
TEAM LinG

Lecture Notes in Computer Science 3170
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

TEAM LinG

This page intentionally left blank

TEAM LinG

Philippa Gardner Nobuko Yoshida (Eds.)

CONCUR 2004 –
Concurrency Theory

15th International Conference
London, UK, August 31 – September 3, 2004
Proceedings

Springer

TEAM LinG

eBook ISBN: 3-540-28644-6
Print ISBN: 3-540-22940-X

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

TEAM LinG

Preface

This volume contains the proceedings of the 15th International Conference on
Concurrency Theory (CONCUR 2004) held in the Royal Society, London, UK,
from the 31st August to the 3rd September, 2004.

The purpose of the CONCUR conferences is to bring together researchers, de-
velopers and students in order to advance the theory of concurrency and promote
its applications. Interest in this topic is continually growing, as a consequence of
the importance and ubiquity of concurrent systems and their applications, and of
the scientific relevance of their foundations. The scope covers all areas of seman-
tics, logics, and verification techniques for concurrent systems. Topics include
concurrency-related aspects of: models of computation, semantic domains, pro-
cess algebras, Petri nets, event structures, real-time systems, hybrid systems, de-
cidability, model-checking, verification techniques, refinement techniques, term
and graph rewriting, distributed programming, logic constraint programming,
object-oriented programming, typing systems and algorithms, case studies, tools
and environments for programming and verification.

This volume starts with four invited papers from Sriram Rajamani, Steve
Brookes, Bengt Jonsson and Peter O’Hearn. The remaining 29 papers were se-
lected by the program committee from 134 submissions, a record number of
submissions to CONCUR. The standard was extremely high and the selection
difficult. Each submission received at least three reports, reviewed by the pro-
gram committee members or their subreferees. Once the initial reviews were
available, we had 16 days for paper selection and conflict resolution. We would
like to thank all members of the CONCUR 2004 Program Committee for their
excellent work throughout the intensive selection process, together with many
subreferees who assisted us in the evaluation of the submitted papers.

The conference includes talks by several invited speakers: invited seminars by
David Harel (Weizmann Institute) and Sriram Rajamani (Microsoft Research,
Redmond), and invited tutorials by Steve Brooks (Carnegie-Mellon) and Peter
O’Hearn (Queen Mary, University of London), and by Bengt Jonsson (Uppsala).

The conference has 11 satellite events:

Workshop on Structural Operational Semantics (SOS 2004), organised by
Luca Aceto.
11th International Workshop on Expressiveness in Concurrency
(EXPRESS 2004), organised by Flavio Corradini.
II Workshop on Object-Oriented Developments (WOOD 2004), organised by
Viviana Bono.
3rd International Workshop on Foundations of Coordination Languages and
Software Architectures (FOCLASA 2004), organised by Jean-Marie Jacquet.
2nd International Workshop on Security Issues in Coordination Models, Lan-
guages and Systems (SECCO 2004), organised by Gianluigi Zavattaro.

TEAM LinG

VI Preface

Workshop on Concurrent Models in Molecular Biology (BIOCONCUR 2004),
organised by Anna Ingolfsdottir.
Global Ubiquitous Computing (FGUC 2004), organised by Julian Rathke.
3rd International Workshop on Parallel and Distributed Methods in Verifi-
cation (PDMC 2004), organised by Martin Leucker.
4th International Workshop on Automated Verification of Critical Systems
(AVoCS 2004), organised by Michael Huth.
1st International Workshop on Practical Applications of Stochastic Mod-
elling (PASM 2004), organised by Jeremy Bradley.
6th International Workshop on Verification of Infinite-State Systems
(INFINITY 2004), organised by Julian Bradfield.

We would like to thank the conference organisation chair Iain Phillips, the lo-
cal organisers Alex Ahern and Sergio Maffeis, the workshop organisation chairs
Julian Rathke and Vladimiro Sassone, and the workshop organisers. Finally we
thank the invited speakers, invited tutorial speakers and the authors of submit-
ted papers for participating in what promises to be a very interesting conference.

We gratefully acknowledge support from the Department of Computing, Im-
perial College London, the Engineering and Physical Sciences Research Council
(EPSRC), Microsoft Research in Cambridge, and the Royal Society.

June 2004 Philippa Gardner and Nobuko Yoshida

TEAM LinG

Organisation

CONCUR Steering Committee

Roberto Amadio (Université de Provence, Marseille, France)
Jos Baeten (Technische Universiteit Eindhoven, Netherlands)
Eike Best (Carl von Ossietzky Universität Oldenburg, Germany)
Kim G. Larsen (Aalborg University, Denmark)
Ugo Montanari (Università di Pisa, Italy)
Scott Smolka (State University of New York at Stony Brook, USA)
Pierre Wolper (Université de Liège, Belgium)

Program Committee

Luca Aceto (Aalborg University, Denmark)
Luca de Alfaro (University of California, Santa Cruz, USA)
Bruno Blanchet (Saarbrücken, Germany/École Normale Supérieure, France)
Steve Brookes (Carnegie Mellon University, USA)
Philippa Gardner (Imperial College London, UK, Co-chair)
Paul Gastin (Université Paris 7, France)

(Technical University of Ostrava, Czech Republic)
Joost-Pieter Katoen (University of Twente, Netherlands)
Dietrich Kuske (Technische Universität Dresden, Germany)
Cosimo Laneve (Università di Bologna, Italy)
Michael Mendler (Otto-Friedrich-Universität Bamberg, Germany)
Ugo Montanari (Università di Pisa, Italy)
Catuscia Palamidessi (INRIA Futurs Saclay and LIX, France)
Vladimiro Sassone (University of Sussex, UK)
PS Thiagarajan (National University of Singapore, Singapore)
Antti Valmari (Tampere University of Technology, Finland)
Wang Yi (Uppsala Universitet, Sweden)
Nobuko Yoshida (Imperial College London, UK, Co-chair)

Referees

Parosh Abdulla
Joaquin Aguado
Rajeev Alur
Roberto Amadio
Christopher Anderson

Suzana Andova
Christel Baier
Michael Baldamus
Paolo Baldan
Howard Barringer

Gerd Behrmann
Nick Benton
Béatrice Bérard
Martin Berger
Marco Bernardo

TEAM LinG

VIII Organisation

Bernard Berthomieu
Bernard Boigelot
Roland Bol
Frank de Boer
Michele Boreale
Ahmed Bouajjani
Patricia Bouyer
Julian Bradfield
Ed Brinksma
Roberto Bruni
Glenn Bruns
Nadia Busi
Cristiano Calcagno
Luca Cardelli
Josep Carmona
Samuele Carpineti
Iliano Cervesato
Tom Chothia
Giovanni Conforti
Andrea Corradini
Véronique Cortier
Dennis Dams
Philippe Darondeau
Alexandre David
Jennifer Davoren
Conrado Daws
Giorgio Delzanno
Stephane Demri
Henning Dierks
Alessandra Di Pierro
Dino Distefano
Marco Faella
Lisbeth Fajstrup
Alessandro Fantechi
Jérôme Feret
Gianluigi Ferrari
Elena Fersman
Emmanuel Fleury
Riccardo Focardi
Marcelo Fiore
Wan Fokkink
Cédric Fournet
Laurent Fribourg
Murdoch Gabbay
Maurizio Gabbrielli
Fabio Gadducci

Simon Gay
Jaco Geldenhuys
Neil Ghani
Giorgio Ghelli
Paola Giannini
Gregor Goessler
Goerges Gonthier
Daniele Gorla
Olga Greinchtein
Dilian Gurov
Elsa Gunter
Peter Habermehl
John Hakansson
Henri Hansen
Jens Hansen
Zdenek Hanzalek
Thomas Hildebrandt
Daniel Hirschkoff
Kohei Honda
Michael Huth
Hans Hüttel
Radha Jagadeesan
Somesh Jha
Ranjit Jhala
Bengt Jonsson
Gabriel Juhas
Marcin Jurdzinski
Antero Kangas
Antti Kervinen
Mike Kishinevsky
Bartek Klin
Barbara König
Juha Kortelainen
Martin Kot

Stephan Kreutzer
Lars Kristensen
Kare Kristoffersen

Narayan Kumar
Orna Kupferman
Marta Kwiatkowska
Jim Laird
Ivan Lanese
Martin Lange

Rom Langerak
François Laroussinie
Kim Larsen
Paola Lecca
Fabrice Le Fessant
James Leifer
Francesca Levi
Kamal Lodaya
Markus Lohrey
Robert Lorenz
Gerald Luettgen
Markus Lumpe
Damiano Macedonio
Angelika Mader
Sergio Maffeis
A. Maggiolo-Schettini
Pritha Mahata
Jean Mairesse
Rupak Majumdar
Andreas Maletti
Fabio Martinelli
Narciso Marti-Oliet
Angelika Mader
Richard Mayr
Hernan Melgratti
Oskar Mencer
Massimo Merro
Marino Miculan
Dale Miller
Robin Milner
Sebastian Moedersheim
Faron Moller
Angelo Montanari
Rémi Morin
Larry Moss
Madhavan Mukund
Andrzej Murawski
Anca Muscholl
Uwe Nestmann
Peter Niebert
Mogens Nielsen
Barry Norton
Robert Palmer
Jun Pang
Matthew Parkinson
Justin Pearson

TEAM LinG

Organisation IX

Christian Pech
Paul Pettersson
Iain Phillips
Michele Pinna
Marco Pistore
Lucia Pomello
Franck Pommereau
François Pottier
John Power
Rosario Pugliese
Antti Puhakka
Alexander Rabinovich
R. Ramanujam
Julian Rathke
Martin Raussen
Wolfgang Reisig
Michel Reniers
Arend Rensink
James Riely
Grigore Rosu
Olivier Roux
Abhik Roychoudhury

Ernst Ruediger Olderog
Theo Ruys
Ugo de Ruys
Claudio Sacerdoti Coen
Davide Sangiorgi
Zdenek Sawa
Karsten Schmidt
Alan Schmitt
Philippe Schnoebelen
Carsten Schuermann
Thomas Schwentick
Stefan Schwoon
Christof Simons
Riccardo Sisto
Pawel Sobocinski
Chin Soon Lee
Jiri Srba
Till Tantau
Jan Tertmans
Simone Tini
Alwen Tiu
Mikko Tiusanen

Irek Ulidowski
Yaroslav Usenko
Frank Valencia
Frank van Breugel
Jaco van de Pol
François Vernadat
Bjorn Victor
Maria Vigliotti
Walter Vogler
Igor Walukiewicz
Pascal Weil
Lisa Wells
Michael Westergaard
Thomas Wilke
Tim Willemse
Jozef Winkowski
Guido Wirtz
Lucian Wischik
Hongseok Yang
Gianluigi Zavattaro
Marc Zeitoun

TEAM LinG

This page intentionally left blank

TEAM LinG

Table of Contents

Invited Papers

Zing: Exploiting Program Structure for Model Checking Concurrent
Software

Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof,
Yichen Xie 1

A Semantics for Concurrent Separation Logic
Stephen Brookes 16

A Survey of Regular Model Checking
Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, Mayank Saksena 35

Resources, Concurrency and Local Reasoning
Peter W. O’Hearn 49

Accepted Papers

Resource Control for Synchronous Cooperative Threads
Roberto M. Amadio, Silvano Dal Zilio 68

Verifying Finite-State Graph Grammars: An Unfolding-Based Approach
Paolo Baldan, Andrea Corradini, Barbara König 83

The Pros and Cons of Netcharts
Nicolas Baudru, Rémi Morin 99

Basic Theory of Reduction Congruence for Two Timed Asynchronous

Martin Berger 115

Characterizing EF and EX Tree Logics
Igor Walukiewicz 131

Message-Passing Automata Are Expressively Equivalent to EMSO Logic
Benedikt Bollig, Martin Leucker 146

Symbolic Bisimulation in the Spi Calculus
Johannes Borgström, Sébastien Briais, Uwe Nestmann 161

A Symbolic Decision Procedure for Cryptographic Protocols with Time
Stamps

Liana Bozga, Cristian Ene, Yassine Lakhnech 177

TEAM LinG

XII Table of Contents

Deciding Probabilistic Bisimilarity Over Infinite-State Probabilistic
Systems

193

A Minimal Aspect Calculus
Glenn Bruns, Radha Jagadeesan, Alan Jeffery, James Riely 209

Type Based Discretionary Access Control
Michele Bugliesi, Dario Colazzo, Silvia Crafa 225

Elimination of Quantifiers and Undecidability in Spatial Logics for
Concurrency

Luís Caires, Étienne Lozes 240

Modular Construction of Modal Logics
Corina Cîrstea, Dirk Pattinson 258

Verification by Network Decomposition
Edmund Clarke, Muralidhar Talupur, Tayssir Touili, Helmut Veith 276

Reversible Communicating Systems
Vincent Danos, Jean Krivine 292

Parameterised Boolean Equation Systems
Jan Friso Groote, Tim Willemse 308

An Extensional Spatial Logic for Mobile Processes
Daniel Hirschkoff 325

Timed vs. Time-Triggered Automata
Leonid Mokrushin, P.S. Thiagarajan, Wang Yi 340

Extended Process Rewrite Systems: Expressiveness and Reachability
355

A General Approach to Comparing Infinite-State Systems with Their
Finite-State Specifications

Philippe Schnoebelen 371

Model Checking Timed Automata with One or Two Clocks
F. Laroussinie, N. Markey, Ph. Schnoebelen 387

On Flatness for 2-Dimensional Vector Addition Systems with States
Jérôme Leroux, Grégoire Sutre 402

Compiling Pattern Matching in Join-Patterns
Qin Ma, Luc Maranget 417

Model Checking Restricted Sets of Timed Paths
Nicolas Markey, Jean-François Raskin 432

Tomáš Brázdil,

TEAM LinG

Table of Contents XIII

Asynchronous Games 2: The True Concurrency of Innocence
Paul-André Melliès 448

Open Maps, Alternating Simulations and Control Synthesis
Paulo Tabuada 466

Probabilistic Event Structures and Domains
Daniele Varacca, Hagen Völzer, Glynn Winskel 481

Session Types for Functional Multithreading
Vasco Vasconcelos, António Ravara, Simon Gay 497

A Higher Order Modal Fixed Point Logic
Mahesh Viswanathan, Ramesh Viswanathan 512

Author Index 529

TEAM LinG

This page intentionally left blank

TEAM LinG

Zing: Exploiting Program Structure for
Model Checking Concurrent Software

Tony Andrews*, Shaz Qadeer*, Sriram K. Rajamani*,
Jakob Rehof *, and Yichen Xie†

*Microsoft Research
† Stanford University

http://www.research.microsoft.com/zing/

Abstract. Model checking is a technique for finding bugs in systems
by systematically exploring their state spaces. We wish to extract sound
models from concurrent programs automatically and check the behaviors
of these models systematically. The ZING project is an effort to build a
flexible infrastructure to represent and model check abstractions of large
concurrent software.

To support automatic extraction of models from programs written
in common programming languages, ZING’s modeling language supports
three facilities present in modern programming languages: (1) procedure
calls with a call-stack, (2) objects with dynamic allocation, and (3) pro-
cesses with dynamic creation, using both shared memory and message
passing for communication. We believe that these three facilities capture
the essence of model checking modern concurrent software.

Building a scalable model-checker for such an expressive modeling
language is a huge challenge. ZING’s modular architecture provides a
clear separation between the expressive semantics of the modeling lan-
guage, and a simple view of ZING programs as labeled transition systems.
This separation has allowed us to decouple the design of efficient model
checking algorithms from the complexity of supporting rich constructs
in the modeling language.

ZING’s model checking algorithms have been designed to exploit ex-
isting structural abstractions in concurrent programs such as processes
and procedure calls. We present two such novel techniques in the paper:
(1) compositional checking of ZING models for message-passing programs
using a conformance theory inspired by work in the process algebra com-
munity, and (2) a new summarization algorithm, which enables ZING to
reuse work at procedure boundaries by extending interprocedural data-
flow analysis algorithms from the compiler community to analyze con-
current programs.

1 Introduction

The goal of the ZING project is to check properties of concurrent heap-
manipulating programs using model checking. By systematically exploring the
state space, model checkers are able to find tricky concurrency errors that are
impossible to find using conventional testing methods. Industrial software has

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 1–15, 2004.
© Springer-Verlag Berlin Heidelberg 2004 TEAM LinG

2 T. Andrews et al.

such large number of states and it is infeasible for any systematic approach to
cover all the reachable states. Our goal is to automatically extract a model from
a program, where a model keeps track of only a small amount of information
about the program with respect to the property being checked. Then, it is feasi-
ble to systematically explore all the states of the model. Further, we want these
models to be sound abstractions of the program —a property proved on the
model should hold on the program as well.

How expressive should the model be? Choosing a very restricted model such
as finite-state machines makes the task of building the model checker easy, but
the task of extracting such a model from a program becomes hard. On the other
hand, building a model checker directly for a programming language is hard, due
to the number of features present in programming languages. We believe that
the following features capture the essence of modern concurrent object oriented
languages, from the point of building sound abstractions for model checking: (1)
procedure calls with a call-stack, (2) objects with dynamic allocation, and (3)
processes with dynamic creation, using both shared memory and message passing
for communication. We designed ZING’s modeling language to have exactly these
features.

Building a scalable model checker for the ZING modeling language is a huge
challenge since the states of a ZING model have complicated features such as
processes, heap and stack. We designed a lower-level model called ZING object
model (or ZOM), and built a ZING compiler to convert a ZING model to ZOM.
The compiler provides a clear separation between the expressive semantics of
the modeling language, and a simple view of ZOM as labeled transition systems.
This separation has allowed us to decouple the design of efficient model checking
algorithms from the complexity of supporting rich constructs in the modeling
language.

Writing a simple DFS model checker on top of ZOM is very easy and can be
done with a 10-line loop. However, this simple model checker does not scale. For
building scalable checkers, we have to exploit the structural boundaries present
in the source program that are preserved in the ZING model. Processes, proce-
dures and objects are perhaps the structural abstractions most widely used by
programmers. Structural boundaries enable compositional model checking, and
help alleviate the state-explosion problem. For implementing optimized model
checking algorithms that exploit such structure, we had to expose more infor-
mation about the state of the model in ZOM.

In well-synchronized shared memory programs, any computation of a process
can be viewed as a sequence of transactions, each of which appears to execute
atomically to other processes. An action is called a right (left) mover if it can be
committed to the right (left) of any action of another process in any execution.
A transaction is a sequence of right movers, followed by at most a single atomic
action, followed by a sequence of left movers. During model checking, it is suf-
ficient to schedule processes only at transaction boundaries, and this results in
an exponential reduction in the number of states explored. To implement such
transaction-based reduction, we extended the ZOM to expose information about

TEAM LinG

Zing: Exploiting Program Structure 3

the type of action executed —right mover, left mover, both left and right mover,
neither left nor right mover.

The ability to summarize procedures is fundamental to building scalable in-
terprocedural analyses. For sequential programs, procedure summarization is
well-understood and used routinely in a variety of compiler optimizations and
software defect-detection tools. This is not the case for concurrent programs.
If we expose procedure boundaries in the ZOM, we can summarize procedures
that are entirely contained within transactions. When a transaction starts in
one procedure and ends in another, we can break the summary piece-wise and
record smaller sub-summaries in the context of each sub-procedure. The pro-
cedure summaries thus computed allow reuse of analysis results across different
call sites in a concurrent program, a benefit that has hitherto been available only
to sequential programs [15].

We are interested in checking that a process in a communicating system
cannot wait indefinitely for a message that is never sent, and cannot send a
message that is never received. A process that passes this check is said to be
stuck-free [16,7,8]. We have defined a conformance relation on processes with
the following substitutability property: If and P is any environment such
that the parallel composition is stuck-free, then is stuck-free as well.
Substitutability enables a component’s specification to be used instead of the
component in invocation contexts, and hence enables model checking to scale.
By exposing observable events during the execution of each action in ZOM, we can
build a conformance-checker to check if one ZING model (the implementation)
conforms with another ZING model (the specification).

The goal of this paper is to describe the architecture and algorithms in ZING.
A checking tool is useless without compelling applications where the checker
provides value. We have used ZING to check stuck-freeness of distributed appli-
cations, concurrency errors in device drivers, and protocol errors in a replicated
file system. We have also built extractors from several programming languages
to ZING. Since ZING provides core features of object-oriented languages, building
such extractors is conceptually simple. Describing the details of these applica-
tions and extractors is beyond the scope of this paper.

To summarize, the ZING project is centered around three core principles:

1.

2.

3.

It is possible to extract sound models from concurrent programs. To enable
construction of simple extractors from common programming languages, the
ZING modeling language has three core features (1) procedure calls, (2) ob-
jects and (3) processes.
It is beneficial to construct an intermediate model ZOM, which presents a sim-
ple view of ZING models as labeled transition systems. We have constructed
various model checkers over this simple view.
Since ZING’s modeling language preserves abstraction boundaries in the
source program, we can exploit these boundaries to do compositional model
checking, and help alleviate the state-explosion problem. Doing this requires
exposing more information about the state and actions in ZOM. By expos-
ing mover information about executed actions we have been able to imple-

TEAM LinG

4 T. Andrews et al.

ment transaction based reduction. By exposing information about procedure
boundaries, we have been able to implement a novel summarization algo-
rithm for concurrent programs. By exposing the observable events during
execution of each action, we have been able to build a novel conformance
checker to compositionally check if a ZING model is stuck-free.

Related Work. The SPIN project [10] pioneered explicit-state model checking of
concurrent processes. The SPIN checker analyzes protocol-descriptions written in
the PROMELA language. Though PROMELA supports dynamic process creation, it
is difficult to encode concurrent software in PROMELA due to absence of procedure
calls and objects. Efforts have been made to abstract C code into PROMELA [11]
to successfully find several bugs in real-life telephone switching systems, though
no guarantees were given as to whether the generated PROMELA model is a sound
abstraction of the C code. Over the past few years, there has been interest in
using SPIN-like techniques to model check software written in common program-
ming languages. DSPIN was an effort to extend SPIN with dynamic software-like
constructs [12]. Model checkers have also been written to check Java programs
either directly [21, 20,18] or by constructing slices or other abstractions [6].
Unlike ZING none of these approaches exploit program abstractions such as pro-
cesses and procedure calls to do modular model checking. The SLAM project [4]
has similar goals to ZING in that it works by extracting sound models from C
programs, and checking the models. SLAM has been very successful in checking
control-dominated properties of device drivers written in C. Unlike ZING, it does
not handle concurrent programs, and it is unable to prove interesting properties
on heap-intensive programs.

Outline. The remainder of the paper is structured as follows. We explain the
features of ZING’s modeling language, and discuss the modular software archi-
tecture of ZING in Section 2. We discuss the novel compositional algorithms of
ZING in Section 3. Section 4 concludes the paper with a discussion of current
status and future work.

2 Architecture

ZING’s modeling language provides several features to support automatic gen-
eration of models from programs written in common programming languages.
It supports a basic asynchronous interleaving model of concurrency with both
shared memory and message passing. In addition to sequential flow, branching
and iteration, ZING supports function calls and exception handling. New pro-
cesses are created via asynchronous function calls. An asynchronous call returns
to the caller immediately, and the callee runs as a fresh process in parallel with
the caller. Primitive and reference types, and an object model similar to C# or
Java is supported, although inheritance is currently not supported. ZING also
provides features to support abstraction and efficient state exploration. Any se-
quence of statements (with some restrictions) can be bracketed as atomic. This
is essentially a directive to the model checker to not consider interleavings with

TEAM LinG

Zing: Exploiting Program Structure 5

other processes while any given process executes an atomic sequence. Sets are
supported, to represent collections where the ordering of objects is not important
(thus reducing the number of potentially distinct states ZING needs to explore).
A choose construct that can be used to non-deterministically pick an element out
of a finite set of integers, enumeration values, or object references is provided.
A complete language specification can be found in [1]. An example ZING model
that we extracted from a device driver, and details of an error trace that the
ZING model checker found in the model can be found in [2].

Fig. 1. Architecture of ZING

ZING is designed to have flexible software architecture. The architecture
is designed to promote an efficient division of labor between model checking
researchers and domain experts, and make it possible for model checking re-
searchers to innovate in the core state-space exploration technology while allow-
ing domain-experts to tackle issues such as extracting ZING models from their
source code, and visualization for showing results from the model checker. Once
model extraction is done, the generated ZING model is fed into a ZING compiler
which converts the ZING model into an MSIL1 object code called ZING object
model (ZOM). The object code supports a specific interface intended to be used
by the model checker. The ZOM assembly has an object of type State which has a

1 MSIL stands for Microsoft Intermediate Language which is the instruction set for
Microsoft’s Common Language Runtime.

TEAM LinG

6 T. Andrews et al.

stack for each process, a global storage area of static class variables, and a heap
for dynamically allocated objects. Several aspects of managing the internals of
the State object can be done generically, for all ZING models. This common state
management functionality is factored into a the ZING runtime library.

The equality operator for the State class is overridden to test equality using
a “fingerprint” of the state with the following property: (1) If state is a
symmetric equivalent of state then and (2)
If then states and are equivalent with a
high probability. Because states are compared frequently and the state vector
is potentially large, the use of fingerprints is generally advantageous. Further,
when all of the immediate children of a state have been generated, the full state
representation may be discarded provided the fingerprint is retained. Two states
are equivalent if the contents of the stacks and global variables are identical
and the heaps are isomorphic. The fingerprinting algorithm for the State object
first constructs a canonical representation of the state by traversing the heap
in a deterministic order [12]. Thus, equivalent states have equal fingerprints.
We observe that most state transitions modify only a small portion of the State
object. The State object records an “undo-log” and uses it to reverse transitions,
thereby avoiding cloning the entire state while doing depth-first search.

Fig. 2. Simple DFS model checker for ZING

The State object exposes a GetNextSuccessor method that returns the
next successor of the state. By iteratively calling this method, all successor
states of the current state can be generated. Model checkers use the method
GetNextSuccessor to execute a process for one atomic step. The execution
semantics of the process, which includes complicated activities like process cre-
ation, function call, exceptions, dynamic memory allocation, are all handled by
the implementation of GetNextSuccessor using support from the ZING compiler
and runtime. Model checkers are thus decoupled from the intricate execution se-
mantics supported by ZING. The actual implementation of the State object is

TEAM LinG

Zing: Exploiting Program Structure 7

quite complicated since it has to represent stacks for each process, a global area
and the heap. Using the interface provided by ZOM’s State object, a simple
depth-first search model checker for ZING can be written in less than ten lines
as shown in Figure 2. The model checker stores finger prints of visited states in
a hash table stateHash. When visiting each new state, the model checker first
checks if the fingerprint of the new state is already present in the stateHash,
and if present avoids re-exploring the new state. When the checker reaches an
erroneous state, the entire trace that leads to the error is present in the model
checker’s DFS stack, and we can display the trace at the source level (this is
omitted in Figure 2 for simplicity).

3 Algorithms

Since ZING’s modeling language preserves abstraction boundaries in the source
program, we can exploit these boundaries to do compositional model checking,
and help alleviate the state-explosion problem. Doing this requires exposing more
information about the state and actions in ZOM. By exposing mover informa-
tion about executed actions, we have been able to implement transaction based
reduction. By exposing information about procedure boundaries, we have been
able to implement a novel summarization algorithm for concurrent programs. By
exposing the observable events during execution of each action, we have been
able to build a novel conformance checker to compositionally check if a ZING

model is stuck-free.

3.1 Model Checker with Reduction

We have implemented a state-reduction algorithm that has the potential to re-
duce the number of explored states exponentially without missing errors. This
algorithm is based on Lipton’s theory of reduction [13]. Our algorithm is based
on the insight that in well-synchronized programs, any computation of a process
can be viewed as a sequence of transactions, each of which appears to execute
atomically to other processes. An action is called a right mover if can be com-
muted to the right of any action of another process in any execution. Similarly,
an action is called a left mover if can be commuted to the left of any action of
another process in any execution. A transaction is a sequence of right movers,
followed by a single (atomic) action with no restrictions, followed by a sequence
of left movers. During state exploration, it is sufficient to schedule processes
only at transaction boundaries. These inferred transactions reduce the number
of interleavings to be explored, and thereby greatly alleviate the problem of
state explosion. To implement transaction-based reduction, we augmented the
GetNextSuccessor method so that it returns the type of the action executed
(i.e., left mover, right mover, non mover or both mover), and the model checker
uses this information to infer transaction boundaries.

TEAM LinG

8 T. Andrews et al.

3.2 Model Checker with Summarization

The ability to summarize procedures is fundamental to building scalable in-
terprocedural analyses. For sequential programs, procedure summarization is
well-understood and used routinely in a variety of compiler optimizations and
software defect-detection tools. The summary of a procedure P contains the
state pair if in state there is an invocation of P that yields the state

on termination. Summaries enable reuse—if P is called from two different
places with the same state the work done in analyzing the first call is reused
for the second. This reuse is the key to scalability of interprocedural analyses.
Additionally, summarization avoids direct representation of the call stack, and
guarantees termination of the analysis even if the program has recursion.

However, the benefit of summarization is not available to concurrent pro-
grams, for which a clear notion of summaries has so far remained unarticulated
in the research literature. ZING has a novel two-level model checking algorithm
for concurrent programs using summaries [15]. The first level performs reacha-
bility analysis and maintains an explicit stack for each process. The second level
computes a summary for each procedure. During the reachability analysis at the
first level, whenever a process makes a procedure call, we invoke the second level
to compute a summary for the procedure. This summary is returned to the first
level, which uses it to continue the reachability analysis. The most crucial aspect
of this algorithm is the notion of procedure summaries in concurrent programs.
A straightforward generalization of a (sequential) procedure summary to the
case of concurrent programs could attempt to accumulate all state pairs
obtained by invoking this procedure in any process. But this simple-minded ex-
tension is not that meaningful, since the resulting state for an invocation
of a procedure P in a process might reflect updates by interleaved actions of
concurrently executing processes. Clearly, these interleaved actions may depend
on the local states of the other processes. Thus, if is an element of such
a summary, and the procedure P is invoked again by some process in state
there is no guarantee that the invoking process will be in state on completing
execution of P. However, in well-synchronized programs, any computation of a
process can be viewed as a sequence of transactions, each of which appears to
execute atomically to other processes. Thus, within a transaction, we are free
to summarize procedures. Two main technical difficulties arise while performing
transaction-based summarization of procedures:

Transaction boundaries may not coincide with procedure boundaries. One
way to summarize such transactions is to have a stack frame as part of
the state in each summary. However, this solution not only complicates the
algorithm but also makes the summaries unbounded even if all state vari-
ables have a finite domain. Our summaries do not contain stack frames. If a
transaction begins in one procedure context and ends in another procedure
context, we break up the summary into smaller sub-summaries each within
the context of a single procedure. Thus, our model checking algorithm uses
a combination of two representations—states with stacks and summaries
without stacks.

TEAM LinG

Zing: Exploiting Program Structure 9

A procedure can be called from different phases of a transaction —the pre-
commit phase or the post-commit phase. We need to summarize the proce-
dure differently depending on the phase of the transaction at the call site. We
solve this problem by instrumenting the source program with a boolean vari-
able representing the transaction phase, thus making the transaction phase
part of the summaries.

Assertion checking for concurrent programs with finite-domain variables and
recursive procedures is undecidable [17]. Thus, the two-level model-checking
algorithm is not guaranteed to terminate. However, if all variables are finite
domain and every call to a recursive procedure is contained entirely within
a transaction, the two-level algorithm will terminate with the correct an-
swer [15].

Fig. 3. Small example to illustrate patterns and effects

Our implementation of the two-level model checking algorithm in ZING rep-
resents a summary as a pattern and effect pair, rather than a state pair. A
pattern is a partial map from (read) variables to values, and an effect is a
partial map from (written) variables to values. The ZOM supports summariza-
tion by exposing (1) whether the executed action is a procedure call or re-
turn, and (2) what variables are read and written during an action. Pat-
terns and effects enable better reuse of summaries than state pairs. For ex-
ample, consider the function baz from Figure 3. If baz is called with a state
(x=0,y=1,g=0), it results in state (x=0,y=1,g=1). We represent a summary
of this computation as a pattern (x=0) and an effect (g=1). Thus, if baz is
called with a state (x=0,y=10,g=3), it still matches the pattern (x=0), and
the effect (g=1) can be used to compute the resulting state (x=0,y=10,g=1).
In contrast, if the summary is represented as a state pair ((x=0,y=1,g=0),
(x=0,y=1,g=1)), then the summary cannot be reused if baz were called at
state (x=0,y=10,g=3).

The model checker BEBOP [3] from the SLAM project represents summaries as
state pairs. In order to illustrate the efficiency of reuse we present empirical com-
parison between ZING’s implementation of summarization and BEBOP’s imple-
mentation. Since BEBOP supports model checking of sequential programs only, we
do the comparison with a parameterized set of sequential ZING models shown in
Figure 4. Program contains global boolean variablesg1,g2,... ,gn and

procedures level1,level2,...,leveln. Figure 5 shows the running times for
ZING and BEBOP for models P(10), P(20), . . . , P(100). Due to the use of patterns
and effects for representing summaries, the ZING runtime for scales linearly
with

TEAM LinG

10 T. Andrews et al.

Fig. 4. Template to evaluate summary reuse using patterns and effects

3.3 Conformance Checker

We are interested in checking that a ZING process cannot get into a state where
it waits for messages that are never sent (deadlock) or has sent messages that are
never received (orphan messages, for example, unhandled exception messages).
We say, informally, that a processes is stuck if it cannot make any transition
whatsoever, and yet some component of it is ready to send or receive a message.
We say that a process is stuck-free, if it cannot transition to a stuck state.2

In order to check for stuck-freedom compositionally (one component at a
time) for a system of communicating processes, we have defined a refinement
relation called stuck-free conformance, which allows us to regard one ZING
process as a specification of another. Stuck-free conformance is a simulation re-
lation on ZING processes, which (i) is preserved by all contexts and (ii) preserves
the ability to get stuck. From these properties it follows that, if P and Q are
ZING processes such that then for any process R, if is stuck-free,
then is stuck-free denotes the parallel composition of P and Q,

2 We have formalized the notion of stuckness and stuck-freedom for transition sys-
tems in CCS [14], and we refer to [8, 7] for the precise definition of stuck-free CCS
processes.

TEAM LinG

Zing: Exploiting Program Structure 11

Fig. 5. Runtimes for ZING and BEBOP on models from Figure 4

which is expressed in ZING via async calls.) Therefore, if we can safely
substitute Q (a specification) for P (an implementation) in any context when
reasoning about stuck-freedom, thereby enabling compositional checking. Our
definition of stuck-free conformance [8, 7] between ZING processes is the largest
relation such that, whenever then the following conditions hold:

C1. If then there exists such that and
C2. If P can refuse X while ready on Y, then Q can refuse X while ready on Y.

Here, means that P can transition to on a sequence of hidden
actions, and a visible action, A process is called stable, if it cannot do any

If X and Y are sets of visible actions, we say that P can refuse X

while ready on Y, if there exists a stable such that and (i)
refuses X, i.e., cannot do a co-action of any action in X, and (ii) is ready
on Y, i.e., can do every action in Y. In condition [C2] above, the ready sets
Y range only over singleton sets or the empty set. This requirement on Y leads
to the most permissive simulation satisfying the preservation properties (i) and
(ii) mentioned above.3

We have extended the ZOM interface so that we can observe externally visible
actions as well as the occurrence of hidden actions:

3 Our notion of stuck-free conformance can be seen as a restriction of the natural
simulation-based version of CSP stable failures refinement [5,9,19], which in addition
to preserving deadlock also preserves the ability to generate orphan messages. We
refer to [8, 7] for more details on the theory of stuck-free conformance.

TEAM LinG

12 T. Andrews et al.

Fig. 6. Conformance checker for ZING

1.

2.

ExternalEvent is a property which, for a newly generated state, gives the
event (if any) on the transition that was used to generate the state.
AccumulatedExternalEvents gives an array of events from all outgo-
ing transitions on a state, once all the outgoing transitions have been
explored.

An implementation of the conformance checker using this interface is given in
Figure 6. By exploring the state spaces of a given process P and a specification
process C, checkConformance(P, C) decides whether by a direct imple-
mentation of conditions [C1] and [C2]. We assume that the specification does

not have hidden nondeterminism. i.e., for a specification state S, if and

then This assumption can be relaxed by determinizing the
specification in a pre-processing step, or on-the fly using a subset construction.
The conformance checker works by doing a depth-first-search on the state-space

TEAM LinG

Zing: Exploiting Program Structure 13

of the implementation, and tracking the “matching” state of the specification
corresponding to each state of the implementation. A hashtable is used to keep
track of states that have been already visited. In our implementation, we store
fingerprints of the visited states in the hashtables for efficiency. At each transi-
tion explored in the implementation, the algorithm checks for conditions [C1].
After all the successors of an implementation state have been explored, it is
popped from the DFS stack. At that time, the algorithm checks if condition
[C2] holds. The algorithm uses three functions executeWithEvent, isStable,
and checkReadyRefusals. The function executeWithEvent searches the spec-
ification for a state which can be obtained by transitioning through the given

event. Formally, returns a state such that
if such a state exists (note that such a state is unique if it exists due to the
assumption that the specification does not have hidden nondeterminism). If this
function returns null, then we conclude that condition [C1] has been violated.
The function isStable returns TRUE if the given state S is stable and FALSE

otherwise. The function returns true if condition
[C2] holds. More precisely, returns TRUE if there

exists a stable such that (i) and (ii) for all if

and (iii) The algorithm terminates if the state space of the
implementation is finite, and the complexity is linear in the state spaces of the
implementation and the specification. If the state space of the implementation
is too large or infinite, the algorithm can be used to check for conformance in
whatever portion of the state space is explored.

4 Conclusion

The goal of the ZING project is to check properties of concurrent programs that
manipulate the heap, by using natural abstraction boundaries that exist in the
program. In order to support this goal, the ZING modeling language supports the
essential features of modern object oriented languages, and the ZING architecture
enables a clear separation between the expressiveness of the modeling language
and the simplicity of the ZING object model (ZOM). This separation has enabled
us to implement several novel model checking algorithms on top of the ZOM. We
are currently implementing a few additional algorithms to enable ZING to scale
to larger models:

Currently non-determinism in data (introduced by the choose statement) is
handled by an explicit case-split. We have designed a technique to handle
such non-determinism symbolically. Our proposed algorithm adds symbolic
fix-point computing capability to ZING, with the possibility of using widening
to accelerate convergence.
We are currently investigating how to design a SLAM-like iterative refinement
loop inside ZING. SLAM handles pointers by doing an apriori alias analysis,
and using predicates to refine the imprecision in alias analysis. We believe
that directly handling pointers in the abstraction will scale better.

TEAM LinG

14 T. Andrews et al.

We have used ZING to check stuck-freeness of distributed applications [8,
7], concurrency errors in devicedrivers,4 and protocol errors in a replicated file
system.5 Though a discussion of these applications is beyond the scope of this
paper, all of the above algorithms and optimizations were driven by the need to
make ZING scale on these applications.

Acknowledgments. We thank Jakob Lichtenberg and Georg Weissenbacher for
their efforts in making ZING work inside the SLAM engine. We thank Tom Ball
and Byron Cook for several discussions regarding this effort. We thank Vlad
Levin for making the ZING UI display error traces in terms of the driver’s C
code. Abhay Gupta wrote ZING models of a large file-replication protocol. This
effort helped uncover several bugs and performance bottlenecks in ZING and
one serious bug in the protocol. We thank Tony Hoare and Cedric Fournet for
working with us on the theory of stuck-free conformance.

References

1.
2.

3.

4.

5.

6.

7.

8.

9.
10.

11.

12.

Zing Language Specification – http://research.microsoft.com/zing.
T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. Technical report, Microsoft Research, 2004.
T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean pro-
grams. In SPIN 00: SPIN Workshop, LNCS 1885, pages 113–130. Springer-Verlag,
2000.
T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1–3.
ACM, January 2002.
S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. Journal of the ACM, 31(3):560–599, 1984.
M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,
and H. Zheng. Tool-supported program abstraction for finite-state verification. In
ICSE 01: International Conference on Software Engineering, pages 177–187. ACM,
2001.
C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof. Stuck-free conformance
theory for CCS. Technical Report MSR-TR-2004-09, Microsoft Research, 2004.
C. Fournet, C.A.R. Hoare, S.K. Rajamani, and J. Rehof. Stuck-free conformance.
In CAV 04: Computer-Aided Verification, LNCS. Springer-Verlag, 2000.
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-
ing, 23(5):279–295, May 1997.
G.J. Holzmann. Logic verification of ANSI-C code with Spin. In SPIN 00: SPIN
Workshop, LNCS 1885, pages 131–147. Springer-Verlag, 2000.
R. Iosif and R. Sisto. dSPIN: A dynamic extension of SPIN. In SPIN 99: SPIN
Workshop, LNCS 1680, pages 261–276. Springer-Verlag, 1999.

4

5

Jakob Lichtenberg and Georg Weissenbacher started this work as an intern project
in the summer of 2003.
Abhay Gupta did this work as an intern project in the summer of 2003.

TEAM LinG

Zing: Exploiting Program Structure 15

13.

14.

15.

16.

17.

18.

19.
20.

21.

R. J. Lipton. Reduction: A method of proving properties of parallel programs. In
Communications of the ACM, volume 18:12, pages 717–721, 1975.
R. Milner. Communicating and Mobile Systems: the Cambridge Uni-
versity Press, 1999.
S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concurrent
programs. In POPL 04: ACM Principles of Programming Languages, pages 245–
255. ACM, 2004.
S. K. Rajamani and J. Rehof. Conformance checking for models of asynchronous
message passing software. In CAV 02: Computer-Aided Verification, LNCS 2404,
pages 166–179. Springer-Verlag, 2002.
G. Ramalingam. Context sensitive synchronization sensitive analysis is undecid-
able. ACM Trans. on Programming Languages and Systems, 22:416–430, 2000.
Robby, M. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model
checking framework. In FSE 03: Foundations of Software Engineering, pages 267–
276. ACM, 2003.
A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
S. D. Stoller. Model-checking multi-threaded distributed Java programs. Inter-
national Journal on Software Tools for Technology Transfer, 4(1):71–91, October
2002.
W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In
ICASE 00: Automated Software Engineering, pages 3–12, 2000.

TEAM LinG

A Semantics for Concurrent
Separation Logic

Stephen Brookes

Carnegie Mellon University
Department of Computer Science

Abstract. We present a denotational semantics based on action traces,
for parallel programs which share mutable data and synchronize using re-
sources and conditional critical regions. We introduce a resource-sensitive
logic for partial correctness, adapting separation logic to the concurrent
setting, as proposed by O’Hearn. The logic allows program proofs in
which “ownership” of a piece of state is deemed to transfer dynamically
between processes and resources. We prove soundness of this logic, using
a novel “local” interpretation of traces, and we show that every provable
program is race-free.

1 Introduction

Parallel programs involve the concurrent execution of processes which share state
and are intended to cooperate interactively. It is notoriously difficult to ensure
absence of runtime errors such as races, in which one process changes a piece
of state being used by another process, and dangling pointers, which may occur
if two processes attempt simultaneously to deallocate the same storage. Such
phenomena can cause unpredictable or irreproducible behavior.

Rather than relying on assumptions about the granularity of hardware prim-
itives, it is preferable to use program design rules and proof techniques that
guarantee error-freedom. The classic example is the syntax-directed logic for
partial correctness properties of (pointer-free) parallel programs introduced by
Owicki and Gries [15], building on prior work of Hoare [7]. This approach focusses
on critical variables, the identifiers concurrently written by one process and read
or written by another. The programmer must partition the critical variables
among named resources, and each occurrence of a critical variable must be in-
side a region naming the relevant resource. Assuming that resource management
is implemented by a suitable synchronization primitive, such as semaphores [6,
1], the design rules guarantee mutually exclusive access to critical variables and
therefore freedom from races. Each process relies on its environment to ensure
that when a resource is available the corresponding resource invariant holds, and
guarantees that when the process releases the resource the invariant will hold
again (c f . rely/guarantee methodology as in [9]). This use of resource invariants
abstracts away from what happens “inside” a critical region and focusses on the
places where synchronization occurs.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 16–34, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

A Semantics for Concurrent Separation Logic 17

This method works well for simple (pointer-free) parallel programs, but the
task of reasoning about parallel pointer-programs is made more difficult by the
potential for aliasing, when distinct expressions may denote the same pointer:
static design rules no longer suffice to prevent races involving pointer values. For
example, the program has a race if and are aliases, and this
cannot be determined from the syntax of the program.

Peter O’Hearn [11, 12] has proposed an adaptation of the Owicki-Gries rules
to handle parallel pointer-programs, incorporating ideas from separation logic [17,
14,8]. The main technical novelty in this adaptation involves the use of separating
conjunction in the rules dealing with resource invariants and parallel composi-
tion. Although this may appear superficially to produce “obvious” variants of
the traditional rules, the original rules (using the standard form of conjunction)
are unsound for pointer-programs, and soundness of the new rules is far from
obvious. Indeed, Reynolds has shown that O’Hearn’s rules are unsound without
restrictions on resource invariants [18, 13].

O’Hearn provides a series of compelling examples with informal correctness
proofs, but (as he remarks) the logic cannot properly be assessed without a suit-
able semantic model [11]. Such a model is not readily available in the literature:
traditional models for concurrency do not include pointers or race-detection, and
models for pointer-programs do not typically handle concurrency. In this paper
we give a denotational semantics, using action traces, that solves these prob-
lems, using a form of parallel composition that detects races and treats them
as catastrophic1. Our semantic model embodies a classic principle of concurrent
program design, originally articulated by Dijkstra [6] and echoed in the design
of the classic inference rules for shared-memory programs [7, 15]:

... processes should be loosely connected; by this we mean that apart
from the (rare) moments of explicit intercommunication, the individual
processes are to be regarded as completely independent of each other.

In other words, concurrent processes do not interfere (or cooperate) ex-
cept through explicit synchronization. Our semantics makes this idea concrete
through the interplay between traces, which describe interleaved behaviors of
processes, and an enabling relation on “local states” that models “no interfer-
ence from outside except at synchronization”. This interplay permits a formal-
ization of O’Hearn’s “processes that mind their own business” [12], and leads
to a Parallel Decomposition Lemma that reflects the intuition behind Dijkstra’s
principle in a semantically precise manner.

The Owicki-Gries logic and O’Hearn’s adaptation assume a fixed collection
of resources and a fixed set of parallel processes. We reformulate O’Hearn’s
inference rules in a more semantically natural manner, allowing statically scoped
resource declarations and nested parallel compositions. We assume that each
resource invariant is a precise separation logic formula, so that every time a
program acquires or releases a resource there is a uniquely determined portion of

1 This idea was suggested by John Reynolds [18].

TEAM LinG

18 S. Brookes

the heap whose ownership can be deemed to transfer. We give a suitably general
(and compositional) notion of validity, and we prove that the proof rules, using
precise invariants, are sound. Our soundness proof demonstrates that a verified
program has no race conditions.

We omit proofs, and we do not include examples to illustrate the logic; the
reader should see O’Hearn’s paper [12] for such examples, which may be repli-
cated quite straightforwardly in our more formal setting. O’Hearn’s paper also
discusses the limitations of the logic and identifies opportunities for further
research. We assume familiarity with the syntax and semantics of separation
logic [17]. Apart from this we have tried to include enough technical detail to
make the paper self-contained.

2 Syntax

Our programming language combines shared-memory parallelism with pointer
operations. The syntax for commands (ranged over by is given by the following
abstract grammar, in which ranges over resource names, over identifiers,
over integer expressions, and over boolean expressions:

Expressions are pure, so evaluation has no side-effect and the value of an
expression depends only on the store. An assignment command affects
only the store; allocation lookup update and
disposal involve the heap. A command of form resource in
introduces a local resource name whose scope is A command of form
with when do is a conditional critical region for resource A process
attempting to enter a region must wait until the resource is available, acquire
the resource and evaluate if is true the process executes then releases the
resource; if is false the process releases the resource and waits to try again.
A resource can only be held by one process at a time. We use the abbreviation
with do when is true.

Let be the set of identifiers occurring free in with a similar no-
tation for expressions. Let be the set of identifiers having a free
write occurrence in and be the set of resource names occurring free
in These sets are defined as usual, by structural induction. For instance,
res(with when do res(resource in

3 Semantics

We give a trace-theoretic semantics for expressions and commands. The meaning
of an expression will be a set of trace-value pairs, and the meaning of a command
will be a set of traces. The trace set denoted by a program describes in abstract

TEAM LinG

A Semantics for Concurrent Separation Logic 19

terms the possible interactive computations that the program may perform when
executed fairly, in an environment which is also capable of performing actions.
We interpret sequential composition as concatenation of traces, and parallel
composition as a resource-sensitive form of interleaving of traces that enforces
mutually exclusive access to each resource. By presenting traces as sequences of
actions we can keep the underlying notion of state more or less implicit.2 We
will exploit this feature later, when we use the semantics to prove soundness of
a concurrent separation logic. We start by providing an interpretation of actions
using a global notion of state; later we will set up a more refined local notion of
state with which it is easier to reason about ownership.

Our semantics is designed to support reasoning about partial correctness and
the absence (or potential presence) of runtime errors. The semantics also models
deadlock, as a form of infinite waiting, and allows reasoning about safety and
liveness properties. The semantics assumes that parallel processes are executed
under the control of a weakly fair scheduler [16], so that each process that has
not yet terminated will eventually be scheduled for execution.

States, Actions, and Traces

A value is either an integer, or an address. We use to range over values, over
addresses. Let be the set of integers, be the set of addresses3, and

be the set of truth values. A resource set is a finite set of resource names.
A state comprises a store a heap and a resource set A. The store maps a
finite set of identifiers to values; the heap maps a finite set of addresses to values.
We use notations such as and to denote
stores and heaps, and and for updated stores and heaps.
We write for the store obtained by removing the identifiers in X from the
domain of and for the heap obtained from by deleting from its domain.
When heaps and have disjoint domains we write and we let
denote their union. We use a similar notation for stores. An “initial” state will
have the form we may use the abbreviation in such a case.

We will describe a program’s behavior in terms of actions. These include
store actions: reads and writes to identifiers; heap actions: lookups

updates allocations and disposals of
addresses; and resource actions: involving resource names.
We also include an idle action and an error action abort. We use to range
over the set of actions.

Each action is characterized by its effect, a partial function from states
to states. This partial function describes the set of states in which the action

2

3

An advantage of action traces [4, 3] over the transition traces [16, 5] often used to
model shared-memory parallel languages is succinctness: an action typically acts the
same way on many states, and we can express this implicitly, without enumerating
all pairs of states related by the action.
Actually we treat addresses as integers, so that our semantic model can incorporate
address arithmetic, but for moral reasons we distinguish between integers as values
and integers which happen to be addresses in current use.

TEAM LinG

20 S. Brookes

is enabled, and the state change caused by executing the action. Note that an
action may cause a runtime error, for which we employ the error state abort.

Definition 1. The effect of an action is given by the following clauses:

It is obvious from the above definition that store actions depend only on the
store, heap actions depend only on the heap, and resource actions depend only
on the resource set. In general an action is either enabled or stuck in a given
state. For example, if the action is enabled, but the action is
stuck. The stuck cases play only a minor role in the development.

Note that a action is allowed, from a state in which
to model the case where one parallel component of the program has already
acquired but another component process wants to acquire it and must wait
until the resource is released. A process can only acquire a resource that it does
not already possess, and can only release a resource that it currently holds.

The clause defining the effect of an allocation action is non-deterministic,
to model our assumption that storage management is governed by a mutual
exclusion discipline and ensures the use of “fresh” heap cells. A given state

enables all allocation actions of the form for which
the heap cells are all outside of We assume that the
storage allocator never chooses to allocate a heap cell in current use, so we do
not need to include an error case for allocate actions. On the other hand, since
disposals are done by the program we include an error case for disposal actions
to account for the possibility of a dangling pointer.

TEAM LinG

A Semantics for Concurrent Separation Logic 21

A trace is a non-empty finite or infinite sequence of actions. Let Tr be the set
of all traces. We use as meta-variables ranging over the set of traces, and

range over trace sets.
We write for the trace obtained by concatenating and when is

infinite this is just We assume that abort abort, and for
all traces and

For trace sets and we let and we
use the usual notations and for the finite and infinite concatenations of
traces from the set T. We let

We define the effect of a trace in the obvious way, by composing the
effects of the actions occurring in the trace. When the
trace can be executed from without the need for interference from
outside; we call such a trace sequential4. As is well known, the sequential traces
of cannot generally be determined from the sequential traces of and
so we need to include non-sequential traces in order to achieve a compositional
semantics.

Parallel Composition

The behavior of a command depends on resources: those held by the command
and those being used by its environment. These sets of resources start empty
and will always be disjoint. Accordingly we define for each action a resource
enabling relation on disjoint pairs of resource sets, to spec-
ify when a process holding resources in an environment that holds
can perform this action, and the action’s effect on the resources held by the
program:

Clearly if and are disjoint and then
and is disjoint from

This resource enabling notion generalizes in the obvious way to a sequence
of actions; we write to indicate that a process holding resources

in an environment holding can perform the trace
We want to detect race conditions caused by an attempt to write to an

identifier or address being used concurrently. This can be expressed succinctly
as follows. First, we extend the definitions of free and writes to actions:

4 Technically we say that is sequential if and only if

TEAM LinG

22 S. Brookes

Informally, contains the identifiers or addresses whose current val-
ues are needed to enable the action, and contains the identifiers or
addresses whose values in the current state are affected by the action. We do
not include addresses in the free- or write-set of
because these addresses are assumed to be fresh when the action occurs.

We write interferes with when and represent a race:

Notice that we do not regard two concurrent reads as a disaster.
We then define, for each pair of disjoint resource sets and each pair

of action sequences, the set of all mutex fairmerges of
using with using The definition is inductive5 in the lengths of and

and we include the empty sequence to allow a simpler formulation:

For traces and let be defined to be For trace sets
and we define

Semantics of Expressions

An expression will denote a set of evaluation traces paired with values: we define
for an integer expression and for a boolean ex-

pression Since expression values depend only on the store, the only non-trivial
actions participating in such traces will be reads. To allow for the possibility
of interference during expression evaluation we include both non-sequential and
sequential evaluation traces. Again the sequential traces describe what happens
if an expression is evaluated without interference.

The semantic functions are given, by structural induction, in the usual way.
For example:

5 We can also give a coinductive definition of the mutex fairmerges of two infinite
traces, starting from a given disjoint pair of resource sets. We need mostly to work
here with finite traces, so we omit the details.

