions but no facts?

A model can have assertions without any explicit facts (as the example 
language/theorems demonstrated). Even in the absence of explicit facts, 
there are usually facts implicit in the declarations of signatures.
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4.6	 Commands	and	Scope

To analyze a model, you write a command and instruct the tool to ex-
ecute it. A run command tells the tool to search for an instance of a 
predicate. A check command tells it to search for a counterexample of 
an assertion.

In addition to naming the predicate or assertion, you may also give a 
scope that bounds the size of the instances or counterexamples that will 

module language/lights

abstract sig Color {}
one sig Red, Yellow, Green extends Color {}
fun colorSequence (): Color -> Color {
 Color <: iden + Red -> Green + Green -> Yellow + Yellow -> Red
 }

sig Light {}
sig LightState {color: Light -> one Color}
sig Junction {lights: set Light}

fun redLights (s: LightState): set Light {s.color.Red}
pred mostlyRed (s: LightState, j: Junction) {
 lone j.lights - redLights(s)
 }

pred trans (s, s’: LightState, j: Junction) {
 lone x: j.lights | s.color[x] != s’.color[x]
 all x: j.lights |
  let step = s.color[x] -> s’.color[x] {
   step in colorSequence ()
   step in Red -> (Color - Red) => j.lights in redLights(s)
  }
 }

assert Safe {
 all s, s’: LightState, j: Junction |
  mostlyRed (s, j) and trans (s, s’, j) => mostlyRed (s’, j)
 }
check Safe

fig. 4.11  Traffic light model, with safety assertion.
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be considered. If you omit the scope, the tool will use the default scope 
in which each top-level signature is limited to three elements.

Examples. The command

check Safe

in fig. 4.11 checks the safety of the traffic light system, by consider-
ing all transitions involving at most three light states, three junc-
tions, three lights, and three colors.

For the same model, the command

run trans

instructs the analyzer to find an example of a traffic light transi-
tion, using the same scope.

To specify a scope explicitly, you can give a bound for each signature 
that corresponds to a basic type. You can give bounds on top-level sig-
natures, or on extension signatures, or even on a mixture of the two, so 
long as whenever a signature has been given a bound, the bounds of 
its parent and of any other extensions of the same parent can be deter-
mined.

Examples. Given these declarations of a file system

abstract sig Object {}
sig Directory extends Object {}
sig File extends Object {}
sig Alias extends File {}

and an assertion A, the following commands are well formed:

check A for 5 Object
check A for 4 Directory, 3 File
check A for 5 Object, 3 Directory
check A for 3 Directory, 3 Alias, 5 File

but this command is ill-formed

check A for 3 Directory, 3 Alias

because it leaves the bound on File unspecified.

You can set a default scope explicitly, and you can mix a specified de-
fault scope with explicit bounds for particular types, which override 
and augment the default scope.
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Examples. The command

check A for 5

places a bound of 5 on all top-level types (in this case just Object). 
The command

check A for 5 but 3 Directory

additionally places a bound of three on Directory, and a bound of 
two on File by implication.

Whenever a signature’s size is determined by declarations, that size will 
be used as an implicit override.

Example. Given the declarations of fig. 4.11, a command such as

check Safe for 2

will limit the signatures Junction, Light and LightState to two atoms 
each, but will assign a size of exactly three to Color.

Keep in mind that a scope declaration only gives an upper bound on the 
size of each set. If you want to prescribe the exact size, you can use the 
keyword exactly.

Example. The command

check A for exactly 3 Directory, exactly 3 Alias, 5 File

limits File to at most 5 elements, but requires that Directory and 
Alias have exactly 3 elements each.

Discussion

Is the scope determined by the size of the instances in the actual system?

Not usually. Occasionally, there is a resource bound in the actual system 
that influences the choice of scope. In an analysis we performed of a 
proton therapy installation, for example, there were exactly three treat-
ment rooms, so it made sense to limit the corresponding set to three 
elements.

But more typically the scope is determined purely by analysis concerns: 
an estimate of the size of instance that will be needed to find flaws (and 
which will still allow tractable search). For example, you might check a 
file system in a scope of 10 because you believe that’s sufficient to catch 
almost all design flaws: that any bad scenario can most likely be illus-
trated in a file system with ten objects. The power of the analysis derives 
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from the fact that there are a huge number of possible file systems con-
taining ten objects, and your model will be checked for each of them. 
But of course you don’t intend the model itself to have such a limitation: 
a file system that can only hold ten objects would not be very useful.

Why must the scope be specified repeatedly in each command?

Separating scope settings from the model proper is a significant lan-
guage design decision. It prevents the model itself from being polluted 
by analysis concerns, and allows the same model to be analyzed under 
different scopes. The notion of scope is not unique to Alloy, but it tends 
to be handled less systematically in other tools. Many model checkers 
either hardwire the scope, or use global constants. A typical description 
of a traffic light system would limit the number of traffic lights at a junc-
tion, and all analyses would be performed within this same limit. Worse, 
the model will often hardwire a particular configuration. A model with 
two traffic lights would not cover the case in which there is only one.

4.7	 Modules	and	Polymorphism

Alloy has a simple module system that allows you to split a model 
among several modules, and make use of predefined libraries. Modules 
correspond one-to-one with files. Every analysis is applied to a single 
module; any other modules containing relevant model fragments must 
be explicitly imported.

Each module has a path name that must match the path of its corre-
sponding file in the file system. Paths are interpreted with respect to a 
collection of root directories, given as preferences in the tool.

4.7.1	 Module	Declarations	and	Imports
The first line of every module is a module header of the form

module modulePathName

Every module that is used must have an explicit import immediately fol-
lowing the header, whose simplest form is

open modulePathName

Examples. A module that defines a predicate true of relations that 
are acyclic:

module library/graphs
pred Acyclic (r: univ -> univ) {no ^r & iden}
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and two uses, one in a model of a family:

module family
open library/graphs
sig Person {parents: set Person}
fact {Acyclic (parents)}

and one in a model of a file system:

module fileSystem
open library/graphs
sig Object {}
sig Directory extends Object {contents: set Object}
fact {Acyclic (contents)}

Modules have their own namespaces. A name clash between compo-
nents of different modules can be resolved by referring to components 
with qualified names. A signature, predicate or function X in the mod-
ule with path name p has the qualified name p/X. Even if an unqualified 
name would be unambiguous, the qualified name may still be used.

Example. A module that refers to the imported predicate Acyclic 
using a qualified name to avoid a clash with a predicate of the 
same name in the importing module:

module family
open library/graphs
sig Person {parents: set Person}
pred Acyclic () {library/graphs/Acyclic (parents)}

When path names get long, you can declare an alias for an imported 
module

open modulePathName as alias

and refer to its components using the alias as a qualifier instead of the 
path name.

Example. The same module, using an alias to shorten the reference 
to the imported predicate Acyclic:

module family
open library/graphs as g
sig Person {parents: set Person}
pred Acyclic () {g/Acyclic (parents)}
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4.7.2	 Parametric	Modules
A module can be parameterized by one or more signature parameters, 
given as a list of identifiers in brackets after the module name. Any im-
porting module must then instantiate each parameter with the name of 
a signature. Parameterization is just a syntactic mechanism; the effect 
of instantiating a module is just like importing a copy of the module 
with the instantiating signature names substituted for the parameters 
throughout.

Example. A parameterized module

module library/graphs [t]
pred Acyclic (r: t -> t) {no ^r & iden}

and two modules that use it

module family
open library/graphs [Person]
sig Person {parents: set Person}
fact {Acyclic (parents)}

module fileSystem
open library/graphs [Object]
sig Object {}
sig Directory extends Object {contents: set Object}
fact {Acyclic (contents)}

The most common use of parameterized modules is for generic data 
structures, such as orderings, queues, lists, and trees. The type param-
eters represent the types of the elements held in the data structure.

Example. A parameterized list module:

module library/list [t]
sig List {}
sig NonEmptyList extends List {next: List, element: t}
fact Canonical {
 no disj p, p’: List | p.next = p’.next and p.element = p’.element
 }
fun List::first (): t {this.element}
fun List::rest (): List {this.next}
fun List::addFront (e: t): List {
 {p: List | p.next = this and p.element = e}
 }
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Any module declared with parameters could have been declared instead 
without them, using univ. The advantage of parameters is that they allow 
stronger type checking; the disadvantage is that they require a separate 
instantiation for each use.

Discussion

When are module aliases useful?

Aliases are most useful when a parameterized module is imported more 
than once with different instantiations of its parameters, in which case 
the names of components will always need to be qualified. For example, 
we might have a resource allocation module parameterized by resourc-
es and the users they are allocated to:

module general/resourceAllocation [user, resource]
…
pred Allocate (…) {…}

and used in a model of a train system:

module trainSystem
open general/resourceAllocation [Train, Track]
 as trainResource
open general/resourceAllocation [Track, Current]
 as trackResource

A name such as general/resourceAllocation[Train, Track]/Allocate now be-
comes trainResource/Allocate using the alias.

Can signature extensions cross module boundaries?

Yes. An importing module can extend a signature declared in an im-
ported module, and vice versa. Here, for example, is a module that adds 
a name field to a signature:

module named [t]
sig named_t extends t {name: Name}
fact {all disj a, b: t | a.name != b.name}
fact {t = named_t}

Now if we write

open named [S]

for any signature S, any element x of S will now have a distinct name 
x.name.
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4.8	 Integers	and	Arithmetic

Section 3.7 introduced expressions with integer values. Recall that #e is 
an integer representing the number of tuples in the relation denoted by 
e, and that such expressions can be combined with addition and sub-
traction, and compared.

Examples. A hand is “three of a kind” if it consists of three cards, 
all of the same suit:

sig Card {suit: Suit}
sig Suit {}
pred ThreeOfAKind (hand: set Card) {
 #hand.suit = 1 and #hand = 3
 }

You may wonder whether integers can appear as atoms in relations. In-
tegers themselves are not atoms, but associated with each integer value 
there is an integer atom that holds that integer value, allowing the inte-
ger effectively to be included in a relation.

For an integer-valued expression e, the expression Int e denotes the inte-
ger atom holding the integer value of e. Given an expression e denoting 
a set of integer atoms, the integer-valued expression int e denotes the 
sum of the integer values of those atoms. The keyword Int represents 
the set of all integer atoms.

From a typechecking perspective, there is a type int associated with in-
teger-valued expressions, and a type Int representing sets of integer at-
oms. You can think of Int as a predefined signature, like univ. The special 
operators can then be given these types:

int: Int -> int
Int: int -> Int

Example. A weighted graph, in which a field adj maps each node 
to its adjacent nodes and their weights, with a constraint that self-
connections have zero weight:

sig Node {
 adj: Node -> lone Int
 }
fact {
 all n: Node |
  let w = n.adj[n] |
   some w => int w = 0
 }
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Discussion

Why leave integers to the end?

Integers are actually not very useful. If you think you need them, think 
again; there is often a more abstract description that matches the prob-
lem better. Just because integers appear in the problem domain does 
not mean that they should be modeled as such. To figure out whether 
integers are necessary, ask yourself what properties are actually relied 
upon. For example, a communication protocol that numbers its mes-
sages may rely only on the numbers being distinct; or it may rely on 
them increasing; or perhaps even being totally ordered. In none of these 
cases should integers be used. Of course,  if you have a heavily numeri-
cal problem, you’re likely to need integers (and more), but then Alloy is 
probably not suitable anyway.

Does Alloy have a multiplication operator?

No, it doesn’t. Fortunately, it’s rarely needed in structural models. The 
kinds of model that need multiplication tend to be heavily numerical, 
and not well suited to Alloy anyway.

How are integers scoped in Alloy?

In scope specifications, a setting for Int limits the number of Int atoms, 
whereas a setting for int gives the maximum bit-width for integers. For 
example, a command that includes the scope

3 Int, 6 int

results in a search limited to at most three Int atoms, and involving in-
tegers from −31 to +31.

Is Alloy’s Int like Java’s Integer?

Yes. The distinction between Int and int in Alloy is very similar to Java’s 
distinction between primitive integer values and Integer objects. It has 
a different purpose though. If integer values were treated as atoms, we 
would need an atom for every possible integer value within the scope, 
which would make the analysis less tractable. The distinction could be 
hidden syntactically, with implicit coercions between Int and int, but 
then we wouldn’t be able to overload the + and - operators.
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Are integer objects unique to the values they carry?

Yes. The following assertion is valid:

assert UniqueInts {all i, j: Int | int i = int j => i = j}

What about booleans? Is there no boolean type in Alloy?

Alloy has no boolean type. At first sight, this is very strange, especially 
for a language based on first-order logic. Formulas, of course, do have 
boolean values, but expressions never do. To see why not, suppose Al-
loy had a boolean type that could be used in declarations such as

sig Phone {offhook, ringing: boolean}

The motivation for such a type would be to allow us to write constraints 
like this:

all p: Phone | p.offhook => not p.ringing

But now we run into trouble. A term like p.ringing will in general denote 
a set of booleans. So what will be the value of not p.ringing when the 
set contains zero booleans, or more than one? There is no good way 
out of this. Perhaps you could reject such expressions, and only allow 
constraints, like the one above, in which they don’t appear? This is not 
easy, because it involves reasoning about the domains of functions. Or 
perhaps you could extend the interpretation of the standard logical op-
erators over sets of boolean values?

These problems are just a particular case of the old problem of partial 
functions and their application, which are avoided in Alloy by offering 
only relational image, and no function application (see the discussion in 
subsection 3.4.3). Admitting a boolean type would reintroduce all that 
complexity, because the boolean expressions involve function applica-
tions, for little benefit.

If you really want booleans, you can define a boolean type of your own:

module booleans
sig Boolean {}
one sig True, False extends Boolean {}

and now you can write the above constraint as

module phones
open booleans
sig Phone {offhook, ringing: Boolean}
fact {all p: Phone | p.offhook = True => not p.ringing = True}
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and, if you’re a real glutton for punishment, you could define extended 
versions of the logical operators too, such as this version of negation, 
which gives Not e as false when e is not a scalar:

…
fun Boolean::Not (): Boolean {if this = False then True else False}
..

and now you can write things like

…
fact {all p: Phone | Implies (p.offhook, Not (p.ringing)}

In fact, the Alloy library includes such a module. It’s useful when bool-
ean values must be closely modeled, for example in reasoning about 
code. But for design modeling, this is the wrong approach. The way to 
classify objects is not to associate them with boolean values using at-
tributes, but to declare subtypes:

sig Phone {calling: set Phone}
sig Offhook, Ringing extends Phone {}

Now the constraint that an offhook phone is not ringing is implicit in 
the declarations. For a dynamic classification, you could associate with 
each attribute the set of times at which it holds:

sig Phone {
 calling: Phone -> Time,
 offhook, ringing: set Time
 }

and the constraint now becomes

all t: Time | no offhook.t & ringing.t

Using set operators, constraints are more succinct than they would have 
been with boolean attributes, without any of the complications.





5:	Analysis

The first principle is that you must not fool yourself, and you are the easi-
est person to fool.—Richard P. Feynman

Analysis brings software abstractions to life in three ways.  First, it en-
courages you as you explore, by giving you concrete examples that re-
inforce intuition and suggest new scenarios. Second, it keeps you hon-
est, by helping you to check as you go along that what you write down 
means what you think it means. And third, it can reveal subtle flaws that 
you might not have discovered until much later (or not at all).

This chapter explains the form of analysis that underlies Alloy, and dis-
cusses its power and limitations. The key idea is the specification of a 
scope, which bounds the sizes of the signatures, and exhaustive search 
within the scope for examples or counterexamples.

5.1	 Scope-Complete	Analysis

5.1.1	 Instance	Finding	and	Undecidability	Compromises
Checking an assertion and running a predicate reduce to the same 
analysis problem: finding some assignment of relations to variables that 
makes a constraint true. So rather than referring to both problems, we’ll 
refer just to the problem of checking assertions.

Alloy’s relational logic is undecidable. This means that it is impossible to 
build an automatic tool that can tell you, with perfect reliability, whether 
an assertion is valid—that is, holds for every possible assignment. Some 
compromise is therefore necessary.

The traditional compromise is embodied in theorem proving. An auto-
matic theorem prover attempts to construct a proof that an assertion 
holds. If it succeeds, the assertion is valid. If it fails, however, the asser-
tion may be valid or invalid. Unfortunately, it can be hard to tell whether 
the failure to verify the assertion was due to a faulty assertion, to limita-
tions of the prover itself, or to a lack of appropriate guidance from the 
user.

The analysis underlying Alloy, instance finding, makes a different com-
promise. Rather than attempting to construct a proof that an assertion 
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holds, it looks for a refutation, by checking the assertion against a huge 
set of test cases, each being a possible assignment of relations to vari-
ables. If the assertion is found not to hold for a particular case, that case 
is reported as a counterexample. If no counterexample is found, it’s still 
possible that the assertion does not hold, and has a counterexample that 
is larger than any of the test cases considered.

This compromise is a better match for lightweight modeling. Since the 
analysis is applied repeatedly and incrementally throughout the devel-
opment of an abstraction, it will most often be presented with invalid 
assertions. Instance finding is well suited to analyzing invalid asser-
tions because it generates counterexamples, which can usually be easily 
traced back to the problem in the description, and because invalid as-
sertions tend to be analyzed much more quickly than valid ones (since 
a valid assertion requires the entire space of possible instances to be 
covered, whereas, for an invalid assertion, the analysis can stop when 
the first instance has been found).

5.1.2	 The	Notion	of	Scope
To make instance finding feasible, a scope is defined that limits the size 
of instances considered. The analysis effectively examines every in-
stance within the scope, and an invalid assertion will only slip through 
unrefuted if its smallest counterexample is outside the scope.

You might think that a good strategy would be for the analyzer to start 
with a small scope and increment it automatically until either a counter-
example has been found or some preset time limit has been exceeded. 
But this presupposes a scope that is just a number. A richer notion of 
scope turns out to be more useful, in which each signature is bounded 
separately, under the user’s control. For example, an analysis of a rail-
way switching operation may call for a scope of only two states (the 
before and after states), and only one junction, but a larger number of 
track segments and trains.

The scope thus defines a multidimensional space of test cases, each di-
mension corresponding to the bound on a particular signature. Even a 
small scope usually defines a huge space. In the default scope of 3, for 
example, which assigns a bound of three to each signature, each binary 
relation contributes 9 bits to the state (since each three elements of the 
domain may or may not be associated with each three elements of the 
range)—that is, a factor of 512. So a tiny model with only four relations 
has a space of over a billion cases.
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5.1.3	 The	Small	Scope	Hypothesis
Isn’t instance finding just testing? In a sense it is: the assertion is checked 
against a finite set of cases that occupies only an infinitessimally small 
proportion of the space of possible cases. Dijkstra’s dictum [13]

Program testing can be used to show the presence of bugs, but 
never to show their absence

applies also to instance finding. But the weakness of testing goes be-
yond its inability to show the absence of bugs; it can’t usually show their 
presence either. Most bugs in code elude testing, and the challenge in 
writing test suites is to catch more of the bugs that are there, not to 
show that no bugs remain (which is a very different, and even harder, 
problem).

Instance finding has far more extensive coverage than traditional test-
ing, so it tends to be much more effective at finding bugs. In short:

Most bugs have small counterexamples.

That is, if an assertion is invalid, it probably has a small counterexample. 
I call this the “small scope hypothesis,” and it has an encouraging impli-
cation: if you examine all small cases, you’re likely to find a counterex-
ample.

Discussion

What role do theorem provers have in analyzing software abstractions?

Theorem provers and instance finders play complementary roles. Once 
the Alloy Analyzer has failed to find a counterexample to an assertion, 
you could use a theorem prover to prove that the assertion holds in all 
scopes. Completing a proof with the aid of a theorem prover usually 
demands an effort an order of magnitude greater than the modeling ef-
fort that preceded it, so for most applications, it’s not cost-effective. For 
checking safety-critical abstractions, however, the additional assurance 
obtained from proof may be worthwhile.

Does analysis depend on having perfect assertions?

Some people assume that, without assertions that capture some platon-
ic “higher-level specification,” analysis is not worthwhile. On the con-
trary, even simple forms of analysis are beneficial. Simple simulation 
predicates often generate surprising scenarios, and formulating basic 
sanity checks as assertions can expose deep errors. Of course, if you 
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can express the critical properties of a software design with assertions, 
then you can use analysis to check them, and a lack of counterexamples 
is more significant.

Is the primary purpose of analysis to expose subtle bugs?

The case for formal methods is often based on the prospect of catching 
subtle bugs that elude testing. But in practice the less glamorous analy-
ses that are applied repeatedly during the development of an abstrac-
tion, and which keep the formal model in line with the designer’s intent, 
are far more important. Software, unlike hardware, rarely fails because 
of a single tiny but debilitating flaw. In almost all cases, software fails 
because of poor abstractions that lead to a proliferation of bugs, one of 
which happens to cause the failure.

What makes the logic undecidable?

First-order logic is undecidable, unless some severe restrictions are 
placed on the constraints that can be written. For example, you can re-
strict the logic to “monadic” predicates (that is, predicates with only a 
single argument), which in a relational setting eliminates relations, leav-
ing only sets and scalars. Alternatively, you can restrict how quantifiers 
are used, for example allowing only certain “prefix” patterns in which 
all quantifiers appear at the start of an assertion in a particular pattern 
of existential and universal quantifiers. Eliminating quantifiers wouldn’t 
make our logic decidable, however, because the relational calculus, con-
sisting of only binary relations and our relational operators (notably, dot 
join) is undecidable. In short, there appears to be no practical logic that’s 
rich enough to capture software abstractions that is still decidable.

For a gentle introduction to the notion of undecidability, see chapter 8 
of David Harel’s book [25]. For a comprehensive treatment of the decid-
ability of first-order logic and its variants, see [6], which includes a nice 
classification that is available also online in a short paper [20].

Why the term “instance”?

In standard mathematical terminology, an instance of a constraint is 
called a “model,” and a tool that finds models is a “model finder.” But the 
word “model” is so heavily overloaded that it seemed best to avoid it.

Is the idea of scope new?

A technique known as “model checking” was developed in the 1980’s 
for analyzing protocols and hardware designs that could be expressed 
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as finite state machines. The technique was so effective that it was soon 
applied to unbounded systems, by constructing a description that ar-
tificially (and often somewhat arbitrarily) made the system finite. In 
fact, this process is now seen as so fundamental to model checking that 
people have come to think that this is what the word “model” refers to 
in its name: a finite model of an infinite system. (The word was actually 
intended in its mathematical sense, that the analysis checks whether 
the state machine is a “model” of a temporal logic formula.) So the idea 
of searching within finite bounds, relying—at least implicitly—on the 
small scope hypothesis to find bugs, is not new.

What is perhaps new to Alloy is the separation of the scope specifi-
cation from the model proper, and the ability to adjust the scope in a 
fine-grained manner. The separation prevents the model from being 
polluted with analysis concerns, and makes it easy to run different 
analyses with different scopes without adjusting the model itself. The 
fine-grained control goes beyond static configuration parameters (such 
as the number of processes in a network) to bounds on dynamically al-
located data (such as the number of messages in a queue, or the number 
of objects in a heap).

What use is a design that only works in a small scope?

This question exposes a common misunderstanding of the notion of 
scope. Of course a system that only worked when each type had no 
more than a small number of elements would be useless. The point of 
the small scope hypothesis is that systems that fail on large instances 
almost always would fail on small ones with similar properties, even if 
such small instances don’t occur in practice. So by checking all small 
instances, we are effectively checking for large ones too.

What about resource allocation limits?

Implementations often have built-in resource allocation limits that 
cause failures when crossed. This would seem to contradict the small 
scope hypothesis, because the failures only occur on huge instances 
that exceed the allocation limits. Abstractions don’t have these issues, 
though, because resource allocation is either factored out, or represent-
ed more abstractly, either by a parameter in the model which can be set 
arbitrarily low, or by nondeterministic behavior.



1�� analysis

Can you prove the small scope hypothesis?

No—that’s why I call it a hypothesis. It makes a claim about the asser-
tions that arise in practice, not the space of all possible assertions. One 
can construct an invalid assertion whose smallest counterexample is 
just beyond any given scope. Fortunately, inadvertent errors are rarely 
so devious in practice. It’s important to bear in mind, nevertheless, that 
instance finding is an incomplete analysis, and sometimes the scope 
needed to find a bug is larger than intuition would suggest.

If there were a scope large enough to find a counterexample to any 
invalid assertion, or even a way to compute a large enough scope on 
an assertion-by-assertion basis, it would be possible—in principle at 
least—to determine whether or not an assertion is valid. This would 
contradict the undecidability of the logic, so it cannot be done. Never-
theless, there are subsets of first-order logic that have a “small model 
theorem,” which allows a sufficient scope to be determined from the 
structure of an assertion: an example relevant to modeling is the theory 
of set-valued fields [45].

5.2	 Instances,	Examples,	and	Counterexamples

5.2.1	 Analysis	Constraints	and	Variables
When you run a predicate or check an assertion, the analyzer searches 
for an instance of an analysis constraint: an assignment of values to the 
variables of the constraint for which the constraint evaluates to true.

In the case of a predicate, the analysis constraint is the predicate’s con-
straint conjoined with the facts of the model—both the explicit facts 
appearing in fact paragraphs, and the facts that are implicit in declara-
tions. An instance is an example: a scenario in which both the facts and 
the predicate hold.

In the case of an assertion, the analysis constraint is the negation of 
the assertion’s constraint conjoined with the facts of the model. An in-
stance is a counterexample: a scenario in which the facts hold but the 
assertion does not (or, equivalently, a scenario in which the assertion 
fails to follow from the facts).

The variables that are assigned in an instance comprise

· the sets associated with the signatures;
· the relations associated with the fields;
· and, for a predicate, its arguments.
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Example. As a running example, we’ll use a version of the address 
book taken from chapter 2, shown in fig. 5.1, which has the merit 
of including every basic language construct. Each address book b 
has a mapping b.addr from names not only to addresses, but also to 
names (thus allowing multiple levels of indirection). The signature 
Target is declared for the purpose of this generalization. The fact 
says that these indirections never form cycles. The add operation 
simply adds a mapping from a name to a target. The lookup func-
tion returns the set of addresses reachable from the name—that 
is, the leaves of the tree. Finally, the assertion addLocal makes the 
(incorrect) claim that an addition for a name n only affects lookups 
for n itself.

For the command run add, the analysis variables are:

· the signatures Target, Addr, Name, and Book;
· the field addr; and
· the four arguments to the add predicate: b, b’, n, and t.

module analysis/addressBook

abstract sig Target {}
sig Addr extends Target {}
sig Name extends Target {}
sig Book {addr: Name -> Target}

fact Acyclic {all b: Book | no n: Name | n in n.^(b.addr)}
pred add (b, b’: Book, n: Name, t: Target) {
 b’.addr = b.addr + n -> t
 }
run add for 3 but 2 Book
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}

assert addLocal {
 all b,b’: Book, n,n’: Name, t: Target |
  add (b,b’,n,t) and n != n’ => lookup (b,n’) = lookup (b’,n’)
 }
check addLocal for 3 but 2 Book

fig. 5.1  An address book example.
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The analysis constraint is the conjunction of the constraints im-
plicit in the signatures

Name in Target
Addr in Target
no Name & Addr
Target in Name + Addr
no Book & Target

the constraints implicit in field and argument declarations

addr : Book -> Name -> Target
b: Book
n: Name
t: Target

the explicit facts, in this case just Acyclic

all b: Book | no n: Name | n in n.^(b.addr)

and the body of the predicate being run

b’.addr = b.addr + n -> t

Here is the first sample instance generated by running the com-
mand, being the case in which a name/address pair is added that 
is already present:

Target = {(Addr_0), (Name_0)}
Addr = {(Addr_0)}
Name = {(Name_0)}
Book = {(Book_0), (Book_1)}
addr = {(Book_0, Name_0, Addr_0), (Book_1, Name_0, Addr_0)}
b = {(Book_0)}
b’ = {(Book_0)}
n = {(Name_0)}
t = {(Addr_0)}

For consistency, I’ve used the format of chapter 3, in which the ele-
ments of sets were parenthesized to remind the reader that, from 
a semantic perspective, sets are represented in Alloy as relations. 
The Alloy Analyzer’s textual output has a more conventional (and 
slightly friendlier) format that uses the declarations of relations 
to determine how they should be formatted. Fig. 5.2 shows three 
forms of output offered by the analyzer: this textual form, a tree 
form, and the diagrammatic form.
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module alloy/lang/univ
sig univ = {Addr_0, Book_0, Book_1, 
Name_0}
module analysis/addressBook
sig Target extends univ = {Addr_0, 
Name_0}
sig Addr extends Target = {Addr_0}
sig Name extends Target = {Name_0}
sig Book extends univ = {Book_0, 
Book_1}
  addr:  analysis/addressBook/Name  
    -> analysis/addressBook/Target =
      {Book_0 -> Name_0 -> Addr_0,
       Book_1 -> Name_0 -> Addr_0}
Skolem constants
add_b = Book_0
add_b’ = Book_0
add_n = Name_0
add_t = Addr_0

fig. 5.2  A generated instance for the run command of fig. 5.1, 
as shown by the Alloy Analyzer in tree form (above left), 

textual form (above right) and diagram form (below).
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For the command check addLocal, the variables include the signa-
tures and the field addr, but no predicate arguments. The analysis 
constraint is the conjunction of the constraints implicit in signa-
ture and field declarations, and the explicit fact, as before, and ad-
ditionally, the negation of the assertion

some b,b’: Book, n,n’: Name, a: Addr |
 add (b,b’,n,a) and n != n’ and not lookup (b,n’) = lookup (b’,n’)

which becomes

some b,b’: Book, n,n’: Name, a: Addr |
 b’.addr = b.addr + n -> t
 and n != n’
 and not n.^(b.addr) & Addr = n’.^(b’.addr) & Addr

when the predicate add and the function lookup are expanded. A 
counterexample to this assertion is shown graphically in Fig. 5.3 in 
three different views produced by making different visualization 
selections in the Alloy Analyzer, and using the projection facil-
ity as described in section 3.3. Note the labels that indicate which 
atoms are the witnesses for the quantified variables: addLocal_b, for 
example, is the witness for the variable b of addLocal. These are 
skolem constants explained in subsection 5.2.2.

Discussion

Aren’t multiple values of a variable needed to handle pre- and post-
states?

No, no, no! In the variables for the analysis of addLocal, b and b’ are dis-
tinct variables; as far as the analyzer is concerned, they have no more in 
common than any other pair of variables, even though they happen to 
represent the before and after values of an address book.

So variables don’t actually vary?

That’s right. Our variables, like the variables in mathematics and physics 
(and unlike variables in an imperative program), only vary in the sense 
that they can be assigned a variety of values. It’s standard practice in 
engineering to use different names to describe phenomena at differ-
ent points in time; it’s what makes reasoning by algebraic manipulation 
possible. In computer science, the use of distinct names for describing 
pre- and poststates goes back at least to the use of auxiliary variables in 
Hoare logic.
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fig. 5.3  A generated instance for the check command of fig. 5.1, 
as shown by the Alloy Analyzer in diagram form 

with the default visualization settings (top), 
projected onto the set Book (middle), 

and with just Book atoms showing (bottom). 
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Why aren’t there primed variables for the poststate values of fields too?

That approach is taken by most modeling languages, especially Z [65]. 
The approach we’ve taken in this book is more like the approach taken 
in physics, in which a time-varying phenomenon is modeled as a func-
tion from times to values. The addr field, for example, can be viewed as a 
function with a value x.addr for each book x. The multiple address books 
might represent distinct books at a given time, or — as in this case—the 
same book at different times. In the leader election and hotel locking 
examples of chapter 6, time is made fully explicit, and a time-varying 
state component is modeled by a field f with times in the last column, so 
that f.t represents the value at time t.

Is Alloy the first language to use this approach?

No. The approach was pioneered by John McCarthy in his situation cal-
culus [51].

How does the analysis work?

Every analysis involves solving a constraint: either finding an instance 
(for a run command) or finding a counterexample (for a check). The Al-
loy Analyzer is therefore a constraint solver for the Alloy logic. In its 
implementation, however, it is more of a compiler, because, rather than 
solving the constraint directly, it translates the constraint into a boolean 
formula and solves it using an off-the-shelf SAT solver.

SAT stands for “satisfiability”: a solution to a boolean formula is an 
assignment of values to the formula’s boolean variables that “satisfies” 
the formula. In the last decade, SAT solver technology has advanced 
dramatically, and a state-of-the-art SAT solver can often solve a for-
mula containing thousands of boolean variables and millions of clauses. 
The Alloy Analyzer is bundled with several SAT solvers, the fastest of 
which are Chaff [55] and Berkmin [19], and a preference setting lets you 
choose which is used.

The translation into a boolean formula is conceptually very simple. 
Think about a particular value of a binary relation r from a set A to a 
set B. This value can be represented as an adjacency matrix of 0’s and 
1’s, with a 1 in row i and column j when the ith element of A is mapped 
to the jth element of B. So the space of all possible values of r can be 
represented by a matrix not of boolean values but of boolean variables. 
A variable ri,j is placed in each position of the matrix. The dimensions 
of these matrices are determined by the scope; if the scope bounds A by 
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3 and B by 4, for example, r will be a 3×4 matrix containing 12 boolean 
variables, and having 212 possible values.

Now, for each relational expression, a matrix is created whose elements 
are boolean expressions. For example, the expression corresponding to 
p + q for binary relations p and q would have the expression pi,j ∨ qi,j in 
row i and column j, because Ai is related by p + q to Bj when it is related by 
p or by q. For each relational formula, a boolean formula is created. For 
example, the formula corresponding to p in q would be the conjunction 
of pi,j ⇒ qi,j over all values of i and j, because p in q holds if whenever p 
relates Ai to Bj, then q does also.

The resulting boolean formula is passed to the SAT solver. If it finds no 
solution, the Alloy Analyzer just reports that no instance or counterex-
ample has been found. If it does find a solution, the solution is mapped 
back into an instance. If the variable ri,j is true, for example, the tuple 
relating the ith element of A to the jth element of B will be included in 
the value of the relation r.

In performing the translation from the Alloy logic to a boolean formula, 
the Alloy Analyzer applies a variety of optimizations. The most signifi-
cant and interesting of these is symmetry breaking. Because atoms are 
uninterpreted (see section 3.2), every Alloy model has a natural symme-
try: you can take any instance of a command and create another one by 
permuting the atoms. This means that when an analysis constraint has 
a solution, it actually has a whole set of solutions corresponding to all 
the ways in which the atoms of the solution can be permuted. Concep-
tually, we can divide the space of assignments (possible solutions) into 
equivalence classes, with two assignments belonging to the same class 
if one can be permuted into the other. The solver need then only look 
at one assignment in each equivalence class. Since there are very many 
permutations, the equivalence classes are very large, and restricting the 
search in this way can dramatically improve its performance.

In fact, the Alloy Analyzer influences the search only indirectly. It gen-
erates symmetry-breaking constraints from the model, and conjoins 
them to the analysis constraint. If they were perfect, these constraints 
would rule out all but one assignment in each equivalence class, but that 
turns out to require very large symmetry-breaking constraints, which 
would overload the solver and actually damage performance. The ana-
lyzer therefore generates a much smaller constraint, which breaks only 
some of the symmetries, but in practice eliminates a very high propor-
tion (over 99%) of the assignments.
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The simplest case of symmetry breaking applies when a model uses 
util/ordering. This library module is used to impose an ordering on a 
signature, and declares a relation next over the signature being ordered. 
Since the atoms that are being ordered are interchangeable, they can 
be ordered in their natural lexical order without any loss of generality. 
This is why ordering a signature S with util/ordering will always order its 
elements S0, S1, S2, etc., which is good not only for performance (since 
other orders aren’t considered) but also for visualization.

The idea of writing models in a relational logic and using a constraint 
solver to analyze them was first developed for a predecessor of Alloy 
called Nitpick [35]. Nitpick’s tool worked by enumerating entire rela-
tion values, and had a rather elaborate symmetry-breaking  scheme [34, 
36].  A scheme for solving Nitpick formulas by reduction to satisfiability 
was not very successful [11], because it used a BDD to represent the 
boolean formula—a data structure that had worked very well in other 
areas but was not a good match to relational logic.

The basic scheme of translation of Alloy to SAT was developed in 1997 
[31, 32], and worked much better, largely due to a switch (suggested by 
Greg Nelson) from BDD’s to SAT. The algorithms in the current version 
of the Alloy Analyzer were developed primarily by Ilya Shlyakhter [64], 
in particular this symmetry breaking scheme [63], and an optimization 
for detecting opportunities for sharing in the generated formula.

5.2.2	 Skolemization
If the analysis constraint contains an existential quantifier, the analyzer 
can often (depending on the exact form of the constraint) provide a 
witness: a value for the quantified variable that makes the body of the 
existentially quantified formula true. This is done by extending the set 
of variables bound in the instance to include the quantified variables, 
using a transformation known as skolemization.

Let’s start by seeing how an existential quantifier is handled without 
skolemization. Suppose our analysis constraint has the form

some x: S | F

where S is a signature and F is some arbitrary constraint in which x ap-
pears. If the signature S is assigned a bound of k by the scope, it can be 
represented by atoms

S1, S2, …, Sk

and the quantification can be expanded to
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F [S0/x] or F [S1/x] or … or F [Sn/x]

where F [Si /x] is the constraint F, with Si substituted for x. Note that the 
variable x does not appear explicitly in this new constraint, so when an 
instance is generated, it may not be clear which disjunct is true.

Skolemization takes the original analysis constraint, and instead of ex-
panding the quantifier, replaces the bound variable by a free variable, 
giving

(sx: S) and F [sx/x]

where sx is a new free variable. It’s easy to see that this new analysis con-
straint will have an instance whenever the old one does, but it will be a 
more helpful one, because it will assign a value to sx.

There’s nothing magical about skolemization. A free variable in the 
analysis constraint—such as a signature or relation—is treated by the 
constraint solver as if it were existentially quantified. Skolemization is 
simply making implicit an explicit existential quantification.

Example. The analysis constraint for the check addLocal command 
of fig. 5.1 includes

some b,b’: Book, n,n’: Name, a: Addr |
 add (b,b’,n,a) and n != n’
 and not lookup (b,n’) = lookup (b’,n’)

which can be skolemized to

b: Book and b’: Book and n: Name and n’: Name and a: Addr
and add (b,b’,n,a) and n != n’
and not lookup (b,n’) = lookup (b’,n’)

As noted in section 5.2.1, the counterexample to addLocal (shown 
in fig. 5.2) includes the following bindings of skolem constants:

addLocal_b = Book_0
addLocal_b’ = Book_1
addLocal_n = Name_0
addLocal_n’ = Name_1
addLocal_t = Addr_0

The skolem constants are named by prefixing the corresponding 
variables names with the names of the predicates or functions in 
which they appear (and with an additional index if a name is used 
more than once in the same lexical scope.)
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The existential quantifier need not be outermost. Suppose the analysis 
constraint takes the form

all x: S | some y: T | F

where S and T are signatures, and F again is some arbitrary constraint. 
This can be skolemized to

(sy: S -> one T) and (all x: S | F [x.sy/y])

where F [x.sy/y] is the constraint F, but with each occurrence of y re-
placed by the expression x.sy.

This is more complicated, but the intuition is still straightforward. If 
the original constraint has an instance, then there is a value for y that 
makes F true for each value of x. This value of y can be regarded as being 
obtained by applying a function sy to the appropriate value of x, so the 
quantification over y can be eliminated by introducing such a function 
as a variable whose value is to be determined.

Example. The analysis constraint for the run command in this 
model

sig Name, Address {}
sig Book {addr: Name -> Address}
pred show () {
 all b: Book | some n: Name | some b.addr[n]
 }
run show for 3

can be skolemized to

(sn: Book -> one Name) and (all b: Book | some b.addr [b.sn])

whose instances will include a variable sn that’s a relation showing, 
for each book b, a witness of a name b.sn that it maps.

Skolemization can be applied not only to scalars but also to sets and 
relations. Nothing in the arguments above required the existentially 
quantified variables to be scalars. In the simple case of an outermost 
quantifier, the introduced variable becomes a set or relation. In the case 
of an inner quantifier, the introduced variable is no longer a function, 
but a relation (to obtain a set), or a multirelation (to obtain a relation).
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Example. The analysis constraint for

assert BadUnionRule {
 all s, t, u: set univ | s = t + u  iff s - t = u
 }
check BadUnionRule

skolemizes, after negation, to

ss: set univ and
st: set univ and
su: set univ and
not (ss = st + su  iff ss - st = su)

and gives counterexamples that show witnesses for the bound 
variables, such as

ss = {(U0)}
st = {(U0)}
su = {(U0)}

Discussion

What are the advantages of skolemization?

It has three advantages. First, it causes witnesses to be generated for 
bound variables, as explained and illustrated in the previous section. 
Second, it allows many higher-order quantifications—such as that of 
the assertion BadUnionRule—to be analyzed that would otherwise not 
be analyzable at all. Third, it tends to improve the performance of the 
analysis even for first-order quantifications, because the unfolding as-
sociated with existential quantifiers grows constraints dramatically.

5.3	 Unbounded	Universal	Quantifiers

This section explains an important and subtle limitation of finite in-
stance finding. Fortunately, it doesn’t arise very often in practice, and it 
leads to the presence of surprising counterexamples, rather than  sur-
prising omissions (which would be far worse).

The problem arises when a signature is intended to represent all pos-
sible values of a composite structure. This contradicts the semantics of 
Alloy, in which a signature denotes just some set of values. The contra-
diction only becomes apparent when universal quantification is used in 
a particular way.
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5.3.1	 Generator	Axioms	and	Exploding	Scopes
Suppose, for example, we want to check that sets are closed under 
union—that is, the union of any two sets is also a set. We can represent 
a set as an object by declaring the signature

sig Set {
 elements: set Element
 }

along with a signature for the elements

sig Element {}

Now we can write an assertion saying that, for any pair of sets s0 and s1, 
a set s2 exists that contains the elements of both:

assert Closed {
 all s0, s1: Set | some s2: Set |
  s2.elements = s0.elements + s1.elements
 }

Running this in a default scope of 3

check Closed

gives counterexamples such as

Set = {(S0), (S1)}
Element = {(E0), (E1)}
s0 = {(S0)}
s1 = {(S1)}
elements = {(S0, E0), (S1, E1)}

in which s0 is the atom S0 containing E0, s1 is the atom S1 containing E1, 
and there is no Set atom containing both elements.

What went wrong? Roughly speaking, the analyzer found a counter-
example that didn’t populate the signature Set with enough values; it’s 
missing a Set atom,  S2, say, that’s mapped by elements to E0 and E1.

To remedy all such problems, we could add a generator axiom forcing 
Set to be fully populated, for example as a structural induction saying 
that there is a set with no elements, and for each set and each element, 
there is a set with the element added:
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fact SetGenerator {
 some s: Set | no s.elements
 all s: Set, e: Element |
  some s’: Set | s’.elements = s.elements + e
 }

Now we have a different problem, though: the scope explodes. If there 
are k atoms in Element, there must be 2k atoms in Set. Or, to put it dif-
ferently, if we specify a scope that bounds Set by k, only instances in 
which there are at most log k atoms in Element will be considered. In this 
tiny example, it’s still possible to do some useful analysis: a scope of 4 
elements and 16 sets should be sufficient to analyze some interesting 
assertions.

But suppose that instead of sets, our model involved graphs:

sig Graph {
 adj: Node -> Node
 }

There are 2k × k distinct graphs over k nodes. So to consider graphs of 
three nodes, the scope should bound Graph by 512.

Worse, in some cases, the generator axiom would require an infinite 
number of atoms for the composite. A model of lists, for example, might 
declare signatures for empty and nonempty lists

abstract sig List {}
one sig EmptyList extends List {}
sig NonEmptyList extends List {
 element: Element,
 rest: List
 }

and then force the existence of all possible lists with a generator axiom 
such as

fact ListGenerator {
 all l: List, e: Element |
  some l’: List | l’.rest = l and l’.element = e
 }

Unless Element is empty, this axiom makes the model effectively incon-
sistent—since the only possible instances would be infinite. Any asser-
tion becomes valid, including patently false ones, such as

assert {all l: List | not l = l}
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Discussion

In the set example, why did you declare Element?

The Set signature could have been declared with elements arbitrarily 
drawn from the universe of atoms

sig Set {elements: set univ}

but this would allow sets to contain sets, introducing an orthogonal 
complication. Another (better) option would have been to make the 
declaration polymorphic in the element signature:

module analysis/paramSets [t]
sig Set {elements: set t}

Why introduce a signature for sets?

The assertion that sets are closed under union can be written

assert {
 all s0, s1: set univ | some s2: set univ | s2 = s0 + s1
 }

avoiding the need to introduce signatures at all. But the example was 
intended to illustrate composite structures in general, of which sets are 
just a particularly simple example, and other structures (such as lists 
and sequences) are not built into Alloy the way sets and relations are. 
Incidentally, even with the assertion in this form, the analysis doesn’t 
scale well, because the analyzer has to ‘ground out’ the inner quantifier, 
causing the same explosion as the generator axiom.

Are recursively defined lists common in Alloy models?

Not as common as you might expect, particularly if you’ve been in-
fluenced by functional programming languages such as Lisp, ML, and 
Haskell, in which the list is the primary data structure. In Alloy, lists 
include extraneous structure (the atoms representing the sublists), so 
their use often indicates a failure of abstraction, especially when the 
ordering of the elements is not relevant, and a simple set should have 
been used instead.

List-like structures are useful occasionally, however; a path name in a 
file system, for example, can be represented as a prefix and a directory 
or filename, with the prefix defined recursively like the tail of a list.
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When an ordering is required, a simple relation suffices if duplicates 
are not permitted; otherwise, a sequence modeled as a signature with a 
field mapping indexes to elements

sig Seq {
 element: Index -> lone Element
 }

is better than a recursive list because it introduces less extraneous 
structure.

Universal quantifiers over such sequences can suffer from the same 
problems as lists. The Alloy library includes a sequence module with a 
predicate that forces the existence of all sequences up to a given length 
(namely, the scope of Index). This predicate must obviously be used with 
care to avoid scope explosion. There’s no predicate for forcing all pos-
sible sequences to exist, because that would introduce a contradiction.

5.3.2	 Omitting	the	Generator	Axiom
You might wonder, given the depressing picture painted in the last sec-
tion, why Alloy is ever useful! There are three reasons why the problem 
of generator axioms rarely arises in practice:

· The motivation for generator axioms in some other languages is to 
ensure that every expression denotes a value. Because relations are 
closed under all their operators by definition, no explicit generator 
axioms are needed, and every relational expression in Alloy has a 
value.

· Generator axioms are needed for mathematical objects, but most 
signatures denote objects in the problem domain. In a model of a file 
system, for example, you wouldn’t expect a generator axiom over the 
signature representing directories, saying that a directory exists for 
every possible combination of contents.

· Even when a generator axiom is appropriate, it can often be omitted. 
So long as every universal quantifier is bounded, and only certain 
expression forms are used, the analyzer will give the same results 
whether or not the generator axiom is included. This is the bounded-
universal rule.

“Bounded” means that the quantified variable’s bounding expression 
doesn’t mention the names of generated signatures (those signatures 
for which we would have liked to write a generator axiom). The al-
lowed expression forms exclude relational transpose, and use dot joins 
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only with a set on the left and a relation on the right. These restrictions 
ensure that universally quantified constraints can look only “inside” 
structures—into the sublists of a list, for example, or the subtrees of a 
tree—and thus can’t tell whether or not the generator axiom has been 
applied.

Example. The analysis constraint in the problematic example from 
the previous subsection

sig Set {
 elements: set Element
 }
assert Closed {
 all s0, s1: Set | some s2: Set |
  s2.elements = s0.elements + s1.elements
 }

after negation becomes

some s0, s1: Set |
 all s2: Set |
  not s2.elements = s0.elements + s1.elements

which is not in bounded-universal form, because the quantifica-
tion of s2 isn’t bounded. Checking this assertion therefore might 
(and actually does) result in spurious counterexamples that would 
not be present if a generator axiom for Set were added.

Example. In contrast, suppose we formulate an assertion in the 
same model saying that union of sets is commutative:

sig Set {
 elements: set Element
 }
assert UnionCommutative {
 all s0, s1, s2: Set |
  s0.elements + s1.elements = s2.elements
  implies s1.elements + s0.elements = s2.elements
 }

The analysis constraint is

some s0, s1, s2: Set |
  s0.elements + s1.elements = s2.elements
  and not s1.elements + s0.elements = s2.elements
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which is in bounded-universal form, since it contains no univer-
sal quantifiers. Checking this assertion will not produce spurious 
counterexamples; it has its intended meaning even in the absence 
of the generator axiom.

Perhaps the most serious consequence of this issue is that assertions 
about preconditions, in which the precondition is asserted to be at least 
as weak as some property, cannot generally be checked.

The declarative style of description is very powerful, but it has a down-
side: inadvertent overconstraint. A specification of an operation that is 
intended to constrain only the values of the poststate may unintention-
ally constrain the prestate and arguments too, so that the operation is 
not “total” and cannot be applied in some contexts. To mitigate this 
risk, you might think you could assert that, for every prestate, there is at 
least one poststate that the operation’s constraint admits. Unfortunately, 
assertions in this form are not in the bounded universal category, and 
thus may produce spurious counterexamples.

Example. Take the add operation of an address book

sig Name, Addr {}
sig Book {
 addr: Name -> Addr
 }
pred add (b, b’: Book, n: Name, a: Addr) {
 b’.addr = b.addr + n -> a
 }

and consider checking the following assertion:

assert AddTotal {
 all b: Book, n: Name, a: Addr |
  some b’: Book | add (b, b’, n, a)
 }
check AddTotal

You might think this is valid, since every map can be extended with 
a new pair. In contrast, if instead the field addr were declared as

addr: Name -> lone Addr

so that at most one address can be associated with a name, you 
would no longer expect the operation to be total, because, if pre-
sented with a new address for an existing name, it would not be 



1�� analysis

possible to extend the address book without violating the multi-
plicity constraint.

Indeed, in this second case, the assertion would be invalid. Sur-
prisingly, it’s invalid in the first case too, and the analyzer will gen-
erate a counterexample such as

b = {(B0)}
n = {(N0}
a = {(A0)}
addr = {(B0, N0, A1)}

in which there is no Book to bind to b’ that will satisfy the operation 
constraint.

The problem is that, for the assertion to have its intended meaning, 
we need to ensure that all possible Book structures exist. Adding 
an axiom to this effect is not practical, because for a scope of 3 for 
Name and Addr, it would require a scope of 512 for Book! Omitting 
the axiom is not acceptable either, because the assertion, which 
reduces to

all b’: Book | not b’.addr = b.addr + n -> a

is not a bounded-universal formula.

Discussion

Does the bounded-universal rule allow an infinite model to be analyzed 
by considering only finite cases?

Yes, that’s exactly what it allows. It’s not that surprising, however, since 
the properties that fall in the bounded-universal category only “look 
downward” into a finite part of an infinite instance.

Does that mean that a check in a finite scope applies automatically to 
the infinite case?

No. It means that, if there is a counterexample to an assertion, then 
there is a finite one in some scope. You can still miss a counterexample 
because the scope is too small. For the example just discussed, it means 
that checking the assertions in all finite scopes covers the case of an 
imaginary analysis in which the generator axiom is included and the 
scope is infinite. So, in short, it means that omitting the axiom and not 
considering the infinite scope case doesn’t make it any more likely that 
counterexamples will be missed. 



analysis 1��

Can’t a universal quantifier be converted into an existential one by add-
ing negations?

No. The bounded-universal rule assumes that the formula is in a normal 
form in which all quantifiers are outermost, and are not negated. A re-
search paper presents the rule in more detail and proves its soundness 
in a general setting of algebraic datatypes and first-order logic [44].

5.4	 Scope	Selection	and	Monotonicity

The scope sets a bound on the size of each of the top-level signatures, 
and, optionally, on subsignatures too (see section 4.6). An instance is 
within a scope if each signature constrained by the scope has no more 
elements than its associated bound permits.

To perform an analysis, the analyzer considers all candidate instances 
within the scope. Of course, the number of candidates is usually so large 
that an explicit enumeration would be infeasible. The analysis therefore 
uses pruning techniques to rule out whole sets of candidate cases at 
once. If it finds no instance, it is guaranteed that none exists within that 
scope, although there might be one in a larger scope.

5.4.1	 Selecting	a	Scope
Selecting an appropriate scope can demand some careful thought. In 
most cases, it makes sense to start with the default scope, which was 
chosen to give a space small enough for analysis to terminate quickly, 
but large enough to include interesting instances.

If an instance is found, it may immediately serve its purpose: for an as-
sertion, to expose a problem, or, for a predicate, to demonstrate consis-
tency, and illustrate an expected (or unexpected) case. But it may appear 
to be more complicated than necessary, and before trying to assimilate 
it, you may want to repeat the analysis on a smaller scope, which will 
usually yield a smaller, and more intelligible, example.

If no instance is found, you may want to increase the scope in order to 
obtain greater confidence that there is indeed no instance—that the as-
sertion being checked is valid or the predicate being run is inconsistent. 
The larger the scope, the more confidence is warranted, but the longer 
the analysis will take. At some point, the analysis becomes intolerably 
slow. If it’s an analysis whose results are critical, you may want to set it 
aside and run it overnight, perhaps on a larger machine. Often, however, 
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a terminating analysis can be achieved in a few minutes for a scope that 
gives adequate confidence.

What scope suffices to give adequate confidence? With experience, you’ll 
develop a sense of the relationship between constraint complexity and 
appropriate scope, and, for a particular model, you’ll discover how large 
the scope must be to include known important cases. In the meantime, 
here are some rough guidelines:

· Ensure that a signature’s bound is enough to accommodate any con-
stants you’ve declared belonging to it.

Example. An analysis constraint involving a path in a graph

some disj start, end: Node | …

requires Node to have at least two elements, to accommodate the 
skolem variables start and end.

· Whenever possible, when you want to constrain the size of a set, you 
should use signature multiplicity declarations, because the analyzer 
uses multiplicities to generate warnings when the scope setting and 
signature declarations are mutually inconsistent, or to override the 
default scope when called for.

Example. If you write

sig Color {}
one sig Red, Green, Blue extends Color {}
pred show () {}
run show for 2

you’ll get a compilation error telling you that the scope of 2 for 
Color is too low, because the subsignature declarations require it to 
have at least three children. If you’d written instead

abstract sig Color {}
sig Red, Green, Blue extends Color {}
fact {one Red and one Green and one Blue}
pred show () {}
run show for 2

you’d get no error or warning message, and would need to execute 
the command to discover that the model is inconsistent.

· If all relevant values of a signature are explicitly named as variables, 
there’s no point setting a scope for that signature that is larger than 
the number of variables.
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Example. Running the add operation of our address book

sig Name, Address {}
sig Alias, Group extends Name {}
sig Book {addr: Name -> Address}
pred add (b, b’: Book, n: Name, a: Address) {
 b’.addr = b.addr + n -> a
 }
run add for 3 but 2 Book

requires no more than two books. On the other hand, analyses of 
the show predicate for this graph model

sig Node {adj: Node}
fact {all n, n’: Node | n’ in n.*adj}
pred show () {some Node}
run show for 3

should not be limited to two nodes, because the variables n and n’ 
are universally quantified over all nodes.

· If an instance is expected to form a structure of a known shape, then 
properties of that shape can suggest constraints on the scope set-
ting.

Example. A model of a railway might declare signatures for con-
nection points and track segments:

sig Point {}
sig Segment {from, to: Point}

To include the case of a junction at a connection point, it seems 
likely that we’ll need at least three segments, and therefore at least 
four points in total: one for the junction, and one for the other end 
of each segment.

5.4.2	 Scope	Monotonicity
A scope specifies an upper bound on the size of a signature, not its exact 
size. This gives the analysis a property called scope monotonicity, which 
says simply that if an analysis constraint has an instance in some scope, 
then it also has an instance in any larger scope.

Scope monotonicity is very important in practice, because it means that 
if an assertion appears to be valid in a scope (that is, has no counterex-
amples), you don’t gain anything by repeating the analysis in smaller 
scopes.
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The exactly keyword (explained in section 4.6) lets you specify that a 
signature has some exact number of elements, and its use therefore vio-
lates scope monotonicity. It should be used with great care. In simula-
tion, it provides an easy way to force a more interesting instance to be 
generated, but in checking, its use is not recommended.

Discussion

How big a scope is feasible in practice?

On a modestly equipped machine (say, a 1 GHz PowerMac with 1 GB 
of memory), using the latest version of the Alloy Analyzer (2005), with 
a model containing up to about 20 signatures and 20 or 30 fields, an 
analysis in a scope of 5 to 10 is usually possible. During the incremental 
development of a model, analyses in a scope of 3 usually suffice, and 
terminate in less than a minute.

Isn’t a signature a Cartesian product? Doesn’t that explode the scope?

Many signatures (but not all) are introduced as a way of forming tuples. 
For example, the signature

sig Coord {x: X, y: Y}

might be used to represent coordinates in a two-dimensional space. If 
the signatures X and Y have sizes scope(X) and scope(Y) respectively, there 
will need to be at least scope(X) × scope(Y) values of Coord to represent all 
possible pairs.

You might think that this should determine the scope of Coord, and if 
indeed this were the case, almost no analysis would be feasible. The 
misunderstanding here is that the scope does not constrain the size of 
the set of possible values. Rather it constrains the size of the set of val-
ues that can appear in the instance. If an assertion being checked had 
a counterexample involving only one coordinate, it would be found in 
a scope of 1, irrespective of how many possible values the combination 
of fields of Coord can take. Similarly, if the analysis constraint involved 
the intersection of two straight lines, a scope of 5 may suffice for Coord, 
since it would include enough coordinates for the endpoints of the lines 
and their intersection.

This difference between the set of values a structure may take and the 
set that appears in an instance is the essence of the discussion of sec-
tion 5.3.
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Is a scope of zero possible?

Yes, a scope setting of zero is permitted, and is not necessarily nonsense. 
The command

run P for 0

asks whether there is an instance of P in which the universe is empty. In 
practice, this is rare: every file system has at least a root, for example. 
But it is a good design principle to make as few assumptions as possible 
about sets being nonempty. For example, a client-server system should 
be able to handle the case in which there are no clients.

Often, this question, of whether or not sets can be empty, exposes fun-
damental issues in the design. Most text layout programs, for example, 
assume that the style sheet includes at least one style. It would be pos-
sible to design a layout program in which not all paragraphs have styles, 
and a style sheet could then be empty. This would make it easier to 
handle the case of deleting a style: the program could simply retain all 
the formatting of the paragraph but assign no style to it.





6:	Examples

This chapter contains four examples, each chosen to illustrate a differ-
ent kind of application:

· The first analyzes a well-known distributed algorithm for leader elec-
tion; it shows how to model local actions and check global properties, 
using an idiom based on traces in which steps are modeled as predi-
cates.

· The second is about recodable locks on hotel room doors. It’s given 
in two forms: first, using the same trace idiom, and second, using 
a variant in which steps are modeled using explicit events. This ex-
ample is more interesting methodologically than the first, because 
it’s not purely algorithmic: it involves making assumptions about the 
behavior of other actors in the environment of the system (namely 
the guests who check in and out).

· The third has a very different flavor, and is more typical of the kind 
of modeling that software engineers do in practice. It explores the 
interaction between two simple features of a program for viewing 
media assets (such as photographs), and shows how design subtleties 
can be exposed by thinking about simple algebraic properties.

· The fourth and final example illustrates the application of Alloy to a 
textbook problem: justifying the correctness of a memory implemen-
tation using abstraction functions. It shows how Alloy can automate 
a familiar analysis.

6.1	 Leader	Election	in	a	Ring

Many distributed protocols require one process to play the role of a 
leader, coordinating the others. Assigning the leader in advance is not 
feasible, so some mechanism is needed by which a collection of com-
municating processes running the same program can “elect” a leader on 
the fly.

We’ll consider the case in which the processes form a ring. Since the 
communication topology is symmetric, we must look elsewhere for an 
asymmetry to exploit. We’ll assume that processes have unique identifi-
ers that are totally ordered; these might, for example, be the serial num-
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bers (the so-called MAC ID’s) of the network cards of the machines on 
which they are running. The leader will be the process with the largest 
identifier.

A simple and well-known protocol [8] has the processes pass their iden-
tifiers as Tokens around the ring in some direction (say clockwise). Each 
process examines each identifier it receives. If the identifier is less than 
its own identifier, it consumes the token. If the identifier is greater than 
its own, it passes the token on. If the identifier equals its own identifier, 
it knows the token must have passed all the way around the ring, so it 
elects itself leader.

When modeling a distributed algorithm, you want to make as few as-
sumptions as possible about communications and scheduling. Obvious-
ly, the algorithm must work for all interleavings of process executions, 
since the processes run concurrently. Ideally, it should also work when 
messages are buffered between processes, reordered, or even dropped.

Rather than modeling explicit message buffers between the processes, 
we’ll give each process a pool of tokens. In one step, a token can be 
taken from the pool of one process and moved to the pool of its suc-
cessor in the ring. We’ll make arbitrary the selection of the token  (to 
model reordering), as well as the selection of which processes are in-
volved in a given step (to model concurrency). Message delivery will be 
reliable, but it would be easy to modify the model to allow messages to 
be dropped.

6.1.1	 Topology	and	State	Components
The complete model is shown in figs. 6.1 and 6.2, with a model diagram 
in fig. 6.3. Let’s examine it bit by bit. First, we name the module and 
import the library module for total ordering, applying it to a signature 
that will be used to represent time steps, and to a signature representing 
the processes in the ring:

module examples/ringElection
open util/ordering[Time] as TO
open util/ordering[Process] as PO

A special notion of process identifier isn’t needed; the atom represent-
ing the process will serve also as its identifier.

We declare a signature representing moments in time:

sig Time {}
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module examples/ringElection
open util/ordering[Time] as TO
open util/ordering[Process] as PO

sig Time {}
sig Process {
 succ: Process,
 toSend: Process -> Time,
 elected: set Time
 }
fact Ring {all p: Process | Process in p.^succ}

pred init (t: Time) {all p: Process | p.toSend.t = p}

pred step (t, t’: Time, p: Process) {
 let from = p.toSend, to = p.succ.toSend |
  some id: from.t {
   from.t’ = from.t - id
   to.t’ = to.t + (id - PO/prevs(p.succ))
   }
  }
pred skip (t, t’: Time, p: Process) {p.toSend.t = p.toSend.t’}

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
   all p: Process |
    step (t, t’, p) or step (t, t’, succ.p) or skip (t, t’, p)
 }

fact DefineElected {
 no elected.TO/first()
 all t: Time - TO/first()|
  elected.t =
   {p: Process | p in p.toSend.t - p.toSend.(TO/prev(t))}
 }

assert AtMostOneElected {lone elected.Time}
check AtMostOneElected for 3 Process, 7 Time

fig. 6.1  Leader election in a ring, part 1.
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Each process has a successor process (its neighbor to one side in the 
ring), a pool of process identifiers to be sent along around the ring, and 
a set of times at which it regards itself elected as leader:

sig Process {
 succ: Process,
 toSend: Process -> Time,
 elected: set Time
 }

The Time signature doesn’t appear in the declaration of the succ field, 
since the topology is static. Adding a Time column to a relation makes 
it dynamic. Without the Time column, the field toSend would just model 
a relation between processes, with p.toSend denoting a set of processes. 
With the addition of the Time column, p.toSend becomes a relation, and 
p.toSend.t is a set of processes associated with p at time t. Without the 
Time column, elected would be a set of processes; with it, elected becomes 
a relation, and elected.t is the set of processes that are elected leader at 
time t (and p.elected the set of times at which process p is elected).

The processes are to form a ring. The declaration of succ ensures that 
each process has exactly one successor, so all we need to add is the con-
straint that all processes are reachable from any process by following 
succ repeatedly:

fact Ring {all p: Process | Process in p.^succ}

pred progress () {
 all t: Time - TO/last() | let t’ = TO/next (t) |
   some Process.toSend.t =>
    some p: Process | not skip (t, t’, p)
 }
assert AtLeastOneElected {
 progress () => some Elected.Time
 }

pred looplessPath () {no disj t, t’: Time | toSend.t = toSend.t’}
run looplessPath for 13 Time, 3 Process

fig. 6.2  Leader election in a ring, part 2.
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fig. 6.3  Model diagram for leader election.
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Discussion

Why import a library module for a concept as simple as an ordering?

It’s always good to take standard notions and factor them out into li-
braries: it lowers the cognitive load of understanding a model when it 
uses standard vocabulary and concepts, and it reduces the risk of mak-
ing mistakes—it’s possible to get even a simple ordering wrong. In this 
case, there is also a performance advantage, since the symmetry break-
ing that is applied to util/ordering is hardwired into the implementation 
of the analyzer, and relies on a property of orderings that could not be 
inferred easily from the text of the library module.

Why does time appear explicitly in field declarations?

The alternative would be to include the notion of mutable fields in Al-
loy. This would complicated the language, and would tie the user to one 
particular idiom. When time instants appear in relations like any other 
atoms, the whole repertoire of relational operators can be applied. As 
we’ll see, for example, the expression elected.Time represents the set of 
processes that are elected at any time. Declaration constraints can be 
used too, to express dynamic properties:

elected in Process lone -> Time
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says that at most one process is elected at any time, and

toSend: (Process lone -> Process) -> Time

says that, at any time, each process identifier resides in the sending pool 
of at most one process.

Why place the Time signature at the end of a field declaration?

At first, it might seem more natural to place the Time column at the 
beginning of a field’s declaration expression, so that toSend, for example, 
would be declared as

sig Process {toSend: Time -> Process}

rather than as

sig Process {toSend: Process -> Time}

In most cases, the only difference would be in the position of the argu-
ments of joins: the processes in the pool of process p at time t would 
be p.toSend[t] (or t.(p.toSend)) for the first, and p.toSend.t for the second. 
But note that in the first version, since toSend is a ternary relation with 
Process in the first column, the Time column appears in the middle rather 
than at the end. This becomes an inconvenience when you write expres-
sions with the relational operators.

If the second declaration form is used, the expression toSend.t denotes a 
relation from Process to Process that maps p to q when p holds the identi-
fier of q in its pool at time t. This makes it easy to write constraints such 
as

toSend.t = Process <: iden

which says that the relation is the identity on processes (and is in fact 
the initialization condition we’ll see in subsection 6.1.2). Similarly, if the 
ring topology had been dynamic

sig Process {succ: Process -> Time}

the condition that it be acyclic could easily be extended from

fact Ring {all p: Process | Process in p.^succ}

as currently written, for the model in which succ has no Time column, 
to

fact Ring {all t: Time, p: Process | Process in p.^(succ.t)}
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Had the form of declaration in which the Time column appears in the 
middle been used instead, these constraints could not have been writ-
ten so conveniently.

In short, then, the issue is whether the Time column appears on the out-
side of the relation or in the middle. If it occurs in the middle, you can’t 
write a simple join expression to denote the value of the relation at a 
given time t. Instead of succ.t, for example, you’d have to write some-
thing like

{p, q: Process | p -> t -> q in succ}

Why not place the Time signature first in a relation?

A better question, therefore, is why the Time column was written last 
rather than first. Indeed, in this model, it would have made little differ-
ence had we written

sig Process {succ: Process}
sig Time {
 toSend: Process -> Process,
 elected: set Process
 }

in place of

sig Time {
sig Process {
 succ: Process,
 toSend: Process -> Time,
 elected: set Time
 }

In general, however, the difference is more significant. The first is remi-
niscent of object-oriented programming: it packages together all the 
static and dynamic aspects of a single object, and it allows objects to 
be classified using signature extension. The second is the idiom used in 
most traditional modeling languages (such as Z and VDM), in which 
there is a global state—and in fact the name State would be more appro-
priate than Time in this case. Its advantage is that it separates static and 
dynamic aspects more cleanly, and supports a style of modeling (com-
mon in Z) in which the state is grown incrementally. This second idiom 
is used in the media asset example of section 6.3.
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6.1.2	 Protocol	Dynamics
The protocol itself is described in three stages. First, we record the initial 
condition—that each process is ready to send only its own identifier:

pred init (t: Time) {
 all p: Process | p.toSend.t = p
 }

Second, we describe the allowed state transitions. In a given step, an ar-
bitrary identifier (id) is chosen from the pool associated with a process 
(from) and moved to the pool associated with its successor (to):

pred step (t, t’: Time, p: Process) {
 let from = p.toSend, to = p.succ.toSend |
  some id: from.t {
   from.t’ = from.t - id
   to.t’ = to.t + (id - PO/prevs(p.succ))
   }
 }

The expression id - PO/prevs(p.succ) removes from the singleton set con-
taining the identifier id the set of all identifiers that precede p.succ. This 
models the consumption of tokens: if the identifier in the token is great-
er than the identifier of the receiving process, it is placed in the pool 
for forwarding; otherwise, it’s dropped. Don’t get confused by the two 
distinct orderings here: the ordering of processes around the ring and 
the ordering of identifiers. The expression p.succ denotes the identifier 
successor of p in the ring; applying the function PO/prevs then gives the 
set of process identifiers that precede it in the space of identifiers.

Third, we describe the designation of elected processes. At the first mo-
ment in time, no processes are elected; at other times, the set of pro-
cesses elected is the set of processes that just received their own identi-
fiers:

fact DefineElected {
 no elected.TO/first()
 all t: Time - TO/first()|
  elected.t = {p: Process | p in p.toSend.t - p.toSend.(TO/prev(t))}
 }

We might have treated elected like the token pool, initializing it within 
init and updating it in step. Defining it this way, however, gives a cleaner 
separation of concerns, and avoids the need for frame conditions.
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Discussion

Why isn’t the notion of election sticky?

You might have noticed that the definition of election makes a process 
elected only at the time instant at which it receives its own identifier. At 
the next time instant, it will no longer be deemed elected. If you don’t 
like this, you can change the model so that election is “sticky,” and a 
process stays elected once elected.

It’s not just a question of dropping the second term in the comprehen-
sion, by the way, so that the definition of election reads

elected.t = {p: Process | p in p.toSend.t}

rather than

elected.t = {p: Process | p in p.toSend.t - p.toSend.(TO/prev(t))}

If you’re not sure why, try running the commands in the Alloy Analyzer 
and see what happens.

6.1.3	 Introducing	Traces
There are two properties we’d like to check: that at most one leader gets 
elected, and that some leader is eventually elected. We could use Alloy 
to automate a traditional inductive analysis. For the first property, we’d 
formulate an invariant, and use Alloy to check that the invariant implies 
the property, and is maintained at every step. For the second property, 
we’d find some integer metric, and use Alloy to check that it decreases 
in each step, and that reaching zero implies election.

Instead, we’ll take an approach that requires less insight, and allows the 
properties to be checked directly. An instance of the model so far in-
volves a set of states. By adding a single fact, we can form these states 
into an execution trace. We can then formulate assertions directly about 
traces. If an assertion is invalid, a counterexample will be a trace show-
ing how it is violated.

Here is the trace constraint:

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
  all p: Process |
   step (t, t’, p) or step (t, t’, succ.p) or skip (t, t’, p)
 }
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It says that the initial condition holds for the first moment in time, and 
that for any subsequent time, each process p either takes a step, or its 
predecessor succ.p takes a step, or it does nothing. Doing nothing is 
modeled as an operation:

pred skip (t, t’: Time, p: Process) {
 p.toSend.t = p.toSend.t’
 }

Discussion

Why does the trace constraint allow a predecessor to take a step?

The trace constraint gives three possibilities for a process p:

step (t, t’, p) or step (t, t’, succ.p) or skip (t, t’, p)

When a process p takes a step from time t to time t’, the predicate step 
(t, t’, p) holds. This means that an identifier moves from the pool of p to 
the pool of its successor process. The successor process therefore expe-
riences a state change also. Its state change is described by the same step 
predicate, but applied to its predecessor. Without the second predicate 
invocation, it would not be possible to satisfy the constraint, because 
the successor process would either have to skip, or to be the source of a 
token transfer itself, neither of which is compatible with being a target 
of a token transfer. The run command would catch this error, and report 
an inconsistency.

Alternatively, I could have written a simpler trace constraint

some p: Process |
 step (t, t’, p) and all p’: Process - (p + p.succ) | skip (t, t’, p)

saying that in each step a process makes a move, and there is no state 
change at any other process except for this process and its successor. 
The disadvantage of this formulation is that it only allows one process 
pair to take a move at once. The implicit concurrency of the original 
version, aside from being more general, also has the advantage that it 
allows more to happen in shorter traces, so that analyses in a smaller 
scope are more meaningful.

Why must an operation take two time arguments?

Given that the step and skip operations are always applied to a time in-
stant and its successor, you may wonder why they don’t declare a single 
argument t, and then define t’ as TO/next(t) inside the body of the predi-



examples 1��

cate. The motivation here is separation of concerns: it seems better to 
commit the model to the traces idiom in only one small place rather 
than in every operation, so that a change to a different idiom would be 
easy.

6.1.4	 Dynamic	Analysis
It’s good to start with a simple simulation, to check that the model isn’t 
overconstrained. For example, we might ask to see an execution in 
which some process gets elected:

pred show () {
 some elected
 }
run show for 3 Process, 4 Time

We’ve picked a scope of three processes—the smallest interesting ring—
and four times, because the leader’s token will have to go all the way 
around, so there must be at least one more time instant than processes. 
A sample trace generated by the analyzer is shown in fig. 6.4: the iden-
tifier of process P2 goes all the way round, before any other identifiers 
have been sent.

Having established that the model is at least consistent, we might move 
on to checking some properties. The purpose of the protocol is to reach 
a state in which exactly one leader is elected. When possible, it’s best to 
split a property into subproperties and check them individually. This 
makes it easier to diagnose what went wrong if a property doesn’t hold. 
So we’ll consider two properties separately: that there be at most and at 
least one elected process.

Here is an assertion claiming that there is at most one elected process:

assert AtMostOneElected {
 lone elected.Time
 }
check AtMostOneElected for 3 Process but 7 Time

The expression elected.Time denotes the set of processes elected at any 
time, so the assertion says not only that there is at most one process 
elected at any time, which could have been written

all t: Time | lone elected.t

but, more strongly, that the election doesn’t change from one process 
to another. The scope in this assertion limits the analysis to a ring of 3 



1�0 examples

fig. 6.4  A sample trace for ring election: the initial state is 
in the panel at the top left; execution proceeds through the 

panels clockwise.
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processes and 7 time instants. The AtMostOneElected assertion is valid, 
and no counterexamples are found.

Here is the assertion claiming that there is at least one elected process:

assert AtLeastOneElected {
 some t: Time | some elected.t
 }
check AtLeastOneElected for 3 but 7 Time

This second assertion is invalid; it has a counterexample in which noth-
ing happens at all. The problem is including the skip operation, which 
allows every process to skip in every step!

To fix this problem, we can force progress by insisting that whenever 
some process has a nonempty identifier pool, some process (not neces-
sarily the same one) must make a move. We write this as a predicate

pred progress () {
 all t: Time - TO/last() |
  let t’ = TO/next (t) |
   some Process.toSend.t =>
    some p: Process | not skip (t, t’, p)
 }

and then condition the assertion on this predicate holding:

assert AtLeastOneElected {
 progress () => some Elected.Time
 }
check AtLeastOneElected for 3 Process, 7 Time

The scope of 7 time instants is actually the smallest that is guaranteed 
to produce a leader. To find this scope, I simply started with a smaller 
scope and increased it until no counterexample was generated for the 
assertion.

Discussion

Are the processes always placed in the ring in the order of their process 
identifiers?