TEAM LinG

A Semantics for Concurrent Separation Logic 23

The use of concatenation in these semantic clauses assumes that sum expres-
sions and lists are evaluated in left-right order. This assumption is not crucial;
it would be just as reasonable to assume parallel evaluation for such expres-
sions. With an appropriately modified semantic definition, this adjustment can
be made without affecting the ensuing development.

Let be the set of traces such that and
be the set of traces such that

Semantics of Commands

A command denotes a trace set defined by structural induction.

Definition 2.
The trace set of a command is defined by the following clauses:

In the above semantic clauses we have prescribed a left-to-right sequential
evaluation order for and reflected in the use of con-
catenation on the traces of sub-expressions; again this assumption is not crucial,
and it is straightforward to adapt the ensuing development to allow for parallel
evaluation of sub-expressions.

The iterative structure of the traces of a conditional critical region reflect its
use to achieve synchronization: waiting until the resource is available and the
test condition is true, followed by execution of the body command while holding
the resource, and finally releasing the resource. Note the possibility that the
body may loop forever or encounter a runtime error, in which case the resource
will not get released. Since and it is easy to
derive a simpler formula for the trace set of with do we have

TEAM LinG

24 S. Brookes

Since the command resource in introduces a local resource named
whose scope is its traces are obtained from traces of in which is assumed
initially available and the actions involving are executed without interference.
We let be the set of traces of which are sequential for in this manner6.
We let be the trace obtained from by replacing each action on by

Examples

1.

2.

3.

4.

This program always terminates, when executed from a state in which has
a value; its effect is to increment the value of by 1.

Concurrent assignments to the same identifier cause a race, no matter what
the initial value of is.

This program needs to acquire before incrementing and will wait forever
if the resource never becomes available.

contains traces of the forms
and where

as well as traces of similar form containing additional
steps. Only the first kind are sequential for It follows that

5.
The overall effect is the same as that of two consecutive increments.
The command has the trace set

This set includes traces of the form

and other interleavings of with none of
which are sequential. The set also includes traces obtained by interleaving

and where all of these are sequen-
tial.
The command has trace set6.

6 Technically, we say that is sequential for if holds, where
is the subsequence of consisting of actions on resource This expresses formally
the requirement that represents an execution in which is initially available and

is never acquired (or released) by the environment. Equivalently, is a prefix
of a trace in the set Note in particular that is not
sequential for

TEAM LinG

A Semantics for Concurrent Separation Logic 25

This includes traces of the form abort because of the race-detecting
clause in the definition of fairmerge. If this command is executed from a
state in which and are aliases a race will occur, with both processes
attempting to dispose the same heap cell: if and

we have

4 Concurrent Separation Logic

Separation logic [17] provides a class of formulas for specifying properties of
stores and heaps. The syntax includes separating conjunction, denoted
and formulas emp and specifying an empty heap and a singleton heap.
We write when satisfies In particular, if and
only if there are disjoint heaps such that and

Reynolds [17] provides a Hoare-style partial correctness logic for
sequential pointer-programs in which the pre- and post-conditions are separation
logic formulas.

We now introduce resource-sensitive partial correctness formulas of the form
where and are separation logic formulas, is a parallel pointer-

program, and is a resource context associating
resource names with protection lists and resource invariants Each
protection list represents a finite set of identifiers. We require each resource
invariant to be a precise separation logic formula. A separation logic formula
is precise [17] if for all and there is at most one such that

Let be the set of resource names in
be the set of identifiers protected by and

be the set of identifiers mentioned in the invariants. Let be
the separating conjunction of the resource invariants in In particular, when

is empty this is emp. Since each resource invariant is precise it follows that
is precise.

We will impose some syntactic well-formedness constraints on contexts and
formulas, designed to facilitate modularity. Specifically:

is well-formed if its entries are disjoint, in that if then
and

is well-formed if is well-formed, and and do not mention
any protected identifiers, i.e.

Thus in a well-formed context each identifier belongs to at most one resource.
We do not require that the free identifiers in a resource invariant be protected,
i.e. that This allows us to use a resource invariant to connect
the values of protected identifiers and the values of non-critical variables.

The inference rules will enforce the following syntactic constraints on com-
mands, relative to the relevant resource context7:

7 We will not formalize these properties or give a proof that they hold in all provable
formulas. We state them explicitly since they recall analogous requirements in the
Owicki-Gries logic and in O’Hearn’s rules.

TEAM LinG

26 S. Brookes

Every critical identifier is protected by a resource.
Every free occurrence of a protected identifier is within a region for the
corresponding resource.
Every free write occurrence of an identifier mentioned in a resource invariant
is within a region for the corresponding resource.

Intuitively, a resource-sensitive partial correctness formula specifies how a
program behaves when executed in an environment that respects the resource
context, assuming that at all times the separating conjunction of the resource
invariants holds, for the currently available resources. The program guarantees to
stay within these bounds, provided it can rely on its environment to do likewise.
This informal notion of validity for formulas should help provide intuition for the
structure of the following inference rules. Later we will give a formal definition
of validity.

We allow all well-formed instances of the following inference rules. Some
of the rules have side conditions to ensure well-formedness and the syntactic
requirements given above, as in [12].

SKIP

ASSIGNMENT

if

LOOKUP

if and

ALLOCATION

if and

UPDATE

DISPOSAL

SEQUENTIAL

CONDITIONAL

TEAM LinG

A Semantics for Concurrent Separation Logic 27

LOOP

PARALLEL

if
and

RESOURCE

RENAMING RESOURCE

if

REGION

FRAME

if

CONSEQUENCE

provided and are universally valid

if X is auxiliary for and

CONJUNCTION

EXPANSION

if and

AUXILIARY

TEAM LinG

28 S. Brookes

CONTRACTION

if

Comments

1.

2.

3.

4.

5.

The rules dealing with the sequential program constructs are natural adapta-
tions of the rules given by Reynolds [17], with the incorporation of a resource
context and side conditions to ensure well-formedness and adherence to the
protection policy. The FRAME and CONSEQUENCE rules similarly generalize
analogous rules from the sequential setting.
The PARALLEL, REGION and RESOURCE rules are based on O’Hearn’s adap-
tations of Owicki-Gries inference rules. A side condition in the PARALLEL

rule enforces the requirement that each critical variable must be associated
with a resource, just as in the original Owicki-Gries rule.
The AUXILIARY rule similarly adapts the Owicki/Gries rule for auxiliary
variables8. As usual, a set of identifiers X is said to be auxiliary for if
every free occurrence in of an identifier from X is in an assignment that
only affects the values of identifiers in X. In particular, auxiliary identifiers
cannot occur in conditional tests or loop tests, and do not influence the
control flow of the program. The command is obtained from by deleting
assignments to identifiers in X.
In the RESOURCE RENAMING rule we write for the command obtained
from by replacing each free occurrence of by
We have omitted the obvious structural rules permitting permutation of
resource contexts.

5 Validity

We wish to establish that every provable resource-sensitive formula is valid, but
we need to determine precisely what that should mean. Adapting the notion of
validity familiar from the sequential setting, we might try to interpret validity
of as the property that every finite computation of from a state
satisfying is error-free and ends in a state satisfying
However, this notion of “sequential validity” is not compositional for parallel
programs; although it expresses a desirable property we need a notion of validity
that takes account of process interaction.

Informally we might say that the formula is valid if every finite
interactive computation of from a state satisfying in an environment
that respects is error-free, also respects and ends in a state satisfying

Owicki and Gries cite Brinch Hansen [2] and Lauer [10] as having first recognized the
need for auxiliary variables in proving correctness properties of concurrent programs.

8

TEAM LinG

A Semantics for Concurrent Separation Logic 29

However, such a formulation would be incomplete, since it does not
properly specify what “respect” for entails. To obtain a suitably formal (and
compositional) notion of validity we need to keep track of the portions of the
state deemed to be “owned” by a process, its environment, and the available
resources.

With respect to a resource context a process holding resource set A should
be allowed to access identifiers protected by resources in A, but not identifiers
protected by other resources. We say that is a local state consistent with

if where is the subset of involving
resources in A. We let be the rest of We introduce local enabling relations
between local states: a step means that in state
a process can perform action causing its local state to change to
and respecting the resource invariants and protection rules. We use the error
state abort to handle runtime errors and logical errors such as an attempt to
release a resource in a state for which no sub-heap satisfies the corresponding
invariant, or a write to an identifier mentioned in a resource invariant without
first acquiring the resource.

Definition 3. The local enabling relations are the least relations satisfying
the following clauses, in which ranges over local states consistent with
the relevant context:

TEAM LinG

30 S. Brookes

The clauses for and deal with ownership transfer: when a pro-
cess acquires a resource its local state grows to include the identifiers protected
by the resource and the heap portion in which the resource invariant holds; when
a process releases a resource its local state ceases to include the protected identi-
fiers and the heap associated with the resource invariant; a “logical” error occurs
if the invariant is not suitably satisfied. Since resource invariants are assumed to
be precise formulas in each case there is a uniquely determined portion of heap
associated with the relevant invariant.

We write when there is a local computation from to
Note that non-sequential traces play a non-trivial role in the local enabling

relation, and in a local computation external interference can occur only at a re-
source acquisition step. Thus the local enabling relation provides a formalization
of “loosely connected” processes in the spirit of Dijkstra.

The following result connects the local enabling relations which model
interactive execution in an environment that respects a resource context, and
the effect relations which represent interference-free executions, when is
a sequential trace.

Lemma 1 (Empty Transfer Lemma)
Let be a finite trace, let be the set of resource names occurring in
actions of and let be the resource context
Then if and only if

Theorem 2 (Respect for Resources)
If and then and

Note that these results imply the corresponding property for sequential traces.

Corollary 3
If and then and

The following parallel decomposition property relates a local computation
of a parallel program to local computations of its components. If the critical
identifiers of and are protected by resources in a local computation of

can be “projected” into a local computation of and a local computation
of In stating this property we use as an abbreviation for

Theorem 4 (Parallel Decomposition)
Suppose and

where and Suppose and

If then
or

If then
or

or there are disjoint heaps such that and

TEAM LinG

A Semantics for Concurrent Separation Logic 31

The definition of local enabling formalizes the notion of a computation by a
process, in an environment that respects resources, and “minds its own business”
by obeying the ownership policy of a given resource context. This leads us to
the following rigorous formulation of validity. Again we write for

Definition 5.
The formula is valid if for all traces of all local states such
that and all if and
then and

This definition uses the local enabling relation, so that the quantification ranges
over local states consistent with for which
Furthermore, this notion of validity involves all traces of not just the sequential
traces and not just the finite traces9.

When is the empty context and validity of
implies the usual notion of partial correctness together with the guaranteed
absence of runtime errors. More generally, the same implication holds when

and is the context
We now come to the main result of this paper: soundness of our logic.

Theorem 6 (Soundness)
Every provable formula is valid.

Proof:
Show that each well formed instance of an inference rule is sound: if the rule’s
premisses and conclusion are well formed, the side conditions hold, and the
premisses are valid, then the conclusion is valid. It then follows, by induction on
the length of the derivation, that every provable formula is valid.

We give details for the PARALLEL rule.

PARALLEL COMPOSITION

Suppose that and are well formed and valid,
and that and

It is clear that is well formed. We must show that
is valid.

Let and suppose and
Since we

also have and
Let and Choose traces and such
that If the Parallel Decomposition Lemma would
imply that or
Neither of these is possible, since they contradict the assumed validity of

9 The infinite traces only really matter in the no-abort requirement, since we never
get when is infinite and is a proper state.

TEAM LinG

32 S. Brookes

the premisses and If is infinite that is
all we need. Otherwise is finite, and has the form Again by
the Parallel Decomposition Lemma and validity of the premisses, there are
heaps such that

and Since does not
depend on and does not depend on we also have

and from which it follows that
as required.

6 Provability Implies No Races

For a process holding resource set A and a corresponding global state
let This is the “local” portion of the global store “visible”
to the process by virtue of its current resource set.

The following result shows how the local effect of an action relates to its global
effect, modulo the protection policy imposed by the resource context, assuming
that the process performing the action owns resources in A and the global heap
contains a sub-heap in which the resource invariants for the available resources
hold, separately.

Lemma 7 (Connection Property)
Let be a global state and suppose with

If then

If then
either
or there are heaps such that
and

We can then deduce the following result for all commands letting
and using induction on trace structure.

Corollary 8
Let suppose and

If then

If then
either
or there are heaps such that
and

TEAM LinG

A Semantics for Concurrent Separation Logic 33

Finally, combining this with the definition of validity we obtain a link with
the earlier notion of “sequential validity”, which we can express rigorously in
terms of the interference-free enabling relations

Theorem 9 (Valid Implies Race-Free)
If is valid and well formed, then is error-free from every global
state satisfying More specifically, for all states and all traces

if and then and

Combining this result with the Soundness Theorem, it follows that provability
of implies that is race-free from all states satisfying

Acknowledgements

I have benefitted immensely from discussions with Peter O’Hearn, whose ideas
from [11] prompted this work; John Reynolds, who suggested treating races
catastrophically; and Josh Berdine, whose insights led to technical improve-
ments. The anonymous referees also made helpful suggestions.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

P. Brinch Hansen. Structured multiprogramming. Comm. ACM, 15(7):574-578, July
1972.
P. Brinch Hansen. Concurrent programming concepts. ACM Computing Surveys
5(4):223-245, December 1973.
S. Brookes, Traces, pomsets, fairness and full abstraction for communicating pro-
cesses. Proc. CONCUR 2002, Brno. Springer LNCS vol. 2421, pp. 466-482. August
2002.
S. Brookes. Communicating Parallel Processes: Deconstructing CSP. In: Mille-
nium Perspectives in Computer Science, Proc. 1999 Oxford-Microsoft Sym-
posium in honour of Sir Tony Hoare. Palgrave, 2000.
S. Brookes. Full abstraction for a shared-variable parallel language. Inf. Comp., vol
127(2):145-163, Academic Press, June 1996.
E. W. Dijkstra. Cooperating sequential processes. In: Programming Languages,
F. Genuys (editor), pp. 43-112. Academic Press, 1968.
C.A.R. Hoare, Towards a Theory of Parallel Programming. In Operating Sys-
tems Techniques, C. A. R. Hoare and R. H. Perrott, editors, pp. 61-71, Academic
Press, 1972.
S. Isthiaq and P. W. O’Hearn. BI as an assertion language for mutable data struc-
tures. Proc. POPL conference, pp. 36-49, January 2001.
C.B. Jones. Specification and design of (parallel) programs. Proc. IFIP Conference,
1983.
H.C. Lauer. Correctness in operating systems. Ph. D. thesis, Carnegie Mellon Uni-
versity, 1973.
P. W. O’Hearn. Notes on separation logic for shared-variable concurrency. Unpub-
lished manuscript, January 2002.

TEAM LinG

34 S. Brookes

12.

13.

14.

15.

16.

17.

18.

P.W. O’Hearn. Resources, Concurrency, and Local Reasoning. This volume,
Springer LNCS, CONCUR 2004, London, August 2004.
P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and Information Hiding.
Proc. POPL conference, pp 268-280, Venice. ACM Press, January 2004.
P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215-244, June 1999.
S. Owicki and D. Gries, Verifying properties of parallel programs: An axiomatic
approach, Comm. ACM. 19(5):279-285, May 1976.
D. Park, On the semantics of fair parallelism. In: Abstract Software Specifi-
cations, Springer-Verlag LNCS vol. 86, 504–526, 1979.
J.C. Reynolds, Separation logic: a logic for shared mutable data structures, Invited
paper. Proc. IEEE Conference on Logic in Computer Science, LICS 2002, pp.
55-74. IEEE Computer Society, 2002.
J. C. Reynolds. Lecture notes on separation logic (15-819A3), chapter 8, page
178. Department of Computer Science, Carnegie-Mellon University, Spring 2003.
Revised May 23, 2003.

TEAM LinG

A Survey of Regular Model Checking

Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Mayank Saksena

Dept. of Information Technology, P.O. Box 337, S-751 05 Uppsala, Sweden
{parosh,bengt,marcusn,mayanks}@it.uu.se

Abstract. Regular model checking is being developed for algorithmic
verification of several classes of infinite-state systems whose configura-
tions can be modeled as words over a finite alphabet. Examples include
parameterized systems consisting of an arbitrary number of homogeneous
finite-state processes connected in a linear or ring-formed topology, and
systems that operate on queues, stacks, integers, and other linear data
structures. The main idea is to use regular languages as the represen-
tation of sets of configurations, and finite-state transducers to describe
transition relations. In general, the verification problems considered are
all undecidable, so the work has consisted in developing semi-algorithms,
and decidability results for restricted cases. This paper provides a survey
of the work that has been performed so far, and some of its applications.

1 Introduction

A significant research effort is currently being devoted to extending the appli-
cability of algorithmic verification to parameterized and infinite-state systems,
using approaches based on abstraction, deductive techniques, decision proce-
dures, etc. One major approach is to extend the paradigm of symbolic model
checking [BCMD92] to new classes of models by an appropriate symbolic repre-
sentation; examples include timed automata, systems with unbounded commu-
nication channels, Petri nets, and systems that operate on integers and reals.

Regular model checking is such an extension, in which sets of states and tran-
sition relations are represented by regular sets, typically over finite or infinite
words or tree structures. Most work has considered models whose configurations
can be represented as finite words of arbitrary length over a finite alphabet.
This includes parameterized systems consisting of an arbitrary number of homo-
geneous finite-state processes connected in a linear or ring-formed topology, and
systems that operate on queues, stacks, integers, and other linear data struc-
tures. Regular model checking was advocated by Kesten et al. and
by Boigelot and Wolper [WB98], as a uniform framework for analyzing several
classes of parameterized and infinite-state systems. The idea is that regular sets
will provide an efficient representation of infinite state spaces, and play a role
similar to that played by Binary Decision Diagrams (BDDs) for symbolic model
checking of finite-state systems. One can also exploit automata-theoretic algo-
rithms for manipulating regular sets. Such algorithms have been successfully
implemented, e.g., in the Mona system.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 35–48, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

36 P.A. Abdulla et al.

A generic task in symbolic model checking is to compute properties of the set
of reachable states, in order to verify safety properties. For finite-state systems
this is typically done by state-space exploration, but for infinite-state systems
this procedure terminates only if there is a bound on the distance (in number
of transitions) from the initial configurations to any reachable configuration. An
analogous observation holds if we perform a reachability analysis backwards, by
iteration-based methods [CES86,QS82] from a set of “unsafe” configurations. A
parameterized or infinite-state system does not have such a bound, and any non-
trivial model checking problem is undecidable. In contrast to deductive applica-
tion of systems like Mona [BK98], the goal in regular model checking is to verify
system properties algorithmically. An important challenge is therefore to devise
so-called acceleration techniques, which calculate the effect of arbitrarily long se-
quences of transitions. This problem has been addressed in regular model check-
ing [JN00,BJNT00,AJNd02]. In general, the effect of acceleration is not com-
putable. However, computability have been obtained for certain classes [JN00].
Analogous techniques for computing accelerations have successfully been devel-
oped for several classes of parameterized and infinite-state systems, e.g., systems
with unbounded FIFO channels [BG96,BGWW97,BH97,ABJ98], systems with
stacks [BEM97,Cau92,FWW97,ES01], and systems with counters [BW94,CJ98].

In this paper, we survey the available work on regular model-checking. The
use of regular sets to model and specify systems is discussed in Section 2. Tech-
niques for computing invariants and reachable loops are surveyed in Section 3.
Finally, some extensions are discussed in Section 4.

2 Framework

Model checking is concerned with automated analysis of transition systems, each
consisting of

a set of configurations (or states), some of which are initial, and
a transition relation, which is a binary relation on the set of configurations.

The configurations represent possible “snapshots” of the system state, and
the transition relation describes how these can evolve over time. Most work on
model checking assumes that the set of configurations is finite, but significant
effort is underway to develop model checking techniques for transition systems
with infinite sets of configurations.

In its simplest form, the regular model checking framework represents a tran-
sition system as follows.

A configuration (state) of the system is a word over a finite alphabet
The set of initial configurations is a regular set over
The transition relation is a regular and length-preserving relation on It
is represented by a finite-state transducer over which accepts all
words such that is in the transition
relation. Sometimes, the transition relation is given as a union of a finite
number of relations, each of which is called an action.

TEAM LinG

A Survey of Regular Model Checking 37

Given a transducer T, we often abuse notation and use T also to denote the
relation defined by the transducer. For a set S of configurations and a binary
relation T on configurations, let denote the set of configurations such
that T for some let denote the transitive closure of T and

denote the reflexive transitive closure of T. Let denote the set of pairs of
elements in S.

In the regular model checking framework it is possible to model parame-
terized systems with linear or ring-shaped topologies, e.g., by letting each po-
sition in the word model the state of a system component. It is also possible
to model programs that operate on linear unbounded data structures such as
queues, stacks, integers, etc. For instance, a stack can be modeled by letting
each position in the word represent a position in the stack. The restriction
to length-preserving transducers implies that we cannot dynamically “create”
new stack positions. Therefore the stack should initially contain an arbitrary
but bounded number of empty stack positions, which are “statically allocated”.
We can then faithfully model all finite computations of the system, by ini-
tially allocating sufficiently many empty stack positions. However, it may not
be possible to model faithfully all infinite computations of the system. Thus,
the restriction to length-preserving transducers introduces no limitations for an-
alyzing safety properties, but may incur restrictions on the ability to specify
and verify liveness properties of systems with dynamically allocated data struc-
tures.

2.1 Examples

In Figure 1 we consider a token passing protocol: a simple parameterized system
consisting of an arbitrary (but finite) number of processes organized in a linear
fashion. Initially, the left-most process has the token. In each step, the process
currently having the token passes it to the right. A configuration of the system
is a word over the alphabet where represents that the process has the
token, and represents not having it. For instance, the word nntnn represents a
configuration of a system with five processes where the third process has the to-
ken. The set of initial states is given by the regular expression (Figure 1(a)).
The transition relation is represented by the transducer in Figure 1(b). For in-
stance, the transducer accepts the word representing
the pair (nntnn, nnntn) of configurations where the token is passed from the
third to the fourth process.

Fig. 1. Initial set of states and transition relation
TEAM LinG

38 P.A. Abdulla et al.

As a second example, we consider a system consisting of a finite-state process
operating on one unbounded FIFO channel. Let Q be the set of control states of
the process, and let M be the (finite) set of messages which can reside inside the
channel. A configuration of the system is a word over the alphabet
where the padding symbol represents an empty position in the channel. For
instance the word corresponds to a configuration where the process
is in state and the channel (of length four) contains the messages and
in this order. The set of configurations of the system can thus be described by
the regular expression

By allowing arbitrarily many padding symbols one can model channels
of arbitrary but bounded length. As an example, the action where the process
sends the message to the channel and changes state from to is modeled
by the transducer in Figure 2. In the figure, “M” is used to denote any message
in M.

Fig. 2. Transducer for sending a message to the channel

2.2 Verification Problems
We will consider two types of verification problems in this paper.

The first problem is verification of safety properties. A safety property is of
form “bad things do not happen during system execution”. A safety property can
be verified by solving a reachability problem. Formulated in the regular model
checking framework, the corresponding problem is the following: given a set
of initial configurations I, a regular set of bad configurations B and a transition
relation specified by a transducer T, does there exist a path from I to B through
the transition relation T ? This amounts to checking whether
The problem can be solved by computing the set and checking
whether it intersects B.

The second problem is verification of liveness properties. A liveness property
is of form “a good thing happens during system execution”. Often, liveness prop-
erties are verified using fairness requirements on the model, which can state that
certain actions must infinitely often be either disabled or executed. Since, by the
restriction to length-preserving transducers, any infinite system execution can
only visit a finite set of configurations, the verification of a liveness property can
be reduced to a repeated reachability problem. The repeated reachability problem

TEAM LinG

A Survey of Regular Model Checking 39

asks, given a set of initial configurations I, a set of accepting configurations F
and a transition relation T, whether there exists an infinite computation from
I through T that visits F infinitely often. By letting F be the configurations
where the fairness requirement is satisfied, and by excluding states where the
“good thing” happens from T, the liveness property is satisfied if and only if the
repeated reachability problem is answered negatively.

Since the transition relation is length-preserving, and hence each execution
can visit only a finite set of configurations, the repeated reachability problem
can be solved by checking whether there exists a reachable loop containing some
configuration from F. This can be checked by computing and
checking whether this relation intersects Here Id is the identity relation on
the set of configurations, and is as before.

Sets like and relations like are in general not regular or even
computable (note that T could model the computation steps of a Turing ma-
chine). Even if they are regular, they are sometimes not effectively computable.
In these cases, the above verification problems cannot be solved by the proposed
techniques. Therefore, a main challenge in regular model checking is to design
semi-algorithms which successfully compute such sets and relations for as many
examples as possible. In Section 3, we briefly survey some techniques that have
been developed for this purpose.

2.3 A Specification Logic

The translation from a problem of verifying liveness under fairness requirements
to a repeated reachability problem can be rather tricky. One way to make the
task easier is to provide an intuitive syntax for modeling and specification, which
can be automatically translated to repeated reachability problems, in analogy
with the way that linear-time temporal logic formulas are translated to Büchi
automata [VW86].

A logic LTL(MSO) was proposed for regular model checking in
It uses a MSO (monadic second-order logic) over finite words to specify regular
sets, and LTL to specify temporal properties. The problem of model checking a
formula in LTL(MSO) can be automatically translated into a repeated reacha-
bility problem

The logic LTL(MSO) combines (under certain restrictions) temporal opera-
tors of LTL [KPR98], including (always) and (eventually), and MSO quan-
tification over positions (first-order) and sets of positions (second-order). Models
of LTL(MSO) formulas are sequences of configurations (i.e., words), where the
first-order position variables denote positions in configurations, and the second-
order variables denote sets of positions. For instance, if is a formula which
specifies a temporal property at position in the word, then the formula
specifies that eventually holds at each position in the word.

In LTL(MSO), one can represent the configuration of a system by configura-
tion predicates, which can be seen as Boolean arrays indexed by positions. For
instance, in the token passing example, we can introduce a configuration predi-
cate where the atomic formula is interpreted as “the process at position

TEAM LinG

40 P.A. Abdulla et al.

has the token”, and as “the process at position will have the token in the
next time step”.

Example. Our running example, token passing, is modeled in LTL(MSO) below
following the style of TLA [Lam94], where the system and the property of interest
are both specified by formulas. The local states of processes are represented by
a configuration predicate – for every we have that is true if and only if
process has the token. The set of initial states is modeled by initial, where only
the first process has the token. The transition relation where the token is passed
from position to position is modeled by Finally, the entire system
model is specified by system. The system actions are “one process passes the
token, or all processes idle”. Models of this formula correspond to runs of the
system.

An example of a safety property for this system is “two different processes
may not have the token at the same time”:

In order to specify termination (“the last process eventually gets the to-
ken”) we add a fairness constraint for the token passing action. For an action

let represent the set of states where the action can be taken.
can be expressed in the logic, using an existential quantification of

the primed configuration predicates in

To check that the algorithm satisfies the safety property, we translate the
property system ¬safety to a reachability problem. To check that the al-
gorithm satisfies the liveness property, we translate the property system
fairness ¬itermination to a repeated reachability problem.

3 Algorithms

In Section 2, we stated a verification problem as that of computing a representa-
tion of (or for some transition relation T and some set of configurations
I. In some cases we also have a set of bad configurations B and we want to check
whether Algorithms for symbolic model checking are often based
on starting from I and repeatedly applying T. As a running illustration, we will

TEAM LinG

A Survey of Regular Model Checking 41

consider the problem of computing the transitive closure for the transducer
in Figure l(b). A first attempt is to compute the composition of T with
itself times for For example, is the transition relation where
the token gets passed three positions to the right. Its transducer is given below.

A transducer for is one where the token gets passed an arbitrary number
of times, given below.

The challenge is to derive the above transducer algorithmically. Obviously,
it cannot be done naively by simply computing the approximations for

since this will not converge. Some acceleration or widening techniques
must be developed that compute a representation of by other means. In this
section, we present some techniques developed in the literature for that purpose.

3.1 Quotienting

Several techniques in the literature are based on suitable quotienting of trans-
ducers that represent approximations of for some value(s) of This involves
finding an equivalence relation on the states of approximations, and to merge
equivalent states, obtaining a quotient transducer. For instance, in the transducer
that represents above, we can define the states 1,2, and 3 to be equivalent. By
merging them, we obtain the transducer which in this example happens
to be equivalent to

One problem is that quotienting in general increases the language accepted
by a transducer: usually with strict inclusion. This problem
was resolved in [AJNd02,BJNT00,DLS01,AJMd02] by characterizing equivalence
relations such that is equivalent to for any transducer T, i.e.,
the quotienting does not increase the transitive closure of the transducer. To
explain the idea, let us first build explicitly a transducer for as the union of
transducers for Each state of is labeled with a sequence of
states from T, resulting from the product construction using copies of T. The
result is called the history transducer. The history transducer corresponding to
Figure 1(b) is shown below.

TEAM LinG

42 P.A. Abdulla et al.

Recall minimization algorithms for automata. They are based on building
a forward bisimulation on the states, and then carry out minimization by
quotienting. For instance, in the above history transducer, all states with names
of form for any are forward bisimilar. Analogously, we can find a
backward bisimulation For instance, all states with names of form

are backward bisimilar. Dams et al. [DLS01] showed how to combine a
forward and a backward bisimulation into an equivalence relation
which preserves the transitive closure of the transducer. In [AJNd03], this result
was generalized to consider simulations instead of bisimulations. The simulations
can be obtained by computing properties of the original automaton T (as in
[AJNd02,AJNd03]), or on successive approximations of (as in [DLS01]).

From the results in [AJNd03] it follows for the above history transducer that
the states with names in can be merged for and the same holds for

The equivalence classes for that transducer would be and
Hence, it can be quotiented to the following transducer, which can be

minimized to the three-state representation shown earlier.

3.2 Abstraction

In recent work, Bouajjani et al. [BHV04] apply abstraction techniques to au-
tomata that arise in the iterative computation of When computing the

TEAM LinG

A Survey of Regular Model Checking 43

sequence the automata that arise in the computation
may all be different or may be very large and contain information that is not
relevant for checking whether has a nonempty intersection with the set
of bad configurations B. Therefore, each iterate is abstracted by quo-
tienting under some equivalence relation In contrast to the techniques of
[AJNd02,BJNT00,DLS01,AJMd02], the abstraction does not need to preserve
the language accepted, i.e., can be any over-approximation of
or even of The procedure calculates the sequence of approximations of
form Convergence to a limit can be ensured by
choosing to have finite index.

If now we can conclude (by that
has an empty intersection with B. Otherwise, we try to trace back the

computation from B to I. If this succeeds, a counterexample has been found,
otherwise the abstraction must be refined by using a finer equivalence relation,
from which a more exact approximation can be calculated, etc.

The technique relies on defining suitable equivalence relations. One way is
to use the automaton for B. We illustrate this on the token passing example.
Suppose that B is given by the automaton in Fig 3(a), denoting that the last
process has the token. Each state in an automaton A has a post language

which is the set of words accepted starting from that state. For example,
in the automaton for B we have and The post
languages are used to define such that holds if for all states of B
we have exactly when Each
equivalence class of can be represented by a Boolean vector indexed by states
of B, which is true on position exactly when the equivalence class members
have nonempty intersection with This is one way to get a finite index
equivalence relation.

We show an example of an automaton A in Fig 3(b) with its corresponding
abstract version in Fig 3(c). Considering the states of A, we observe that the
post languages of states 0 and 1 both have a nonempty intersection with the
post language and an empty intersection with the post language containing
the empty string. The post language of state 2 have an empty intersection with

Fig. 3. Applying abstraction

TEAM LinG

44 P.A. Abdulla et al.

and an nonempty intersection with the post language containing the empty
string.

If a spurious counterexample is found, i.e. a counterexample occurring when
quotienting with an equivalence but not in the original system, we need
to refine the equivalence and start again. Automata representing parts of the
counterexample can be used, in the same way as the automaton B above, to
define an equivalence. In [BHV04], the equivalence is refined by using both B
and automata representing parts of the counterexample. This prevents the same
counterexample from occurring twice. Using abstraction can potentially greatly
reduce the execution time, since we only need to verify that we cannot reach B
and therefore it may be that less information about the structure of needs
to be stored.

3.3 Extrapolation

Another technique for calculating is to speed up the iterative computation
by extrapolation techniques that try to guess the limit. The idea is to detect a
repeating pattern – a regular growth – in the iterations, from which one guesses
the effect of arbitrarily many iterations. The guess may be exactly the limit, or
an approximation of it.

In [BJNT00,Tou01], the extrapolation is formulated in terms of rules for
guessing from observed growth patterns among the approximations

Following Bouajjani et al. [BJNT00], if I is a regular expression
which is a concatenation of form and in the successive approximations
we observe a growth of form for some regular expression

then the guess for the limit is Touili [Tou01] extends this
approach to more general situations. One of these is when is a concatenation
of form and

The guess for the limit is in this case

For example, if and T is a relation which changes an to a then
T is (i.e., each step adds either to the left of or

to the right). The above rule guesses the limit to be
Touili also suggests other, more general, rules.

Having formed a guess for the limit, we apply a convergence test which
checks whether If it succeeds, we can conclude that
The work in [BJNT00] and [Tou01] also provide results which state that under
some additional conditions, we can in fact conclude that i.e., that

is the exact limit.
Boigelot et al. [BLW03] extend the above techniques by considering growth

patterns for subsequences of consisting of infinite sequences

TEAM LinG

A Survey of Regular Model Checking 45

of sample points, noting that the union of the approximations in any such sub-
sequence is equal to the union of the approximations in the full sequence. They
apply this idea to iterate a special case of relations, arithmetic transducers, which
operate on binary encodings of integers, and give a sufficient criterion for exact
extrapolation.

We illustrate these approaches, using our token passing example. From the
initial set we get and
so on. The methods above detect the growth and guess that the
limit is In this case, the completeness results of [BJNT00,Tou01] allow to
conclude that the guessed limit is exact.

Fig. 4. Extrapolating token passing

4 Further Directions

In previous sections, we have presented main techniques in regular model check-
ing for the case where system configurations are modeled as finite words, and
transition relations are modeled as length-preserving transducers. In this section,
we briefly mention some work where these restrictions are lifted.
Non-Length-Preserving Transducers. Lifting the restriction of length-preserv-
ation from transducers allows to model more easily dynamic data structures
and parameterized systems of processes with dynamic process creation. The
techniques have been extended, see, e.g., [DLS01,BLW03].
Infinite Words. The natural extension to modeling systems by infinite words has
been considered by Boigelot et al. [BLW04], having the application to real arith-
metic in mind. Regular sets and transducers must then be represented by Büchi
automata. To avoid the high complexity of some operations on Büchi automata,
the approach is restricted to sets that can be defined by weak deterministic Büchi
automata.
Finite Trees. Regular sets of trees can in principle be analyzed in the same way
as regular sets of words, as was observed also in With some complica-
tions, similar techniques can be used for symbolic verification
[AJMd02,BT02]. Some techniques have been implemented and used to verify
simple token-passing algorithms [AJMd02], or to perform data-flow analysis for
parallel programs with procedures [BT02].

TEAM LinG

46 P.A. Abdulla et al.

Context Free Languages. Fisman and Pnueli [FP01] use representations of con-
text-free languages to verify parameterized algorithms, whose symbolic verifica-
tion require computation of invariants that are non-regular sets of finite words.
The motivating example is the Peterson algorithm for mutual exclusion among

processes [PS81].

References

[ABJ98]

[AJMd02]

[AJNd02]

[AJNd03]

[BCMD92]

[BEM97]

[BG96]

[BGWW97]

[BH97]

[BHV04]

Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly
analysis of systems with unbounded, lossy fifo channels. In Proc.
Int. Conf, on Computer Aided Verification, volume 1427 of Lecture Notes
in Computer Science, pages 305–318, 1998.
Parosh Aziz Abdulla, Bengt Jonsson, Pritha Mahata, and Julien d’Orso.
Regular tree model checking. In Proc. Int. Conf. on Computer Aided
Verification, volume 2404 of Lecture Notes in Computer Science, 2002.
P.A. Abdulla, B. Jonsson, Marcus Nilsson, Julien d’Orso, and M. Saksena.
Regular model checking for MSO + LTL. In Proc. Int. Conf. on
Computer Aided Verification, 2004. to appear.
Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso.
Regular model checking made simple and efficient. In Proc. CONCUR
2002, Int. Conf. on Concurrency Theory, volume 2421 of Lecture
Notes in Computer Science, pages 116–130, 2002.
Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso.
Algorithmic improvements in regular model checking. In Proc. Int.
Conf. on Computer Aided Verification, volume 2725 of Lecture Notes in
Computer Science, pages 236–248, 2003.
J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Symbolic model
checking: states and beyond. Information and Computation, 98:142–
170, 1992.
A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Push-
down Automata: Application to Model Checking. In Proc. Intern. Conf.
on Concurrency Theory (CONCUR’97). LNCS 1243, 1997.
B. Boigelot and P. Godefroid. Symbolic verification of communication
protocols with infinite state spaces using QDDs. In Alur and Henzinger,
editors, Proc. Int. Conf. on Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science, pages 1–12. Springer Verlag, 1996.
B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. In Proc. of the Fourth International Static Analysis Symposium,
Lecture Notes in Computer Science. Springer Verlag, 1997.
A. Bouajjani and P. Habermehl. Symbolic reachability analysis of fifo-
channel systems with nonregular sets of configurations. In Proc. ICALP
’97, International Colloquium on Automata, Languages, and Pro-
gramming, volume 1256 of Lecture Notes in Computer Science, 1997.
A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In Proc. Int. Conf. on Computer Aided Verification, 2004.
to appear.

TEAM LinG

A Survey of Regular Model Checking 47

[BJNT00]

[BK98]

[BLW03]

[BLW04]

[BT02]

[BW94]

[Cau92]

[CES86]

[CJ98]

[DLS01]

[ES01]

[FP01]

[FWW97]

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model check-
ing. In Emerson and Sistla, editors, Proc. Int. Conf. on Computer
Aided Verification, volume 1855 of Lecture Notes in Computer Science,
pages 403–418. Springer Verlag, 2000.
D.A. Basin and N. Klarlund. Automata based symbolic reasoning in
hardware verification. Formal Methods in Systems Design, 13(3) :255–
288, November 1998.
Bernard Boigelot, Axel Legay, and Pierre Wolper. Iterating transducers
in the large. In Proc. Int. Conf. on Computer Aided Verification,
volume 2725 of Lecture Notes in Computer Science, pages 223–235, 2003.
Bernard Boigelot, Axel Legay, and Pierre Wolper. Omega regular model
checking. In K. Jensen and A. Podelski, editors, Proc. TACAS ’04,
Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, volume 2988 of Lecture Notes in Computer Science, pages
561–575. Springer Verlag, 2004.
Ahmed Bouajjani and Tayssir Touili. Extrapolating Tree Transforma-
tions. In Proc. Int. Conf. on Computer Aided Verification, volume
2404 of Lecture Notes in Computer Science, 2002.
B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
Proc. Int. Conf. on Computer Aided Verification, volume 818 of Lec-
ture Notes in Computer Science, pages 55–67. Springer Verlag, 1994.
Didier Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106(1):61–86, Nov. 1992.
E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specification. ACM
Trans. on Programming Languages and Systems, 8(2):244–263, April
1986.
H. Comon and Y. Jurski. Multiple counters automata, safety analysis
and presburger arithmetic. In CAV’98. LNCS 1427, 1998.
D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In G. Berry,
H. Comon, and A. Finkel, editors, Computer Aided Verification, volume
2102 of Lecture Notes in Computer Science, 2001.
J. Esparza and S. Schwoon. A BDD-based model checker for recursive
programs. In Berry, Comon, and Finkel, editors, Proc. Int. Conf. on
Computer Aided Verification, volume 2102 of Lecture Notes in Computer
Science, pages 324–336, 2001.
Dana Fisman and Amir Pnueli. Beyond regular model checking. In Proc.
21th Conference on the Foundations of Software Technology and Theo-
retical Computer Science, Lecture Notes in Computer Science, December
2001.
A. Finkel, B. Willems, , and P. Wolper. A direct symbolic approach to
model checking pushdown systems (extended abstract). In Proc. Infin-
ity‘97, Electronic Notes in Theoretical Computer Science, Bologna, Aug.
1997.
J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Proc.
TACAS ’95, Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, volume 1019 of Lecture Notes in Computer Sci-
ence, 1996.

TEAM LinG

48 P.A. Abdulla et al.

[JN00]

[KPR98]

[Lam94]

[PS81]

[QS82]

[Tou01]

[VW86]

[WB98]

Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relations
for verifying infinite-state systems. In S. Graf and M. Schwartzbach,
editors, Proc. TACAS ’00, Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, volume 1785 of Lecture Notes
in Computer Science, 2000.
Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich assertional languages. Theoretical Computer
Science, 256:93–112, 2001.
Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear
temporal logic specifications. In Proc. ICALP ’98, International
Colloquium on Automata, Languages, and Programming, volume 1443 of
Lecture Notes in Computer Science, pages 1–16. Springer Verlag, 1998.
L. Lamport. The temporal logic of actions. ACM Trans. on Programming
Languages and Systems, 16(3):872–923, May 1994.
G.E. Peterson and M.E. Stickel. Myths about the mutal exclusion prob-
lem. Information Processing Letters, 12(3):115–116, June 1981.
J.P. Queille and J. Sifakis. Specification and verification of concur-
rent systems in cesar. In 5th International Symposium on Programming,
Turin, volume 137 of Lecture Notes in Computer Science, pages 337–352.
Springer Verlag, 1982.
T. Touili. Regular Model Checking using Widening Techniques. Elec-
tronic Notes in Theoretical Computer Science, 50(4), 2001. Proc. Work-
shop on Verification of Parametrized Systems (VEPAS’01), Crete, July,
2001.
M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Proc. LICS ’86, IEEE Int. Symp. on
Logic in Computer Science, pages 332–344, June 1986.
Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but
regular state spaces. In Proc. 10th Int. Conf. on Computer Aided Verifi-
cation, volume 1427 of Lecture Notes in Computer Science, pages 88–97,
Vancouver, July 1998. Springer Verlag.

TEAM LinG

Resources, Concurrency and Local Reasoning

Peter W. O’Hearn

Queen Mary, University of London

Abstract. In this paper we show how a resource-oriented logic, sep-
aration logic, can be used to reason about the usage of resources in
concurrent programs.

1 Introduction

Resource has always been a central concern in concurrent programming. Often,
a number of processes share access to system resources such as memory, pro-
cessor time, or network bandwidth, and correct resource usage is essential for
the overall working of a system. In the 1960s and 1970s Dijkstra, Hoare and
Brinch Hansen attacked the problem of resource control in their basic works on
concurrent programming [8,9,11,12,1,2]. In addition to the use of synchroniza-
tion mechanisms to provide protection from inconsistent use, they stressed the
importance of resource separation as a means of controlling the complexity of
process interactions and reducing the possibility of time-dependent errors. This
paper revisits their ideas using the formalism of separation logic [22].

Our initial motivation was actually rather simple-minded. Separation logic
extends Hoare’s logic to programs that manipulate data structures with embed-
ded pointers. The main primitive of the logic is its separating conjunction, which
allows local reasoning about the mutation of one portion of state, in a way that
automatically guarantees that other portions of the system’s state remain unaf-
fected [16]. Thus far separation logic has been applied to sequential code but,
because of the way it breaks state into chunks, it seemed as if the formalism
might be well suited to shared-variable concurrency, where one would like to
assign different portions of state to different processes.

Another motivation for this work comes from the perspective of general
resource-oriented logics such as linear logic [10] and BI [17]. Given the develop-
ment of these logics it might seem natural to try to apply them to the problem
of reasoning about resources in concurrent programs. This paper is one attempt
to do so – separation logic’s assertion language is an instance of BI – but it is
certainly not a final story. Several directions for further work will be discussed
at the end of the paper.

There are a number of approaches to reasoning about imperative concurrent
programs (e.g., [19,21,14]), but the ideas in an early paper of Hoare on concur-
rency, “Towards a Theory of Parallel Programming [11]” (henceforth, TTPP),
fit particularly well with the viewpoint of separation logic. The approach there
revolves around a concept of “spatial separation” as a way to organize think-
ing about concurrent processes, and to simplify reasoning. Based on compiler-

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 49–67, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

50 P.W. O’Hearn

enforceable syntactic constraints for ensuring separation, Hoare described formal
partial-correctness proof rules for shared-variable concurrency that were beau-
tifully modular: one could reason locally about a process, and simple syntactic
checks ensured that no other process could tamper with its state in a way that
invalidated the local reasoning.

So, the initial step in this work was just to insert the separating conjunction
in appropriate places in the TTPP proof rules, or rather, the extension of these
rules studied by Owicki and Gries [20]. Although the mere insertion of the sep-
arating conjunction was straightforward, we found we could handle a number of
daring, though valuable, programming idioms, and this opened up a number of
unexpected (for us) possibilities.

To describe the nature of the daring programs we suppose that there is a
way in the programming language to express groupings of mutual exclusion.
A “mutual exclusion group” is a class of commands whose elements (or their
occurrences) are required not to overlap in their executions. Notice that there
is no requirement of atomicity; execution of commands from a mutual exclu-
sion group might very well overlap with execution of a command not in that
group. In monitor-based concurrency each monitor determines a mutual exclu-
sion group, consisting of all calls to the monitor procedures. When program-
ming with semaphores each semaphore determines a group, the pair of the
semaphore operations and In TTPP the collection of conditional
critical regionswith when B do C with common resource name forms a mu-
tual exclusion group. With this terminology we may now state one of the crucial
distinctions in the paper.

A program is cautious if, whenever concurrent processes access the same
piece of state, they do so only within commands from the same mutual
exclusion group. Otherwise, the program is daring.

Obviously, the nature of mutual exclusion is to guarantee that cautious pro-
grams are not racy, where concurrent processes attempt to access the same
portion of state at the same time without explicit synchronization. The simplic-
ity and modularity of the TTPP proof rules is achieved by syntactic restrictions
which ensure caution; a main contribution of this paper is to take the method
into the realm of daring programs, while maintaining its modular nature.

Daring programs are many. Examples include: double-buffered I/O, such as
where one process renders an image represented in a buffer while a second process
is filling a second buffer, and the two buffers are switched when an image changes;
efficient message passing, where a pointer is passed from one process to another
to avoid redundant copying of large pieces of data; memory managers and other
resource managers such as thread and connection pools, which are used to avoid
the overhead of creating and destroying threads or connections to databases.
Indeed, almost all concurrent systems programs are daring, such as microkernel
OS designs, programs that manage network connectivity and routing, and even
many application programs such as web servers.

But to be daring is to court danger: If processes access the same portion of
state outside a common mutual exclusion grouping then they just might do so at

TEAM LinG

Resources, Concurrency and Local Reasoning 51

the same time, and we can very well get inconsistent results. Yet it is possible to
be safe, and to know it, when a program design observes a principle of resource
separation.

Separation Property. At any time, the state can be partitioned into that
“owned” by each process and each mutual exclusion group.

When combined with the principle that a program component only accesses
state that it owns, separation implies race-freedom.

Our proof system will be designed to ensure that any program that gets
past the proof rules satisfies the Separation Property. And because we use a
logical connective (the separating conjunction) rather than scoping constraints to
express separation, we are able to describe dynamically changing state partitions,
where ownership (the right to access) transfers between program components.
It is this that takes us safely into the territory of daring programs.

This paper is very much about fluency with the logic – how to reason with
it – rather than its metatheory; we refer the reader to the companion paper by
Stephen Brookes for a thorough theoretical analysis [4]. In addition to soundness,
Brookes shows that any proven program will not have a race in an execution
starting from a state satisfying its precondition.

After describing the proof rules we give two examples, one of a pointer-
transferring buffer and the other of a toy memory manager. These examples are
then combined to illustrate the modularity aspect. The point we will attempt
to demonstrate is that the specification for each program component is “local”
or “self contained”, in the sense that assertions make local remarks about the
portions of state used by program components, instead of global remarks about
the entire system state. Local specification and reasoning is essential if we are
ever to have reasoning methods that scale; of course, readers will have to judge
for themselves whether the specifications meet this aim.

This is a preliminary paper. In the long version we include several further
examples, including two semaphore programs and a proof of parallel mergesort.

2 The Programming Language

The presentation of the programming language and the proof rules in this section
and the next follows that of Owicki and Gries [20], with alterations to account for
the heap. As there, we will concentrate on programs of a special form, where we
have a single resource declaration, possibly prefixed by a sequence of assignments
to variables, and a single parallel composition of sequential commands.

It is possible to consider nested resource declarations and parallel composi-
tions, but the basic case will allow us to describe variable side conditions briefly

TEAM LinG

52 P.W. O’Hearn

in an old-fashioned, wordy style. We restrict to this basic case mainly to get
more quickly to examples and the main point of this paper, which is explo-
ration of idioms (fluency). We refer to [4] for a more modern presentation of the
programming language, which does not observe this restricted form.

A grammar for the sequential processes is included in Table 1. They include
constructs for while programs as well as operators for accessing a program heap.
The operations [E] := F and are for mutating and reading heap cells,
and the commands and dispose(E) are for allocating and
deleting cells. Note that the integer expressions E are pure, in that they do not
themselves contain any heap dereferencing [·]. Also, although expressions range
over arbitrary integers, the heap is addressed by non-negative integers only; the
negative numbers can be used to represent data apart from the addresses, such
as atoms and truth values, and we will do this without comment in examples
like in Section 4 where we include true, false and nil amongst the expressions
E (meaning, say, –1, –2 and –3).

The command for accessing a resource is the conditional critical region:

Here, B ranges over (heap independent) boolean expressions and C over
commands. Each resource name determines a mutual exclusion group: two with
commands for the same resource name cannot overlap in their executions. Exe-
cution of with when B doC can proceed if no other region for is currently
executing, and if the boolean condition B is true; otherwise, it must wait until
the conditions for it to proceed are fulfilled.

It would have been possible to found our study on monitors rather than
CCRs, but this would require us to include a procedure mechanism and it is
theoretically simpler not to do so.

Programs are subject to variable conditions for their well-formedness (from
[20]). We say that a variable belongs to resource if it is in the associated variable
list in a resource declaration. We require that

1.
2.

3.

a variable belongs to at most one resource;
if variable belongs to resource it cannot appear in a parallel process
except in a critical region for and
if variable is changed in one process, it cannot appear in another unless it
belongs to a resource.

with when B do C .

TEAM LinG

Resources, Concurrency and Local Reasoning 53

For the third condition note that a variable is changed by an assignment
command but not by in the latter it is a heap cell, rather than
a variable, that is altered.

These conditions ensure that any variables accessed in two concurrent pro-
cesses must be protected by synchronization. For example, the racy program

is ruled out by the conditions. In the presence of pointers these syntactic restric-
tions are not enough to avoid all races. In the legal program

if and denote the same integer in the starting state then they will be aliases
and we will have a race, while if and are unequal then there will be no race.

3 Proof Rules

The proof rules below refer to assertions from separation logic; see Table 2. The
assertions include the points-to relation the separating conjunction
the empty-heap predicate emp, and all of classical logic. The use of · · · in the
grammar means we are being open-ended, in that we allow for the possibility
of other forms such as the connective from BI or a predicate for describing
linked lists, as in Section 5. A semantics for these assertions has been included
in the appendix.

Familiarity with the basics of separation logic is assumed [22]. For now we
only remind the reader of two main points. First, means that the (current,
or owned) heap can be split into two components, one of which makes P true
and the other of which makes Q true. Second, to reason about a dereferencing
operation we must know that a cell exists in a precondition. For instance, if
{P}[10] := 42{Q} holds, where the statement mutates address 10, then P must
imply the assertion that 10 not be dangling. Thus, a precondition

TEAM LinG

54 P.W. O’Hearn

confers the right to access certain cells, those that it guarantees are not dangling;
this provides the connection between program logic and the intuitive notion of
“ownership” discussed in the introduction.

To reason about a program

we first specify a formula the resource invariant, for each resource name
These formulae must satisfy

any command changing a variable which is free in must occur
within a critical region for

Owicki and Gries used a stronger condition, requiring that each variable free
in belong to resource The weaker condition is due to Brookes, and allows
a resource invariant to connect the value of a protected variable with the value
of an unprotected one.

Also, for soundness we need to require that each resource invariant is “pre-
cise”. The definition of precision, and an example of Reynolds showing the need
to restrict the resource invariants, is postponed to Section 7; for now we will just
say that the invariants we use in examples will adhere to the restriction.

In a complete program the resource invariants must be separately established
by the initialization sequence, together with an additional portion of state that
is given to the parallel processes for access outside of critical regions. The re-
source invariants are then removed from the pieces of state accessed directly by
processes. This is embodied in the

RULE FOR COMPLETE PROGRAMS

For a parallel composition we simply give each process a separate piece of
state, and separately combine the postconditions for each process.

PARALLEL COMPOSITION RULE

Using this proof rule we can prove a program that has a potential race, as
long as that race is ruled out by the precondition.

Here, the in the precondition guarantees that and are not aliases.

TEAM LinG

Resources, Concurrency and Local Reasoning 55

It will be helpful to have an annotation notation for (the binary case of)
the parallel composition rule. We will use an annotation form where the overall
precondition and postcondition come first and last, vertically, and are broken up
for the annotated constituent processes; so the just-given proof is pictured

The reasoning that establishes the triples for sequential pro-
cesses in the parallel rule is done in the context of an assignment of invariants

to resource names This contextual assumption is used in the

CRITICAL REGION RULE

The idea of this rule is that when inside a critical region the code gets to see
the state associated with the resource name as well as that local to the process it
is part of, while when outside the region reasoning proceeds without knowledge
of the resource’s state.

The side condition “No other process...” refers to the form of a program as
composed of a fixed number of processes where an occurrence of
a with command will be in one of these processes

Besides these proof rules we allow all of sequential separation logic; see the
appendix. The soundness of proof rules for sequential constructs is delicate in
the presence of concurrency. For instance, we can readily derive

in separation logic, but if there was interference from another process, say alter-
ing the contents of 10 between the first and second statements, then the triple
would not be true.

The essential point is that proofs in our system build in the assumption
that there is “no interference from the outside”, in that processes only affect
one another at explicit synchronization points. This mirrors a classic program
design principle of Dijkstra, that “apart from the (rare) moments of explicit
intercommunication, the individual processes are to be regarded as completely
independent of each other” [8]. It allows us to ignore the minute details of po-
tential interleavings of sequential programming constructs, thus greatly reducing
the number of process interactions that must be accounted for in a verification.

In sloganeering terms we might say that well specified processes mind their
own business: proven processes only dereference those cells that they own, those
known to exist in a precondition for a program point. This, combined with the
use of to partition program states, implements Dijkstra’s principle.

TEAM LinG

56 P.W. O’Hearn

These intuitive statements about interference and ownership receive formal
underpinning in Brookes’s semantic model [4]. The most remarkable part of his
analysis is an interplay between an interleaving semantics based on traces of
actions and a “local enabling” relation that “executes” a trace in a portion of
state owned by a process. The enabling relation skips over intermediate states
and explains the “no interference from the outside” idea.

4 Example: Pointer-Transferring Buffer

For efficient message passing it is often better to pass a pointer to a value from
one process to another, rather than passing the value itself; this avoids unneeded
copying of data. For example, in packet-processing systems a packet is written to
storage by one process, which then inserts a pointer to the packet into a message
queue. The receiving process, after finishing with the packet, returns the pointer
to a pool for subsequent reuse. Similarly, if a large file is to be transmitted
from one process to another it can be better to pass a pointer than to copy its
contents. This section considers a pared-down version of this scenario, using a
one-place buffer.

In this section we use operations cons and dispose for allocating and deleting
binary cons cells. (To be more literal, dispose(E) in this section would be
expanded into dispose(E); dispose(E + 1) in the syntax of Section 2.)

The initialization and resource declaration are

and we have code for putting a value into the buffer and for reading it out.

For presentational convenience we are using definitions of the form

to encapsulate operations on a resource. In this we are not introducing a proce-
dure mechanism, but are merely using as an abbreviation.

We focus on the following code.

This creates a new pointer in one process, which points to a binary cons cell
containing values and To transmit these values to the other process, instead

TEAM LinG

Resources, Concurrency and Local Reasoning 57

of copying both and the pointer itself is placed in the buffer. The second
process reads the pointer out, uses it in some way, and finally disposes it. To
reason about the dispose operation in the second process, we must ensure that

holds beforehand. At the end of the section we will place these code
snippets into loops, as part of a producer/consumer iidiom, but for now will
concentrate on the snippets themselves.

The resource invariant for the buffer is

To understand this invariant it helps to use the “ownership” or “permission”
reading of separation logic, where an assertion P at a program point implies that
“I have the right to dereference the cells in P here”, or more briefly, “I own P”
[18]. According to this reading the assertion says “I own binary cons
cell (and I don’t own anything else). The assertion emp does not say that the
global state is empty, but rather that “I don’t own any heap cells, here”. Given
this reading the resource invariant says that the buffer owns the binary cons cell
associated with when full is true, and otherwise it owns no heap cells.

Here is a proof for the body of the with command in

The rule for with commands then gives us

The postcondition indicates that the sending process gives up ownership of
pointer when it is placed into the buffer, even though the value of is still
held by the sender.

A crucial point in the proof of the body is the implication

which is applied in the penultimate step. This step reflects the idea that the
knowledge points to something” flows out of the user program and into the
buffer resource. On exit from the critical region does indeed point to something
in the global state, but this information cannot be recorded in the postcondition
of put. The reason is that we used to re-establish the resource invariant;
having as the postcondition would be tantamount to asserting

at the end of the body of the with command, and this assertion
is necessarily false when and are equal, as they are at that point.

The flipside of the first process giving up ownership is the second’s assumption
of it:

TEAM LinG

58 P.W. O’Hearn

which gives us

We can then prove the parallel processes as follows, assuming that
satisfies the indicated triple.

Then using the fact that the initialization establishes the resource invariant
in a way that gets us ready for the parallel rule

we obtain the triple for the complete program prog.
In writing annotated programs we generally include assertions at program

points to show the important properties that hold; to formally connect to the
proof theory we would sometimes have to apply an axiom followed by the Hoare
rule of consequence or other structural rules. For instance, in the left process
above we used as the postcondition of to get there from
the “official” postcondition we just observe that it implies We
will often omit mention of little implications such as this one.

The verification just given also shows that if we were to add a command, say
that dereferences after the put command in the left process then

we would not be able to prove the resulting program. The reason is that emp
is the postcondition of while separation logic requires that point to
something (be owned) in the precondition of any operation that dereferences

In this verification we have concentrated on tracking ownership, using asser-
tions that are type-like in nature: they say what kind of data exists at various

TEAM LinG

Resources, Concurrency and Local Reasoning 59

program points, but do not speak of the identities of the data. For instance,
because the assertions use –, – they do not track the flow of the values and
from the left to the right process. To show stronger correctness properties, which
track buffer contents, we would generally need to use auxiliary variables [20].

As it stands the code we have proven is completely sequential: the left process
must go first. Using the properties we have shown it is straightforward to prove
a producer/consumer program, where these code snippets are parts of loops, as
in Table 3. In the code there emp is the invariant for each loop, and the overall
property proven ensures that there is no race condition.

5 Example: Memory Manager

A resource manager keeps track of a pool of resources, which are given to re-
questing processes, and received back for reallocation. As an example of this we
consider a toy manager, where the resources are memory chunks of size two. The
manager maintains a free list, which is a singly-linked list of binary cons cells.
The free list is pointed to by which is part of the declaration

The invariant for mm is just that points to a singly-linked list without any
dangling pointers in the link fields:

TEAM LinG

60 P.W. O’Hearn

The list predicate is the least satisfying the following recursive specification.

When a user program asks for a new cell, mm gives it a pointer to the first
element of the free list, if the list is nonempty. In case the list is empty the mm
calls cons to get an extra element.

The command reads the cdr of binary cons cell and places it into
We can desugar as in the RAM model of separation logic, and

similarly we will use for to access the car of a cons cell.
Using the rule for with commands we obtain the following “interface speci-

fications”:

The specification of illustrates how ownership of a pointer ma-
terializes in the user code, for subsequent use. Conversely, the specification of
dealloc requires ownership to be given up. The proofs of the bodies of these
operations using the with rule describe ownership transfer in much the same
way as in the previous section, and are omitted.

Since we have used a critical region to protect the free list from corruption,
it should be possible to have parallel processes that interact with mm. A tiny
example of this is just two processes, each of which allocates, mutates, then
deallocates.

This little program is an example of one that is daring but still safe. To see
the daring aspect, consider an execution where the left process goes first, right
up to completion, before the right one begins. Then the statements mutating

and will in fact alter the same cell, and these statements are not within

TEAM LinG

Resources, Concurrency and Local Reasoning 61

critical regions. However, although there is potential aliasing between and
the program proof tells us that there is no possibility of racing in any execution.

On the other hand, if we were to insert a command immediately
following in the leftmost process then we would indeed have a race.
However, the resulting program would not get past the proof rules, because the
postcondition of is emp.

The issue here is not exclusive to memory managers. When using a connection
pool or a thread pool in a web server, for example, once a handle is returned to
the pool the returning process must make sure not to use it again, or inconsistent
results may ensue.

6 Combining the Buffer and Memory Manager

We now show how to put the treatment of the buffer together with the home-
grown memory manager mm, using alloc and dealloc instead of cons and
dispose. The aim is to show different resources interacting in a modular way.

We presume now that we have the resource declarations for both mm and
buf, and their associated resource invariants. Here is the proof for the parallel
processes in Section 4 done again, this time using mm.

In this code, a pointer’s ownership is first transferred out of the mm resource
into the lefthand user process. It then gets sent into the buf resource, from where
it taken out by the righthand process and promptly returned to mm.

The initialization sequence and resource declaration now have the form

and we have the triple

which sets us up for reasoning about the parallel composition. We can use the
rule for complete programs to obtain a property of the complete program.

The point is that we did not have to change any of the code or verifications
done with mm or with buf inside the parallel processes; we just used the same
preconditions and postconditions for get, put, alloc and dealloc, as given to

TEAM LinG

62 P.W. O’Hearn

us by the proof rule for CCRs. The crucial point is that the rule for CCRs does
not include the resource invariant in the “interface specification” described by
the conclusion of the rule. As a result, a proof using these specifications does
not need to be repeated, even if we change the implementation and internal
resource invariant of a module. Effective resource separation allows us to present
a localized view, where the state of a resource is hidden from user programs
(when outside critical regions).

7 The Reynolds Counterexample

The following counterexample, due to John Reynolds, shows that the concur-
rency proof rules are incompatible with the usual Hoare logic rule of conjunction

The example uses a resource declaration

with invariant

Let one stand for the assertion 10 First, we have the following derivation
using the axiom for skip, the rule of consequence, and the rule for critical regions.

Then, from the conclusion of this proof, we can construct two derivations:

and

Both derivations begin with the rule of consequence, using the implications
and The first derivation continues with an

application of the ordinary frame rule, with invariant one, and one further use
of consequence.

The conclusions of these two derivations are incompatible with one another.
The first says that ownership of the single cell is kept by the user code, while

TEAM LinG

Resources, Concurrency and Local Reasoning 63

the second says that it is swallowed up by the resource. An application of the
conjunction rule with these two conclusions gives us the premise of the following
which, using the rule of consequence, leads to an inconsistency.

The last triple would indicate that the program diverges, where it clearly
does not.

The fact that the resource invariant true does not precisely say what storage
is owned conspires together with the nondeteministic nature of to fool the proof
rules. A way out of this problem is to insist that resource invariants precisely nail
down a definite area of storage [18]. In the semantic notation of the appendix,

an assertion P is precise if for all states there is at most one subheap
where

The subheap here is the area of storage that a precise predicate identifies.
The Reynolds counterexample was discovered in August of 2002, a year after

the author had described the proof rules and given the pointer-transferring buffer
example in an unpublished note. Realizing that the difficulty in the example had
as much to do with information hiding as concurrency, the author, Yang and
Reynolds studied a version of the problem in a sequential setting, where precise
resource invariants were used to describe the internal state of a module [18]. The
more difficult concurrent case was then settled by Brookes [4]; his main result is

Theorem (Brookes): the proof rules are sound if all resource invariants
are precise predicates.

This rules out Reynolds’s counterexample because true is not a precise pred-
icate. And the resource invariants in the one-place buffer and the toy memory
manager are both precise.

8 Conclusion

It may seem as if the intuitive points about separation made in this paper should
apply more generally than to shared-variable concurrency; in particular, it would
be interesting to attempt to provide modular methods for reasoning about pro-
cess calculi using resource-oriented logics. In CSP the concepts of resource sep-
aration and sharing have been modelled in a much more abstract way than in
this paper [13]. And the is based on very powerful primitives for name
manipulation [15], which are certainly reminiscent of pointers in imperative pro-
grams. In both cases it is natural to wonder whether one could have a logic
which allows names to be successively owned by different program components,
while maintaining the resource separation that is often the basis of system de-
signs. However, the right way of extending the ideas here to process calculi is
not obvious.

TEAM LinG

64 P.W. O’Hearn

A line of work that bears a formal similarity to ours is that of Caires, Cardelli
and Gordon on logics for process calculi [6,5]. Like here, they use a mixture
of substructural logic and ordinary classical logic and, like here, they consider
concurrency. But independence between processes has not been emphasized in
their work – there is no analogue of what we called the Separation Property –
and neither have they considered the impact of race conditions. Their focus is
instead on the expression of what they call “intensional” properties, such as the
number of connections between two processes. So, although similar in underlying
logical technology, their approach uses this technology in a very different way.

The idea of ownership is, as one might expect, central in work on Ownership
Types [7]. It would be interesting to attempt to describe a formal connection.

Stepping back in time, one of the important early works on reasoning about
imperative concurrent programs was that of Owicki and Gries [19]. A difference
with the work here is that our system rules out racy programs, while theirs does
not. However, they handle racy programs by assuming a fixed level of granular-
ity, where if we were to make such an assumption explicit (using a critical region)
such programs would not be, in principle, out of reach of our methods. More im-
portantly, the Owicki-Gries method involves explicit checking of non-interference
between program components, while our system rules out interference in an im-
plicit way, by the nature of the way that proofs are constructed. The result is
that the method here is more modular.

This last claim is not controversial; it just echoes a statement of Owicki and
Gries. There are in fact two classic Owicki-Gries works, one [20] which extends
the approach of Hoare in TTPP, and another [19] which is more powerful but
which involves explicit non-interference checking. They candidly acknowledge
that “the proof process becomes much longer” in their more powerful method;
one way to view this work is as an attempt to extend the more modular of
the two approaches, where the proof process is shorter, to a wider variety of
programs.

There are a number of immediate directions for future work. One is the incor-
poration of passivity, which would allow read-only sharing of heap cells between
processes. Another is proof methods that do not require complete resource sep-
aration, such as the rely-guarantee method [14,23], where the aim would be to
use separation logic’s local nature to cut down the sizes of rely and guarantee
conditions. A third is the incorporation of temporal features. Generally, how-
ever, we believe that the direction of resource-oriented logics offers promise for
reasoning about concurrent systems, as we hope to have demonstrated in the
form of proofs and specifications given in this paper.

Acknowledgements. I am grateful to Per Brinch Hansen, David Pym and John
Reynolds for discussions on resource and concurrency that impacted the form of
this work, to Steve Brookes for the theoretical analysis without which it could
not be presented, and to Josh Berdine, Richard Bornat, Cristiano Calcagno and
Hongseok Yang for daring me to embrace the daring programming idioms. This
research was supported by the EPSRC.

TEAM LinG

Resources, Concurrency and Local Reasoning 65

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

P. Brinch Hansen. The nucleus of a multiprogramming system. Comm. ACM,
13(4):238–250, 1970.
P. Brinch Hansen. Structured multiprogramming. Comm. ACM, 15(7):574–578,
1972. Reprinted in [3].
P. Brinch Hansen, editor. The Origin of Concurrent Programming. Springer-Verlag,
2002.
S. D. Brookes. A semantics for concurrent separation logic. This Volume, Springer
LNCS, Proceedings of the 15th CONCUR, London. August, 2004.
L. Cardelli and L Caires. A spatial logic for concurrency. In 4th International Sym-
posium on Theoretical Aspects of Computer Science, LNCS 2255:1–37, Springer,
2001.
L. Cardelli and A. D. Gordon. Anytime, anywhere. modal logics for mobile ambi-
ents. In 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 365–377, 2000.
D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment.
Proceedings of the 15th European Conference on Object-Oriented Programming,
pages 53-76, Springer LNCS 2072, 2001.
E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Program-
ming Languages, pages 43–112. Academic Press, 1968. Reprinted in [3].
E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1
2:115–138, October 1971. Reprinted in [3].
J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
C. A. R. Hoare. Towards a theory of parallel programming. In Hoare and Perrot,
editors, Operating Systems Techniques. Academic Press, 1972. Reprinted in [3].
C. A. R. Hoare. Monitors: An operating system structuring concept. Comm. ACM,
17(10):549–557, 1974. Reprinted in [3].
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
C. B. Jones. Specification and design of (parallel) programs. IFIP Conference,
1983.
R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 203–246.
Springer-Verlag, 1993.
P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In Proceedings of 15th Annual Conference of the European
Association for Computer Science Logic, LNCS, pages 1–19. Springer-Verlag, 2001.
P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 99.
P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hid-
ing. In 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 268–280, Venice, January 2004.
S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, (19):319–340, 1976.
S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic
approach. Comm. ACM, 19(5):279–285, 1976.
A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13(1), 45–60, 1981.

TEAM LinG

66 P.W. O’Hearn

22.

23.

J. C. Reynolds. Separation logic: a logic for shared mutable data structures. Invited
Paper, Proceedings of the 17th IEEE Symposium on Logic in Computer Science,
pages 55-74, 2002.
C. Stirling. A generalization of the Owicki-Gries Hoare logic for a concurrent while
language. Theoretical Computer Science, 58:347–359, 1988.

Appendix: Sequential Separation Logic

Reasoning about atomic commands is based on the “small axioms” where
are assumed to be distinct variables.

Typically, the effects of these “small” axioms can be extended using the frame
rule:

In addition to the above we have the usual proof rules of standard Hoare logic.

Also, although we have not stated them, there is a substitution rule and a rule
for introducing existential quantifiers, as in [16].

We can use in the consequence rule when holds for all
and in the semantics below (when the domain of contains the free variables

of P and Q.) Thus, the semantics is, in this paper, used as an oracle by the proof
system.

A state consists of two components, the stack and the heap
both of which are finite partial functions as indicated in the following domains.

TEAM LinG

Resources, Concurrency and Local Reasoning 67

Integer and boolean expressions are determined by valuations

where the domain of includes the free variables of E or B. We use the
following notations in the semantics of assertions.

1.

2.
3.

4.

denotes the domain of definition of a heap and is the
domain of

indicates that the domains of and are disjoint;
denotes the union of disjoint heaps (i.e., the union of functions with

disjoint domains);
is the partial function like except that goes to

The satisfaction judgement which says that an assertion holds for a
given stack and heap. (This assumes that where Free(P) is
the set of variables occurring freely in P.)

Notice that the semantics of is “exact”, where it is required that E is
the only active address in the current heap. Using we can build up descriptions
of larger heaps. For example, describes two adjacent cells
whose contents are 3 and 10.

The “permissions” reading of assertions is intimately related to the way the
semantics above works with “portions” of the heap. Consider, for example, a
formula

as was used in the memory manager example. A heap satisfying this formula
must have a partition where contains the free list (and nothing
else) and contains the binary cell pointed to by It is evident from this
that we cannot regard an assertion P on its own as describing the entire state,
because it might be used within another assertion, as part of a conjunct.

TEAM LinG

Resource Control for Synchronous
Cooperative Threads*

Roberto M. Amadio and Silvano Dal Zilio

Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS and Université de Provence, France

Abstract. We develop new methods to statically bound the resources
needed for the execution of systems of concurrent, interactive threads.
Our study is concerned with a synchronous model of interaction based
on cooperative threads whose execution proceeds in synchronous rounds
called instants. Our contribution is a system of compositional static anal-
yses to guarantee that each instant terminates and to bound the size of
the values computed by the system as a function of the size of its pa-
rameters at the beginning of the instant.

Our method generalises an approach designed for first-order func-
tional languages that relies on a combination of standard termination
techniques for term rewriting systems and an analysis of the size of the
computed values based on the notion of quasi-interpretation. These two
methods can be combined to obtain an explicit polynomial bound on the
resources needed for the execution of the system during an instant.

1 Introduction

The problem of bounding the usage made by programs of their resources has al-
ready attracted considerable attention. Automatic extraction of resource bounds
has mainly focused on (first-order) functional languages starting from Cobham’s
characterisation [13] of polynomial time functions by bounded recursion on no-
tation. Following work, see, e.g., [6,14,15,16], has developed various inference
techniques that allow for efficient analyses while capturing a sufficiently large
range of practical algorithms.

Previous work [9,17] has shown that polynomial time or space bounds can
be obtained by combining traditional termination techniques for term rewriting
systems with an analysis of the size of computed values based on the notion of
quasi-interpretation. Thus, in a nutshell, resource control relies on termination
and bounds on data size. In [3], we have considered the problem of automatically
inferring quasi-interpretations in the space of multi-variate max-plus polynomi-
als. In [2], we have presented a virtual machine and a corresponding bytecode
for a first-order functional language and shown how size and termination anno-
tations can be formulated and verified at the level of the bytecode. In particular,

* This work was partly supported by ACI Sécurité Informatique, project CRISS.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 68–82, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Resource Control for Synchronous Cooperative Threads 69

we can derive from the verification an explicit polynomial bound on the space
required to execute a given bytecode.

Our approach to resource bound certification follows distinctive design deci-
sions. First, we allow the space needed for the execution of a program to vary
depending on the size of its arguments. This is in contrast to most approaches
that try to enforce a constant space bound. While this latter goal is reason-
able for applications targeting embedded devices, it is not always relevant in
the context of mobile code. Second, our method is applicable to a large class
of algorithms and does not impose specific syntactical restrictions on programs.
For example, we depart from works based on a linear usage of variables [14].

Our approach to resource control should be contrasted with traditional worst
case execution time technology (see, e.g., [20]): our bounds are less precise but
they apply to a larger class of algorithms and are functional in the size of the
input, which seems more appropriate in the context of mobile code. In another
direction, one may compare our approach with the one based on linear logic
(see, e.g., [11]). While in principle the linear logic approach supports higher-
order functions, the approach does not offer yet a user-friendly programming
language.

In this work, we aim at extending and adapting these results to a concurrent
framework. Our starting point, is a quite basic and popular model of parallel
threads interacting on shared variables. The kind of concurrency we consider
is a cooperative one. This means that by default a running thread cannot be
preempted unless it explicitly decides to return the control to the scheduler. In
preemptive threads, the opposite hypothesis is made: by default a running thread
can be preempted at any point unless it explicitly requires that a series of actions
is atomic. We refer to, e.g., [19] for an extended comparison of the cooperative
and preemptive models. Our viewpoint is pragmatic: the cooperative model is
closer to the sequential one and many applications are easier to program in the
cooperative model than in the preemptive one. Thus, as a first step, it makes
sense to develop a resource control analysis for the cooperative model.

The second major design choice is to assume that the computation is reg-
ulated by a notion of instant. An instant lasts as long as a thread can make
some progress in the current instant. In other terms, an instant ends when the
scheduler realizes that all threads are either stopped, or waiting for the next
instant, or waiting for a value that no thread can produce in the current instant.
Because of this notion of instant, we regard our model as synchronous. Because
the model includes a logical notion of time, it is possible for a thread to react to
the absence of an event.

The reaction to the absence of an event, is typical of synchronous languages
such as ESTEREL [8]. Boussinot et al. have proposed a weaker version of this
feature where the reaction to the absence happens in the following instant [7]
and they have implemented it in various programming environments based on
C, JAVA, and SCHEME. They have also advocated the relevance of this concept
for the programming of mobile code and demonstrated that the possibility for
a ‘synchronous’ mobile agent to react to the absence of an event is an added

TEAM LinG

70 R.M. Amadio and S. Dal Zilio

factor of flexibility for programs designed for open distributed systems, whose
behaviours are inherently difficult to predict.

Recently, Boudol [5] has proposed a formalisation of this programming model.
Our analysis will essentially focus on a small fragment of this model where higher-
order functions are ruled out and dynamic thread creation, and dynamic memory
allocation are only allowed at the very beginning of an instant. We believe that
what is left is still expressive and challenging enough as far as resource control
is concerned. Our analysis goes in three main steps. A first step is to guarantee
that each instant terminates (Section 4). A second step, is to bound the size of
the computed values as a function of the size of the parameters at the beginning
of the instant (Section 5). A third step, is to combine the termination and size
analyses. Here we show how to obtain polynomial bounds on the space needed
for the execution of the system during an instant as a function of the size of
the parameters at the beginning of the instant (Section 6). We expect that one
could derive polynomial bounds on time as well, by adapting the work in [17].

A characteristic of our static analyses is that to a great extent they make
abstraction of the memory and the scheduler. This means that each thread can
be analysed separately, that the complexity of the analyses grows linearly in the
number of threads, and that an incremental analysis of a dynamically changing
system of threads is possible. Preliminary to these analyses, is a control flow
analysis (Section 3) that guarantees that each thread reads each register at most
once in an instant. We will see that without this condition, it is very easy to
achieve an exponential growth of the space needed for the execution. From a
technical point of view, the benefit of this read once condition is that it allows to
regard behaviours as functions of their initial parameters and the registers they
may read in the instant. Taking this functional viewpoint, we are able to adapt
the main techniques developed for proving termination and size bounds in the
first-order functional setting.

We point out that our static size analyses are not intended to predict the size
of the system after arbitrary many instants. This is a harder problem which in
general seems to require an understanding of the global behaviour of the system:
typically one has to find an invariant that shows that the parameters of the
system stay within certain bounds. For this reason, we believe that in practice
our static analyses should be combined with a dynamic controller that at the
end of each instant checks the size of the parameters of the system.

Omitted proofs may be found in a long version of this paper [1] in which we
describe our programming model up to the point where a bytecode for a simple
virtual machine implementing our synchronous language is defined. The long
version also provides a number of programming examples illustrating how some
synchronous and/or concurrent programming paradigms can be represented in
our model (some simple examples are given at the end of Section 2). These
examples suggest that the constraints imposed by the static analyses are not too
severe and that their verification can be automated.

TEAM LinG

Resource Control for Synchronous Cooperative Threads 71

2 A Model of Synchronous Cooperative Threads

A system of synchronous cooperative threads is described by: (1) a list of mutu-
ally recursive type definitions, (2) a list of shared registers (or global variables)
with a type and a default value, and (3) a list of mutually recursive functions
and behaviours definitions relying on pattern matching. In this respect, the re-
sulting programming language is reminiscent of ERLANG [4], which is a practical
language to develop concurrent applications.

The set of instructions a behaviour can execute is rather minimal. Indeed, our
language is already in a pre-compiled form where registers are assigned constant
values and behaviours definitions are tail recursive. However, it is quite possible
to extend the language and our analyses to have registers’ names as first-class
values and general recursive behaviours.

Expressions. We rely on standard notation. If are formal terms then
is the set of free variables in (variables in patterns are not free) and
denotes the substitution of for in If is a function, denotes

a function update.
Expressions and values are built from a finite number of constructors, ranged

over by We use to range over function identifiers and
for variables, and distinguish the following three syntactic categories:

The size of an expression is defined as 0 if is a constant or a variable
and if is of the form or

A function of arity is defined by a sequence of pattern-matching rules of the
form where is either an expression or a thread
behaviour (see below), and are sequences of length of patterns. We
follow the usual hypothesis that the patterns in are linear (a variable
appears at most once). For the sake of simplicity, we will also assume that in a
function definition a sequence of values matches exactly a sequence of patterns

in a function definition. This hypothesis can be relaxed.
Inductive types are defined by equations of the shape of

For instance, the type of natural numbers in unary format can be
defined as follows: of nat. Functions, values, and expressions are
assigned first order types of the shape where are
inductive types.

Behaviours. Some function symbols may return a thread behaviour
rather than a value. In contrast to ‘pure’ expressions, a behaviour does not
return a result but produces side-effects by reading and writing a set of global
registers, ranged over by A behaviour may also affect the scheduling
status of the thread executing it (see below).

TEAM LinG

72 R.M. Amadio and S. Dal Zilio

The effect of the various instructions is informally described as follows: stop,
terminates the executing thread for ever; halts the execution and hands
over the control to the scheduler — the control should return to the thread later
in the same instant and execution resumes with and switch
to another behaviour immediately or at the beginning of the following instant;

evaluates the expression assigns its value to r and proceeds with the
evaluation of match r with waits until
the value of r matches one of the patterns (there could be no delay)
and yields the control otherwise. At the end of the instant, if the value of r is

and no rule filters then start the next instant with the behaviour
By convention, when the branch is omitted, it is intended that if the
match conditions are not satisfied in the current instant, then they are checked
again in the following one.

Systems. Every thread has a status, ranged over by that is a value
in {N, R, S, W} — where N stands for next, R for run, S for stop, and W for
wait. A system of synchronous threads is a finite mapping from thread
indexes to pairs (behaviour, status). Each register has a type and a default value
— its value at the beginning of an instant — and we use to denote a
store, an association between registers and their values. We suppose the thread
indexes range over and that at the beginning of
each instant the store is such that each registers is assigned its default value.
If B is a system and a valid thread index then we denote with the
behaviour executed in the thread and with its current status. Initially,
all threads have status R, the current thread index is 0, and is a behaviour
expression of the shape It is a standard exercise to formalise a type system
of simple first-order functional types for such a language and, in the following,
we assume that all systems we consider are well typed.

Operational Semantics. The operational semantics is described by three rela-
tions of growing complexity, presented in Table 1: (1) the closed expression

evaluates to the value (2) the behaviour with store runs an
atomic sequence of actions till producing a store and returning the control
to the scheduler with status X; during an instant, we can have the following
status transitions in a thread: and the last transition
corresponds to a thread blocked on the behaviour match r with ... and no filters
match the value of r; (3) the system B with store and
current thread (index) runs an atomic sequence of actions (performed by
and becomes

Scheduler. The reduction relation, see Table 1, relies on the function that
computes the index of the next thread that should run in the current instant and
the function that updates the status of the thread at the end of an instant.

TEAM LinG

Resource Control for Synchronous Cooperative Threads 73

To ensure progress of the scheduling, we assume that if returns an index
then it must be possible to run the corresponding thread in the current instant
and that if is undefined (denoted then no thread can be run in the
current instant. In addition, one could arbitrarily enrich the functional behaviour
of the scheduler by considering extensions such that depends on the history,
the store, and/or is defined by means of probabilities. When no more thread can
run, the instant ends and the following status transitions take place

For simplicity, we assume here that every thread in status W takes the
branch. Note that the function is undefined on the updated system

if and only if all threads are stopped.

The Cooperative Fragment. The ‘cooperative’ fragment of the model with
no synchrony is obtained by removing the next instruction and assuming that
for all match instructions the branch is such that Then
all the interesting computation happens in the first instant, and in the second
instant all the threads terminate. This fragment is already powerful enough to
simulate, e.g., Kahn networks (see examples in [1]).

Example 1 (Channels and Signals). As shown in our informal presentation of
behaviours, the match instruction allows one to read a register subject to cer-
tain filter conditions. This is a powerful mechanism which recalls, e.g., Linda
communication [12], and that allows to encode various forms of channel and
signal communication.
(1) We want to represent a one place channel c carrying values of type We
introduce a new type ful l of and a register c of type with
default value empty. A thread should send a message on c only if c is empty
and it should receive a message only if c is not empty (a received message is
discarded). These operations can be modelled using the following two derived
operators:

(2) We want to represent a fifo channel c carrying values of type such that a
thread can always emit a value on c but may receive only if there is at least one
message in the channel. We introduce a new type cons of
and a register c of type with default value nil. Hence a fifo channel is
modelled by a register holding a list of values. We consider two read operations
— freceive to fetch the first message on the channel and freceiveall to fetch the
whole queue of messages — and we use the auxiliary function insert to queue
messages at the end of the list:

(3) We want to represent a signal s with the typical associated primitives:
emitting a signal and blocking until a signal is present. We define a type sig =

TEAM LinG

74 R.M. Amadio and S. Dal Zilio

TEAM LinG

Resource Control for Synchronous Cooperative Threads 75

abst prst and a register s of type sig with default value abst, meaning that a
signal is originally absent:

3 Control Flow Analysis

To bound the resources needed for the execution of a system and make possible
a compositional analysis, a preliminary control flow analysis is required. We
require and statically check on the control flow, that threads can read any given
register at most once in an instant. The following simple example shows that
without the read once restriction, a thread can use a register as an accumulator
and produce an exponential growth of the size of the data within an instant.

Example 2. Let of nat be the type of tally natural numbers. The
function dble, defined by the two rules dble(z) = z and
doubles a number so that We assume r is a register of type nat
with initial value s(z). Now consider the following recursive behaviour:

The evaluation of involves reads to the register r and, after each
read operation, the size of the value stored in r doubles. Hence, at end of the
instant, the register contains a value of size

The read once condition is comparable to the restriction on the absence of
immediate cyclic definitions in LUSTRE and does not appear to be a severe
limitation on the expressiveness of the language. An important consequence of
the read once condition is that a behaviour can be described as a function of
its parameters and the registers it may read during an instant. We stress that
we retain the read once condition for its simplicity, however it is clear that one
could weaken the condition and adapt the analysis given in Section 3.1 to allow
the execution of a read instruction at most a constant number of times.

3.1 Enforcing the Read Once Condition

We now describe a simple analysis that guarantees the read once condition.
Consider the set of the registers as an alphabet. To every
function symbol whose result is a behaviour, we associate the least language

of words over Reg such that the empty word, is in and the following
conditions are satisfied:

if are the rules of then

Looking at the words in we get an over-approximation of the sequences
of registers that a thread can read in an instant starting from the control point

TEAM LinG

76 R.M. Amadio and S. Dal Zilio

with arbitrary parameters and store. Note that an expression can never read
or write a register.

To determine the sets we perform an iterative computation according
to the equations above. The iteration stops when either (1) we reach a fixpoint
(and we are sure that the property holds) or (2) we notice that a word in the
current approximation of contains the same register twice (thus we never
need to consider words whose length is greater than the number of registers).
If the first situation occurs, then for every function symbol that returns a
behaviour we can obtain a list of registers that a thread starting from control
point may read. We are going to consider these registers as hidden parameters
(variables) of the function If the second condition occurs, we cannot guarantee
the read once property and we stop analysing the code.

Example 3. This will be the running example for this section. We consider the
representation of signals as in Example 1(3). We assume two signals sig and ring.
The behaviour will emit a signal on ring if it detects that no signal
is emitted on sig for consecutive instants. The alarm delay is reset to if the
signal sig is present.

By computing R on this example, we obtain:

3.2 Control Points

We define a symbolic representation of the set of states reachable by a thread
based on the control flow graph of its behaviours. A control point is a triple

where, intuitively, is the currently called function, represents
the patterns crossed so far in the function definition plus possibly the registers
that still have to be read, be is the continuation, and is an integer flag in
{0,1,2} that will be used to associate with the control point various kinds of
conditions. We associate with a system satisfying the read once condition a
finite number of control points. If the function returns a value and is defined
by the rules then we associate with the set

On the other hand, if the function is a behaviour defined by the rules
then the computation of the control points proceeds

as follows. We assume that the registers have been ordered and that for every be-
haviour definition we have an ordered vector of registers that may be read
within an instant starting from (The vector is obtained from With
every such we associate a fresh function symbol whose arity is that of plus
the length of and we regard the registers as part of the formal parameters of

Then from the definition of we produce the set
where is defined inductively on as follows:

TEAM LinG

Resource Control for Synchronous Cooperative Threads 77

By inspecting the definitions, we can check that a control point
has the property that The read once condition is instru-
mental to this property. For instance, (i) in case we know that if can
read some register r then r could not have been already read by and (ii) in
the case of the match operator, we know that the register r has not been al-
ready read by Hence, in these two cases, the register r must still occur in

Example 4. With reference to Example 3, we obtain the following control points:

Definition 1. An instance of a control point is a behaviour
where is a substitution mapping the free variables in to values.

The property of being an instance of a control point is preserved by (be-
haviour and) system reduction. Thus the control points associated with a system
do provide a representation of all reachable configurations.

Proposition 1. Suppose and that for all thread indexes
is an instance of a control point. Then for all we have

that is an instance of a control point.

In order to prove the termination of the instant and to obtain a bound on
the size of computed value, we associate order constraints to control points as
follows:

We say that a constraint has index We rely on the constraints of
index 0 to enforce termination of the instant and on those of index 0 or 1 to
enforce a bound on the size of the computed values. Note that the constraints are
on pure first order terms, a property that allows us to reuse techniques developed
in the standard term rewriting framework.

TEAM LinG

78 R.M. Amadio and S. Dal Zilio

Example 5. With reference to the control points in Example 4, we obtain the
constraint We note that no constraints of index 0
are generated and so in this simple case the control flow analysis can already
establish the termination of the thread and all is left to do is to check that the
size of the data is under control, which will also be easily verified.

4 Termination of the Instant

We recall that a reduction order > over first-order terms is a well-founded order
that is closed under context and substitution: implies and

where C is any one hole context and is any substitution (see, e.g, [10]).

Definition 2 (Termination Condition). We say that a system satisfies the
termination condition if there is a reduction order > such that all constraints of
index 0 associated with the system hold in the reduction order.

In this section, we assume that the system satisfies the termination condition.
As expected this entails that the evaluation of closed expressions succeeds.

Proposition 2. Let be a closed expression. Then there is a value such that
and with respect to the reduction order.

Moreover, the following proposition states that a behaviour will always return
the control to the scheduler.

Proposition 3 (Progress). Let be an instance of a control point. Then for

all stores

Finally, we show that at each instant the system will reach a configuration
in which the scheduler detects the end of the instant and proceeds to the reini-
tialisation of the store and the status (as specified by rule in Table 1).

Theorem 1 (Termination of the Instant). All sequences of system reduc-
tions involving only rule are finite.

Proposition 3 and Theorem 1 are proven by exhibiting a suitable well-founded
measure which is based both on the reduction order and the fact that the number
of reads a thread may perform in an instant is finite.

Example 6. We consider a recursive behaviour monitoring the register i (acting
as a fifo channel) and parameterised on a number representing the largest value
read so far. At each instant, the behaviour reads the list of values received on
i and assigns to o the greatest number in and

It is easy to prove the termination of the thread by recursive path order-
ing, where the function symbols are ordered as the
arguments of maxl are compared lexicographically from left to right, and the
constructor symbols are incomparable and smaller than any function symbol.

TEAM LinG

Resource Control for Synchronous Cooperative Threads 79

5 Quasi-Interpretations

Our next task is to control the size of the values computed by the threads. A
suitable notion of quasi-interpretation [17,3] provides a modular solution to this
problem.

Definition 3 (Assignment). Given a program, an assignment associates
with constructors and function symbols, functions over the positive reals
such that:

(1)

(2)

If c is a constant then is the constant 0,

If c is a constructor with arity then is the function in
such that for some

(3) if is a function (identifier) with arity then is monotonic
and for all we have

An assignment is extended to all expressions as follows, giving a function
expression with variables in

It is easy to check that for all values there exists a constant depending
on the quasi-interpretation such that:

Definition 4 (Quasi-Interpretation). An assignment is a quasi-interpretation,
if for all constraints associated with the system of the shape with

the inequality holds over the non-negative reals.

Quasi-interpretations are designed so as to provide a bound on the size of
the computed values as a function of the size of the input data. In the follow-
ing, we assume given a suitable quasi-interpretation, for the system under
investigation.

Example 7. With reference to Examples 2 and 6, the following assignment is a
quasi-interpretation (we give no quasi-interpretations for the function exp be-
cause it fails the read once condition):

One can show [3] that in the purely functional fragment of our language every
value computed during the evaluation of an expression satisfies
the following condition:

We generalise this result to threads as follows.

TEAM LinG

80 R.M. Amadio and S. Dal Zilio

Theorem 2. Given a system of synchronous threads B, suppose that at the
beginning of the instant for some thread index Then the size of
the values computed by the thread during an instant is bound by where

are the values contained in the registers when they are read by the thread
(or some constant value, otherwise).

Theorem 2 is proven by showing that quasi-interpretations satisfy a suitable
invariant. In general, a value computed and written by a thread can be read by
another thread. However, at each instant, we have a bound on the number of
threads and the number of reads that can be performed. We can then derive a
bound on the size of the computed values which depends only on the size of the
parameters at the beginning of the instant.

Corollary 1. Let B be a system with registers and threads. Suppose
for Let be a bound of the size of the largest parameter of the

functions and the largest default value of the registers. Suppose is a function
bounding all the quasi-interpretations, that is, for all the functions wehave

over the non-negative reals. Then the size of the values
computed by the system B during an instant is bound by

Example 8. The iterations of the function predicted by Corollary 1 corre-
spond to a tight bound, as shown by the following example. We assume threads
and registers (with default value z). The control of each thread is described
as follows, where stands for the behaviour

For this system we have and It is easy to
show that, at the end of an instant, there have been assignments to each
register for every thread in the system) and that the value stored in each
register is of size

6 Combining Termination and Quasi-interpretations

To bound the space needed for the execution of a system during an instant we
also need to bound the number of nested recursive calls, i.e., the number of
frames that can be found on the stack (a precise definition of frame is given in
the long version of this paper [1]). Unfortunately, quasi-interpretations provide a
bound on the size of the frames but not on their number (at least not in a direct
implementation that does not rely on memoization). One way to cope with this
problem is to combine quasi-interpretations with various families of reduction
orders [9,17]. In the following, we provide an example of this approach based on
recursive path orders which is a widely used and fully mechanisable technique to
prove termination [10].

TEAM LinG

Resource Control for Synchronous Cooperative Threads 81

Definition 5. We say that a system terminates by LPO, if the reduction order
associated with the system is a recursive path order where: (1) function symbols
are compared lexicographically; (2) constructor symbols are always smaller than
function symbols and two distinct constructor symbols are incomparable; (3) the
arguments of constructor symbols are compared componentwise (product order).

Definition 6. We say that a system admits a polynomial quasi-interpretation
if it has a quasi-interpretation where all functions are bound by a polynomial.

Theorem 3. If a system B terminates by LPO and admits a polynomial quasi-
interpretation then the computation of the system in an instant runs in space
polynomial in the size of the parameters of the threads at the beginning of the
instant.

The proof of Theorem 3 is based on Corollary 1 that provides a polynomial
bound on the size of the computed values and on an analysis of nested calls in
the LPO order that can be found in [9]. The point is that the depth of such
nested calls is polynomial in the size of the values, which allows us to effectively
compute a polynomial bounding the space necessary for the execution of the
system. We stress that beyond proving that a system ‘runs in PSPACE’, we can
extract a definite polynomial that depends on the quasi-interpretation and that
bounds the size needed to run a system during an instant.

Example 9. With reference to Example 6, we can check that the order used there
is indeed a LPO. From the quasi-interpretation in Example 7, we can deduce
that the function has the shape (it is affine). More precisely, we
can choose In practice, many useful functions admit quasi-
interpretations bound by an affine function such as the max-plus polynomials
considered in [3]. Note that the parameter of the thread is the largest value
received so far. Clearly, bounding the value of this parameter for arbitrary many
instants requires a global analysis of the system.

7 Conclusion

The execution of a thread in a cooperative synchronous model can be regarded as
a sequence of instants. One can make each instant simple enough so that it can be
described as a function — our experiments with writing sample programs show
that the restrictions we impose do not hinder the expressivity of the language.
Then well-known static analyses used to bound the resources needed for the
execution of first-order functional programs can be extended to handle systems
of synchronous cooperative threads. We believe this provides some evidence for
the relevance of these techniques in concurrent/embedded programming. We
also expect that our approach can be extended to a richer programming model
including, e.g., references as first-class values, transactions-like primitives for
error recovery, more elaborate mechanisms for preemption, ...

The static analyses we have considered do not try to analyse the whole sys-
tem. On the contrary, they focus on each thread separately and can be carried

TEAM LinG

82 R.M. Amadio and S. Dal Zilio

out incrementally. On the basis of our previous work [2] and the virtual machine
presented in [1], we expect that these analyses can be performed at bytecode
level. These characteristics are particularly interesting in the framework of ‘mo-
bile code’ where threads can enter or leave the system at the end of each instant
as described in [5].

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

12.
13.

14.

15.

16.

17.

18.
19.

20.

R. Amadio and S. Dal-Zilio. Resource control for synchronous cooperative threads.
Research Report LIF 22-2004, 2004.
R. Amadio, S. Coupet-Grimal, S. Dal-Zilio, and L. Jakubiec. A functional scenario
for bytecode verification of resource bounds. Research Report LIF 17-2004, 2004.
R. Amadio. Max-plus quasi-interpretations. In Proc. TLCA, Springer LNCS 2701,
2003.
J. Armstrong, R. Virding, C. Wikström, M. Williams. Concurrent Programming
in Erlang. Prentice-Hall 1996.
G. Boudol, ULM, a core programming model for global computing. In Proc. ESOP,
Springer LNCS 2986, 2004.
S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity, 2:97–110, 1992.
F. Boussinot and R. De Simone, The SL Synchronous Language. IEEE Trans. on
Software Engineering, 22(4):256–266, 1996.
G. Berry and G. Gonthier, The Esterel synchronous programming language. Sci-
ence of computer programming, 19(2):87–152, 1992.
G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with space
bound certifications. In Proc. PSI, Springer LNCS 2244, 2001.
F. Baader and T. Nipkow. Term rewriting and all that. CUP, 1998.
P. Baillot and V. Mogbil, Soft lambda calculus: a language for polynomial time
computation. In Proc. FoSSaCS, Springer LNCS 2987, 2004.
N. Carriero and D. Gelernter. Linda in Context. CACM, 32(4): 444-458, 1989.
A. Cobham. The intrinsic computational difficulty of functions. In Proc. Logic,
Methodology, and Philosophy of Science II, North Holland, 1965.
M. Hofmann. The strength of non size-increasing computation. In Proc. POPL,
ACM Press, 2002.
N. Jones. Computability and complexity, from a programming perspective. MIT-
Press, 1997.
D. Leivant. Predicative recurrence and computational complexity i: word re-
currence and poly-time. Feasible mathematics II, Clote and Remmel (eds.),
Birkhäuser:320–343, 1994.
J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. Habili-
tation à diriger des recherches, Université de Nancy, 2000.
M. Odersky. Functional nets. In Proc. ESOP, Springer LNCS 1782, 2000.
J. Ousterhout. Why threads are a bad idea (for most purposes). Invited talk at
the USENIX Technical Conference, 1996.
P. Puschner and A. Burns (eds.), Real time systems 18(2/3), special issue on Worst-
Case Execution Time Analysis, 2000.

TEAM LinG

Verifying Finite-State Graph Grammars:
An Unfolding-Based Approach*

Paolo Baldan1, Andrea Corradini2, and Barbara König3

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
baldan@dsi.unive.it

2 Dipartimento di Informatica, Università di Pisa, Italy
andrea@di.unipi.it

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany
koenigba@fmi.uni-stuttgart.de

Abstract. We propose a framework where behavioural properties of
finite-state systems modelled as graph transformation systems can be
expressed and verified. The technique is based on the unfolding seman-
tics and it generalises McMillan’s complete prefix approach, originally
developed for Petri nets, to graph transformation systems. It allows to
check properties of the graphs reachable in the system, expressed in a
monadic second order logic.

1 Introduction

Graph transformation systems (GTSs) are recognised as an expressive specifica-
tion formalism, properly generalising Petri nets and especially suited for concur-
rent and distributed systems [9]: the (topo)logical distribution of a system can
be naturally represented by using a graphical structure and the dynamics of the
system, e.g., the reconfigurations of its topology, can be modelled by means of
graph rewriting rules.

The concurrent behaviour of GTSs has been thoroughly studied and a consoli-
dated theory of concurrency for GTSs is available, including the generalisation of
several semantics of Petri nets, like process and unfolding semantics (see, e.g., [6,
20, 3]). However, only recently, building on these semantical foundations, some
efforts have been devoted to the development of frameworks where behavioural
properties of GTSs can be expressed and verified (see [12, 15, 13, 21, 19, 1]).

As witnessed, e.g., by the approaches in [17, 10] for Petri Nets, truly concur-
rent semantics are potentially useful in the verification of finite-state systems, in
that they help to avoid the combinatorial explosion arising when one explores all
possible interleavings of events. Still, to the best of our knowledge, no technique
based on partial order (process or unfolding) semantics has been proposed for
the verification of finite-state GTSs.

* Research partially supported by EU FET-GC Project AGILE, the EC RTN
SEGRA VIS, DFG project SANDS and EPSRC grant R93346/01.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 83–98, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

84 P. Baldan et al.

In this paper we contribute to this topic by proposing a verification framework
for finite-state graph transformation systems based on their unfolding semantics.
Our technique is inspired by the approach originally developed by McMillan for
Petri nets [17] and further developed by many authors (see, e.g., [10,11,23]).
More precisely, our technique applies to any graph grammar, i.e., any set of
graph rewriting rules with a fixed start graph (the initial state of the system),
which is finite-state in a liberal sense: the set of graphs which can be reached from
the start graph, considered not only up to isomorphism, but also up to isolated
nodes, is finite. Hence in a finite-state graph grammar in our sense there is not
actually a bound to the number of nodes generated in a computation, but only
to the nodes which are connected to some edge at each stage of the computation.
Existing model-checking tools, such as SPIN [14], usually do not directly support
the creation of an arbitrary number of objects while still maintaining a finite
state space, making entirely non-trivial their use for checking finite-state GTSs
(similar problems arise for process calculi agents with name creation).

As a first step we face the problem of identifying a finite, still useful fragment
of the unfolding of a GTS. In fact, the unfolding construction for GTSs produces
a structure which fully describes the concurrent behaviour of the system, includ-
ing all possible steps and their mutual dependencies, as well as all reachable
states. However, the unfolding is infinite for non-trivial systems, and cannot be
used directly for model-checking purposes.

Following McMillan’s approach, we show that given any finite-state graph
grammar a finite fragment of its unfolding which is complete, i.e., which pro-
vides full information about the system as far as reachability (and other) prop-
erties are concerned, can be characterised as the maximal prefix of the unfolding
not including cut-off events. The greater expressiveness of GTSs, and specifically,
the possibility of performing “contextual” rewritings (i.e., of preserving part of
the state in a rewriting step), a feature which leads to multiple local histories
for a single event (see, e.g., the work on contextual nets [18, 22, 4, 23]), imposes
a generalisation of the original notion of cut-off.

Unfortunately the characterisation of the finite complete prefix is not con-
structive. Hence, while leaving as an open problem the definition of a general
algorithm for constructing such a prefix, we identify a significant subclass of
graph grammars where an adaptation of the existing algorithms for Petri nets is
feasible. These are called read-persistent graph grammars by analogy with the
terminology used in the work on contextual nets [23].

In the second part we consider a logic where graph properties of interest
can be expressed, like the non-existence and non-adjacency of edges with specific
labels, the absence of certain paths (related to security properties) or cycles
(related to deadlock-freedom). This is a monadic second-order logic over graphs
where quantification is allowed over (sets of) edges. (Similar logics are considered
in [8] and, in the field of verification, in [19, 5].) Then we show how a complete
finite prefix of a grammar can be used to verify properties, expressed in of
the graphs reachable in This is done by exploiting both the graphical structure
underlying the prefix and the concurrency information it provides.

TEAM LinG

Verifying Finite-State Graph Grammars 85

The rest of the paper is organised as follows. Section 2 introduces graph
transformation systems and their unfolding semantics. Section 3 studies finite
complete prefixes for finite-state GTSs. Section 4 introduces a logic for GTSs,
showing how it can be checked over a finite complete prefix. Finally, Section 5
draws some conclusions and indicates directions of further research. A more
detailed presentation of the material in this paper can be found in [2].

2 Unfolding Semantics of Graph Grammars

This section presents the notion of graph rewriting used in the paper. Rewriting
takes place on so-called typed graphs, namely graphs labelled over a structure
that is itself a graph [6]. It can be seen as a set-theoretical presentation of an
instance of algebraic (single- or double-pushout) rewriting (see, e.g., [7]). Next
we review the notion of occurrence grammar, which is instrumental in defining
the unfolding of a graph grammar [3, 20].

2.1 Graph Transformation Systems

In the following, given a set A we denote by the set of finite strings of elements
of A. Given we write to indicate the length of If and

by we denote the i-th element of Furthermore, if
is a function then we denote by its extension to strings.

A (hyper)graph G is a tuple where is a set of nodes,
is a set of edges and is a connection function. A node
is called isolated if it is not connected to any edge. Given two graphs G, a
graph morphism is a pair of total
functions such that for all When obvious
from the context, the subscripts V and E will be omitted.

Definition 1 (Typed Graph). Given a graph (of types) T, a typed graph G
over T is a graph together with a morphism A morphism
between T-typed graphs is a graph morphism
consistent with the typing, i.e., such that

A typed graph G is called injective if the typing morphism is injective.
More generally, given the graph is called if for any item in
T, namely if the number of “instances of resources” of any type

is bounded by Given two (typed) graphs G and we will write to
mean that G and are isomorphic, and when G and are isomorphic
up to isolated nodes, i.e., once their isolated nodes have been removed.

In the sequel we extensively use the fact that given a graph G, any subgraph
of G without isolated nodes is identified by the set of its edges. Precisely, given
a subset of edges we denote by graph(X) the least subgraph of G
(actually the unique subgraph, up to isolated nodes) having X as set of edges.

We will use some set-theoretical operations on (typed) graphs with “compo-
nentwise” meaning. Let G and be T-typed graphs. We say that G and

TEAM LinG

86 P. Baldan et al.

are consistent if defined as typed by
is a well-defined T-typed graph. In this case also the intersection

constructed in a similar way, is well-defined. Given a graph G and a
set (of edges) E we denote by G – E the graph obtained from G by removing
the edges in E. Sometimes we will also refer to the items (nodes and edges)
in where G and are graphs, although the structure resulting as the
componentwise set-difference of G and might not be a well-defined graph.

Definition 2 (Production). Given a graph of types T, a T-typed production
is a pair of finite consistent T-typed graphs often written
such that 1) and L do not include isolated nodes; 2) and 3)

and are non-empty.

A rule specifies that, once an occurrence of L is found in a graph G,
then G can be rewritten by removing (the images in G of) the items in L – R
and adding those in R – L. The (images in G of the) items in instead are
left unchanged: they are, in a sense, preserved or read by the rewriting step.

This informal explanation should also motivate Conditions 1–3 above. Con-
dition 1 essentially states that we are interested only in rewriting up to isolated
nodes: by the requirement on no node is isolated when created and, by the
requirement on L, nodes that become isolated have no influence on further reduc-
tions. Thus one can safely assume that isolated nodes are removed by some kind
of garbage collection. Consistently with this view, by Condition 2 productions
cannot delete nodes (deletion can be simulated by leaving that node isolated).
Condition 3 ensures that every production consumes and produces at least one
edge: a requirement corresponding to T-restrictedness in Petri net theory.

Definition 3 (Graph Rewriting). Let be a T-typed production.
A match of in a T-typed graph G is a morphism satisfying the
identification condition, i.e., for if then In
this case G rewrites to the graph H, obtained as
where is the least equivalence on the items of the graph such that
We write or simply

A rewriting step is schematically represented in Fig. 1. Intuitively, in the
graph the images of all the edges in L – R have been
removed. Then in order to get the resulting graph, merge R to along the
image through of the preserved subgraph Formally the resulting graph
H is obtained by first taking and then by identifying, via the equivalence

the image through of each item in with the corresponding item in R.

Definition 4 (Graph Transformation System and Graph Grammar).
A graph transformation system (GTS) is a triple where T is a
graph of types, P is a set of production names and is a function mapping
each production name to a T-typed production A graph
grammar is a tuple where is a GTS and is a
finite T-typed graph, without isolated nodes, called the start graph. We denote

TEAM LinG

Verifying Finite-State Graph Grammars 87

Fig. 1. A rewriting step, schematically

by the (disjoint) union i.e., the set of edges in the graph of
types and the production names. We call finite if the set is finite.

A T-typed graph G is reachable in if for some where
is the transitive closure of the rewriting relation induced by productions in

We remark that Place/Transition Petri nets can be viewed as a special sub-
class of typed graph grammars. Say that a graph G is edge-discrete if its set
of nodes is empty (and thus edges have no connections). Given a P/T net P,
let be the edge-discrete graph having the set of places of P as edges. Then
any finite edge-discrete graph typed over can be seen as a marking of P: an
edge typed over represents a token in place Using this correspondence, a
production faithfully represents a transition of P if encodes the
marking encodes and The graph grammar
corresponding to a Petri net is finite iff the original net has finitely many places
and transitions. Observe that the generalisation from edge-discrete to proper
graphs radically changes the expressive power of the formalism. For instance,
unlike P/T Petri nets, the class of grammars in this paper is Turing complete.