No. They appear in that order in fig. 6.4 because of the Alloy Analyzer’s 
symmetry-breaking optimization (see the discussion following section 
5.2.1). Since atoms are interchangeable, you can take any instance (or 
counterexample) of a command and create another one by permuting 
the atoms. A mathematician would say “there is no loss of generality” 
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in ordering the processes around the ring P0, P1, P2, etc., because the 
description of the scheme never refers to particular atoms.

The analyzer exploits this to reduce the search, by imposing a constraint 
on succ. The same trick is used in the ordering relation of the module 
util/ordering: this is why time instants in traces always come out in order. 
If the model explicitly compared the two relations, it would no longer 
be valid to break symmetry in both cases, so the analyzer will back off, 
and no longer include the symmetry-breaking constraint on succ. To see 
this, add

fact DifferentOrder {
 all p: Process | p.succ != PO/next(p)
 }

and the simulation will show a ring in which the identifiers appear out 
of order.

How can AtLeastOneElected be valid? Doesn’t the scope allow shorter trac-
es?

The symmetry breaking associated with the ordering module (men-
tioned in the discussion following subsection 6.1.1) actually forces the 
ordered set to contain the maximum number of atoms the scope per-
mits. So our two commands have the same effect they would have if 
written with an exact scope:

check AtMostOneElected for exactly 3 Process, exactly 7 Time
check AtLeastOneElected for exactly 3 Process, exactly 7 Time

Is this a violation of scope monotonicity? If so, does it matter?

Yes, it is a violation, and yes, it matters (at least in some respects). For 
checking AtLeastOneElected, the exact scope is necessary for the signa-
ture Time; this kind of eventuality property is never scope monotonic. 
For checking AtMostOneElected, on the other hand, the exact scope is not 
desirable, because it’s conceivable that there are bad traces (in which 
two processes get elected) that cannot be extended to the full length 
required by the scope. Unfortunately, it’s not possible to check that this 
doesn’t happen (see section 5.3).

Another undesirable consequence of the exact scope, this time for both 
commands, is that it forces an exact number of processes in the ring. It 
would be easy, however, to adjust the model so that analysis in a scope 
of k considers all rings with up to k processes, by introducing a subsig-
nature like this:
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sig Process {}
sig RingProcess extends Process {
 succ: RingProcess,
 toSend: RingProcess -> Time,
 elected: set Time
 }
fact Ring {all p: RingProcess | RingProcess in p.^succ}

thereby imposing the multiplicity constraint of succ and the fact ring 
only on the subset of processes that appear in the ring.

6.1.5	 Computing	Machine	Diameter
Exhaustive analysis within a scope is justified by the small scope hy-
pothesis, and usually seems like a reasonable way to catch most bugs. 
For example, if this protocol has no counterexamples for rings of size 
five, it seems unlikely to be harboring a bug. But the bounding of traces 
seems less compelling.

For the AtLeastOneElected assertion, we’re looking for witnesses to elec-
tion, so increasing the trace length won’t result in new counterexamples. 
For the AtMostOneElected assertion, however, we may reasonably worry 
that we’re missing a bug that is manifested only in a longer trace than 
the ones the analysis considered.

One question we might ask about the sufficiency of the scope is whether 
we consider traces long enough to cover all reachable states. If so, we 
can rest assured that no bugs are missed because of inadequate trace 
length when analyzing an assertion such as AtMostOneElected, since the 
assertion is a claim about states, and every reachable state will be con-
sidered.

The diameter of a state machine is the maximum distance of a state 
from an initial state, where the distance between two states is the small-
est number of execution steps that can take you from one to the other. 
In general, calculating the diameter of a modeled state machine is not 
possible using Alloy. But often we can find an upper bound.

Here’s how it works. We write a predicate whose instances are loopless 
paths—traces in which a given state is visited at most once. The behav-
ior of our protocol depends only on the identifier pools, so we’ll regard 
two time instants in a trace as having equivalent states when their pools 
are equal:
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pred looplessPath () {
 no disj t, t’: Time | toSend.t = toSend.t’
 }

Now we simply ask for an instance of this predicate for increasing trace 
lengths. Running the command

run looplessPath for 3 Process, 12 Time

produces a solution, but

run looplessPath for 3 Process, 13 Time

does not. So there is no trace involving 13 time instants that has no loop 
in it. We can therefore conclude that a scope of 12 for Time is sufficient to 
reach all states of the protocol for a three-node ring. In other words, for 
a scope of 3 for Process, there is nothing to be gained by increasing the 
scope for Time further: with respect to Time, the analysis is complete.

Discussion

How does the expressiveness of Alloy’s trace assertions compare to tem-
poral logics?

Since the instances of the model are traces, the assertions are compa-
rable to linear temporal logic (LTL) rather than computation tree logic 
(CTL), which would require instances that are tree structures. For soft-
ware

Any LTL property can easily be expressed in first-order logic, as dem-
onstrated by the reduction of LTL to satisfiability known as “bounded 
model checking” [5]. First-order logic is more expressive than temporal 
logics, although the additional power—at least for the temporal aspects 
doesn’t seem necessary.

The filtering of traces to those satisfying the progress property is a clas-
sic example of a class of properties known as “fairness properties” that 
are not expressible in CTL. In general, LTL seems better suited to de-
scribing temporal properties of software than CTL.

How does Alloy compare to model checkers for this kind of analysis?

Model checkers are generally capable of exhausting an entire state space. 
In an Alloy trace analysis, only traces of bounded length are considered, 
and the bound is generally small. An upper bound on the diameter can 
sometimes be obtained, as explained, for small systems. The Alloy ap-
proach is therefore less capable of establishing the absence of bugs, but 
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when there is a bug, it may be more rapidly found by Alloy’s SAT-based 
analysis than by model checking, because of the depth-first nature of 
SAT solving.

The machine description language of most model checkers is very 
low-level, so describing a protocol such as this tends to be much more 
challenging. Unlike Alloy, model checkers depend on the topology of 
processes being fixed, and cannot perform analyses for arbitrary to-
pologies.

Also, although Zohar Manna and Amir Pnueli’s pioneering formula-
tion of linear temporal logic [50] included a non-temporal quantifier, 
it seems to have been omitted from many model checkers. This means 
that you cannot express relationships between the values of state com-
ponents at different points in time—for example, that an operation in-
crements a counter, or leaves some state component unchanged.

6.2	 Hotel	Room	Locking

Most hotels now issue disposable room keys; when you check out, you 
can take your key with you. How, then, can the hotel prevent you from 
reentering your room after it has been assigned to someone else? The 
trick is recodable locks, which have been in use in hotels since the 1980’s, 
initially in mechanical form, but now almost always electronic.

The idea is that the hotel issues a new key to the next occupant, which 
recodes the lock, so that previous keys will no longer work. The lock 
is a simple, stand-alone unit (usually battery-powered), with a mem-
ory holding the current key combination. A hardware device, such as 
a feedback shift register, generates a sequence of pseudorandom num-
bers. The lock is opened either by the current key combination, or by its 
successor; if a key with the successor is inserted, the successor is made 
to be the current combination, so that the old combination will no lon-
ger be accepted.

This scheme requires no communication between the front desk and 
the door locks. By synchronizing the front desk and the door locks ini-
tially, and by using the same pseudorandom generator, the front desk 
can keep its records of the current combinations in step with the doors 
themselves.
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6.2.1	 State	Components	and	Key	Ordering
Let’s model and analyze this scheme. We’ll use the same idiom as in the 
leader election example, adding a time atom in the last column of a re-
lation to make it time-dependent, and ordering time atoms into traces. 
To represent the key generators, we’ll posit a single global ordering on 
keys, with the room locks holding disjoint subsets of the keys. Here’s 
the module header:

module examples/hotel
open util/ordering[Time] as TO
open util/ordering[Key] as KO

We declare signatures for the keys and the time instants:

sig Key {}
sig Time {}

The signature Key refers to the key combinations; we’ll use the term card 
to refer to the physical key that a guest inserts into a lock.

Each room has a set of keys, and a current key at a given time:

sig Room {
 keys: set Key,
 currentKey: keys one -> Time
 }

fig. 6.5  Model diagram for the hotel locking system.

Room

Guest
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Key

currentKey.<Time> !

keys.<Time>

<FrontDesk>.lastKey.<Time> ?
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No key belongs to more than one room lock:

fact DisjointKeySets {
 Room <: keys : Room lone -> Key
 }

The front desk is modeled as a singleton signature. Its purpose is simply 
to group together two relations: lastKey, mapping a room to the last key 
combination that was issued for that room, and occupant, mapping a 
room to the guests that have been assigned to it:

one sig FrontDesk {
 lastKey: (Room -> lone Key) -> Time,
 occupant: (Room -> Guest) -> Time
 }

The multiplicity constraint of lone in lastKey is to accommodate the state 
prior to initialization in which rooms do not yet have keys associated 
with them. This looseness is not in fact necessary, since the initializa-
tion will be imposed on the very first state, but it’s always wise to err on 
the side of underconstraint.

A guest holds a set of keys at a given time:

sig Guest {
 keys: Key -> Time
 }

A model diagram for the declarations we’ve written is shown in fig.6.5.

The fundamental operation of the recodable locks is the generation of 
the successor key. We can model this as a simple function that, given a 
key k and a set of keys ks, finds the smallest key  (under the global order-
ing) that follows k and belongs to ks:

fun nextKey (k: Key, ks: set Key): set Key {
 KO/min (KO/nexts (k) & ks)
 }

Discussion

How does the constraint in DisjointKeySets have its claimed meaning?   

The constraint

Room <: keys : Room lone -> Key
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is a “declaration constraint” (see subsection 3.6.4) saying that the keys 
field mapping rooms to their keys is injective. The expression on the left 
denotes the keys relation of the Room signature (see subsection 4.4.4); 
without the restriction to Room, it can be confused with the field in Guest 
of the same name. The multiplicity keyword lone in the declaration ex-
pression on the right says that at most one room is mapped to each 
key.

6.2.2	 Hotel	Operations
The dynamic behavior is described by operations for each of the interac-
tions between the guests and hotel staff and the system.

In the initial state, no guests hold keys, the roster at the front desk shows 
no rooms as occupied, and the record of each room’s key at the front 
desk is synchronized with the current combination of the lock itself:

pred init (t: Time) {
 no Guest.keys.t
 no FrontDesk.occupant.t
 all r: Room | FrontDesk.lastKey.t [r] = r.currentKey.t
 }

This initialization is nontrivial to implement. It is the only operation 
that requires communication between the locks and the front desk. In 
practice, it could be done by using a special card to reset each lock.

The successful entry of a guest into a room is described by this opera-
tion:

1 pred entry (t, t’: Time, g: Guest, r: Room, k: Key) {
2  k in g.keys.t
3  let ck = r.currentKey |
4   (k = ck.t and ck.t’ = ck.t) or
5   (k = nextKey(ck.t, r.keys) and ck.t’ = k)
6  noRoomChangeExcept (t, t’, r)
7  noGuestChangeExcept (t, t’, none)
8  noFrontDeskChange (t, t’)
9  }

The operation consists of a precondition (that the key used to open the 
lock be one of the keys the guest is holding, line 2), a postcondition (that 
the key on the card either matches the lock’s current key, and the lock is 
unchanged, or matches its successor, in which case the lock is advanced, 
lines 4 and 5), and some frame conditions (that there are no changes to 
the state of another room, or to the set of keys held by guests, or to the 
records at the front desk, lines 6 to 8).
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Here are the frame conditions:

pred noFrontDeskChange (t, t’: Time) {
 FrontDesk.lastKey.t = FrontDesk.lastKey.t’
 FrontDesk.occupant.t = FrontDesk.occupant.t’
 }

pred noRoomChangeExcept (t, t’: Time, rs: set Room) {
 all r: Room - rs | r.currentKey.t = r.currentKey.t’
 }

pred noGuestChangeExcept (t, t’: Time, gs: set Guest) {
 all g: Guest - gs | g.keys.t = g.keys.t’
 }

Finally, there are operations for checking in and checking out. Checking 
out is simpler; it just requires that the room be occupied by that guest, 
and then records it as empty:

pred checkout (t, t’: Time, g: Guest) {
 let occ = FrontDesk.occupant {
  some occ.t.g
  occ.t’ = occ.t - Room -> g
  }
 FrontDesk.lastKey.t = FrontDesk.lastKey.t’
 noRoomChangeExcept (t, t’, none)
 noGuestChangeExcept (t, t’, none)
 }

Checking in is more interesting:

1 pred checkin (t, t’: Time, g: Guest, r: Room, k: Key) {
2  g.keys.t’ = g.keys.t + k
3  let occ = FrontDesk.occupant {
4   no occ.t [r]
5   occ.t’ = occ.t + r -> g
6   }
7  let lk = FrontDesk.lastKey {
8   lk.t’ = lk.t ++ r -> k
9   k = nextKey (lk.t [r], r.keys)
10   }
11  noRoomChangeExcept (t, t’, none)
12  noGuestChangeExcept (t, t’, g)
13  }

It requires that the room have no current occupant (4), and its effect is 
to deliver the key to the guest (2), record the guest as the new occupant 
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of the room (5), and to update the front desk record of the room’s last 
key (8). The new key is the successor of the last key in the sequence as-
sociated with the room’s lock (9).

Finally, as in the leader election example, we add a fact ensuring that in-
stances of the model will be traces, namely that the initialization holds 
in the first time instant, and that any pair of consecutive time instants 
are related by an entry, a checkin or a checkout:

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
  some g: Guest, r: Room, k: Key |
   entry (t, t’, g, r, k)
   or checkin (t, t’, g, r, k)
   or checkout (t, t’, g)
 }

Discussion

Where is the case handled in which a guest is denied access to a room?

Nowhere. It’s ruled out by the precondition of the entry operation. Since 
our goal is to check for unauthorized access, there’s no need to model 
it. If we were interested, for example, in how locks audit successful and 
failed attempts at access, we would want to include it.

Why is the precondition in checkin distributed throughout the opera-
tion?

An operation’s constraints can be separated into pre- and postcondi-
tions, or they can be organized around state components. I chose the 
latter approach here, because it avoids repeating the let statements or 
extending their scope.

6.2.3	 Analysis
We’d like to check that no unauthorized entries can occur. Here is an 
attempt at an assertion to this effect:

assert NoBadEntry {
 all t: Time, r: Room, g: Guest, k: Key | let t’ = TO/next(t) |
  let o = FrontDesk.occupant.t [r] |
   entry (t, t’, g, r, k) and some o => g in o
 }
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It says that if guest g enters room r at time t, and the front desk records 
r as occupied, then g is a recorded occupant of r.

To check the assertion, we issue a command such as

check NoBadEntry for 3 but 2 Room, 2 Guest, 5 Time

Initially, it’s good to start with a small scope, to get feedback as rapidly 
as possible. In this command, the default scope is set to 3, which in this 
command bounds only Key, the bounds on the other types being given 
as exceptions. Since it seemed likely that a problem would be exposed 
with only two guests and their rooms, the scope assigns only 2 to Guest 
and Room. A bound of 5 was chosen for Time, because at least 4 time 
instants are needed to execute each operation just once.

This analysis generates a counterexample, shown in fig. 6.6, correspond 
to the following scenario:

· Initially, the current key of Room0 is K0, which is also reflected in the 
front desk’s record.

· Guest0 checks in to Room0 and receives key K1, and the occupancy 
roster at the front desk is updated accordingly.

· Guest0 checks out, and the occupancy roster is cleared.

· Guest1 checks in to Room0 and receives key K2; the occupancy roster at 
the front desk is updated accordingly; and K2 is recorded as the last 
key assigned to Room0.

· Guest0 presents K1 to the lock of Room0, and is admitted.

The problem is that the lock isn’t recoded until the new guest inserts the 
card with the new key. So a previous occupant can enter the room not 
only after checking out but even after a new guest has checked in.

Denial of unauthorized entry can only be guaranteed, therefore, on the 
assumption that there is no intervening event between a guest checking 
in and entering the room. This assumption can be added as a fact:

fact NoIntervening {
 all t: Time - TO/last() | let t’ = TO/next (t), t“ = TO/next(t’) |
  all g: Guest, r: Room, k: Key |
   checkin (t, t’, g, r, k) => (entry (t’, t”, g, r, k) or no t“)
 }

It says that if a checkin occurs at any time t except for the last time in 
a trace, then either it is followed immediately by an entry, or there is 
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fig. 6.6  A sample trace showing unauthorized entry.
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no subsequent time step (because the checkin is the last event in the 
trace).

With this fact included, there is now no counterexample. To gain greater 
confidence, we increase the scope first to 7 time instants and 3 rooms 
and guests:

check NoBadEntry for 3 but 3 Room, 3 Guest, 7 Time

which terminates without a counterexample in about 2 seconds (on a 
2.5GHz PowerBook G5), and then to 9 time instants and 5 keys:

check NoBadEntry for 5 but 3 Room, 3 Guest, 9 Time

which terminates without a counterexample in just under a minute.

The full model is shown in figs. 6.7–6.9.

Discussion

Does your fix require that the new occupant be dragged to the room im-
mediately after checkin?

No. The added fact merely records an assumption about the world. If 
the assumption is false, the security guarantee is undermined.

Why does the BadEntry assertion have the extra hypothesis that the room 
be occupied?

The purpose of the locking scheme is to protect occupants from each 
other, not to protect the hotel from its occupants. If you remove that 
hypothesis, the analyzer will generate a counterexample in which a 
guest checks out, and then immediately reenters the room.

Isn’t the essence of the problem that an occupant doesn’t really take own-
ership of a room until entering it for the first time?

Absolutely. This idea could be expressed more elegantly perhaps in the 
following way. Rather than using the front desk’s occupancy roster, the 
notion of occupancy would be defined in terms of that first entry, in the 
same way that election is defined in the leader election protocol. There 
would then be no need for the additional assumption.

Isn’t this problem rather messy?

Yes. It’s representative of most problems involving requirements that 
are situated in the real world, and can’t be handled effectively by the 
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module examples/hotel
open util/ordering[Time] as TO
open util/ordering[Key] as KO

sig Key, Time {}

sig Room {
 keys: set Key,
 currentKey: keys one -> Time
 }
fact DisjointKeySets {
 Room <: keys : Room lone -> Key
 }

one sig FrontDesk {
 lastKey: (Room -> lone Key) -> Time,
 occupant: (Room -> Guest) -> Time
 }

sig Guest {
 keys: Key -> Time
 }

fun nextKey (k: Key, ks: set Key): set Key {
 KO/min (KO/nexts (k) & ks)
 }

pred init (t: Time) {
 no Guest.keys.t
 no FrontDesk.occupant.t
 all r: Room | FrontDesk.lastKey.t [r] = r.currentKey.t
 }

pred entry (t, t’: Time, g: Guest, r: Room, k: Key) {
 k in g.keys.t
 let ck = r.currentKey |
  (k = ck.t and ck.t’ = ck.t) or
  (k = nextKey(ck.t, r.keys) and ck.t’ = k)
 noRoomChangeExcept (t, t’, r)
 noGuestChangeExcept (t, t’, none)
 noFrontDeskChange (t, t’)
 }

fig. 6.7  Hotel locking model, part 1.
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pred checkout (t, t’: Time, g: Guest) {
 let occ = FrontDesk.occupant {
  some occ.t.g
  occ.t’ = occ.t - Room -> g
  }
 FrontDesk.lastKey.t = FrontDesk.lastKey.t’
 noRoomChangeExcept (t, t’, none)
 noGuestChangeExcept (t, t’, none)
 }

pred checkin (t, t’: Time, g: Guest, r: Room, k: Key) {
 g.keys.t’ = g.keys.t + k
 let occ = FrontDesk.occupant {
  no occ.t [r]
  occ.t’ = occ.t + r -> g
  }
 let lk = FrontDesk.lastKey {
  lk.t’ = lk.t ++ r -> k
  k = nextKey (lk.t [r], r.keys)
  }
 noRoomChangeExcept (t, t’, none)
 noGuestChangeExcept (t, t’, g)
 }

pred noFrontDeskChange (t, t’: Time) {
 FrontDesk.lastKey.t = FrontDesk.lastKey.t’
 FrontDesk.occupant.t = FrontDesk.occupant.t’
 }

pred noRoomChangeExcept (t, t’: Time, rs: set Room) {
 all r: Room - rs | r.currentKey.t = r.currentKey.t’
 }

pred noGuestChangeExcept (t, t’: Time, gs: set Guest) {
 all g: Guest - gs | g.keys.t = g.keys.t’
 }

fig. 6.8  Hotel locking model, part 2.
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traditional treatment of requirements as just like specifications, but at 
a “higher level.” Michael Jackson has developed a systematic theory of 
requirements called “problem frames” that explains how to structure 
and reason about software development problems that involve interac-
tion between a system and its environment. His theory also explains 
the distinction between simply observable events (such as entering the 
room) and events that are better characterized by definition (such as 
acquiring occupancy). The ideas that are most relevant to this example 
can be found in several of the short pieces in his essay collection [38] 
(in particular “Definitions,” “Designations,” “Domains,” “Machines,” and 

“Requirements”), and are elaborated more fully in his book on problem 
frames [39].

What does this analysis say about hotel rooms in practice?

When you enter the room for the first time, you should use your own 
key. If a bellhop lets you in with a master key, the lock will not be re-

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
  some g: Guest, r: Room, k: Key |
   entry (t, t’, g, r, k)
   or checkin (t, t’, g, r, k)
   or checkout (t, t’, g)
 }

assert NoBadEntry {
 all t: Time, r: Room, g: Guest, k: Key | let t’ = TO/next(t) |
  let o = FrontDesk.occupant.t [r] |
   entry (t, t’, g, r, k) and some o => g in o
 }

fact NoIntervening {
 all t: Time - TO/last() | let t’ = TO/next (t), t“ = TO/next(t’) |
  all g: Guest, r: Room, k: Key |
   checkin (t, t’, g, r, k) => (entry (t’, t”, g, r, k) or no t“)
 }

check NoBadEntry for 5 but 3 Room, 3 Guest, 9 Time

fig. 6.9  Hotel locking model, part 3.
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coded, and any valuables you leave in the room will be vulnerable until 
the next time you reenter the room.

6.2.4	 An	Event-Based	Variation
We’ve seen how Alloy doesn’t have a fixed idiom for modeling state ma-
chines, so you’re free to use whatever idiom works best for the model 
at hand. To illustrate this freedom, figs. 6.10–6.12 show a variation of 
the hotel locking model of figs. 6.7–6.9. The state space and the transi-
tions are exactly the same, but this model uses events rather than opera-
tions.

Instead of writing a predicate for each operation, a signature is declared 
whose atoms represent a set of events. For example, the Checkin sig-
nature represents the set of all events in which a guest checks in. The 
constraints that were in the predicate now appear instead as signature 
facts.

Arguments to operation predicates now become fields of the event sig-
natures. The signature hierarchy can be used to factor out common ar-
guments; thus RoomKeyEvent is the set of events that involve a room and 
a key, in addition to pre- and poststates and a guest.

The Traces fact takes a rather different form in this model:

1 fact Traces {
2  init (TO/first ())
3  all t: Time - TO/last() | let t’ = TO/next (t) |
4   some e: Event {
5    e.pre = t and e.post = t’
6    currentKey.t != currentKey.t’ => e in Entry
7    occupant.t != occupant.t’ => e in Checkin + Checkout
8    (lastKey.t != lastKey.t’ or keys.t != keys.t’)
9     => e in Checkin
10    }
11  }

As before, the first constraint (line 2) says that the initial condition holds 
at the first time instant. The quantified constraint says that, for any pair 
of consecutive time instants, there is an event from one to the other 
(5), and that, if certain state changes occur, an event in a particular set 
must happen. For example, if the occupant relation changes, then either 
a Checkin or a Checkout event must have occurred (7).
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module examples/hotelEvents
open util/ordering[Time] as TO
open util/ordering[Key] as KO

sig Key, Time {}

sig Room {
 keys: set Key,
 currentKey: keys one -> Time
 }
fact DisjointKeySets {
 Room <: keys : Room lone -> Key
 }

one sig FrontDesk {
 lastKey: (Room -> lone Key) -> Time,
 occupant: (Room -> Guest) -> Time
 }

sig Guest {
 keys: Key -> Time
 }

fun nextKey (k: Key, ks: set Key): set Key {
 KO/min (KO/nexts (k) & ks)
 }

pred init (t: Time) {
 no Guest.keys.t
 no FrontDesk.occupant.t
 all r: Room | FrontDesk.lastKey.t [r] = r.currentKey.t
 }

abstract sig Event {
 pre, post: Time,
 guest: Guest
 }

abstract sig RoomKeyEvent extends Event {
 room: Room,
 key: Key
 }
 

fig. 6.10  An event-based variation of the hotel locking model, part 1.
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sig Entry extends RoomKeyEvent {} {
 key in guest.keys.pre
 let ck = room.currentKey |
  (key = ck.pre and ck.post = ck.pre) or
  (key = nextKey(ck.pre, room.keys) and ck.post = key)
 }

sig Checkin extends RoomKeyEvent {} {
 keys.post = keys.pre + guest -> key
 let occ = FrontDesk.occupant {
  no occ.pre [room]
  occ.post = occ.pre + room -> guest
  }
 let lk = FrontDesk.lastKey {
  lk.post = lk.pre ++ room -> key
  key = nextKey (lk.pre [room], room.keys)
  }
 }

sig Checkout extends Event {} {
 let occ = FrontDesk.occupant {
  some occ.pre.guest
  occ.post = occ.pre - Room -> guest
  }
 }

fact Traces {
 init (TO/first ())
 all t: Time - TO/last() | let t’ = TO/next (t) |
  some e: Event {
   e.pre = t and e.post = t’
   currentKey.t != currentKey.t’ => e in Entry
   occupant.t != occupant.t’ => e in Checkin + Checkout
   (lastKey.t != lastKey.t’ or keys.t != keys.t’)
    => e in Checkin
   }
 }

fig. 6.11  An event-based variation of the hotel locking model, part 2.
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The NoIntervening fact becomes easier to express in this style:

1 fact NoIntervening {
2  all c: Checkin |
3   c.post = TO/last ()
4   or some e: Entry {
5    e.pre = c.post
6    e.room = c.room
7    e.guest = c.guest
8    }
9  }

It says that every Checkin event is either the last event to occur (3), or 
is followed immediately by some Entry event with the same room and 
guest (4).

One major advantage of this idiom is that, because events are atoms, 
it’s easier to tell which events are occurring in traces output by the ana-
lyzer. Fig. 6.13 shows a counterexample corresponding to that of fig. 6.6, 
which is produced when the NoIntervening fact is omitted. I’ve chosen 
a visualizer setting that shows events in their prestates, so the event in 
each snapshot is the one that is about to occur.

assert NoBadEntry {
 all e: Entry | let o = FrontDesk.occupant.(e.pre) [e.room] |
  some o => e.guest in o
 }
check NoBadEntry for 5 but 3 Room, 3 Guest, 9 Time, 8 Event

fact NoIntervening {
 all c: Checkin |
  c.post = TO/last ()
  or some e: Entry {
   e.pre = c.post
   e.room = c.room
   e.guest = c.guest
   }
 }

fig. 6.12  An event-based variation of the hotel locking model, part 3.
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Discussion

What are the attractions of this style of modeling?

Making events concrete produces nicer visualizations, and allows some 
properties to be written more succinctly and directly. Another ad-
vantage is that signature extension can be used to factor out common 
properties of events. Here, we used this only to share the declarations 
of event arguments, but it could be used in other ways—for example, 
to declare more traditional frame conditions and share them between 
event classes. This kind of sharing is easier to express between signa-
tures than between predicates, because predicates are explicitly param-
eterized, but signature extension (like inheritance in an object-oriented 
language, and like schema inclusion in Z) works with free variables.

Could you have written the frame conditions more traditionally?

Yes, the frame conditions from the previous version could have been 
incorporated verbatim. I used the more unusual style of frame condi-
tion to emphasize the flexibility that an idiomless language like Alloy 
gives you.

Who invented this style of frame condition?

The basic idea is due to Ray Reiter [57], and was elaborated in the con-
text of software modeling in collaboration with Alex Borgida and John 
Mylopoulos [7].

When is this style of frame condition suitable?

It works well exactly when conventional frame conditions are most 
cumbersome. Suppose we have m state components, and k operations, 
each of which modifies just one state component. Then in the conven-
tional style, each operation would require a frame condition for each of 
the m − 1 state components that remains unchanged, so there would 
be k × (m − 1) equalities in total. Reiter’s scheme, on the other hand, 
requires just one implication for each operation, m in total, saying that 
if a particular state component changed, then its associated operation 
must have occurred.

In contrast, if every operation modifies every state component but one, 
traditional frame conditions will require only one equality per opera-
tion, giving a total of k, whereas Reiter’s scheme would require m impli-
cations each listing k − 1 operation names in the consequent.
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With respect to this simple comparison, Reiter’s scheme is equivalent 
to the use of “modifies” clauses that indicate, for each operation, which 
state components may change. The advantage of Reiter’s scheme, how-
ever, is that it requires no extra-logical notions, and can accommodate 
more complex forms, such as frame conditions that are dependent on 
the state in which an operation is invoked.

6.3	 Media	Asset	Management

For organizing a large collection of media files, such as photos, mov-
ies, or soundtracks, the built-in facilities of a file system are usually not 
good enough. Applications for “media asset management” allow you to 
view large collections in thumbnail form; to move, rename, copy and 
backup files; to attach labels and captions; to generate webpages; and so 
on. The main advantages over the standard file system’s interface is that 
you can form catalogs that crosscut the directory structure, and apply 
batch operations to collections of files at once.

This example is a model of a few of the essential functions of one of the 
popular applications, iView Media Pro. I developed it to illustrate how 
modeling can give you insight into very basic functions: the kind that 
seem obvious at first glance, but are subtler when examined carefully. 
This kind of modeling is ideally performed in the early stages of devel-
oping a program such as Media Pro, but is also useful later, when new 
functionality threatens to compromise the clarity of the key abstrac-
tions.

fig. 6.13  (Left and above) A sample trace showing unauthorized entry for the event-
based variation.
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Although I’d used (and been impressed by) Media Pro for several years, 
when I constructed this model, I hadn’t understood the details of the 
basic functions. I was motivated by occasional unpleasant surprises 
that made me wonder whether they might have been designed differ-
ently. From the modeling experience, I came to the conclusion that the 
design was eminently sensible, and that aside from the addition of an 
undo facility, I found no opportunity for an improvement in the under-
lying abstractions.

Constructing and analyzing the model gave me a number of insights. It 
would belabor them to show the model in its intermediate forms, and to 
attempt to explain how they arose. Instead, I’ll present the final version 
of the model, with a separate summary of the insights gained.

6.3.1	 Catalog	and	Application	State
The state of the entire application consists of a set of open catalogs (each 
with its own state, which we’ll come to shortly), a current catalog, and a 
cut buffer holding a set of assets:

module examples/assets
sig ApplicationState {
 catalogs: set Catalog,
 catalogState: catalogs -> one CatalogState,
 currentCatalog: catalogs,
 buffer: set Asset
 }
sig Catalog, Asset {}

The role of a catalog in Media Pro is like the role of a document in a 
word processor, and the cut buffer is primarily for moving assets be-
tween catalogs. The presence of an asset in a catalog is a purely organi-
zational notion; the location of the asset’s file on disk is not affected by 
its movement among catalogs.

An individual catalog’s state (shown as a model diagram in fig. 6.14) 
consists of its assets, which are partitioned into assets that are shown 
and assets that are hidden, and a selection, which is either undefined or 
is a set of assets:

sig CatalogState {
 assets: set Asset,
 part hidden, showing: set assets,
 selection: set assets + Undefined
 }
one sig Undefined {}
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The hiding and showing of assets is a mechanism that allows the user 
to focus on a particular subset. Some of the batch actions (such as cut/
copy, rename, rebuild thumbnail) are applied only to selected assets; 
others (such as webpage generation) are applied to all the assets that are 
showing. Typical usage often involves selecting a set of assets, hiding 
them (or the others), and then selecting a subset again, or performing 
some action.

Because it would be undesirable for actions to be applied to assets that 
are hidden, the selected assets must always be showing. So we record an 
invariant saying that the selection is either undefined, or is a nonempty 
set of assets that are showing:

pred catalogInv (cs: CatalogState) {
 cs.selection = Undefined
  or (some cs.selection and cs.selection in cs.showing)
 }

The invariant on the whole state simply applies this invariant to the state 
of each catalog:

pred appInv (xs: ApplicationState) {
 all cs: xs.catalogs | catalogInv (xs.catalogState[cs])
 }

6.3.2	 Operations
We’ll model the operations associated with hiding and showing assets, 
and the operations of the cut buffer.

fig. 6.14  Model diagram for the catalog state declarations.
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To show the assets that are selected, and hide the rest, the user executes 
the “show selected” command:

pred showSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.showing = cs.selection
 cs’.selection = cs.selection
 cs’.assets = cs.assets
 }

Note the precondition that the selection be defined. If no asset is se-
lected, the command’s menu entry is grayed out.

To hide the selected assets and show the rest, the user executes the “hide 
selected” command:

pred hideSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.hidden = cs.hidden + cs.selection
 cs’.selection = Undefined
 cs’.assets = cs.assets
 }

The asymmetry between these operations is a bit surprising at first. The 
show command replaces the set of shown assets, and leaves the selec-
tion unchanged. The hide command, in contrast, augments the set of 
hidden assets, and clears the selection.

The cut command is described by this operation:

1 pred cut (xs, xs’: ApplicationState) {
2  let cs = xs.currentCatalog.(xs.catalogState), sel = cs.selection {
3   sel != Undefined
4   xs’.buffer = sel
5   some cs’: CatalogState {
6    cs’.assets = cs.assets - sel
7    cs’.showing = cs.showing - sel
8    cs’.selection = Undefined
9    xs’.catalogState =
10     xs.catalogState ++ xs.currentCatalog -> cs’
11    }
12   }
13  xs’.catalogs = xs.catalogs
14  xs’.currentCatalog = xs.currentCatalog
15  }
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Its precondition is that the selection is defined (3). Its effect is to replace 
the contents of the buffer with the selection (4), to remove the selected 
assets from the catalog (6) and from the set of shown assets (7), and to 
clear the selection (8). All these actions are performed in the context of 
the current catalog; to make this clear, a variable is introduced for the 
current catalog’s state (2). Only the current catalog has a change of state 
(10). Finally, two frame conditions (13, 14) say that neither the set of 
open catalogs nor the choice of current catalog is changed.

The paste operation is similar:

16 pred paste (xs, xs’: ApplicationState) {
17  let cs = xs.currentCatalog.(xs.catalogState), buf = xs.buffer {
18   xs’.buffer = buf
19   some cs’: CatalogState {
20    cs’.assets = cs.assets + buf
21    cs’.showing = cs.showing + (buf - cs.assets)
22    cs’.selection = buf - cs.assets
23    xs’.catalogState =
24     xs.catalogState ++ xs.currentCatalog -> cs’
25    }
26   }
27  xs’.catalogs = xs.catalogs
28  xs’.currentCatalog = xs.currentCatalog
29  }

It has no precondition (since the buffer, unlike the selection, can be 
empty but cannot be undefined). Its effect is to add the assets in the 
buffer to the assets of the current catalog (20); and to augment the set 
of shown assets with the new assets that have been added (21), which 
also become selected (22).

6.3.3	 Analyses
In our previous examples, the assertions we checked captured essential 
properties: that one leader is elected, that no unauthorized entry occurs, 
and so on. This example is more typical of what happens in practice. No 
single property seems to capture the essence of the design, but there are 
a number of simple sanity checks that can be formulated, and which can 
be very effective in exposing errors and confusions.

One simple and common class of sanity checks is that operations pre-
serve invariants. For example, we can check that if the invariant on cata-
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log state holds before the hide command is issued, then it will also hold 
after:

assert HidePreservesInv {
 all cs, cs’: CatalogState |
  catalogInv (cs) and hideSelected (cs, cs’) => catalogInv (cs’)
 }
check HidePreservesInv

This check is sufficient to expose the error of not clearing the selection. 
Suppose that the operation were to read

pred hideSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.hidden = cs.hidden + cs.selection
 cs’.selection = cs.selection
 cs’.assets = cs.assets
 }

instead of

pred hideSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.hidden = cs.hidden + cs.selection
 cs’.selection = Undefined
 cs’.assets = cs.assets
 }

The analyzer would then produce a counterexample in which the opera-
tion results in a hidden asset being selected.

Another class of useful sanity checks involves algebraic properties. Here, 
for example, we might expect the cut and paste actions to be inverses 
of one another, so that each acts as an undo for the other. We can assert 
that a cut followed by a paste results in a final state equivalent to the 
initial state:

assert CutPaste {
 all xs, xs’, xs“: ApplicationState |
  appInv (xs) and cut (xs, xs’) and paste (xs’, xs”)
   => sameApplicationState (xs, xs“)
 }
check CutPaste

where equivalence is defined as follows:
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pred sameApplicationState (xs, xs’: ApplicationState) {
 xs’.catalogs = xs.catalogs
 all c: xs.catalogs |
  sameCatalogState (c.(xs.catalogState), c.(xs’.catalogState))
 xs’.currentCatalog = xs.currentCatalog
 xs’.buffer = xs.buffer
 }

pred sameCatalogState (cs, cs’: CatalogState) {
 cs’.assets = cs.assets
 cs’.showing = cs.showing
 cs’.selection = cs.selection
 }

The assertion is invalid, for a rather inconsequential reason: the cut re-
places the contents of the buffer, and the paste doesn’t retrieve the old 
contents (which it would if the cut buffer were a stack, as in the emacs 
text editor). To confirm that this is the only reason, we can comment 
out the line

xs’.buffer = xs.buffer

in sameApplicationState, rerun the analysis, and note that a counterex-
ample is no longer found.