Example 1. Consider the graph grammar modeling a system where three
processes of type P are connected to a communication manager of type CM (see
the start graph in Fig. 2, where edges are represented as rectangles and nodes
as small circles). Two processes may establish a new connection with each other
via the communication manager, becoming processes engaged in communication
(typed PE, the only edge with more than one connection). This transformation
is modelled by the production [engage] in Fig. 2: observe that a new node con-
necting the two processes is created. The second production [release] terminates
the communication between two partners. A typed graph G over is drawn
by labeling each edge or node of G with “: Only when the same
graphical item belongs to both the left- and the right-hand side of a production
we include its identity in the label (which becomes in this case
we also shade the item, to stress that it is preserved by the production.

The notion of safety for graph grammars [6] generalises the one for P/T nets
which requires that each place contains at most one token in any reachable mark-
ing. More generally, we extend to graph grammars the notion of

TEAM LinG

88 P. Baldan et al.

Fig. 2. The finite-state graph grammar

Definition 5 (Bounded/Safe Grammar). For a fixed we say that a
graph grammar is if for all graphs H reachable in there is an

graph such that A 1-bounded grammar will be called safe.

The definition can be understood by thinking of edges of the graph of types
T as a generalisation of places in Petri nets. In this view the number of different
edges of a graph which are typed on the same item of T corresponds to the
number of tokens contained in a place. Observe that for finite graph grammars,

amounts to the property of being finite-state (up to isomorphism
and up to isolated nodes). In the sequel when considering a finite-state graph
grammar we will (often implicitly) assume that it is also finite.

For instance, the graph grammar in Fig. 2 is clearly 3-bounded and thus
finite-state (but only up to isolated nodes).

2.2 Nondeterministic Occurrence Grammars

When a graph grammar is safe, and thus reachable graphs are injectively typed,
at every step, for any item in the type graph every production can consume,
preserve and produce a single item typed Hence we can safely think that a
production, according to its typing, consumes, preserves and produces items of
the graph of types. Using a net-like language, we speak of pre-set context

and post-set of a production Since we work with graphs considered up
to isolated nodes, we will record in these sets only edges. Formally, for any
production of a graph grammar we define

Furthermore, for any edge in T we define
This notation is extended also to nodes in the

obvious way, e.g., for we define
An example of safe grammar can be found in Fig. 3 (for the moment ignore

its relation to grammar in Fig. 2). For this grammar,
engage1 = {1:CM} and while 1:CM =
{engage1,engage2,engage3} and

TEAM LinG

Verifying Finite-State Graph Grammars 89

Definition 6 (Causal Relation). The causal relation of a safe grammar
is the least transitive relation < over satisfying, for any edge in the
graph of types T, and for productions

As usual is the reflexive closure of <. Moreover, for we denote
by the set of causes of in P, namely

Note that the fact that an item is preserved by and consumed by i.e.,
does not imply In this case, the dependency between the two

productions is a kind of asymmetric conflict (see [4, 18, 16, 23]): The application
of prevents from being applied, so that can never follow in a derivation
(or, equivalently, if both and occur in a derivation then must precede

Definition 7 (Asymmetric Conflict). The asymmetric conflict of a safe
grammar is the relation over the set of productions P, defined by if:

Condition 1 is justified by the discussion above. Condition 2 essentially ex-
presses the fact that the ordinary symmetric conflict is encoded, in this setting,
as an asymmetric conflict in both directions. More generally, we will write
and say that and are in conflict when the causes of and i.e.,
includes a cycle of asymmetric conflict. Finally, since < represents a global or-
der of execution, while determines an order of execution only locally to each
computation, it is natural to impose to be an extension of < (Condition 3).

Definition 8 ((Nondeterministic) Occurrence Grammar). A (nondeter-
ministic) occurrence grammar is a safe grammar such that

1.
2.

3.
4.

is a partial order; for any is finite and is acyclic on
is the graph generated by the set of minimal

elements of typed over T by the inclusion;
any item in T is created by at most one production in P, i.e.,
for each the typing is injective on the “consumed” items in

and is injective on the “produced” items in

Since the start graph of an occurrence grammar is determined by
we often do not mention it explicitly.

Intuitively, Conditions 1–3 recast in the framework of graph grammars the
conditions of occurrence nets (actually of occurrence contextual nets [4, 23]). In
particular, in Condition 1, the acyclicity of asymmetric conflict on corre-
sponds to the requirement of irreflexivity for the conflict relation in occurrence
nets. Condition 4, instead, is closely related to safety and requires that each
production consumes and produces items with multiplicity one. An example of
an occurrence grammar is given in Fig. 3.

TEAM LinG

90 P. Baldan et al.

2.3 Concurrent Subgraphs, Configurations and Histories

The finite computations of an occurrence grammar are characterised by special
subsets of productions closed under causal dependencies and with no conflicts
(i.e., cycles of asymmetric conflict), suitably ordered.

Definition 9 (Configuration). Let be an occurrence grammar.
A configuration of is a finite subset of productions such that (the
asymmetric conflict restricted to C) is acyclic, and for any
Given two configurations we write if and for any

if then
The set of all configurations of ordered by is denoted by

Proposition 1 (Reachability of Graphs Generated by Configurations).
Let be an occurrence grammar, be a configuration and

Then a graph G such that can be obtained from the start graph of
by applying all the productions in C in any order compatible with

Due to the presence of asymmetric conflicts, given a production the history
of i.e., the set of events which must precede in a computation is not uniquely
determined by but it depends also on the particular computation: the history
of can or can not include the productions in asymmetric conflict with

Definition 10 (History). Let be an occurrence grammar, let
be a configuration and let The history of in C is the set of events

We denote by the set of histories of i.e.,

Reachable states can be characterised in terms of a concurrency relation.

Definition 11 (Concurrent Graph). Let be an occurrence
grammar. A finite subset of edges is called concurrent, written co(E),
if

1.
2.

the asymmetric conflict restricted to is acyclic;
for all

A subgraph G of T is called concurrent, written co(G), if

It can be shown that the maximal concurrent subgraphs G of T correspond
exactly (up to isolated nodes) to the graphs reachable from the start graph.

2.4 Unfolding of Graph Grammars

The unfolding construction, when applied to a grammar produces a nondeter-
ministic occurrence grammar describing the behaviour of A construction
for the double-pushout algebraic approach to graph rewriting has been proposed

TEAM LinG

Verifying Finite-State Graph Grammars 91

in [3]: the one sketched here is simpler because productions cannot delete nodes
and thus the dangling edge condition does not play a role.

The construction begins from the start graph of and then applies in all
possible ways its productions to concurrent subgraphs, recording in the unfold-
ing each occurrence of production and each new graph item generated in the
rewriting process.

Definition 12 (Unfolding - Sketch). Let be a graph gram-
mar. The unfolding is the “componentwise” union of the
following inductively defined sequence of occurrence grammars

(n = 0) consists of the start graph with no productions.

Take and let be a match of in the graph of types of
satisfying the identification condition, such that is concurrent.

Then the occurrence grammar is obtained by “recording” in
the application of at the match More precisely, a new production
is added and the graph of types is extended by adding to it a copy of each
item generated by the application without deleting any item.

The unfolding is mapped over the original grammar by the so-called folding
morphism The first component is a graph
morphism mapping each graph item in the (graph of types of) the unfolding to
the corresponding item in the (graph of types of) the original grammar The
second component maps any production occurrence in the
unfolding to the corresponding production of

The occurrence grammar in Fig. 3 is an initial part of the (infinite) unfolding
of the grammar in Fig. 2. For instance, production engage1 is an occurrence
of production engage in applied at the match consisting of the edges 1:CM,
2:P, 3:P. Unfolding such a match, three new graph items, two edges 5:PE, 6:PE
and a node, are added to the graph of types of the unfolding. Note that the graph
of types of the (partial) unfolding (call it is typed over the graph of types

of the original grammar (via the folding morphism This
explains why the edges of the graphs in the productions of the unfolding, which
are typed over are marked with names including two colons.

The unfolding provides a compact representation of the behaviour of and
in particular it represents all the graphs reachable in in the following sense.

Theorem 1 (Completeness of the Unfolding). Let be a
graph grammar. A T-typed graph G is reachable in iff there exists a maximal
concurrent subgraph of the graph of types of such that

3 Finite Prefix for Graph Grammars

Let denote a graph grammar, fixed throughout the section,
and let be its unfolding with the folding

TEAM LinG

92 P. Baldan et al.

morphism, as in Definition 12. Given a configuration C of recall from
Proposition 1 that G(C) denotes the subgraph of reached after the execution
of the productions in C (up to isolated nodes). We shall denote by Reach(C)
the same graph, seen as a graph typed over T by the restriction of the folding
morphism, i.e.,

To identify a finite prefix of the unfolding the idea consists of avoiding to keep
in the unfolding useless productions, i.e., productions which do not contribute to
generating new graphs. The definition of “cut-off event” introduced by McMillan
for Petri nets in order to formalise such a notion has to be adapted to this context,
since for graph grammars a production may have different histories.

Definition 13 (Cut-Off). A production of the unfolding is a cut-
off if there exists such that and

A production is a strong cut-off if for all there exist
and such that and The
truncation of is the greatest prefix of not including strong cut-offs.

Theorem 2 (Completeness and Finiteness of the Truncation). The trun-
cation is a complete prefix of the unfolding, i.e., for any reachable graph
G of there is a configuration C in such that Fur-
thermore, if is then the truncation is finite.

Unfortunately, the proof of the above theorem does not suggest a way of
constructing the truncation for finite-state graph grammars. The problem es-
sentially resides in the fact that the notion of strong cut-off refers to the set of
histories of a production, which is, in general, infinite. While leaving the solution
for the general case as an open problem, we next discuss how a finite complete
prefix can be derived for a class of grammars for which this problem disappears.
This still interesting class of graph grammars is characterised by a property that
we call “read-persistence”, since it appears as the graph grammar theoretical
version of read-persistence as defined for contextual nets [23].

Definition 14 (Read-Persistence). An occurrence grammar is
called read-persistent if for any if then or A
graph grammar is called read-persistent if its unfolding is read-persistent.

It can be shown that an adaptation of the algorithm originally proposed
in [17] for ordinary nets and extended in [23] to read-persistent contextual nets,
works for read-persistent graph grammars. In particular, the notion of strong
cut-off can be safely replaced by the weaker notion of (ordinary) cut-off. An
obvious class of read-persistent graph grammars consists of all the grammars
where any edge preserved by productions is never consumed.

For instance, the grammar in our running example is read-persistent,
since the communication manager CM, the only edge preserved by productions,
is never consumed. Its truncation is the graph grammar depicted in Fig. 3.
Denote by its type graph. Note that applying the production [release] to any
subgraph of matching its left-hand side would result in a cut-off: this is the

TEAM LinG

Verifying Finite-State Graph Grammars 93

reason why does not include any instance of production [release]. The
start graph of the truncation is isomorphic to the start graph of grammar
and it is mapped injectively to the graph of types in the obvious way.

Fig. 3. The truncation of the graph grammar in Fig. 2

In general, the truncation of a grammar such as where processes are
connected to CM in the start graph, will contain productions. Consid-
ering instead all possible interleavings, we would end up with an exponential
number of productions.

4 Exploiting the Prefix

In this section we propose a monadic second-order logic where some graph
properties of interest can be expressed. Then we show how the validity of a
property in over all the reachable graphs of a finite-state grammar can be
verified by exploiting a complete finite prefix.

4.1 A Logic on Graphs

We first introduce the monadic second order logic for specifying graph prop-
erties. Quantification is allowed over edges, but not over nodes (as, e.g., in [8]).

Definition 15 (Graph Formulae). Let be a set of (first-
order) edge variables and let be a set of (second-order) variables
representing edge sets. The set of graph formulae of the logic is defined as
follows, where

TEAM LinG

94 P. Baldan et al.

Fig. 4. The Petri net underlying the truncation in Fig. 3

We denote by free(F) and Free(F) the sets of first-order and second-order
variables, respectively, occurring free in F, defined in the obvious way.

Given a T-typed graph G, a formula F in and two valuations
and for the free first- and second-order variables

of F, respectively, the satisfaction relation is defined inductively, in
the usual way; for instance iff and iff

A simple, but fundamental observation is that, while for graph
grammars the graphical nature of the state plays a basic role, for any occurrence
grammar we can can forget about it and view as an occurrence contextual
net (i.e., a Petri net with read arcs, see, e.g., [4, 23]).

Definition 16 (Petri Net Underlying a Graph Grammar). The contex-
tual Petri net underlying an occurrence grammar denoted by

is the Petri net having the set of edges as places and a transition
for every production with pre-set post-set and context

For instance, the Petri net underlying the truncation of (see
Fig. 3) is depicted in Fig. 4. Read arcs are represented as dotted undirected lines.

Let be a fixed finite-state graph grammar and consider the
truncation (actually, all the results hold for any complete
finite prefix of the unfolding). Notice that, by completeness of any graph
reachable in is (up to isolated nodes) a subgraph of the graph of types of

typed over T by the restriction of the folding morphism
Also observe that a safe marking of can be seen as a graph typed
over the type graph T of the original grammar take the least subgraph of
having as set of edges, i.e., and type it over T by the restriction of
the folding morphism. With a slight abuse of notation this typed graph will be
denoted simply as

We show how any formula in can be translated to a formula
over the safe markings of such that, for any marking reachable in

TEAM LinG

Verifying Finite-State Graph Grammars 95

The syntax of the formulae over markings is

where the basic formulae are place (edge) names, meaning that the place is
marked, i.e., if Logical connectives are treated as usual.

Definition 17 (Encoding Graph into Multiset Formulae). Let be
the truncation of a graph grammar as above. Let F be graph formula in
let and The encoding M is defined as:

where, for the symbol stands for If F is
closed formula (i.e., without free variables), we define

Note that, since every reachable graph in is isomorphic to a subgraph of
typed by the restriction of the encoding resolves the basic predicates

by exploiting the structural information of When a first-order variable in
a formula is mapped to an edge we take care that the edge is marked, and,
similarly, when a second-order variable X in a formula is mapped to a set of
edges E, such a set must be covered. Observe that in this case E is limited to
range only over concurrent subsets of edges. In fact, if E is a non-concurrent set,
then no reachable marking will include E, i.e.,

It is possible to show that the above encoding is correct, i.e., for any formula
for any pair of valuations and and for

any safe marking over we have iff

4.2 Checking Properties of Reachable Graphs

Let be a finite-state graph grammar. We next show how a
complete finite prefix of can be used to check whether, given a formula
there exists some reachable graph which satisfies F. In this case we will write

The same algorithm allows to check “invariants” of a graph grammars,
i.e., to verify whether a property is satisfied by all graphs reachable in

written In fact, it trivially holds that iff
Let be the truncation of (or any complete prefix of the

unfolding) and let be the underlying Petri net. The formula produced
by the encoding in Definition 17 can be simplified by exploiting the mutual
relationships between items as expressed by the causality, (asymmetric) conflict
and concurrency relation.

TEAM LinG

96 P. Baldan et al.

Proposition 2 (Simplification). Let F be any formula in let
and be valuations. If is a marking reachable in

and is a marking formula obtained by simplifying with
the Simplification Rule below:

then iff

Algorithm. The question is answered by working over

Consider the formula over markings M[F] (see Definition 17);
Express M[F] in disjunctive normal form as below, where can be or

for

Apply the Simplification Rule in Proposition 2, as far as possible, thus ob-
taining a formula
For any conjunct in of the kind

Take the configuration
Consider the safe marking reached after C, i.e.,

where is the initial marking of (consisting of
all minimal places). Surely includes Hence, the only
reason why the conjunct may not be true is that includes some of
the In this case look for a configuration which
enriches C with transitions which consume the but not the

The formula holds iff this check succeeds for at least one conjunct.

For instance, suppose that we want to check that our sample graph grammar
satisfies where F is a formula specifying that every engaged process

is connected through connection to exactly one other engaged process, i.e.,

The encoding simplifies to

and we have to check that the truncation does not satisfy

which can be done by using the described verification procedure.

TEAM LinG

Verifying Finite-State Graph Grammars 97

5 Conclusions

We have discussed how the finite prefix approach, originally introduced by
McMillan for Petri nets, can be generalised to graph transformation systems.
A complete finite prefix can be constructed for some classes of graph grammars,
but the problem of constructing it for general, possibly non-read-persistent gram-
mars remains open and represents an interesting direction of further research.
Also, it would be interesting to try to determine an upper bound on the size of
the prefix, with respect to the number of reachable graphs.

We have shown how the complete finite prefix can be used to model-check
some properties of interest for graph transformation systems. We plan to gen-
eralise the verification technique proposed here to allow the model-checking of
more expressive logics, like the one studied in [10] for Petri nets, where temporal
modalities can be arbitrarily nested. We intend to implement the model-checking
procedure described in the paper and, as in the case of Petri nets, we expect
that its efficiency could be improved by refined cut-off conditions (see, e.g., [11])
which help to decrease the size of the prefix.

As mentioned in the introduction, some efforts have been devoted recently to
the development of suitable verification techniques for GTSs. A general theory
of verification is presented in [12, 13], but without providing directly applicable
techniques. In [15, 1, 5] one can find techniques which are applicable to infinite-
state systems: the first defines a general framework based on types for graph
rewriting, while the second is based on the construction of suitable approxi-
mations of the behaviour of a GTS. Instead, the papers [21, 19] concentrate on
finite-state GTSs. They both generate a suitable labelled transition system out
of a given finite-state GTS and then [21] resorts to model-checkers like SPIN,
while [19] discusses the decidability of the model-checking problem for a logic,
based on regular path expressions, allowing to talk about the history of nodes
along computations. The main difference with respect to our work is that they
do not exploit a partial order semantics, with an explicit representation of con-
currency, and thus considering the possible interleavings of concurrent events
these techniques may suffer of the state-explosion problem.

Acknowledgements. We would like to thank the anonymous referees for their
helpful comments. We are also grateful to Javier Esparza for interesting and
helpful discussions on the topic of this paper.

References

1.

2.

P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR 2001, pages 381–395. Springer,
2001. LNCS 2154.
P. Baldan, A. Corradini, and B. König. An unfolding-based approach for the
verification of finite-state graph grammars. Technical report, Dipartimento di In-
formatica, Università Ca’ Foscari di Venezia, 2004. To appear.

TEAM LinG

98 P. Baldan et al.

3.

4.

5.

6.

7.

8.

9.

P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In Proc. of FoSSaCS ’99, pages 73–89. Springer,
1999. LNCS 1578.
P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures and processes. Information and Computation, 171(1):1–49, 2001.
P. Baldan, B. König, and B. König. A logic for analyzing abstractions of graph
transformation systems. In Proc. of SAS’03, pages 255–272. Springer, 2003. LNCS
2694.
A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.
A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
Approaches to Graph Transformation I: Basic Concepts and Double Pushout Ap-
proach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. 1: Foundations. World Scientific, 1997.
B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol.1: Foundations. World Scien-
tific, 1997.
H. Ehrig, J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 3: Concurrency,
Parallelism and Distribution. World Scientific, 1999.
J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23(2–3):151–195, 1994.
J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20(20):285–310, 2002.
F. Gadducci, R. Heckel, and M. Koch. A fully abstract model for graph-interpreted
temporal logic. In Proc. of TAGT’98, pages 310–322. Springer, 2000. LNCS 1764.
R. Heckel. Compositional verification of reactive systems specified by graph trans-
formation. In Proc. of FASE’98, pages 138–153. Springer, 1998. LNCS 1382.
G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279–295, 1997.
B. König. A general framework for types in graph rewriting. In Proc. of FST TCS
2000, pages 373–384. Springer, 2000. LNCS 1974.
R. Langerak. Transformation and Semantics for LOTOS. PhD thesis, Department
of Computer Science, University of Twente, 1992.
K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
G.M. Pinna and A. Poigné. On the nature of events: another perspective in con-
currency. Theoretical Computer Science, 138(2):425–454, 1995.
A. Rensink. Towards model checking graph grammars. In Proc. of the Work-
shop on Automated Verification of Critical Systems, Technical Report DSSE–TR–
2003–2, pages 150–160. University of Southampton, 2003.
L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
PhD thesis, Technische Universität Berlin, 1996.
D. Varró. Towards symbolic analysis of visual modelling languages. In Proc. GT-
VMT 2002: International Workshop on Graph Transformation and Visual Mod-
elling Techniques, volume 72.3 of Electronic Notes in Computer Science, pages
57–70. Elsevier, 2002.
W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In Proc.
of ICALP’97, pages 538–548. Springer, 1997. LNCS 1256.
W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with
read arcs. In Proc. of CONCUR’98, pages 501–516. Springer, 1998. LNCS 1466.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

TEAM LinG

The Pros and Cons of Netcharts

Nicolas Baudru and Rémi Morin

Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence, 39 rue F. Joliot-Curie, F-13453 Marseille cedex 13, France

Abstract. Netcharts have been introduced recently by Mukund et al.
in [17]. This new appealing approach to the specification of collections of
message sequence charts (MSCs) benefits from a graphical description,
a formal semantics based on Petri nets, and an appropriate expressive
power. As opposed to high-level MSCs, any regular MSC language is the
language of some netchart. Motivated by two open problems raised in
[17], we establish in this paper that the questions

(i) whether a given high-level MSC describes some netchart language
(ii) whether a given netchart is equivalent to some high-level MSC
(iii) whether a given netchart describes a regular MSC language

are undecidable. These facts are closely related to our first positive result:
We prove that netchart languages are exactly the MSC languages that are
implementable by message passing automata up to refinement of message
contents. Next we focus on FIFO netcharts: The latter are defined as the
netcharts whose executions correspond to all firing sequences of their
low-level Petri net. We show that the questions

(i) whether a netchart is a FIFO netchart
(ii) whether a FIFO netchart describes a regular MSC language
(iii) whether a regular netchart is equivalent to some high-level MSC

are decidable.

Introduction

Message Sequence Charts (MSCs) are a popular model often used for the docu-
mentation of telecommunication protocols. They profit by a standardized visual
and textual presentation (ITU-T recommendation Z.120 [11]) and are related to
other formalisms such as sequence diagrams of UML. An MSC gives a graphical
description of communications between processes. It usually abstracts away from
the values of variables and the actual contents of messages. However, this formal-
ism can be used at a very early stage of design to detect errors in the specification
[10]. In this direction, several studies have already brought up methods and com-
plexity results for the model-checking and implementation of MSCs viewed as a
specification language [1–3, 5, 8, 14, 16, 18, 19].

Collections of MSCs are often specified by means of high-level MSCs (HM-
SCs). The latter can be seen as directed graphs labelled by component MSCs.
However such specifications may be unrealistic because this formalism allows
for the description of sets of MSCs that correspond to no communicating sys-
tem. Furthermore in most cases it is undecidable whether a HMSC describes

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 99–114, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

100 N. Baudru and R. Morin

an implementable language [1, 14, 8]. In [17], Mukund et al. introduced a new
formalism for specifying collections of MSCs: Netcharts can be seen as HMSCs
with some distributed control whereas HMSCs require implicitly some global
control over processes in the system. Basically a netchart is a Petri net whose
places are labelled by processes and whose transitions are labelled by MSCs.
This new approach benefits from a graphical description, a formal semantics,
and an appropriate expressive power: As opposed to HMSCs, all netcharts de-
scribe implementable languages. Our first result completes this relationship and
shows that netcharts describe precisely all implementable languages (Th. 3.7).
This key result allows us to answer negatively to some questions left open in [17].

First we present several comparisons between netcharts and HMSCs. We show
that it is undecidable whether a HMSC describes a netchart language (Th. 4.7).
Conversely, we show also that it is undecidable whether a netchart language can
be described by some HMSC (Cor. 4.4). Yet as explained below, we can effectively
check whether a regular netchart is equivalent to some HMSC. These two results
follow from the observation that a netchart language corresponds to some HMSC
if and only if it describes a finitely generated set of MSCs (Th. 4.3).

In the literature regular MSC languages have attracted a lot of interest.
These languages appeared in [2, 18] as a framework where many model-checking
problems become decidable. They were investigated later thoroughly and char-
acterized in a logical way in [8, 9]. In particular [8, Th. 4.1] shows how to decide
whether a regular set of MSCs is finitely generated. Noteworthy, similarly to
high-level compositional MSCs [7], any regular MSC language is the language of
some netchart [17]. Answering a second open question from [17], another nega-
tive consequence of our first result is that regularity is undecidable for netchart
languages (Cor. 3.8). This is admittedly a major drawback of netcharts.

Motivated by some restrictions considered at some point in [17], we prove in
Theorem 5.3 that regularity is decidable for the subclass of FIFO netcharts. The
latter are defined as those netcharts whose FIFO behaviors correspond exactly to
the firing sequences of the underlying low-level Petri net. Theorem 5.3 relies on
a difficult and unrecognized result by Lambert [12, Th. 5.2] together with the re-
mark that a netchart language is regular if and only if it requires bounded channel
capacities. Additionally we show that we can check effectively whether a netchart
is FIFO (Th. 5.2) by reduction to the reachability problem in Petri nets [15].

This paper investigates two semantics of netcharts. The FIFO semantics
adopted in [17] appears as a restriction of a more general semantics that allows
non-FIFO behaviors. In most cases, results extend from the FIFO semantics
to the non-FIFO one. However we exhibit a netchart that is not implementable
under the non-FIFO semantics. To simplify the presentation of our results the
non-FIFO semantics is investigated separately in the last section.

1 Background

Message sequence charts (MSCs) are defined by several recommendations that
indicate how one should represent them graphically [11]. Examples of MSCs are

TEAM LinG

The Pros and Cons of Netcharts 101

Fig. 1. FIFO MSC Fig. 2. Non-FIFO MSC Fig. 3. Degenerate behavior

given in Figures 1 and 2 in which time flows top-down. In this paper we regard
MSCs as particular labelled partial orders (or pomsets) following a traditional
trend of modeling concurrent executions [6,13,20]. This approach allows for
applying classical results of Mazurkiewicz trace theory to the framework of MSCs
[18,8,9,16,3].

A pomset over an alphabet is a triple where is a finite
partial order and is a mapping from E to A pomset can be seen as an
abstraction of an execution of a concurrent system. In this view, the elements
of E are events and their label describes the basic action of the system that
is performed by the event Furthermore, the order describes the causal
dependence between the events.

An order extension of a pomset is a pomset
such that A linear extension of is an order extension that is linearly
ordered. It corresponds to a sequential view of the concurrent execution Linear
extensions of a pomset over can naturally be regarded as words over By

we denote the set of linear extensions of a pomset over

1.1 FIFO and Non-FIFO Basic Message Sequence Charts

We present here a formal definition of MSCs. The latter appear as particular
pomsets over some alphabet that we introduce first. Let be a finite set
of processes (also called instances) and be a finite set of messages. For any
instance the alphabet is the disjoint union of the set
of send actions and the set of receive actions

The alphabets are disjoint and we put
Given an action we denote by the unique instance

such that that is the particular instance on which each occurrence of
action takes place.

For any pomset over we denote by the instance on which
the event occurs: We say that covers and we write

if and implies We say that two events and
are two matching events and we write if is the send event and

is the receive event In other words, we put if there are two
instances and and some message such that
and

TEAM LinG

102 N. Baudru and R. Morin

Definition 1.1. A basic message sequence chart (MSC) over the set of messages
is a pomset over such that

By events occurring on the same instance are linearly ordered: In particu-
lar non-deterministic choice cannot be described within a basic MSC. Condition

makes sure that each receive event matches some send event and conversely.
Thus there is no duplication of messages within the channels and formalizes
partly the reliability of the channels. Following the recommendation Z.120, we
allow overtaking (Fig. 2) but forbid any reversal of the order in which two iden-
tical messages sent from to are received by (Fig. 3). Now formalizes
simply that the receipt of any message will occur after the corresponding send
event. Finally, by causality in M consists only in the linear dependency on
each instance and the ordering of pairs of matching events. The set of all basic
MSCs is denoted by Note here that if two basic MSCs share some linear
extension then they are equal. We denote by Ins(M) the set of active instances
of an MSC

In Figure 2, the basic MSC exhibits some overtaking of message above
two messages A basic MSC satisfies the FIFO requirement if it shows no
overtaking, that is, the messages from one instance to another are delivered
in the order they are sent (Fig. 1). Non-FIFO basic MSCs allow for specifying
scenarios that use several channels (or message types) between pairs of processes
(Fig. 2). A more critical situation is illustrated by Figure 3. In this drawing, one
message overtakes another one with the same content: In this paper, differently
from [4] we forbid this kind of behaviors.

1.2 Petri Nets

Let us now recall the definition of a Petri net and some usual notations. A Petri
net is a triple where P is a set of places, T is a set of transitions
such that and is a flow relation. We shall use the
following usual notations. For all we put
and Clearly, for all transitions and are
sets of places, and conversely for all places and are both sets of
transitions. A marking of is a multiset of places A transition is
enabled at if for all In this case, we write where
the marking is defined by if if

and otherwise.
In this paper, we consider Petri nets provided with an initial marking and

a finite set of final markings An execution sequence is a word
such that there are markings satisfying and

for all integers The language consists of all ex-
ecution sequences of

TEAM LinG

The Pros and Cons of Netcharts 103

Fig. 4. A netchart and a corresponding MSC

1.3 Netcharts

A netchart is basically a Petri net whose places are labelled by instances and
whose transitions are labelled by FIFO basic MSCs. Similarly to Petri nets,
netcharts admit an intuitive visual representation: Examples of netcharts are
given in Fig. 4, 7, and 9.

Definition 1.2. A netchart over consists of a Petri net and
two mappings Ins : and such that Ins associates some
instance to each place and associates a FIFO basic MSC over
the set of messages to each transition Three conditions are required for
such a structure to be a netchart:

For eachinstance the places located on instance contain exactly one
token in the initial marking, i.e.

For each transition and each active instance there is exactly
one place such that and there is exactly one place
such that
For each transition and each place the instance associated to

is active in

Observe here that the last requirement implies that is empty as
soon as is the empty MSC. However Axiom plays actually no rôle in
the semantics of netcharts and it could be removed for simplification’s sake.

2 Semantics of Netcharts

In this section we fix a netchart over the set of
messages and define formally its behaviors. The semantics of consists of
basic MSCs over (Fig. 4). The latter are derived from the basic MSCs that
represent the execution sequences of some low-level Petri net (Fig. 4 and 6).
Actually, the execution sequences of use a refined set of messages and
MSCs of are obtained by projection of messages from onto

TEAM LinG

104 N. Baudru and R. Morin

2.1 From MSCs to Petri Nets

The construction of the low-level Petri net starts with the translation of
each transition with component MSC into some Petri
net This natural operation is depicted in Fig. 5.

This construction need to regard each component MSC as a
dag (direct acyclic graph) denoted by For any instance we let
be the restriction of to events located on instance Then if occurs
immediatelybefore on instance Then the binary relation consists of pairs
of matching events together with pairs of covering events w.r.t.

Definition 2.1. The MSC dag of a basic MSC is a labelled di-
rected acyclic graph such that if or for some
instance

Clearly we can recover the basic MSC from its MSC dag. The reason for this
is that hence is simply the reflexive and transitive closure of That
is why we will identify a basic MSC with its corresponding MSC dag.

We can now formalize how each component MSC is trans-
lated into some Petri net First, the places are identified with
pairs from Second the transitions are identified with some send or receive
actions over a new set of messages from Formally, we put
and

Note that the translation from the basic MSC into the Petri net is
one-to-one: We will be able to recover the basic MSC from the Petri net

For this, we let be the mapping from to E such that
and To complete the definition of we choose a flow relation

in accordance with the causality relation of We put

The transitions of the Petri net will be connected to places of
by means of the following connection relation:

2.2 Low-Level Petri Net

Now, in order to build the low-level Petri net of the netchart we replace
each transition of by its corresponding Petri net as shown in Fig. 6.

Fig. 5. From transition to Petri net

TEAM LinG

The Pros and Cons of Netcharts 105

Fig. 6. The low-level Petri net associated to the netchart of Fig. 4

The low-level Petri net is built as follows. First,
the set of places collects the places of and the places of all

Second, the set of transitions collects all transitions of all
Now the flow relation consists of the flow relation of each together

with the connection relations The initial marking of is
the one of The new places are initially empty. Similarly a marking

of is final if the restriction of to the places of is a final marking of
and if all other places are empty:

Any execution sequence of the low-level Petri net leads from the
initial marking to some final marking for which all places from are empty.
Moreover is actually a linear extension of a unique basic MSC.

Definition 2.2. The MSC language consists of the FIFO basic MSCs
M such that at least one linear extension of M is an execution sequence of

Interestingly, similarly to a property observed with message passing automata
(Def. 3.2 below), it can be easily shown that a basic MSC M belongs to
if and only if all linear extensions of M are execution sequences of Note-
worthy it can happen that an execution sequence of the low-level Petri net
corresponds to a non-FIFO MSC (see e.g. [17, Pig. 5] or Fig. 7). Following
[17], we focus on FIFO behaviors and neglect this kind of execution sequences
here. We will investigate a non-FIFO semantics of netcharts in the last section
only.

2.3 Set of MSCs Associated to Some Netchart

Recall now that MSCs from use a refined set of messages that
consists of triples where and We let
denote the labelling that associates the message to each triple

This labelling extends to a function that maps actions of onto actions of
in a natural way. Furthermore this mapping extends in the obvious way from

the FIFO basic MSCs over to the FIFO basic MSCs over The semantics
of the netchart is defined from the semantics of its low-level Petri net by
means of the labelling

TEAM LinG

106 N. Baudru and R. Morin

Fig. 7. Netchart and some non-FIFO behaviour

Definition 2.3. The MSC language is the set of FIFO basic MSCs
obtained from an MSC of its low-level Petri net by the labelling

We stress here that maps FIFO basic MSCs onto FIFO basic MSCs. The
situation with non-FIFO basic MSCs may be more complicated as we will see in
the last section.

3 Netcharts vs. Implementable Languages

In this section, we study how netcharts relate to communicating systems. We
consider the set of channels that consists of all triples
channel state is then formalized by a map that describes the queues of
messages within the channels at some stage of an execution. The empty channel
state is such that each channel maps to 0.

Definition 3.1. A message passing automaton (MPA) over consists of a
family of local components and a subset of global final states F such that
each component is a transition system over where is a
finite set of states, with initial state is
the transition relation and

3.1 Semantics of MPA

A global state is a pair where is a tuple of local states and is
a channel state. The initial global state is the pair such that
and is the empty channel state. The system of global states associated
to is the transition system over where
is the set of global states and the global transition relation
satisfies:

for all if

1.
2.

and for all
and for all

for all if

1.
2.

and for all
and for all

TEAM LinG

The Pros and Cons of Netcharts 107

As usual with transition systems, for any we write
if there are some global states such that and for all

An execution sequence of is a word such that
for some global final state

Consider now an MPA with components and global final states F.
Any execution sequence is a linear extension of a (unique) basic MSC.

Definition 3.2. The language consists of the FIFO basic MSCs M such
that at least one linear extension of M is an execution sequence of

Noteworthy, it can be easily shown that a basic MSC M belongs to iff
all linear extensions of M are execution sequences of We say that a language

is realizable if there exists some MPA such that

Example 3.3. Consider the netchart depicted in Figure 7 for which the
initial marking is the single final marking. Its language is the set of all
basic MSCs that consist only of messages and exchanged from to in a
FIFO manner. Clearly, the language is realizable.

3.2 Implementation of MSC Languages

As observed in [1], there are finite sets of FIFO basic MSCs that are not realiz-
able. For this reason, it is natural to relax the notion of realization. In [9], Hen-
riksen et al. suggested to allow some refinements of message contents as follows.

Definition 3.4. Let be an MSC language over the set of messages
A. We say that is implementable if there are some MPA over some set of
messages and some labelling such that

Note here that any implementable language consists of FIFO basic MSCs
only because is FIFO as soon as M is FIFO.

As the next result shows, the refinement of message contents by means of
labellings helps the synthesis of MPAs from sets of scenarios. As opposed to the
restrictive approach studied in [1,14] which sticks to the specified set of message
contents, labellings allow for the implementation of any finite set of basic MSCs.
Actually the refinement of messages allows for the implementation of any regular
set of FIFO basic MSCs. Recall here that an MSC language is called
regular if the set of corresponding linear extensions
is a regular set of words.

Theorem 3.5. [9, Th. 3.4] All regular sets of FIFO basic MSCs are imple-
mentable.

One main property of netcharts is the following.

Theorem 3.6. [17] For any netchart is implementable.

Note that Theorem 3.6 fails if we forbid refinements, that is if we require
that The reason for this is again that there are finite sets of
FIFO basic MSCs that are not realizable while they are netchart languages.

TEAM LinG

108 N. Baudru and R. Morin

3.3 From Message Passing Automata to Netcharts

In [17, Th. 6], it is shown that any regular MSC language is a netchart language.
However the converse fails: There are netchart languages that are not regular
(see e.g. Example 3.3). Our first result characterizes the expressive power of
netcharts and establishes the converse of Theorem 3.6.

Theorem 3.7. Any implementable language is the MSC language of some
netchart whose component MSCs consist only of a pair of matching events.

We stress that Theorem 3.7 is effective: For any MPA over the set of
messages and any labelling we can build a netchart such that

Theorem 3.7 subsumes [17, Th. 6] because all regular MSC
languages are implementable (Th. 3.5) and there are implementable languages
that are not regular (Ex. 3.3). The proof of Theorem 3.7 is rather tedious. It
differs from the proof of [17, Th. 6] in that we do not assume the implementable
language to be regular.

Theorem 3.7 shows that the expressivity of netcharts coincides with the ex-
pressivity of MPAs up to labellings. This leads us to a first answer to questions
from [17].

Corollary 3.8. It is undecidable whether a netchart language is regular.

Proof. We observe first that it is undecidable whether the language of some
given MPA is regular. More precisely, similarly to the proof of [19, Prop. 7], for
any instance of Post’s Corresponding Problem, we build some MPA such that
the instance has a solution iff is not empty and in this case is not
regular. Now the proof follows from the effectiveness of Th. 3.7 with a labelling

4 Netcharts vs. High-Level Message Sequence Charts

Let us now recall how one can build high-level MSCs from basic MSCs. First,
the asynchronous concatenation of two basic MSCs and

is the basic MSC where
and the partial order is the transitive closure of

This concatenation allows for the composition of
specifications in order to describe infinite sets of basic MSCs: We obtain high-
level message sequence charts as rational expressions, following thus the usual
algebraic approach that we recall next.

4.1 Rational Sets of MSCs

For any subsets and of the product of by is
We let 1 denote the empty basic MSC and we put

For any then the iteration of is It is
also denoted A language is finitely generated if there is a finite
subset of such that A subset of is rational if it can

TEAM LinG

The Pros and Cons of Netcharts 109

be obtained from the finite subsets of by means of unions, products and
iterations. Any rational language is finitely generated.

Definition 4.1. A high-level message sequence chart (HMSC) is a rational ex-
pression of basic MSCs, that is, an expression built from finite sets of basic MSCs
by use of union (+), product (·) and iteration

We follow here the approach adopted e.g. in [1,2,5,8,14,19] where HMSCs
are however often flattened into message sequence graphs. The set of MSCs
corresponding to some HMSC is denoted by

Example 4.2. Consider again the two components MSCs A and B of the
netchart depicted in Fig. 7. As already observed in Example 3.3, the lan-
guage is the set of all FIFO basic MSCs that consist only of messages

and exchanged from to This language corresponds to the HMSC

4.2 For Netchart Languages: Finitely Generated Means Rational

As already observed in [17, Fig. 6], there are netcharts whose languages are not
finitely generated. Clearly these netchart languages are not rational. We show
here that it is undecidable whether a given netchart language is described by
some HMSC (Cor. 4.4). As a first step, the next result shows that being finitely
generated is sufficient for a netchart language to be rational.

Theorem 4.3. For any netchart is finitely generated iff it is the
language of some HMSC.

Proof. Let be a finite set of basic MSCs over such that From
Theorem 3.6, we can build some MPA over a refined set of messages such
that for some Let be the subset of FIFO
basic MSCs M over such that Then
Since is recognizable and finitely generated, it is described by some
globally cooperative HMSC [16, Th. 2.3].

In [19, Prop. 7], it was shown that it is undecidable whether the language of
some given MPA is finitely generated. Since the language of any MPA is also
the language of some netchart that we can effectively build (Th. 3.7), we obtain
easily a first corollary of Th. 4.3.

Corollary 4.4. Given some netchart it is undecidable whether is
described by some HMSC.

Thus, it is undecidable whether a netchart language is rational. In the end
of this section we show that the opposite question is undecidable, too (Th. 4.7).

4.3 From HMSCs to Netcharts

Let us now relate the notions of regularity and channel-boundedness in the
framework of netcharts. Recall first that the channel-width of some basic MSC

TEAM LinG

110 N. Baudru and R. Morin

M is the maximal number of messages that may be sent in a channel but not
received along some linear extension of M. Formally, the channel-width of M is

A language of basic MSCs is called channel-bounded by an inte-
ger B if each basic MSC of has a channel-width at most B. It was observed
in [8] that each regular MSC language is channel-bounded. In general the con-
verse fails. However, for netchart languages the two notions coincide as the next
elementary observation shows.

Lemma 4.5. Let be a netchart. The language is regular iff it is
channel-bounded.

This result may be seen as a direct consequence of Theorem 3.6 although
it is much easier to prove it directly. With the help of Lemma 4.5 and Th. 3.5
we can now easily characterize which channel-bounded FIFO HMSCs describe a
netchart language.

Theorem 4.6. Let be a HMSC such that is channel-bounded and FIFO.
Then is regular iff is a netchart language.

By means of the proof technique of [8, Th. 4.6], we can show easily that
it is undecidable whether a channel-bounded FIFO HMSC describes a regular
language. As a consequence, we get the following negative result.

Theorem 4.7. It is undecidable whether the language of some given HMSC
can be described by some netchart. This holds even if we restrict to HMSCs that
describe channel-bounded languages.

5 Two Positive Results for FIFO Netcharts

We have proved in Cor. 3.8 that checking regularity of is undecidable.
To cope with this negative result, we introduce a subclass of netcharts for which
regularity becomes decidable. This restriction was also considered at some point
in [17].

Definition 5.1. A netchart is called FIFO if any execution sequence of its
low-level Petri net is a linear extension of some FIFO basic MSC.

Figure 7 shows a non-FIFO netchart whereas Figure 4 shows a FIFO netchart.
Interestingly, this subclass of netcharts is decidable and regularity is decidable
in this subclass.

Theorem 5.2. It is decidable whether a netchart is a FIFO netchart.

Proof. We consider two distinct messages and from These two messages
are involved in four transitions and in the low-level net
In order to check whether can overtake in some execution sequence of

TEAM LinG

The Pros and Cons of Netcharts 111

Fig. 8. Construction to decide whether some netchart is FIFO

we build a new Petri net from by adding some places and some transitions.
More precisely, around the four transitions related to and and the two corre-
sponding places depicted in gray in Fig. 8, we add 8 new transitions

and and 18 new places drawn in black in Fig. 8. Observe
that the new transition can be executed at most once; moreover in this
case a token is put in the new place at its left. A similar observation holds for

and Observe also that can be executed only after
whereas can be executed only after Now each arc from a place to
the transition is copied into an arc from to and another arc from to

We proceed similarly with places in and with the transition Now
we claim that some MSC of shows some overtaking of over iff the new
Petri net admits an execution sequence that involves the transitions and

We can check the existence of such an execution sequence by reachability
analysis [15].

Theorem 5.3. Regularity of is decidable for FIFO netcharts.

Proof. By Lemma 4.5, we have to check whether is channel-bounded.
Since has finitely many final states, we may assume that has a unique
final marking. Since is channel-bounded iff

is channel-bounded. Moreover is channel-bounded iff it is
regular. Since is FIFO, this holds iff the set of all execution sequences of
is regular. This question is decidable as shown by Lambert [12, Th. 5.2]. An
alternative to this proof is to apply a recent and independent work by Wimmel
[21]which is also based on [12].

6 Getting Rid of the FIFO Restriction

In this section we introduce an extended semantics for netcharts which includes
non-FIFO MSCs. We show that most results in the FIFO semantics remain valid
with this new approach. However we exhibit a netchart that is not implementable
(Ex. 6.5).

6.1 Non-FIFO Behaviors of Netcharts

Let be a netchart and be its low-level Petri net. The non-FIFO language
of consists of the (possibly non-FIFO) basic MSCs M such that each

TEAM LinG

112 N. Baudru and R. Morin

linear extension from LE(M) is an execution sequence of In particular,
consists of all FIFO basic MSCs of When dealing with non-

FIFO basic MSCs and labellings, one has to take care of degenerating MSCs.

Definition 6.1. Let and be two sets of messages and be a
mapping from to A basic MSC over is called degener-
ating with if the dag is not the MSC dag of some basic
MSC.

Example 6.2. Consider the drawings of Fig. 9. The directed acyclic graph
is obtained from the MSC dag D with the labelling such that and

Since is not an MSC dag, the basic MSC D is degenerating with

Since we do not want to deal with degenerate behaviors in this paper, we
have to select from the basic MSCs of the low-level Petri net only those basic
MSCs that are not degenerating with the labelling

Definition 6.3. The non-FIFO semantics of a netchart consists of the
basic MSCs obtained from the basic MSCs of that are not degenerating
with

Example 6.4. Consider the netchart of Fig. 9 for which a marking is final
if for each instance As explained in Example 6.2 the
basic MSC is degenerating with

Fig. 9. Netchart and a degenerate behavior

TEAM LinG

The Pros and Cons of Netcharts 113

6.2 Non-FIFO Semantics of MPAs

A rather natural non-FIFO semantics for MPAs and a corresponding notion of
implementation may be defined as follows. First, the non-FIFO semantics
of an MPA consists of the (possibly non-FIFO) basic MSCs M such that each
linear extension of M is an execution sequence of Now, an MSC language is
implementable under the non-FIFO semantics of MPAs if there are some MPA

over some set of messages and some labelling such that no MSC
from is degenerating with and Differently from the FIFO
semantics, there are netcharts that are not implementable under the non-FIFO
semantics.

Example 6.5. Continuing Example 6.4, the low-level Petri net of the netchart
depicted in Fig. 9 admits some non-FIFO executions. However all these ba-

sic MSCs are degenerating with Therefore the non-FIFO semantics of
consists actually of FIFO basic MSCs only. More precisely,
is described by the HMSC of Example 4.2. It is easy to show that
this MSC language is not implementable under the non-FIFO semantics of
MPAs.

6.3 Extending Some Results From the FIFO to the Non-FIFO
Semantics

Theorems 3.7, 4.3, 4.6 and 4.7 can be established with the non-FIFO semantics
by adapting the proofs slightly. Yet Corollaries 3.8 and 4.4 need to be more
careful.

Theorem 6.6. It is undecidable whether some netchart language is regu-
lar (resp. can be described by some HMSC).

Proof. The proof is based on the following key technical result: For any MPA
over and any mapping we can effectively build a netchart

such that where be the set of basic MSCs that are
not degenerating with Now we apply again [19, Prop. 7]. Let be some MPA
over We consider and By the above construction, we
can build some netchart such that because
Then is finitely generated (resp. regular) iff is also finitely generated
(resp. regular).

Discussion. These undecidability results rely essentially on the possible pres-
ence of degenerating MSCs in the low-level Petri net. Similarly to results ob-
tained for FIFO netcharts (Th. 5.2 and 5.3), we can check effectively whether
a netchart admits some degenerating MSCs in its low-level Petri net. More-
over, in case no such MSC appears, then is easily implementable un-
der the non-FIFO semantics of MPAs and we can effectively check whether
it is regular. Thus, it is quite useful to avoid degenerate behaviors. For this
reason, we suggest that component MSCs should use disjoint set of messages
(that is, messages should be private to transitions) because this simple re-

TEAM LinG

114 N. Baudru and R. Morin

quirement ensures that no degenerating MSC appears in the low-level Petri
net.

Acknowledgements. Thanks to the anonymous referees for suggestions to im-
prove the presentation of the paper. We thank also H. Wimmel for communicat-
ing us paper [21].

References

1.

2.

3.

4.

5.

6.
7.

8.

9.

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Alur R., Etessami K. and Yannakakis M.: Realizability and verification of MSC
graphs. ICALP, LNCS 2076 (2001) 797–808
Alur R. and Yannakakis M.: Model Checking of Message Sequence Charts. CON-
CUR, LNCS 1664 (1999) 114–129
Baudru N. and Morin R.: Safe Implementability of Regular Message Sequence
Charts Specifications. Proc. of the ACIS 4th Int. Conf. SNDP (2003) 210–217
Bollig B., Leucker M. and Noll Th.: Generalised Regular MSC Languages. FoSSaCS,
LNCS 2303 (2002) 52–66
Caillaud B., Darondeau Ph., Hélouët L. and Lesventes G.: HMSCs as partial spec-
ifications... with PNs as completions. LNCS 2067 (2001) 87–103
Diekert V. and Rozenberg G.: The Book of Traces. (World Scientific, 1995)
Gunter E.L., Muscholl A. and Peled D.: Compositional Message Sequence Charts.
TACAS, LNCS 2031 (2001) 496–511
Henriksen J.G., Mukund M., Narayan Kumar K. and Thiagarajan P.S.: On message
sequence graphs and finitely generated regular MSC language. ICALP, LNCS 1853
(2000) 675–686
Henriksen J.G., Mukund M., Narayan Kumar K. and Thiagarajan P.S.: Regular
collections of message sequence charts. MFCS, LNCS 1893 (2000) 405–414
Holzmann G.J.: Early Fault Detection. TACAS, LNCS 1055 (1996) 1–13
ITU-TS: Recommendation Z.120: Message Sequence Charts. (Geneva, 1996)
Lambert J.L.: A structure to decide reachability in Petri nets. Theoretical Comp.
Science 99 (1992) 79–104
Lamport L.: Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM 21,7 (1978) 558–565
Lohrey M.: Realizability of High-level Message Sequence Charts: closing the gaps.
Theoretical Comp. Science 309 (2003) 529–554
Mayr E.W.: An algorithm for the general Petri net reachability problem. SIAM
Journal of Computing 13:3 (1984) 441–460
Morin R.: Recognizable Sets of Message Sequence Charts. STACS 2002, LNCS 2285
(2002) 523–534
Mukund M., Narayan Kumar K. and Thiagarajan P.S: Netcharts: Bridging the
Gap between HMSCs and Executable Specifications. CONCUR 2003, LNCS 2761
(2003) 296–310
Muscholl A. and Peled D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. MFCS, LNCS 1672 (1999) 81–91
Muscholl A. and Peled D.: From Finite State Communication Protocols to High-
level Message Sequence Charts. ICALP, LNCS 2076 (2001) 720–731
Pratt V.: Modelling concurrency with partial orders. International Journal of Par-
allel Programming 15 (1986) 33–71
Wimmel H.: Infinity of Intermediate States is Decidable for Petri Nets. Applica-
tions and Theory of Petri Nets, LNCS (2004) –To appear

TEAM LinG

Basic Theory of Reduction Congruence for
Two Timed Asynchronous

Martin Berger

Dept. of Computer Science, Queen Mary, Univ. of London

Abstract. We study reduction congruence, the most widely used no-
tion of equality for the asynchronous with timers, and de-
rive several alternative characterisations, one of them being a labelled
asynchronous bisimilarity. These results are adapted to an asynchronous

with timers, locations and message failure. In addition we in-
vestigate the problem of how to distribute value-passing processes in a
semantics-preserving way.

1 Introduction

The has been used to good effect as a tool for modelling and reason-
ing about computation [6,7,18,23,26]. Unfortunately, it appears incomplete for
compositional representation and verification of distributed systems. An impor-
tant instance of what cannot be covered convincingly are network protocols, for
example TCP, that implement reliable (under some mild constraints about the
probability of message failures) FIFO channels on top of an unreliable message
passing fabric. Typically, such protocols start a timer when sending a message
and, if the corresponding acknowledgement doesn’t arrive early enough or not at
all, a time-out initiates a retransmission. Timed Automata, Time(d) Petri Nets,
Timed CCS and many other formalisms have been proposed to help express
this or similar phenomena. Unfortunately, they all seem insufficient to give con-
vincing accounts of advanced programming languages containing primitives for
distribution, such as Java or the POSIX libraries. The two key shortcomings are
the lack in expressivity of the underlying non-distributed formalism (e.g. finite
automata or CCS do not allow precise and compositional modelling of Java’s
non-distributed core) and incomplete integration of the different features that
are believed to be necessary for modelling distributed systems (e.g. [1] lacks tim-
ing and many timed process algebras do not feature message failures among their
primitive operations). As an initial move towards overcoming this expressivity
gap, [5] augmented the asynchronous with a timer, with locations,
message-loss, location failure and the ability to save process state. The present
text, a partial summary of [4], takes the next step and starts the study of two ex-
tensions in earnest by investigating the natural equality for the asynchronous

with timers and the asynchronous with timers and
message failure.

The remainder has two main parts. First, several characterisations of
reduction congruence, the canonical equivalence for asynchronous [12,

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 115–130, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

116 M. Berger

17], are obtained. The most useful of those is as a labelled bisimilarity. For
other untyped weak labelled characterisations of reduction congruence
have not been forthcoming, only sound approximations. is interesting because
it allows to study the effect of combining discrete timing and name passing
interaction, a line of inquiry long overdue. It also paves the way for the second
part which studies a minimal extension of allowing convenient expression
of basic distributed algorithms such as the aforementioned network protocol. We
show that reasoning about can be broken down into two parts: reasoning
about processes, i.e. reasoing in and reasoning about distributed interaction.
A related aim is to devise a translation that allows to take a non-distributed
process and locate it as in a semantics preserving way (here [•]
denotes location). This may help to reason about some properties of distributed
processes using tools from centralised computing. That may not be possible
for arbitrary P and Q but we identify a translation that works for a restricted
class of processes and may be a good starting point for further investigations.
The other main contribution of this second part is a characterisation of
reduction congruence by a barbed congruence [21], and a sound approximation
by a labelled bisimilarity.

2 Adding Discrete Timing to

2.1 Syntax and Semantics of

The [16,20] is a simple syntax for modelling computation as name-
passing interaction. The key operational rule is

where the process sends the data along a channel (drawn from a count-
ably infinite set of names) and another process waits to receive data on
the same channel called input subject. When the interaction happens,
evolves into The operator is parallel composition. Finitely describable
infinitary behaviour is achieved by way of a replication operation ! and interac-
tion of P at with the environment can be prevented by the restriction

Our new syntax with being an integer, is straight-
forward and completely standard. It supports two operations: (1) the time-out
which means that after steps it turns into Q, unless (2) it has been stopped,
i.e. that a message has been received by the timer at

The resulting calculus is given by the following grammar.

We often abbreviate to and write in stead. The asynchronous
is a sub-calculus of The free and bound names of timers are:

TEAM LinG

Basic Theory of Reduction Congruence 117

Structural congruence is defined by the same axioms as in the asyn-
chronous but over our extended syntax.