Similarly, we can check a paste followed by a cut:

assert PasteCut {
 all xs, xs’, xs“: ApplicationState |
  (appInv (xs) and paste (xs, xs’) and cut (xs’, xs”))
   => sameApplicationState (xs, xs“)
 }
check PasteCut

This also fails, because of the change to the selection. Commenting out 
the line

cs’.selection = cs.selection

in sameCatalogState confirms that there are no additional problems (but 
see subsection 6.3.4 below).

Sometimes, when writing an operation, a property to check comes to 
mind. For example, noting that the paste operation adds to the set of 
shown assets, we might assert that it has no effect on the hidden set of 
the current catalog:
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assert PasteNotAffectHidden {
 all xs, xs’: ApplicationState |
  (appInv (xs) and paste (xs, xs’)) =>
   let c = xs.currentCatalog |
    xs’.catalogState[c].hidden = xs.catalogState[c].hidden
 }
check PasteNotAffectHidden

This assertion is valid.

Figs. 6.15–6.17 bring together the parts of the model that have been 
discussed.

module examples/assets
sig Catalog, Asset {}
sig ApplicationState {
 catalogs: set Catalog,
 catalogState: catalogs -> one CatalogState,
 currentCatalog: catalogs,
 buffer: set Asset
 }
sig CatalogState {
 assets: set Asset,
 part hidden, showing: set assets,
 selection: set assets + Undefined
 }
one sig Undefined {}

pred catalogInv (cs: CatalogState) {
 cs.selection = Undefined
  or (some cs.selection and cs.selection in cs.showing)
 }
pred appInv (xs: ApplicationState) {
 all cs: xs.catalogs | catalogInv (xs.catalogState[cs])
 }

fig. 6.15  Media asset model, state and invariants.
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pred showSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.showing = cs.selection
 cs’.selection = cs.selection
 cs’.assets = cs.assets
 }
pred hideSelected (cs, cs’: CatalogState) {
 cs.selection != Undefined
 cs’.hidden = cs.hidden + cs.selection
 cs’.selection = Undefined
 cs’.assets = cs.assets
 }

pred cut (xs, xs’: ApplicationState) {
let cs = xs.currentCatalog.(xs.catalogState), sel = cs.selection {
 sel != Undefined
 xs’.buffer = sel
 some cs’: CatalogState {
  cs’.assets = cs.assets - sel
  cs’.showing = cs.showing - sel
  cs’.selection = Undefined
  xs’.catalogState =
   xs.catalogState ++ xs.currentCatalog -> cs’
  }
 }
xs’.catalogs = xs.catalogs
xs’.currentCatalog = xs.currentCatalog
}
pred paste (xs, xs’: ApplicationState) {
 let cs = xs.currentCatalog.(xs.catalogState), buf = xs.buffer {
  xs’.buffer = buf
  some cs’: CatalogState {
   cs’.assets = cs.assets + buf
   cs’.showing = cs.showing + (buf - cs.assets)
   cs’.selection = buf - cs.assets
   xs’.catalogState =
    xs.catalogState ++ xs.currentCatalog -> cs’
   }
  }
 xs’.catalogs = xs.catalogs
 xs’.currentCatalog = xs.currentCatalog
 }

fig. 6.16  Media asset model, operations.
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assert HidePreservesInv {
 all cs, cs’: CatalogState |
  catalogInv (cs) and hideSelected (cs, cs’) => catalogInv (cs’)
 }
check HidePreservesInv

assert CutPaste {
 all xs, xs’, xs“: ApplicationState |
  appInv (xs) and cut (xs, xs’) and paste (xs’, xs”)
   => sameApplicationState (xs, xs“)
 }
check CutPaste

pred sameApplicationState (xs, xs’: ApplicationState) {
 xs’.catalogs = xs.catalogs
 all c: xs.catalogs |
  sameCatalogState (c.(xs.catalogState), c.(xs’.catalogState))
 xs’.currentCatalog = xs.currentCatalog
 xs’.buffer = xs.buffer
 }

pred sameCatalogState (cs, cs’: CatalogState) {
 cs’.assets = cs.assets
 cs’.showing = cs.showing
 cs’.selection = cs.selection
 }

assert PasteNotAffectHidden {
 all xs, xs’: ApplicationState |
  (appInv (xs) and paste (xs, xs’)) =>
   let c = xs.currentCatalog |
    xs’.catalogState[c].hidden = xs.catalogState[c].hidden
 }
check PasteNotAffectHidden

fig. 6.17  Media asset model, assertions.
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6.3.4	 Insights
The construction and analysis of this little model gave me some insights 
into the mechanisms of selecting, showing, and hiding:

· The selection is not just a set; it’s either undefined, or a set contain-
ing one or more assets. This prevents you from selecting zero as-
sets (for which there seems to be no purpose), and from issuing the 
command to show the selected assets when none are selected, which 
would cause all assets to be hidden.

· The show and hide commands, as noted, are asymmetric. The show 
command replaces the set of shown assets, and leaves the selection 
unchanged. The hide command, in contrast, augments the set of hid-
den assets, and clears the selection. This reflects another asymmetry: 
that the selection is always of assets that are showing. If the show 
command were to augment rather than replace, it would have no ef-
fect! Or, put another way, both commands are really about hiding: 
the hide command hides the assets selected, and the show command 
hides the assets that are shown but not selected.

· Executing the paste command leaves the pasted assets selected. This 
allows some degree of undo by a subsequent cut, although the undo 
isn’t complete because the original selection is lost.

· The case in which a paste is executed and the cut buffer shares assets 
with the catalog is surprisingly subtle. Initially, I got it wrong, and 
wrote

pred paste (xs, xs’: ApplicationState) {
 xs’.catalogs = xs.catalogs
 xs’.currentCatalog = xs.currentCatalog
 let cs = xs.currentCatalog.(xs.catalogState), buf = xs.buffer {
  xs’.buffer = buf
  some cs’: CatalogState {
   cs’.assets = cs.assets + buf
   cs’.showing = cs.showing + buf
   cs’.selection = buf
   xs’.catalogState =
    xs.catalogState ++ xs.currentCatalog -> cs’
   }
  }
 }



�1� examples

so that the set of shown assets is augmented by, and the selection 
is replaced by, the entire contents of the buffer, rather than the 
buffer restricted to those assets not already in the catalog. Both 
assertions PasteNotAffectHidden and PasteCut failed for unexpected 
reasons. The former failed because pasting an asset that was al-
ready hidden caused it to be shown (and thus removed from the 
hidden set); the latter failed additionally because the resulting se-
lection included the originally present assets, so a subsequent cut 
leaves the catalog with fewer assets than it started with before the 
paste-cut sequence. An experiment with Media Pro revealed the 
more complicated design of paste, which seems wise, because it 
preserves the algebraic property PasteCut (at least ignoring the se-
lection) which most users probably expect to hold.

Discussion

Is the existential quantifier in the cut and paste operations needed to al-
locate fresh catalog state?

No. No notion of allocation is necessary in a declarative specification. 
Instead of writing

pred cut (xs, xs’: ApplicationState) {
 some cs’: CatalogState {
  cs’.assets = expression
  xs’.catalogState = xs.catalogState ++ xs.currentCatalog -> cs’
  }
 …
 }

we could equally well have written

pred cut (xs, xs’: ApplicationState) {
 let cs’ = xs’.catalogState [xs.currentCatalog] |
  cs’.assets = expression
 all c: Catalog - xs.currentCatalog |
  xs’.catalogState [c] = xs.catalogState [c]
 …
 }

but the existential quantifier is convenient because it allows the rela-
tional override operator to be used.
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Aren’t your insights rather trivial?

Perhaps some readers will think I’m making a mountain out of a mole-
hill; after all, none of the issues I discuss are “showstoppers,” which if 
confused in the design could not be fixed later. The point, rather, is that 
to make a dependable and usable application you need to get all these 
things right eventually.

Can usability issues really be addressed in the abstract?

Of course some design issues, especially those involving usability, can-
not be resolved in the abstract. But that’s no reason to ignore them dur-
ing design. Focusing on them early will catch many problems, even if 
not all, and will save you a lot of reworking later. Moreover, a usability 
study is most effective when viewed as an experiment in which a hy-
pothesis is being tested. If you don’t have a coherent design with clean 
abstractions, you don’t have a hypothesis. You can’t tweak an incoher-
ent user interface design into a usable and elegant one any more than 
you can test a pile of spaghetti code into a robust code base.
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6.4	 Memory	Abstractions

Memory systems have long been a favorite subject for modeling and 
analysis. This example is included to show the application of Alloy to a 
well-understood problem. As a pedagogical example, it illustrates the 
use of nondeterminism (in the descriptions of flushing and loading), of 
abstraction functions for relating models at different levels of abstrac-
tion, and of Alloy’s module system to separate the models from one 
another and from the checks that relate them.

6.4.1	 Abstract	Memory
A model of a simple abstract memory is shown in fig. 6.18. The module 
is parameterized by Addr, the set of addresses, and Data, the set of data 
values that can be stored. The Memory signature represents the possible 
states of the memory. The Canonicalize fact ensures that memories with 
the same contents are represented by the same atom.

The contents of the memory are modeled by the field data mapping ad-
dresses to data values. The mapping is a partial function; each address 
maps to at most one data value. The initialization of the memory is 
described by the predicate init: the memory is initially empty, with no 
mappings at all. Later, in subsection 6.4.3, we’ll relate this model to a 
less abstract model in which there is always a data value for every ad-
dress, set arbitrarily at the start.

Writes to the memory are described by the write predicate. The data 
mapping of the new memory (m’) is the data mapping of the old memory 
(m) overridden by the mapping from the address a to the data value d.

Reads, described by the read predicate, are more interesting. If there is 
a data value associated with the address being looked up, that value is 
returned. Otherwise, the value is unconstrained, and any value may be 
returned.

Two examples of simple checks that can be applied to this model are, 
first, that a read of an address returns the value just written:

assert WriteRead {
 all m, m’: Memory, a: Addr, d1, d2: Data |
  write (m, m’, a, d1) and read (m’, a, d2) => d1 = d2
 }
check WriteRead

and, second, that performing a second identical write has no effect:
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assert WriteIdempotent {
 all m, m’, m“: Memory, a: Addr, d: Data |
  write (m, m’, a, d) and write (m’, m”, a, d) => m’ = m“
 }
check WriteIdempotent

Discussion

Why canonicalize the memory values?

The alternative would be to introduce a predicate, sameMemory say, that 
evaluates to true when applied to two memories with identical data 
mappings. This predicate would then be used in place of equality tests. 
Either approach works fine, but canonicalization is slightly more con-
venient, because it avoids the error of forgetting to use the equivalence 
predicate rather than equality, and because instances generated by the 
analyzer are easier to understand, since memories with different names 
are always structurally different.

module examples/abstractMemory [Addr, Data]

sig Memory {
 data: Addr -> lone Data
 }

fact Canonicalize {
 no disj m, m’: Memory | m.data = m’.data
 }

pred init (m: Memory) {
 no m.data
 }

pred write (m, m’: Memory, a: Addr, d: Data) {
 m’.data = m.data ++ a -> d
 }

pred read (m: Memory, a: Addr, d: Data) {
 let d’ = m.data [a] | some d’ implies d = d’
 }

fig. 6.18  Simple abstract memory.
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Why doesn’t read take a second memory argument?

Since read does not change the state of the memory, there is no need to 
have a second argument, m’ say, to represent the poststate. Sometimes, 
however, this is preferable. In a less abstract model in which the read 
operation might load data to a cache from main memory, the second 
argument would be required. To check that model against this abstract 
model, it would be convenient to have the second argument in the ab-
stract model too, to avoid a separate check that the loading read does 
not affect the abstract state.

6.4.2	 Cache	Memory
A model of a simple cache memory is shown in fig. 6.19. This time, the 
signature representing the system states (cacheMemory) has two fields 
mapping addresses to data values, one for the main memory and one 
for the cache.

Both reading and writing involve only the cache. The write operation al-
ters the cache and leaves the main memory unchanged. The read opera-
tion returns the data value from the cache, and has a precondition that 
such a value exist. The idea is that prior to executing a read, the system 
may execute a load if necessary to bring the requested address into the 
cache. Prior to a write, it may execute a flush to make room in the cache 
for the new entry.

The load and flush operations are nondeterministic. Rather than specify-
ing a particular caching policy, they cover all policies by leaving open 
the question of which entries are loaded and flushed.

The WriteRead and WriteIdempotent checks could be applied to this model 
too (with the references to the signature Memory replaced by references 
to CacheSystem). More interesting checks involve loading and flushing. 
For example, we can check that a load interposed between a read and a 
write has no observable effect:

assert LoadNotObservable {
 all c, c’, c“: CacheSystem, a1, a2: Addr, d1, d2, d3: Data |
  {
  read (c, a2, d2)
  write (c, c’, a1, d1)
  load (c’, c”)
  read (c“, a2, d3)
  } implies d3 = (if a1 = a2 then d1 else d2)
 }
check LoadNotObservable
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module examples/cacheMemory [Addr, Data]

sig CacheSystem {
 main, cache: Addr -> lone Data
 }

pred init (c: CacheSystem) {
 no c.main + c.cache
 }

pred write (c, c’: CacheSystem, a: Addr, d: Data) {
 c’.main = c.main
 c’.cache = c.cache ++ a -> d
 }

pred read (c: CacheSystem, a: Addr, d: Data) {
 some d
 d = c.cache [a]
 }

pred load (c, c’: CacheSystem) {
 some addrs: set c.main.Data - c.cache.Data |
  c’.cache = c.cache ++ addrs <: c.main
 c’.main = c.main
 }

pred flush  (c, c’: CacheSystem) {
 some addrs: some c.cache.Data {
  c’.main = c.main ++ addrs <: c.cache
  c’.cache = c.cache - addrs -> Data
  }
 }

fig. 6.19  Cache memory.

This assertion says that if a read, write, load, and read are performed in 
that order, then the data value returned from the second read will either 
match the value written (if the second read address matches the write 
address), or the value read initially (if it does not).

No counterexample is found; the assertion is valid. On the other hand, 
suppose we’d made a mistake in specifying the load operation, allowing 
any entries to be copied to the cache from main memory, irrespective of 
whether their addresses match addresses of entries in the cache:
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pred load (c, c’: CacheSystem) {
 some addrs: set Addr |
  c’.cache = c.cache ++ addrs <: c.main
 c’.main = c.main
 }

The analyzer now finds a counterexample showing fresh values in the 
cache (which have yet to be flushed) being overwritten.

Discussion

Why no canonicalization of memory values for the caching version?

This model, unlike the previous one of the abstract memory, does not 
include a canonicalization fact. Our example involves no comparisons 
of cache memories, but it will involve comparisons of abstract memo-
ries (when we check that loading and flushing have no abstract effect).

6.4.3	 Fixed-Size	Memory
In the abstract memory model of subsection 6.4.1, the memory grows 
dynamically as writes to new addresses are made, even though the set of 
possible addresses is fixed. For a memory implemented in hardware, a 
more realistic model, shown in fig. 6.20, assigns a value to every address 
in every state.

The initialization predicate is now empty: any initial assignment of data 
values is allowed, so long as the multiplicity of the declaration of the 
field data is obeyed, so that each address has a defined data value as-
sociated with it. The read operation no longer distinguishes the case of 
whether the address is present, and simply returns the data value for the 
given address.

This model could be subjected to the same kind of internal analyses as 
the abstract memory model—nothing new here.

6.4.4	 A	Quick	Introduction	to	Abstraction	Functions
We’ve now seen three variants of the memory model: an abstract mem-
ory model, and two more concrete models, one accommodating arbi-
trary initialization, and one describing caching. If we observed the be-
haviors of these two, we would expect them to conform to the abstract 
model. That is, if all you could see was which operations occurred, the 
addresses passed to them, and the data values passed into the write op-
eration and out of the read, every execution of one of the concrete sys-
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module examples/fixedSizeMemory [Addr, Data]
sig Memory {
 data: Addr -> one Data
 }

pred init (m: Memory) {
 }

pred write (m, m’: Memory, a: Addr, d: Data) {
 m’.data = m.data ++ a -> d
 }

pred read (m: Memory, a: Addr, d: Data) {
 d = m.data [a]
 }

fig. 6.20  Fixed-size memory.

tems would be indistinguishable from some execution of the abstract 
system.

To determine whether a concrete operation

pred concreteOp (s, s’: State) {…}

produces behaviors acceptable to an abstract operation

pred abstractOp (s, s’: State) {…}

we can assert that every transition of the concrete operation is a transi-
tion of the abstract one:

assert Refinement {
 all s, s’: State | concreteOp (s, s’) => abstractOp (s, s’)
 }

For example, we could check that the write operation from our abstract 
model

pred write (m, m’: Memory, a: Addr, d: Data) {
 m’.data = m.data ++ a -> d
 }

meets the more abstract description

pred writeWeak (m, m’: Memory, a: Addr, d: Data) {
 m’.data [a] = d
 }
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which (unhelpfully) allows corruption on every address except the one 
written, with the assertion

assert WriteRefinement {
 all m, m’: Memory, a: Addr, d: Data |
  write (m, m’, a, d) => writeWeak (m, m’, a, d)
 }

To compare across memory models, however, this simple approach 
won’t work: the operations compared apply to different state spaces. A 
classic paper by Tony Hoare [28] introduced a solution to this problem 
that is now well-known and widely used. An abstraction function is de-
fined that maps concrete states to corresponding abstract states.

Suppose our operations are

pred concreteOp (s, s’: ConcreteState) {…}
pred abstractOp (s, s’: AbstractState) {…}

Then we try to find an abstraction function

fun alpha (s: ConcreteState): AbstractState {…}

that makes this assertion valid:

assert AbstractionRefinement {
 all s, s’: ConcreteState |
  concreteOp (s, s’) => abstractOp (alpha(s), alpha(s’))
 }

If such an abstraction function can be found, the observable behaviors 
of the concrete model—in which everything is visible except the state 
itself—will conform to the abstract model.

Discussion

What exactly is the notion of conformance here?

We’re using trace inclusion as the yardstick. A trace is an execution his-
tory: a sequence of events, each representing a single step in which an 
operation fires. An event can be described in full by the name of the op-
eration and the values taken by the inputs and outputs in that step. Note 
that the pre- and poststates are not part of the event, because they are 
regarded as invisible from outside. Each machine, abstract and concrete, 
has a trace set that summarizes its behavior. The concrete machine con-
forms to the abstract machine if its trace set is a subset of the trace set 
of the abstract model.
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If the concrete machine conforms in this way, it never does anything 
bad. On the other hand, conformance doesn’t guarantee that it does 
anything good. In particular, the concrete machine that has no traces at 
all conforms to any abstract machine! To ensure that good things hap-
pen, the notion of conformance needs to be extended. If each operation 
represents a request for service and its fulfillment, we might require 
that the concrete operations be just as applicable: that is, whenever a 
trace can be extended with an event in the abstract machine, there is 
a corresponding event in the concrete machine (or, more generally, an 
appropriate sequence of events). This would ensure that the concrete 
machine never refuse to respond to a request that the abstract machine 
would have responded to.

This kind of extension is not easily formulated or checked in Alloy, be-
cause it requires an unbounded universal quantification over states. 
The assertion we’d need would say something like this: for every con-
crete prestate, the concrete operation is applicable (that is, there exists 
a concrete poststate satisfying the operation constraint) whenever the 
correspond abstract operation is applicable. This existential quantifier 
over the concrete poststate becomes an unbounded universal quantifier 
when it’s negated to find counterexamples, so it can’t be handled by Al-
loy. See section 5.3 for a detailed discussion of this problem.

Does the abstraction function method always work?

The method is sound, which means that if you can find an abstraction 
function that satisfies the refinement condition, then it follows that the 
concrete machine conforms to the abstract machine. It’s not complete, 
however: just because the concrete machine conforms does not im-
ply that an abstraction function exists. The problem with the standard 
method arises only rarely, when the abstract and concrete machines 
exhibit nondeterminism at different points but with the same observ-
able effect.

The method can be made complete in one of two ways. You can general-
ize to an abstraction relation, but this isn’t desirable for Alloy, because it 
requires an unbounded universal quantification. Alternatively, you can 
augment the concrete model with additional state variables in a way 
that doesn’t alter the observable behavior, but makes it possible to find 
an abstraction function. Two kinds of variables are added, history and 
prophecy variables, depending on whether the troublesome nondeter-
minism is resolved earlier or later in the concrete machine. Use of a 
history variable is illustrated below, in subsection 6.4.6.
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What if you pick the wrong abstraction function?

It doesn’t matter what function you pick, so long as it satisfies the re-
finement condition, and one additional condition. It must be total, so 
that it gives an interpretation for every concrete state. This condition is 
not easily checked in Alloy, because it requires an unbounded univer-
sal (see section 5.3), but you can often write the abstraction function 
in such a way that it’s easy to see that it’s total, and you can simulate it 
(just by running the function in the Alloy Analyzer) to check that it’s 
consistent.

Must the abstraction function really map every concrete state?

Not necessarily. You can introduce an invariant. So long as every con-
crete operation preserves the invariant—easily checked in Alloy (see 
section 6.3.1)—the refinement condition can be restricted to those pr-
estates that satisfy it, and then the abstraction function need only map 
them.

6.4.5	 Abstraction	Function	for	Cache	Memory
To check the cache model against the abstract model, we create a new 
Alloy module:

module examples/checkCache [Addr, Data]
open cacheMemory [Addr, Data] as cache
open abstractMemory [Addr, Data] as amemory

We then declare an abstraction function, saying that the abstract mem-
ory associated with a cache system is obtained by taking the contents of 
the main memory, and overriding them with the contents of the cache:

fun alpha (c: CacheSystem): Memory {
 {m: Memory | m.data = c.main ++ c.cache}
 }

Now we can write the assertions to check the operations. For read and 
write, we have:

assert ReadOK {
 all c: CacheSystem, a: Addr, d: Data, m: Memory |
  cache/read (c, a, d) and m = alpha (c)
   => amemory/read (m, a, d)
 }
check ReadOK
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assert WriteOK {
 all c, c’: CacheSystem, a: Addr, d: Data, m, m’: Memory |
  cache/write (c, c’, a, d)
  and m = alpha (c) and m’ = alpha (c’)
    => amemory/write (m, m’, a, d)
 }
check WriteOK

The load and flush operations don’t have counterparts in the abstract 
model; their effect should not even be detectable from an abstract per-
spective. So we check them against the abstract operation that does 
nothing:

assert LoadOK {
 all c, c’: CacheSystem, m, m’: Memory |
  cache/load (c, c’)
  and m = alpha (c) and m’ = alpha (c’)
   => m = m’
 }
check LoadOK

assert FlushOK {
 all c, c’: CacheSystem, m, m’: Memory |
  cache/flush (c, c’)
  and m = alpha (c) and m’ = alpha (c’)
   => m = m’
 }
check FlushOK

6.4.6	 History	Variables
Showing that fixed-size memory conforms to the abstract model is im-
possible with an abstraction function alone. But the fixed-size memory 
does indeed conform: the arbitrary initial values correspond to the ad-
dresses in the abstract memory that have no data values associated with 
them, and when a read operation returns one of these arbitrary values, 
the abstract model would allow it, because, in the abstract setting, the 
address would have been missing from the mapping—a case in which 
the abstract read operation does not constrain the value returned.

Unfortunately, however, after the initial state, you can no longer tell by 
looking at the fixed-size memory’s address/data mapping which ad-
dresses have been written to, and which still hold their initial junk val-
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ues. A solution to this dilemma is to extend the model with an extra 
state component that maintains this distinction, as shown in fig. 6.21.

This state component, unwritten, is called a history variable, because it 
holds additional history about the behavior—in this case the set of ad-
dresses that have not yet been written to.

Now, using the augmented state, we can formulate an abstraction func-
tion, and check the operations as before, but using the augmented con-
crete model rather than the original one. The new abstraction function 
and the refinement assertions are shown in fig. 6.22.

Discussion

Why is an abstraction function needed at all for the fixed-size memory? 
Doesn’t its state match the state of the abstract memory?

The state of the cache model clearly differs from the state of the abstract 
model, because it separates the memory into two mappings. But you 
may wonder whether the fixed-size memory state is different: like the 
abstract memory, the state comprises a single field called data mapping 
addresses to data values.

First, distinct signatures represent distinct sets of atoms, even if their 
fields have the same name. The ability to use fields of the same name is 
a convenience—a form of overloading that Alloy resolves automatically. 
Alloy doesn’t permit two distinct signatures with the same name; even 
though both of these are called Memory, they are declared in different 
modules, so their full names are unique.

Second, even if we rewrote the models so that the fixed-size and ab-
stract memories shared the same state signature, an abstraction func-
tion would still be needed. Consider checking the initialization predi-
cates. The abstract memory requires the address/data mapping to be 
empty initially, whereas the fixed-size memory requires it to be full!

The issue here is that, even if the names of the two state spaces match, 
and they are represented by the same set of atoms, a single state can 
have different interpretations in the two models. In fact, to interpret 
a state of the fixed-size memory in terms of the abstract memory, we 
need to distinguish addresses that have been written, and addresses that 
still hold their arbitrary values from initialization. This is what led us to 
introduce the history variable. Even in the absence of the history vari-
able, an abstraction function is needed to bridge two state spaces when 
their interpretations differ. As another example, think of testing one 
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arithmetic implementation against another in which the byte order-
ing differs: the testing framework will need to apply conversions, even 
though both implementations represent an integer as a byte.

Why did you write the abstraction function as a predicate rather than 
as a function?

Simply to illustrate a different style; it’s still a function, even though it’s 
defined implicitly. The predicate form is perhaps preferable because it 
doesn’t use the set comprehension. You might think that defining the 
abstraction function as an Alloy function (as in subsection 6.4.5) en-
sures that it is truly a function from concrete to abstract states. Unfor-
tunately, this isn’t true: if the comprehension property is badly written, a 
single concrete state might map to a set of more than one abstract state. 
You’d still have a function in the sense of the Alloy keyword (because the 
result is a single set of abstract states) but you wouldn’t have an abstrac-
tion function, because the mapping from states to states would not be 
one-to-one.

module examples/fixedSizeMemory_H [Addr, Data]
open fixedSizeMemory [Addr, Data] as memory

sig Memory_H extends memory/Memory {
 unwritten: set Addr
 }

pred init (m: Memory_H) {
 memory/init (m)
 m.unwritten = Addr
 }

pred read (m: Memory_H, a: Addr, d: Data) {
 memory/read (m, a, d)
 }

pred write (m, m’: Memory_H, a: Addr, d: Data) {
 memory/write (m, m’, a, d)
 m’.unwritten = m.unwritten - a
 }

fig. 6.21  Extension of fixed-size memory model with a history variable.



��� examples

module examples/checkFixedSize [Addr, Data]
open fixedSizeMemory_H [Addr, Data] as fmemory
open abstractMemory [Addr, Data] as amemory

pred alpha (fm: fmemory/Memory, am: amemory/Memory) {
 am.data = fm.data - (fm.unwritten -> Data)
 }

assert initOK {
 all fm: fmemory/Memory, am: amemory/Memory |
  fmemory/init (bm) and alpha (bm, am)
   => amemory/init (am)
 }
check initOK

assert readOK {
 all fm: fmemory/Memory, a: Addr, d: Data,
 am: amemory/Memory |
  fmemory/read (fm, a, d) and alpha (fm, am))
   => amemory/read (am, a, d)
 }
check readOK

assert writeOK {
 all fm, fm’: fmemory/Memory, a: Addr, d: Data,
 am: amemory/Memory |
  fmemory/write (fm, fm’, a, d)
  and alpha (fm, am) and alpha (fm’, am’)
    => amemory/write (am, am’, a, d)
 }
check writeOK

fig. 6.22  Abstraction function and refinement assertions 
for history-extended machine.



Appendix	A:	Exercises

These exercises are divided into sections. The exercises in the early sec-
tions are designed to help develop skills in using relational logic and the 
basic linguistic constructs of Alloy, so they tend to be more mathemati-
cal in flavor. The exercises in the later sections are more open-ended, 
and more characteristic of what modeling involves in practice.

The exercises of section A.1 assume only chapter 3 as background, and 
do not require any familiarity with the language constructs of 4. Nev-
ertheless, most readers will enjoy the exercises more, and learn more 
from them, if they experiment with the Alloy Analyzer as they go along. 
I’ve therefore provided templates that show how to use the analyzer in 
each exercise without requiring knowledge of the full language.

The exercises of the remaining sections can all be attempted after read-
ing only chapters 3 and 4, except for A.5.3 which refers to an example 
in chapter 6.

Exercises that are easy and should not require any deep thinking are 
marked with a small heart (♥). Exercises that are particularly challeng-
ing are marked with a small clubs symbol (♣).
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A.1	 Logic	Exercises

The exercises in this section give practice in writing expressions and 
constraints in the relational logic. They don’t require any knowledge 
of the full Alloy language, but many of them show how to embed the 
expressions and constraints within an Alloy model, so that you can use 
the analyzer to generate instances and give you concrete feedback.

♥A.1.1 Properties of Binary Relations

The following Alloy model constrains a binary relation to have a collec-
tion of standard properties:

module exercises/properties

pred show () {
 some r: univ -> univ {
  some r     -- nonempty
  r.r in r    -- transitive
  no iden & r  -- irreflexive
  ~r in r    -- symmetric
  ~r.r in iden  -- functional
  r.~r in iden  -- injective
  univ in r.univ -- total
  univ in univ.r -- onto
  }
 }
run show for 4

A finite binary relation cannot have all these properties at once. Which 
individual properties, if eliminated, allow the remaining properties to 
be satisfied? For each such property eliminated, give an example of a 
relation that satisfies the rest.

You can use the Alloy Analyzer to help you. The run command instructs 
the analyzer to search for an instance satisfying the constraints in a uni-
verse of at most 4 atoms. To eliminate a property, just comment it out 
(with two hyphens in a row at the start of the line).

♥A.1.2 Relational and Predicate Calculus Styles

The properties in problem A.1.1 were written in a relational calculus 
style. Rewrite each in a predicate calculus style instead. For example, 
the non-emptiness property can be reformulated as
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some x, y: univ | x -> y in r

Each of your reformulations can be cast as an Alloy assertion, so you 
can use the analyzer to check it. For example, to check the reformula-
tion of non-emptiness, you would write

assert ReformulateNonEmptinessOK {
 all r: univ -> univ |
  some r iff (some x, y: univ | x -> y)
 }
check ReformulateNonEmptinessOK

and then execute the check to see if there are counterexamples—values 
of the relation r that satisfy one formulation but not the other.

♥A.1.3 Relational Properties in Modeling

Suppose you are modeling each of the following relationships as a bi-
nary relation. What properties (drawn from the list in problem A.1.1) 
would you expect each to have?

(a) the sibling relationship, between children with the same parents;

(b) the links relationship, between a host on a network and the hosts it 
is linked to;

(c) the contains relationship, between a directory in a file system and its 
contents;

(d) the group relationship, between graphical elements in a drawing 
program and groups (collections of elements that are selected and 
deselected together);

(e) the sameGroup relationship, between graphical elements in the same 
group;

(f ) the supersedes relationship, between a file in one file system and a 
file in another file system, which holds when the first file is a newer 
version of the second file.

(g) the substitutableFor relationship, between two components, when 
the first can be substituted for the second in any system in some 
class; for example, one power supply may be substituted for another 
if it provides the same voltage and at least as much power.
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♥A.1.4 Refactoring Navigation Expressions

When writing “navigation expressions,” you may notice repeated subex-
pressions that can be factored out, making the overall expression more 
succinct. For example, the expression p.mother.brother + p.father.brother, 
denoting p’s uncle, can be written instead as p.(mother + father).brother. 
Simplifications like this rely on the assumption that certain algebraic 
identities hold, such as

(a) distributivity of join over union: s.(p + q) = s.p + s.q;

(b) distributivity of join over difference: s.(p - q) = s.p - s.q; and

(c) distributivity of join over intersection: s.(p & q) = s.p & s.q

for a given set s and binary relations p and q.

For each putative identity, say whether it holds, and if not, give a coun-
terexample.

Here is an example of how you might check the first using the Alloy 
Analyzer:

module exercises/distribution
assert union {
 all s: set univ, p, q: univ -> univ | s.(p + q) = s.p + s.q
  }
check union for 4

The command tells the analyzer to find a counterexample within a uni-
verse of 4 elements. When you find that a property does not hold, try 
and obtain the smallest counterexample you can, by reducing the scope 
(for example, replacing for 4 by for 2).

A.1.5 Characterizing Trees

A tree is a relation that satisfies some properties. What exactly are these 
properties? Express them in relational logic, and illustrate with a few 
examples.

Here is a template to help you:

module exercises/tree
pred isTree (r: univ -> univ) { … }
run isTree for 4

Just replace the ellipsis with some constraints on the relation r, and ex-
ecute the command to visualize some sample instances. You may need 
to add some constraints to make the instances nontrivial.
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A.1.6 Spanning Trees

A spanning tree of a graph is a tree-like subgraph that covers all the 
nodes. Make this definition precise, and give an example of a graph with 
two distinct spanning trees.

Here is a template to help you:

module exercises/spanning
pred isTree (r: univ -> univ) { … }
pred spans (r1, r2: univ -> univ) { … }
pred show (r, t1, t2: univ -> univ) {
 spans (t1, r) and isTree (t1)
 spans (t2, r) and isTree (t2)
 t1 not = t2
 }
run show for 3

Hint: It’s up to you whether you consider the graph and trees to be di-
rected or undirected. The undirected case is a bit trickier, and more in-
teresting.

Spanning trees have many uses. In networks, they’re often used to set 
up connections. In the Firewire protocol, for example, a spanning tree is 
automatically discovered, and the root of the tree becomes a leader that 
coordinates communication.

A.1.7 Characterizing Rings

Some communication protocols organize nodes in a network into a ring, 
with links from node to node forming a circle. Characterize, as simply 
and concisely as you can, the constraints on next, the relation from node 
to node, that ensures that it forms a ring.

Here is a sample Alloy model into which you can insert the constraints, 
and then execute the command to see if the instances you obtain are 
indeed rings:

module exercises/ring
sig Node {next: set Node}
pred isRing () {
 … your constraints here
 }
run isRing for exactly 4 Node
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♣A.1.8 Defining Acyclicity for an Undirected Graph

An undirected graph can be represented as a binary relation, con-
strained to be symmetric. Write constraints on such a relation that rule 
out cycles. Here is a suitable template:

module exercises/undirected
sig Node {adjs: set Node}
pred acyclic () {
 adjs = ~adjs
 … your constraints here
 }
run acyclic for 4

A.1.9 Axiomatizing Transitive Closure

Transitive closure is not axiomatizable in first-order logic. In short, that 
means that if you want to express it, you need a special operator, be-
cause it can’t be defined in terms of other operators. Here’s a bogus 
attempt to do just that; your challenge is to use the Alloy Analyzer to 
find the flaw.

Recall that the transitive closure of a binary relation r is the smallest 
transitive relation R that includes r. Let’s say R is a transitive cover of r if 
R is transitive and includes r. To ensure that R is the smallest transitive 
cover, we can say that removing any tuple a -> b from R gives a relation 
that is not a transitive cover of r. Formalize this by completing the fol-
lowing template:

module exercises/closure

pred transCover (R, r: univ -> univ) {
 … your constraints here
 }
pred transClosure (R, r: univ -> univ) {
 transCover (R, r)
 … your constraint here
 }

assert Equivalence {
 all R, r: univ -> univ | transClosure (R, r) iff R = ^r
 }
check Equivalence for 3

Now execute the command, examine the counterexample, and explain 
what the bug is. The official definition of UML 1.0 had this problem.
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A.1.10 Address Book Constraints and Expressions

In this exercise, you’ll get some practice writing expressions and con-
straints for a simple multilevel address book. Consider a set Addr of ad-
dresses, and a set Name consisting of two disjoint subsets Alias and Group. 
The mapping from names to addresses is represented by a relation ad-
dress, but a name can map not only to an address but also to a name.

First, write the following invariants—constraints which you’d expect an 
address book to satisfy:

(a) There are no cycles; if you resolve a name repeatedly, you never 
reach the same name again.

(b) All names eventually map to an address.

Second, write the following simulation constraints, which you might 
add during the exploration of a model in order to see more interesting 
instances:

(c) The address book has at least two levels.

(d) Some groups are non-empty.

Finally, write expressions for each of the following, without using com-
prehension syntax:

(e) the set of names that are members of groups;

(f ) the set of groups that are empty;

(g) the mapping from aliases to the addresses they refer to, directly or 
indirectly;

(h) the mapping from names to addresses which, when a name maps 
to some addresses directly, and some other addresses indirectly, in-
cludes only the direct addresses.

Here’s how to use the analyzer to help you with this problem. Take the 
following template, which declares the various sets and the address rela-
tion, and fill in the invariants and simulation constraints:

module exercises/addressBook1

abstract sig Name {
 address: set Addr + Name
 }
sig Alias, Group extends Name {}
sig Addr {}
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fact {
 … invariants
 }
pred show () {
 … simulation constraints
 }
run show for 3

As you fill them in, execute the run command; the tool will generate 
sample instances. Then, when you have an interesting instance, enter a 
candidate expression into the evaluator, and the tool will show you its 
value for that particular instance. You may find that you need to add 
more simulation constraints to obtain an instance that nicely illustrates 
the meaning of an expression.

A.1.11 Modeling The Tube

In this exercise, you’ll write some generic constraints about railway 
lines, and then apply them to the London Underground.

The diagram of fig. A.1 shows a simplified portion of the London Un-
derground. (You can find the real thing at http://tube.tfl.gov.uk/.) There 
are three lines shown: the Jubilee line running north to south from 
Stanmore to Waterloo; the Central Line running west to east from West 
Ruislip and Ealing Broadway to Epping; and the Circle line running 
clockwise through Baker Street. The snapshot of fig. A.2 shows an in-
stance of an Alloy model that corresponds to it.

Let’s model all the stations in a railway as the set Station. A particular 
line Line will be represented as a set of stations Line served by that line, 
with the same name as the line, and a binary relation line over those sta-
tions, with the same name but starting with a lower case letter.