The flow of time is communicated at each step in the computation by a time
stepper function which acts on processes. It models the implicit broadcast of
time passing and works equally well for labelled transitions and reductions.

Here is how time stepping is used.

The only difference with the corresponding rule of untimed calculi is that we
have rather than Q in the resulting process of the conclusion. It ensures
that each active timer, that is any timer not under a prefix, is ticked one unit
at each interaction. The additional rule

prevents the flow of time from ever being halted by deadlocked processes. This
means, does not enforce progress assumptions that can be found in many
models of timed computations. It is possible to add progress requirements later
on top of Here are the remaining reduction rules.

The corresponding labelled synchronous semantics is obtained from the con-
ventional synchronous semantics [15] of the asynchronous with the
following new rules, the first of which replacing that for parallel composition.

Labels are given as Contexts are standard except for
two new rules: A binary
relation on processes is a if it is an equivalence, if
and if P Q implies C[P] C[Q] for all contexts C[·]. The strong barb
for is defined (up to by (1) (2) and (3)

A symmetric binary relation on processes is a strong barbed
bisimulation if it is a and if P Q implies the following: (1) for

TEAM LinG

118 M. Berger

all names implies and (2) whenever then there is a process
such that and The largest strong barbed bisimulation is

strong reduction congruence. The corresponding notions of barbed bisimulation
and reduction congruence are derived by replacing with and with
Here is the transitive and reflexive closure of and means
for some Q. A binary relation on processes is time-closed if P Q implies

It will later emerge that and are time-closed.

Examples (1)

1.

2.

3.

4.

The process implements a delay operator, as-
suming For units of time, it cannot interact at all, it behaves
like 0, but then it evolves into P. It is comparable to the sleep operator in
Java and can be used to implement cyclic behaviour:

which spawns P every units of time. The delay operator is
crucial in the proof of Theorem 2.
The next example shows that we only need as timing con-
struct. As all others can be built up by iteration of this basic form. De-
fine and Then

Assume that P is a process of the form Define to be 0 and let
Then is a process that offers the service P for

time units when it becomes unguarded. Note that P is offered only once.
also offers P for units of time, but not straight away. Instead

the service is available only after units of time.
A variant of the previous example. Assume with

Let and set Now P is offered
for repeated use in for units of time, so we may invoke P up to times.

2.2 Why a Novel Kind of Timer?

Before getting on with the technical development, we’d like to summarise the key
reasons for devising our own reduction-based account of discrete timing rather
than adapting one of the existing constructs.

A key design objective was simplicity and preservation of as much estab-
lished technology as possible. That ruled out labelled transitions
with dedicated time passing actions to communicate the flow of time. The
ability to use the simpler reduction semantics is advantageous because it is
sometimes difficult to find suitable labelled semantics. It is trivial to adapt
the timer proposed here to other models of computing, from Ambient Cal-
culi [11], to and Abstract State Machines [9]. This is currently not
possible for labelled-transition based approaches to timing.
Some previous proposals exhibit behavioural anomalies, such as timers being
able to stop themselves. This is caused, to put it simplistically, by less than
ideal combinations of progress assumptions, the ability for time to pass under

for all

TEAM LinG

Basic Theory of Reduction Congruence 119

unrestricted sums and computational steps having zero duration. The calculi
proposed here do not suffer from these shortcomings.
Finally, we must emphasise that our timer is different from those where time-
flow is communicated by labelled transitions only in its syntactic presenta-
tion. Its behaviour is essentially identical. Semantically relevant differences
between our calculus and its alternatives are a consequence of other design
choices, for example progress assumptions or the presence of mixed choice,
not of the presentation of timers by way of time-steppers.

Our design of and is discussed in great detail in [4], which also contains
comparisons with the alternative approaches.

2.3 The Maximal Sound Theory

Reduction congruence is often seen to be the most canonical equivalence for
asynchronous This section looks at its incarnation for The presen-
tation is close to [17] to facilitate comparison, but due to timers, proofs are quite
different.

A logic is a pair comprising a set F of formulae and an entailment
relation In this section, F will always be pairs of
References to the underlyinglogic will often be omitted. A set of formulae is
a or simply a theory, and its members are axioms. We write
whenever and call (P, Q) a theorem or consequence of in If

is not derivable, we write The set of all consequences of
in is denoted (with the subscript often omitted). is consistent if

does not equate all processes, otherwise it is inconsistent. is reduction-
closed if and implies the existence of a reduction sequence

such that is strongly reduction-closed if and
implies the existence of a reduction such that In

this section we only use whose entailment is inductively defined
such that is a containing is time-closed if
implies

As is well-known, there is no unique largest consistent and reduction-closed
theory (Theorem 1.2 below), so we have to impose a mild additional constraint.
Preservation of weak barbs is a popular choice, but requires a notion of observa-
tion. Alas, it is not apriori clear what observing timed computations may entail.
Fortunately, we can do without a notion of observation and will prove in The-
orem 1 that defined above is in fact a correct notion of barb. A process P is
insensitive if it can never interact with any other process, i.e. implies

Here an(P), the active names of P, is given by induction on the
syntax of and

A the-
ory is sound if it is consistent, reduction-closed and equates any two insensitive
terms.

The dramatic semantic effect of timers becomes apparent in the next propo-
sition: we are guaranteed strong reduction-closure despite having stipulated only
reduction-closure.

TEAM LinG

120 M. Berger

Proposition 1. Let be sound. (1) If then: if and only if
(2) If then for all appropriate

(3) If is a sound theory, then is time-closed. (4) is reduction-closed if
and only if, whenever then, for all contexts implies

for some with

The key reason why requiring reduction-closure and congruency gives strong
reduction-closure is (roughly) that we can use a process like to
detect and signal the fact that by running both in parallel. After the first
step of the clock, that ability disappears forever. Hence any process that wishes
to be equated to P by a sound theory better be able to match any of P’s strong
barbs immediately and not only after some reduction steps.

With is a sound theory} we can now state the existence
and various alternative presentations of the maximal sound theory.

Theorem 1. (1) is the unique sound theory such that for
all sound theories is called the maximum sound theory. (2) There is no
largest consistent, reduction-closed theory. (3)

2.4 Labelled Semantics

Reduction based equivalences are sometimes hard to use. To make reasoning
easier, labelled semantics and associated notions of bisimilarities have been de-
veloped for many untimed calculi. We shall now do the same for A symmetric
binary relation is a strong synchronous bisimulation if P Q and
means that there is a synchronous transition with The
largest strong synchronous bisimulation ~ is strong synchronous bisimilarity.

Weak bisimilarity is defined by replacing with is the
usual operation).

The failure of the various synchronous bisimilarities to equate with 0
has lead to asynchronous transitions [15] which model asynchronous observers.
Since unlike and ~, equates and 0, asynchronous bisimilarity might
also be interesting in (here But what are asynchronous

transitions Unfortunately, the straightforward adaptation to of the
transitions introduced in [15] does not work, because the obvious rule for parallel
composition

does not connect asynchrony well with time passing. To see what goes wrong
consider what it means to be an asynchronous observer. Interacting with a pro-
cess to detect that it sends a message consumes one unit of time. The (PAR)
rule and its labelled counterpart (1) ensure that this time-step permeates all pro-
cesses. Dually, testing that a process is inputting involves sending a message. But
asynchronously entails that the observer cannot know exactly when the message

has been consumed. Hence the observation should not be associated with

TEAM LinG

Basic Theory of Reduction Congruence 121

a time step, for otherwise a judiciously set timer could detect that interaction
by the time it takes. So the rule (1) for parallel composition above may work
incorrectly. We propose to split it in two:

The remaining rules for the inductive definition of are here:

The set of labels is the same as for synchronous transitions. Strong asyn-
chronous bisimilarity and its weak counterpart are defined just as (strong)

synchronous bisimilarity except that is replaced with The next lemma
shows that timers also wreak havoc with labelled equivalences.

Lemma 1. Neither nor ~, and are closed under parallel composition.

As an example of what may go wrong, note that
means P Q is any of the four equivalences in

Lemma 1) but cannot be matched by
This failure of closure under parallel composition is caused by lacking time-

closure. Let be the largest strong, asynchronous bisimulation that is also
time-closed, with and being defined similarly. Its easy to show that
these four new equivalences are closed under parallel composition. Still, this does
not guarantee congruency.

Proposition 2. Assume are fresh and distinct names. Define

If is one of ~, or then P Q but not
Consequently, cannot be closed under any of the three available forms

of input prefixing.

In the asynchronous various reasonable equivalences are congru-
ences. That this fails for hints at renaming carrying non-trivial computational
content. Interestingly, our example uses nested timers. It is conceivable that pro-
hibiting nesting of timers results in a subcalculus where the relevant equivalences
are renaming-closed. The next result shows that failure of renaming-closure is
the only defect has vis-a-vis congruency. Define as the largest strong,
time-closed, asynchronous bisimulation that is also renaming-closed.

TEAM LinG

122 M. Berger

Proposition 3. is the largest strong asynchronous bisimulation contained
in that is also a congruence.

The processes P and Q, defined just after Lemma 1, also show that fully
abstract and compositional encodings of into the asynchronous
are impossible, when the equivalence on the source of the encoding is one of
those mentioned in Lemma 1. Otherwise we could derive

(the target’s equivalence
is only required to be closed under parallel composition for the encoding

to be contradictory). The converse question is also interesting: can untimed
subcalculi of for example the asynchronous be embedded? Once
again the answer seems mostly negative: a translation from into is
barb-expansive if for all P and all names we can find an integer such
that Here is the least such that

and if no such exists. Then one can easily show the following. Assume the
chosen equates with If is a barb-expansive mapping
from into then it cannot be complete with reduction congruence being

equivalence. In particular, the syntactic inclusion of into cannot be
fully abstract.

2.5 Characterising as

In the asynchronous asynchronous bisimilarity soundly approximates
the corresponding maximal theory, but does not characterise it, a counterexam-
ple being and where [17]. The reason
for their semantic equality is that turns any observation on into a weak
observation on and vice versa. There is no way for a process in the asyn-
chronous to detect whether a name has come via or not. In

this is different because forwarding takes time. This leads to the following
labelled characterisation of reduction congruence.

Theorem 2. In addition and

The proof is straightforward, except for showing The key dif-

ficulty is to establish that and together imply

for some with Simplifying greatly, the proof
uses a context like

which receives a tuple of names at and encodes at what positions in the tuple
a name was received by encoding these positions through the number of

uninterrupted (even by outputs of Here and is
a suitable function allowing this encoding. The construction of is delicate and
omitted for brevity, but we cannot use simple functions like the identity
because C[·] must be able to distinguish, for example, from

TEAM LinG

Basic Theory of Reduction Congruence 123

Both have the same number of as and bs. This is why we must code up not
only how many times a name occurs in but also at which positions. Using
the observational capabilities of timers, we can distinguish processes that can
output a fixed name times, but not times in an uninterrupted row from
processes that can do more than uninterrupted outputs of that name. Thus
the sketched construction of C[·] ensures that can only hold
if Q can do exactly the same initial outputs as P, which is what was needed to
be shown. The actual proof is more complicated and can be found in [4].

Examples (2). The next few examples show how easy it is to reason about
with

1.

2.

3.

The identity forwarder and 0 are strongly reduction congruent. To see
this, define up to by whenever
Obviously is time- and renaming closed. Since all occurring processes are
timer-free, idle transitions can trivially be matched. The only vaguely in-
teresting transition is clearly
matched by the idle transition
To see that simply define the relation by

Verification that has all
the required closure properties is easy.
Parallel composition and delay operators commute, i.e.

consider given by
It is again straightforward to verify that is a renaming-closed, time-
closed, asynchronous bisimulation.

Locality. A process P is local no input is bound by another input, i.e. we do
not allow processes like We denote restricted to local processes
by Local processes are convenient for modelling distributed computing.

Theorem 3. All results stated so far also hold in

3

One of the main uses of timers is to unblock computations after they became
stuck due to some fault such as a lost message. This is inconvenient to model
in because it lacks message failures. To explore timers in a more realistic set-
ting, this section augments with locations and non-byzantine message failure,
obtaining

3.1 Syntax and Semantics of

Processes in called networks and closely related to, but not identical with
[5], are parallel compositions of messages in transit and locations or sites

which execute processes. Restriction of names is also possible for networks
using (vx). For simplicity P must be local and the subscript A contains the free

Adding Location and Message Failure

TEAM LinG

124 M. Berger

names that may use to receive data on. Messages in transit have left their
source location but not yet arrived at the destination. Message failure occurs
only in transit and can involve loss and duplication of messages.

In summary, our networks are generated by the grammar below.

N is well-formed, written N, if N is derivable using the following rules.
(1) 0 is always derivable; (2) if P is local and each free input subject
in P is in A; (3) if and and, moreover,
(4) if N. Here the access points ap(N) of a network N are given by:

and The
free names of networks are given by

Bound names
are omitted. In the remainder of this text, we assume that expressions involving
networks such as are well-formed. In particular, quantifications like: “for
all P and all A, has property X” or even “for all P, has property X”
abbreviate the statement: “for all P and all A such that is well-formed,
has property X” . On networks, is generated by the axioms below.

One of the key objectives in the design of was to retain the seman-
tics of the underlying to allow separation of reasoning about networks from
reasoning about processes. Hence the first reduction rule.

Inter-site communication happens by message migration.

Incursion of one time step in (OUT) is crucial for a smooth integration of
into Message failures arise from the following rules (which deal with

messages in transit only).

Many distributed systems offer only weak guarantees on the upper bound of
inter-location clock drift. (PAR) reflects this by not synchronising different sites
through application of time-stepping.

TEAM LinG

Basic Theory of Reduction Congruence 125

The remaining rules are:

(CONG) (RES)

A binary relation on processes is a if it is an equivalence,
if and if implies for all network contexts C[·]. Network
contexts are given by the grammar Barbs are
generated by the following rules. and imply and

imply and A symmetric binary relation on networks is
a strong barbed bisimulation if it is a and if implies: (1)
for all names and (2) whenever then there is a network

such that and The largest barbed bisimulation is called
strong reduction congruence. Barbed bisimulation and reduction congruence
are derived as usual.

Examples (3)

Let Then the network
tries to relay the message via two intermediate hops to
where it will be used by Q. It can be seen as a distributed version of

but semantically it is rather different, due to
message loss and duplication.
The next example shows how to deal with message failure.

1.

2.

3.

The location on the left sends a message to that on right and sets a timer
to wait for an acknowledgement. If that doesn’t come in time, it resends the
original message.
We can also locate the time services of Example 1(3) as but
because there is no synchronisation of time between sites, this is not very
effective: the location is bisimilar to

The last example is indicative of being too asynchronous for realistic
models of distributed systems. In other aspects, too, this calculus is overly ide-
alising, for example in its lack of location failure. The point of is rather to
facilitate the study of message failure in isolation, as a first step towards more
realistic models.

3.2 The Maximal Sound Theory

The development in this section mirrors that for with proof being similar,
albeit more involved because of possible message failure. are
like except that formulae are now pairs (M, N) of networks such that
ap(M) = ap(N).

As in there is no maximal consistent and reduction-closed theory. A
network M is insensitive if for all reduction sequences

TEAM LinG

126 M. Berger

where active names for networks extend those of processes:

A theory is sound if it is consistent, reduction-closed and identifies all insensitive
terms. As before, we set is a sound theory}. is called the
maximum sound theory.

Theorem 4. (1) is the unique sound theory such that for
all sound theories (2) There is no largest, consistent, reduction-closed theory.
(3)

3.3 Labelled Semantics

As with we present an asynchronous transition system The induced
asynchronous bisimilarity soundly approximates but does not characterise
it. Characterisation fails because the timers in different sites are not synchro-
nised. The most interesting rule is that for parallel composition

The reason for the side condition is that well-
formed observers cannot input on channels that are in ap(N).

The remaining rules follow.

A symmetric relation is an strong asynchronous bisimulation if

implies whenever then there is a transition sequence such
that The largest strong asynchronous bisimulation is called strong
asynchronous bisimilarity. The largest asynchronous bisimulation is defined
analogously.

Theorem 5. (1) If then where is the max-
imal sound theory on (2) is a congruence; (3) is not closed under
renaming. (4)

To see that properly includes consider
where A contains and P is an arbitrary process. To verify that these two
networks are related by define by

TEAM LinG

Basic Theory of Reduction Congruence 127

It is possible but laborious to verify that insensitive} is a
sound theory.

This theorem shows that integrates and extends in a strong sense.
Congruency and failure of renaming-closure can coexist because does not
have prefixing operators.

3.4 Locating Processes

How expressive is compared with It might be possible to modify the sep-
aration result in [10] to show that cannot (nicely) encode The other way
round may be more interesting: how is (discretely timed) name-passing affected
by message failure? Would it be possible to design a non-distributed process
first – without having to worry about distribution – and then scaffold it so that
it can function in a distributed setting? This roughly boils down to finding a
transformation that allows to go from non-located, failure-free processes

to in a semantics preserving way. Without message failure,
that would not be a problem, but loosing messages might lead to deadlocks and
duplicated messages may confuse a receiver. We suspect that no appropriate en-
coding could work for all processes. But that does not mean translations
must fail for all processes. As an example of a class of processes that allows
distribution, let P, Q be timer free and Assume we wanted
to distribute and as By the condi-
tions on free names, message duplication is no problem. To overcome message
loss, we replace with and

with fresh and ignoring the scaffolding of P and Q for
brevity), i.e. we do what TCP does to deal with message loss and add an explicit
acknowledgement. If that isn’t returned in time, the original message is resent.
The resulting distributed process is

It is equated by with as we sketch later. This trans-
lation is quite inefficient, it even introduces divergence, but that does not matter
because – due to the absence of inter-site clock synchronisation – is diver-
gence insensitive. More sophisticated variants of our translations are possible,
the pragmatically most important being putting an upper bound on the number
of retransmissions and making time-out times contingent on the number of failed
retransmissions. It would also be possible to dispense with acknowledgement and
time-outs altogether: simply use to flood the receiver with
an unbounded number of messages. This brute force approach is semantically
sound under the aforementioned constraints, but it has less potential for gener-
alisation and refinement, whether by using less asynchronous equivalences or by
limiting the number of retransmissions.

Continuing with the process above, we show that is related
by to Set

In addition, let the internal sum

TEAM LinG

128 M. Berger

of R and S, be the process where is fresh. Then we can reason
in little steps as follows.

The justification of all the individual steps by defining appropriate bisimula-
tions is straightforward, but rather tedious – [4] has all the details.

4 Conclusion

Models of timed computation are legion, we mention [8,14] in lieu of a compre-
hensive overview. A close look at the omitted proofs reveals that bound name
passing plays no significant role – scope mobility seems orthogonal to timing, at
least in this early stage of integration. This promises easy transfer of the pre-
sented technology to other timed calculi. Formalisms for distributed computing
are also too numerous to survey here. Most closely related are Dpi [24], Nomadic
Pict [25] and the Join Calculus [13]. Other influential distributed extensions of

can be found in [2, 3, 22]. Possibly the most important criticism of is
that it is too synchronous, but also too asynchronous for realistic models. Too
synchronous because the absence of clock-drift forces many (in)equalities that
might be inappropriate, the coincidence of and being an example. Always
allowing time to pass by (IDLE) means that important progress assumptions can
be expressed only indirectly, leading to the charge of too much asynchrony. By
modifying the time-stepper it is possible to express clock-drift, thus coars-
ening equivalences. Having all timers to be of the form for
some fixed may also be an important step towards more liberal equalities.
Arbitrary progress assumptions can be studied by semantically restricting the
set of valid traces. On the network level, is also too asynchronous because it
puts no constraints on inter-site clock-drift. With modern clock-synchronisation
algorithms [19] it is possible to push clock-drift under the average inter-site com-
munication latency (which is still many orders of magnitude above the duration
of atomic computational steps). By modifying (PAR) at the network level to

TEAM LinG

Basic Theory of Reduction Congruence 129

also apply suitably augmented to allow intersite clock-drift, may also
become more realistic. A multidimensional open problem looming large is the
expressive power of and One of its most interesting facets is the question
if the translation in §3.4 could be refined to allow a larger class of
to be mechanically distributed into

References

ABDULLA, P. A., AND JONSSON, B. Verifying programs with unreliable channels.
Info. & Comp. 127, 2 (1996), 91–101.
AMADIO, R. M. An asynchronous model of locality, failure, and process mobility.
In Proc. COORDINATION 97 (1997), vol. 1282 of LNCS.
AMADIO, R. M., AND PRASAD, S. Localities and failures. In Proc. FSTTCS’94
(1994), vol. 880 of LNCS.
BERGER, M. Towards Abstractions for Distributed Systems. PhD thesis, Imperial
College, London, 2002.
BERGER, M., AND HONDA, K. The Two-Phase Commit Protocol in an Extended

In Proc. EXPRESS’00 (2000), vol. 39 of ENTCS.
BERGER, M., HONDA, K., AND YOSHIDA, N. Sequentiality and the In
Proc. TLCA’01 (2001), vol. 2044 of LNCS.
BERGER, M., HONDA, K., AND YOSHIDA, N. Genericity and the In
Proc. FOSSACS’03 (April 2003), no. 2620 in LNCS, Springer, pp. 103–119.
BERGSTRA, J. A., PONSE, A., AND SMOLKA, S. A., Eds. Handbook of Process
Algebra. Elsevier, 2001.
BÖRGER, E., AND STÄRK, R. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.
CARBONE, M., AND MAFFEIS, S. On the expressive power of polyadic synchroni-
sation in pi-calculus. In Proc. EXPRESS’02 (2002), vol. 68 of ENTCS.
CARDELLI, L., AND GORDON, A. Mobile ambients. TCS 240 (2000).
FOURNET, C., AND GONTHIER, G. A hierarchy of equivalences for asynchronous
calculi. In Proc. ICALP’98 (1998), no. 1443 in LNCS.
FOURNET, C., GONTHIER, G., LÉVY, J.-J., MARANGET, L., AND RÉMY, D. A
Calculus of Mobile Agents. In Proc. CONCUR (1996), vol. 1119 of LNCS.
HENNESSY, M. Timed process algebras: a tutorial. Tech. Rep. CS 1993:02, Uni-
versity of Sussex, Computer Science Department, 1993.
HONDA, K. Two bisimilarities in Tech. Rep. 92-002, Keio University,
Department of Computer Science, 1992.
HONDA, K., AND TOKORO, M. On asynchronous communication semantics. In
Object-Based Concurrent Computing (1992), no. 612, in LNCS.
HONDA, K., AND YOSHIDA, N. On reduction-based process semantics. TCS 151
(1995).
HONDA, K., AND YOSHIDA, N. A uniform type structure for secure information
flow. In POPL’02 (2002), ACM Press, pp. 81–92.
MILLS, D. Time synchronization server. URL http://www.eecis.udel.edu/˜ntp/.

~

MILNER, R., PARROW, J., AND WALKER, D. A calculus of mobile processes, parts
I and II. Info. & Comp. 100, 1 (1992).
MILNER, R., AND SANGIORGI, D. Barbed bisimulation. In Proc. ICALP’92 (1992),
vol. 623 of LNCS.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

TEAM LinG

130 M. Berger

RIELY, J., AND HENNESSY, M. Distributed processes and location failures. TCS
226 (2001).
SANGIORGI, D., AND WALKER, D. The a Theory of Mobile Processes.
Cambridge University Press, 2001.
SEWELL, P. Global/local subtyping and capability inference for a distributed pi-
calculus. In Proc. ICALP’98 (1998), vol. 1442 of LNCS.
WOJCIECHOWSKI, P. Nomadic Pict: Language and Infrastructure Design for Mo-
bile Computation. PhD thesis, University of Cambridge, 2000.
YOSHIDA, N., BERGER, M., AND HONDA, K. Strong Normalisation in the

In Proc. LICS’01 (2001), IEEE, pp. 311–322. The full version to appear
in Journal of Information and Computation.

22.

23.

24.

25.

26.

TEAM LinG

Characterizing EF and EX Tree Logics

1* and Igor Walukiewicz2

1 Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland
2 LaBRI, Université Bordeaux I, 351 cours de la Libération,

33405 Talence Cedex, France

Abstract. We characterize the expressive power of EX, EF and EX+EF
logics. These are the fragments of CTL built using the respective opera-
tors. We give a forbidden pattern characterization of the tree languages
definable in these logics. The characterizations give optimal algorithms
for deciding if a given tree language is expressible in one of the three
logics.

1 Introduction

We consider the definability problem for logics over binary trees: given a tree
language decide if it can be expressed by a formula of the logic in question. The
main motivation for considering this problem is to understand the expressive
power of tree logics. Although a very old question, it has gained new relevance
with XML community’s burgeoning interest in tree models [8]. Indeed, numerous
new formalisms for describing tree properties have been recently proposed.

For words the definability question is well studied and understood. Starting
from the celebrated Schutzenberger theorem [12], characterizing star-free word
languages by aperiodicity, numerous other language classes have been character-
ized. In particular, we now have a good understanding of the expressive power
of LTL and its fragments [14,18]. This is in sharp contrast with the case of trees
where much less is known.

We feel that the major goal in the study of the definability problem for
trees is to characterize the expressive power of first-order logic, or equivalently

[l](we consider finite binary trees here). It seems however that this is a
difficult problem whose solution demands new tools and expertise. This is why
we have decided to consider fragments of where the problem turns out to
be easier. The fragments in question use the operators EX (there is a successor)
and EF (there is a descendant). Apart from being a step towards solving the
first-order definability problem, these fragments are interesting on their own.
The model-checking problem for them is easier than for CTL: for example when
a model is given by a BPP [2] or by a a push-down system [16]. The operators
EX and EF are also closely related to path operators of XPath [5,4].

* Supported by the European Community Research Training Network GAMES. and
Polish KBN grant No. 4 T11C 042 25.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 131–145, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

132 and I. Walukiewicz

We prove the definability problem decidable for three logics: EX, EF and
EX+EF. These are built by using the eponymous operators along with boolean
connectives. Our decision procedures use a sort of forbidden pattern character-
izations which are expressed in terms of the minimal leaves-to-root automaton
recognizing a given tree language. The resulting algorithms are polynomial in
the number of states of the minimal automaton, or to say it differently, in the
number of types of the tree language. If, on the other hand, we assume that the
input is a CTL formula or a nondeterministic tree automaton then we obtain the
EXPTIME upper bound matching the obvious lower bound for the problem.

As mentioned above, not much is known about the definability problem.
There exist basic results: characterizations of the class of regular tree languages
by monadic second-order logic [15] or the mu-calculus [9]; equivalence of first-
order logic and over finite binary trees [6]. Yet there is no equivalent of
the Schutzenberger theorem for trees, indeed the decidability the problem is still
open. There has been some work in this direction; in particular borrowing the
notion of aperiodicity from the word case is known to be insufficient [11,7]. It
is also a valid question to compare the characterizations presented in this paper
with the ones in [18] for the corresponding logics for words. Although there is
some resemblance between the two, our results need more than a straightforward
extension of the forbidden pattern characterizations from the word case. This is
in a way unfortunate because it suggests that an equivalent of the Schutzenberger
theorem for trees may also require an intricate extension of the aperiodicity.

The plan of the paper is as follows. After a preliminary section we briefly
state a characterization of EX logic. This is very similar to a characterization
of modal logics presented in the literature [10] so we mention the result mostly
for completeness. In the next two sections we characterize the EF and EX+EF
logics respectively. Maybe counterintuitively, the argument for the weaker EF
logic is longer. In the penultimate section we summarize the results, showing
how they imply decidability algorithms. Finally, we justify our characterizations
by pointing out why the forbidden patterns known from the word case do not
adapt directly to the tree case.

2 Basic Definitions

Let be a finite set called the alphabet. We will denote elements of by
and call them letters.

A binary tree is a finite prefix-closed subset of such that for every
is in the tree if and only if is. Allowing vertices with one successor

would not change our results but would slightly complicate the notation. The
empty sequence is the root of the tree. For we write if
is a proper prefix of we call a descendant of

A is a function where S is a binary tree. By we
denote the domain of i.e. S. We use to denote the set of
trees. A is any subset

TEAM LinG

Characterizing EF and EX Tree Logics 133

Given a and the tree is
defined by For two and let denote
the unique such that and The substitution

of a tree in a node of a tree is defined in a standard way.
A is a tree C over the alphabet with the letter label-

ing only leaves, called holes of C, For a multicontext C with holes and
the substitution operation is defined in the natural man-

ner being substituted in the leftmost hole, etc.) Given a function assigning
to the holes in C, is shorthand for

A multicontext with only one hole is called a context and denoted
Two trees and are context equivalent when for all contexts we have:

if and only if An L-type is an equivalence class of this
relation. Types will be denoted by letters: We write for the
type of the tree Observe that the type of a tree depends only on the
letter and the types of and This justifies the notation for some
types Similarly we write for the type of the tree where is some
tree of type A language is regular if it has a finite number of types.

The set of EX+EF formulas over an alphabet is defined by the following
grammar:

The operators in the last two productions of this grammar are called the
modalities. The validity of a formula in a tree denoted is defined by
induction on

if for
validity for boolean operations is defined in the standard way;

if there is a node with
if there is a node with

Observe that EF has strict semantics. The formula is an abbreviation
of The formula is an abbreviation of

Given a set of modalities we use for the set of
formulas constructed using boolean operations, letter constants and modalities
from We say that a language L is definable if and only if there exists
a formula in satisfied in exactly the trees from L.

3 TL(EX)

In this section we state a characterization of TL(EX)-definable languages. We
do this for the sake of completeness since the characterization is essentially the
same as in [10].

Definition 1. Two trees are identical up to depth if they are the same when
restricted to We say that a language L is dependent on depth if
every two trees which are identical up to depth have the same L-type.

TEAM LinG

134 and I. Walukiewicz

A context is nontrivial if its hole is not in the root.

Definition 2. Let L be a language and let be two distinct L-types. We say
that the language L contains an if for some nontrivial context
both and hold.

Theorem 1. For a regular language L, the follouiing conditions are equivalent:

L is TL(EX)-definable;
For some L is dependent on depth
L does not have an for any two L-types

1.
2.
3.

4 TL(EF)

In this section we show a characterization of TL(EF)-definable languages. This
is the most involved section of the paper, with a long technical proof.

Before we can formulate the main theorem (Theorem 2) we need some auxil-
iary definitions. We start with the key definition in this section: that of a delayed
type.

Given a and a letter we write to denote the tree obtained
from by relabeling the root with the letter With every we associate
its delayed type, which is the function:

Note that the delayed type of a tree does not depend on the letter labeling its
root. We will denote delayed types using the letters We write if
there is a tree of delayed type having a subtree of type We also write
if for some This relation is a quasiorder but not necessarily a
partial order, since it may not be antisymmetric.

For delayed types and letters we write for the
delayed type which assigns to a letter the type In other words,
this is the delayed type of a tree whose left and right subtrees have types
and respectively. The set of neutral letters of a delayed type is the set

Definition 3. A L is EF-admissible if it is regular and all delayed
types and letters satisfy:

P1
P2
P3
P4

The relation on delayed types is a partial order;
for all

if then

Another important concept used in Theorem 2 is that of typeset dependency.
The typeset of a is the set

TEAM LinG

Characterizing EF and EX Tree Logics 135

Note that the type of the tree itself is not necessarily included in its typeset.
We say that a language L is typeset dependent if the delayed type of a tree
depends only on its typeset.

Our characterization of TL(EF) is presented in the following theorem:

Theorem 2. For a regular language L, the following conditions are equivalent:

L is TL(EF)-definable,
L is typeset dependent,
L is EF-admissible.

1.
2.
3.

The proof of this theorem is long and will be spread across the next two
sections; the implications and being proved in Sections 4.1 and
4.2 respectively. The implication is a simple verification and is omitted.
For the remainder of Section 4 we assume that an alphabet along with a

L are fixed, hence we will drop the L qualifier from the notation,
writing for instance instead of

4.1 A TL(EF)-Definable Language Is Typeset Dependent

In this section, we will show that the language L is typeset dependent using the
assumption that it is defined by some TL(EF) formula

Definition 4. By we denote the smallest set of formulas that contains
and is closed under negations and subformulas.

It is not difficult to see that the type of a tree is determined by the set of
those formulas from which it satisfies (although this correspondence need
not be injective). Our first step is to show that for the delayed type, even less
information is sufficient.

Definition 5. An existential formula is a formula of the form The signa-
ture of a tree is the set of existential formulas from that it satisfies.

Lemma 1. The signature of a tree determines its delayed type.

Proof. Take two trees and with the same signatures. For a given letter
an easy induction on formula size shows that for all

This is due to the fact that the modality EX is strict. Since the two trees
and satisfy the same formulas from their types must be the same. As
the choice of the letter was arbitrary, this implies that the trees and have
the same delayed types.

Given two trees and a letter we write instead of
This notation is unambiguous since does not depend

on the letter

TEAM LinG

136 and I. Walukiewicz

Given two types and we denote by the delayed type which
assigns to a letter the type A type is reachable from a type denoted

if holds for some context This relation is a quasiorder and
we use for the accompanying equivalence relation. The following simple lemma
is given without a proof:

Lemma 2. If is a subtree of then If then

The following lemma shows that for TL(EF)-definable languages, the relation
is a congruence with respect to the function

Lemma 3. If and then

Proof. Since a TL(EF)-definable language satisfies it
is sufficient to prove the case where Let be a context such that

and let be a context such that All these contexts
exist by assumption. Let be a tree of type and let be a tree of type
Consider the two sequences of trees and defined by induction as
follows:

By a simple induction one can prove that for all

By Lemma 2, for all

Since there are only finitely many signatures, there must be some
such that Consequently, by Lemma 1, the delayed types

and are equal.

We are now ready to show that the language L is typeset dependent. Let
and be two trees with the same typeset. If this typeset is empty, then both
trees have one node and, consequently, the same delayed type. Otherwise one
can consider the following four types, which describe the sons of and

We need to prove that By assumption that
the typesets of and are equal, both and occur in nonroot nodes of

and both and occur in nonroot nodes of Thus holds for
some and similarly for and The result follows from the
following case analysis:

TEAM LinG

Characterizing EF and EX Tree Logics 137

for some By assumption we must have
for some Hence By Lemma 3 we get

As from Lemma 2 we obtain
Similarly one proves the equality

for some As in the case above.
A short analysis reveals that if neither of the above holds then
and for some Therefore and
and an application of Lemma 3 yields the desired result.

4.2 A EF-Admissible Language Is TL(EF)-Definable

We now proceed to the most difficult part of the proof, where a defining TL(EF)
formula is found based only on the assumption that the properties P1 to P4 are
satisfied. We start by stating a key property of EF-admissible languages which
shows the importance of neutral letters.

Lemma 4. If the delayed type of a tree is then its every proper subtree with
delayed type has the root label in

Proof. Consider some proper subtree of delayed type and its root label
Let be the brother of the node and let be its delayed type and

label, respectively. Obviously By property P3 we get
and consequently As is a partial order by

P1 and since holds by definition, we get
Hence belongs to

Note that if the trees and have delayed type then so does the tree
for any because is a partial order. In particular, the above lemma says
that nodes with delayed type form cones whose non-root elements have labels
in

Formulas Defining Delayed Types. A delayed type is definable if there is
some TL(EF) formula true in exactly the trees of delayed type

The construction of the formulas will proceed by induction on the order.
The first step is the following lemma:

Lemma 5. Let be a delayed type such that all types are definable. For
every delayed type there is a TL(EF) formula such that:

The proof of this lemma is omitted here. We would only like to point out
that some effort is required, since the formula is not allowed to use the EX
operator.

We will use this lemma to construct a formula defining For the rest of
Section 4.2 we fix the delayed type and assume that every delayed type
is definable by a formula

TEAM LinG

138 and I. Walukiewicz

The first case is when has no neutral letters. By Lemma 4, in a tree of
delayed type both sons have delayed types smaller than since there are no
neutral letters for In this case we can set

The correctness of this definition follows immediately from Lemma 5.
The definition of is more involved when the set of neutral letters for is

not empty. The rest of Section 4.2 is devoted to this case.
Consider first the following formula:

The intention of this formula is to spell out evident cases when the delayed
type of a node cannot be The first disjunct says that there is a descendant with
a delayed type and a label that prohibit its ancestors to have type The second
disjunct says that the type of the node is not but the types of all descendants
are This formula works correctly, however, only when some assumptions
about the tree are made. These assumptions use the following definition: a tree

satisfies the property if

Lemma 6. Let be a tree where holds for all This tree satisfies
if and only if

Proof. The left to right implication was already discussed and follows from the
assumptions on the formulas used in and from Lemma 5.

For the right to left implication, let with
describing delayed types and labels of the nodes 0 and 1 which correspond to
the left and right sons of the root. We consider three cases:

This is impossible because and hold, so the
labels must belong to and thus

and Since holds, the label belongs to If the
inequality were true (which is not necessarily implied by our as-
sumption that then by property P3 we would have

a contradiction with Therefore we have and hence
the first disjunct of holds. The case where and is symmetric.

In this case the second disjunct in the definition of must hold by
Lemma 5.

Let stand for and consider the formula

This formula will be used to express the property. We use as the
non-strict version of AG, i.e. is an abbreviation for the formula

TEAM LinG

Characterizing EF and EX Tree Logics 139

Lemma 7. A tree satisfies iff holds for all

Proof. By induction on the depth of the tree

If satisfies because it satisfies then obviously holds for all
Otherwise we have

By induction assumption, holds for all But then, by Lemma 6,
This, together with gives and hence

Let be such that holds for all By induction assumption,
we have We need to prove that satisfies If holds, then

satisfies and we are done. Otherwise, as holds,
and Hence, by Lemma 6, satisfies the second disjunct in

Since the type of a tree can be computed from its delayed type and root
label, the following lemma ends the proof that every EF-admissible language is
TL(EF)definable:

Lemma 8. Every delayed type is definable.

Proof. By induction on the depth of a delayed type in the order If has
no neutral letters then the defining formula is as in (1). Otherwise, we set the
defining formula to be

Let us show why has the required properties. By Lemma 7,

If then we get using Lemma 6 and (2). For the other
direction, if then clearly holds in By Lemma 4,
holds for all therefore satisfies by (2), and then the formula
holds by Lemma 6.

5 TL(EX, EF)

The last logic we consider in this paper is TL(EX, EF). As in the previous sections,
we will present a characterization of TL(EX, EF)-definable languages. For the
rest of the section we fix an alphabet along with a L and will
henceforth omit the L qualifier from notation.

Recall the type reachability quasiorder along with its accompanying equiv-
alence relation which were defined on p. 136. The class of a
type is called here its strongly connected component and is denoted
We extend the relation to SCCs by setting:

TEAM LinG

140 and I. Walukiewicz

We use the standard notational shortcuts, writing when but
not similarly for

Let be some SCC and let The of a tree is the tree
whose domain is the set of nodes in at depth at most and where

a node is labeled by:

if is at depth smaller than
if is at depth and

? otherwise.

Let denote the set of possible The intuition behind
the of is that it gives exact information about the tree for types
which are smaller than while for other types it just says “I don’t know”.
The following definition describes languages where this information is sufficient
to pinpoint the type within the strongly connected component

Definition 6. Let The language L is if every two trees
and with types in and the same view have the same type. The language
is if it is for every SCC and it is SCC-solvable if it
is for some

It turns out that SCC-solvability is exactly the property which characterizes
the TL(EX, EF)-definable languages:

Theorem 3. A regular language is TL(EX, EF)-definable if and only if it is
SCC-solvable.

The proof of this theorem will be presented in the two subsections that follow.

5.1 An SCC-Solvable Language Is TL(EX, EF)-Definable

In this section we show that one can write TL(EX, EF) formulas which compute
views. Then, using these formulas and the assumption that L is SCC-solvable,
the type of a tree can be found.

Fix some such that L is Let be the set of possible
that can be assumed in a tree of type By assumption on L

being we have:

Lemma 9. Let be a tree such that The type of is if and only
if its belongs to the set

The following lemma states that views can be computed using TL(EX, EF).
We omit the simple proof by induction.

Lemma 10. Suppose that for every type there is a TL(EX, EF) formula
defining it. Then for every and every there is a formula
satisfied in exactly the trees whose is

We define below a set of views which certainly cannot appear in a tree with
a type in a strongly connected component

TEAM LinG

Characterizing EF and EX Tree Logics 141

Observe that is a set of The following lemma shows
that the above cases are essentially the only ones.

Lemma 11. For a tree and an SCC the following equivalence holds:

Proof. Both implications follow easily from Fact 9 if one considers the maximal
possible node satisfying the right hand side.

The following lemma completes the proof that L is TL(EX, EF)-definable.

Lemma 12. Every type of L is TL(EX, EF)-definable.

Proof. The proof is by induction on depth of the type in the quasiorder
Consider a type and its SCC By induction assumption, for all types
there is a formula which is satisfied in exactly the trees of type Using the
formulas and Lemma 10 we construct the following TL(EX, EF) formula (recall
that is the non-strict version of AG defined on page 138):

By Lemma 11, a tree satisfies if and only if Finally, the
formula is defined:

The correctness of this construction follows from Fact 9.

5.2 A TL(EX, EF)-Definable Language Is SCC-Solvable

In this section, we are going to show that a language which is not SCC-solvable
is not TL(EX, EF)-definable. For this, we introduce an appropriate Ehrenfeucht-
Fraïsé game, called the EX+EF game, which characterizes trees indistinguishable
by TL(EX, EF)-formulas.

The game is played over two trees and by two players, Spoiler and Duplicator.
The intuition is that in the EX+EF game, the player Spoiler tries to
differentiate the two trees using moves.

The precise definition is as follows. At the beginning of the game,
with the players are faced with two trees and If these have different
root labels, Spoiler wins. If they have the same root labels and Duplicator
wins; otherwise the game continues. Spoiler first picks one of the trees with

Then he chooses whether to make an EF or EX move. If he chooses
to make EF move, he needs to choose some non-root node and
Duplicator must respond with a non-root node of the other tree.
If Spoiler chooses to make an EX move, he picks a son of the root in

TEAM LinG

142 and I. Walukiewicz

and Duplicator needs to pick the same son in the other tree. If a player
cannot find an appropriate node in the relevant tree, this player immediately
looses. Otherwise the trees and become the new position and the

game is played.
The following lemma is proved using a standard induction:

Lemma 13. Duplicator wins the EX+EF game over and iff
and satisfy the same EX+EF formulas of modality nesting depth

For two types we define an to be a multicontext C
such that there are two valuations of its holes giving the types

and The hole depth of a multicontext C is the minimal
depth of a hole in C. A multicontext C is for an SCC if it has hole
depth at least and is an for two different types

Lemma 14. L is not SCC-solvable if and only if for some SCC and every
it contains multicontexts which are for

Proof. A context exists for if and only if L is not

The following lemma concludes the proof that no TL(EX, EF) formula can
recognize a language which is not SCC-solvable:

Lemma 15. If L is not SCC-solvable then for every there are trees and
such that Duplicator wins the EX+EF game over and

Proof. Take some If L is not SCC-solvable then, by Lemma 14, there is a
multicontext C which is for some SCC Let be the holes
of C, let be the appropriate valuations and
the resulting types. We will use this multicontext to find trees and
such that Duplicator wins the EX+EF game over and

Since all the types used in the valuations and come from same SCC,
there are contexts and such that

This means there are two contexts and with holes each, such that:
1) and agree over nodes of depth less than when all holes of
are plugged with we get the type and 3) when all holes of are plugged
with we get the type These are obtained by plugging the appropriate
“translators” and into the holes of the multicontext C. Let be some
tree of type The trees for are defined by induction as follows:

By an obvious induction, all the trees have type and all the trees
have type As there exists a context D[] such that and

(or the other way round).

TEAM LinG

Characterizing EF and EX Tree Logics 143

To finish the proof of the lemma, we will show that Duplicator wins the
EX+EF game over the trees

The winning strategy for Duplicator is obtained by following an invariant.
This invariant is a disjunction of three properties, one of which always holds
when the game is about to be played:

1.
2.
3.

The two trees are identical;
The two trees are and for some
The two trees are and for

The invariant holds at the beginning of the first round, due to 2, and one can
verify that Duplicator can play in such a way that it is satisfied in all rounds.
Item 2 of the invariant will be preserved in the initial fragment of the game when
only EX moves are made, then item 3 will hold until either the game ends or
item 1 begins to hold.

6 Decidability

In this section we round up the results by showing that our characterizations
are decidable.

Theorem 4. It is decidable in time polynomial in the number of types if a lan-
guage is:

TL(EX)-definable;
TL(EF)-definable;
TL(EX,EF)-definable.

Proof. Using a simple dynamic algorithm, one can compute in polynomial time
all tuples such that for some context C[], and
Using this, we can find in polynomial time:

Whether L contains an
The and relations on types.

Since the delayed type of a tree depends only on the types of its immediate
subtrees, the number of delayed types is polynomial in the number of types. The
relation on delayed types can then be computed in polynomial time from
the relation Having the relations and one can check in polynomial
time if L is EF-admissible.

TEAM LinG

144 and I. Walukiewicz

This, along with the characterizations from Theorems 1 and 2, proves decid-
ability for TL(EX) and TL(EF). The remaining logic is TL(EX, EF).

By Theorem 3, it is enough to show that SCC-solvability is decidable. In
order to do this, we give an algorithm that detects if a given SCC admits
bad multicontexts of arbitrary size, cf. Lemma 14. Fix an SCC We define by
induction a sequence of subsets of

if and either
there is a pair a type and a letter such that

and or
there are pairs and a letter such that

and
The sequence is decreasing so it reaches a fix-point in no more than

steps. The following lemma yields the algorithm for TL(EX, EF) and con-
cludes the proof of Theorem 4:
Lemma 16. admits bad multicontexts of arbitrary size iff

Corollary 1. If the input is a CTL formula or a nondeterministic tree automa-
ton, all of the problems in Theorem 4 are EXPTIME-complete.

Proof. Since, in both cases, the types can be computed in time at most expo-
nential in the input size, the EXPTIME membership follows immediately from
Theorem 4. For the lower bound, one can use an argument analogous to the one
in [17] and reduce the EXPTIME-hard universality problems for both CTL [3]
and nondeterministic automata [13] to any of these problems.

7 Open Problems

The question of definability for the logics TL(EX), TL(EF) and TL(EX, EF) has
been pretty much closed in this paper. One possible continuation are logics where
instead of EF, the non-strict modality is used. The resulting logics are weaker
than their strict counterparts (for instance the language is not definable in

and therefore decidability of the their definability problems can be
investigated. Another question is what happens if we enrich these logics with
past quantification (there exists a point in the past)? This question is particularly
relevant in the case of TL(EX, EF), since the resulting logic coincides with first-
order logic with two variables (where the signature contains and two binary
successor relations). Finally, there is the question for CTL. Note that on words
CTL collapses to LTL and hence first-order logic, so such a characterization
would subsume first-order definability for words.

References

E. A. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘not never’ revisited: on branch-
ing versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

1.

TEAM LinG

Characterizing EF and EX Tree Logics 145

J. Esparza. Decidability of model-checking for infinite-state concurrent systems.
Acta Informatica, 34:85–107, 1997.
M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences, 18:194–211, 1979.
M. Franceschet, L. Afanasiev, M. de Rijke, and M. Marx. CTL model checking for
processing simple XPath queries. In Temporal Presentation and Reasoning.
C. Koch G. Gottlob. Monadic queries over tree-structured data. In Logic in
Computer Science, pages 189–202, 2002.
T. Hafer and W. Thomas. Computation tree logic CTL and path quantifiers in
the monadic theory of the binary tree. In International Colloquium on Automata,
Languages and Programming, volume 267 of Lecture Notes in Computer Science,
pages 260–279, 1987.
U. Heuter. First-order properties of trees, star-free expressions, and aperiodicity.
In Symposium on Theoretical Aspects of Computer Science, volume 294 of Lecture
Notes in Computer Science, pages 136–148, 1988.
F. Neven. Automata, logic, and XML. In Julian C. Bradfield, editor, Computer
Science Logic, volume 2471 of Lecture Notes in Computer Science, pages 2–26,
2002.

Fixed points vs. infinte generation. In Logic in Computer Science,
pages 402–409, 1988.
M. Otto. Eliminating recursion in the In Symposium on Theoretical
Aspects of Computer Science, volume 1563 of Lecture Notes in Computer Science,
pages 531–540, 1999.
A. Potthoff. First-order logic on finite trees. In Theory and Practice of Software
Development, volume 915 of Lecture Notes in Computer Science, pages 125–139,
1995.
M. P. Schützenberger. On finite monoids having only trivial subgroups. Informa-
tion and Control, 8:190–194, 1965.
H. Seidl. Deciding equivalence of finite tree automata. SI AM Journal of Computing,
19:424–437, 1990.
H. Straubing. Finite Automata, Formal Languages, and Circuit Complexity.
Birkhäuser, Boston, 1994.
J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, 1968.
I. Walukiewicz. Model checking CTL properties of pushdown systems. In Foun-
dations of Software Technology and Theoretical Computer Science, volume 1974 of
Lecture Notes in Computer Science, pages 127–138, 2000.
I. Walukiewicz. Deciding low levels of tree-automata hierarchy. In Workshop on
Logic, Language, Information and Computation, volume 67 of Electronic Notes in
Theoretical Computer Science, 2002.
T. Wilke. Classifying discrete temporal properties. In Symposium on Theoretical
Aspects of Computer Science, volume 1563 of Lecture Notes in Computer Science,
pages 32–46, 1999.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

TEAM LinG

Message-Passing Automata Are
Expressively Equivalent to EMSO Logic

Benedikt Bollig1* and Martin Leucker2**

1 Lehrstuhl für Informatik II, RWTH Aachen, Germany
bollig@informatik.rwth-aachen.de

2 IT department, Uppsala University, Sweden
leucker@it.uu.se

Abstract. We study the expressiveness of finite message-passing au-
tomata with a priori unbounded FIFO channels and show them to cap-
ture exactly the class of MSC languages that are definable in existential
monadic second-order logic interpreted over MSCs. Moreover, we prove
the monadic quantifier-alternation hierarchy over MSCs to be infinite and
conclude that the class of MSC languages accepted by message-passing
automata is not closed under complement. Furthermore, we show that
satisfiability for (existential) monadic seconder-order logic over MSCs is
undecidable.

1 Introduction

A common design practice when developing communicating systems is to start
with drawing scenarios showing the intended interaction of the system to be.
The standardized notion of message sequence charts (MSCs, [7]) is widely used
in industry to formalize such typical behaviors.

An MSC depicts a single partially-ordered execution sequence of a system.
It defines a set of processes interacting with one another by communication
actions. In the visual representation of an MSC, processes are drawn as vertical
lines that are interpreted as time axes. A labeled arrow from one line to a second
corresponds to the communication events of sending and receiving a message.
Collections of MSCs are used to capture the scenarios that a designer might
want the system to follow or to avoid. Several specification formalisms have
been considered, such as high-level MSCs or MSC graphs [2,14].

The next step in the design process usually is to derive an implementation
of the system to develop [5], preferably automatically. In other words, we are
interested in generating a distributed automaton realizing the behavior given in

*

**

Part of this work was done while the author was on leave at the School of Computer
Science, University of Birmingham, United Kingdom, and supported by the German
Academic Exchange Service (DAAD).
Supported by the European Research Training Network “Games”.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 146–160, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 147

form of scenarios. This problem asks for the study of automata models that are
suited for accepting the system behavior described by MSC specifications.

A common model that reflects the partially-ordered execution behavior of
MSCs in a natural manner are message-passing automata, MPAs for short. They
consist of several components that communicate using channels. Several variants
of MPAs have been studied in the literature: automata with a single or multiple
initial states, with finitely or infinitely many states, bounded or unbounded
channels, and systems with a global or local acceptance condition.

We focus on MPAs with a priori unbounded FIFO channels and global accep-
tance condition where each component employs a finite state space. Our model
subsumes the one studied in [5] where a local acceptance condition is used. It
coincides with the one used in [6,9], although these papers characterize the frag-
ment of channel-bounded automata. It extends the setting of [1,12] in so far as
we provide synchronization messages and a global acceptance condition to have
the possibility to coordinate rather autonomous processes. Thus, our version
covers most existing models of communicating automata for MSCs.

A fruitful way to study properties of automata is to establish logical char-
acterizations. For example, finite word automata are known to be expressively
equivalent to monadic second-order (MSO) logic over words. More precisely, the
set of words satisfying some MSO formula can be defined by a finite automa-
ton and vice versa. Since then, the study of automata models for generalized
structures such as graphs or, more specifically, labeled partial orders and their
relation to MSO logic has been a research area of great interest aiming at a
deeper understanding of their logical and algorithmic properties (see [16] for an
overview).

In this paper, we show that MPAs accept exactly those MSC languages that
are definable within the existential fragment of MSO (over MSCs), abbreviated
by EMSO. We recall that emptiness for MPAs is undecidable and conclude that
so is satisfiability for EMSO and universality for MSO logic.

Furthermore, we show that MSO is strictly more expressive than EMSO.
More specifically, the monadic quantifier-alter nation hierarchy turns out to be
infinite. Thus, MPAs do not necessarily accept a set of MSCs defined by an
MSO formula. Furthermore, we use this result to conclude that the class of
MSC languages that corresponds to MPAs is not closed under complementation,
answering the question posed in [9].

MPAs with a priori unbounded channels have been rather used as a model
to implement a given (high-level) MSC specification [5]. Previous results lack
an algebraic or logical characterization of the corresponding class of languages.
They deal with MPAs and sets of MSCs that make use only of a bounded part
of the actually unbounded channel [6,9]. More specifically, when restricting to
sets of so-called bounded MSCs, MSO captures exactly the class of those MSC
languages that correspond to some bounded MPAs.

Organization of the Paper. The next two sections introduce some basic notions
and recall the definition of message sequence charts and (existential) monadic
second-order logic. Section 4 deals with message-passing automata and their

TEAM LinG

148 B. Bollig and M. Leucker

expressive equivalence to existential monadic second-order logic, while Section
5 studies the gap between monadic second-order formulas and their existential
fragment.

Acknowledgment. We would like to thank Dietrich Kuske for valuable remarks
and pointing out some innaccuracies in a previous version of this paper. We also
thank the anonymous referees for their helpful suggestions and comments.

2 Message Sequence Charts

Forthcoming definitions are all made wrt. a fixed finite set of at least two
processes. (Note that, in one proof, we assume the existence of at least three
processes.) We denote by Ch the set of reliable FIFO
channels. Thus, a message exchange is allowed between distinct processes only.
Let denote the set of send actions while denotes
the set of receive actions. Hereby, and are to be read
as sends a message to and receives a message from respectively. They
are related in the sense that they will label communicating events of an MSC,
which are joint by a message arrow in its graphical representation. Accordingly,
let Observe that an action is
performed by process which is indicated by We let Act stand for
the union of and and, for set to be the set

For a total order on a finite set E, denotes the covering relation of for
if both and, for any implies

Definition 1 (Message Sequence Chart). A message sequence chart (MSC)
is a structure such that

E is a nonempty finite set of events,
is a labeling function,

is the covering relation of some total order on

such that, for any iff
and (where, for is the set of
events with

is a partial order, and
for each

Thus, events on one and the same process line are totally ordered, and events
on distinct process lines that communicate with each other in a FIFO manner

are labeled with actions related by Com.
Given an MSC and will serve as a shorthand

for The set of MSCs is denoted by and a subset of is called
an MSC language.

Henceforth, we identify a structure of any kind with its isomorphism class.

TEAM LinG

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 149

3 (Existential) Monadic Second-Order Logic

Given supplies of individual variables and
of set variables, formulas from MSO, the set of monadic

second-order formulas (over MSCs) are built up from the atomic formulas

(where and and furthermore allow the Boolean connectives
and the quantifiers which can be applied to either kind of

variable.
Let be an MSC. Given an interpretation function

which assigns to an individual variable an event and to a set variable
X a set of events the satisfaction relation for a formula

is given by if if
and if while the remaining operators are defined as
usual.

For an MSO formula the notation shall indicate
that at most the variables occur free in An MSO for-
mula is called existential if it is of the form where

is a block of second-order variables and is a first-order
formula. Let EMSO denote the class of existential MSO formulas. In general,

shall contain MSO formulas of the form
with first-order kernel (again, and are blocks of second-
order variables)1.

In the following sections, we usually consider MSO sentences, i.e., formulas
without free variables, and accordingly replace with For an MSO sentence

the MSC language of denoted by is the set of MSCs M with
For a set of MSO formulas an MSC language L is called if
for some sentence We will show in a subsequent section that the classes of

languages form an infinite hierarchy when formulas are interpreted
over MSCs, resuming a result by Matz and Thomas, who proved infinity of
the hierarchy for grids [11]. In other words, the more alternation depth second-
order quantification allows, the more expressive formulas become. However, it
will turn out that, to cover the feasible area of realizable MSC languages (in
terms of message-passing automata), we can restrict to EMSO-definable MSC
languages. The class of MSO-definable MSC languages is denoted by the
one of EMSO-definable languages by

4 Message-Passing Automata and Their Expressiveness

In this section, we study distributed automata, called message-passing automata,
which, as we will see, generate MSC languages in a natural manner.

1 Note that and EMSO coincide.

TEAM LinG

150 B. Bollig and M. Leucker

A message-passing automaton is a collection of finite-state machines that
shaxe one global initial state and several global final states. The machines are
connected pairwise with a priori unbounded reliable FIFO buffers. The transi-
tions of each component are labeled with send or receive actions. A send action

puts a message at the end of the channel from to A receive action can
be taken provided the requested message is found in the channel. To extend the
expressive power, message-passing automata can send certain synchronization
messages. Let us be more precise:

Definition 2 (Message-Passing Automaton). A message-passing automa-
ton (MPA) is a structure such that

is a nonempty finite set of synchronization messages (or data),
for each is a pair where

is a nonempty finite set of states and
is the set of transitions,

is the global initial state, and
is the set of global final states.

For a global state of will henceforth refer to
We now define the behavior of message-passing automata and, in doing so,

adhere to the style of [9]. In particular, an automaton will run on MSCs rather
than on linearizations of MSCs, allowing for its distributed behavior. Let

be an MPA and
be an MSC. For a function we define to
map an event onto if is minimal and, otherwise,
onto where is the unique event with run of on M
is a pair of mappings with for each
and such that, for any implies

and

For let denote if is empty. Otherwise, let denote
where is the maximal event We call accepting if

For an MPA we denote by there is an accepting run
of on M} the language of Let furthermore
for some MPA denote the class of languages that are realizable as MPAs.

Remark 1. The emptiness problem for MPAs is undecidable.

Proof. Several decidability questions were studied for communicating finite-state
machines, a slightly different variant of MPAs. Among them, (a problem related
to) the emptiness problem for communicating finite-state machines turned out
to be undecidable [3]. The proof can be easily adapted towards MPAs.

We now turn towards one of our main results and first mention that an MPA
can be effectively transformed into an equivalent EMSO sentence.

TEAM LinG

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 151

Lemma 1.

Proof. Several instances of this problem have been considered in the literature
and can be easily adapted to our setting. See [17], for example.

Corollary 1. The following two problems are undecidable:

(a)
(b)

Satisfiability for EMSO sentences over
Universality for MSO sentences over

Proof. Using Remark 1 and Lemma 1, we obtain Corollary 1 (a). Corollary 1
(b) follows from an easy reduction from the satisfiability problem.

In fact, any EMSO-definable MSC language is realizable as an MPA and, vice
versa, any MSC language of some MPA has an appropriate EMSO counterpart.

Theorem 1.

The proof will be based on the concept of graph acceptors [16], a generaliza-
tion of finite automata to labeled graphs, which are known to be expressively
equivalent to existential monadic second-order logic wrt. graphs of bounded de-
gree. We consider graph acceptors running on MSCs, thus, on structures of
bounded degree2, which makes them applicable to our setting. A graph accep-
tor works on a graph as follows: It first assigns to each node one of its control
states and then checks if the local neighborhood of each node (incorporating
the state assignment) corresponds to a pattern from a finite supply of so-called
spheres. In our setting, such a pattern is a labeled graph. For an alphabet we
assume in the following a graph to be a nonempty and finite structure

of degree at most 3. In particular, is a mapping
while the edges can be considered to be Note that an MSC is
an Act-labeled graph, while the converse does not necessarily hold.

Let us become more concrete and let and R be an alphabet and a natu-
ral, respectively. Given a graph (let in the
following denote and elements the distance
from to is if it holds and, otherwise, the minimal
natural number such that there is a sequence of elements with

and or for each Some-
times, if it is clear from the context, we omit the subscript G. An R-sphere over

is a graph together with a designated
sphere center such that, for any Two 2-spheres are
shown in Figure 1 where the sphere centers are depicted as rectangles. For a

graph and let the R-sphere of G around
be given by where

for each and is the
restriction of to

2 Any node of the graph of an MSC has at most three direct neighbors.

TEAM LinG

152 B. Bollig and M. Leucker

A graph acceptor (over Act) is a structure such that Q
is a nonempty finite set of (control) states, is a finite set of R-spheres
over Act × Q (as we identify isomorphic structures, we actually deal with a finite
set of isomorphism classes), and Occ is a Boolean combination of conditions of
the form “sphere occurs at least times” where run of
on an Act-labeled graph is a mapping such that,
for each the R-sphere of around is isomorphic
to some We call accepting if it satisfies the constraints imposed by Occ.
The language of wrt. a class of Act-labeled graphs, denoted by is
the set of Act-labeled graphs on which there is an accepting run of

Fig. 1. The sphere(s) of a graph acceptor

The rest of this section is dedicated to the proof of Theorem 1.

Proof. It remains to show inclusion from right to left. So let be an EMSO
sentence. We can assume the existence of a graph acceptor over Act that,
running on MSCs, recognizes the MSC language defined by In turn, will
be translated into an MPA that captures the application of to MSCs, i.e.,

So let be a graph acceptor over Act.
For our purpose, it suffices to consider only those R-spheres for which

there is an extended MSC which has an extended
labeling function and an event such that H is the R-
sphere of M around Other spheres cannot contribute to an MSC. Because, to
become part of a run on some MSC M, an R-sphere has to admit an embedding
into M. In this sense, the 2-sphere illustrated in Figure 1 (a) may contribute to a
run on an MSC (it can be complemented by a 1!3-labeled event arranged in order
between the two other events of process 1), while the 2-sphere illustrated aside is
irrelevant and will be ignored in the following. This assumption is essential, as it
ensures that, for each and
implies that E also contains a communication partner of wrt.

In the following, we use notions that we have introduced for MSCs also for
spheres over Act × Q, such as and (to in-
dicate the process of and as abbreviations for and the

TEAM LinG

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 153

reflexive transitive closure of respectively)3. For example, considering the
2-sphere from Figure 1 (a), P(a) = 1, and but not a
Let and let be the set of
exntended R-spheres, i.e., the set of structures where

is the active node, and
is the current instance. For we define

and, furthermore,
Finally, let max(Occ) denote the least threshold such that Occ

does not distinguish occurrence numbers
For readability, we let in the following denote the collection of relations

and just write instead of
The idea of the transformation is that, roughly speaking, guesses a tiling of

the MSC to be read and then verifies that the tiling corresponds to an accepting
run of Accordingly, a local state of holds a set of active R-spheres, i.e., a set
of spheres that play a role in its immediate environment of distance at most R.
Each local state (apart from the initial states, as we will see) carries exactly one
extended R-sphere with which means that a run
of assigns to the event that corresponds to To establish isomor-
phism between and the R-sphere induced by transfers/obtains
its obligations in form of an extended R-sphere to/from its
immediate neighbors, respectively. For example, provided is labeled with a
send action and there is with the message to be sent in state
will contain which, in turn, the receiving process understands
as a requirement to be satisfied. As there may be an overlapping of isomorphic
R-spheres, a state can hold several instances of one and the same sphere, which
then refer to distinct states/events as corresponding sphere center. Those in-
stances will be distinguished by means of the natural The benefit of will
become clear before long.

Let us turn to the construction of
which is given as follows: For a local state of is a pair where

 is a mapping (let in the following denote the
function that maps each R-sphere to 0) and

is either the empty set or it is a subset of such that
there is exactly one extended R-sphere with
(whose component we identify by from now on) and
for any two
(a) (so that we can assign a well-defined

unique label to namely the labeling for
some and

(b) if and then

The set of synchronization messages is the cartesian product
Roughly speaking, the first component of a message contains obligations the re-

3 Note that, wrt. spheres, is not necessarily a total order.

TEAM LinG

154 B. Bollig and M. Leucker

ceiving state/event has to satisfy, while the second component imposes require-
ments that must not be satisfied by the receiving process to ensure isomorphism.
We now turn towards the definition of and define

if the following hold:

1.
2.

3.

4.
5.

6.

7.

8.

for some
For any and if then

For any if and is minimal in then

For any if is maximal in then
For any if is not minimal in then we have

where is the unique event with
For any if is not maximal in then we
have where is the unique event such that

(i) In case that for some
(a) for any and any if then we

have
(b) for any and any if then we

have and
(c) for any there is such that and

(ii) In case that for some
(a)
(b) and
(c) for any if there is with then

(i.e., maps to the mini-
mum of and max(Occ) and, otherwise, coincides with

Thus, Condition 1. guarantees that any state within a run has the same
labeling as the event it is assigned to. Condition 2. makes sure that, whenever
there is a in the input MSC, then there is a corresponding edge in
the extended sphere that is passed from the source to the target state of the
corresponding transition. Conversely, if there is no between two nodes
in the extended sphere, then it must not be passed directly to impose the same
behavior on the MSC, i.e., the corresponding events in the MSC must not touch
each other. Conditions 3. and, dually, 4. make sure that a sphere that does not
make use of the whole radius R is employed in the initial or final phase of a run
only. By Conditions 5. and 6., extended spheres must be passed along a process
line as far as possible, hereby starting in a minimal and ending in a maximal
active node. Condition 7. ensures the corresponding beyond process lines, i.e., for
messages. Finally, Condition 8. guarantees that the second component of each
state correctly keeps track the number of spheres used so far.

Furthermore, and, for if
the union of mappings satisfies the requirements imposed by Occ and, for all

TEAM LinG

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 155

and is maximal in In fact, it holds

Let be an accepting run of on
and let denote the mapping that maps an event onto the R-
sphere of around In an accepting run of on
M, basically assigns to an event from the obvious mapping
—the set of those extended spheres such that there

is an event with both and is isomorphic to
Hereby, maxE is sufficiently large to guarantee an instance labeling

that is consistent with the transition relation of If we suppose
to map a pair onto where (set to be

there is with and
and there is such that

and is an accepting run of on M.
Conversely, let be an accepting run of on

If we define to map an event to the control state that is
associated with the sphere center of where for some then
turns out to be an accepting run of on M.

Example 1. In the following, let H denote the 2-sphere from Figure 1 (a). Figure
2, showing some MSC M with four processes, illustrates the transition behavior
of the MPA from the above proof. It demonstrates how a run of on M
transfers extensions of H from one event of M to a neighboring one to make
sure that the 2-sphere around event (which is indicated by solid edges) is
isomorphic to H. For example, the state that is taken on event may contain
the extended sphere (H, a). (For clarity, control states and the natural to dis-
tinguish different instances of spheres are omitted.) As (wrt. the edge
relation of H), passes (H,b) in form of a message to process 2. Receiving
(H, b), process 2 becomes aware it should bind to some state that contains
(H, b) (conditions 7. (i) (a) and 7. (ii) (a) from the definition of the transition
relation). As, in H, b is followed by c, so has to be associated with a state
containing (H,c) (condition 6.). In contrast, is not allowed to carry the ex-
tended sphere (H,e) , unless it belongs to a different instance of H (condition
2.). Now consider which holds the extended sphere (H, d). Due to condition
5., the preceding state, which is associated to must contain (H,c) , which
means that a run cannot simply enter H beginning with d. Moreover, as is
a receive event, has to receive a message containing (H, d) (condition 7. (ii)
(c)). In turn, the corresponding send event has to be associated with a state
that holds (H,e) (condition 7. (i) (c)). Note that, as the
(illustrated parts of the) states assigned to and satisfy conditions 3. and 4.

5 Beyond Realizability

In this section, we show that MSO logic over MSCs is strictly more expressive
than EMSO. Together with the results of the previous section, this will be used

TEAM LinG

156 B. Bollig and M. Leucker

Fig. 2. Simulating a graph acceptor

to show that MPAs cannot be complemented in general. More specifically, we
show that quantifier alternation forms a hierarchy:

Theorem 2. The monadic quantifier-alternation hierarchy over is infi-
nite.

Proof. Matz and Thomas proved infinity of the monadic quantifier-alternation
hierarchy over grids [11,16]. Using an idea from [15], we show how grids can
be encoded into MSCs and then rewrite their result in terms of MSCs adapting
their proof to our setting.

For a positive natural we use as a shorthand for
Given the (with rows and columns) is the struc-
ture where contain the pairs

and respec-
tively. A relation may be represented by the grid language

As a unary function can be consid-
ered as a binary relation, we define the grid language of to be the set

A grid can be folded to an MSC as
exemplarily shown for in Figure 3.

TEAM LinG

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 157

Fig. 3. Folding the (3,5)-grid

A similar encoding is used by Kuske to prove infinity of the monadic quantifier-
alternation hierarchy for certain pomsets over at least two processes [8]. However,
we introduce a third process to obtain distinguished labelings of events that mark
the end of a column in the grid to be encoded, which is signalized by sending a
message to process 3. By the type of an event, we furthermore recognize which
events really correspond to a node of the grid, namely those that are labeled
with a send action performed by process 1 or 2.

A grid language defines the MSC language
For a function we furthermore write as a shorthand

for the MSC language We now closely follow [16], which resumes the
result of [11]. So let, for the functions be inductively
defined via and

Claim 1. For each the MSC language is

Proof of Claim 1. It is easy to prove that the set of possible grid foldings is
EMSO-definable (or, equivalently, the language of some MPA). As, furthermore,
a grid is interpretable in a grid folding by first-order formulas, we can show that,
for any if a grid language is (over grids), then is

TEAM LinG

158 B. Bollig and M. Leucker

definable (over MSCs). The claim follows from the fact that any grid language
is

Claim 2. Let be a function. If is (over MSCs)
for some then is in

Proof of Claim 2. Let and let in the following the events of an MSC
be labeled with elements from for some

i.e., But note that the type of an event still depends
on the type of its communication action only. Let furthermore be
a defining a set of MSCs over the new label alphabet that are fold-
ings of grids. For a fixed column length we will build a nondeterministic
finite word automaton over with states (for some
constant that reads grid-folding MSCs column by column and is equivalent
to wrt. grid foldings with column length Column here means a
sequence of communication actions, each provided with an additional label, that
represents a column in the corresponding grid. For example, running on the MSC
M(3,5) as shown in Figure 3, first reads the letter (re-
call that each action is still provided with an extra labeling, which we omit here
for the sake of clarity), then continues reading
and so on. Then the shortest word accepted by has length
so that, if defines an MSC language for some we have

Let us now turn to the construction of The formula
is of the form or,

equivalently, We proceed by in-
duction on For is an EMSO formula. According to [16], its
MSC language (consisting of MSCs with extended labelings) coincides with the
MSC language of some graph acceptor. The transformation from graph accep-
tors to MPAs from the proof of Theorem 1 can be easily adapted to handle the
extended labeling. Thus, defines a language that is realizable by an
MPA The automaton can now be obtained from
using a part of its global transition relation

(as it is defined, for example, in [6]) where is the cartesian
product of the local state spaces of and
is the set of possible channel contents. Note that only a bounded number of
channel contents has to be considered, as the set of grid foldings with column
length forms a MSC language (cf. [6] for the definition
of boundedness). Due to for some constant

is an upper bound for the number of states of which only
depends on the automaton and, thus, on The induction steps
respectively involve both a complementation step (for negation) and a projec-
tion step (concerning existential quantification). While the former increases the
number of states exponentially, the latter leaves it constant so that, altogether,
the required number of states is obtained. This concludes the proof of Claim 2.

As is not in it follows from Claims 1 and 2 that the hier-
archy of classes of MSC languages is infinite.

TEAM LinG

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 159

Corollary 2.

As it follows that the complement
of an MSC language is not necessarily contained in too

[15]. Thus, we get the answer to an open question, which has been raised by
Kuske [9].

Theorem 3. is not closed under complement.

6 Discussion

Recall that we consider an MSC to be a graph, which corresponds to the view
taken in [10] but is different from the one in [6,9], who model an MSC as a labeled
partial order However, while the way to define an MSC immediately
affects the syntax and expressivity of (fragments of) the corresponding monadic
second-order logic, Theorem 3 holds independently of that modeling, for the
following reason: there is a one-to-one-correspondence between an MSC structure

and its counterpart with
This correspondence carries over to MSO logic in the signature proposed in this
paper. In other words, an MSO formula is satisfied by iff it
is satisfied by (where a formula will be interpreted over labeled partial
orders of MSCs in the obvious manner). As the definition of a message-
passing automaton is robust against the concrete modeling, too, Theorem 3 can
be applied to any common definition of what an MSC is. However, our logic can
only be considered to be the canonical (existential) monadic second-order logic
if MSCs are given by their graphs.

If, for some we restrict to B-bounded MSCs (see [6] for details),
and coincide wrt. expressive-

ness. Thus, our work subsumes the work by Henriksen et al. [6].
Note that, for clarity, an MSC does not carry any information about the

concrete messages to be sent. However, preceding results can be easily extended
towards MSCs that are equipped with message information, as they are provided
in [1,2,5], for example.

Let us recall the results of the previous sections: We have studied the class of
MSC languages that corresponds to EMSO logic and MPAs. By means of graph
acceptors, we have shown that MPAs are expressively equivalent to EMSO logic.
In particular, for every EMSO sentence, there exists an equivalent MPA. Our
proof is based on results by Thomas, which, in turn, refer to Hanf’s Theorem.
For practical applications, it would be desirable to have a simple effective trans-
formation from (fragments of) EMSO to MPAs of reasonable complexity.

Furthermore, we proved that the class of MSC languages definable in MSO
logic is strictly larger. Consequently, MPAs cannot be complemented in general.
This question was raised in [9].

It remains to discuss the relation between the nondeterministic automata
model with a deterministic one in the unbounded setting. In [13,9], it was shown

TEAM LinG

160 B. Bollig and M. Leucker

that deterministic MPAs suffice to realize regular bounded MSC languages. This
question was also addressed in [4] regarding the related model of asynchronous
cellular automata for pomsets without autoconcurrency.

It would also be interesting to have logics that capture formalisms such as
locally- and globally-synchronized HMSCs and related automata models [5].

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.
In 22nd International Conference on Software Engineering. ACM, 2000.
R. Alur and M. Yannakakis. Model checking of message sequence charts. In
CONCUR 1999, volume 1664 of LNCS. Springer, 1999.
D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2), 1983.
M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata for pomsets.
Theoretical Computer Science, 247(1–2), 2000.
B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs:
Model-checking and realizability. In ICALP 2002, volume 2380 of LNCS. Springer,
2002.
J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Regular
collections of message sequence charts. In MFCS 2000, volume 1893 of LNCS.
Springer, 2000.
ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99).
Technical report, ITU-TS, Geneva, 1999.
D. Kuske. Asynchronous cellular automata and asynchronous automata for pom-
sets. In CONCUR 1998, volume 1466 of LNCS, 1998.
D. Kuske. Regular sets of infinite message sequence charts. Information and
Computation, 187:80–109, 2003.
P. Madhusudan. Reasoning about sequential and branching behaviours of message
sequence graphs. In ICALP 2000, volume 2076 of LNCS. Springer, 2001.
O. Matz and W. Thomas. The monadic quantifier alternation hierarchy over graphs
is infinite. In LICS 1997. IEEE Computer Society Press, 1997.
R. Morin. Recognizable sets of message sequence charts. In STACS 2002, volume
2285 of LNCS. Springer, 2002.
M. Mukund, K. Narayan Kumar, and M. Sohoni. Synthesizing distributed finite-
state systems from MSCs. In CONCUR 2000, volume 1877 of LNCS. Springer,
2000.
A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In MFCS 1999, volume 1672 of LNCS. Springer, 1999.
W. Thomas. Elements of an automata theory over partial orders. In POMIV 1996,
volume 29 of DIMACS. AMS, 1996.
W. Thomas. Automata theory on trees and partial orders. In TAPSOFT 1997,
volume 1214 of LNCS. Springer, 1997.
W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg,
editors, Handbook of Formal Languages, volume 3, Beyond Words. Springer, Berlin,
1997.

TEAM LinG

Symbolic Bisimulation in the Spi Calculus*

Johannes Borgström, Sébastien Briais, and Uwe Nestmann

School of Computer and Communication Sciences
EPFL-I&C, 1015 Lausanne, Switzerland

Abstract. The spi calculus is an executable model for the description
and analysis of cryptographic protocols. Security objectives like secrecy
and authenticity can be formulated as equations between spi calculus
terms, where equality is interpreted as a contextual equivalence.

One problem with verifying contextual equivalences for message-
passing process calculi is the infinite branching on process input. In this
paper, we propose a general symbolic semantics for the spi calculus,
where an input prefix gives rise to only one transition.

To avoid infinite quantification over contexts, non-contextual con-
crete bisimulations approximating barbed equivalence have been defined.
We propose a symbolic bisimulation that is sound with respect to barbed
equivalence, and brings us closer to automated bisimulation checks.

1 Background, Related Work, and Summary

Verification of Cryptographic Protocols in the Spi Calculus. Abadi and Gordon
designed the spi calculus as an extension of the pi calculus with encryption prim-
itives in order to describe and formally analyze cryptographic protocols [AG99].
The success of the spi calculus is due to at least three reasons. (1) It is equipped
with an operational semantics; thus any protocol described in the calculus may be
regarded as executable. (2) Security properties can be formulated as equations
on process terms, so no external formalism is needed. (3) Contextual equiva-
lences on process terms avoid the need to explicitly model the attacker; they
take into account any attacker that can be expressed in the calculus.

For example, we may wish to analyze the trivial cryptographic protocol

consisting of participant A sending on channel the message encrypted under
the secret shared symmetric key to participant B who tries to decrypt the
received message and, in case of successful decryption, outputs the result on
channel We may compare this protocol with its specification

where B transmits the correct message on channel whenever the dummy
message (on reception bound to can be decrypted (as expressed by the guard

* Supported by the Swiss National Science Foundation, grant No. 21-65180.1.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 161–176, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

162 J. Borgström et al.

Fig. 1. Equivalences

If the equation holds, then no context is
able to influence the authenticity (more precisely: integrity) of the message

Apart from the equational style, cryptographic protocols in the spi calculus
are analyzed by control flow analysis, trace analysis, reachability analysis, and
type systems; they are beyond the scope of this paper.

Equivalences. To verify security properties expressed in the equational style, we
need to give an interpretation for the equation symbol. Contextual equivalences—
two terms are related if they behave in the same way in all contexts—are attrac-
tive because the quantification over all contexts directly captures the intuition
of an unknown attacker expressible within the spi calculus [AG99].

The notions of may-testing equivalence and barbed equivalence are the most
prominent contextual equivalences [see the right column of Fig. 1]. Their main
distinction is linear time versus branching time: The former considers the pos-
sibility of passing tests after sequences of computation steps; the latter has a
more refined view, also comparing the derivatives of internal computation. Se-
crecy and authenticity are usually seen as trace-based properties and formulated
in terms of testing equivalence; however, testing is not known to be sufficient for
anonymity or fairness [CS02].

Proof Methods for Contextual Equivalences. Although intuitive, the quantifica-
tion over contexts makes direct proofs of contextual equivalences notoriously
difficult. This problem is traditionally dealt with by defining equivalent non-
contextual relations [see the middle column of Fig. 1]. Applying this pattern to
the spi calculus, Boreale, De Nicola, and Pugliese [BDP02] introduced a trace
equivalence corresponding to testing equivalence, as well as an “environment-
sensitive” labeled bisimulation as the counterpart of barbed equivalence.

Because of the practical usefulness of the definition of bisimulations in terms
of co-induction, they are used as proof techniques for trace-based equivalences.
With this goal, and in a style quite different to [BDP02], Abadi and Gordon
proposed framed bisimulation [AG98], that is however incomplete with respect
to barbed equivalence. This was analyzed and remedied by Borgström and Nest-
mann, yielding hedged bisimulation [BN02].

Infinite Branching & Symbolic Proof Methods. Once we have provided a non-
contextual alternative for our chosen equivalence, we face an inherent problem
with the operational semantics of message-passing process calculi: The possibility

TEAM LinG

Symbolic Bisimulation in the Spi Calculus 163

to receive arbitrary messages (like participant B performs along channel in the
example above) gives rise to an infinite number of “concrete” transitions. Using
a less concrete semantics for process input [HL95, BD96], the substitution of
received messages for input variables never takes place. Instead, an input prefix
produces a single “symbolic” transition, where the input variable is instantiated
lazily, i.e., only when used, and indirectly by collecting the constraints on it that
are necessary for a transition to take place. This idea was exploited to implement
bisimulation-checking algorithms for the pi calculus [San96, VM94].

Symbolic semantics have also been defined for the limited setting of non-
mobile spi calculi, where no channel-passing is allowed or channels do not even
exist: examples are the works by Huima [Hui99], Boreale [Bor01], Amadio and
Lugiez [AL00], and Fiore and Abadi [FA01]. For the full spi calculus, where
complex messages including keys and channel names pose new challenges, the
only symbolic semantics that we are aware of was proposed by Durante et al.
[DSV03]. However, it is rather complicated, mainly since it is tailored to capture
trace semantics. We seek a simpler and more general symbolic semantics, that
should also work well for bisirnulation techniques.

Towards Symbolic Bisimulation. In this paper, we propose a symbolic bisimula-
tion for the spi calculus. Here, the elements of a bisimulation consist of a process
pair and an environment; the latter captures the knowledge that an attacker has
acquired in previous interactions with the process pair. This considerably com-
plicates the generalization of symbolic bisimulation from pi to spi: (1) we must
keep track of when an attacker has learned some piece of information so that he
can only use it for instantiating inputs taking place later on; (2) the combination
of scope extrusion and complex guards and expressions makes a precise corre-
spondence to concrete semantics challenging; (3) the cryptographic knowledge of
the environment should be represented clearly and compactly; (4) environment
inconsistency, signaling that the environment has noticed a difference between
the supposedly equivalent processes, must be carefully defined. These challenges
are in parts shared with existing work on symbolic trace equivalence [DSV03].
We, however, propose a symbolic bisimulation. For this, hedged bisimulation is a
good starting point since it offers a compact and clear knowledge representation.

Contributions of the Paper. We give a general symbolic semantics, not using
auxiliary environments, for the full spi calculus. We then use this semantics to
define the, to our knowledge, first symbolic bisimilarity for any spi calculus.
These tasks are significantly more demanding than a straightforward adaptation
of existing approaches in less complex calculi (see the above remarks). We show
that this bisimulation is sound with respect to its concrete counterpart, but
not complete. We argue that the incompleteness is not problematic for protocol
verification, and propose in general terms how it could be removed.

Summary. In §2, we briefly recall the version of the spi calculus that we are
using. In §3, we compare the standard concrete operational semantics with a
reasonably simple symbolic operational semantics. The latter is used, in §4, as the

TEAM LinG

164 J. Borgström et al.

foundation for a symbolic “very late” hedged bisimulation, which is then shown
to be sound with respect to concrete hedged bisimulation. In §5, we exhibit the
proof technique on an example. We highlight, in §6, some incompletenesses that
are, however, unproblematic for the security equations that we strive to prove.
Conclusions and discussions on future work can be found in §7.

A long version is available via http://lamp.epfl.ch/~ jobo/.

2 The Spi Calculus

We assume the reader to have some basic familiarity with the notions and termi-
nology of the pi calculus. Extending the pi calculus, the spi calculus also permits
the transmission of complex messages, provided by the addition of primitive con-
structs for symmetric (shared-key) and asymmetric (public/private-key) encryp-
tion and decryption as well as hashing [AG99, Cor03]. In the
long version of this paper, we also have primitive constructs for pairing and pair
splitting, generalizing the possibility of the polyadic to send several
items atomically with nesting under encryption.

We build on the same assumptions on the perfection of the underlying cryp-
tographic system as [AG99, BDP02], which we do not repeat here. As in [AG99,
BDP02], and in contrast to [DSV03], we require channels to be names (i.e., not
compound messages). This effectively gives the attacker the possibility to verify
if a message is a name by attempting to transmit on it.

We assume an infinite set of names. Names are used for channels, variables
and cleartexts of messages. Hashing and public and private keys are denoted by
the operator names Expressions F are formed arbitrarily
using decryption, encryption and operators; messages M may not contain de-
cryption. Logical formulae generalize matching with conjunction and negation.
The predicate tests for whether F evaluates to a plain name. We also have
a (redundant) predicate to check whether the decryptions in a term can
be successfully performed. Process constructs include input, output and guard
prefixes, parallel composition and restriction.

Free and bound names of terms and sets of terms are inductively defined as
expected: is bound in and is bound in Two processes are

if they can be made equal by conflict-free renaming of bound names.
We identify processes, except during the derivation of transitions.
To treat asymmetric encryption, if F = pub(G) (resp. priv(G)), we define
to be priv(G) (resp. pub(G)) and otherwise we let

Substitutions are partial functions from names to ex-
pressions F. Substitutions are applied to processes, expressions, formulae and

TEAM LinG

Symbolic Bisimulation in the Spi Calculus 165

actions (see below) in the straightforward way, obeying the usual assumption
that capture of bound names is avoided by implicit for example,

replaces all free occurrences of in P by F, renaming bound names in P
where needed.

3 Semantics – Concrete and Symbolic

Concrete Semantics. The concrete semantics we use is similar to the one used
in [BDP02], apart from that we do not have a let-construct in the language.
Because of this, input and output forms can contain arbitrary expressions, so
we must make sure that these expressions evaluate to a concrete message or
channel name before performing the transition. For the concrete evaluation of
expressions we use a function

For guards we have a predicate e(·), that is defined in the obvious way for
true (tt), conjunction and negation. For the other atomic predicates, we define
e([F = G]) to be true iff iff and

iff Note that iff
The set of actions is defined by where

is a tuple of names. By abuse of notation, we write for when is
empty. We let and Moreover, we define
the channel of a visible action as and The
derivation rules for the concrete semantics are the C-rules displayed in Table 1,
plus symmetric variants of (CSUM), (CPAR.) and (CCOM).

Symbolic semantics. The idea behind the symbolic semantics is to record, with-
out checking, the necessary conditions for a transition as it is derived. Restric-
tions are still handled in the side conditions of the derivation rules, but all other
constraints are simply collected in transition constraints. There are three ma-
jor differences to other symbolic semantics [BD96, HL95], resulting from the
presence of compound messages containing names.

1.

2.

3.

We record the freshness of restricted names in the constraint separately,
because of the complex guards and expressions.
We must use abstract evaluation to avoid unnecessary scope extrusion while
deferring key correspondence checks.
The requirement that channels should be names and messages should be in

need to be part of the transition constraint.

TEAM LinG

166 J. Borgström et al.

TEAM LinG

Symbolic Bisimulation in the Spi Calculus 167

A symbolic transition is written where In a transition

constraint we have and is a tuple of names that are fresh in
As above, we omit when is empty. The symbolic counterpart to concrete
evaluation is abstract evaluation Intuitively, it performs all
decryptions in a term without checking that decryption and encryption keys
correspond. Instead, when used in the derivation of a transition, we add this
requirement to the transition constraint.

Symbolic transitions are defined as the smallest relation generated by the
S-rules of Table 1 plus symmetric variants of (SSUM), (SPAR) and (SCOM).
Compared to the concrete semantics, concrete evaluation is replaced by abstract
evaluation in the rules (SOUT) and (SIN). When we encounter a guard, then
the rule (SGUARD) simply adds it to the transition constraint. If a bound name
occurs only in the transition constraint then, with (SOPEN-GRD), its scope is
not extruded; it remains restricted in the resulting process, and also appears
restricted in the transition constraint. Together with abstract evaluation, this
rule prevents unnecessary scope extrusion, as seen in the following example. This
is necessary to obtain the desired correspondence (Lemma 1).

Example 1. Let for some Q. Concretely,
Symbolically we have that where is still bound.

However, if the definition of (SOUT) did not include we would have

where is extruded.

Concrete transitions correspond to symbolic transitions with true constraints.

Lemma 1. iff such that and

PROOF: By induction on the derivation of the transitions.

4 Bisimulations – Concrete and Symbolic

In the spi calculus, bisimulations must take into account the cryptographic
knowledge of the observing environment—potentially a malicious attacker. To
relate two processes P and Q, one usually seeks a bisimulation such that

for some environment containing the free names of both processes.

TEAM LinG

168 J. Borgström et al.

In the following, we define two bisimulations and their respective notions of
environment. Concrete bisimulation is a strong late version of hedged bisimula-
tion as defined in [BN02]. Weak early hedged bisimulation is a variant of framed
bisimulation [AG98] designed to be sound and complete with respect to barbed
equivalence [BDP02]. Symbolic bisimulation is intended to enable automatic
verification, while still being sufficiently complete with respect to the concrete
bisimulation for the purpose of verifying security protocols (c.f. Section 6).

Concrete Bisimulation. The environment knowledge is stored in sets of pairs of
messages, called hedges. The first message of a pair contributes to the knowledge
about the first process; likewise the second message is related to the second
process. Hedges evolved from the frame-theory pairs of [AG98] by dropping the
frames. As a compact representation, we always work with irreducible hedges,
where no more decryptions are possible. (Irreducibles are related to the notions
of core in [BDP02] and minimal closure seed in [DSV03].) The set of message
pairs that can be generated using the knowledge of the environment is called its
synthesis. Since we want to use hedges also for the symbolic bisimulations, we
do not a priori exclude pairs of non-message expressions in the hedges.

Definition 1 (Hedges). A hedge is a subset of The synthesis of
a hedge is the smallest hedge containing and satisfying

The irreducibles of a hedge are defined as

where the analysis is the smallest hedge containing and satisfying

We write for If is a hedge, we let
and

A concrete environment i.e., a hedge that only contains
pairs of messages, is consistent if it is irreducible and the attacker cannot dis-
tinguish between the messages in and their counterparts in The
attacker can (1) distinguish names from composite messages, (2) check message
equality, (3) create public and private keys and hashes, and (4) encrypt and (5)
decrypt messages with any key it can create.

TEAM LinG

Symbolic Bisimulation in the Spi Calculus 169

Definition 2 (Concrete Consistency). A finite concrete environment ce is
semi-consistent iff whenever

1.
2.
3.
4.
5.

6.

If then
If such that then
If where then
If then or
If and then

such that and
If such that then

ce is consistent iff both ce and are semi-consistent.

A concrete relation is a subset of
is consistent if implies that ce is consistent.

A concrete relation is symmetric if implies
Intuitively, for two processes to be concretely bisimilar under a given concrete

environment every detected transition of one of the processes must be simulated
by a transition of the other process on a corresponding channel such that the
updated environment is consistent.

Definition 3 (Concrete Bisimulation). A symmetric consistent concrete re-
lation is a concrete bisimulation if when and with

(bound names are fresh)
(the transition is detected)

then where

1.
2.

3.

If then and
If then where and
for all B, with consistent and

(all new names are needed)

(new names are fresh)
and are indistinguishable)

we have
If then where and

Concrete bisimilarity, written is the union of all concrete bisimulations.

In the definition above, we check channel correspondence by adding the chan-
nels to the environment. If they do not correspond, the resulting environment
will not be consistent (Definition 2, item 2).

On process output we use to construct the new environment after the
transition. This entails applying all decryptions with keys that are known by
the environment, producing the minimal extension of the environment ce with

TEAM LinG

170 J. Borgström et al.

This extension may turn out to be inconsistent, signifying that the
environment can distinguish corresponding messages from the two processes.

On process input any input that the environment can construct (i.e., satis-
fying must be considered. This is the main problem for
automating bisimilarity checks, since the set of potential inputs is infinite. We
now define a symbolic bisimulation for the spi-calculus, with the property that
every simulated input action gives rise to only one new process pair.

Symbolic Bisimulation. As with concrete bisimulation, we need an environment
to keep track of what an attacker has learned during a bisimulation game. As in
the concrete case, a symbolic environment contains a hedge to hold the initial
knowledge of an environment and the knowledge derived from messages received
from the processes. Moreover, in a second hedge, we store the input variables
that we come across when performing process inputs. Similarly to other symbolic
bisimulations [HL95, BD96], we record the transition constraints accumulated by
the processes. Finally, to know whether an input was performed before or after
the environment learned a given message (e.g., the key of an encrypted message)
the knowledge and the input variables are augmented with timing information.

Example 2. This example, inspired by [AG99], illustrates why we need to re-
member the order of received messages. Let Since
the input of happens before P publishes its private key cannot be equal
to a ciphertext encrypted with So, the output can never execute.

Definition 4 (Symbolic Environments). A symbolic environment
consists of the following three elements.

1.
2.
3.

A timed hedge representing the knowledge of the environment.
A timed variable set containing earlier input variables.
A pair of formulae that are the accumulated transition constraints.

The set of finite symbolic environments is denoted SE. We let
for To swap the sides of a

timed hedge we define We
take a snapshot of a timed hedge as

Example 3. A symbolic environment related to Example 2 is where
for

and

A symbolic environment can be understood as a concise description of a set
of concrete environments, differing only in the instantiations of variables. Here, a
variable instantiation is a pair of substitutions, that are applied to the knowledge
of a symbolic environment. As in the concrete case, we may create some fresh
names (B below) when instantiating variables. This definition of concretization
does not constrain the substitutions or ‘fresh’ names, but see Definition 6.

Definition 5 (Concretization). Given and substitutions
we can concretize a timed hedge th into

TEAM LinG

Symbolic Bisimulation in the Spi Calculus 171

Note that if all evaluations are defined.

Example 4. We take from Example 3.
If then
If then

which is undefined since

A symbolic environment does not permit arbitrary variable instantiations. To
begin with, the corresponding concretization must be defined. Furthermore, in
order not to invalidate previous transitions that have taken place, we require the
accumulated transition constraints to hold after variable instantiation. Finally,
if a variable corresponds to an input performed at time then the message
substituted for the variable must be synthesizable from the knowledge of the
environment at that time, augmented with some fresh names B.

Definition 6 (se-Respecting Substitutions). A substitution pair is
called se-respecting with written iff

1.
2.
3.
4.

and for
If then is defined for
If then
B is consistent (Definition 2) such that for
and if then or

Example 5. We take as defined in Example 3 and let

If then since
and

If becomes known strictly after was input) then we do not have
for any B since we cannot synthesize before knowing

In contrast to the concrete case, there are two different ways for a symbolic
environment to be inconsistent. (1) If one of the concretizations of the environ-
ment is inconsistent: The attacker can distinguish between the messages received
from the two processes. (2) If there is a concretization such that, after substi-
tuting, one of the accumulated transition constraints holds but the other does
not: One of the processes made a transition that was not simulated by the other.

Definition 7 (Symbolic Consistency). Let be a
symbolic environment. se is consistent if for all B, we have that

1.
2.

implies that is consistent;
 and for

implies that iff

TEAM LinG

172 J. Borgström et al.

The definition of symbolic bisimilarity is similar to the concrete case. To see
if a transition needs to be simulated, we search a concretization under which
the transition takes place concretely and is detected. On input, we simply add
the input variables to the timed variable set. For all transitions, we add the con-
straints to the environment. The consistency of the updated environment implies
that the simulating transition is detected, and that the channels correspond.

A symbolic relation is a subset of
is symmetric if implies that
is consistent if se is consistent whenever

Definition 8 (Symbolic Bisimulation). A symmetric consistent symbolic re-
lation is a symbolic bisimulation if
whenever and such that

(bound names are fresh)
there exist B with and

(possible)
(detectable)

(created names are fresh)

then with where

1.

2.

3.

If then and

If then and
where

if defined, else
If then and

where

Symbolic bisimilarity, written is the union of all symbolic bisimulations.

Theorem 1. Whenever and
with we have that

PROOF: To prove this theorem, we must verify two things.

1.

2.

Any concrete transition of that must be simulated by under the
concrete environment has a corresponding symbolic transition of
P that must be simulated by Q under se.
If a symbolic transition of P is simulated by Q under se, and has a corre-
sponding concrete transition of that must be simulated by under

then can simulate the concrete transition. Moreover, the
process pairs and environments after the transition are related by a suitable
extension of

By this theorem, symbolic bisimilarity is a sound approximation to concrete
bisimilarity and, by transitivity, barbed equivalence. A weak version of symbolic
bisimulation may be defined in the standard fashion.

TEAM LinG

Symbolic Bisimulation in the Spi Calculus 173

5 Example

We prove that the equation of the example in §1 holds.
We start with a symbolic environment in which the message is a vari-

able: We let and se :=
(th,tw,(tt,tt)). Note that we give a later time than and in order to
permit occurrences of and in the message.

Proposition 1.

PROOF: We let and

We write to denote that is a tuple of pair-wise
different names. The symmetric closure of the following set is a symbolic bisim-
ulation.

Note that the set itself is infinite, but that this infinity only arises from the
possible different choices of bound names. Effectively, the bisimulation contains
only 7 · 2 = 14 process pairs. We only check the element

Consistency. If then which
is consistent by the consistency of B since
We also have which is true independently of and

which is also always true. Thus is consistent.

Transition 1. has to be

simulated, since if we let then we have that
and We simulate it by

TEAM LinG

174 J. Borgström et al.

Transition 2. First we to avoid clashes with environment names.
does not need to

be simulated: holds iff for some M, but
cannot be in since it is bound in the transition constraint.

6 Sources of Incompleteness

The following examples show sources of incompleteness of the proposed “very
late” symbolic bisimulation. All these examples start from the same symbolic
environment Since se has no variables, it has only
one concretization

In general, symbolic bisimulations let us postpone the “instantiation” of input
variables until the moment they are actually used, leading to a stronger relation.
In the pi calculus this was addressed using [BD96]. We let

Proposition 2. but

The next example shows that the requirement that the collected transition
guards should be indistinguishable gives rise to some incompleteness, that we
conjecture could be removed by allowing decompositions of the guards. We let

Proposition 3. but

PROOF: Since an output action of always has an extra equality or disequality
constraint compared to the output action of the resulting symbolic environ-
ment is not consistent. In contrast, concrete bisimulation instantiates the input
at once, killing one of the output branches of

Incompleteness also arises from the fact that we choose not to calculate the
precise conditions for the environment to detect a process action. We let

Proposition 4. but

PROOF: The output action of is detected iff the first input was equal to
Then the first message is the key of the second message. Since this constraint
is not added to the symbolic environment but the explicit equality constraint of

is, we have an inconsistent symbolic environment after the final outputs.

TEAM LinG

Symbolic Bisimulation in the Spi Calculus 175

Impact. We have seen above that processes that are barbed equivalent but dif-
fer in the placement of guards may not be symbolically bisimilar. However,
we contend that this incompleteness will not affect the verification of secrecy
and authenticity properties of security protocols. For secrecy, we want to check
whether two instances of the protocol with different messages (or symbolic vari-
ables) are bisimilar, so there is no change in the structure of the guards. For
authenticity, we conjecture that the addition of guards in the specification only
triggers the incompleteness if they relate to the observability of process actions
(c.f. Proposition 4), something that should never occur in real-world protocols.

7 Conclusions

Contribution. We have given a general symbolic operational semantics for the
spi calculus, including the rich guard language of [BDP02] and allowing com-
plex keys and public-key cryptography. We also propose the, to our knowledge,
first symbolic notion of bisimilarity for the spi calculus, and prove it a sound
approximation of concrete hedged bisimilarity.

Mechanizing Equivalence Checks. Ultimately, we seek mechanizable (efficiently
computable) ways to perform equivalence checks. Hüttel [Hüt02] showed decid-
ability of bisimilarity checking by giving a “brute-force” decision algorithm for
framed bisimulation in a language of only finite processes. However, this algo-
rithm is not practically implementable, generating branches for each
input of the Wide-mouthed Frog protocol of [AG99].

Ongoing and Future Work We are currently working on an implementation of
this symbolic bisimilarity with a guard language not including negation; the
crucial point is the infinite quantifications in the definition of environment con-
sistency. As in [Bor01], it turns out to be sufficient to check a finite subset of the
environment-respecting substitution pairs: the minimal elements of a refinement
preorder. However, the presence of consistency makes for a significant difference
in the refinement relation.

Moreover, the symbolic bisimilarity presented in this paper is a compromise
between the complexity of its definition and the degree of completeness; we have
refined proposals that we conjecture will provide full completeness. We also
conjecture that a slightly simplified version of our symbolic bisimulation could
be used for the applied pi-calculus [AF01]. In this setting, any mechanization
would depend heavily on the chosen message language and equivalence.

References

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In Proc. of POPL ’01, pages 104–115, 2001.

TEAM LinG

176 J. Borgström et al.

[AG98]

[AG99]

[AL00]

[BD96]

[BDP02]

[BN02]

[Bor01]

[Cor03]

[CS02]

[DSV03]

[FA01]

[HL95]

[Hui99]

[Hüt02]
[San96]

[VM94]

M. Abadi and A. D. Gordon. A bisimulation method for cryptographic
protocols. Nordic Journal of Computing, 5(4):267–303, 1998.
M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
Spi Calculus. Information and Computation, 148(1):1–70, 1999.
R. M. Amadio and D. Lugiez. On the Reachability Problem in Cryptographic
Protocols. In Proc. of CONCUR 2000, pages 380–394, 2000.
M. Boreale and R. De Nicola. A symbolic semantics for the
Information and Computation, 126(1):34–52, 1996.
M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for crypto-
graphic processes. SIAM Journal on Computing, 31(3):947–986, 2002.
J. Borgström and U. Nestmann. On bisimulations for the spi calculus. In
Proc. of AMAST 2002, pages 287–303, 2002. Full version: EPFL Report
IC/2003/34. Accepted for Mathematical Structures in Computer Science.
M. Boreale. Symbolic Trace Analysis of Cryptographic Protocols. In Proc.
of ICALP 2001, pages 667–681, 2001.
V. Cortier. Vérification automatique des protocoles cryptographiques. PhD
thesis, École Normale Supérieure de Cachan, 2003.
H. Comon and V. Shmatikov. Is it possible to decide whether a cryptographic
protocol is secure or not? Journal of Telecommunications and Information
Technology, 4:5–15, 2002.
L. Durante, R. Sisto, and A. Valenzano. Automatic testing equivalence
verification of spi-calculus specifications. ACM Transactions on Software
Engineering and Methodology, 12(2):222–284, Apr. 2003.
M. Fiore and M. Abadi. Computing Symbolic Models for Verifying Crypto-
graphic Protocols. In 14th IEEE Computer Security Foundations Workshop,
pages 160–173, 2001.
M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Comput. Sci.,
138(2):353–389, 1995.
A. Huima. Efficient Infinite-State Analysis of Security Protocols. In FLOC
Workshop on Formal Methods and Security Protocols, 1999.
H. Hüttel. Deciding framed bisimilarity. In Proc. of INFINITY, 2002.
D. Sangiorgi. A theory of bisimulation for the Acta Informatica,
33:69–97, 1996.
B. Victor and F. Moller. The Mobility Workbench — a tool for the

In Proc. of CAV ’94, pages 428–440, 1994.

TEAM LinG

A Symbolic Decision Procedure for
Cryptographic Protocols with Time Stamps*

(Extended Abstract)

Liana Bozga, Cristian Ene, and Yassine Lakhnech

VERIMAG, 2 av. de Vignate, 38610 Grenoble, France
{Liana.Bozga, Cristian.Ene, Yassine. Lakhnech}@imag. fr

Abstract. We present a symbolic decision procedure for time-sensitive
cryptographic protocols with time-stamps. Our decision procedure deals
with secrecy, authentication and any property that can be described as
an invariance property.

1 Introduction

Cryptographic protocols are mandatory to ensure secure transactions in an open
environment. They must be able to guarantee confidentiality, authentication and
other security properties despite the fact that transactions take place in face of
an intruder who may have complete control of a network, i.e, who may monitor,
delete, alter or redirect messages. To achieve this goal these protocols rely upon
cryptographic primitives and fresh nonces. The cryptographic primitives allow
to encrypt messages with keys such that only a principal that owns the inverse
key is able to extract the plain text from the cipher text; while nonces are used
to prevent from replaying and redirecting messages. Nonces are usually imple-
mented as randomly generated numbers. Now, such an implementation is not
always feasible, and therefore, some cryptographic protocols rely upon times-
tamps or counters instead of nonces. Timestamps are then used by recipients
to verify timeliness of the message and recognize and reject replays of messages
communicated in the past. The problem is, however, that while the value of a
nonce is not predictable, the value of a counter or a timestamps is. Hence, re-
placing nonces by counters or timestamps can produce new attacks. Moreover,
a verification method has to take into account this predictability feature.

Most of the automatic verification methods for cryptographic protocols con-
sider time-independent protocols [17,16,15,9] with the exception of [8,13].

In this paper, we present a model for time-dependent cryptographic protocols
and a corresponding decidability result for the verification of a large class of
properties. Our decidability holds for the Dolev-Yao model, i.e. assuming an
active intruder, extended with rules associated to timestamps. Although, the

* This work has been partially suppoted by the projects ACI-SI ROSSIGNOL
http://www.cmi.univ-mrs.fr/~lugiez/aci-rossignol.html and PROUVE-03V360.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 177–192, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

178 L. Bozga et al.

decidability we present applies to bounded protocols, i.e., when a fixed number
of sessions are considered, our model clearly identifies the main ingredients to be
included in a general model. It is useful to notice that the verification problem
is undecidable for unbounded sessions.

Besides general models for distributed systems that can be used to model
security protocols under some restrictions such as Timed CSP and MSR (mul-
tiset rewriting over first-order atomic formulae), there are very few models for
timed protocols [11].

Contributions: The first contribution of this paper is a general model for timed
cryptographic protocols. We include in our model clocks, time variables and
timestamps. Clocks are variables that range over the time domain and advance
with the same rate as time. Each agent has its own set clocks that he can reset.
That is clocks can be used to measure the time that elapses between two events,
for instance, sending a message and receiving the corresponding response. Also,
we allow a global clock that is never reset and that can be read and tested by
all participants. Time variables correspond to timestamps in received messages.
Such values can be stored and used together with clocks to put conditions on
the acceptance of a message.

A second contribution of this paper is the decidability of the verification
of a large class of security properties including secrecy and authentication. We
consider a rich class of reachability properties that allow to specify secrecy,
temporary secrecy and authentication. In fact, we introduce a logic that allows
to describe secrecy, temporary secrecy, equalities between terms and control
points. Then, given a bounded protocol and two formulae in this logic and

the reachability problem we consider is whether there is a run of that starts
in a configuration that satisfies and reaches a configuration that satisfies

We device a symbolic algorithm that given a property described by a formula
in this logic and given a bounded protocol computes the set of configurations

that reaches This algorithm uses symbolic constraints (logic formulae) to
describe sets of configurations. The logic we introduce combines constraints on
the knowledge of the intruder with time constraints on clock values and time
variables. To show effectiveness of our verification method we show:

1.

2.

that for each action of our model we can express the predecessor configura-
tions of a set of configurations as a formula. We consider input, output and
time actions.
Then, we show decidability of the satisfiability problem for our logic.

It should be clear that even in the case of bounded protocols the under-
lying transition system is infinite state even if we do not consider timing as-
pects, This is because the size of messages is unbounded and the intruder is
modeled as an infinitely iterating process. Handling time constraints and un-
bounded messages symbolically and automatically is the distinguishing feature
of our verification method. Most of the work on timed cryptographic protocols
uses theorem-provers or finite-state model-checking [1,4,8,13,14]. While the first
needs human help, the second relies on typing assumptions and assumption on

TEAM LinG

A Symbolic Decision Procedure 179

the time window to bound the search space. In [8], the authors make a semi-
automated analysis on a Timed CSP model of Wide Mouth Frog protocol, and
use PVS to discharge proof obligations in order to find an invariant property.
In [14], a timed-authentication attack on Wide Mouth Frog protocol is found,
using a model with discrete time and with an upper bound on the time window.
Differently from [8,14], our method can be used for automatic verification of
timed cryptographic protocols without imposing any restrictions on the
time model (i.e. we can handle continuous time, and we need no upper bounds
on the time window). Closest of our work is [6] which presents a verification
method for timed protocols considering unbounded sessions. This paper does
not, however, present a decidability result.

2 The Protocol and Intruder Model

A model for cryptographic protocols fixes on one hand the intruder capabilities
and on the other the actions the principals can perform. In this section, we
extend our model for cryptographic protocols [2] with timestamps. The untimed
aspects of our model are fairly standard; it is the so-called Dolev-Yao model.
But first we have to define the messages that can be sent.

Preliminaries. Let be a countable set of variables and let be a countable
set of function symbols of arity for every Let The
set of terms over and is denoted by Ground terms are terms
with no variables. We denote by the set of ground terms over For any

we denote with the most general unifier (mgu) of
and if it exists. We denote by the set consisting of ground substitutions
with domain Given a tree we write to denote the symbol at position
in and to denote the subterm of at position

If are words over an alphabet then we denote by the
word obtained from after removing the prefix

Messages and Terms. We fix the time domain to be the set of non-negative real
numbers. Our results hold also when we consider the natural numbers instead.