Formalize each of these statements in the Alloy logic:

(a) Station S is served by line L1 but not by line L2.

(b) Line L forms a circle.

(c) Line L forms a straight line.

(d) Line L is a straight line, until it branches into two straight lines at 
station S.

(e) The ends of line L are stations S1 (at the start) and S2 (at the end).

(f ) It is possible to travel from station S1 to station S2 on line L.
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fig. a.1  A simplified portion of the London Underground.

Stanmore

Baker Street

Epping

West Ruislip

Ealing Broadway
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Notting Hill Gate

Bond Street

Liverpool Street

North Acton

fig. a.2  An instance generated by the Alloy Analyzer corresponding to fig. A.1.
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(g) At station S, two branches of L merge into one.

(h) [Hard!] If you get on an L line train at station S1, you will eventually 
reach station S2.

(i) Now construct a model of the portion of the Underground shown 
in fig. A.1, and run the Alloy Analyzer to see if you can obtain a 
snapshot similar to that shown in fig. A.2.

Here is a template to show you how to use the analyzer for this prob-
lem:

module exercises/tube

abstract sig Station {
 jubilee, central, circle: set Station
 }
sig Jubilee, Central, Circle in Station {}
one sig
 Stanmore, BakerStreet, BondStreet, Westminster, Waterloo,
 WestRuislip, EalingBroadway, NorthActon, NottingHillGate,
  LiverpoolStreet, Epping
 extends Station {}

fact {
 … your constraints here
 }
pred show () {}
run show

Just write the constraints in the body of the fact, and execute the com-
mand to generate sample instances. The constraints you need are instan-
tiations of the generic constraints. For example, the generic constraint S 
in L says that station S is served by line L; you might write here

BakerStreet in Jubilee

to say that Baker Street is served by the Jubilee line. If you have read 
chapter 4, you could write the model more elegantly by defining func-
tions and predicates for the generic constraints. Don’t cheat by just en-
tering the instance directly, for example by writing

jubilee = Stanmore -> BakerStreet + BakerStreet -> BondStreet …

If you do this you won’t have a model that is true of the Underground 
as a whole, because it won’t accommodate additional, intermediate sta-
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tions. Worse, you’ll miss the opportunity to use the analyzer to find er-
rors in your generic constraints.

A.2	 Extending	Simple	Models

The problems in this section exercise the full Alloy language, but give 
you the initial structure of the model.

A.2.1 Telephone Switch Connections

Consider the following model of connections in a telephone network:

module exercises/phones

sig Phone {
 requests: set Phone,
 connects: lone Phone
 }

The signature Phone represents a set of telephones. For a phone p, 
p.requests is a set of phones that p is requesting connections to, some of 
which may have been granted, and p.connects is the phone that p is cur-
rently connected to (or none).

(a) Simulate the model by adding a predicate and running it. Add some 
constraints to the predicate to ensure that you don’t get boring cas-
es; for example, you might say that there should be some requests 
and some connections.

(b) Add two invariants: that every connection has a matching request 
(on the assumption that requests don’t disappear until the connec-
tions they spawned are torn down), and that there are no conference 
calls (in which a phone is involved in more than one connection).

(c) Now incorporate call forwarding, by extending the state with a 
new relation forward from phones to phones, where p.forward, if non-
empty, is the phone that an incoming call to p should be forwarded 
to. Change the constraint relating requests and connects to account 
for forwarding. Simulate some interesting examples of call forward-
ing, adding some extra simulation constraints if necessary.
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A.2.2 Invariant Preservation in an Address Book

In this problem, you are given a model of a simple address book pro-
gram, with operations to add, delete,viol and look up a name, and an 
invariant characterizing the address book’s well-formedness properties. 
Your task is to show that the add and delete operations break the invari-
ant,  and to fix them by strengthening their preconditions.

Here is the basic model:

module exercises/addressBook2

sig Addr, Name {}
sig Book {
 addr: Name -> (Name + Addr)
 }

pred inv (b: Book) {
 let addr = b.addr |
  all n: Name {
   n not in n.^addr
   some addr.n => some n.^addr & Addr
   }
 }

pred add (b, b’: Book, n: Name, t: Name + Addr) {
 b’.addr = b.addr + n -> t
 }
pred del (b, b’: Book, n: Name, t: Name + Addr) {
 b’.addr = b.addr - n -> t
 }
fun lookup (b: Book, n: Name): set Addr {
 n.^(b.addr) & Addr
 }

Note that names are mapped both to addresses and to other names, re-
sulting in a multilevel lookup.

The invariant says that no name should map to itself, directly or indi-
rectly, and that if a name is itself mapped to, then the name is mapped, 
directly or indirectly, to at least one address. An operation is said to pre-
serve an invariant if, when invoked in any state satisfying the invariant, 
it always results in another state satisfying the invariant.

(a) The invariant is defined formally in the predicate inv. Explain in 
words, informally, what the invariant says.
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(b) Generate some examples of address books that satisfy the invariant, 
and some examples that violate it in different ways. To do this, you’ll 
need to add predicates and commands to run them.

(c) Generate some examples of executions of the operations, again by 
adding and running appropriate predicates.

(d) Find counterexamples showing that neither add nor delete preserves 
the invariant. To do this, you’ll need to define assertions that invoke 
the operations and the invariant, and commands to check them. Re-
duce the scope if necessary to obtain the smallest counterexample 
possible.

(e) Elaborate the two operations with additional preconditions—con-
straints on the prestates—that ensure the invariant is preserved, 
and rerun the preservation check to show that you have succeeded. 
Increase the scope to give you more confidence, and briefly justify 
your choice of scope.

(f ) Rerun your simulations from (c) to check that you haven’t inadver-
tently overconstrained the operations.

A.2.3 Inmate Assignments

A program is needed to assign inmates to cells in a prison. The assign-
ment must avoid placing two inmates in the same cell if they are mem-
bers of different gangs.

Here is a suitable template:

module exercises/prison

sig Gang {members: set Inmate}
sig Inmate {room: Cell}
sig Cell {}

pred safe () {
 … your constraints here
  }

pred show () {
 … your constraints here
 }
run show

(a) Complete the predicate safe characterizing a safe assignment, and 
generate examples of both safe and unsafe assignments by running 
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the simulation predicate show, with appropriate invocations of safe 
as its constraint.

(b) Write a new predicate called happy, saying that gang members only 
share cells with members of the same gang. A safe assignment is not 
necessarily a happy assignment. By writing an assertion and a com-
mand to check it, find a counterexample, and explain why not.

(c) Add a constraint as a fact that ensures that safety will indeed imply 
happiness. Run your simulation predicate again to make sure that 
you haven’t introduced an inconsistency, and check the assertion 
again to make sure it now has no counterexample.

A.3	 Classic	Puzzles

The exercises in this section give practice in writing Alloy and structur-
ing small models.

♥A.3.1 A Surprising Syllogism

A song by Doris Day goes

 “Everybody loves my baby 
 but my baby don’t love nobody but me.”

David Gries has pointed out that, from a strictly logical point of view, 
this implies “I am my baby.” Check this, by formalizing the song as some 
constraints, and Gries’s inference as an assertion. Then modify the con-
straints to express what Doris Day probably meant, and show that the 
assertion now has a counterexample.

♥A.3.2 Ceilings and Floors

A song by Paul Simon goes

 “One man’s ceiling is another man’s floor.”

Does this imply that one man’s floor is another man’s ceiling? Formalize 
the two constraints in Alloy, and check an assertion that the first implies 
the second. If you get counterexamples that don’t make sense because 
of implicit assumptions, add them as new constraints, and check again.
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A.3.3 Barber Paradox

Consider the set of all sets that do not contain themselves as members. 
Does it contain itself? This paradox was discovered by Bertrand Rus-
sell in 1901, and revealed an inconsistency in Frege’s naive set theory. 
A variant of the paradox, also attributed to Bertrand Russell, asks: in a 
village in which the barber shaves every man who doesn’t shave himself, 
who shaves the barber?

Here’s a statement of the paradox in Alloy:

module exercises/barbers
sig Man {shaves: set Man}
one sig Barber extends Man {}
fact {
 Barber.shaves = {m: Man | m not in m.shaves}
 }

(a) Use the analyzer to show that the model is indeed inconsistent, at 
least for a village of small size.

(b) Feminists have noted that the paradox disappears if the existence 
of women is acknowledged. Make a new version of the model that 
classifies villagers into men (who need to be shaved) and women 
(who don’t), and show that there is now a simple solution.

(c) A more drastic solution, noted by Edsger Dijkstra [12], is to allow 
the possibility of there being no barber. Modify the original model 
accordingly, and show that there is now a solution.

(d) Finally, try a variant of the original model that allows multiple bar-
bers, and show there is again a solution.

♥A.3.4 Halmos’s Handshaking Problem

This is a famous problem invented by the mathematician Paul Halmos 
[24]. Solving the problem by constructing a logical argument is quite 
challenging, but finding a solution with Alloy is easy.

Alice and Bob invited four other couples over for a party. Some 
of them knew each other and some didn’t; some were polite 
and some were not. So there was some handshaking, although 
not every pair of guests shook hands (and of course nobody 
shook her own hand or her partner’s hand). Being curious, Al-
ice went round and asked at the end of the party how many 
hands each person had shaken. She got nine different answers 
from the nine people. How many hands did Bob shake?
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(a) Solve the problem by modeling it in Alloy, and using the analyzer to 
find a solution.

(b) Solving for 10 people will take longer than solving for 4 or 6, so use a 
smaller number until your confident that your model makes sense.

(c) Might there be another solution, in which Bob shook a different 
number of hands? Extend your model to allow this to be checked. 
You might want to refactor it a bit so that the two candidate solu-
tions don’t lead to two sets of almost identical constraints.

A.3.5 Goat, Cabbage, Wolf

A farmer wants to ferry across a river a goat, a cabbage, and a wolf, but 
his boat only has room for him to take one at a time. If he leaves the goat 
with the cabbage, the goat will eat it; if he leaves the goat with the wolf, 
the goat will be eaten. How does he do it? Solve the problem by model-
ing it in Alloy, and using the analyzer to find a solution.

Hint: the standard distribution of Alloy includes a module util/ordering 
that defines a total ordering. You may find it useful in ordering the steps 
the farmer takes.

♣A.3.6 Surgeon’s Gloves

Another famous problem by Paul Halmos. A surgeon must operate on 
three patients, but has only two pairs of gloves. There must be no cross-
contamination: the surgeon must not come into contact with the blood 
of any patient, and no patient must come into contact with the blood of 
another patient. The surgeon needs two hands to work. How does she 
do it?

Express this problem in Alloy, and use the analyzer to find a solution.

Hint: There are 4 things that need covering (3 patients and one surgeon). 
The gloves offer 4 resources. The formalization of this problem is much 
trickier than for the handshake problem. You’ll need to express the con-
straints that the surgeon has to be able to handle the patients (via gloves); 
to express how contamination is passed on; and the no-contamination 
condition itself. You might want to associate with each operation a pre 
and poststate, each of which carries a contamination relation that says 
what has contaminated what.
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A.4	 Metamodels

The exercises in this section give practice in constructing metamodels. 
A metamodel is a model of a collection of models. It need not share the 
qualities of the models it captures. For example, a metamodel of state 
machines doesn’t have to be dynamic itself: a state machine is just a 
structure that can be given a dynamic interpretation.

A.4.1 State Machine Definition

A state machine has one or more initial states, and a transition relation 
connecting each state to its successors. Construct an Alloy model of a 
state machine, and, by adding constraints and having the analyzer solve 
them, generate a variety of examples of machines:

(a) a deterministic machine, in which each state has at most one succes-
sor;

(b) a nondeterministic machine, in which some states have more than 
one successor;

(c) a machine with unreachable states;

(d) a machine without unreachable states;

(e) a connected machine in which every state is reachable from every 
other state;

(f ) a machine with a deadlock: a reachable state that has no succes-
sors;

(g) a machine with a livelock: the possibility of an infinite execution in 
which a state that is always reachable is never reached.

♣A.4.2 State Machine Simulation

Consider two state machines M1 and M2 with labeled transitions. A rela-
tion r from the states of M1 to the states of M2 is a simulation of M1 in M2 
if and only if

· whenever r relates a state s1 in M1 to a state s2 in M2, and M1 has a 
transition labeled a from s1 to s1’, M2 also has a transition labeled a 
from s2 to s2’ for some s2’ related by r to s1’, and

· whenever s1 is an initial state of M1, there is an initial state s2 of M2 
where s1 and s2 are related by r.
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The relation r is a bisimulation if, in addition, ~r is a simulation of M2 in 
M1.

A trace of a state machine is a finite sequence of transition labels formed 
by starting in an initial state and following a path along transitions. The 
behaviour of a machine can be described by the set of traces it exhibits.

(h) Construct an Alloy model of a state machine with traces, and simu-
lation relations, and generate some examples of machines with their 
associated trace sets.

(i) Add the notion of simulation, and generate some examples of ma-
chines related by simulations.

(j) If there is simulation between two machines, must they have the 
same trace set? Use Alloy to check this hypothesis. How about a 
bisimulation?

A.4.3 Metamodel of Alloy

Write an Alloy model of Alloy models. Limit your model to signatures 
and fields and the relationships between them. To show that your mod-
el is sufficiently rich to describe itself, add simulation constraints to get 
the tool to generate an instance that corresponds to it.

A.4.4 Metamodel of Java

Construct and explore a metamodel of Java, as follows. First, model 
the class/interface hierarchy, treating classes and interfaces as atoms 
that are related to one another by relations such as extends and imple-
ments. Then model the declarations of instance variables by associating 
a source and target class or interface with each. Now model the heap 
itself as a collection of objects, each of which has an assigned runtime 
type, and write the constraints that ensure that the heap is well-typed. 
Use the analyzer to generate some interesting examples.
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A.5	 Small	Case	Studies

The exercises in this section involve the construction of small models in 
well-defined settings.

♣A.5.1 Unix File System

In this exercise, you’ll model how pathnames are resolved in the Unix 
file system, and you’ll check some simple properties.

In the Unix file system, each file is represented by an inode. The inode 
includes some basic properties of the file (permission bits, file type, and 
so on), and has a sequence of ten addresses that point to disk blocks 
containing the file’s data.

In addition, there are three further indirect addresses. The first involves 
one extra level of indirection: it points to a block containing addresses, 
rather than data, of blocks which hold the data. The second involves 
two levels of indirection: it points to an address block that points to ad-
dress blocks that point to data blocks. The third involves three levels.

All the inodes are stored in an array called the inode table. The index of 
a given inode in this array is its inumber. A directory is represented as 
a file whose data consists of a list of inumber/filename pairs. The root 
directory is associated with some fixed inumber.

Files and directories have pathnames. The empty pathname / corre-
sponds to the root directory. In general, given a pathname p denoting 
a directory d, the pathname p/n denotes the file or directory named n 
in directory d. To resolve a pathname, the file system starts at the root 
directory, and looks up the prefix of the file’s pathname. This gives an 
inumber, which it then looks up in the inode table. The inode obtained 
is either the file or directory required (if no more of the pathname re-
mains), or another directory, for which the process is repeated (on the 
rest of the pathname).

This description intentionally includes details that are not relevant to 
how pathnames are resolved. For example, you will need to consider 
whether the order of addresses in an inode matters, and if not, what 
simpler structure than a sequence would suffice.

(a) Start by building a model of the basic structure of inodes, inumbers 
and blocks. Ignore indirect addressing. Explore some sample struc-
tures by writing simulation constraints, adding any invariants that 
you discover you omitted.
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(b) Build a model of pathnames, treating a pathname as a list, consist-
ing of a name (the first element) and a pathname (the rest). Explore 
some sample pathnames by writing simulation constraints, adding 
any invariants that you discover you omitted.

(c) Now you’re going to combine the two parts of your model, and de-
fine a function that models lookup: given a pathname, it will return 
a set of inodes. You’ll want to define lookup recursively, but Alloy 
functions cannot be recursive. Instead, you can declare a relation 
corresponding to the lookup, which is defined by a constraint in 
which the relation name appears on both sides.

(d) Formulate and check two assertions: that each pathname resolves 
to at most one inode, and that no two distinct pathnames resolve 
to the same inode. Which of these did you expect to hold? If your 
analysis reveals flaws in your model, correct them.

(e) Finally, add the notion of indirect addressing. Try to do it in a mod-
ular fashion, with as little disruption as possible to your model of 
name lookup.

♣A.5.2 Railway Switching

In this exercise, you’ll construct a simple model of a railway switch-
ing system, and you’ll check that a switching policy ensures no colli-
sions. You’ll make some simplifying assumptions, for example, that a 
train occupies one track segment at a time, but you’ll learn techniques 
that apply in general, especially how to model a physical environment 
that allows many arbitrary behaviors (in this case the train movements), 
and how to separate the requirement (that no collisions occur) from as-
sumptions (that drivers obey signals).

(a) Model the track layout as a collection Segment of track segments, 
with a relation next from Segment to Segment. Segments are physically 
disjoint, touching each other only at their endpoints, and are direc-
tional, with trains assumed to travel from one endpoint to the other. 
The endpoints are not represented explicitly, though. Instead, we 
are representing the connection of the exit end of s1 to the entrance 
end of s2 by next mapping s1 to s2. Generate some sample layouts, 
and obtain some nice visualizations using the Alloy Analyzer.

(b) To model the possibility of collision, we might just say that two 
trains can collide only when they are on the same segment. For a 
more general notion, which allows for the possibility of a collision 
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between trains on segments that are, for example, parallel to each 
other, we can declare a relation overlaps that represents, very ab-
stractly, the physical layout of the track, mapping a segment s1 to 
a segment s2 when it would be dangerous for one train to be on s1 
and another to be on s2 at the same time. What properties would 
you expect this relation to have: is it reflexive, symmetric, transi-
tive? Add the relation to your model, along with a fact recording 
whichever of these properties you think should hold.

(c) Now you’re going to introduce time-varying state. Declare a sig-
nature Train to represent a set of trains, and a signature TrainState, 
with a relation on from Train to Segment to represent their positions. 
(Remember that each train can occupy only a single segment.) De-
fine an additional field occupied in TrainState that holds the set of 
segments occupied by trains. Generate and visualize some sample 
states; you’ll probably want to use coloring to indicate the occupied 
the segments.

(d) To describe all physically possible train movements, introduce an 
operation on TrainState that takes as arguments two train states 
(representing the pre- and poststates), and a set of trains that move, 
and constrains the train states so that, in this step, each train that 
moves passes from a segment to one of its successors under the 
next relation. Generate and visualize some sample executions of this 
operation.

(e) To model the signaling system, introduce a signature GateState with 
a field closed whose value is a set of segments, representing those 
segments beyond which a train is not supposed to travel. Note that 
there’s no need to introduce gates or lights as explicit atoms. Write 
a predicate that captures legal movements whose arguments are a 
GateState, a TrainState and a set of Trains that move.

(f ) Write a safety condition on TrainState saying that trains never oc-
cupy overlapping segments, and generate some sample states that 
satisfy and violate the condition.

(g) The hardest part is designing the mechanism—the policy that de-
termines when gates should be closed. Rather than prescribing ex-
actly when and which gates should be closed, we want to write a 
condition that imposes some minimal conditions. In this way, we’ll 
actually be checking a whole family of possible mechanisms. Write 
the policy as a predicate that takes as arguments a GateState and a 
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TrainState. It may say, for example, that if several occupied segments 
share a successor, then at most one can have an open gate.

(h) Finally, put all the parts together: write an assertion that says that 
when the trains move, if the mechanism obeys the gate policy, and 
the train movements are legal, then a collision does not occur (that 
is, the system does not transition from a safe state to an unsafe 
state). Check this assertion, and if you find counterexamples, study 
them carefully, and adjust your model. Most likely, your gate policy 
will be at fault.

(i) When you are satisfied that the gate policy works as expected (pre-
venting collisions), make sure that you have not overconstrained 
the model, by generating and visualizing some interesting train 
movements.

♣A.5.3 Hotel Locking

In this exercise, you’ll build a model of a hotel locking scheme similar to 
the one described in section 6.2.

In this scheme, described in US Patent 4511946, each keycard holds 
two separate numbers acting as keys. Each lock likewise has two keys. 
When the first key on the card matches the first key in the lock, and 
the second key on the card matches the second key in the lock, the 
lock opens. When the first key on the card matches the second key in 
the lock, the door also opens, but the lock is rekeyed with its first and 
second keys matching the first and second keys of the card respectively. 
The front desk holds a record of the last key issued for each room, and 
in addition a set of keys that have been issued. A new card is formed by 
using the last key issued as the first key, and a fresh key for the second.

(a) Construct a model of this scheme, with operations for checking in, 
checking out, and entering a room, and use the Alloy Analyzer to 
generate some scenarios.

(b) Formulate a safety condition that captures the purpose of the 
scheme—denying access to intruders—and check the model against 
this condition, reporting any counterexample you find.

(c) This analysis is likely to reveal errors in your model or safety con-
dition. Correct them, check that the safety condition is satisfied, 
and—to ensure that you have not inadvertently overconstrained the 
model—regenerate your initial scenarios (at least those that are still 
valid).
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(d) Suppose the hotel guest can make new cards, using the keys from 
cards obtained legitimately. Alter the entry operation accordingly, 
and check that the safety condition still holds.

(e) Suppose the scheme is changed so that the door unlocks when the 
first key on the card matches the first key in the lock (and in this 
case ignores the second key). Show that in this case, the scheme is 
susceptible to attack by a dishonest guest who makes new cards.

A.6	 Open-Ended	Case	Studies

Here are some ideas for small case studies in modeling and analysis. 
They are ordered roughly according to difficulty, easiest first, and might 
each take between a couple of hours and a few days of work, depending 
on the depth of the study and the complexity of features considered.

(a) Organizational Structure. Model the structure of the organization 
in which you work, and generate sample instances of the structure. 
Consider how there might be different, cross-cutting structures for 
different kinds of function, and explore how these are related to one 
another.

(b) Folders in an email client. Model the folder structure of an email 
client, with mailboxes containing messages, and folders containing 
mailboxes, along with operations for moving messages around and 
altering the folder hierarchy. Consider carefully how to handle spe-
cial mailboxes, such as an inbox for incoming messages, boxes for 
messages to be sent and already sent, a box for draft messages, and 
a box of deleted messages. What properties do these special boxes 
share with regular boxes and with each other? Do they typically 
have additional properties?

(c) Conference Calling. View a phone system as a collection of endpoints 
and a centralized database that maintains information about which 
endpoints are connected to each other. Model the structure of this 
database, along with the operations that modify it when a confer-
ence call is established, when endpoints are added and dropped, etc. 
Simulate some interesting scenarios, and formulate and check some 
assertions.

(d) Do/undo/redo. Model a standard mechanism for undoing and re-
doing actions in an application, and analyze it against some funda-
mental properties formulated as assertions.
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(e) Trash. Model an operating system’s “trash” or “deleted items” folder 
to which deleted items are moved and from which they can be rein-
stated. You might want to compare the design in different systems. 
In Mac OSX, the notion is quite simple: items can be moved out 
of the trash, but there is no function to reinstate a file or folder in 
its old location. Windows, in contrast, offers much more elaborate 
functionality. Can you characterize the essence of trashing as a col-
lection of assertions that relate the basic operations (eg., of creation, 
deletion, undeletion, etc.) algebraically?

(f ) Domain Name System. Model and analyze the structure of host 
names in the standard domain name system, the structure of DNS 
databases, and the mechanism for resolving names. What kinds of 
guarantee does DNS offer?

(g) Elevator control. Consider a bank of elevators that serves some 
number of floors. Can you construct a model that describes how 
elevators behave in response to requests purely in terms of declara-
tive rules? For example, a rule might be: an elevator cannot pass a 
floor without stopping if there is a request to stop a that floor that 
came from the pressing of a button within the elevator itself.

(h) Version control. Model the abstract view underlying a version con-
trol system (such as CVS or Subversion), and the mechanisms it 
uses. Formulate some critical properties and check them.

(i) Layers in Photoshop. Construct an abstract model of Adobe Pho-
toshop’s layer functionality, in which an image can be constructed 
from a stack of layers, each consisting either of a matrix of pixels, 
or of a transformation function applied to the result of the layers 
beneath.
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B.1	 Lexical	Issues

The permitted characters are the printing characters of the ASCII char-
acter set, with the exception of

· backslash \
· backquote `

and, of the ASCII nonprinting characters, only space, horizontal tab, 
carriage return, and linefeed. Since the encoding of linebreaks varies 
across platforms, the Alloy Analyzer accepts any of the standard com-
binations of carriage and linefeed.

The nonalphanumeric symbols are used as operators or for punctuation, 
with the exception of

· dollar sign $;
· percent sign %;
· question mark ?;
· underscore _;
· single and double quote marks (‘ and “).

Dollar, percent and question mark are reserved for use in future ver-
sions of the language. Underscore and quotes may be used in identifiers. 
Single and double quote marks (numbered 39 and 34 in ASCII) should 
not be confused with typographic quote marks and the prime mark, 
which are not acceptable characters. If text is prepared in a word pro-
cessor, ensure that a ‘smart quotes’ feature is not active, since it might 
generate typographic quote marks from simple ones.

Characters between -- or // and the end of the line, and from /* to */, are 
treated as comments. Multiple-line comments may not be nested. 

Noncomment text is broken into tokens by the following separators:

· whitespace (space, tab, linebreak);
· nonalphanumeric characters (except for underscore and quote 

marks).
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The meaning of the text is independent of its format; in particular, line-
breaks are treated as whitespace just like spaces and tabs.

Keywords and identifiers are case sensitive.

Identifiers may include any of the alphabetic characters, and, except as 
the first character, numbers, underscores, question mark and exclama-
tion point, and quote marks. A hyphen may not appear in an identifier, 
since it is treated as an operator.

A numeric constant consists of a sequence of digits between 0 and 9, 
whose first digit is not zero.

The following sequences of characters are recognized as single tokens:

· the double colon :: used for receiver syntax;
· the implication operator =>;
· the integer comparison operators >= and =<;
· the product arrow ->;
· the restriction operators <: and :>;
· the relational override operator ++;
· conjunction && and disjunction ||;
· the comment markings --, //, /* and */.

The negated operators (such as !=) are not treated as single tokens, so 
they may be written with whitespace between the negation and com-
parison operators.

The following are reserved as keywords and may not be used for identi-
fiers:

abstract all and as assert 
but check disj else exactly 
extends fact for fun iden 
if iff implies in Int 
int let lone module no 
none not one open or 
part pred run set sig 
some sum then univ                                       

B.2	 Namespaces

Each identifier belongs to a single namespace. There are three namespac-
es:

· module names and module aliases;
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· signatures, fields, paragraphs (facts, functions, predicates and asser-
tions), and bound variables (arguments to functions and predi-
cates, and variables bound by let and quantifiers);

· command names.

Identifiers in different namespaces may share names without risk of 
name conflict. Within a namespace, the same name may not be used for 
different identifiers with one exception: bound variables may shadow 
each other, and may shadow field names. Conventional lexical scoping 
applies; the innermost binding applies.

B.3	 Grammar

The grammar uses the standard BNF operators:

· x* for zero or more repetitions of x;
· x+ for one or more repetitions of x;
· x | y for a choice of x or y;
· [x] for an optional x.

In addition,

· x,* means zero or more comma-separated occurrences of x;
· x,+ means one or more comma-separated occurrences of x.

To avoid confusion with grammar symbols, square brackets, star, plus 
and the vertical bar are set in bold type when they are to be interpreted 
as terminals.

Every name ending Id is an identifier, and is to be treated as a terminal. 
The terminal number represents a numeric constant.

module ::= header import* paragraph*
header ::= module [path] moduleId [[ sigId,+ ]]
path ::= directoryId / [path]
import ::= open [path] moduleId [[ sigRef,* ]] [as aliasId]
 
paragraph ::=
 sigDecl | factDecl | funDecl | predDecl | assertDecl | runCmd | check-
Cmd
 
sigDecl ::=
 [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
 | [mult] sig sigID,+  in sigRef sigBody
sigBody ::= { decl,* } [constraintSeq]
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factDecl ::= fact [factId] constraintSeq
assertDecl ::= assert [assertId] constraintSeq
funDecl ::= fun [sigRef ::] funId ( decl,*) :  declExpr { expr }
predDecl ::= pred [sigRef ::] predId ( decl,* ) constraintSeq
 
runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]
checkCmd ::= [commandId :] check assertRef [scope]
 
scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
 
decl ::= [part | disj] varId,+ : declExpr
letDecl ::= varId = expr
declExpr ::= declSetExpr | declRelExpr
declSetExpr ::= [mult] expr
declRelExpr ::= declRelExpr’ [mult] -> [mult] declRelExpr’
declRelExpr’ ::= declRelExpr | expr
mult ::= lone | one | some
  
expr ::= [@] varId | sigRef | this |
 | none | univ | iden
 | unOp expr | expr binOp expr | expr[ expr ]
 | { decl,+ | [constraint] }
 | let letDecl,+ | expr
 | if constraint then expr else expr
 | Int intExpr
 | [expr ::] funRef ( expr,* )
 | ( expr )
 
intExpr ::= number | # expr | sum expr | int expr
 | if constraint then intExpr else intExpr
 | intExpr intOp intExpr
 | let letDecl,… | intExpr
 | sum decl,+ | intExpr
 | ( intExpr )
intOp ::= + | -
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constraintBody ::= constraintSeq | | constraint
constraintSeq ::= { constraint* }
constraint ::= expr [neg] compOp expr
 | quantifier expr
 | intExpr [neg] intCompOp intExpr
 | neg constraint | constraint logicOp constraint
 | constraint thenOp constraint [elseOp constraint]
 | quantifier decl,+ constraintBody
 | let letDecl,+ constraintBody
 | [expr ::] predRef ( expr,* )
 | expr : declExpr
 | constraintSeq
 | ( constraint )
 
thenOp ::= implies | =>
elseOp ::= else | ,
 
neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^
compOp ::= in | =
 
intCompOp ::= < | > | = | =< | >=
 
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId
sigRef ::= [moduleRef] sigId | Int | univ
moduleRef ::= [path] moduleId [[ sigRef,* ]] / | aliasId /

B.4	 Precedence	and	Associativity

The precedence order for logical operators, tightest first, is

· negation operators: ! and not;
· conjunction: && and and;
· implication: =>, <=>, implies and iff;
· disjunction: || and or.
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The precedence order for expression operators, tightest first, is

· unary operators: ~, ^ and *;
· dot join: . ;
· restriction operators: <: and :>;
· brackets join: [];
· arrow product: ->;
· intersection: &;
· override: ++;
· union and difference: + and -.

Note that in particular dot binds more tightly than brackets, so a.b[c] is 
parsed as (a.b)[c].

All binary operators associate to the left, with the exception of implica-
tion, which associates to the right. So, for example, p => q => r is parsed 
as p => (q => r), and a.b.c is parsed as (a.b).c.

In an implication, an else-clause is associated with its closest then-
clause. So the constraint

p => q => r, s

for example, is parsed as

p => (q => r, s)

B.5	 Semantic	Basis

B.5.1	 Instances	and	Meaning
A model’s meaning is several collections of instances. An instance is a 
binding of values to variables. Typically, a single instance represents a 
state, or a pair of states (corresponding to execution of an operation), 
or an execution trace. The language has no built-in notion of state ma-
chines, however, so an instance need not represent any of these things.

The collections of instances assigned to a model are:

· A set of core instances associated with the facts of the model, and 
the constraints implicit in the signature declarations. These in-
stances have as their variables the signatures and their fields, and 
they bind values to them that make the facts and declaration con-
straints true.

· For each function or predicate, a set of those instances for which the 
facts and declaration constraints of the model as a whole are true, 
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and additionally the constraint of the function or predicate is true. 
The variables of these instances are those of the core instances, ex-
tended with the arguments of the function or predicate.

· For each assertion, a set of those instances for which the facts and 
declaration constraints of the model as a whole are true, but for 
which the constraint of the assertion is false.

A model without any core instances is inconsistent, and almost certainly 
erroneous. A function or predicate without instances is likewise incon-
sistent, and is unlikely to be useful. An assertion is expected not to have 
any instances: the instances are counterexamples, which indicate that 
the assertion does not follow from the facts.

The Alloy Analyzer finds instances of a model automatically by search 
within finite bounds (specified by the user as a scope; see subsection 
B.7.5 below). Because the search is bounded, failure to find an instance 
does not necessarily mean that one does not exist. But instances that 
are found are guaranteed to be valid.

B.5.2	 Relational	Logic
Alloy is a first-order relational logic. The values assigned to variables, 
and the values of expressions evaluated in the context of a given in-
stance, are relations. These relations are first order: that is, they consist 
of tuples whose elements are atoms (and not themselves relations).

Alloy has no explicit notion of sets, scalars, or tuples. A set is simply 
a unary relation; a scalar is a singleton, unary relation; and a tuple is 
a singleton relation. The type system distinguishes sets from relations 
because they have different arity, but does not distinguish tuples and 
scalars from more general relations.

There is no function application operator. Relational join is used in its 
place, and is syntactically cleaner that it would be in a language that 
distinguished sets and scalars. For example, given a relation f that is 
functional, and x and y constrained to be scalars, the constraint

x.f = y

constrains the image of x under the relation f to be the set y. So long as 
x is in the domain of f, this constraint will have the same meaning as it 
would if the dot were interpreted as function application, f as a func-
tion, and x and y as scalar-typed variables. But if x is out of the domain 
of f, the expression x.f will evaluate to the empty set, and since y is con-
strained to be a scalar (that is, a singleton set), the constraint as a whole 
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will be false. In a language with function application, various meanings 
are possible, depending on how partial functions are handled. An ad-
vantage of the Alloy approach is that it sidesteps this issue.

The declaration syntax of Alloy has been designed so that familiar forms 
have their expected meaning. Thus, when X is a set, the quantified con-
straint

all x: X | F

has x range over scalar values. That is, the constraint F is evaluated for 
bindings of x to singleton subsets of X.

The syntax of Alloy does in fact admit higher-order quantifications. For 
example, the assertion that join is associative over binary relations may 
be written

assert {all p, q, r: univ -> univ | (p.q).r = p.(q.r)}

Many such constraints become first order when presented for analysis, 
since (as here) the quantified variables can be skolemized away. If a con-
straint remains truly higher order, the Alloy Analyzer will warn the user 
that analysis is likely to be infeasible.

Alloy provides rudimentary support for integers. There is a class of ex-
pressions whose values are integers. Integer values may not be bound to 
variables in instances, but there is a special class of integer atoms that 
are associated with primitive integer values, and which may appear in 
relations that are bound to variables like any other atoms. See subsec-
tion B.7.7 for more details.

B.6	 Types	and	Overloading

Alloy’s type system was designed with a different aim from that of a 
programming language. There is no notion in a modeling language of a 

“runtime error,” so type soundness is not an issue. Instead, the type sys-
tem is designed to allow as many reasonable models as possible, with-
out generating false alarms, while still catching prior to analysis those 
errors that can be explained in terms of the types of declared fields and 
variables alone.

We expect most users to be able to ignore the subtleties of the type sys-
tem. Error messages reporting that an expression is ill-typed are never 
spurious, and always correspond to a real error. Messages reporting 
failure to resolve an overloaded field reference can always be handled 
by a small and systematic modification, explained below.
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B.6.1	 Type	Errors
Three kinds of type error are reported:

· An arity error indicates an attempt to apply an operator to an expres-
sion of the wrong arity, or to combine expressions of incompatible 
arity. Examples include taking the closure of a nonbinary relation; 
restricting a relation to a non-set; taking the union, intersection, or 
difference, or comparing with equality or subset, two relations of dif-
ferent arity.

· A disjointness error indicates an expression in which two relations 
are combined in such a way that the result will always be the empty 
relation, irrespective of their value. Examples include taking the in-
tersection of two relations that do not intersect; joining two relations 
that have no matching elements; and restricting a relation with a set 
disjoint from it. Applying the overriding operator to disjoint rela-
tions also generates a disjointess error, even though the result may 
not be the empty relation, since the relations are expected to overlap 
(a union sufficing otherwise).

· A redundancy error indicates that an expression (usually appearing 
in a union expression) is redundant, and could be dropped without 
affecting the value of the enclosing constraint. Examples include ex-
pressions such as (a + b) & c and constraints such as c in a + b, where 
one of a or b is disjoint from c.

Note that unions of disjoint types are permitted, because they might 
not be erroneous. Thus the expression (a + b).c, for example, will be type 
correct even if a and b have disjoint types, so long as the type of the 
leftmost column of c overlaps with the types of the right-hand columns 
of both a and b.

B.6.2	Field	Overloading
Fields of signatures may be overloaded. That is, two distinct signatures 
may have fields of the same name, so long as the signatures do not rep-
resent sets that overlap. Field references are resolved automatically.

Resolution of overloading exploits the full context of an expression, and 
uses the same information used by the type checker. Each possible re-
solving of an overloaded reference is considered. If there is exactly one 
that would not generate a type error, it is chosen. If there is more than 
one, an error message is generated reporting an ambiguous reference.
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Resolution takes advantage of all that is known about the types of the 
possible resolvents, including arity, and the types of all columns (not 
only the first). Thus, in contrast to the kind of resolution used for field 
dereferencing in object-oriented languages (such as Java), the reference 
to f in an expression such as x.f can be resolved not only by using the 
type of x but by using in addition the context in which the entire expres-
sion appears. For example, if the enclosing expression were a+x.f, the 
reference f could be resolved by the arity of a.

If a field reference cannot be resolved, it is easy to modify the expression 
so that it can be. If a field reference f is intended to refer to the field f de-
clared in signature S, one can replace a reference to f by the expression 
S <: f. This new expression has the same meaning, but is guaranteed to 
resolve the reference, since only the f declared in S will produce a non-
empty result. Note that this is not a special casting syntax. It relies only 
on the standard semantics of the domain restriction operator.

B.6.3	Subtypes
The type system includes a notion of subtypes. This allows more errors 
to be caught, and permits a finer-grained namespace for fields.

The type of any expression is a union type consisting of the union of 
some relation types. A relation type is a product of basic types. A basic 
type is either a signature type, the predefined universal type univ, or the 
predefined empty type none. The basic types form a lattice, with univ as 
its maximal, and none as its minimal, element. The lattice is obtained 
from the forest of trees of declared signature types, augmented with 
the subtype relationship between top-level types and univ, and between 
none and all signature types.

The union consisting of no relation types is used in type checking to 
represent ill-typed expressions, and is distinct from the union consist-
ing of a relation type that is a product of none’s (which is used for expres-
sions constructed with the constant none, representing an intentionally 
empty relation).

The semantics of subtyping is very simple. If one signature is a subtype 
of another, it represents a subset. The immediate subtypes of a signa-
ture are disjoint. Two subtypes therefore overlap only if one is, directly 
or indirectly, a subtype of the other. The type system computes a type 
for an expression that is an approximation to its value. Consider, for 
example, the join

e1 . e2
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where the subexpressions have types

e1 : A -> B
e2 : C -> D

If the basic types B and C do not overlap, the join gives rise to a disjoint-
ness error. Otherwise, one of B or C must be a subtype of the other. The 
type of the expression as a whole will be A -> D.

No casts are needed, either upward or downward. If a field f is declared 
in a signature S, and sup and sub are respectively variables whose types 
are a supertype and subtype of S, both sup.f and sub.f will be well-typed. 
In neither case is the expression necessarily empty. In both cases it may 
be empty: if sup is not in S or f is declared to be partial and sub is outside 
its domain. On the other hand, if d is a variable whose type D is disjoint 
from the type of S—for example, because both S and D are immediate 
subtypes of some other signature—the expression d.f will be ill-typed, 
since it must always evaluate to the empty relation.

B.6.4	Functions	and	Predicates
Invocations of functions and predicates are type-checked by ensuring 
that the actual argument expressions are not disjoint from the formal 
arguments. The types of formals are not used to resolve overloading of 
field names in actual expressions.

The constraints implicit in the declarations of arguments of functions 
and predicates are conjoined to the body constraint when a function 
or predicate is run. When a function or predicate is invoked, however, 
these implicit constraints are ignored. You should therefore not rely on 
such declaration constraints to have a semantic effect; they are intended 
as redundant documentation. A future version of Alloy may include a 
checking scheme that determines whether actual expressions have val-
ues compatible with the declaration constraints of formals.

B.6.5	 Integers	and	Type	Checking
Only integer expressions take on primitive integer values. The parser 
distinguishes between relational expressions and integer expressions, 
so type information is not needed to resolve the overloading of the plus 
and minus operators (which act as addition and subtraction for integer 
expressions, and union and difference for relational expressions). In a 
constraint such as

# S + S =1
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the plus symbol will be parsed as a relational operator (and the # op-
erator will be applied to the entire left-hand side), since otherwise the 
constraint as a whole would not be syntactically valid.

The Int type, which represents the predefined signature for integer-car-
rying objects, is treated by the type system like any other basic type. It is 
disjoint from all other basic types except for the universal type univ.

B.6.6	Multiplicity	Keywords
Alloy uses the following multiplicity keywords shown with their inter-
pretations:

· lone: zero or one;
· one: exactly one;
· some: one or more.

To remember that lone means zero or one, it may help to think of the 
word as short for “less than or equal to one.”

These keywords are used in several contexts:

· as quantifiers in quantified constraints: the constraint one x: S | F, for 
example, says that there is exactly one x that satisfies the constraint 
F;

· as quantifiers in quantified expressions: the constraint lone e, for ex-
ample, says that the expression e denotes a relation with containing 
at most one tuple;

· in set declarations: the declaration x: some S, for example, where S 
has unary type, declares x to be a set of elements drawn from S that is 
nonempty;

· in relation declarations: the declaration r: A one -> one B, for example, 
declares r to be a one-to-one relation from A to B.

· in signature declarations: the declaration one sig S {…}, for example, 
declares S to be a signature whose set contains exactly one element.

When declaring a set variable, the default is one, so in a declaration x: 
X in which X has unary type, x will be constrained to be a scalar. In this 
case, the set keyword overrides the default.
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B.7	 Language	Features

B.7.1	 Module	Structure
The productions discussed in this section are

module ::= header import* paragraph*
header ::= module [path] moduleId [[ sigId,+ ]]
import ::= open [path] moduleId [[ sigRef,* ]] [as aliasId]
paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl
 | runCmd | checkCmd
path ::= id / [path]
sigRef ::= [moduleRef] sigId | Int | univ
moduleRef ::= [path] moduleId [[ sigRef,* ]] | aliasId
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId

An Alloy model consists of one or more files, each containing a single 
module. One “main” module is presented for analysis; it imports other 
modules directly (through its own imports) or indirectly (through im-
ports of imported modules).

A module consists of a header identifying the module, some imports, 
and some paragraphs:

module ::= header import* paragraph*

A model can be contained entirely within one module, in which case 
no imports are necessary. A module without paragraphs is syntactically 
valid but useless.

The paragraphs of a module are signatures, facts, functions, predicates, 
assertions, run commands, and check commands:

paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl
 | runCmd | checkCmd

Signatures represent sets and are assigned values in analysis; they 
therefore play a role similar to static variables in a programming lan-
guage. Facts, functions, and predicates are packagings of constraints. 
Commands are used to instruct the Alloy Analyzer to perform various 
analyses. A module exports as components all paragraphs except for 
commands; only the commands of the main module are relevant in an 
analysis.
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A module is named by a path and a module identifier, and may be pa-
rameterized by one or more signature parameters:

header ::= module [path] moduleId [[ sigId,+ ]]
path ::= id / [path]

The path must correspond to the directory location of the module’s file 
with respect to a default root directory. A set of root directories may be 
specified in the Alloy Analyzer, so that libraries and domain-specific 
models, for example, may be kept in different locations. A module with 
the module identifier m must be stored in the file named m.als.

A separate import is needed for each imported module. It gives the path 
and name of the imported module, instantiations of its parameters (if 
any), and optionally an alias:

import ::= open [path] moduleId [[ sigRef,* ]] [as aliasId]
sigRef ::= [moduleRef] sigId | Int | univ

There must be an instantiating signature parameter for each parameter 
of the imported module. An instantiating signature may be a type, sub-
type, or subset, or one of the predefined types Int and univ. If the im-
ported module declares a signature that is an extension of a signature 
parameter, instantiating that parameter with a subset or with Int will be 
an error.

A single module may be imported more than once. The result is not to 
create multiple copies of the same module, but rather to make a single 
module available under different names.

A component of an imported module is referred to by its qualified name, 
consisting of the module reference and the component name:

sigRef ::= [moduleRef] sigId | Int | univ
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId

When a component reference would be ambiguous, it must be qualified. 
Components declared in the same module in which they are referenced 
need not be qualified. A module may also be given an alias when im-
ported to allow more succinct qualified names. If an alias is declared, 
the regular module name may not be used.

The module reference may be either the path and module identifier of 
the imported module along with any instantiating parameters (exactly 
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as it appears in the import statement), or an alias if one was declared in 
the import:

moduleRef ::= [path] moduleId [[ sigRef,* ]] / | aliasId /

Paragraphs may appear in a module in any order. There is no require-
ment of definition before use. The order of import statements is also 
immaterial, even if one provides instantiating parameters to another.

The signature Int is a special predefined signature representing integers, 
and can be used without an explicit import.

A module may not contain references to components of another mod-
ule that it does not import, even if that module is imported along with 
it in another module.

Module names occupy their own namespace, and may thus coincide 
with the names of signatures, paragraphs, arguments, or variables with-
out conflict.

B.7.2	 Signature	Declarations
The productions discussed in this section are

sigDecl ::=
 [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
 | [mult] sig sigID,+  in sigRef sigBody
sigRef ::= [moduleRef] sigId | Int
sigBody ::= { decl,* } [constraintSeq]
constraintSeq ::= { constraint* }
moduleRef ::= [path] moduleId [[ sigRef,* ]] | aliasId
mult ::= lone | one | some

A signature represents a set of atoms. There are two kinds of signature. 
A signature declared using the in keyword is a subset signature:

sigDecl ::= [mult] sig sigID,+  in sigRef sigBody

All other signatures are type signatures:

sigDecl ::= [abstract] [mult] sig sigID,+ [extends sigRef] sigBody

A type signature plays the role of a type or subtype in the type system. A 
type signature that does not extend another signature is a top-level sig-
nature, and its type is a top-level type. A signature that extends another 
signature is said to be a subsignature of the signature it extends, and its 
type is taken to be a subtype of the type of the signature extended. A sig-
nature may not extend itself, directly or indirectly. The type signatures 



��� appendix b: alloy language reference

therefore form a type hierarchy whose structure is a forest: a collection 
of trees rooted in the top-level types.

Top-level signatures represent mutually disjoint sets, and subsignatures 
of a signature are mutually disjoint. Any two distinct type signatures 
are thus disjoint unless one extends the other, directly or indirectly, in 
which case they overlap.

A subset signature represents a set of elements that is a subset of the 
union of its parents: the signatures listed in its declaration. These may 
be subset or type signatures. A subset signature may not be extended, 
and subsets of a signature are not necessarily mutually disjoint. A sub-
set signature may not be its own parent, directly or indirectly. The sub-
set signatures and their parents therefore form a directed acyclic graph, 
rooted in type signatures. The type of a subset signature is in general 
a union of top-level types or subtypes, consisting of the parents of the 
subset that are types, and the types of the parents that are subsets.

An abstract signature, marked abstract, is constrained to hold only those 
elements that belong to one of the signatures that extends it. If there are 
no extensions, the marking has no effect. The intent is that an abstract 
signature represents a classification of elements that is refined further 
by more ‘concrete’ signatures. If it has no extensions, the abstract key-
word is likely an indication that the model is incomplete.

Any multiplicity keyword (with the exception of set, since it has no ef-
fect) may be associated with a signature, and constrains the signature’s 
set to have the number of elements specified by the multiplicity.

The body of a signature declaration consists of declarations of fields and 
an optional signature fact constraining the elements of the signature:

sigBody ::= { decl,* } [constraintSeq]

A subtype signature inherits the fields of the signature it extends, along 
with any fields that signature inherits. A subset signature inherits the 
fields of its parent signatures, along with their inherited fields.

A signature may not declare a field whose name conflicts with the name 
of an inherited field. Moreover, two subset signatures may not declare 
a field of the same name if their types overlap. This ensures that two 
fields of the same name can only be declared in disjoint signatures, and 
there is always a context in which two fields of the same name can be 
distinguished. If this were not the case, some overloadings would never 
be resolvable.
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Like any other fact, the signature fact is a constraint that always holds. 
Unlike other facts, however, a signature fact is implicitly quantified over 
the signature set. Given the signature declaration

sig S {…} { F }

the signature fact F is interpreted as if one had written an explicit fact

fact { all this: S | F’ }

where F’ is like F, but has each reference to a field f of S (whether de-
clared or inherited) replaced by this.f. Prefixing a field name with the 
special symbol @ suppresses this implicit expansion.

Declaring multiple signatures at once in a single signature declaration is 
equivalent to declaring each individually. Thus the declaration

sig A, B extends C {f: D}

for example, introduces two subsignatures, A and B, of C, and for each 
declares a field f.

B.7.3	 Declarations
The productions discussed in this section are

decl ::= [part | disj] varId,+ : declExpr
declExpr ::= declSetExpr | declRelExpr
declSetExpr ::= [mult] expr
declRelExpr ::= declRelExpr’ [mult] -> [mult] declRelExpr’
declRelExpr’ ::= declRelExpr | expr
mult ::= lone | one | some

The same declaration syntax is used for fields of signatures, arguments 
to functions and predicates, and quantified variables, all of which we 
shall here refer to as variables. The interpretation for fields, which is 
slightly different, is explained second.

A declaration introduces one or more variables, and constrains their 
values and type:

decl ::= [part | disj] varId,+ : declExpr

A declaration has two effects:

· Semantically, it constrains the value a variable can take. The relation 
denoted by the variable (on the left) is constrained to be a subset 
of the relation denoted by the declaration expression (on the right). 
When more than one variable is declared at once, the keywords disj 
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and part may be used. The keyword disj constrains the declared vari-
ables to be mutually disjoint. The keyword part constrains them addi-
tionally to form a partition of the relation denoted by the declaration 
expression. Multiplicity constraints, explained below, constrain the 
value of a variable further.

· For the purpose of type checking, a declaration gives the variable a 
type. A type is determined for the declaration expression, and that 
type is assigned to the variable. Any variable that appears in the dec-
laration expression must have been declared already, either earlier 
in the sequence of declarations in which this declaration appears, or 
earlier elsewhere. For a quantified variable, this means within an en-
closing quantifier; for a field of a signature, this means that the field 
is inherited; for a function or predicate argument, this means in the 
argument declarations of the enclosing function or predicate.

Note that the declaration expression of a field declaration in a signature 
may not refer to fields declared in other signatures, unless they are in-
herited.

The declaration expression is an arbitrary expression. If the expression 
denotes a set (that is, a unary relation), it may be prefixed by a multiplic-
ity keyword:

declExpr ::= [mult | set] expr
mult ::= lone | one | some

If the keyword is omitted, the declared variable is constrained by default 
to be a scalar (that is, to be a singleton set). The keyword set eliminates 
this constraint; lone weakens it to allow the variable to denote an “op-
tion”: either a singleton set or the empty set; some constrains the vari-
able to denote a nonempty set; and one has no effect, being equivalent 
to omission.

If the expression does not denote a set (that is, its arity is two or more), 
multiplicity keywords may not be used as a prefix. If the expression is 
formed with the arrow operator, the arrow itself may be elaborated with 
multiplicity keywords:

declRelExpr ::= declRelExpr’ [mult] -> [mult] declRelExpr’
declRelExpr’ ::= declRelExpr | expr
mult ::= lone | one | some

If the declaration expression has the form e1 m->n e2, where m and n are 
multiplicity keywords, the declaration imposes a multiplicity constraint 
on the declared variable. An arrow expression of this form denotes the 



appendix b: alloy language reference ��1

relation whose tuples are concatenations of the tuples in e1 and the 
tuples in e2. If the marking n is present, the relation denoted by the 
declared variable is required to contain, for each tuple t1 in e1, n tuples 
that begin with t1. If the marking m is present, the relation denoted by 
the declared variable is required to contain, for each tuple t2 in e2, m 
tuples that end with t2. The markings are interpreted as follows:

· lone means zero or one;
· one means exactly one;
· some means one or more.

When the expressions e1 and e2 are unary, these reduce to familiar no-
tions. For example, a declaration expression of the form X -> one Y makes 
the variable a total function from X to Y; the expression X -> lone Y makes 
it an partial function; and X one -> one Y makes it a bijection.

Multiplicity markings can be used in nested arrow expressions. For ex-
ample, a declaration of the form

r: e1 m -> n (e2 m’ -> n’ (e3)

produces the constraints described above (due to the multiplicity key-
words m and n), but it produces additional constraints (due to m’ and n’). 
The constraints for the nested expression are the same multiplicity con-
straints as for a top-level arrow expression, but applied to each image of 
a tuple under the declared relation that produces a value for the nested 
expression. For example, if e1 denotes a set, the constraint is equivalent 
to the constraint of the declaration

all x: e1 | x.r : e2 m’ -> n’ (e3

If e1 is not a set, the quantification must range over the appropriate 
tuples. For example, if e1 is binary, the constraint would be equivalent 
to the constraint of the declaration

all x, y: univ | x->y in e1 => x.(y.r) : e2 m’ -> n’ (e3

Declarations within a signature have essentially the same interpretation. 
But for a field f, the declaration constraints apply not to f itself but to 
this.f : that is, to the value obtained by dereferencing an element of the 
signature with f. Thus, for example, the declaration

sig S {f: e}

does not constrain f to be a subset of e (as it would if f were a regular 
variable), but rather implies

all this: S | this.f in e
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Moreover, any field appearing in e is expanded according to the rules of 
signature facts (see section B.7.2). A similar treatment applies to mul-
tiplicity constraints and disj/part. In this case, for example, if e denotes 
a unary relation, the implicit multiplicity constraint will make this.f a 
scalar, so that f itself will denote a total function on S.

Type checking of fields has the same flavor. The field f is not assigned the 
type e, but rather the type of the expression S -> e. That is, the domain of 
the relation f has the type S, and this.f has the same type as e.

B.7.4	 Constraint	Paragraphs
The productions discussed in this section are

factDecl ::= fact [factId] constraintSeq
predDecl ::= pred [sigRef ::] predId ( decl,* ) constraintSeq
funDecl ::= fun [sigRef ::] funId ( decl,*) :  declExpr { expr }
assertDecl ::= assert [assertId] constraintSeq
constraintSeq ::= { constraint* }
constraint ::= … | [expr ::] predRef ( expr,* )
expr ::= … | [expr ::] funRef ( expr,* )

A fact is a constraint that always holds. A predicate is a template for a 
constraint that can be instantiated in different contexts. A function is a 
template for an expression. An assertion is a constraint that is intended 
to follow from the facts of a model; it is thus an intentional redundancy. 
Assertions can be checked by the Alloy Analyzer; functions and predi-
cates can be simulated.

A fact can be named for documentation purposes. An assertion can be 
named or anonymous, but since a command to check an assertion must 
name it, an anonymous assertion cannot be checked. Functions and 
predicates must always be named.

A fact consists of an optional name and a constraint, given as a sequence 
of constraints, which are implicitly conjoined:

factDecl ::= fact [factId] constraintSeq

A predicate declaration consists of the name of the predicate, some 
argument declarations, and a constraint, given as a sequence of con-
straints, which are implicitly conjoined:

predDecl ::= pred [sigRef ::] predId ( decl,* ) constraintSeq

The argument declarations may include a first argument declared anon-
ymously. When a predicate is declared in the form
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pred S::f (…) {…}

the first argument is taken to be a scalar of signature S, which is referred 
to within the body of the predicate using the keyword this, as if the dec-
laration had been written

pred f (this: S, …) {…}

A function declaration consists of the name of the function, some argu-
ment declarations, and an expression:

funDecl ::= fun [sigRef ::] funId ( decl,*) :  declExpr { expr }

The argument declarations include a declaration expression for the re-
sult of the function, corresponding to the value of the expression. The 
first argument may be declared anonymously, exactly as for predicates.

A predicate may be invoked as a constraint by providing an expression 
for each argument:

constraint ::= [expr ::] predRef ( expr,* )

A function likewise may be invoked as an expression by providing an 
expression for each argument:

expr ::= [expr ::] funRef ( expr,* )

Invocation can be viewed as textual inlining. An invocation of a pred-
icate gives a constraint which is obtained by taking the constraint of 
the predicate’s body, and replacing the formal arguments by the cor-
responding expressions of the invocation. Likewise, invocation of a 
function gives an expression obtained by taking the expression of the 
function’s body, and replacing the formal arguments of the function by 
the corresponding expressions of the invocation. Recursive invocations 
are not currently supported.

A function or predicate invocation may present its first argument in 
receiver position. So instead of writing

p (a, b, c)

for example, one can write

a::p (b, c)

The form of invocation is not constrained by the form of declaration. 
Although often a function or predicate will be both declared with an 
anonymous receiver argument and used with receiver syntax, this is not 
necessary. The first argument may be presented as a receiver irrespec-
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tive of the format of declaration, and the first argument may be declared 
anonymously irrespective of the format of use. In particular, it can be 
convenient to invoke a function or predicate in receiver form when the 
first argument is not a scalar, even though it cannot be declared with 
receiver syntax in that case.

Within a module, no two constraint paragraphs may be declared with 
the same name, nor may a constraint paragraph have the same name as 
a signature.

B.7.5	 Commands
The productions discussed in this section are

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]
checkCmd ::= [commandId :] check assertRef [scope]
scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
sigRef ::= [moduleRef] sigId | Int | univ

A command is an instruction to the Alloy Analyzer to perform an analy-
sis. Analysis involves constraint solving: finding an instance that satis-
fies a constraint. A run command causes the analyzer to search for an 
example that witnesses the consistency of a function or a predicate. A 
check command causes it to search for a counterexample showing that 
an assertion does not hold.

A command to run a function or predicate consists of an optional com-
mand name, the keyword run, a reference to the function or predicate, 
and, optionally, a scope specification:

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]

Similarly, a command to check an assertion consists of an optional 
command name, the keyword check, a reference to the assertion, and, 
optionally, a scope specification:

checkCmd ::= [commandId :] check assertRef [scope]
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The command name is used in the user interface of the Alloy Analyzer 
(or at the command line) to select the command to be executed. In the 
graphical user interface, the command is selected from a pop-up menu; 
the only reason for the command name is to allow commands to be 
more easily recognized when there are many commands for the same 
assertion, function, or predicate. No two commands in a module may 
have the same command names.

As explained in section B.5, analysis always involves solving a constraint. 
For a predicate with body constraint P, the constraint solved is

P and F and D

where F is the conjunction of all facts, and D is the conjunction of all 
declaration constraints, including the declarations of the predicate’s ar-
guments. Note that when the predicate’s body is empty, the constraint 
is simply the facts and declaration constraints of the model. An empty 
predicate is often a useful starting point in analysis to determine wheth-
er the model is consistent, and, if so, to examine some of its instances.

For a function named f whose body expression is E, the constraint solved 
is

f = E and F and D

where F is the conjunction of all facts, and D is the conjunction of all 
declaration constraints, including the declarations of the function argu-
ments. The variable f stands for the value of the expression.

Note that the declaration constraints of a predicate or function are used 
when that function or predicate is run, but are ignored when the predi-
cate or function is invoked.

For an assertion whose body constraint is A, the constraint solved is

F and D and not A

namely the negation of

F and D implies A

where F is the conjunction of all facts, and D is the conjunction of all 
declaration constraints.

An instance found by the analyzer will assign values to the following 
variables:

· the signatures and fields of the model;
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· for an instance of a predicate or function, the arguments of the func-
tion or predicate, one of which will be named this if the first argu-
ment is declared anonymously;

· for an instance of function, a variable denoting the value of the ex-
pression, with the same name as the function itself.

The analyzer may also give values to skolem constants as witnesses for 
existential quantifications. Whether it does so, and whether existentials 
inside universals are skolemized, depends on preferences set by the 
user.

The search for an instance is conducted within a scope, which is speci-
fied as follows:

scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
sigRef ::= [moduleRef] sigId | Int | univ

The scope specification of a command places bounds on the sizes of the 
sets assigned to type signatures, thus making the search finite. Only 
type signatures are involved; subset signatures may not be bounded in 
a scope specification. For the rest of this section, “signature” should be 
read as synonymous with “type signature.”

The bounds are determined as follows:

· If no scope specification is given, a default scope of 3 elements is 
used: each top-level signature is constrained to represent a set of 
at most 3 elements.

· If the scope specification takes the form for N, a default of N is used 
instead.

· If the scope specification takes the form for N but …, every signature 
listed following but is constrained by its given bound, and any top-
level signature whose bound is not given implicitly is bounded by 
the default N.

· Otherwise, for an explicit list without a default, each signature listed 
is constrained by the given bound.

Implicit bounds are determined as follows:

· If an abstract signature has no explicit bound, but its subsignatures 
have bounds, implicit or explicit, its bound is the sum of those of 
its subsignatures.

· If an abstract signature has a bound, explicit or by default, and all 
but one of its subsignatures have bounds, implicit or explicit, the 
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bound of the remaining subsignature is the difference between the 
abstract signature’s bound and the sum of the bounds of the other 
subsignatures.

· A signature declared with the multiplicity keyword one has a bound 
of 1.

· If an implicit bound cannot be determined for a signature by these 
rules, the signature has no implicit bound.

If a scope specification uses the keyword exactly, the bound is taken to 
be both an upper and lower bound on the cardinality of the signature. 
The rules for implicit bounds are adjusted accordingly. For example, an 
abstract signature whose subsignatures are constrained exactly will 
likewise be constrained exactly.

The scope specification must be

· consistent: at most one bound must be associated with any signature, 
implicitly, explicitly, or by default;

· complete: every top-level signature must have a bound;
· uniform: a signature without a bound may not have a subsignature 

that has a bound.

By default, the predefined signature Int is limited to 3 elements, so that 
there may be at most 3 integer objects appearing in an instance or coun-
terexample. The bound on the integer values represented by these inte-
ger objects, and on the values of integer expressions, may be altered by 
assigning a bound to int. A bound of k for int limits integer values to be 
between 0 and 2k −. Its default is 5, so integers by default range from 0 
to 31.

B.7.6	Expressions
The productions discussed in this section are

expr ::= [@] varId | sigRef | this |
 | none | univ | iden
 | unOp expr | expr binOp expr | expr[ expr ]
 | { decl,+ | [constraint] }
 | let letDecl,+ | expr
 | if constraint then expr else expr
 | ( expr )
letDecl ::= varId = expr
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^
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There are two kinds of expression in Alloy: relational expressions and 
integer expressions. When mentioned without qualification, the term 

“expression” refers to a relational expression.

Every relational expression denotes a relation. A set is represented as 
a relation of arity one, and a scalar is represented as a singleton set. A 
tuple is a singleton relation.

Alloy’s analysis involves finding solutions to constraints. For any candi-
date instance that may be a solution to the constraint, each expression 
of the constraint has a value given by the instance’s bindings of values 
to variables.

An expression may consist simply of a variable name, signature refer-
ence, or the special argument this:

expr ::= [@] varId | sigRef | this |

If the variable denotes a field name, its value is the value bound to that 
field in the instance being evaluated. In contexts in which field names 
are implicitly dereferenced—that is, in signature declaration expres-
sions and signature facts—the prefix @ preempts dereferencing (see 
subsection B.7.2). If there is more than one field of the given name, the 
reference is resolved, or rejected if ambiguous (see section B.6).

If a variable denotes a quantified or let-bound variable, its value is de-
termined by the binding. If the variable is an argument of a function or 
predicate, the analysis at hand must be a run of that function or predicate 
(since if the function or predicate is invoked, its meaning is obtained by 
inlining and the argument has been replaced) and the variable’s value is 
bound speculatively to each possible value during search.

An expression may be a relational constant:

expr ::= none | univ | iden

The three constants none, univ, and iden denote respectively the empty 
unary relation (that is, the set containing no elements), the universal 
unary relation (the set containing every element), and the identity rela-
tion (the binary relation that relates every element to itself ).

Note that univ and iden are interpreted over the universe of all atoms. So 
a constraint such as

iden in r

will be unsatisfiable unless the relation r has type univ -> univ. To say that 
r is a reflexive relation, you might write instead
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t <: iden in r

for example, where r has type t -> t.

An expression may be a compound expression:

expr ::= unOp expr | expr binOp expr | expr[ expr ]
binOp ::= + | - | & | . | ->
unOp ::= ~ | * | ^

The value of a compound expression is obtained from the values of its 
constituents by applying the operator given. The meanings of the opera-
tors are as follows: 

· ~e: transpose of e;
· ^e: transitive closure of e;
· *e: reflexive-transitive closure of e;
· e1 + e2: union of e1 and e2;
· e1 - e2: difference of e1 and e2;
· e1 & e2: intersection of e1 and e2;
· e1 . e2: join of e1 and e2;
· e2 [e1]: join of e1 and e2;
· e1 -> e2: product of e1 and e2;
· e2 <: e1: domain restriction of e1 to e2;
· e1 :> e2: range restriction of e1 to e2;
· e1 ++ e2: relational override of e1 by e2.

For the first three (the unary operators), e is required to be binary. For 
the set theoretic operations (union, difference, and intersection) and for 
relational override, the arguments are required to have the same arity. 
For the restriction operators, the argument e2 is required to be a set.

Note that e1[e2] is equivalent to e2.e1, but the dot and brackets opera-
tors have different precedence.

The transpose of a relation is its mirror image: the relation obtained by 
reversing each tuple. The transitive closure of a relation is the smallest 
enclosing relation that is transitive (that is, relates a to c whenever there 
is a b such that it relates a to b and b to c). The reflexive-transitive closure 
of a relation is the smallest enclosing relation that is transitive and re-
flexive (that is, includes the identity relation).

The union, difference, and intersection operators are the standard set 
theoretic operators, applied to relations viewed as sets of tuples. The 
union of e1 and e2 contains every tuple in e1 or in e2; the intersection of 
e1 and e2 contains every tuple in both e1 and in e2; the difference of e1 
and e2 contains every tuple in e1 but not in e2.
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The join of two relations is the relation obtained by taking each com-
bination of a tuple from the first relation and a tuple from the second 
relation, and if the last element of the first tuple matches the first ele-
ment of the second tuple, including the concatenation of the two tuples, 
omitting the matching elements.

The product of two relations is the relation obtained by taking each com-
bination of a tuple from the first relation and a tuple from the second 
relation, and including their concatenation.

The domain restriction of e1 to e2 contains all tuples in e1 that start with 
an element in the set e2. The range restriction of e1 to e2 contains all 
tuples in e1 that end with an element in the set e2. These operators are 
especially handy in resolving overloading (see section B.6).

The relational override of e1 by e2 contains all tuples in e2, and addi-
tionally, any tuples of e1 whose first element is not the first element of 
a tuple in e2.

An expression may be a comprehension expression:

expr ::= { decl,+ | [constraint] }

The expression

{x1: e1, x2: e2, … | F}

denotes the relation obtained by taking all tuples x1 -> x2 -> … in which 
x1 is drawn from the set e1, x2 is drawn from the set e2, and so on, and 
the constraint F holds. The expressions e1, e2, and so on, must be unary, 
and may not be prefixed by multiplicity keywords. More general dec-
laration forms are not permitted, except for the use of the disj and part 
keywords.

An expression may be a let expression:

expr ::= let letDecl,+ | expr
letDecl ::= varId = expr

The expression

let v1 = e1,  v2 = e2, … | e

is equivalent to the expression e, but with each bound variable v1, v2, etc. 
replaced by its assigned expression e1, e2, etc. Variables appearing in let 
declaration expressions must have been previously declared. Recursive 
bindings are not permitted.
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An expression may be an if expression:

expr ::= if constraint then expr else expr

The expression

if F then e1 else e2

has the value of expression e1 when the constraint F is true, and the 
value of expression e2 otherwise.

The meaning of an invocation expression

expr ::= [expr ::] funRef ( expr,* )

is explained in section B.7.4.

The meaning of the Integer expression

expr ::= Int intExpr

is explained in section B.7.7.

An expression may be parenthesized to force a particular ordering of 
application of operators:

expr ::= ( expr )

B.7.7	 Integers
The productions discussed in this section are

constraint ::= intExpr [neg] intCompOp intExpr
expr ::= Int intExpr
intExpr ::= number | # expr | sum expr | int expr
 | if constraint then intExpr else intExpr
 | intExpr intOp intExpr
 | let letDecl,… | intExpr
 | sum decl,+ | intExpr
 | ( intExpr )
intOp ::= + | -
intCompOp ::= < | > | = | =< | >=

There are two kinds of integers in Alloy. The predefined signature Int 
denotes a set of integer-carrying objects that may appear as atoms in 
relations. Integer operators may not be applied to these objects directly. 
Integer expressions are distinguished syntactically from relational ex-
pressions, and have primitive integer values which may be combined 
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and compared using arithmetic operators. Primitive integer values may 
not appear as atoms in relations, and cannot be quantified over.

Distinct integer objects never carry the same primitive integer value. So 
the following assertion always holds:

assert IntegersCanonical {no disj i, j: Int | int i = int j}

A primitive integer value may be obtained from a relational expression 
whose value is a set of integer objects:

intExpr ::= sum expr | int expr

Both integer expressions int e and sum e have an integer value that is the 
sum of the integer values associated with integer objects in the set de-
noted by the relational expression e. There is no semantic difference be-
tween the two. The intent is that sum be used to indicate explicitly that 
the expression is expected not to be a singleton. Usually, the int operator 
will be applied to an expression denoting a single Integer object, but it is 
defined over a set of Integer objects so that it always has a value.

A primitive integer value may be obtained from a relational expression 
of any type using a cardinality expression:

intExpr ::= # expr

The integer expression #e has an integer value corresponding to the car-
dinality of e—that is, the number of tuples in the relation denoted by the 
relational expression e.

A numeric constant may be used as an integer expression:

intExpr ::= number

A numeric constant is a sequence of one or more digits, of which the 
first is not zero.

Integers may be combined using standard arithmetic operators for ad-
dition and subtraction:

intExpr ::= intExpr intOp intExpr
intOp ::= + | -

The integer expression i + j evaluates to the sum of the values of the inte-
ger expressions i and j; the integer expression i - j evaluates to the value 
of the integer expression i minus the value of the integer expression j. 
Note that the plus and minus symbols are overloaded: they are treated 
as arithmetic operators within integer expressions, and as relational op-
erators within relational expressions.



appendix b: alloy language reference ���

A sum expression computes the sum of the values of an integer expres-
sion over a range of bindings:

intExpr ::= sum decl,+ | intExpr

The integer expression

sum x: X, y: Y, … | ie

evaluates to the sum of the values that the integer expression ie can take 
for all distinct bindings of the variables x, y, and so on. The most general 
declaration forms are permitted, although analysis may not be feasible 
when the bindings are not first order.

If-then-else and let can be applied to integer expressions:

intExpr ::=
 if constraint then intExpr else intExpr
 | let letDecl,… | intExpr

with the same meaning as for relational expressions, but with integer 
values instead.

Integer valued expressions can be compared:

constraint ::= intExpr [neg] intCompOp intExpr
intCompOp ::= < | > | = | =< | >=

The meaning of the comparison operators is as follows:

· The constraint i = j is true when the integer expressions i and j have 
the same value.

· The constraint i < j is true when i is less than j.
· The constraint i > j is true when i is greater than j.
· The constraint i =< j is true when i is less than or equal to j.
· The constraint i >= j is true when i is greater than or equal to j.

The “less than or equal to” operator is written unconventionally with the 
equals symbol first so that it does not have the appearance of an arrow, 
which might be confused with a logical implication.

A constraint in which the comparison operator is negated,

e1 not op e2

is equivalent to the constraint obtained by moving the negation out-
side:

not e1 op e2
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The negation operators ! and not have the same meaning.

Integer objects are obtained from integer values with the Int operator:

expr ::= Int intExpr

The expression Int ie denotes the Integer object associated with the val-
ue of the integer expression ie; it is equivalent to

{i: Int | int i = ie}

It is possible that, in a particular analysis, the scope is too small to pro-
vide such an integer. In that case, Int ie denotes the empty set. Note that 
because no two integer-carrying objects hold the same integer value, it 
will never denote a set of more than one object.

B.7.8	 Constraints
The productions discussed in this section are

constraint ::=
 quantifier expr
 | expr [neg] compOp expr
 | neg constraint | constraint logicOp constraint
 | constraint thenOp constraint [elseOp constraint]
 | quantifier decl,+ constraintBody
 | let letDecl,+ constraintBody
 | expr : declExpr
 | constraintSeq
 | ( constraint )
constraintBody ::= constraintSeq | | constraint
constraintSeq ::= { constraint* }
letDecl ::= varId = expr
thenOp ::= implies | =>
elseOp ::= else | ,
neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
mult ::= lone | one | some
compOp ::= in | : | =
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr

Elementary constraints are formed by applying quantifiers to relational 
expressions, or by comparing relational or integer expressions.



appendix b: alloy language reference ��5

A quantified expression takes the form

constraint ::= quantifier expr
quantifier ::= all | no | mult
mult ::= lone | one | some

Its meaning depends on the quantifier chosen:

· The constraint no e is true when e evaluates to a relation containing 
no tuple.

· The constraint some e is true when e evaluates to a relation contain-
ing one or more tuple.

· The constraint lone e is true when e evaluates to a relation containing 
at most one tuple.

· The constraint one e is true when e evaluates to a relation containing 
exactly one tuple.

The constraint all e is rejected by a static semantic check: it has no 
meaning.

A comparison constraint takes the form

constraint ::= expr [neg] compOp expr
compOp ::= in | =

Its meaning depends on the comparison operator:

· The constraint e1 in e2 is true when the relation that e1 evaluates to 
is a subset of the relation that e2 evaluates to.

· The constraint e1 = e2 is true when the relation that e1 evaluates to 
the same relation as e2.Equality:operator defined:

Note that relational equality is extensional: two relations are equal when 
they contain the same tuples.

A constraint in which the comparison operator is negated,

e1 not op e2

is equivalent to the constraint obtained by moving the negation out-
side:

not e1 op e2

The negation operators ! and not have the same meaning.

Comparisons on integer expressions are covered in subsection B.7.7.
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A negated constraint takes the form

constraint ::= neg constraint
neg ::= not | !

The constraint not F is true when the constraint F is false, and vice versa. 
The negation operators not and ! are interchangeable.

A compound constraint combines smaller constraints with logical op-
erators:

constraint ::=
 constraint logicOp constraint
 | constraint thenOp constraint [elseOp constraint]
logicOp ::= && | || | iff | <=> | and | or
thenOp ::= implies | =>
elseOp ::= else | ,

The meaning of the logical operators is as follows:

· The constraint F and G is true when F is true and G is true.
· The constraint F or G is true when one or both of F and G are true.
· The constraint F iff G is true when F and G are both false or both 

true.
· The constraint F implies G is true when F is false or G is true.
· The constraint F implies G else H is true when both F and G are true, or 

when F is false and H is true.

The logical operators may be written interchangeably as symbols: && for 
and, || for or, => for implies, <=> for iff, and a comma (,) for else.

A constraint sequence is a sequence of constraints enclosed in braces:

constraint ::= constraintSeq
constraintSeq ::= { constraint* }

The constraint

{ F G H … }

is equivalent to the conjunction

F and G and H and …

If the sequence contains no constraints, the constraint is true.