Let denote the set of variables that range over terms. Let be a set of
constant symbols with and We consider terms
build from constant symbols in clocks in and time variables in using the
function symbols in As usual, we write for and
instead of A Clock-free term is a term in which no clock appears;
time variables and timestamps may appear in a clock-free term. We denote the
set of clock-free terms by Messages are ground (variable-free) terms
in we denote by the set of messages. For conciseness,
we write instead of and instead of

In addition to the usual terms considered in Dolev-Yao model, we add:

1. Clocks, i.e. variables that range over the underlying time model. We denote
the set of clocks by

TEAM LinG

180 L. Bozga et al.

2.
3.

Timestamps, that is values in the time domain.
Time variables, that is variables that range over the time domain. We denote
by the set time variables.

It is important to understand the difference between these three disjoint
sets of variables: a timestamp is just a constant; clocks and time variables are
variables. The difference is that the value of a clock advances with rate one with
time while the value of a time variable does not. A time variable is simply a
variable that ranges over the time domain.

The Intruder’s Message Derivation Capabilities. We use the usual model of
Dolev and Yao [7] augmented with the axiom: If then The
axiom represents the fact that the intruder can guess every possible time-stamp,
i.e. time value. As usual, we write when is derivable from E using the
augmented Dolev-Yao model. For a term we use the notation to denote
that there exists a substitution such that Given a term
a position in is called non-critical, if it is not a key position; otherwise it is
called critical.

2.1 Process Model

Timed cryptographic protocols are build from timed actions. Here, we consider
two types of actions: message input and message output. A time constraint is
associated to an action and describes when the action is possible.

Definition 1 (Time Constraints). Time constraints are boolean combina-
tions of linear constraints on clocks and time variables and they are defined by:

where are clocks, are time variables,
and The set of time constraints is denoted by

A time constraint is interpreted with respect to a valuation defined over
a finite set of clocks that associates values in the time domain to
clocks, and a substitution that assigns ground clock-free terms to variables,
thus in particular, values to the time variables. The interpretation of a time
constraint, denoted by is defined as usual. Then is said to be a
model for a time constraint if

Given a time constraint and a set of clocks, we denote by the time
constraint obtained by substituting 0 for all clocks in We also use the notation

to denote the time constraint obtained from by substituting each clock
in by

Definition 2 (Actions and Protocols). We consider input and output ac-
tions:

An input action is of the form where
is a time constraint called the guard,

is a term and is the set of variables instantiated by
the input action.

TEAM LinG

A Symbolic Decision Procedure 181

is a subset of clocks
are labels

An output action is of the form where and are as above
and is a clock dependent term.

The set of actions is denoted by Act.

A protocol is represented by a set of sequences of actions

where for some with Here, the labels
represent control points and is the usual non-deterministic choice. This

corresponds to the interleavings of a fixed set of sessions put in parallel.Let
be a subset of clocks, a constant, a valuation

for clocks, and let be a clock dependent term. We denote by the
valuation obtained from by resetting all clocks in i.e. for any

and for any denotes the valuation which
advances all clocks by the same delay i.e. and is
the term obtained from by replacing all occurrences of by the value of

Definition 3 (Operational Semantics). A configuration of a protocol run
is given by a tuple consisting of a substitution a set of messages
E, a valuation of clocks and a control point The operational semantics is
defined as a labelled transitional system over the set of configurations Conf. The
transition relation

is defined as follows:

Output: Then, we have
if and
That is, sending the message (provided that guard is satisfied by the
actual configuration) amounts to reset clocks in and adding evaluated
with respect to the substitution and the valuation of clocks to the
knowledge of the intruder.

Input: Then, we have
if and there is with
and
That is, corresponds to receiving any message, known to the intruder, that
matches with by a substitution such that is satisfied by the pair

in addition, this action resets clocks in
Time Passing: for any This
action represents the passage of time units; passage of an arbitrary time is
denoted by

The initial configuration is given by a substitution a set of terms such
that the variables in do not appear in the protocol description, a valuation
and a control point

TEAM LinG

182 L. Bozga et al.

Example 1. The Denning-Sacco shared key protocol [3], a protocol for distribu-
tion of a shared symmetric key by a trusted server and mutual authentication.
Here, the timestamps are used to ensure the freshness of the shared key. Us-
ing the usual notation for cryptographic protocols, the protocol is described as
follows:

We describe the protocol in our model. The constant parameters repre-
sent network delays for A respectively B. We use a special clock now which is a
global clock that is never reset and has an arbitrary initial value. For convenience
of notation, we omit the control locations.

Each participant of the protocol may be seen as a sequential process. As
a sample we explain the actions of participant A. First, he sends his iden-
tity A and the identity of B to the server. Then, A waits to the message

If is a valid timestamp, i.e. the difference between the
current time and the value of is less than the constant parameter then A
accepts as session key and forwards the message to B.

3 The TSPL Logic

In this section, we introduce the constraints/formulae we use to describe security
properties. The logic we introduce allows to describe secrecy, authentication and
any safety property.

Henceforth, let be a fixed but arbitrary set of keys, such that
This set of keys can be understood as the set of keys whose inverses are

secret.

3.1 Term Transducers and the Main Modality of the Logic

A pair where is a term, and a critical position in is
called a term transducer (TT for short). Intuitively, the pair can be seen
as function that takes as argument a term that matches with and returns
as result the term As it will become clear later, a run of a cryptographic
protocol provides the intruder with term transducers she (he) can apply to learn
new terms.

The main modality of the logic we use can be defined as follows: Let and
be two messages and let be a sequence of term transducers. We
define the predicate which we read is in recursively
on the structure of and length of

TEAM LinG

A Symbolic Decision Procedure 183

This definition is easily generalized to sets of messages: Let M and S be
sets of messages, a sequence of term transducers and K a set of keys. We
say that the secrets S are - protected in M denoted by if it holds

Closure of Sets of Secrets. In this section, we define when a set of messages
is closed. Closed sets of secrets enjoy the property that they are not derivable by
composition. Intuitively, a set of messages is closed, if it contains, for any message

in the set, all messages along at least one path of the tree representing the
message

Let M be a set of sets of messages and let be a message. We use the
notation: The closure of a set S ensures that
the intruder cannot derive a message in S by composition rules.

Definition 4 (Closure).

where A set M of messages is called closed, if for any
there exists such that

Example 2. Consider the message Then consists of
the following sets:

We use the notation for Our purpose now is to
define conditions on and such that for any set E of messages, if
then for any message derivable from E. In other words, such
conditions ensure that is stable under the derivations rules defining
the intruder.

Example 3. Let be a set of messages. Then we have
But we have both and

This example shows that we need to consider only closed sets of secrets. But
this is not sufficient, as showed by the following example.

Example 4. Let be a set of messages. We have
But we have both and

TEAM LinG

184 L. Bozga et al.

Hence, we need to deal also with the interior term transducers. To do so, let
be a term transducer. Then, we denote by the next term transducer

in from above that dominates if it exists. For the sake of intuition, we skip
the formal definition, and we give an example.
Example 5. Let be the term with Then,

But does not exist neither does.

We have now everything we need to express the conditions that guarantee
stability under the intruder’s derivations:

Definition 5. is called well-formed, if the following conditions are
satisfied for every

1.
2.

is closed,
if then the following conditions are satisfied:

if there exists such that and
if there exists a term transducer then there exists

such that either or and

The main property of is that it is stable under the intruder’s
deduction rules. Indeed, we have:

Proposition 1. Let E be a set of messages, and let be well-formed
such that Moreover, let be a message with Then,

Proposition 2. Let be a message and E a set of messages such that
Then, iff there exists a set of messages s.t.

3.2 TSPL: A Logic for Security Properties

In order to express general secrecy properties that involve variables, we introduce
a new set of function symbols Extended terms are build as before except that
now we allow function symbols in to occur applied to variables, which we
denote by Given a substitution that associates a message to it will
associate a set in to

The syntax of TSPL is defined in the next table, where X is a fixed second-
order variable that ranges over sets of messages, is a meta-variable that ranges
over the set of first-order variables and is a meta-variable that ranges over

Moreover, S is a finite set of extended terms and is a finite sequence of
term transducers that can contain free variables.

Notice that omitting the negation for time constraints is not essential as any
negation of a time constraint can be put in a positive form.

Formulae are interpreted over a restricted set of configurations

TEAM LinG

A Symbolic Decision Procedure 185

Definition 6 (Semantics). The interpretation of a formula is given by the set
of its models, i.e., the set of configurations that satisfy the formula. The
definition is standard except for the following clauses:

For convenience of notations, we extend the set of formulae TSPL as follows:

The semantics of these formulae is:

We can prove that any formulae of the form is definable in TSPL. We use
the notations for for
for and for Also, given a term we write instead of

and instead of We identify formulae modulo the usual
properties of boolean connectives such as associativity and commutativity of

distributivity etc... and use as the classical logical implication (it can be
easily defined in TSPL logic using set inclusion).

Well-Formed Formulae. We extend now the notion of closure of sets of messages
to sets of extended terms. The definition is similar except that we have to con-
sider two new cases: 1.) the case of a term t of the form
and 2.) the case of a variable where is a fresh function
symbol. The Definition 5, that defines when is well-formed for sets
of messages, is now easily extended to sets of extended terms. As now we are
dealing with formulae, we have to define when a formula is well-formed in the
same sense.

Definition 7. A formula is well-formed, if for any sequence of term trans-
ducers and closed set of terms S, whenever there exist
well-formed, such that and

The main property satisfied by well-formed formulae is a parallel to Propo-
sition 1 and is given by the following corollary, which is a direct consequence of
Definitions 5 and 7.

Corollary 1. Let be a well-formed formula such that and let
If is a message such that then

Now, the property of Corollary 1 turns out to be crucial for developing a com-
plete symbolic method and well-formedness has to be preserved. Therefore, we
introduce the function It takes as arguments a formula and computes

TEAM LinG

186 L. Bozga et al.

the weakest (the largest w.r.t. set inclusion) well-formed formula
such that

Proposition 3. Let be a well-formed formula. Let be a sequence of term
transducers and S a closed set of extended terms such that Then

4 Computing Predecessors

We are interested in proving reachability properties of bounded timed crypto-
graphic protocols. Given a property and an action denotes the
smallest set of configurations that by executing may lead to a configuration
that satisfies That is,

Definition 8 (Predecessors). The predecessor of a set of configurations
with respect to an action denoted is the set of configurations

such that there is at least one possible execution of that leads from to a
configuration in More precisely

Given a formula we use instead of to denote the
predecessor of a formula

The purpose of this section is to show that is effectively expressible
inTSPL, when is a positive boolean combination of time constraints and term
formulae of the form:

First, it is easy to see that if is a time passing action and

is a term formula. Also, for any action respectively
and any time constraint we have

Moreover, it can easily be shown that for the actions considered here pre
distributes with respect to disjunction; in addition, if is an output or an input,
we can easily prove that pre distributes with conjunction too; we can also prove
that pre commutes with i.e.

Time Passing and Time Constraints. In this section, we show that the
predecessor of where is a time constraint, can be described by an TSPL

formula. We consider the action i.e. time passing. The case of input and
output actions is described above.

We need first to define three kinds of normal forms for time constraints. Let
be the atomic time constraint We denote by

TEAM LinG

A Symbolic Decision Procedure 187

the sum of the coefficients of clocks, i.e. Then, an atomic time
constraint is in positive normal form (PNF for
short), if it is in negative normal form (NNF for short), if
and finally, it is in 0-normal form, if

Clearly any time constraint can be put in the form of a disjunction of con-
junctions of the form where is a conjunction of formulae in PNF,

is a conjunction of formulae in NNF and is a conjunction of formulae in
0-NF. For the rest of this section, we write to state that is a conjunct
of i.e., we view conjunctions of formulae as sets of formulae.

Thus, let us consider a time constraint of the form as above.
Then, can be described by the formula

We have then to show that we can eliminate the quantification
on while obtaining a time constraint.

First, notice that is logically equivalent to since it is in 0-NF.
Therefore, we can rewrite the formula to the equivalent formula

and focus on discussing how to transform
into an equivalent time constraint. Let us explain the main idea by considering
the simple case where and are simple conjunctions.

The Simple Case. Consider a PNF time constraint
and a NNF Then, we have:

By multiplying with and and adding the right-hands we get
the following time constraint:

with and if then
else

Let us denote this formula by Notice that is independent
of One can prove that is equivalent to the time
constraint The conjunct has to be kept as we are interesting
in the predecessors, thus the upper bound on the clocks must be satisfied as time
only increases.

The General Case. Let us now return to the general case, where and are
arbitrary conjunctions of formulae in PNF, respectively, NNF. To handle this
case we generalize to sets (conjunctions of formulae as follows):

Then we can prove that is equivalent to

TEAM LinG

occurrences of clocks that are not reseted with fresh time variables and by

188 L. Bozga et al.

Summarizing together, we can transform
into the equivalent time constraint Hence, if we define

we obtain the following result:

Proposition 4. For any time constraint

Output Action and Atomic Term Formulae. Throughout this section let
and let be all the clocks that occur in and do not occur in

We show that we can express for any atomic term formula The
core point here is how we deal with the clocks occurrences in the sent message.
Since the values of clocks change with time, we have to freeze these values in

introducing the constraints For more details, see the example presented
in Appendix A.

Let us define

1.

2.

where
are fresh time variables, if is a formula of the form or

if is of the form
or

Proposition 5. For any output action and atomic term formula

Input Action and Atomic Term Formulae. Throughout this section let

We show that we can express for any atomic term
formula To do so, we need to introduce a few definitions and prove a few
intermediate results.

Let be a term and a critical position in Then, we denote by
the position of the first term transducer in from above that dominates if it
exists.

Example 6. Consider the term where Let
and Thus, Then, we have which

corresponds to the key is, however, undefined.

set of all fresh variables that occur in The intuitive explanation
of next lemma is the following: being in a state in order to be able to
make an input such that are instantiated by it must be that

Lemma 1. Let E be a set of terms, be a label, be a clocks valuation and let
and be ground substitutions such that and

Then it holds iff

Given a term let denote the formula where is the

the message added to the intruder knowledge; we do this by replacing in all

TEAM LinG

A Symbolic Decision Procedure 189

First, notice that the effect of an input action depends on the messages
that match with and that are known by the intruder. Therefore, we need
to characterize the set of configurations such that if in the next step is
instantiated by an input the reached configuration satisfies To
understand how this characterization is obtained, the best is to consider the
negation of i.e., The key idea can be explained by considering
the sequence of actions That is, if a secret that appears in has
to be protected then it has to appear in under an encryption. Thus, before
executing it should be the case that if we provide the intruder with
the term transducer that takes as input and yields it is not possible to
derive

Lemma 2. Let be a term, S a set of terms, a sequence of term transducers,
a variable and the set of critical positions of in Let

Let E be a set of terms, and labels, and ground substitutions such that
Let a well-formed formula such

that whenever we have iff
Then

Let now be the action where the variables that are
instantiated by this action. We then define as follows:

1.

2.

if is of the form
or and

if

Proposition 6. For any input action and atomic term formula

Collecting the results together, it is easy to see that for any formula
and any action Then, we have the following theorem:

Theorem 1. Let be any action and any formula in TSPL. Then,

5 Decidability of TSPL

In this section, we give a procedure for the decidability of the existence of a
model of a TSPL formula. Notice that since we showed in Section 4 that given a
formula in TSPL and a bounded CP one can compute decidability
of the satisfiability of formulae yields a decision procedure for reachability of
configurations described by TSPL formulae.

To prove decidability for the satisfiability of TSPL formulae we follow a rule
based approach (e.g., [12, 5] for two nice surveys) i.e.:

TEAM LinG

190 L. Bozga et al.

1.

2.

3.

4.
5.

We introduce a set of formulae in solved form. For these formulae it is easy
to decide whether a model exists.
We introduce a set of formulae in intermediate form. For each formula in
intermediate form, we show how to reduce its satisfiability to the satisfiabil-
ity of a set of saturated formulae in intermediate form; moreover, for each
saturated formula in intermediate form, we can extract a formula in solved
form such that a model exists for the formula in intermediate form if and
only if the extracted formula in solved form is satisfiable.
We introduce a set of rewriting rules to transform any formula in the exis-
tential fragment into an intermediate form.
We prove soundness and completeness of these rules.
We also prove their termination for a given control, i.e. that normal forms
are reached and that normal forms are indeed in intermediate form.

Then, we obtain the following result:

Theorem 2. Satisfiability for TSPL is decidable.

6 Conclusions
In this paper, we have proved the decidability of a large class of reachability
properties, including secrecy and authentication, for timed bounded protocols.
Our model for specifying timed protocols uses clocks, time variables and time-
stamps. This work can be extended in several ways: 1.) our model can be nat-
urally extended to associate time values to short term keys such that if the
intruder obtains a message encrypted by a short term key then after the speci-
fied amount of time elapses the key becomes known by the intruder. Our model
and verification method can be extended to handle this model; 2.) our model
can also be extended handle drifting clocks. It is well-known that models with
clocks with drifts in bounded intervals can be transformed into models with per-
fect clocks modulo an abstraction, that is, taking into account more behavior.
As discussed by Gong [10] drifting clocks can add subtle attacks; 3.) in the full
version of this paper we show how we can use our logic to device an abstract
interpretation based method for unbounded protocols.

References

1.

2.

3.

G. Bella and L. C. Paulson. Mechanizing BAN Kerberos by the inductive method.
In A. J. Hu and M. Y. Vardi, editors, Proceedings of the 10th International Confer-
ence on Computer-Aided Verification (CAV’98), pages 416–427, Vancouver, B.C.,
Canada, June 1998. Springer-Verlag LNCS 1427.
L. Bozga, C. Ene, and Y. Lakhnech. On the existence of an effective and complete
proof system for bounded security protocols. In FOSSACS, vol. 2987. LNCS, 2004.
J. Clark and J. Joacob. A survey on authentication protocol. Available at the url
http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps, 1997.

TEAM LinG

A Symbolic Decision Procedure 191

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Ernie Cohen. Taps: A first-order verifier for cryptographic protocols. In Proceedings
of the 13th IEEE Computer Security Foundations Workshop (CSFW’00), page 144.
IEEE Computer Society, 2000.
H. Comon. Disunification: A survey. In Computational Logic: Essays in Honor of
Alan Robinson. MIT Press, Cambridge, MA, 1991.
G. Delzanno and P. Ganty. Automatic verification of time sensitive cryptographic
protocols. In TACAS: International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, volume 2988, 2004.
D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.
Neil Evans and Steve Schneider. Analyzing time dependent security properties in
CSP using PVS. In ESORICS, pages 222–237, 2000.
M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic
protocols. In 14th IEEE Computer Security Foundations Workshop (CSFW ’01),
pages 160–173, Washington - Brussels - Tokyo, June 2001. IEEE.
Li Gong. A security risk of depending on synchronized clocks. Operating Systems
Review, 26(1):49–53, 1992.
Roberto Gorrieri and Fabio Martinelli. A simple framework for real-time cryp-
tographic protocol analysis with compositional proof rules. Science of Computer
Programming, 50(1-3) :23–49, 2004.
J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-
based survey of unification. In Jean-Louis Lassez and Gordon Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson. MIT-Press, 1991.
G. Lowe. Breaking and fixing the Needham-Schroeder Public-Key protocol using
FDR. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 1055 of LNCS, pages 147–166, 1996.
G. Lowe. A hierarchy of authentication specifications. In Proc. of The 10th Com-
puter Security Foundations Workshop. IEEE Computer Society Press, 1997.
J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In ACM Conference on Computer and Communications Security,
pages 166–175, 2001.
M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In IEEE Computer Security Foundations Workshop, 2001.
J. Thayer, J. Herzog, and J. Guttman. Honest Ideals on Strand Spaces. In IEEE
Computer Security Foundations Workshop, pages 66–78, 1998.

A Computation of Predecessors for a Sequence of
Actions

Let us give an example that shows how we compute the set of predecessors with

respect to a simple protocol. Let

where and are clocks, is a symmetric
key (intended to remain secret for the intruder), is a message (the secret) and

the “bad configurations” (where secret is known to the intruder). Now let
and are two protocols. We show that is secure

Let be the formula that represents

TEAM LinG

192 L. Bozga et al.

w.r.t. to formula while the same assertion does not hold for For sake of
simplicity, we work modulo

Hence, we obtain the following predecessors:

Since we supposed that is a secret symmetric key (i.e. if there is
no any message of the form known initially to the intruder, the protocol

is secure with respect to the secrecy of On the contrary, protocol is
unsecure. If we pick and such that then
we obtain an attack, that corresponds to the fact that the first message sent by
our participant can be replayed successfully by the intruder (it satisfies the time
constraints), while the same is not true for the second sent message.

TEAM LinG

Deciding Probabilistic Bisimilarity Over
Infinite-State Probabilistic Systems*

Tomáš Brázdil, and

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic
{brazdil,tony,strazovsky}@fi.muni.cz

Abstract. We prove that probabilistic bisimilarity is decidable over
probabilistic extensions of BPA and BPP processes. For normed sub-
classes of probabilistic BPA and BPP processes we obtain polynomial-
time algorithms. Further, we show that probabilistic bisimilarity between
probabilistic pushdown automata and finite-state systems is decidable in
exponential time. If the number of control states in PDA is bounded by
a fixed constant, then the algorithm needs only polynomial time.

1 Introduction

Theory of probabilistic systems is a formal basis for modeling and verification
of systems that exhibit some kind of uncertainty [20, 18]. For example, this
uncertainty can be caused by unpredictable errors (such as message loss in
unreliable channels), randomization (as in randomized algorithms), or simply
underspecification in some of the system components. The semantics of prob-
abilistic systems is usually defined in terms of homogeneous Markov chains or
Markov decision processes. The former model allows to specify just probabilistic
behavioural aspects, while the latter one combines the paradigms of nondeter-
ministic and probabilistic choice. In this paper we consider a generalized model of
[23] which subsumes both of the aforementioned formalisms and also “ordinary”
non-probabilistic systems. As we shall see, this means that the majority of our re-
sults generalize the ones which were previously established for non-probabilistic
infinite-state systems.

Methods for formal verification of probabilistic systems follow the two stan-
dard approaches of model-checking and equivalence-checking. In the model-
checking approach, desired properties of the system are specified as a formula of
a suitable probabilistic temporal logic (such as PCTL or [7]), and then
it is shown that the system satisfies the formula. In the equivalence-checking
approach, one proves that the verified system is semantically equivalent to its
specification, which is another probabilistic system. Here the notion of semantic
equivalence can be formally captured in many ways. Most of the existing equiv-
alences are probabilistic extensions of their non-probabilistic counterparts. One

* The work has been supported by the Grant Agency of the Czech Republic, grant
No. 201/03/1161.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 193–208, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

194 T. Brázdil et al.

consequence of this is that various variants of probabilistic bisimilarity [21] play
a very important role in this setting.

The state of the art: Algorithmic support for formal verification of proba-
bilistic systems has so far been limited to finite-state systems [11, 15, 3, 12, 16,
6, 20, 13, 10]. Only recently, model-checking algorithms for infinite-state models
of fully probabilistic lossy channel systems [17, 5, 1, 2, 22] and fully probabilistic
pushdown automata [14] appeared. However, the authors are not aware of any
results about equivalence-checking with probabilistic infinite-state systems.

Our Contribution: In the first part of our work we consider probabilistic
extensions of the well-known families of BPA and BPP processes, which are de-
noted pBPA and pBPP, respectively. We have chosen a general extension based
on the idea that process constants have finitely many basic transitions of the
form where is a probability distribution over pairs of the form
where is an action and a sequence of BPA/BPP constants (in the case of
BPP, sequences of constants are considered modulo commutativity and thus the
concatenation operator models a simple form of parallel composition without
synchronization). Basic transitions then define transitions performable from se-
quences of constants by adjusting the target distributions accordingly. Hence,
our model subsumes the original (non-probabilistic) BPA and BPP, which can
be understood as those subclasses of pBPA and pBPP where all distributions
used in basic transitions are Dirac. Moreover, pBPA also subsumes a fully prob-
abilistic extension of BPA. We prove that probabilistic bisimilarity (both in its
combined and non-combined variant) is decidable for pBPA and pBPP processes.
Moreover, for normed subclasses of pBPA and pBPP we have polynomial-time
algorithms. Our results generalize the ones for non-probabilistic BPA and BPP
by extending and adapting the original notions and proofs. Intuitively, such an
extension is possible because probabilistic bisimilarity has similar algebraic and
transfer properties as “ordinary” non-probabilistic bisimilarity. These properties
can be reformulated and reproved in the probabilistic setting by incorporating
some ideas for finite-state systems (e.g., the use of geometrical algorithms for
finitely-generated convex spaces in the style of [10]), and there are also new
techniques for handling problems which are specific to infinite-state probabilis-
tic systems. After reestablishing these crucial properties, we can basically follow
the original proofs because they mostly rely just on algebraic arguments. This
can be seen as a nice evidence of the robustness of the original ideas.

In Section 4 we concentrate on checking probabilistic bisimilarity between
processes of probabilistic pushdown automata (pPDA) and probabilistic finite-
state automata. Our results are based on a generic method for checking se-
mantic equivalences between PDA and finite-state processes proposed in [19].
This method clearly separates generic arguments (applicable to every behav-
ioral equivalence which is a right PDA congruence in the sense of Definition 31)
from the equivalence-specific parts that must be supplied for each behavioral
equivalence individually. This method works also in the probabilistic setting,
but the application part would be unnecessarily long and complicated if we used
the original scheme of [19]. Therefore, the generic part of the method is first

TEAM LinG

Deciding Probabilistic Bisimilarity Over Infinite-State Systems 195

adjusted into a more “algebraic” form which simplifies some of the crucial steps.
The method is then used to prove that probabilistic bisimilarity is decidable
between pPDA and finite-state processes in exponential time. Actually, this al-
gorithm is polynomial if the number of pPDA control states is bounded by a
fixed constant (in particular, this holds for pBPA).

In all sections we tried to avoid repeating of the known things as much as
possible; unfortunately, this inevitably means that the material is not completely
self-contained. We did our best to provide enough information and intuition so
that our presentation is understandable even for a reader who is not familiar with
“classical” results on BPA and BPP presented in [9], and who does not know
anything about the recent results of [19]. We always clearly mark the results
which are not to be considered as a part of this work.

The results presented in this paper generate many questions. Some of them
are summarized in Section 5. Due to space constraints, most proofs had to be
omitted. These can be found in a full version of this paper [8].

2 Basic Definitions

We start by recalling basic notions of probability theory. A discrete probability
measure (or distribution) over a set X is a function such that, for
each countable collection of pairwise disjoint subsets of X,

and moreover The set of all distributions over a set X
is denoted Disc(X). A Dirac distribution is a distribution which assigns 1 to
exactly one object. A rational distribution is a distribution which assigns a
rational number to each object. For every we define its support,
denoted as the set A discrete probability space is a
pair where X is a set called sample space and a distribution over X.

The underlying semantics of probabilistic systems is usually defined in terms
of labelled Markov chains or labelled Markov decision processes, depending
mainly on whether the considered system is sequential or parallel. Since some of
our results are applicable to both sequential and parallel probabilistic systems,
we use a more general formalism of [23] which subsumes the aforementioned
models.

Definition 1. An action-labelled probabilistic transition system (or just tran-
sition system) is a triple where S is a finite or countably infinite
set of states, is a set of actions, and is a finite
or countably infinite transition relation. An element is called a tran-
sition and alternatively denoted by A (probabilistic) process is a state of
some transition system.

For the rest of this section, let us fix a probabilistic transition system

We say that is reachable from under a word
written (or simply if is irrelevant), if there is a finite sequence

TEAM LinG

196 T. Brázdil et al.

of states such that and 0 for
each For each transition we define the set of of

by for some For each state we
define the set of successors by

For every let be the set of transi-
tions that leave from Every distribution determines
a unique distribution defined for each

as Note that the sum
exists because the set is finite or countably in-

finite. A combined transition relation is defined by
We write instead of

Obviously, introducing combined transitions does not influence the reachability
relation. However, a single state can have uncountably many outgoing combined
transitions. Therefore, the triple cannot be generally seen as a tran-
sition system in the sense of Definition 1.

Semantic equivalence of probabilistic processes can be formally captured in
many ways. Existing approaches extend the ideas originally developed for non-
probabilistic processes, and the resulting notions have similar properties as their
non-probabilistic counterparts. One consequence of this is that probabilistic ex-
tensions of bisimulation-like equivalences play a very important role in this set-
ting. First we introduce some useful notions and notation. For the rest of this
section, let us fix a transition system Let be an equiv-
alence relation. We say that two distributions are equivalent
according to E, denoted iff for each and each equivalence class

we have that where In other
words, the equivalence E (defined on states) determines a unique equivalence on
distributions that is also denoted by E.

Definition 2. Let E be an equivalence on S, and let We say that
expands in E iff

A relation expands in E iff each expands in E. An
equivalence E on S is a probabilistic bisimulation iff E expands in E. We say
that are bisimilar, written iff they are related by some probabilistic
bisimulation.

The notions of combined expansion, combined bisimulation, and combined
bisimilarity (denoted are defined in the same way as above, using
instead of

It can be shown that probabilistic bisimilarity is a proper refinement of com-
bined probabilistic bisimilarity (we refer to [23] for a more detailed comparison
of the two equivalences). Since most of our results are valid for both of these
equivalences, we usually refer just to “bisimilarity” and use the and sym-
bols to indicate that a given construction works both for and and for

for each there is such that
for each there is such that

TEAM LinG

Deciding Probabilistic Bisimilarity Over Infinite-State Systems 197

and respectively. The word “expansion” is also overloaded in the rest of this
paper.

Bisimilarity can also be used to relate processes of different transition systems
by considering bisimulations on the disjoint union of the two systems.

Given a binary relation R over a set X, the symbol denotes the least
equivalence on X subsuming R. We start with a sequence of basic observations.

Lemma 3. Let be binary relations on S such that Then for
all we have that if then also

Lemma 4. Let R be a relation on S and E be an equivalence on S. If R expands
in E, then expands in E.

An immediate corollary to the previous lemmas is the following:

Corollary 5. is a bisimulation.

Proof. expands in by Lemma 3, hence expands in by Lemma 4.
Therefore, is a bisimulation and

Lemma 6. Suppose that where E is a bisimulation on S. If
for some then there is such that

2.1 Approximating Bisimilarity

Bisimilarity can be approximated by a family of equivalences defined
inductively as follows:

consists of those which expand in

Clearly and the other inclusion holds if each process is
finitely branching, i.e., the set is finite. It is worth mentioning that
this observation can be further generalized.

Lemma 7. Let and let us assume that each state reachable from is
finitely branching (i.e., can still be infinitely-branching). Then iff
for each

Lemma 7 can be seen as a generalization of a similar result for non-
probabilistic processes and strong bisimilarity presented in [4]. Also note that
Lemma 7 does not impose any restrictions on distributions which can have an
infinite support.

Definition 8. We say that a process is well-defined if is finitely branch-
ing and for each transition we have that is a rational distribution with
a finite support.

For example, pBPA, pBPP, and pPDA processes which are introduced in
next sections are well-defined.

TEAM LinG

198 T. Brázdil et al.

Lemma 9. Let us assume that Act is finite, and let be well-defined
states. Let E be an equivalence over (represented as a finite
set of its elements). The problem if expands in 1 is decidable in time
polynomial in Here

where is the length of the corresponding binary encoding of the
triple (note that is a rational number).

A direct corollary to Lemma 7 and Lemma 9 is the following:

Corollary 10. Let us assume that Act is finite and each is well-defined.
Then over S × S is semidecidable.

3 Deciding Bisimilarity Over pBPA and pBPP Processes

In this section we show that bisimilarity is decidable over pBPA and pBPP pro-
cesses, which are probabilistic extensions of the well-known process classes BPA
and BPP [9]. Moreover, we also show that bisimilarity over normed subclasses
of pBPA and pBPP is decidable in polynomial time.

Let be a transition system, and let “·” be a binary operator

on S. For every the symbol denotes the least congruence over S
wrt. “·” subsuming R.

Lemma 11. Let and let Pre(R) be the least set such that
and if then also (su, tu), (us, ut) Pre(R) for every

Then

Now we formulate three abstract conditions which guarantee the semidecid-
ability of over S × S. As we shall see, pBPA and pBPP classes satisfy these
conditions.

1.

2.

3.

For every finite relation we have that if R expands in then

There is a finite relation such that over S × S is called
a bisimulation base).
The definition of is effective in the following sense: the set of states S is
recursively enumerable, each state is well-defined, and the problem if

for given is semidecidable.

1 Strictly speaking, we consider expansion in because E is not an
equivalence over S (which is required by Definition 2).

TEAM LinG

Deciding Probabilistic Bisimilarity Over Infinite-State Systems 199

Lemma 12. If the three conditions above are satisfied, then over S × S is
semidecidable (and thus decidable by applying Corollary 10).

Now we formally introduce pBPA and pBPP processes. Let N = {X, Y,...}
be a countably infinite set of constants and a countably infinite
set of actions. The elements of are denoted and the empty word by

Let be a distribution. For each the symbol
denotes the distribution such that and if

is not a suffix of

Definition 13. A pBPA (pBPP) system is a finite set of rules of the form
where is a rational distribution with a finite support.

The sets of all constants and actions occurring in are denoted and
respectively. We require that for each there is at least one

rule of the form in
To we associate the transition system where the

transitions of D are determined as follows:

The elements of are called pBPA processes (of
pBPP systems and processes are defined in the same way, but the elements

of are understood modulo commutativity (intuitively, this corresponds
to an unsynchronized parallel composition of constants).

Observe that “ordinary”, i.e., non-probabilistic BPA and BPP systems can
be understood as those pBPA and pBPP where all distributions used in basic
transitions are Dirac (see Section 2). Moreover, to every pBPA/pBPP system

we associate its underlying non-probabilistic BPA/BPP system defined
as follows: for every rule we add to the rules for
each If we consider as a relation on the states of
we can readily confirm that is a (non-probabilistic) strong bisimulation; this
follows immediately from Lemma 6. However, is generally finer than strong
bisimilarity over the states of

Definition 14. Let be a pBPA or pBPP system. A given is
normed if there is some such that The norm of X, denoted

is the length of the shortest such If is not normed, we put
We say that is normed if every is normed.

Note that and if we adopt the usual conventions for then
Also note that bisimilar processes must have the same

norm. Transition systems generated by pBPA and pBPP systems are clearly
effective in the sense of condition 3 above. Now we check that conditions 1
and 2 are also satisfied. This is where new problems (which are specific to the
probabilistic setting) arise.

TEAM LinG

200 T. Brázdil et al.

Lemma 15 (Condition 1). Let be a pBPA or a pBPP system. Let R be
a binary relation over and let E be a congruence over where

If R expands in E, then expands in E.

It follows from Lemma 15 that whenever R expands in

Corollary 16. is a congruence over processes of a given pBPA or pBPP
system.

Proof. expands in hence by Lemma 15.

It remains to check that bisimilarity over pBPA and pBPP processes can be
represented by a finite base (condition 2 above).

Lemma 17 (Condition 2 for pBPP). Let be a pBPP system. There is a

finite relation such that over

Proof. The proof in [9] for (non-probabilistic) BPP relies just on the fact that
(non-probabilistic) bisimilarity is a congruence. Due to Corollary 16, we can use
the same proof also for pBPP.

In the case of pBPA, the situation is more complicated. Let be
the set of all normed variables, and the set of all unnormed
ones.

Lemma 18. Let and If then

Note that due to Lemma 18 we need only ever consider states
the others being immediately transformed into such a bisimilar state

by erasing all symbols following the first infinite-norm variable.
A careful inspection of the construction for non-probabilistic BPA (as pre-

sented in [9]) reveals the following:

Proposition 19 (See [9]). Let be a (non-probabilistic) BPA system. Let
be an equivalence satisfying the following properties:

1.

2.
3.

if and then there is such that (note that it
implies that

is a congruence;
if for infinitely many pairwise non-equivalent then

Then there is a finite base such that over

So, it suffices to prove that (when considered as an equivalence over the
states of the underlying BPA system satisfies the conditions 1–3 of Proposi-
tion 19. The first condition follows immediately from Lemma 6, and the second
condition follows from Corollary 16. Condition 3 is proven below, together with
one auxiliary result.

TEAM LinG

Deciding Probabilistic Bisimilarity Over Infinite-State Systems 201

Lemma 20. Let be processes of a pBPA system. If and for
some then

Lemma 21. Let be processes of a pBPA system. If for infinitely
many pairwise non-bisimilar then

An immediate consequence of Proposition 19, Lemma 6, Corollary 16, and
Lemma 21, is the following:

Lemma 22 (Condition 2 for pBPA). Let be a pBPA system. There is a

finite relation such that over

Now we can formulate the first theorem of our paper:

Theorem 23. Bisimilarity for pBPA and pBPP processes is decidable.

3.1 Polynomial-Time Algorithms for Normed pBPA and Normed
pBPP

In this subsection we show that the polynomial-time algorithms deciding (non-
probabilistic) bisimilarity over the normed subclasses of BPA and BPP processes
(see [9]) can also be adapted to the probabilistic case. We concentrate just on
crucial observations which underpin the functionality of these algorithms, and
show that they can be reformulated and reproved in the probabilistic setting.
We refer to [9] for the omitted parts.

In the probabilistic setting, the polynomial-time algorithms deciding non-
probabilistic bisimilarity over normed BPA and normed BPP processes are mod-
ified as follows: Given a normed pBPA or normed pBPP system we run the
non-probabilistic algorithm on the underlying system where the only modifi-
cation is that the expansion is considered in the probabilistic transition system
(instead of To see that the modified algorithm is again polynomial-time,
we need to realize that the problem if a given pair of pBPA or pBPP processes
expands in a polynomially computable equivalence is decidable in polynomial
time. However, it is a simple consequence of Lemma 9.

Lemma 24. Let be a pBPA or pBPP system, and E a polynomially com-
putable equivalence over Let be processes of It is decidable in
polynomial time whether expands in E.

The authors have carefully verified that bisimilarity has all the properties
which imply the correctness of these (modified) algorithms. Some of the most
important observations are listed below; roughly speaking, the original non-
probabilistic algorithms are based mainly on the unique decomposition property,
which must be reestablished in the probabilistic setting.

A pBPA or pBPP process is a prime iff whenever then either
or (note that

Lemma 25. Let be processes of a normed pBPA system. Then
implies

TEAM LinG

202 T. Brázdil et al.

Theorem 26. Every normed pBPA process decomposes uniquely (up to bisim-
ilarity) into prime components.

Proof. We can use the same proof as in [9]. It relies on Lemma 25, Corollary 16,
and Lemma 6.

Theorem 27. Every normed pBPP process decomposes uniquely (up to bisimi-
larity) into prime components.

Proof. As in [9]. It relies on Lemma 6.

Now we have all the “tools” required for adapting the observations about
non-probabilistic normed BPA/BPP to the probabilistic setting which altogether
imply the following:

Theorem 28. Bisimilarity is decidable for normed pBPA and normed pBPP
processes in polynomial time.

4 Deciding Bisimilarity Between pPDA and pFS
Processes

Definition 29. A probabilistic pushdown automaton (pPDA) is a tuple
where Q is a finite set of control states, is a finite stack alphabet,

Act is a finite set of actions, and is a transition
function such that the set is finite and each is a rational
distribution with a finite support for all and

We write instead of and instead of Let
be a distribution. For each the symbol denotes

the distribution such that and if is
not a suffix of Each pPDA induces a unique transition system where

is the set of states, Act is the set of actions, and transitions are given by
the following rule:

The states of are called pPDA processes of or just pPDA processes if
is not significant.
Our aim is to show that between pPDA processes and finite-state pro-

cesses is decidable in exponential time. For this purpose we adapt the results
of [19], where a generic framework for deciding various behavioral equivalences
between PDA and finite-state processes is developed. In this framework, the
generic part of the problem (applicable to every behavioral equivalence which
is a right PDA congruence in the sense of Definition 31) is clearly separated
from the equivalence-specific part that must be supplied for each behavioral
equivalence individually. The method works also in the probabilistic setting, but

TEAM LinG

Deciding Probabilistic Bisimilarity Over Infinite-State Systems 203

the application part would be unnecessarily complicated if we used the origi-
nal scheme proposed in [19]. Therefore, we first develop the generic part of the
method into a more “algebraic” form, and then apply the new variant to prob-
abilistic bisimilarity. The introduced modification is generic and works also for
other (non-probabilistic) behavioral equivalences.

For the rest of this section, we fix a pPDA of size
and a finite-state system of size (the size of a given

is defined similarly as in Lemma 9). In our complexity
estimations we also use the parameter

We start by recalling some notions and results of [19]. To simplify our no-
tation, we introduce all notions directly in the probabilistic setting. We denote

where stands for “undefined”.

Definition 30. For every process of we define the set
A function is compatible with iff for

every The class of all functions that are compatible with is denoted

For every process of and every we define the process
whose transitions are determined by the following rules:

Here is a distribution which returns a non-zero value only for pairs of
the form where and is a distribution
which returns a non-zero value only for pairs of the form where

Here is the function which returns
the same result as for every argument except for where In
other words, behaves like until the point when the stack is emptied and
a configuration of the form is entered; from that point on, behaves like

Note that if and then We also
put and

Definition 31. We say that an equivalence E over is a right pPDA
congruence (for and iff the following conditions are satisfied:

For every process of and all we have that if
for each then also

for every

Let R be a binary relation over The least right pPDA congruence

over subsuming R is denoted Further, Rpre(R) denotes the
least relation over subsuming R satisfying the following condition:
For every process of and all we have that if

 for each then also In general,

is a proper subset of the relationship between Rpre(R) and is revealed
in the following lemma:

TEAM LinG

204 T. Brázdil et al.

Lemma 32. Let R be a binary relation over For every we
define a binary relation over inductively as follows:

and Then

For the rest of this section, let us fix a right pPDA congruence over
which is decidable for finite-state processes and satisfies the fol-

lowing transfer property: if and then there exists such that
and The following definitions are also borrowed from [19].

Definition 33. Let and We write iff for
all we have that if then

Further, for every relation we define the set I(K)
of K-instances as follows:

Definition 34. Let where
(That is, consists of (some) pairs

of the form and We say that K is well-formed iff K satisfies
the following conditions:

if and then
if (or and then also (or

resp.).

It is clear that there are only finitely many well-formed sets, and that there
exists the greatest well-formed set G whose size is Observe that
G is effectively constructible because is decidable for finite-state processes.

Intuitively, well-formed sets are finite representations of certain infinite re-
lations between processes of and F, which are “generated” from well-
formed sets using the rules introduced in our next definition:

Definition 35. Let K be a well-formed set. The closure of K, denoted Cl(K),
is the least set L satisfying the following conditions:

(1)
(2)
(3)
(4)
(5)

if and then
if and then
if and then
if and then

Further, we define Gen(K) = I(Cl(K)).

Observe that Cl and Gen are monotonic and that
for every well-formed set K.

An important property of Gen is that it generates only “congruent pairs” as
stated in the following lemma.

Lemma 36. Let K be a well-formed set. Then

The following well-formed set is especially important.

TEAM LinG

Deciding Probabilistic Bisimilarity Over Infinite-State Systems 205

Definition 37. The base is defined as follows:

The importance of is clarified in the next lemma.

Lemma 38 (see [19]). coincides with over

Let be the complete lattice of all well-formed sets, and let Exp :
be a function satisfying the four conditions listed below:

1.
2.
3.
4.

Exp is monotonic, i.e. implies
If K = Exp(K), then
The membership to Exp(K) is decidable.

According to condition 1, the base is a fixed-point of Exp. We prove that
is the greatest fixed-point of Exp. Suppose that K = Exp(K) for some well-

formed set K. By definition of Gen(K) and condition 3 we have that
 Since for each we have that

implies we can conclude that
Hence, can be computed by a simple algorithm which iterates Exp on G

until a fixed-point is found. These conditions are formulated in the same way
as in [19] except for condition 3 which is slightly different. As we shall see, with
the help of the new “algebraic” observations presented above, condition 3 can be
checked in a relatively simple way. This is the main difference from the original
method presented in [19].

Similarly as in [19], we use finite multi-automata to represent certain infinite
subsets of

Definition 39. A multi-automaton is a tuple where

S is a finite set of states such that (i. e, the control states of are
among the states of

is the input alphabet (the alphabet has a special
symbol for each

is a transition relation;
Acc S is a set of accepting states.

Every multi-automaton determines a unique set

The following tool will be useful for deciding the membership to Exp(K).

Lemma 40. Let K be a well-formed set. The relation
is computable in time polynomial in Moreover, for each equivalence class

there is a multiautomaton accepting the set where
The automaton is constructible in time

polynomial in

TEAM LinG

206 T. Brázdil et al.

4.1 Deciding Between pPDA and Finite-State Processes

We apply the abstract framework presented in the previous section. That is, we
show that is a right pPDA congruence and define an appropriate function Exp
satisfying the four conditions given earlier. We start with an auxiliary result.

Lemma 41. Let R be a binary relation over If R expands in

then

The next lemma follows immediately from Lemma 41.

Lemma 42. is a right pPDA congruence.

Definition 43. Given a well-formed set K, the set Exp(K) consists of all pairs
such that for each we have that if then

expands in

Now we verify the four conditions that must be satisfied by Exp. The first con-
dition follows easily from the fact that coincides with over
because if then over The
second condition is obvious.

Lemma 44. Exp(K) = K

Proof. Exp(K) = K implies that each pair of I(K) expands in But

then each pair of I(K) expands in by Lemma 3 and Lemma 36. Thus,

by Lemma 41.

Lemma 45. Exp(K) is computable in time polynomial in

Proof. Let and It follows im-
mediately from Lemma 40 that the equivalence relation
can be computed in time polynomial in The claim then follows from
Lemma 9.

Now we can formulate our next theorem.

Theorem 46. Probabilistic bisimilarity between pPDA and finite-state processes
is decidable in time which is polynomial in That is, the problem is de-
cidable in exponential time for general pPDA, and in polynomial time for every
subclass of pPDA where the number of control states is bounded by some constant
(in particular, this applies to pBPA).

Proof. Let be a pPDA process and a finite-state process. We can assume
(w.l.o.g.) that for some The algorithm computes the base by
first computing the greatest well-formed relation G and then iterating Exp until
a fixed-point is found. Then, it suffices to find out if there is a pair
such that Note that this takes time polynomial in because

TEAM LinG

Deciding Probabilistic Bisimilarity Over Infinite-State Systems 207

G is computable in time polynomial in This is because the size of G
is and over finite-state systems is decidable in polynomial
time [10].
Exp is computable in time polynomial in due to Lemma 45.
The algorithm needs at most i.e., iterations to reach a
fixed-point.

5 Conclusions

The results presented in this paper show that various forms of probabilistic bisim-
ilarity are decidable over certain classes of infinite-state systems. In particular,
this paper advocates the use of algebraic methods which were originally devel-
oped for non-probabilistic systems. These methods turn out to be surprisingly
robust and can be applied also in the probabilistic setting.

An obvious question is whether the decidability/tractability results for other
non-probabilistic infinite-state models can be extended to the probabilistic case.
We conjecture that the answer is positive in many cases, and we hope that the
results presented in this paper provide some hints and guidelines on how to
achieve that. Another interesting question is whether we could do better than in
the non-probabilistic case. In particular, undecidability results and lower com-
plexity bounds do not carry over to fully probabilistic variants of infinite-state
models (fully probabilistic systems are probabilistic systems where each state

has at most most one out-going transition It is still possible that
methods specifically tailored to fully probabilistic models might produce better
results than their non-probabilistic counterparts. This also applies to proba-
bilistic variants of other behavioural equivalences, such as trace or simulation
equivalence.

References

[1]

[2]

[3]

[4]

[5]

P.A. Abdulla, C. Baier, S.P. Iyer, and B. Jonsson. Reasoning about probabilistic
channel systems. In Proceedings of CONCUR 2000, volume 1877 of LNCS, pages
320–330. Springer, 2000.
P.A. Abdulla and A. Rabinovich. Verification of probabilistic systems with faulty
communication. In Proceedings of FoSSaCS 2003, volume 2620 of LNCS, pages
39–53. Springer, 2003.
A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It
usually works: The temporal logic of stochastic systems. In Proceedings of CAV’95,
volume 939 of LNCS, pages 155–165. Springer, 1995.
J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of Koomen’s
fair abstraction rule. TCS, 51(1):129–176, 1987.
C. Baier and B. Engelen. Establishing qualitative properties for probabilistic lossy
channel systems: an algorithmic approach. In Proceedings of 5th International
AMAST Workshop on Real-Time and Probabilistic Systems (ARTS’99), volume
1601 of LNCS, pages 34–52. Springer, 1999.

TEAM LinG

208 T. Brázdil et al.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C. Baier, H. Hermanns, and J. Katoen. Probabilistic weak simulation is decidable
in polynomial time. Information Processing Letters, 89(3): 123–130, 2004.
A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic
systems. In Proceedings of FST&TCS’95, volume 1026 of LNCS, pages 499–513.
Springer, 1995.
T. Brázdil, and O.Stražovský. Deciding probabilistic bisimilarity over
infinite-state probabilistic systems. Technical report FIMU-RS-2004-06, Faculty
of Informatics, Masaryk University, 2004.
O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite struc-
tures. Handbook of Process Algebra, pages 545–623, 1999.
S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In
Proceedings of CONCUR 2002, volume 2421 of LNCS, pages 371–385. Springer,
2002.
C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state
probabilistic programs. In Proceedings of 29th Annual Symposium on Foundations
of Computer Science, pages 338–345. IEEE, 1988.
C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
JACM, 42(4):857–907, 1995.
L. de Alfaro, M.Z. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of probabilistic processes using MTBDDs and the Kronecker rep-
resentation. In Proceedings of TACAS 2000, volume 1785 of LNCS, pages 395–410.
Springer, 2000.
J. Esparza, and R. Mayr. Model-checking probabilistic pushdown
automata. In Proceedings of LICS 2004. IEEE, 2004. To appear.
H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6:512–535, 1994.
M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In
Proceedings of LICS’97, pages 111–122. IEEE, 1997.
S.P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In Proceedings
of TAPSOFT’97, volume 1214 of LNCS, pages 667–681. Springer, 1997.
B. Jonsson, W. Yi, and K.G. Larsen. Probabilistic extensions of process algebras.
Handbook of Process Algebra, pages 685–710, 1999.

and R. Mayr. A generic framework for checking semantic equivalences
between pushdown automata and finite-state automata. In Proceedings of IFIP
TCS’2004. Kluwer, 2004. To appear.
M.Z. Kwiatkowska. Model checking for probability and time: from theory to
practice. In Proceedings of LICS 2003, pages 351–360. IEEE, 2003.
K. Larsen and A. Skou. Bisimulation through probabilistic testing. I&C, 94(1):1–
28, 1991.
A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In
Proceedings of ICALP 2003, volume 2719 of LNCS, pages 1008–1021. Springer,
2003.
R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.
NJC, 2(2):250–273, 1995.

TEAM LinG

A Minimal Aspect Calculus

Glenn Bruns1, Radha Jagadeesan2*, Alan Jeffrey2**, and James Riely2***

1 Bell Labs, Lucent Technologies
2 DePaul University

Abstract. Aspect-oriented programming is emerging as a powerful tool for sys-
tem design and development. In this paper, we study aspects as primitive compu-
tational entities on par with objects, functions and horn-clauses. To this end, we
introduce a name-based calculus, that incorporates aspects as primitive. In
contrast to earlier work on aspects in the context of object-oriented and functional
programming, the only computational entities in are aspects. We establish
a compositional translations into from a functional language with aspects
and higher-order functions. Further, we delineate the features required to support
an aspect-oriented style by presenting a translation of into an extended

1 Introduction

Aspects [7,21,28,23,22,3] have emerged as a powerful tool in the design and develop-
ment of systems (e.g., see [4]). To explain the interest in aspects, we begin with a short
example inspired by tutorials of AspectJ [1]. Suppose class L realizes a useful library,
and that we want to obtain timing information about a method foo() of L. With aspects
this can be done by writing advice specifying that, whenever foo is called, the current
time should be logged,foo should be executed, and then the current time should again
be logged. It is indicative of the power of the aspect framework that:

the profiling code is localized in the advice,
the library source code is left untouched, and
the responsibility for profiling all foo() calls resides with the compiler and/or
runtime environment.

The second and third items ensure that, in developing the library, one need not worry
about advice that may be written in the future. In [13] this notion is called obliviousness.
However, in writing the logging advice, one must identify the pieces of code that need
to be logged. In [13] this notion is called quantification. These ideas are quite general
and are independent of programming language paradigm.

The execution of such an aspect-program can intuitively be seen in a reactive frame-
work as follows. View method invocations (in this case the foo() invocations) as

* Supported by NSF grant #0244901.
Supported by NSF grant #0208549.
Supported by NSF grant #0347542.

**

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 209–224, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

210 G. Bruns et al.

events. View advice code (in this case the logging advice) as running in parallel with the
other source code and responding to occurrences of events (corresponding to method
calls). This view of execution is general enough to accommodate dynamic arrival of
new advice by treating it as dynamically created parallel components. In the special
case that all advice is static, the implicit parallel composition of advice can be compiled
away — in aspect-based languages, this compile-time process called weaving. Infor-
mally, the weaving algorithm replaces each call to foo () with a call to the advice code,
thus altering the client code and leaving the library untouched.

Aspect-oriented extensions have been developed for object-oriented [21,28], im-
perative [20], and functional languages [30,31]. Furthermore, a diverse collection of
examples show the utility of aspects. These range from the treatment of inheritance
anomalies in concurrent object-oriented programming (eg. see [25] for a survey of such
problems, and [24] for an aspect-based approach) to the design of flexible mechanisms
for access control in security applications [5], Recent performance evaluations of as-
pect languages [12] suggest that a combination of programming and compiler efforts
suffices to manage any performance penalties.

Much recent work on aspects is aimed at improving aspect-oriented language design
and providing solutions to the challenge of reasoning about aspect-oriented programs.
For example, there is work on adding aspects to existing language paradigms [30,31],
on finding a parametric way to describe a wide range of aspect languages [10], on find-
ing abstraction principles [11], on type systems [18], and on checking the correctness
of compiling techniques using operational models [19] or denotational models [32]. A
strategy in much of this work is to develop an calculus that provides a manageable set-
ting in which to study the issues. Similarly to the way that aspect languages have been
designed by adding aspects to an existing programming paradigm, these calculi gener-
ally extend a base calculus with a notion of aspect. For example, [19] is based on an
untyped class-based calculus, [10] is based on the object calculus [2], and [31] is based
on the simply-typed lambda calculus.