A quantified constraint consists of one or more declarations and a 
body:

constraint ::= quantifier decl,+ constraintBody



appendix b: alloy language reference ���

constraintBody ::= constraintSeq | | constraint
constraintSeq ::= { constraint* }
quantifier ::= all | no | mult
mult ::= lone | one | some

It makes no difference whether the constraint body is a single constraint 
preceded by a vertical bar, or a constraint sequence. The two forms are 
provided so that the vertical bar can be omitted when the body is a 
sequence of constraints. Some users prefer to use the bar in all cases, 
writing, for example,

all x: X | { F }

Others prefer never to use the bar, and use the braces even when the 
constraint sequence consists of only a single constraint:

all x: X { F }

These forms are all acceptable and are interchangeable.

The meaning of the constraint depends on the quantifier:

· The constraint all x: e | F is true when the constraint F is true for all 
bindings of the variable x.

· The constraint no x: e | F is true when the constraint F is true for no 
bindings of the variable x.

· The constraint some x: e | F is true when the constraint F is true for 
one or more bindings of the variable x.

· The constraint lone x: e | F is true when the constraint F is true for at 
most one binding of the variable x.

· The constraint one x: e | F is true when the constraint F is true for 
exactly one binding of the variable x.

The range and type of the bound variable is determined by its declara-
tion (see subsection B.7.3). In a sequence of declarations, each declared 
variable may be bound by the declarations or previously declared vari-
ables. For example, in the constraint

all x: e, y: S - x | F

the variable x varies over the values of the expression e (assumed to 
represent a set), and the variable y varies over all elements of the set S 
except for x. When more than one variable is declared, the quantifier is 
interpreted over bindings of all variables. For example,

one x: X, y: Y | F



��� appendix b: alloy language reference

is true when there is exactly one binding that assigns values to x and 
y that makes F true. So although a quantified constraint with multiple 
declarations may be regarded, for some quantifiers, as a shorthand for 
nested constraints, each with one declaration, this is not in general true. 
Thus

all x: X, y: Y | F

is short for

all x: X | all y: Y | F

but

one x: X, y: Y | F

is not short for

one x: X | one y: Y | F

A quantified constraint may be higher-order: that is, it may bind non-
scalar values to variables. Whether the constraint is analyzable will de-
pend on whether it can be skolemized by the analyzer, and if not, how 
large the scope is.

A let constraint allows a variable to be introduced, to highlight an im-
port subexpression or make the constraint shorter by factoring out a 
repeated subexpression:

constraint ::= let letDecl,+ constraintBody
letDecl ::= varId = expr

The constraint

let x1 = e1, x2 = e2, … | F

is equivalent to the constraint F with each occurrence of the bound 
variable x1 replaced by the expression e1, x2 by e2, and so on. Like all 
declarations, let declarations are interpreted in order, and may not be 
recursive.

Predicate invocation is discussed in subsection B.7.4.

A declaration constraint allows a multiplicity constraint to be placed on 
an expression:

constraint ::= declConstraint
declConstraint ::= expr : declExpr
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr
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Declaration constraints are useful for two reasons. First, they allow mul-
tiplicity constraints to be placed on arbitrary expressions, where decla-
rations themselves only allow them to be placed on variables. Thus,

p.q : t one -> one t

for example, says that the join of p and q is a bijection. Second, they al-
low additional multiplicity constraints to be expressed that cannot be 
expressed in declarations. For example, the relation r of type A -> B can 
be declared as a field of A:

sig A {r: set B}

Since the declaration constraints apply to the relations this.r, they can-
not constrain the multiplicity of the relation from B’s perspective. To say 
that r maps at most one A to each B, one could add as a fact the declara-
tion constraint

r: A lone -> B

Another deficiency of declarations that can be overcome is that they 
only allow multiplicities around one arrow to be given. For a relation p 
of type A -> B -> C, a declaration of the form

all r: A -> some (B -> C) | …

makes r total on A. The constraint that R maps a pair from A -> B to each 
element of C cannot be expressed in this declaration because it requires 
a different parsing of the expression, associating the arrows to the left 
rather than the right. To express this constraint, one could use a decla-
ration constraint like this:

all r: A -> some (B -> C) | r: (A -> B) some -> C  => …

A constraint may be parenthesized to force a particular ordering of ap-
plication of operators:

constraint ::= ( constraint )





Appendix	C:		
Kernel	Semantics

This appendix gives a succinct definition of the underlying logic in terms 
of the operators of conventional set theory.

An Alloy model comprises, in essence, a collection of declarations of 
relations (the signatures and their fields), and a collection of named for-
mulas. The meaning of the model is a set of instances, for each named 
formula, each instance assigning a relational value to each of the de-
clared relations. Here, we’ll consider a simplified language consisting 
only of simple formulas, and we’ll define the meaning of a formula as 
a function from instances to boolean values; the set of instances de-
scribed is then, implicitly, those instances on which the function evalu-
ates to true. Although this language is much smaller than the full Alloy 
language, it captures its semantic essence, and it is relatively straight-
forward to translate the constructs of the full language into it.

C.1	 Semantics	of	the	Alloy	Kernel

The syntax of formulas is given by these productions:

formula ::= elemFormula | compFormula | quantFormula
elemFormula ::= expr in expr | expr = expr
compFormula ::= not formula | formula and formula
quantFormula ::= all var : expr | formula

and the syntax of expressions by:

expr ::= rel | var | none | expr binop expr | unop expr
binop ::= + | & | - | . | ->
unop ::= ~ | ^

The syntactic category rel represents free relation variables (the signa-
tures and fields), whereas var represents variables bound by quantifiers. 
The constants iden and univ are not defined here, since they depend on 
the context of the model’s declarations (univ denoting the union of the 
top-level signatures, and iden the identity relation over that union).
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In standard denotational style, we’ll define a function M that interprets 
formulas, mapping a formula in the context of an instance to a boolean 
value, and a  function M that interprets expressions, mapping an expres-
sion in the context of an instance to a relation value:

M: Formula, Instance → Boolean
E: Expression, Instance → RelationValue

An instance is a function from relation variables to relation values. A 
relation value is a set of tuples of atoms, and all the tuples in a particular 
relation value can be assumed to contain the same number of elements 
(although in fact this constraint is unnecessary [14].

Here are the definitions of the formula operators:

M[not f]i = ¬ M[f]i
M[f and g]i = M[f]i ∧ M[g]i
M[all x: e | f]i = ∧{M[f] (i ⊕ x↦ v) | v ⊆ E[e]i ∧ #v = 1}
M[p in q]i = E[p]i ⊆ E[q]i
M[p = q]i = (E[p]i = E[q]i)

The universally quantified formula is true for an instance i when its body 
is true for every instance in which i is extended by an assignment of 
some singleton subset of the value of the bounding expression to the 
quantified variable. We are assuming here that bounding expressions 
are unary, so that these subsets represent scalars.

The in operator is just conventional subset; it is given the ambiguous 
name “in” so that it can serve naturally as both a membership operator, 
relating an element to a set or a tuple to a relation, and as a subset op-
erator, relating one set or relation to another. Equality is simply subset 
in both directions; it is included here just to make it clear that equality 
is the simple conventional notion of equality of sets or relations, with 
none of the distinctions between identity and contents often made in 
object-oriented languages.

Here are the definitions of the expression operators:

E[none]i = ∅
E[p + q]i = E[p]i ∪ E[q]i
E[p & q]i = E[p]i ∩ E[q]i
E[p - q]i = E[p]i ∖ E[q]i
E[p . q]i =
 {(p1,..,pn-1, q2,..,qm) | (p1,..,pn) ∈ E[p]i ∧ (q1,..,qm) ∈ E[q]i ∧ pn = q1}
E[p -> q]i = {(p1,..,pn, q1,..,qm) | (p1,..,pn) ∈ E[p]i  ∧ (q1,..,qm) ∈ E[q]i}
E[~p]i = {(p2, p1) | (p1, p2) ∈ E[p]i}
E[^p]i = {(x, y) | ∃p1,…pn | (x, p1), (p1, p2),  … (pn, y) ∈ E[p]i}
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The +, & and - operators are the standard set operators – union, intersec-
tion and difference. The ~ and ^ are the standard relational operators for 
transpose and transitive closure, defined over binary relations. Dot is 
a generalized relational composition (or join), and arrow is a cartesian 
product. Note that all these operators are total, so there are no unde-
fined expressions in Alloy.

Finally, the value of an expression containing just a relation name is the 
value assigned to that relation by the instance:

E[r]i = i(r)

If the relation name is ambiguous (because fields of different signatures 
have the same name), the meaning is simply the union of the values 
assigned by the instance to each of the relations that the name might 
refer to.

C.2	 Semantics	of	Integer	Expressions	and	Formulas

Alloy supports integers to a limited degree. The elements of the lan-
guage extension can be summarized by these productions:

intExpr ::= number | # expr | sum expr | int expr | intExpr intOp 
intExpr
intFormula ::= intExpr intCompOp intExpr
intCompOp ::= < | > | = | =< | >=
intOp ::= + | -
number = 0 | 1 | ..
expr ::= .. | Int intExpr

An intExpr is an expression whose value is an integer; the semantics of 
formulas involving such expressions is completely standard. Such an 
expression is obtained either from an integer literal, by combining other 
such expressions, or by applying one of the three operators  #, sum and 
int to an Alloy relational expression. The operator # is the cardinality 
operator; the meaning of # e is simply the number of tuples in e.

For the expressions int e and sum e, type checking ensures that the re-
lational expression e denotes a unary relation (that is, a set) of atoms 
of a special predefined type Int. Each atom in the set Int is associated 
with an integer value by a relation I2i; this relation is considered a free 
variable like an explicitly declared relation, and is likewise given a value 
by an instance. Both expressions int e and sum e actually have the same 
meaning: their value is the sum of the integer values associated by I2i 
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with the atoms in the set e. But when int is used, the relational expres-
sion is assumed to denote a scalar, and when sum is used, the relational 
expression is assumed to denote a set that may contain more than one 
Int atom. Currently, the Alloy Analyzer does not check this, however.

A relational value can be obtained from an integer value by applying 
the operator Int. The meaning of Int ie is the set of atoms in Int whose 
value is mapped to the integer value of ie by the relation I2i. Since I2i is 
constrained to be an injective function, this set contains at most one 
element. In Alloy terminology, therefore, Int ie is an option, denoting 
either a scalar (when there is an Int atom associated with the integer ie), 
or an empty set (otherwise).

In an analysis, the scope setting bounds separately the size of the set 
Int and the bit width of the largest positive and negative integer. This 
allows cases to be handled in which the number of integers stored in 
relations is much smaller than the size of the largest integer value. Lim-
iting the range of integers makes exhaustive analysis possible, at a cost: 
the standard semantics for integers cannot be preserved. In particular, 
generation axioms (for example, that every integer has a successor) do 
not apply: the formula

all i: Int | some j: Int | int j = int i + 1

is not valid. Consequently, analyses involving integers may produce 
spurious instances. The same problem arises whenever a signature is 
intended to represent a set for which a generator axiom would be de-
sirable but cannot be expressed without eliminating all finite instances 
(see [44] and section 5.3). 
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Diagrammatic	Notation	

S

S

S m

S m

S

S1 S2

extends in

S

S1 S2

in

S is a set

S is an abstract set:
all its elements are contained
by subsets that extend it

S is a set with multiplicity m

abstract
S

Multiplicity symbols
*  any number (default)
?  zero or one
! exactly one
+ one or more

S is a set with multiplicity m ;
if present, m must be ? or !
and defaults to ! if missing

S1 and S2 are subsets of S,
and are disjoint;
no label means extends

S1 and S2 are subsets of S
and are not necessarily disjoint
from each other (or from other sets
that extend S)
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S T
m R n

S T
m (all v: be | e) n

R is a relation from S to T with multiplicities m and n,
corresponding to the textual constraint R: S m -> n T ;
R may be any relational expression

For any value of variable v drawn from bounding expression be,
expression e denotes a relation from S to T with multiplicities m
and n,  corresponding to the constraint all v: be | e: S m -> n T

S T
m e n

When e is an expression in which the special form <C> occurs,
for an expression C denoting a set, the occurrence of e in the
label is short for all v: C | e' where e' is e with <C> replaced by v



Appendix	E:		
Alternative	Approaches

The models in this appendix were contributed by Michael Butler, John 
Fitzgerald, Martin Gogolla, Peter Gorm Larsen, and Jim Woodcock, and 
are included here with their permission.

Alloy is only one of several approaches to the modeling and analysis 
of software abstractions. This appendix briefly describes four of these 
alternatives: B, OCL, VDM, and Z. Its purpose is both to help those 
in search of an approach that matches their needs, and—for readers 
already familiar with other approaches—to highlight the respects in 
which they differ from Alloy.

I chose these four approaches because of their ability to capture com-
plex structure succinctly and abstractly. They are all well known, and 
each has an active and enthusiastic community of users and research-
ers. Other modeling and analysis approaches can be used effectively for 
software design in specialized domains: there are many model checkers, 
for example, that can check protocols and concurrent algorithms, but 
they are not considered here since (with the exception of FDR) they 
tend to have only rudimentary support for structuring of data.

Some features are common to all the approaches, including Alloy. They 
all offer a notation that can capture software abstractions more suc-
cinctly and directly than a programming language can; all of them, de-
spite differences in syntax and semantics, view the state in terms of clas-
sical mathematical structures, such as sets and relations, and describe 
behaviors declaratively, using constraints. Lightweight tools are avail-
able for all of them, in which constraints are evaluated against concrete 
cases, and new tool projects are underway for all these approaches that 
are likely to extend their power and applicability greatly.

At the same time, there are important differences. B is more operational 
in flavor; its notation is more like an abstract programming language 
than a specification language. OCL has a very different syntax from the 
others, reminiscent of Smalltalk. In B and VDM, and to some extent Z 
and OCL, a particular notion of state machine is hardwired, in contrast 
to Alloy, which is designed to support a variety of idioms, each as easy 
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(or difficult!) to express as the others. B, VDM and Z were designed 
more with proof in mind than lightweight analysis, and so, unlike Alloy 
and OCL, are supported by specialized theorem provers.

All these languages predate Alloy, which has benefited greatly from their 
experience. Alloy was designed for similar applications, but with more 
emphasis on automatic analysis. In pursuit of this goal, the language 
was stripped down to the bare essentials of structural modeling, and 
was developed hand-in-hand with its analysis. Any feature that would 
thwart analysis was excluded. Consequently, Alloy’s analysis is more 
powerful than the lightweight analyses offered by the other approaches, 
which (with the exception of ProB) are mostly “animators” that execute 
a model on given test cases. Unlike an animator, the Alloy Analyzer does 
not require the user to provide initial conditions and inputs; it does not 
restrict the language to an executable subset; and, because it covers the 
entire space within the scope, it is more effective at uncovering subtle 
bugs. The idea of analysis is built in to the language itself: assertions 
can be recorded as part of a specification, and the scopes (which bound 
the analysis) are confined to commands. The other approaches use tool-
specific extensions instead.

Another goal in the design of Alloy was to be unusually small and 
simple; it has fewer concepts than the other languages, and is in some 
respects more flexible. For example, Alloy unifies all data structuring 
within the notion of a relation; it uses the same relational join for index-
ing, dereferencing structures and applying functions; its signatures can 
simulate the schemas of Z and the classes of OCL; and its assertions can 
express invariant preservations, refinements and temporal properties 
over traces.

These benefits are not, of course, without some cost. Alloy is less expres-
sive than the other languages. Whereas Alloy’s structures are strictly 
first order, B, VDM and Z all support higher-order structures and quan-
tifications. Carroll Morgan’s well known telephone switching specifica-
tion [54] in Z, for example, represents the connections as a set of sets of 
endpoints. Such a structure is not directly representable in Alloy; you’d 
need to model the connections as a relation between endpoints, or as a 
set of connection atoms, each mapped to its endpoints. Morgan’s inge-
nious characterization of the behavior of the switch, with a higher-order 
formula constraining the connection structure to be maximal, would 
not be expressible at all in Alloy. A more significant (but less fundamen-
tal) deficiency of Alloy in this regard is its relatively poor support for 
sequences and integers.
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Aside from occupying a different point in the spectrum of expressive-
ness versus analyzability, the other languages naturally have their own 
particular merits. B offers a more direct path to implementation; OCL 
is integrated with UML, the modeling language of choice for many 
companies; VDM supports both explicit and implicit forms of model-
ing; and Z has higher-order features that have been found very useful in 
the structuring of large specifications.

A single problem is used to illustrate all the approaches. For each al-
ternative approach, a model was constructed by an expert. Michael 
Butler developed the B version, using the ProB tool; Martin Gogolla 
developed the OCL version using the USE tool; Peter Gorm Larsen and 
John Fitzgerald developed the VDM version using VDMTools; and Jim 
Woodcock developed the Z version using the Z/Eves theorem prover 
and the Jaza animator. Unfortunately, there was not sufficient space to 
include all their work in full. In particular, Martin Gogolla wrote a sec-
ond model showing that OCL could accommodate the “time-instant” 
idiom used in the Alloy specification as easily as the standard pre/post 
idiom, and constructed an ASSL procedure for generating test cases 
automatically; and Jim Woodcock proved precondition theorems for all 
operations, and the NoIntruder assertion with the help of Z/Eves.

E.1	 An	Example

To illustrate the different approaches, we’ll use an example of a scheme 
for recodable hotel-door locks, similar to (but simpler than) the one 
that appears in chapter 6. The purpose of the modeling and analysis is to 
determine whether the scheme is effective in preventing unauthorized 
access. An Alloy model is shown in figs. E.1 and E.2.

Fig. E.1 shows the declarations of the components of the state space, 
and the initialization. Each key card is marked with two keys (line 5); 
these markings are fixed, and do not change over time. The remaining 
components are time-varying, as can be seen by the presence of the 
Time column in their declarations: the current key for each room (8); 
the front desk record of keys issued so far (11), and of which keys were 
issued for which rooms in the immediately previous checkin (12); and 
the set of cards held by each guest (15).

At initialization, the record at the front desk associating keys with 
rooms matches the current keys of the room locks themselves (18), no 
keys have been issued, and no guests hold cards (19).
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Fig. E.2 shows the operations corresponding to checking in and enter-
ing a room, the definition of execution traces, and an assertion express-
ing the intended effect of the scheme in terms of denied access.

When a guest g checks in at the front desk to a room g, the guest is given 
a card (5) whose first key is the last key that was issued for that room 
(3), and whose second key is fresh (4). The desk’s records are updated 
accordingly (6, 7). There is no change to the keys in the locks (9).

A guest can enter a room so long as he or she is holding a card (12) 
whose first or second key matches the current key of the room’s lock. If 
the second key matches, the lock’s key remains the same (14); if the first 
key matches, the lock is recoded with the second key (15). No chang-
es are made to the front desk’s records (17) or to the sets of keys that 
guests hold (18).

To shorten the example, no operation is given for checking out. The 
use of a key by a new guest should invalidate previously issued keys, so 

1 module hotel
2 open util/ordering [Time]

3 sig Key, Time {}
4 sig Card {
5  fst, snd: Key
6  }
7 sig Room {
8  key: Key one -> Time
9  }
10 one sig Desk {
11  issued: Key -> Time,
12  prev: (Room -> lone Key) -> Time
13  }
14 sig Guest {
15  cards: Card -> Time
16  }

17 pred init (t: Time) {
18  Desk.prev.t = key.t
19  no issued.t and no cards.t
20  }

fig. e.1  Hotel locking example, in Alloy: part 1.
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1 pred checkin (t, t’: Time, r: Room, g: Guest) {
2  some c: Card {
3   c.fst = r.(Desk.prev.t)
4   c.snd not in Desk.issued.t
5   cards.t’ = cards.t + g -> c
6   Desk.issued.t’ = Desk.issued.t + c.snd
7   Desk.prev.t’ = Desk.prev.t ++ r -> c.snd
8   }
9  key.t = key.t’
10  }

11 pred enter (t, t’: Time, r: Room, g: Guest) {
12  some c: g.cards.t |
13   let k = r.key.t {
14    c.snd = k and key.t’ = key.t
15    or c.fst = k and key.t’ = key.t ++ r -> c.snd
16    }
17  issued.t = issued.t’ and prev.t = prev.t’
18  cards.t = cards.t’
19  }

20 fact Traces {
21  init (first())
22  all t: Time - last () |
23   some g: Guest, r: Room |
24    checkin (t, next(t), r, g) or enter (t, next(t), r, g)
25  }

26 assert NoIntruder {{
27  no t1: Time, disj g, g’: Guest, r: Room |
28   let t2 = next(t1), t3 = next(t2), t4 = next (t3) {
29    enter (t1, t2, r, g)
30    enter (t2, t3, r, g’)
31    enter (t3, t4, r, g)
32    }
33  }
34 check NoIntruder for 3 but 6 Time, 1 Room, 2 Guest

fig. e.2  Hotel locking example, in Alloy: part 2.
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whenever a guest checks in, the previous occupant is implicitly checked 
out.

If you’re reading this appendix before you’ve read the rest of the book, a 
few comments about Alloy might be helpful:

· A signature introduces a set, and some relations that have that set 
as their first column. For example, the declaration for sig Card intro-
duces the set Card of key cards, and two relations, fst and snd, from 
Card to Key.

· Multiplicities of relations are sometimes implicit, as in the declara-
tion of fst and snd, each of which maps a Card to one Key, and some-
times explicit using keywords, as in the declaration of key in Room, 
which for a given room, maps one element of Key to each element of 
Time. The keyword lone means at most one (and can be read “less than 
or equal to one”), so the declaration of prev says that, for a given Desk, 
and at a given Time, each Room is associated with at most one Key.

· The dot operator is relational join. Scalars are treated semantically 
as singleton sets, and sets are treated as unary relations. Thus cards.t 
is the relation that associates elements of Guest with elements of Card 
at time t, c.fst is the first key of card c, and r.key.t is the current key of 
room r at time t.

· The arrow operator -> is a cartesian product, and is used in the op-
erations to form tuples; + is union; - is difference; and ++ is relational 
override.

Importing the built-in ordering module (fig. E.1, line 2) introduces a to-
tal ordering on time steps, the elements of the signature Time. The Traces 
fact (fig. E.2, line 20) constrains the ordering so that the initialization 
condition holds in the first state, and so that any state (except the last) 
and its successor are related by either the checkin or the enter operation.

The assertion (26) claims that three enter events cannot occur in se-
quence for the same room, with the intervening one performed by one 
guest, and the first and third by another. In other words, two guests 
can’t use the same room at the same time.

The check command for this assertion instructs the analyzer to consider 
all traces involving 3 cards, 3 keys, 6 time instants, one room and two 
guests. Executing it produces a counterexample trace in 2 seconds (on a 
PowerMac G5), consisting of the following steps (shown graphically in 
the visualizer’s output of fig. E.3):
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· Initially, the room Room0 holds key Key0 in its lock, and the desk asso-
ciates the room with the key, but holds no record of previously issued 
keys. Note that the room has been marked with the label NoIntruder_r: 
it will be the witness to the violation of the assertion NoIntruder, cor-
responding to the quantified variable r.

· In the second state, following a checkin, Guest0 has acquired a card 
whose first and second keys are Key0 and Key1 respectively, and the 
desk has recorded Key0 as issued. Note that the guest has been la-
beled NoIntruder_g, indicating that this guest will be the witness play-
ing the role of the variable g in the assertion.

· In the third state, following another checkin, a second guest, Guest1, 
has acquired a card whose first and second keys are Key1 and Key0 re-
spectively—the same keys as Guest0, but in a different order—and the 
desk has recorded Key1 as issued. This new guest has been marked 
with the label NoIntruder_g’, indicating that it will be the witness play-
ing the role of the variable g’ in the assertion—the intruder.

· In the fourth state, the first entry has occurred—of Guest0—and the 
room key has been changed to Key1.

· In the fifth state, the second, illegal, entry has occurred—of Guest1—
and the room key has been changed back to Key0.

· In the sixth and final state, the third entry has occurred—of Guest0 
again—and the room key has been changed back to Key1.

The fault lies in the initial condition. Because Key0, the initial key of 
Room0, was not recorded as having been issued, it was possible to issue 
it twice, thus setting up the cycle. The keys already in the locks should 
have been recorded as issued initially:

pred init (t: Time) {
 Desk.prev.t = key.t
 Desk.issued.t = Room.key.t and no cards.t
 }

With this change, the analysis exhausts the entire space without finding 
a counterexample. For greater confidence, we can increase the scope. 
Extending the scope to 4 keys and cards, 7 time instants, two guests and 
one room

check NoIntruder for 4 but 7 Time, 2 Guest, 1 Room

reveals another counterexample, in which a guest checks in twice, with 
another guest checking in between the two. These two guests can then 
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fig. e.3  Counterexample to assertion of fig. E.2. Each panel corresponds to a state; 
execution beings in the top left, and continues from the bottom of the left-hand to the 

top of the right-hand page.
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perform the 3 entries in violation of the assertion. We can fix this prob-
lem by only allowing guests to check in if they have returned cards they 
used previously. This can be modeled by changing one line of the checkin 
operation from

cards.t’ = cards.t + g -> c

to

cards.t’ = cards.t ++ g -> c

where the override operator now causes the guest’s set of cards to be 
replaced, rather than augmented, by the new one. Now no counterex-
ample is found, and we can increase the scope yet further for more con-
fidence. With at most 6 cards and keys, 12 time instants, and 3 guests 
and rooms

check NoIntruder for 6 but 12 Time, 3 Guest, 3 Room

the space is exhausted in just under a minute. Of course, we have not 
proved the assertion to hold, and it is possible (though unlikely) that 
there is a counterexample in a larger scope. In a critical setting, it might 
make sense to attempt to prove the assertion at this point. Theorem 
provers can be applied to all of the approaches discussed here, even 
though our focus is on more lightweight tools. B and Z in particular 
are supported by readily available proof tools that are tailored to their 
particular forms.

E.2	 B

B was designed by Jean-Raymond Abrial, one of the earliest contribu-
tors to Z. It comprises a language (AMN) and a method for obtaining 
implementations from abstract models by stepwise refinement. Start-
ing with a very abstract machine, details are added one layer at a time, 
until a machine is obtained that can be translated directly into code. If 
each refinement step is valid, the resulting code is guaranteed to meet 
the top-level specification.

B is aimed primarily at the development of critical systems, and has 
been applied on a number of industrial projects. Its best known applica-
tion to date was in a braking system for the Paris Metro.

The standard reference is Abrial’s book [1]. More introductory texts are 
available [61, 76, 46], as well as a collection of case studies [62].
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E.2.1	 Modeling	Notions	of	B
B’s specification language, Abstract Machine Notation (AMN), reveals 
its focus in its name: a system is viewed (as in VDM and Z) as a state 
machine with operations over a global state. A model consists of a series 
of set declarations (akin to Alloy’s signatures or Z’s given sets); declara-
tions of state components (called “variables”); an invariant on the state; 
an initialization condition; and a collection of operations.

State components are structured with sets and relations, as in Z; unlike 
in Alloy, higher-order structures are permitted. AMN does not separate 
type constraints from other, more expressive, invariants, so type check-
ing has a heuristic flavor.

As in VDM, the precondition of an operation is explicit. In contrast 
to all the other approaches, the postcondition is not given as a logical 
formula, but as a collection of substitutions. A substitution is like an 
assignment statement, and can change the entire value of a state vari-
able or update the value of a relation at a particular point. To partially 
constrain a state variable, one can assign to it an arbitrary value drawn 
from a set characterized by a formula.

The rationale for this style of specification is that it makes theorem 
proving easier: in manipulating operations syntactically, the postcondi-
tion can be treated literally as a substitution. The more operational style 
is also more familiar to programmers, and it makes more explicit the 
presence of non-determinism. Being programmatic in style, it is also 
more readily converted into an imperative program. The drawback is 
less flexibility in comparison to the other languages, and less support 
for incrementality: you have to give a substitution for every state vari-
able (where, in Alloy for example, you can simulate an operation when 
constraints have been written for only some of the state components).

E.2.2	 Sample	Model	in	B
A version of the hotel locking model in B is shown in 3 figures: the top-
level abstract machine in fig. E.4, and a refinement in figs. E.5 and E.6.

The abstract model (fig. E.4) has only a single state component—the 
room occupancy roster—which is updated by the Checkin operation, and 
guards the Enter operation. The special symbol +-> indicates a partial 
function; B and Z use a collection of special arrows in place of the mul-
tiplicity markings of Alloy and OCL.
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B makes a distinction between the precondition of an operation and its 
guard. When invoked in a state in which the guard is false, an operation 
blocks; in contrast, an operation should never be invoked unless the 
precondition holds (and if invoked, any outcome may result). For the 
Enter operation, for example, the precondition says that the arguments 
should be a guest and a room; the guard says that the operation cannot 
proceed unless the guest is in the occupancy roster for that room.

1 MACHINE hotel1

2 SETS
3  GUEST = {g1,g2} ;
4  ROOM = {r1,r2}

5 VARIABLES  alloc

6 INVARIANT
7  alloc : ROOM +-> GUEST

8 INITIALISATION  alloc := {}

9 OPERATIONS

10 CheckIn(g,r) =
11  PRE
12   g:GUEST  &  r:ROOM
13  THEN
14   SELECT
15    r /: dom(alloc)
16   THEN
17    alloc(r) := g
18   END
19  END ;

20 Enter(g,r) =
21  PRE g:GUEST & r:ROOM THEN
22   SELECT
23    r |->g : alloc
24   THEN
25    skip
26   END
27    END ;

fig. e.4  B model: most abstract machine.



appendix e: alternative approaches �0�

The basic sets are given particular values in this specification to set 
bounds for analysis with the ProB tool. This is just like an Alloy scope 
specification, but is set globally rather than on a command-by-com-
mand basis.

The refined model in figs. E.5 and E.6 has exactly the same structure. 
The claim that this model, hotel2, refines the more abstract one, hotel1, is 
an assertion to be checked by a tool.

In this model, the state is more complex, since it includes the mecha-
nism with cards and locks. The state is described as a collection of sets 
and relations, as in Alloy, OCL and Z. The expression POW(e) denotes 
the powerset of e—the set of sets of elements drawn from e—and the 
colon in each declaration denotes set membership. A declaration such 
as

key: POW(KEY)

is thus equivalent to the Alloy declaration

key: set KEY

even the right-hand expression is higher-order in B but not in Alloy. 
The arrow symbols >-> and –> denote injective and total functions re-
spectively. The constraint of line 13 says that the first and second keys 
of a given card must be distinct. Including this as an invariant means 
that the operations are expected to preserve it. Although semantically 
this invariant is treated no differently from the declarations of ckey1 and 
ckey2 that precede it, type checking distinguishes them, and will fail if 
their order is reversed, with the invariant placed before the declara-
tions.

Declaring ckey1 and ckey2 as state variables means that an operation can 
be defined that changes the keys on a card. They might have been de-
clared instead as constants (as in the Alloy, OCL, and VDM models), 
which would rule this out.

The initialization condition illustrates non-determinism. The ANY clause 
binds an arbitrary set of keys to ks, and an arbitrary function from rooms 
to keys to f; the arrow symbol in the declaration of this function makes 
it injective, ensuring that no key is assigned to more than one room. The 
body of the clause assigns the set of keys to key, and the function to lock 
and prev. Note how the assignment of the non-deterministically chosen 
f to these two variables has the same effect as the equality

Desk.prev.t = key.t
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in the Alloy model, ensuring that the room-key record at the front desk 
matches the keys of the actual locks, whatever it may be.

In this refined model, the Entry operation is split in two: Enter1 for the 
normal case, and Enter2 for the case in which the lock is recoded. In the 
other approaches, this is expressed with disjunction; in B, a non-deter-
ministic choice operator could be used to the same effect.

1 REFINEMENT hotel2

2 REFINES hotel1

3 SETS
4  KEY = {k1,k2,k3,k4} ;
5  CARD = {c1,c2,c3}

6 VARIABLES
7  alloc, key, cArd, ckey1, ckey2, lock, prev, guest

8 INVARIANT
9  key : POW(KEY) &
10  cArd : POW(CARD) &
11  ckey1 : cArd >-> key &
12  ckey2 : cArd >-> key &
13  !c.(c: cArd => ckey1(c) /= ckey2(c)) &
14  guest : cArd –> GUEST &
15  lock : ROOM >-> key &
16  prev : ROOM >-> key

17 INITIALISATION
18  ANY ks, f  WHERE
19   ks : POW(KEY) &
20   f : ROOM >-> ks
21  THEN
22   key  := ks ||
23   lock := f ||
24   prev := f  ||
25   cArd, ckey1, ckey2, guest, alloc := {}, {}, {}, {}, {}
26  END
27  

fig. e.5  B model: state and initialization for refined machine.
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1 OPERATIONS

2 CheckIn(g,r) =
3  PRE g:GUEST & r:ROOM THEN
4   ANY c, k WHERE
5    r : ROOM & r /: dom(alloc) &
6    c : CARD  &  c /: cArd &
7    k : KEY  &  k /: key
8   THEN
9    ckey1(c) := prev(r)  ||
10    ckey2(c) := k  ||
11    guest(c) := g  ||
12    prev(r) := k  ||
13    key := key \/ {k} ||
14    cArd := cArd \/ {c}   ||
15    alloc(r) := g
16   END
17  END ;
18  
19 Enter1(g,r) =
20  PRE g:GUEST & r:ROOM THEN
21   ANY c, k WHERE
22    c:CARD & k:KEY &
23    c |-> g : guest &
24    ckey1(c) = lock(r)
25   THEN
26    lock(r) := ckey2(c)
27   END
28  END ;
29  
30 Enter2(g,r) =
31  PRE g:GUEST & r:ROOM THEN
32   ANY c, k WHERE
33    c:CARD & k:KEY &
34    c |-> g : guest &
35    ckey2(c) = lock(r)
36   THEN
37    skip
38   END
39  END ;

fig. e.6  B model: operations for refined machine.
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E.2.3	 Tools	for	B
Two commercial tools are available for B: Atelier-B from Steria, and the 
B-Toolkit from B-Core. Both focus on theorem proving and code gen-
eration, but also provide an animator for lightweight analysis.

ProB [49] is a very different tool. It offers very similar functionality to 
the Alloy Analyzer; of all the tools associated with these alternative ap-
proaches, it is the only one that can generate counterexamples to asser-
tions fully automatically. B does not have a facility for defining arbitrary 
assertions, so ProB focuses on checking the proof obligations that are 
generated by invariants and refinement claims. Refinement is checked 
over traces rather than inductively over operations, so the user need 
not find an inductive invariant. ProB can also check the refinement re-
lationship between a B model and a more abstract description written 
in the CSP process algebra.

     

E.3	 OCL

OCL, the Object Constraint Language, is the constraint language of 
UML. It was developed by Jos Warmer and Anneke Klepper, based on 
Steve Cook and John Daniels’s Syntropy language [10] and on modeling 
work done at IBM. Their book [73] provides an accessible overview. As 
part of UML, the language is an Object Management Group standard; 
the most recent specification is available online [53].

The early design of OCL placed less emphasis on precise semantics than 
the other approaches. Many researchers, in particular those associated 
with the Precise UML Group, worked to produce a formal semantics for 
OCL, but since the language was already standardized, it was too late to 
eliminate its complexities. So although OCL was designed in the hope 
that it would be simpler than languages such as VDM and Z, it actually 
ended up more complicated.

Our discussion is based on a variant of OCL designed by Mark Rich-
ters and Martin Gogolla [59, 58]. It has a formal semantics; a type sys-
tem that supports subtyping; and a powerful animator and testing tool 
called USE.

When OCL was brought into the UML standard, it was viewed as an 
annotation language for UML class diagrams, so it was not given its 
own textual notation for declarations. This means that an OCL model, 



appendix e: alternative approaches �1�

according to the standard, would have to include a UML diagram for 
the declarations of classes and relations—an inconvenience, especially 
for small models. The USE variant of OCL includes a textual notation 
for declarations, and thus overcomes this problem.

E.3.1	 Basic	Notions	of	OCL
An OCL model consists of a description of a state space (given in terms 
of classes, attributes and associations), some invariants, and a collection 
of operations. As in VDM, operations separate pre- and postconditions, 
and include invariants implicitly. In addition, however, OCL allows ar-
bitrary predicates to be packaged, and in this respect, it has more in 
common with Alloy; the idiom used in the Alloy model, with explicit 
time instants, for example, can be cast fairly easily into OCL.

Like Alloy, OCL models the state with a collection of sets and relations. 
Surprisingly, however, a something-to-many relation, mapping an atom 
to more than one atom, is treated semantically not as a flat relation but 
rather as a function to sets, resulting in a model whose style is more 
reminiscent of VDM than of Alloy or Z. This gives a strong direction-
ality to the relations of OCL; they cannot be traversed backwards. An 
association is thus accessed not as a single relation, but as a pair of re-
lations derived from it called roles, one for navigation in each direction.

The multiplicity of a role is part of its type. Navigation is function ap-
plication, and results in a set or scalar depending on the multiplicity (in 
contrast to Alloy, in which navigation is relational image, and always 
yields a set). The advantage of this is that the type checker can detect 
errors in which a navigation assumes a role to have a multiplicity in-
compatible with its declaration. The disadvantages are that multiplici-
ties behave differently from explicit constraints that say the same thing; 
changing a role’s multiplicities alters its type, and may require compen-
sating changes where it is used; and conversions are needed between 
sets and scalars.

OCL has no transitive closure operator. To allow a multi-step naviga-
tion through a relation, therefore, it allows predicates and functions to 
be defined recursively. This brings useful expressiveness, but it has a 
downside: predicates no longer have a simple logical interpretation, but 
require a least fixpoint semantics. As a result, an OCL tool can’t use a 
constraint solver in the style of the Alloy Analyzer or ProB, since it will 
generate spurious cases corresponding to non-minimal solutions.
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In two respects, OCL is very different from the other approaches. First, 
its syntax stacks variable bindings in the style of Smalltalk, and treats 
the first argument of operators as privileged. Appropriately, it has a no-
tion of context within which references to an archetypal member of a 
class are implicit. Second, like an object-oriented programming lan-
guage, OCL distinguishes a class from the set of objects associated with 
it. This makes reflection possible, which is useful for metamodeling, but 
it also complicates the language.

The underlying datatypes of OCL are defined in library modules, which 
play a similar role in OCL to the mathematical toolkit in Z. In contrast, 
the basic types are built into the language in Alloy, B and VDM. This 
decision has some subtle implications for the type system. For example, 
unlike Alloy’s type checker, a type checker for OCL cannot exploit the 
meaning of the set and relational operators, but must rely on their de-
clared type alone.

An expression’s value must belong to one of the library types. Since re-
lations are not included, this means that, in contrast to the other lan-
guages, an expression cannot denote a relation. This does not reduce 
the expressiveness of the language, since arbitrary quantifications are 
allowed, but it does make some constraints more verbose.

E.3.2	 Sample	Model	in	OCL
An OCL version of the hotel locking model is shown in figs. E.7 and 
E.8.

The first figure, E.7, shows the declarations of classes and associations. 
The class Desk is included to provide a context for the state component 
representing the set of issued keys. As in the Alloy model, there is only 
one instance of Desk; this constraint is recorded as the invariant oneDesk. 
Note the use of the expression Desk.allInstances, meaning the set of in-
stances of the class Desk; it would be illegal to write

Desk->size=1

instead because Desk denotes a class and not a set.

An association is a relation, and it may have any arity, as indicated by the 
number of roles: fst and snd have two roles and are binary, for example, 
whereas prev is ternary. This model follows the convention that a role of 
an association a that maps to instances of class c is named c4a.

For a binary association, the two roles are just binary relations that are 
transposes of one another. For a ternary relation, however, a role de-
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notes a pair of binary relations, one for each possible source of a navi-
gation (there being two other classes involved); and, in general, for an 
association with k roles, each role denotes k-1 distinct binary relations, 
with the appropriate relation selected according to the context.

Given a desk d, for example, the expression d.key4prev denotes the set of 
keys held at desk d as previous keys of some room; likewise d.room4prev 
denote the sets of rooms that have previous keys associated with them 
at desk d.

Roles give only a simplified view of higher-arity relations, which is not 
fully expressive. If there were more than one desk, one could not write 
an expression like Alloy’s d.prev[r] for the previous key of room r at desk 
d. Fortunately, there is only a single desk, so the problem does not arise. 
When a truly higher-arity relation is needed in OCL, a different ap-
proach must be used, in which the relation is represented explicitly as a 
set of tuples. Richters explains this in section 4.9.2 of his thesis [58].

The second figure, E.8, shows the declaration of the class Room, and the 
definitions of the operations for checking in and entering a room. The 
operations are declared within the context of the Room class; this gives 
each an implicit argument that can be referred to by the keyword self, 
and which, unlike Alloy’s this, can be omitted. The expression

self.key4prev

on line 5, for example, denoting the previous key associated with the 
room in context, could be written instead as just key4prev—a shorthand 
not available in Alloy, since it would denote the relation as a whole.

Each operation has preconditions and postconditions that can be bro-
ken into separate, named clauses to allow a tool to give feedback about 
which clause is violated when checking a test case against the model. In 
a postcondition, roles and attributes that refer to values in the prestate 
are marked with the suffix @pre. The constraint

g.card4cards = g.card4cards@pre->including(c) and

for example, says that the set of cards associated with the guest g in the 
poststate is the set in the prestate with the card c added.

The constraint

self.key4prev=Set{c.key4snd}

on line 20 in the postcondition of checkin says that, in the poststate, the 
previous key is recorded to be the second key of the card. The Set key-
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1 model hotel

2 class Key end
3 class Card end
4 class Guest end

5 class Desk end
6 constraints
7 context Desk inv oneDesk: Desk.allInstances->size=1

8 association fst between
9  Card [*] role card4fst
10  Key [1] role key4fst
11 end

12 association snd between
13  Card [*] role card4snd
14  Key [1] role key4snd
15 end

16 association key between
17  Room [*] role room4key
18  Key [1] role key4key
19 end

20 association prev between
21  Desk [*] role desk4prev
22  Room [*] role room4prev
23  Key [0..1] role key4prev
24 end

25 association issued between
26  Desk [*] role desk4issued
27  Key [*] role key4issued
28 end

29 association cards between
30  Guest [*] role guest4cards
31  Card [*] role card4cards
32 end

fig. e.7  OCL model: state declaration.
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1 class Room
2 operations

3  init()
4  post prev_eq_key:
5   self.key4prev = Set{self.key4key}
6  post issued_eq_room_key:
7   Desk.allInstances.key4issued = Room.allInstances.key4key
8  post no_cards:
9   Card.allInstances.guest4cards->isEmpty

10  checkin(g:Guest)
11  pre key_exists:
12   Key.allInstances->exists(k| Desk.allInstances.key4issued->excludes(k))
13  post fst_snd_ok_cards_issued_prev_updated:
14   Card.allInstances->exists(c|
15    self.key4prev->includes(c.key4fst) and
16    Desk.allInstances.key4issued->excludes(c.key4snd) and
17    g.card4cards = g.card4cards@pre->including(c) and
18    Desk.allInstances->forAll(d|
19     d.key4issued = d.key4issued@pre->including(c.key4snd)) and
20    self.key4prev = Set{c.key4snd})
21  post key_unchanged:
22   self.key4key@pre = self.key4key

23  enter(g:Guest)
24  pre key_matches:
25   g.card4cards->exists(c|
26    let k = key4key in c.key4snd = k or c.key4fst = k
27  post key_updated:
28   g.card4cards->exists(c|
29    let k = key4key in
30     (c.key4snd = k and self.key4key = self.key4key@pre) or
31     (c.key4fst = k and self.key4key = c.key4snd))
32  post issued_unchanged:
33   Desk.allInstances->forAll(d|d.key4issued@pre = d.key4issued)
34  post prev_unchanged:
35   Room.allInstances->forAll(r|
36    self.desk4prev@pre = self.desk4prev
37    and self.key4prev@pre = self.key4prev)
38  post cards_unchanged:
39   Card.allInstances->forAll(c|c.guest4cards@pre = c.guest4cards)

40 end

fig. e.8  OCL model: operations.
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word lifts the element c.key4snd to a set. You might think it’s not nec-
essary here, since the roles key4prev and key4snd have multiplicities of 
[0..1] and [1] respectively, which are type compatible. For a ternary re-
lation, however, the multiplicity of a role r does not indicate the size of 
the set that x.r might represent. Rather, it indicates how many instances 
of that type are associated with a combination of instances of the other 
types. In this case, if there were multiple desks, self.key4prev might con-
tain more than one key, despite the multiplicity, so any value equated to 
it must be a set and not a scalar.

E.3.3	 Tools	for	OCL
Many tools are available for OCL. Some, such as Octopus (from Klasse 
Objecten, the company founded by Anneke Kleppe), are standalone 
tools; others are components in larger tools for model-driven devel-
opment, such as the OCL component of Borland’s Together Designer. 
Typical features are syntax and type checking, interpretation of OCL 
constraints over test cases, and generation of code in Java, SQL, etc, 
from OCL expressions.

Fewer tools support design-time analysis. The most powerful in this 
class seems to be the USE tool from the University of Bremen [71]. It 
offers an environment in which a modeler can construct test cases and 
evaluate OCL expressions and constraints over them. Recently, a facil-
ity for enumerating snapshots with user-provided generators has been 
added [18], which allows an exhaustive search over a finite space of cas-
es in the style of Alloy. Its user interface integrates OCL with the graphi-
cal object model of UML, supporting visual editing of declarations and 
diagrammatic display of snapshots and executions.

With the USE tool, Martin Gogolla was able to simulate scenarios and 
uncover flaws, including the initialization error in the first variant of the 
Alloy model.

E.4	 VDM

VDM stands for the “Vienna Development Method,” so called because 
it grew out of work at IBM’s Vienna Laboratory on programming lan-
guage definition in the 1970’s. The method, developed by Cliff Jones and 
Dines Bjørner, comprises a specification language and an approach to 
refining specifications into code. Many of the basic principles and ideas 
of logic-based specification first appeared in VDM.
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Nowadays, the term “VDM” usually refers to the language, for which 
the classic reference is Jones’s book [41]. The latest version of the lan-
guage, VDM-SL (the VDM Specification Language), was standardized 
by ISO in the 1990’s [47]; it has two syntaxes, one ASCII-based (used by 
most VDM tools), and one using special mathematical symbols.

VDM has been used in a variety of industrial settings; recent applica-
tions have included the development of electronic trading systems, se-
cure smart cards and the Dutch flower auction system.

Two recent books explain the process of modeling in VDM; the first 
[16] uses the standardized language, VDM-SL, and the second [17] uses 
VDM++, an extension that includes object-oriented features and con-
currency. Both books include case studies, and stress the use of light-
weight tool technology for aiding dialog between engineers and domain 
experts. A paper by Jones discusses the rationale behind the design of 
VDM [42].

E.4.1	 Basic	Notions	of	VDM
A VDM specification describes a state machine comprising a set of 
states and a collection of operations. The states are given by a top-level 
declaration and auxiliary declarations to introduce any composite types 
that it uses. Each declaration can be accompanied by an invariant.

Operations have separate pre- and postconditions. Each operation 
must be implementable, meaning that the postcondition admits at least 
one poststate for each prestate satisfying the precondition. If an opera-
tion is written in an explicit style (that is, with a postcondition consist-
ing of assignments to poststate components), it will be implementable 
by construction. The invariants, as in Alloy, OCL and Z, are implicitly 
included in the pre- and postconditions. Explicit operations must be 
preserve invariants.

The pre- and postcondition of one operation can be used in another by 
operation quotation, which treats the operation much like a pair of Al-
loy predicates. Validation conjectures play the role of Alloy’s assertions, 
and are formulated in a tool-specific language extension, rather than in 
the VDM language itself.

In contrast to Alloy, B, OCL and Z (and in common with languages 
aimed more at describing code interfaces, such as JML [48] and the 
Larch interface languages [23]), VDM has frame conditions indicating 
which state variables may be read or written by an operation. A frame 
condition can make an operation much more succinct (since there is 
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no need to mention components that don’t change), and may make it 
easier to read at a glance. The downside is that frame conditions assume 
a more restrictive form of specification than languages such as Alloy 
and Z permit; you can’t, for example, add redundant components to the 
state that are defined in terms of other components without changing 
all the operations.

E.4.2	 Sample	Model	in	VDM
A VDM version of the hotel locking model is shown in two parts: the 
type declarations in fig. E.9, and the operations in fig. E.10.

The type declarations begin with the declaration of Key, Room and Guest 
as “token” types, meaning that they denote sets of uninterpreted atoms. 
In contrast, Card and Desk are declared as record types. The special type 
Hotel corresponding to the global state is also a record type. Each type 
may be followed by an invariant; that of Desk (line 11), for example, says 
that the set of rooms that have a previous key associated with them is a 
subset of the set of rooms for which keys have been issued.

Alloy, in contrast, has no composite types (except for relations). The use 
of record types has benefits and drawbacks. The primary benefit is that 
a constructor can be used to create a fresh value (as in line 8), where Al-
loy requires a set comprehension or existential quantifier (as in line 2 of 
fig. E.2). The drawbacks are extra notation (note VDM’s dot in c.fst but 
the brackets in locks(r)) and the problems they create for analysis.

Records can often be represented with signatures in Alloy, but the lack 
of constructors lies at the heart of the unbounded universals problem 
described in section 5.3. A record has no identity distinct from its value, 
so the VDM model does not distinguish two cards held by different 
guests that happen to have the same keys.

The more general, higher-order nature of VDM can be seen in the state 
invariant on line 16. The formula

dunion {{c.fst, c.snd} | c in set dunion rng h.guests}
 subset h.desk.issued

says that the first and second keys on cards held by guests must be re-
corded as issued at the desk. Because the expression h.guests is a func-
tion from guests to sets of cards, its range, rng h.guests, is a set of sets, 
which must be flattened by taking a distributed union before determin-
ing whether card c belongs. In Alloy, sets of sets are not expressible, and 
this constraint would be written instead as
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all t: Time | Guest.cards.t.(fst + snd) in Desk.issued.t

The time variable t plays the role of the state variable h in the VDM 
specification. Its placement is an artifact of the idiom chosen, and it 
would precede rather than follow the field names if the state were mod-
eled as a signature instead, as in the memory or media asset examples 
of chapter 6.

An operation has a listing of arguments and their types, frame condi-
tions, a precondition and a postcondition. Note how frame conditions 
shorten their associated postcondition; in Enter, for example, because 
only the locks components is writeable, there is no need for equalities 
on the other components, as in lines 17 and 18 of the Alloy model of 
fig. E.2.

The explicit precondition makes it easier to see when an operation ap-
plies, but it can make the operation more verbose: note how the pre-
condition of Enter (line 17) is repeated in the postcondition, since the 
existential quantifier cannot span both.

VDM’s pre- and postconditions are just logical formulas, like the body 
of an Alloy predicate. Unlike Alloy, and like the other approaches (al-
though to a lesser extent Z), VDM assumes a particular state machine 
idiom, and provides special syntax to support it. The state declaration, 
unlike the other type declarations, defines a mutable structure, whose 
components have separate values in the pre- and poststate of an opera-
tion. The values of a component c  in the pre- and poststates are referred 
to as c~ and c respectively. The special symbol & separates a quantifier’s 
binding from its body.

This is convenient but less flexible than Alloy’s approach. All mutations 
are confined to the top-level components of the state; you could not, for 
example, make cards mutable in order to model modifications to exist-
ing cards by hackers (as you could in Alloy by adding a time column 
to the relations of Card). VDM++, however, allows all structures to be 
mutable.

VDM distinguishes sets from relations. So where Alloy would use the 
single operator + for all unions, VDM uses union on sets and munion 
on maps. Being higher-order, it requires set former brackets to distin-
guish maps from tuples and sets from their elements. The initialization 
condition on line 21, for example, equates the range of the mapping 
from guests to sets of cards to {{}}—the set containing just the empty 
set—and writing {} here instead would mean something different. Simi-
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larly, the expressions used to extend the maps guests and locks require set 
brackets for one (as in {r |-> new_k}) but not the other ({g |-> {new_c}}).

To apply an animator (such as that of the VDMTools) to an operation, it 
must be written in an explicit form. An example, for the Checkin opera-
tion, is shown in fig. E.11. The existential quantifier has been replaced 
by a let statement; the constraints of the postcondition have been re-
placed by assignments; and the frame condition is no longer necessary. 
This notation is very similar to B.

1 types
2  Key = token;
3  Room = token;
4  Guest = token;

5  Card ::
6   fst : Key
7   snd : Key;
8  Desk ::
9   issued : set of Key
10   prev : map Room to Key
11  inv d == rng d.prev subset d.issued;

12  state Hotel of
13   desk : Desk
14   locks : map Room to Key
15   guests : map Guest to set of Card
16  inv h ==
17   dom h.desk.prev subset dom h.locks and
18   dunion {{c.fst, c.snd} | c in set dunion rng h.guests}
19    subset h.desk.issued
20  init h == h.desk.issued = rng h.locks and
21   h.desk.prev = h.locks and rng h.guests = {{}}
22 end

fig. e.9  VDM model: type declarations.
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1 operations
2  CheckIn(g:Guest,r:Room)
3   ext wr desk : Desk
4    wr guests : map Guest to set of Card
5   pre r in set dom desk.prev
6   post exists new_k:Key &
7    new_k not in set desk~.issued and
8    let new_c = mk_Card(desk~.prev(r),new_k) in
9     desk.issued = desk~.issued union {new_k} and
10     desk.prev = desk~.prev ++ {r |-> new_k} and
11     if g in set dom guests
12      then guests = guests~ ++ {g |-> guests~(g) union {new_c}}
13      else guests = guests~ munion {g |-> {new_c}};

14  Enter(r:Room,g:Guest)
15   ext wr locks : map Room to Key
16    rd guests : map Guest to set of Card
17   pre r in set dom locks and g in set dom guests and
18    exists c in set guests(g) & c.fst = locks(r) or c.snd = locks(r)
19   post exists c in set guests(g) &
20    c.fst = locks(r) and locks = locks~ ++ {r |-> c.snd} or
21    c.snd = locks(r) and locks = locks~;

fig. e.10  VDM model: operations.

1  CheckInExpl: Guest * Room ==> ()
2  CheckInExpl(g,r) ==
3   let new_k:Key be st new_k not in set desk.issued in
4   let new_c = mk_Card(desk.prev(r),new_k) in (
5    desk.issued := desk.issued union {new_k};
6    desk.prev := desk.prev ++ {r |-> new_k};
7    guests := if g in set dom guests
8     then guests ++ {g |-> guests(g) union {new_c}}
9     else guests munion {g |-> {new_c}}
10    )
11   pre r in set dom desk.prev;

fig. e.11  VDM model: operations.
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E.4.3	 Tools	for	VDM
Under the guidance of Peter Gorm Larsen, IFAD—a Danish company 
that offered VDM consulting in the 1990’s—developed VDMTools, a 
toolkit for both VDM-SL and VDM++. It included a type checker and 
theorem prover, and, for an executable subset of VDM, a facility for 
simulating and testing specifications, and a code generator. The tool-
kit is now owned by CSK Corporation of Japan. New tool support for 
VDM++ is being developed under the Overture open source initiative.

E.5	 Z

Z was developed at Oxford University in the 1980’s. It has been very 
influential in education and research, and has been applied successfully 
on several large projects, notably by Oxford University and IBM on the 
CICS system, in a series of projects by Praxis Critical Systems, and to 
the security verification of the Mondex electronic purse developed by 
NatWest Bank (the first ever product certified to ITSEC Level 6) [69, 
68]. Z’s clean and simple semantic foundation was an inspiration for the 
design of Alloy.

Although the language has been standardized by ISO [30], the version 
described in Mike Spivey’s book [65] continues to be the most popular. 
Many books have been written about Z, including textbooks [40, 56, 74, 
75], case study collections [26], and a guide to style [3].

E.5.1	 Basic	Notions	of	Z
Z, like Alloy, is at heart just a logic, augmented with some syntactic 
constructs to make it easy to describe software abstractions. In Al-
loy, these constructs are the signature, for packaging declarations, and 
facts/predicates/functions for packaging constraints. In Z, the same 
construct—the schema is used both to package declarations and con-
straints. The language of schemas, called the schema calculus, is rich 
enough to support a wide variety of idioms.

In practice, though, a particular idiom—called variously the “Oxford 
style,” the “IBM style,” and the “established strategy” [3]—has been ad-
opted in almost all Z specifications since the earliest days. A collection 
of syntactic conventions have grown around it, and have become a de 
facto part of the language itself. The operator for combining operations 
by sequential composition, for example, assumes the use of this idiom; 
without it, the operator will not have the expected meaning.
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Z, unlike B, does not have a built-in notion of refinement, and indeed 
many Z users view it as a system modeling language, and have no intent 
to prove conformance of their code to the model. There is, however, a 
well-established theory of refinement for Z, and the language is well-
suited to developments by stepwise refinement. Woodcock’s book  [74] 
is an accessible introduction to this approach.

The sample model shown here is the first, most abstract, model in a 
development by refinement. Like the abstract B model of fig. E.4, it de-
termines entry to the room by examining the room roster; in a subse-
quent refinement (not shown here), entry is determined by keys and 
locks alone. The abstract Z model does not, however, omit mention of 
keys and locks entirely: the recoding key on the card is selected on en-
try (rather than when checking in). The refinement will move this non-
deterministic choice backwards in time to the checkin, with the same 
justification used for the example of section 6.4.6.

A Z specification is built as a series of schema declarations. A decla-
ration has two parts: a series of variable declarations, and a predicate 
constraining them. When a reference is made to a previously declared 
scheme, both its variable declarations and predicate are incorporated 
implicitly. A schema representing state typically builds on previous 
state schemas by adding new components and constraining the state 
further with additional invariants. A schema representing an operation 
may incorporate state schemas for the pre- and poststates, or it may 
extend a previous operation schema, adding constraints to make its be-
haviour more specific.

Because incorporating a schema brings the variables it declares into 
scope, there is often no explicit declaration for a variable that appears 
in a schema’s predicate. As a result, Z specifications can be very suc-
cinct—sometimes mysteriously so. Exactly the same power, with the 
same potential for succinctness and obscurity, is found in the inheri-
tance mechanisms of object-oriented programming languages, and in 
Alloy’s signature extension mechanism (which was, incidentally, de-
signed explicitly to support schema-style structuring).

In the Oxford style, state invariants are declared with the state declara-
tions and are thus incorporated implicitly into operations, as in VDM, 
and in marked contrast to B, where invariants must be shown to be 
preserved by operations. Preconditions of operations are not separated 
from postconditions. It is regarded as good style for the precondition 
to appear explicitly in the operation schema, but it is not necessary. 
In place of the implementability check of VDM, a Z specifier derives 
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a precondition from an operation schema and compares it to the one 
expected.

Sets and relations are the predominant datatypes in Z. In this respect, 
Z is similar to B—which is not surprising, since B’s inventor, Jean-Ray-
mond Abrial, was one of the early developers of Z (and had worked 
before that on database semantics). For both Z and B, sets are seen as 
fundamental and relations as derived; Z is so named because of its roots 
in ZF (Zermelo-Fraenkel) set theory. Alloy is also based on sets and re-
lations, but its logic is more influenced by the relational formalisms of 
Tarski’s calculus [70] and Codd’s relational database model [9], with sets 
regarded as a special case of relations.

Like VDM, however, Z does include record types. The same schema 
construct that is used syntactically for grouping declarations together 
can be used semantically to declare a ‘schema type’, whose values are 
bindings of values to field names. Schema types are more powerful than 
Alloy’s signatures, because they provide constructors. Unlike signatures, 
however, schemas have no subtyping. One schema can be defined as 
an extension of another schema, but the types of the two schemas are 
unrelated. For example, if you declared a schema for a file system ob-
ject, and extended it into two other schemas corresponding to files and 
folders, you would not be able to insert an instance of the file or folder 
schema into a set or relation declared over file system objects.

Z has a distinctive appearance, with boxes drawn around schemas, and 
its own collection of mathematical symbols. Here we use the “horizon-
tal form,” which, although less elegant, can be produced without special 
layout tools.

E.5.2	 Sample	Model	in	Z
A Z specification of the hotel locking problem is shown in figs. E.12, 
E.13 and E.14.

The first figure (E.12) shows the declaration of the state and initializa-
tion. Guests, keys and rooms are declared as given sets: uninterpreted 
sets of atoms that become the basis for type checking. A global variable 
initkeys is declared that represents the function associating room locks 
with the initial values of their keys. A Msg datatype is declared to repre-
sent the possible outcomes of operations.

Hotel is our first schema declaration. It introduces 3 variables that will 
represent the state components of the system: firsttime, a set of rooms; 
key, a function from rooms to keys (representing the keys held in their 
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locks in a particular state); and guest, a function from rooms to guests 
(representing the occupancy roster). The kind of arrow indicates the 
multiplicities: that key is a partial injection, and guest is a partial func-
tion.

This model, because it is the first in a development by refinement, will 
describe exactly when an entry should be permitted, and when a lock 
should be rekeyed; a later refinement would describe the mechanism 
by which entry is determined by checking keys. This explains the first-
time component, which did not appear in the Alloy model, but is used 
to mark the set of rooms which, when subsequently entered, should 
have their locks recoded (since a new guest will be entering for the first 
time).

[Guest, Key, Room]

initkeys: Room ↣ Key;

Msg ::= okay
 | room_already_allocated
 | guest_already_registered
 | room_not_allocated
 | wrong_guest
 | key_not_fresh

Hotel ≙ [
 firsttime: ℙ Room
 key: Room ↣ Key
 guest: Room ↛ Guest
 ]

InitHotel ≙ [
 Hotel’
 |
 firsttime’ = ∅
 key’ = initkeys
 guest’ = ∅
 ]
 

fig. e.12  State and initialization in Z.
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InitHotel, the second schema, describes the initialization. Unlike Hotel 
which included only variable declarations, this schema has both dec-
larations and a predicate. The declarations are those of Hotel, imported 

1 Checkin0 ≙ [
2  Δ Hotel
3  g?: Guest
4  r?: Room
5  |
6  r? ∉ dom guest
7  g? ∉ ran guest
8  firsttime’ = firsttime ∪ {r?}
9  key’ = key
10  guest’ = guest ∪ {r? ↦ g?}
11   ]

12 EnterFst ≙ [
13  Δ Hotel
14  g?: Guest
15  r?: Room
16  k?: Key
17  |
18  r? ∈ firsttime
19  r? ∈ dom guest
20  guest r? = g?
21  k? ∉ ran key
22  firsttime’ = firsttime \ {r?}
23  key’ = key ⊕ {r? ↦ k?}
24  guest’ = guest
25  ]

26 EnterSnd ≙ [
27  Ξ Hotel
28  g?: Guest
29  r?: Room
30  |
31  r? ∈ dom guest
32  guest r? = g?
33  r? ∉ firsttime
34  ]

fig. e.13  Checkin and Enter operations in Z.
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by mentioning the schema’s name. Notice the prime mark appended to 
the name. This is called decoration; its effect is to include not exactly 
the declarations of Hotel, but versions in which each variable is likewise 
primed. These primed variables are used in Z to refer to the values of 
state components after execution of an operation (in this case, the ini-
tialization).

A schema predicate is just a constraint, formed by conjoining the con-
straints on each line. Each line’s constraint is a simple mathematical 
formula, with the equals sign denoting equality (and not assignment). 
So there is no semantic significance to the ordering of the terms in these 
equations, and we could reverse each equation without changing its 
meaning. This specification has been written, however, in a form that 
suggests how it might be executed, with the primed variables on the 
left. This allows it to be animated using a tool such as Jaza. The same 
rationale explains why the initialization equates keys’ to the previously 
declared function initkeys, just as the corresponding component was 
initialized in the B model (on line 23 of fig. E.5). A more traditional Z 
style would simply not mention keys’, leaving its value unconstrained.

The second figure (E.13) shows the checkin and entry operations for 
normal cases; the exceptional cases are described in separate operations 
in the next figure. There are three schemas corresponding to checking 
in, and two forms of entry—one which recodes the lock, and one which 
does not.

The first two, Checkin0 and EnterFst, mention Δ Hotel in their declarations. 
This is a schema, defined implicitly by convention, that includes Hotel 
and Hotel’, thus introducing standard and primed versions of each state 
variable, to represent the state components before and after execution. 
The third schema, EnterSnd, mentions Ξ Hotel. This refers to a similar 
schema, also including Hotel and Hotel’, but additionally a constraint 
equating each state variable to its primed version. Its use, therefore, in-
dicates an operation that has no effect on the state.

Each operation also declares some variables decorated with question 
marks. By convention, these represent input arguments; semantically, 
they are no different from the variables representing the state compo-
nents. When an operation schema is used elsewhere, these arguments 
are bound by a syntactic substitution that replaces every occurrence of 
an argument variable in the schema with a variable name from the new 
context. In comparison to the explicit parameterization of Alloy, this 
can be a bit awkward: an expression cannot be substituted for a variable, 
so if no variable already exists for the actual argument, it must be de-
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clared with an existential quantifier. On the other hand, when the actual 
and formal arguments have the same name, no substitution is necessary 
and the resulting text is uncluttered by argument lists.

Z does not distinguish pre- and postconditions syntactically, and there 
is no need to make preconditions explicit at all. It is regarded as good 
style to list preconditions in full, however, above the constraints of the 
postcondition. The precondition of Checkin0, for example, is that r? is 
not in the domain of guest, and g? is not in its range—that is, the room 
requested is not already occupied, and the guest is not already assigned 
to another room. This stylistic guideline is not generally checkable by 
simple syntactic means, since the explicit precondition might admit 
states for which the postcondition cannot be satisfied, so that the actual 
precondition is stronger. A theorem asserting that the operation has the 
expected precondition can be formulated. For Checkin0, this theorem is:

Success ≙ [m!: Msg |  m! = okay]

EnterRoomNotAllocated ≙ [
 Ξ Hotel
 r?: Room
 m!: Msg
 |
 r? ∉ dom guest
 m! = room_not_allocated
 ]

EnterWrongGuest ≙ [
 Ξ Hotel
 g?: Guest
 r?: Room
 m!: Msg
 |
 r? ∈ dom guest
 guest r? ≠ g?
 m! = wrong_guest
 ]

Enter ≙ EnterFst ∧ Success ∨ EnterSnd ∧ Success ∨
 EnterRoomNotAllocated ∨ EnterWrongGuest

fig. e.14  Variant operations in Z.
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Theorem preCheckin0
 ∀ Hotel; g?: Guest; r?: Room |
  r? ∉ dom guest ∧ g? ∉ ran guest ∙ pre Checkin0

This kind of theorem is not expressible in Alloy, as explained in section 
5.3. Unintentional overconstraint is mitigated instead by simulating the 
operation.

The operation predicates are unsurprising. Checkin0, for example, adds 
to the guest relation a mapping from r? to g?; EnterFst recodes the lock 
by overriding the key relation with a mapping from r? to the new key k?. 
Note that, as in Alloy and OCL, a state variable that is unmentioned is 
unconstrained, so if a component is unchanged, an explicit equality is 
needed (as in line 24).

The third figure, E.14, shows how the behavior of these operations is 
augmented to cover exceptional cases. The schema Success simply intro-
duces an output argument m! and equates it to the message okay. The 
next two schemas specify the conditions under which an entry should 
be regarded as impermissible, because the room has not been allocated 
to a guest at all, or because the guest attempting entry is not the legiti-
mate occupant. These conditions are expressed as preconditions, and 
are accompanied by postconditions that constrain the value of the mes-
sage accordingly.

Finally, a schema is declared that brings the different cases together: En-
ter is an operation that describes all the scenarios of attempted entry to 
a room. Note its assembly using just disjunction and conjunction. This 
simplicity is a consequence of operations being no more than logical 
formulas. Alloy took this idea from Z, and thus supports the same kind 
of structuring.

E.5.3	 Tools	for	Z
Most tool support for Z has focused on theorem proving. The most 
widely used proof tools are ProofPower (from Lemma 1 Ltd), and Z/
Eves, a front-end to the Eves theorem prover (from ORA Canada). The 
sample model was analyzed with Z/Eves. The tool can calculate precon-
ditions and perform “domain checks” (which ensure that partial func-
tions are never applied outside their domains), as well as performing 
general theorem proving. Although many steps in a proof are executed 
automatically, complex theorems tend to require guidance from an ex-
perienced user.
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A number of animators have been built for Z. The sample model was 
tested using Jaza [72], an animator developed by Mark Utting at the 
University of Waikato. Jaza can execute operations written in an explicit 
style, and can do a certain amount of constraint solving over small do-
mains. The entire sample model above can be handled in Jaza. We noted 
how the initialization, for example, assigns the global function initkeys 
to keys’ rather than leaving it unconstrained; this allows the initializa-
tion to be executed given a value of initkeys by the user. Like the USE 
tool and the animator of the VDMTools, Jaza can evaluate expressions, 
check given states against invariants and transitions against operations, 
and can simulate an execution trace with the user selecting operations 
and providing input arguments.
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! (not) 69, 284, 286
# (cardinality) 80, 282
&& (and) 69, 286
& (intersection) 52, 279
* (reflexive transitive closure) 65, 279
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++ (override) 67–68, 279
- (difference) 52, 279
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-> (product) 55, 279
. (join) 57, 279
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<=> (iff) 69, 286
= (equals) 52, 285
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=< (less than or equal to) 80, 283
=> (implies) 69, 286
> (greater than) 80, 283
>= (greater than or equal to) 80, 283
@ (suppress expansion) 119, 269, 278
[] (join) 61, 279
^ (transitive closure) 63–65, 279
|| (or) 69, 286
~ (transpose) 62, 279
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why key to software design xiv, 1

abstract keyword 84, 91, 93, 102, 254, 
268

Abstract signature 91, 93, 102, 268, 
276

Acyclicity
constraint 35, 115, 130
exercise 234

Address book
informal description 5

Algebraic property 15, 208, 214
Alias

for module 131
in address book 5

all keyword 70, 254, 285, 286
Alloy Analyzer 4, 150–152
Alloy grammar 255
AMN (Abstract Machine Notation) 

307
Analysis

cf. manual review xiii, 30
mechanism 150–152
vs. theorem proving 15

Analysis constraint 144
Analysis variable 144
and keyword 69, 254, 286
Arithmetic 134
Arity

defined 36
error 110, 261
highest used in practice 43

Arrow product
defined 55, 280
universal relation 51

as keyword 131, 254, 266
Assertion
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defined 124
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modeled with override 68
Associativity 257
Atelier-B 312
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defined 35
integer 134
naming of 40

B
B-Toolkit 312
Backward execution 11
Bar, in quantification 287
Barber Paradox 243
BDD (Binary Decision Diagram) 152
Berkmin 150
bi-implication 69
Binary relation 36
Bjorner, Dines 318
B method 306
Boolean

not a type in Alloy 136
Borgida, Alex 201
Box join
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Bunch theory 44
but keyword 129, 254, 276
Butler, Michael 297

C
Canonicalization 216, 217, 220, 282
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expression 282
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Chaff 150
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Classification
hierarchy 92
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Class invariant 120
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symmetric 62
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Colon
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Command
defined 127, 274
first example 6

Comment syntax 253
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as language construct 42
Composite pattern 6, 17
Composition

with join 57
Comprehension
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Concurrency 178
Conditional expression 70, 281
Conjunction
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Constraint

analysis 144
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declaration 288
defined 69, 284
let 288
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modeling with multirelation 38
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Counterexample 140, 144, 274
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CTL (Computation tree logic) 184
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Day, Doris 242
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Difference operator 52, 279
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Disjointness error 261
Domain

in definition of override 67
of relation defined 47
related to restriction 67

Domain restriction
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E
else keyword 69, 254, 281, 286
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as constant in logic 50
Equality
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structural vs. reference 54
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Errors 261
Event-based idiom 197
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Exact scope 182
Example 144, 274
Expression
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conditional 281
defined 277
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Integer 281
invocation 281
let 283
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redundant 110
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Fact
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first example 18
role in analysis 144
signature 18, 118–120, 120, 268
vs. predicate 123
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defined 95
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overloading 113, 261
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First-order logic
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vs. temporal logics 184
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Formal methods
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Frame condition 176, 189, 201
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Reiter style 201

Function
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higher-order 41
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Hotel locking
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I
iden keyword 50, 254, 278
Identifiers 254
Identity relation

defined 50
over universe 50, 65
with restriction 67

Idiom
event-based 197
explicit time 150, 172, 173, 178, 

186
incremental state 204
not hardwired 31
traces 22, 177, 302

if-then-else 69
IFAD 324
if expression 281
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if keyword 69, 254, 281
implies keyword 69, 254, 286
Importing modules 130
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keyword 254
operator defined 52, 285

Inductive analysis 177
Initial condition 176
Injection 47
Injective relation

defined with identity 63
Instance

choice by analyzer 7
choice of term 142
defined 144, 258
first example 7
from command 274
large and small 143

Instance finding 140
Integer 134, 263, 281

and interpreted set 43
constant 282
scope 135

Interpreted set 39–40
Intersection operator 52, 279
Int keyword 82, 134, 135–139, 254, 

264, 267, 277, 281
int keyword 134, 135–139, 254, 281
Invariant

preservation 177, 208, 224, 298, 
309, 319, 325

preservation (exercise) 240
Invocation expression 281
iView Media Pro 203

J
Jackson, Michael 193
Java

Integer 135
metamodel (exercise) 246
overloading in 116
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Jha, Somesh 61
JML (Java Modeling Language) 319
Join
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defined 57, 61, 280
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higher arity 60
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typing rule 110

Jones, Cliff 318
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Lampson, Butler 61
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Larsen, Peter Gorm 297
Leader election example 169
Let
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expression 73, 283
not recursive 74

Let expression 280
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Library module 130
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first order 33, 41, 44, 136, 142, 
144, 163, 184, 234
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McMillan, Ken xi
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Meyer, Bertrand 1
Milgram, Stanley 66
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meaning of term 4
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Model checking 142, 184
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scope implicit 130
SMV xi

Model diagram
defined 101
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187, 205
first example 17

Modifies clause 203
Module

alias 131, 267
defined 130
import 130, 266–267
parametric 132, 266–267
rationale 173
structure 83, 265

module keyword 130, 254, 265
Multiple inheritance 94
Multiplication 135

Multiplicity
default in diagram 107
defined 74, 264
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in field declaration 95
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keywords 270
nested 79

Multirelation
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Mutation 39
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Mylopoulos, John 201
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Namespace 254
Navigation
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Negation 69, 254, 283
Nelson, Greg 152
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no keyword 70, 254, 285, 286
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Null values 45
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open keyword 130, 254, 266
Operation 9, 122
Operational

vs. declarative 10
Operators

logical 69, 286
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describes variable not value 45
in Alloy compared to ML 45

Ordering
symmetry breaking 152, 173, 182
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Partial function 48
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Pnueli, Amir 185
Polymorphism 132
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Alloy construct 121, 263, 272
first example 6
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operation 122
vs. fact 123
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exercise 230
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Prerequisites example 41–42
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ProB tool 309, 312
Product operator 55, 280
Progress

predicate 181
property 184
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example 148
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higher order 72
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unbounded universal 155
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Redundancy error 110, 261
Refactoring xiii, 89
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relation 65
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Reiter, Raymond 201
Relation

as table 36
constant 278
declared as field 95
defined 36–48
empty 37
functional 46, 63
higher-order 41
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total and partial 48
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universal 92
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with join 57
Relational logic 259
Relational operators 55
Requirements
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Restriction operator
defined 66
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Richters, Mark 312
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Russell’s Paradox 243
Russell, Bertrand 243
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monotonicity 165, 182
of zero 167
selecting 31, 163
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Spivey, J. Michael 324
State machine

meta model (exercise) 245
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