If one wishes to study aspects in the context of existing programming languages,
then calculi of this style are quite appropriate. However, another role for an aspect cal-
culus is to identify the essential nature of aspects and understand their relationship to
other basic computational primitives. We follow the approach of the theory of concur-
rency — concurrency is not built on top of sequentiality because that would certainly
make concurrency more complex rather than sequentiality. Rather, concurrency theory
studies interaction and concurrency as primitive concepts and sequentiality emerges as
a special case of concurrency.

Along these lines, we aim here to establish aspects as primitive computational en-
tities on par with objects, functions, and horn clauses; separate from their integration
into existing programming paradigms. To this end we have created a minimal aspect
calculus called

We present as a sequential deterministic calculus, with all concurrency being
implicit. The primitive entities of are names, in the style of the pi-calculus [26]
and the join calculus [15]. It differs in the choice of the communication paradigm in
two ways: firstly, messages are broadcast (somewhat in the style of CSP [16]) to all

TEAM LinG

A Minimal Aspect Calculus 211

receivers; secondly, the joins of the join-calculus are generalized to permit receiver
code (ie. advice) to be conditional on second-order predicates over messages.

We show that functions and objects can be realized using demonstrating that
aspects are an expressive primitive. Interestingly, achieves expressiveness with-
out explicit use of concurrency, providing an analysis that differs from those familiar
to the concurrency community. This is not to say that aspects are incompatible with
concurrency. The addition of explicit concurrency does not alter the basic development
of — we eschew explicit concurrency in in this extended abstract to make
the presentation manageable to a reader unfamiliar with aspects.

Organization. The rest of the paper is organized as follows. We begin with an informal
introduction to the techniques and results of the paper. The key technical ideas are
developed in the rest of the paper. Section 2 describes the syntax and dynamic semantics
of The two following sections describe encodings of the lambda-calculus, both
with and without aspects. Finally, we describe the translation of into a variant of
the polyadic pi-calculus. In this extended abstract, we elide all proofs.

2 Minimal Aspect-Based Calculus

Aspect-oriented languages add advice and pointcuts on top of events occurring in an
underlying model of computation. For example, in an imperative model, the events
might be procedure calls or expression evaluations. The pointcut language provides a
logic for describing events or event sequences. Here we restrict our attention to single
events, leaving the furtile ground of temporal pointcuts (such as AspectJ’s cflow) for
future work.

Advice associates a pointcut with executable code. When an event specified by the
pointcut occurs, the advice “fires”, intercepting the underlying event. Execution of the
event itself is replaced with execution of the advice body. Advice may optionally pro-
ceed to execute the underlying event at any point during execution of the advice body.
If many pieces of advice fire on the same event, then advice ordering indicates which
piece of advice will be executed; in this case, a proceed will cause execution of the next
piece of advice.

In computational events are messages sent from a source to a target. The
source, message, and target are specified as names, represented as lower-case letters.
An example message command is the following:

The four names in the command have different purposes, so we develop some dis-
tinguishing terminology. The source, p, and the target, q, are roles; m is a message; x is
a variable, which binds the value returned by the message. Messages include both ad-
vice a,..., e and labels Commands may specify a sequence of messages. This
is useful for modeling both traditional method calls, and advice sequences,

For compatibility with declaration order, we read message sequences right
to left; in the command message n is processed before m.

TEAM LinG

212 G. Bruns et al.

The only other computational commands in are return statements, which ter-
minate all command sequences; for example, “return v” returns name v.

Finally, the calculus includes commands for declaring roles and advice. An advice
declaration binds an advice name and specifies a pointcut and advice body. For exam-
ple, the following advice a causes any message k sent from p to q to be redirected as a
message sent from p to r. This is an “extreme” form of delegation. Messages to q are
delegated to r before q even receives them.

The term between brackets is a pointcut indicating that message k should be inter-
cepted when sent from p to q. The body of the advice is given after the first equality
symbol.

The pointcut language allows for quantification over names. For example, the fol-
lowing variation captures every k-message sent to q, regardless of the sender. The advice
resends the message to q, renaming it to the sending role is unchanged.

Here, z binds the source of the message in the pointcut, and y binds the source of the
message in the body of the advice. The binder is mnemonic for “source”. One may
also quantify over the target of a message; the corresponding binder is for “target”.
The following code converts every k-message into a with the same source
and target:

In all the examples given so far, the advice causes all other code associated with the
event to be ignored. If we wish to allow many pieces of advice to trigger on a single
event, then we must encode the ability to “proceed”. The proceed binder, captures
the names of any other advice triggered by a pointcut. The following code captures
k-messages and executes other advice after redirecting the message to to

Reversing the order of b and causes other advice to execute before
redirecting the message. In this case, the will only be sent if the other advice
uses its proceed binder. In general, b will be replaced with a sequence of messages when
the advice fires. If there is no other associated advice, then b will be replaced with the
empty sequence, in which case and execute identically.

allows bounded quantification in pointcuts. As motivation, consider a class-
based language with advice, such as AspectJ. In such a language, one may specify
pointcuts based on class; all objects inhabiting the class will cause the pointcut to fire.
Both objects and classes are encoded in as roles. In this case, a pointcut must
specify a subset of roles as the source or target of a message. We achieve this by asso-
ciating names with a partial order. The following declaration captures any k-message
sent to q from a sub-name of t.

TEAM LinG

A Minimal Aspect Calculus 213

The partial order is established through role declarations, such as the following,
which declares p to be a sub-name of q.

In examples throughout the paper, the reserved name top is the largest name with
respect to this ordering. We therefore abbreviate “role p<top” as “role p.”

The role hierarchy is used extensively in the encoding of the class-based language
given in the full version of the paper [9].

Dynamics. Consider the following sequence of declarations,

Consider the execution of the following program using

Messages are processed using two rules which differentiate the type of the leading
name in the message list, in this case k. To distinguish these two forms of reduction,
we impose a syntactic distinction between advice and other names. Advice is named
only to simplify the semantics. The syntactic distinction makes it so that advice cannot
fire based on the execution of other advice. The advice lookup rule replaces the leading
label (or role) in a message list with the advice names that the label triggers. So k is
replaced with a.

The advice invocation rule replaces a message command with the appropriately
instantiated body of the triggered advice. Further reducing the program by this rule,
we obtain:

The return variable has changed as the result of a double substitution. In the process
of inserting the advice body, occurrences of the let variable x are replaced with the
return value of the advice body. In this case, the return value, is itself replaced with
the name of the source of the message, p.

2.1 Syntax and Semantics of

Syntax. For any grammar X, define the grammars of lists as:

Write for the empty list.
We assume a set of names, ranged over by m, n. We further assume that names

are partitioned into two disjoint and distinguishable sets. Advice names are associated

TEAM LinG

214 G. Bruns et al.

with pointcuts and advice. Roles are use to name objects in the system as well message
labels.

Names may be roles or advice names.

)

The grammar for programs is as follows. We discuss point cuts, below.

Let D and E range over declarations, which may be either role delcarations
“role p < q” or advice declarations Let B and C range over
commands, which may be declarations “D” or message sends Note
that all programs have the form returnv.

The command binds x in P. Execution causes messages to be
sent from p to q, binding the return value of last executed message to x.
The declaration “role p<q;P” binds p in P. It declares p as a subrole of q.
The declaration binds a in Q and P; in addition, x,
y and z are bound in Q. It declares a to be an association between pointcut and
advice body

Omitted binders in an advice declaration are assumed to be fresh, for example:

Define bound and free names as usual. Write for the equivalence generated by
consistent renaming of bound names, for the capture-free substitution of name v for
free name x, and for the capture-free substitution of the name list for free name
a. Denote simultaneous substitution as

Pointcuts. The grammar for pointcuts is as follows.

The satisfaction relation, states that message satisfies
assuming the role hierarchy given by Satisfaction is defined in the standard way,

TEAM LinG

A Minimal Aspect Calculus 215

building up from the atoms. We say that pointcuts and overlap in if for some p,
q and and

We write for the pointcut which fires when p or one of its subroles receives
message

Dynamic Semantics. The reduction relation, is defined by two rules. The first
defines advice lookup. The second defines advice invocation. Advice lookup replaces
the message with where is the advice associated with The
order in the sequence of advice is the same as the declaration order. The rule treats the
rightmost message in a sequence.

Advice invocation replaces the message with the body of a. This requires
a few substitutions to work. Suppose the body of a is where Q is

Suppose further that we wish to execute The source
of the message is p, the target is q, the body to execute is returning v, and the subse-
quent messages are This leads us to execute then The substitution
in P accounts for the returned value of Q. As a final detail, we must take care of col-
lisions between the bound names of Q and P. We define the notation “let z= Q;P” to
abstract the details of the required renaming.

With this notation, the rule can be written as follows.

Note that in the reduction semantics, the ordering of advice is significant only for
overlapping pointcuts.

Garbage Collection. In the following sections, we present encodings that leave behind
useless declarations as the terms reduce. In order to state correctness of the translations,
we must provide a way to remove unused declarations from a term. For example, the
following rule allows for collection of unused roles:

An adequate set of garbage collection rules is given in the full version of the pa-
per [9].

TEAM LinG

216 G. Bruns et al.

3 Translation of Other AOP Languages into

The small collection of basic orthogonal primitives of make it a viable candi-
date to serve a role analogous to that of object-calculi in the study of object-oriented
programming, provided that it is expressive enough. We establish the expressive power
of by compositional translations from the following languages that add aspects
added on top of distinct underlying programming paradigms:

A lambda-calculus with aspects — core minAML [31].
An imperative class-based language (in the spirit of Featherweight Java [17], Mid-
dleweight Java [8], and Classic Java [14]) enhanced with aspects [19].

On one hand, the translations support our hypothesis that captures a signif-
icant portion of the world of aspects. On the other hand, they establish that aspects, in
isolation, are indeed a full-fledged computational engine.

In this extended abstract, we discuss only minAML; the encoding of the class-based
language is given in the full version [9]. We start with a discussion of functions and
conditionals.

3.1 Functions and Conditionals

The encodings in this section rely heavily on the following notation. In a context ex-
pecting a program, define “x” as the program which returns x, and define as
the program which returns the result of the message:

Given this shorthand, we encode abstraction and application as follows, where f and
g are fresh roles and “call ” and “arg” are reserved roles that are not used elsewhere. The
basic idea is to model an abstraction as a piece of advice that responds to “call” — in
response to this method, the advice body invokes the argument by emitting “arg” to ini-
tiate evaluation of the argument. An application is encoded in a manner consistent with
this protocol: in an application, the argument is bound to advice that triggers on “arg”.

Example 1. The encoding of is where is as follows:

TEAM LinG

A Minimal Aspect Calculus 217

This term reduces as:

From here, Q is reduced to a value v, then computation proceeds to

This is the expected semantics of call-by-value application, except for the presence
of the declarations which we garbage collect.

Example 2. We now give a direct encoding of the conditional. The encoding shows one
use of advice ordering. Define “if then P else Q” as the following program, where
r is a fresh role and “if” is a reserved role.

Note that P makes no use of its proceed variable, and so if P fires it effectively
blocks Q. We can verify the following.

3.2 Encoding Core MinAML in

We sketch an encoding into of the function-based aspect language MinAML
defined by Walker, Zdancewic and Ligatti [31]. We treat a subset of core MinAML
which retains the essential features of the language. Our goal, in this extended abstract,
is not to provide a complete translation, but rather to show that the essential features
of [31] are easily coded in In particular, in [31], advice is considered to be a
first-class citizen, where here we treat it as second-class.

Core MinAML extends the lambda calculus with:

The expression new p;P creates a new name r which acts as a hook.
The expression attaches the advice Q to the hook p. The new
advice is executed after any advice that was previously attached to p.
The expression is similar, except that the new advice is executed
before any previously attached advice.
The expression evaluates P and then runs the advice hooked on p.

The encoding into directly follows these intuitions and is as follows, where p
is a fresh role and “hook” is a reserved role. The subtle difference between the encoding

TEAM LinG

218 G. Bruns et al.

of before and after previous advice is a paradigmatic use of the proceed binder in

Example 3. Walker, Zdancewic and Ligatti present the following example. We show
the reductions under our encoding. For the purpose of this example, we extend
with integers and expressions in the obvious way.

This translates to where is:

and reduction proceeds as follows.

4 Polyadic with Pointcuts

We identify the features required to support an aspect-oriented style by presenting a
translation of into a variant of the polyadic [26]. The motivation for
this portion of the paper is the striking analogies between aspects and concurrency that
go beyond our use of concurrency techniques (eg. names, barbed congruences) to study
aspects.

Firstly, there are the superficial similarities. Both aspects and concurrency assign
equal status to callers/senders and callees/receivers. Both cause traditional atomicity

TEAM LinG

A Minimal Aspect Calculus 219

notions to break with the concomitant effects on reasoning — aspects do this by refining
atomic method calls into potentially multiple method calls, and concurrency does this
by the interleaving of code from parallel processes.

Secondly, there are deeper structural similarities. The idea of using parallel compo-
sition to modify existing programs without altering them is a well-understood modular-
ity principle in concurrent programming. Such an analysis is an essential component of
the design of synchronous programming languages [6]. Construed this way, the classical
parallel composition combinator of concurrency theory suffices for the “obliviousness”
criterion on aspect-oriented languages [13] — the behavior of a piece of program text
must be amenable to being transformed by advice, without altering the program text.

If this informal reasoning is correct, one might expect that the only new feature that
an expressive concurrent paradigm needs to encode is a touch of “quantification”,
which has been identified as the other key ingredient of the aspect style [13].

Our translation into a polyadic is an attempt to formalize this reasoning.
Consider a variant of the with a hierarchy on names, so the new name process
now has the form new x<y;P. We also consider a slight generalization of the match
combinator present in early versions of the [27], which permits matching on
the hierarchy structure on names. The form of the match process is where is
a formula in a pointcut language that is essentially a boolean algebra built from atoms
of the form The generalized match construct can express traditional (mis)matching

The dynamics of is unchanged, apart from an extra rule to handle the generalized
matching construct that checks the hierarchy of names (written here as for facts
relating to the names

We describe a compositional translation from to the polyadic with
these mild extensions.

4.1 Syntax and Semantics of with Pointcuts

Syntax. The grammar for pointcuts is as for except for the atoms.

The grammar of processes is standard, except for a generalized match construct.

The matching construct allows for both matching and mismatching. We can define
“[x = y] p” as “[x sat y] p”and0 00 0 as “[x sat ¬y]p”.

TEAM LinG

220 G. Bruns et al.

Dynamic Semantics. Let X range over partially ordered finite sets of names, and write
when can be derived from X. The semantics of pointcuts is

as for except for the atoms:

The dynamic semantics is given by the usual rules, the only
difference being that the semantics of pointcuts requires the partial order X in the re-
duction:

and so the structural rule for new must include the partial order:

The remainder of the dynamic semantics is as given in [26].

4.2 Encoding in

We now show that can be translated (via a spaghetti-coded CPS transform [29])
into our polyadic

In our translation, following the intuitions expressed in the introduction, advice is
simply placed in parallel with the advised code. However, we need to account for a cou-
ple of features that disallow the straightforward use of parallel composition and cause
the superficial complexity of the translation. First, we need to do some programming to
make a single message of interest activate potentially several pieces of advice. Second,
the order of invocation of the advice is fixed, so we are forced to program up explicitly
the order in which the message is passed down the advice chain.

We will, in fact, translate a sublanguage, but one which contains all programs we
consider interesting. A program Q is user code whenever, for any call
contained in P, we have:

is a role or
is an advice name b bound as a proceed variable — that is, there is an enclosing

advice declaration advice

Unfortunately, user code is not closed under reduction: if P is user code, and
then is not necessarily user code. We defined user closed code, which is closed under
reduction.

Definition 4. A program Q is user closed whenever, for any call con-
tained in P, we have either:

TEAM LinG

A Minimal Aspect Calculus 221

is a role or
is an advice name b bound as a proceed variable; or
is a sequence and for some r, s and

Let be a partial function from names to quadruples of names. We define the
translation in Table 1. Write as shorthand for

(result, error, = Q”.

The translation uses communication of seven-tuples Here r is the
original caller, s is the original callee, is the original method name, x is the current
caller of a piece of advice, y is the current callee, k is a continuation c is the name of
the most recently declared advice. Whenever a method is called, the translation goes
through the list c, checking advice in order. This encodes advice lookup.

Note that the translation is partial: there exist programs P such that there is no Q for
which However, on user closed programs, the translation is total: there always
exists such a Q. Moreover, on user code, the translation is a function: Q is uniquely
determined by P.

TEAM LinG

222 G. Bruns et al.

Theorem 5. For any user code P, if then return v
iff new

5 Conclusions and Future Work

was deliberately designed to be a small calculus that embodies the essential fea-
tures of aspects. However, this criterion makes an inconvenient candidate to serve
in the role of a meta-language that is the target of translations from “full-scale” aspect
languages. There is recent work on such meta-languages (eg. [10] builds on top of the
full object calculus), and the bridging of the gap between and such work remains
open for future study. In this vein, we are exploring the addition of temporal connec-
tives to the pointcut logic of Such an approach provides a principled way to
understand and generalize features in existing aspect languages, e.g. cflow in AspectJ,
that quantify over sequences of events.

There is ample evidence that aspect-oriented programming is emerging as a power-
ful tool for system design and development. From the viewpoint of CONCUR, aspects
provide two intriguing opportunities. First, the techniques and approaches that have
been explored in concurrency theory provide the basis for a systematic foundational
analysis of aspects. Our description of and its expressiveness falls into this cat-
egory. In a more speculative vein, the large suite of tools and techniques studied in
concurrency theory are potentially relevant to manage the complexity of reasoning re-
quired by aspect-oriented programming. Our translation of into the pi-calculus
is a step in understanding this connection.

References

1.
2.
3.

4.
5.

6.

7.

8.

9.

AspectJ website. http://www.eclipse. org/aspectj/.
Martin Abadi and Luca Cardelli. A Theory of Objects. Springer Verlag, 1996.
M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting object-
interactions using composition-filters. In In object-based distributed processing, LNCS,
1993.
Association of Computing Machinery. Communications of the ACM, Oct 2001.
Lujo Bauer, Jarred Ligatti, and David Walker. A calculus for composing security policies.
Technical Report TR-655-02, Dept. of Computer Science, Princeton University, 2002.
A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9): 1270–1282, September 1991.
L. Bergmans. “Composing Concurrent Objects - Applying Composition Filters for the De-
velopment and Reuse of Concurrent Object-Oriented Programs”. Ph.d. thesis, University of
Twente, 1994. http://wwwhome.cs.utwente.nl/~bergmans/phd.htm.
G.M. Bierman, M.J. Parkinson, and A.M. Pitts. An imperative core calculus for Java and
Java with effects. Technical Report 563, University of Cambridge Computer Laboratory,
April 2003.
G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely. A minimal aspect calculus. Full
version, available at http://fpl.cs.depaul.edu/ajeffrey/papers/muABCfull.pdf,
2004.

TEAM LinG

A Minimal Aspect Calculus 223

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Parameterized aspect calculus: A core
calculus for the direct study of aspect-oriented languages. Submitted for publication, at
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/clw-03.pdf, oct 2003.
Daniel S. Dantas and David Walker. Aspects, information hiding and modularity. Submitted
for publication, at http://www.cs.princeton.edu/~dpw/papers/aspectml-nov03.
pdf, 2003.
Bruno Dufour, Christopher Goard, Laurie Hendren, Clark Verbrugge, Oege de Moor, and
Ganesh Sittampalam. Measuring the dynamic behaviour of AspectJ programs, 2003.
R. Filman and D. Friedman. Aspect-oriented programming is quantification and oblivious-
ness, 2000.
Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In ACM
Symposium on Principles of Programming Languages (POPL), pages 171–183,1998.
Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
calculus of mobile agents. In 7th International Conference on Concurrency Theory (CON-
CUR’96), pages 406–421, Pisa, Italy, 1996. Springer-Verlag. LNCS 1119.
C. A. R. Hoare. Communicating Sequential Processes. Int. Series in Computer Science.
Prentice Hall, 1985.
Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, May 2001.
R. Jagadeesan, A. Jeffrey, and J. Riely. A typed calculus for aspect-oriented programs. Sub-
mitted for publication, at http://fpl.cs.depaul.edu/ajeffrey/papers/typedABL.
pdf, 2003.
Radha Jagadeesan, Alan Jeffrey, and James Riely. An untyped calculus of aspect oriented
programs. In Conference Record of ECOOP 03: The European Conference on Object-
Oriented Programming, volume 2743 of Lecture Notes in Computer Science, 2003.
Gregor Kiczales and Yvonne Coady. http://www.cs.ubc.ca/labs/spl/projects/
aspectc.html.
Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355,
2001.
Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In European Confer-
ence on Object-Oriented Programming (ECOOP), 1997.
K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns. PWS Publishing Company, 1996.
C. V. Lopes. “D: A Language Framework for Distributed Programming”. Ph.d. thesis,
Northestern University, 1997. ftp://ftp.ccs.neu.edu/pub/people/lieber/theses/
lopes/dissertation.pdf.
Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in object-
oriented concurrent programming languages. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming, pages 107–150.
MIT Press, 1993.
R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer, and H. Schwicht-
enberg, editors, Logic and Algebra of Specification, pages 203–246. Springer-Verlag, 1993.
Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I
and II. Information and Computation, 100(1):1–40,1992.
H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyperspace ap-
proach. In Proceedings of the Symposium on Software Architectures and Component Tech-
nology: The State of the Art in Software Development, 2001.

TEAM LinG

224 G. Bruns et al.

29.

30.

31.

32.

Gordon Plotkin. Call-by-name, call-by-value, and the Theoretical Computer
Science, 1:125–159,1975.
David Tucker and Shriram Krishnamurthi. Pointcuts and advice in higher-order languages.
In Conference Record of AOSD 03: The 2nd International Conference on Aspect Oriented
Software Development, 2003.
David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In Conference Record
of ICFP 03: The ACM SIGPLAN International Conference on Functional Programming,
2003.
Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programming. TOPLAS, 2003. To appear.

TEAM LinG

Type Based Discretionary Access Control*

Michele Bugliesi, Dario Colazzo, and Silvia Crafa

Università Ca’ Foscari, Venezia

Abstract. Discretionary Access Control (DAC) systems provide powerful mech-
anisms for resource management based on the selective distribution of capabili-
ties to selected classes of principals. We study a type-based theory of DAC mod-
els for concurrent and distributed systems represented as terms of Cardelli, Ghelli
and Gordon’s pi calculus with groups [2]. In our theory, groups play the rô1e of
principals, and the structure of types allows fine-grained mechanisms to be spec-
ified to govern the transmission of names, to bound the (iterated) re-transmission
of capabilities, to predicate their use on the inability to pass them to third parties,
... and more. The type system relies on subtyping to help achieve a selective
distribution of capabilities, based on the groups in control of the communication
channels. Type preservation provides the basis for a safety theorem stating that in
well-typed processes all names flow according to the delivery policies specified
by their types, and are received at the intended sites with the intended capabilities.

1 Introduction

Type systems have been applied widely in process calculi to provide static guarantees
for a variety of safety and security properties, including policies for access control [4,
3], non-interference [9, 14, 8], secrecy [1, 2]. In this paper we focus on access control
in distributed systems based on Discretionary Access Control (DAC) models [10, 15],
i.e. resource management systems that support fine-grained policies for the distribution
of capabilities to selected classes of users. To motivate, we start with a well-known
example from Pierce and Sangiorgi’s seminal paper on types for the pi calculus [13]:

S is a print spooler serving print requests from a channel s; C is a client sending jobs
to the spooler. Given this specification, one may wish to show that each of

the jobs sent by C is eventually received and printed. While such guarantees can been
made for the system they may hardly be enforced in more general situations. A
misbehaved client may participate to the protocol, as in to steal C’s jobs:

The capability-based type system developed in [13] prevents this
unwanted behavior by requiring that all clients be only granted write capabilities on the
channel s, and by reserving read capabilities on s to the spooler:

* Work partially supported by EU-FET project ‘MyThS’ IST-2001-32617.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 225–239, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

226 M. Bugliesi et al.

The types with indicate the types of channels carrying values
of type T with the associated capabilities for reading, writing, or both. By delivering
the channel s at different types we can thus enforce an access control policy stating that
only the spooler can read jobs.

Notice, however, that the ability of that type system to control the behavior of the
system is still rather limited. Indeed, if we want to prevent client jobs from being read by
any process other than the spooler S, we need to disallow situations like the following:

where the spooler forwards each of the jobs it receives to process SPY. The capability-
based access control from [13] is of little help here, unless one resorts to a more complex
encoding of the system or imposes overly restrictive conditions (e.g. prevent the server
from writing on all public channels).

A similar problem arises in the following variation of the protocol, in which clients
request an ack message to be notified that their jobs have been printed.

As in the previous case, the capability-based type system will fail to detect violations
of the intended protocol due to malicious (or erroneous) servers that discard jobs by, say,
running the process

To counter these problems, we propose a novel typing discipline in which we com-
plement the capability-based control system of [13] with a richer class of types that
convey information needed to describe, and prescribe, the ways that values may be ex-
changed within the different system components. The new types have the form
where G identifies the authority in control of the values of that type, T describes the
structure of those values, and is a delivery policy governing the circulation of such
values along the channels of the system. To illustrate, the typing

construes j as a file descriptor to be first delivered to the spooler, then passed on to the
printer, and only then re-transmitted back to clients for notification. Equivalently, the
delivery policy associated with the type of jobs states that (i) no notification should be
given to clients for jobs that have not previously been sent to a printer, and that (ii) no
job with such type should be received by the printer unless it has first been delivered to
the spooler. Similarly, the typing

defines s as a (full-fledged) channel, in control of the spooler, and carrying file de-
scriptors which may be passed on to a client only after having been transmitted to the
printer (in addition, the type states that s itself should not be re-transmitted). Given
the two type assumptions for j and s, our type system will guarantee that transmit-
ting j over s is a well-defined, and legal, operation. Remarkably, this requires a non-
standard typing of the output prefix, one that guarantees that j is received by s at the

TEAM LinG

Type Based Discretionary Access Control 227

type so that j may only be further re-directed to a
printer, as expected.

The type system allows for a wide range of delivery policies to be specified, from
policies that support delivery chains of unbounded depth, by resorting to recursively de-
fined types, to policies based on multiple, possibly branching, delivery chains along al-
ternative paths, as in To
illustrate, in our printer example, the initial typing for the channel s should be defined
as follows (with J as given above):

This typing guarantees that s is received at the expected types, namely with read
and write capabilities at the spooler and client sites respectively. Relying on similar
typing disciplines, one may guarantee that client jobs remain confined within the printer
authority, and thus ensure they are not logged and/or leaked to any spy process.

Furthermore, the capability-based access control from [13], based on subtyping, is
still available in our system to selectively advertise values at different types depending
on the different principals at which they are delivered, as in

Remarkably, the types at the intermediate delivery steps may be different, as long as
they are all super-types of the type decided at the originating site.

In the rest of the paper we formalize the approach we have outlined in a typed ex-
tension of the pi calculus with groups of [2]. We inherit the syntax of the calculus from
[2], and introduce a novel operational semantics to express the flow of names during the
computation. We also extend the structure of types to capture the access control policies
of interest, and we devise a novel typing system for the analysis and the static detec-
tion of violations of such policies. The resulting typing discipline is rather flexible and
expressive, as we show by providing several examples of powerful discretionary access
control policies formalized in our system. A type preservation theorem, proved for the
system, allows us to derive a strong safety result stating that all well-typed processes
comply with the discretionary access control policies governing the use of resources.

Plan of the Paper. §2 reviews the pi calculus with groups from [2], introduces the ‘flow’
semantics and our new classes of types and illustrates their use with a number of exam-
ples. §3 describes the typing system. §4 reports on the properties of the type system, on
the relationships with the system in [2]. §5 concludes with final remarks and a discus-
sion of related work.

2 The Typed Calculus

The syntax of processes is the same as in the pi calculus with groups [2] for short)
summarized below. We presuppose countable sets of names n, m, ..., and variables x,y,z,
reserving a,b,c to range over both sets. We also presuppose a countable set of group

TEAM LinG

228 M. Bugliesi et al.

names containing the distinguished group Default. The notions of free names
for a process P, noted fn(P), and free groups in a type T, noted fg(T) are just as in

The novelty with respect to is in the structure of types. As in that case, our types
are built around group names, but they have a richer structure. Specifically, we inter-
pret groups as representing the authorities (principals) in control of the resources. In
addition, drawing inspiration from [12], we structure types so as to convey information
on how such resources should be propagated to other principals. The syntax of types is
given by the following productions:

Structural Types
Resource Types

Delivery Policies

A structural type conveys structural information on the values with that type, i.e.
whether they are basic values, of type B, or communication channels: as in other sys-
tems, a channel type specifies the types of the values transmitted over the channel
together with the capabilities associated with the channel1.

A resource type is built around a structural type and it additionally specifies the
group, or authority, that is in control of the values with that type, together with a set of
delivery constraints. A delivery policy, in turn, specifies which other authorities, if any,
may legally be granted access to the resource and the extent of the associated access
rights (i.e. the capabilities delivered to such authorities). In addition, a delivery policy
may impose bounds on the iterated re-distribution of capabilities, and or predicate the
delivery of values to the inability to pass them to third parties.

Resource types are recursive, to make it possible to express policies that allow the
re-transmission of value to an unbounded depth/distance. Instead, for conceptual sim-
plicity (only), we disallow direct recursion on structural types. We assume type equality
up to (i) renaming of bound type variables, (ii) permutation of delivery constraints in-
side delivery policies (e.g. and
(iii) unfolding of recursive types (i.e.
We introduce a number of conventions to ease the notation. We write G[T] for the type

whose delivery policy is empty, and introduce the following simplified syntax
for (finite-depth) delivery chains:

1 In principle, capabilities may be defined to control the access and use of values of any type.
We restrict to channel capabilities for presentation purposes only.

TEAM LinG

Type Based Discretionary Access Control 229

2.1 Operational Semantics

The intention of the type system is to control the flow of names, so as to provide static
guarantees against any leakage of names to unintended users and/or at unintended types.
Expressing flows is subtle, however, because different occurrences of the same name
may flow along different paths during the computation. To illustrate, consider a type

describing values of basic type B to be delivered either to
and then on to or to (always at the structural type B). Assume, further, that we
are given the following two processes where and

Then, P should be judged safe, as both copies of m flow along legal paths, while Q
should be deemed unsafe, as it allows an illegal flow for m. However, with the standard
reduction semantics these judgments may hardly be made, as after two reduction steps
both P and Q reduce to

To make the notion of flow explicit in the calculus, we resort to a non-standard
semantics that uses tags for each name to trace the sequence of channels traversed by
the name during the computation. To illustrate, the tagged name represents the
name n that flowed first through the channel m, then through p and finally through q.
Here ‘mpq’ is short for the extended notation where denotes the empty
sequence and ‘::’ is the usual right-associative sequence constructor. We let range
over sequences of names, and use the notation to indicate the sequence resulting
from appending the name n to the tail of

The resulting reduction relation is defined over the class of dynamic processes, noted
A, B, The structure of dynamic processes coincides with the structure of processes,
except that the former may use tagged names in addition to names. Indeed, processes
may be understood as special cases of dynamic processes in which all names are tagged
with the empty name sequence (e.g. that we identify with n). The notion of free
names for dynamic processes is redefined to account for presence of the tags. Specif-
ically, and similarly for the remaining
(dynamic) process constructs.

The dynamics of the calculus, in Table 1, is defined as usual in terms of an auxiliary
relation of structural congruence. Structural congruence is exactly as in the but re-
lies on the different definition of free names discussed above. The core of the reduction
relation is in the (red comm) rule, which updates the flow tags to reflect the flow of each
of the arguments through the synchronization channel. With this notion of reduction we
may now judge process P above safe, and Q unsafe, as the two reduction sequences

exhibit the different flow of m in the two computations. We remark here that the tags
are only instrumental to record the flow of each name, and have no further effect on the
reductions available for processes. We make this precise by relating our flow-sensitive
semantics of Table 1 with the original reduction semantics of The latter, which we
denote with is defined on processes (rather than on dynamic processes) exactly as
we do here, but uses the standard communication rule, namely:

TEAM LinG

230 M. Bugliesi et al.

in place of our (red comm) rule. Given any dynamic process A, let |A| denote the
(proper) process resulting from erasing all the tags from A. Then we have:

Theorem 1 (Flow Reduction vs Standard Reduction). Let A be a closed dynamic
process. If then Conversely, if then there exists B such
that and

This result would hold also in the presence of a matching operator to compare
names. In particular, similarly to our (red comm) rule, in dynamic processes the match-
ing construct would disregard the tags to decide name equality, as in the following
reductions:

Besides being coherent with our current development, disregarding the tags to test
name equality is crucial to encode any sensible form of matching. The simplest illustra-
tion is probably the case of nonce-based authentication protocols, in which a principal
generates a nonce (i.e. a fresh name) and then uses matching to test the freshness of an
incoming message by comparing the nonce included in the message with the name it
generated: clearly, this test may only succeed if we disregard the nonce’s flow.

TEAM LinG

Type Based Discretionary Access Control 231

2.2 Types and Discretionary Access Control Policies

To start illustrate of our types, let pwd be a basic type describing passwords. Then we
may define the type to constrain the free re-transmission of values
with this type only within members of group G. Alternatively, we may define the type

to qualify passwords that may also be passed to
friends, of group F, provided that they do not pass them over to third parties.

The re-transmission of values may also be filtered on the basis of the capabilities
that are passed along with the values. For instance, given
we may define the type to qualify nat channels of group
G that may be received and re-transmitted at group F at a type that restricts their use as
to write-only channels2. Similarly, the type

qualifies nat channels owned by G, that can be delivered to group and as write-
only and read-only channels respectively. Instead, no restriction applies for other groups,
as indicated by the Default entry in the delivery policy. The type also indicates the deliv-
ery policies and that we leave unspecified here, for the subsequent ‘hops’, from

and respectively. We further discuss the import of resource types in formalizing
examples of DAC policies below.

Most forms of discretionary access control focus on the so called owner-based ad-
ministration of access rights, by which the owner of an object, typically its originator,
has the discretionary authority over who else can access that object. DAC policies vary
depending on how the owner’s discretionary power can be delegated to other users.

In strict DAC ([15,16]), the owner is the only entity to have the authority to grant
access to an object. Such policies are directly expressed in our type system with types
with a rather regular structure, namely where is the re-
source type that constrains the re-transmission of its values only within the authority of

namely:
Liberal DAC ([15,16]), models are more flexible, and interesting. They are based

on a decentralized authorization policy where the owner of an object delegates other
users the privilege of specifying authorizations, possibly with the ability of further del-
egating it. Two popular classes of Liberal DAC policies are those known as originator
controlled [11], and true delegation [15].

An originator controlled policy prevents access to data being extended to any au-
thority without the owner’s explicit permission. In this case when a resource is created
the owner has full control over how the resource’s capabilities can be distributed. An
example of such policies is given the diagram below, representing an Owner that creates
a channel and specifies how it should be distributed to two parties, Alice and Carl:

2 Here, and elsewhere, we say transmit at a group to mean transmit at channels of that group.

TEAM LinG

232 M. Bugliesi et al.

The channel is first delivered, in read mode, to Alice, who is delegated to re-transmit
it to Carl with the additional write capability; only then is Alice allowed to receive the
write capability from Carl. This delivery policy, imposed by the owner to ensure that
Alice will not write on the new channel until it has been received also by Carl, may be
expressed with our types as follows:

A similar example can be recovered from the literature on cryptographic protocols.
Consider the case where two parties, Alice and Bob, wish to establish a private ex-
change. To accomplish that, Alice creates a fresh name, say sends it to a trusted
Server and delegates it to forward the name to Bob so that the exchange may take place.
Here, the Server should only act as a forwarder, and not interfere with the exchanges
between Alice and Bob. This can be achieved using the typing

in which the the Server receives the channel with no capability, as intended.
True delegation policies are more liberal, and allow any principal receiving the grant

option to further distribute it to principals not explicitly anticipated by the owner. Such
policies are formalized in our system with the help of Default entries. To illustrate, a
policy in which the owner principal gives full discretionary power to a delegate, may be
expressed by the type where

3 Typing and Subtyping

Having illustrated how types may be employed to formalize discretionary policies, we
now turn to the problem of analyzing the import of such policies on the dynamic be-
havior of processes. Notice, to this regard, that the delivery policies we outlined in the
previous section rely critically on the ability to deliver names at types that may vary
non-monotonically along the delivery chains. Then, to have the desired safety guaran-
tees, we must envision a mechanism to ensure that the types at each delivery site be a
safe approximation of the type at the originating site. This is accomplished by the rules
for type formation and subtyping we discuss next.

3.1 Type Formation and Subtyping

Type formation is defined in Table 2. Any type must be built around group names
and type variables known to the type environment. In addition any resource type, say

must be so defined as to ensure that each resource type occurring in the de-
livery policy is built around (i) the group name G of the owner, and (ii) a structural
super-type of the structural type T. The first constraint could be lifted, but we do not
explore this possibility here; the second constraint, instead, is critical for soundness as
we just observed. The type formation rules enforce both constraints with the help of the
auxiliary judgments that verify in relation to the group G and the type T, for
all the resource types introduced by

TEAM LinG

Type Based Discretionary Access Control 233

The subtyping relation is axiomatized in Table 3. The first two blocks of rules are
standard (cf. [13]). The core of the subtyping relation is in the last two rules. Rule

makes resource-subtyping covariant in the component structural types, as ex-
pected, and required for soundness. More interestingly, requires resource
types to impose more restrictive delivery policies than their sub-types. At a first look, the
ordering relation on delivery policies is reminiscent of the subtype relation on record
types. This is indeed the case if we restrict to delivery policies without Default en-
tries and predicate to the additional constraint that The
resulting relation captures a form of originator controlled DAC model, in which re-
source owners have full delivery control over their resources. On the other hand, in
case and similarly with policies that include Default entries, the
ordering relation on policies captures DAC models with true delegation, in which in-
termediate users of a resource may autonomously make decisions on the next delivery
steps, provided that they advertise the resource at structural super-type of the owner’s
structural type.

To illustrate, consider first and
For a proper one has which provides support for true delegation

as allows any delivery, while distributes the read capability to channels of group
and the write capability to channels of group As a further example, consider

and Here allows all
groups but to receive the write capability, whereas does not make this distinction.
The two policies are not related by the relation, as requires that in the
presence of Default entries in both and all delivery constraint expressed in must
also be enforced by

3.2 Typing of Processes and Dynamic Processes

The typing rules for (dynamic) processes, in Table 4, complete the presentation of the
type system. We remark that the typing rules validate dynamic processes, hence also

TEAM LinG

234 M. Bugliesi et al.

the (proper) processes of the source calculus. This is required for subject reduction, as
the result of a reduction (sequence) is a dynamic process rather than a process.

The typing rules for names allow each name to be typed at (any super-type of) the
resource type known to the environment, by rules (PROJECT) and (SUBSUMPTION),
as well as at any type mentioned at the subsequent hops of each chain of the delivery
policy associated with One application of rule (DELIVERY) reaches the types at the
first hops; subsequent applications reach types occurring further on along the chains.

This ability to type names at all their delivery types is crucial to the proof of subject
reduction. To see why, we first look at rule (OUTPUT), the core of the delivery disci-
pline. Consider the case when name, say m is emitted on a channel, say
Assume further that m is known to the environment at type Rule (OUTPUT)
verifies that G is indeed one of the next ‘hops’ in and the type at which m should be
delivered to G is a subtype of the type of values carried by n. Given that the types of
names known to the environment must be well-formed, the type formation rules ensure
that the original structural type of m is a subtype of the structural component of thus

TEAM LinG

Type Based Discretionary Access Control 235

also a subtype of the type at which n expects to receive its values: this guarantees
that m may safely be received at n. Further re-transmissions of m will undergo the same
checks by the (OUTPUT) rule, but now with the types advertised at the subsequent hops
in to prove subject reduction we therefore need to be able to type m at all such types.
Except for this specificity in the typing of names, the proof of subject reduction for the
system is standard (cf. §4).

We give an example to show the effect of value propagation with a typed version
of the print spooler discussed in the introduction. Let

be a system where a client creates a new
job j, sends it to the printer and waits for notification. The desired delivery policy for j
requires the job to be sent first to the print spooler, then to the printer, and finally back
to the client. Such policy is enforced with the types:

TEAM LinG

236 M. Bugliesi et al.

and assuming and We leave
it to the reader to verify that all types involved are well-formed and that the process
typechecks.

4 Type System Properties

We conclude the presentation of the type system by elucidating its main properties. To
state such properties, we first introduce two additional (partial) operators on types and
type environments. Given a type environment and a sequence of names we let
denote the sequence of groups that associates with the names in

Given a closed resource type and a sequence of group names we then denote
with the type occurring in at in the following sense:

The next three theorems express the safety properties of the type system Rather
than defining an explicit notion of error and showing that well-typed terms don’t have
error transitions, as in, e.g. [4], we state our safety properties directly in terms of types:
the two approaches are essentially equivalent. Theorem 2 states that in all well-typed
dynamic processes, any access to a channel complies with the access rights associated
with the channel, and the arguments are passed over the channel at subtypes of the ex-
pected types. Theorem 3 states that in all well-typed dynamic processes names flow
according to the delivery policies expressed by their types. Finally, by Theorem 4 we
know that such properties are preserved by reduction. Collectively, these theorems pro-
vide static guarantees that in well-typed (proper) processes, all resources are accessed
and delivered according to the policies defined by their types.

Theorem 2 (Access Control). Let A and B be closed, dynamic processes with
and Assume, further, that

Then l = k and one has:

and
for all i = 1, ...,k, with and

Theorem 3 (Flow Control). Let with A closed. Assume, further, that de-
pends on the judgment Then and In addition,

with p such that and

TEAM LinG

Type Based Discretionary Access Control 237

Theorem 4 (Subject Reduction). If and then

We remark that theorem 3 could not be meaningfully stated without appealing to
the flow tags attached to names. In particular, it is not true, in general, that given an
extended process A, implies To see that, note that may depend on
two tagged names and being given different types, (not related by subtyping)
by resorting to the (DELIVERY) rule. By erasing the tags, we lose the possibility of
appealing to the (DELIVERY) rule, and consequently the judgement fails. For
this very reason, Theorem 4 does not hold, in general, under the reduction semantics

of [2]. Interestingly, however, we can recover subject reduction for provided that
we make adequate assumptions on the structure of the types occurring in and A. We
formalize the relationship with the type system of [2] below.

4.1 Encoding the Pi-Calculus with Groups

As we mentioned, the syntax of the pi-calculus with groups is the same as the one in
§2. The types, instead, are defined simply as follows: These types
may be encoded into our resource types as follows:

The encoding provides all types with the most liberal delivery policy, one that allows
unboundedly-deep delivery over all channels: the only constraint is that the receiving
channels have access to the group of the value they carry with them, exactly as in

We show that our type system is a conservative extension of the type system of
Given a type environment and a process P, let and [P] be the type

environment and process that result from applying the encoding of types systematically
to all types occurring in and P. Then we have:

Theorem 5 (Relationships with is derivable in iff is deriv-
able in our type system.

This follows by observing that if we restrict to simple types, the type formation
rules as well as the (OUTPUT) rule for processes coincide with the corresponding rules
in Now, call a type simple when it is the encoding of a type. Similarly, call a
type environment and a (dynamic) process simple when all the types occurring therein
are simple. If and A are simple, it is not difficult to see that implies
Intuitively, the reason is that simple types are insensitive to flows: this is a consequence
of the delivery type being the same at all hops in a simple type. More interestingly, for
simple processes we have subject reduction, as we state next.

Theorem 6 (Subject Reduction for Simple Processes). Assume with simple,
and P closed and simple, and let Then

Based on this result, the secrecy theorem of [2] can be re-established in our system
with no additional effort for simple processes.

TEAM LinG

238 M. Bugliesi et al.

5 Conclusion

We have developed a type theory for the specification and the static analysis of access
control policies in the pi calculus. Our approach extends and complements previous
work on the subject by introducing a new class of types so defined as to control the
dynamic flow of values among system components. We have shown the flexibility of
our system with several examples, and proved that it provides strong safety guarantees
for all well-typed processes.

There are several desirable extensions to the present system: they include the abil-
ity to express the revocation of capabilities, to change the ownership on resources, to
account for hierarchical relationships among principals, or for declassification mecha-
nisms. A further topic of investigation is the study of typed equivalences to gain deeper
insight into the import of our access control policies in the behavioural properties of
processes. We leave all these to our plans for future work, and conclude here with a
brief discussion on related work.

While we are not aware of any approach specifically targeted at the access control
mechanisms we have discussed here, our work is clearly related to a large body of
literature on (type-based) security in process calculi.

Several type system encompass various forms of access control policies in dis-
tributed systems. Among them, [3] proposes a form of distributed access control based
on typed cryptographic operations; the work on has produced fairly sophisticated
type systems [5,6] to control the access to the resources advertised at the different lo-
cations of a distributed system. None of these systems, however, addresses the kind of
discretionary policies we have considered here. More precisely, in resources are
created at a specific, unique, type and then delivered to different parties at different (su-
per)types on different channels. Unlike in our system, however, the ‘delivery policy’ of
a value is not described (nor prescribed) by its type. As a consequence, the only guar-
antee offered by the the type system is that names delivered at type T will be received,
and re-transmitted freely, at super-types of T. As we have illustrated, our types may be
employed to specify, and enforce, much more expressive policies.

Type systems have also been proposed to control implicit information flows deter-
mined by the behaviour of system components (see [9,14,8,18] among others). These
type systems trace the causality relations between computational steps in order to detect
covert channels. We follow a different approach to express and verify the delivery of
(and the access to) the system resources.

Our approach is also related to the large body of existing work on security automata.
In fact, the delivery policies we express in our type system could equivalently be de-
scribed as finite-state automata whose states are structural types and edges are labelled
with groups. On the other hand, security automata have traditionally been employed to
provide for run-time system monitoring [17] rather than as a basis for the development
of static, type-based, security analyses. More interestingly, the possibility to structure
our types as automata (and similarly, as XML-like regular expressions) should lead to
the development of efficient algorithms for (sub-) type checking. We leave this as a
subject of future work.

The use of session types [7] to express and gain control over the different steps of
communication protocols shares motivations with our approach. Session types provide

TEAM LinG

Type Based Discretionary Access Control 239

mechanisms to regulate the sequence of events occurring in a two-parties interaction
session. Specifically, a session type prescribes what type of values may legally be passed
on a given channel, and in which order. On the other hand, our delivery types prescribe
how values can be exchanges among different principals. In both approaches, the types
employed are finite-state automata: however the information encoded by the states is
different and, as we just argued, largely complementary.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

12.

13.

14.

15.

16.

17.

18.

M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the Spi calculus.
In CONCUR’97, volume 1243 of LNCS, pages 59–73,1997.
L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. In Proceedings of
CONCUR, number 1877 in LNCS, pages 365–379. Springer-Verlag, 2000.
T. Chothia, D. Duggan, and J. Vitek. Type-based distributed access control. In CSFW 2003,
pages 170–184. IEEE, 2003.
M. Hennessy and J. Riely. Information flow vs resource access in the asynchronous

ACM TOPLAS, 24(5):566–591, 2002.
M. Hennessy and J. Riely. Resource access control in systems of mobile agents. I&C,
173:82–120, 2002.
Matthew Hennessy, Julian Rathke, and Nobuko Yoshida. SafeDpi: a language for controlling
mobile code. In FoSSaCS’04, number 2987 in LNCS, pages 241–256, 2004.
K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline for struc-
tured communication-based programming. In ESOP ’98, number 1381 in LNCS, pages
122–138. Springer-Verlag, 1998.
K. Honda, V.T. Vasconcelos, and N. Yoshida. Secure information flow as typed process
behaviour. In ESOP ’00, volume 1782 of LNCS, pages 180–199. Springer-Verlag, 2000.
Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Technical Re-
port TR03-0007, Dept. of Computer Science, Tokyo Institute of Technology, 2003.
B.W. Lampson. Protection. ACM Operating Systems Rev., 8(1):18–24, Jan. 1974.
C.J. McCollum, J. R. Messing, and L. Notargiacomo. Beyond the pale of mac and dac –
defining new forms of access control. In Proc. of IEEE Symposium on Security and Privacy,
pages 190–200, 1990.
Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label
model. ACM Trans. Softw. Eng. Methodol, (4):410–442, 2000.
B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical
Structures in Computer Science, 6(5), 1996.
Franois Pottier. A simple view of type-secure information flow in the In Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop, pages 320–330, 2002.
P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models, and mecha-
nisms. In R. Focardi and R. Gorrieri, editors, FOSAD 2002, number 2171 in LNCS. Springer-
Verlag, 2002.
Ravi S. Sandhu and Qamar Munawer. How to do discretionary access control using roles. In
ACM Workshop on Role-Based Access Control, pages 47–54, 1998.
Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,
2000.
P. Sewell and J. Vitek. Secure composition of untrusted code: Boxmpi, wrappers and causal-
ity types. Journal of Computer Security, 11(2):135–188, 2003.

TEAM LinG

Elimination of Quantifiers and Undecidability
in Spatial Logics for Concurrency

Luís Caires1 and Étienne Lozes2

1 Departamento de Informática FCT/UNL, Lisboa, Portugal
2 LIP, École Normal Supérieure de Lyon, France

Abstract. Aiming at a deeper understanding of the essence of spatial
logics for concurrency, we study a minimal spatial logic without quan-
tifiers or any operators talking about names. The logic just includes
the basic spatial operators void, composition and its adjunct, and the
next step modality; for the model we consider a tiny fragment of CCS.
We show that this core logic can already encode its own extension with
quantifiers, and modalities for actions. From this result, we derive sev-
eral consequences. Firstly, we establish the intensionality of the logic,
we characterize the equivalence it induces on processes, and we derive
characteristic formulas. Secondly, we show that, unlike in static spatial
logics, the composition adjunct adds to the expressiveness of the logic, so
that adjunct elimination is not possible for dynamic spatial logics, even
quantifier-free. Finally, we prove that both model-checking and satisfia-
bility problems are undecidable in our logic. We also conclude that our
results extend to other calculi, namely the and the ambient
calculus.

Introduction

The introduction of spatial logics in concurrency has been motivated by a recent
shift of focus from monolithic concurrent systems towards distributed computing
systems. Such systems are by nature both concurrent and spatially distributed, in
the sense that they are composed from a number of separate and independently
observable units of behavior and computation. The central idea behind spatial
logics is that for specificying distributed computations there is a need to talk in a
precise way not just about pure behaviors, as is the case with traditional logics for
concurrency, but about a richer model able to represent computation in a space.
Such an increased degree of expressiveness is necessary if we want to specify with
and reason about notions like locations, resources, independence, distribution,
connectivity, and freshness. Spatial logics have been proposed for [4,
3], and for the ambient calculus [11,10]. Spatial logics for manipulating and
querying semi-structured data have also been developed [9,8]. Closely related
are the separation logics [20,19], introduced with the aim of supporting local
reasoning about imperative programs.

The simplest spatial logic for concurrency, we may argue, is the one obtained
by adding to boolean logic the very basic spatial connectives, namely void (0),

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 240–257, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Elimination of Quantifiers and Undecidability 241

composition and its logical adjunct and then the dynamic modal-
ity next step This logic, based essentially on spatial observations, will be
referred here by

The basic spatial connectives can be used to specify the distribution of pro-
cesses, 0 specifies the empty system (not to be confused with the inactive system),
and specifies the systems that can be partitioned in two parts, one satis-
fying and the other satisfying For the adjunct, is satisfied by those
processes that, whenever composed with a process satisfying are guaranteed
to satisfy A simple example of a property combining spatial and dynamic
operators is the one expressed by the formula it specifies those
processes that have (at least) two separate components and may reduce to the
empty system. Adjuncts allow the specification of contextual properties, e.g.,
consider the formula that uses the existential version of the ad-
junct defined This formula specifies the single-thread
processes that can be composed with some other process to yield a system than
may evolve to the empty system, after a single reduction step. Adjunct-free spa-
tial logics with behavioral observations (e.g., [2]) are also able to render some
kinds of contextual properties. For example, the property just presented can be
expressed by the formula using an action modality. Thus, one of
the motivations for this work is to get a deeper understanding about the relative
expressiveness of these approaches.

For the sake of simplicity and generality, we interpret in a rather small
fragment of choice-free CCS. This calculus turns out to conveniently abstract
the kind of concurrent behavior present in both and ambient calculi, in the
broad sense that interactions are local, and triggered by the presence of named
capabilities.

At first, seems quite weak, as far as expressiveness is concerned, when
compared to other spatial logics. For instance, it provides no constructs referring
to names or actions (like e.g., the action modality of behavioral logics, or
the ambient match construction in the ambient logic), therefore formulas
of are always closed. As a consequence, satisfaction of formulas is
invariant under swapping of any pair of actions in processes (a property usually
called equivariance) because formulas cannot single out specific actions or names.
Still, due to the presence of the operator, the logic is able to make some
distinctions between actions, and substitution of actions does not in general
preserve satisfaction. For instance, let Then for but

These considerations lead to the general question of what is
the largest relation between processes which are indistinguishable by the logical
equivalence: answering this question crucially contributes to our understanding
of the spatial model induced on processes by the simplest combination of logical
observations.

However, this question turns out to be a rather difficult one to answer, due
to the presence of the composition adjunct operator The adjunct is quite
powerful, allowing the logic to perform quite strong observations on processes.
With adjunct, validity can be internally defined [11] (thus validity-checking is

TEAM LinG

242 L. Caires and É. Lozes

subsumed by model-checking), and use certain forms of specification akin to a
comprehension principle (for example, we may specify the set of all processes
that have an even number of parallel components). The study of expressiveness
for spatial logics usually goes through the definition of an adequate spatial bisim-
ilarity along the lines of [16]. Then, establishing the congruence of is key to
ensure correctness of so that from we conclude For our
logic however, such property does not hold, due to equivariance. For instance,
the processes and are logically equivalent, but and
are not. Hence, this approach does not work well in this setting.

Despite many works about decidability of spatial logics, the question of
model-checking spatial logics for concurrency with adjunct has not been fully
settled. Results are known for some cases, where the logic includes just or

but there seems to be no work about the interesting combination of
and as far as decidability is concerned. However, we believe that this is-

sue lies at the heart and novelty of a purely spatial approach to verification of
distributed systems. On the one hand, image-finiteness of the reduction rela-
tion gives a model-checking algorithm for adjunct-free logics [2]. On the other
hand, in the absence of name quantifiers and name revelation it is also known
that static fragments are decidable [6], so there could be some hope in obtaining
decidability of model-checking the whole of

We may answer these questions considering the extension of
with the existential quantifier and quantified action modalities; for logical
equivalence is much clearly intensional, and one may adapt the results of [13] to
derive the undecidability of model-checking. But even if induces undecidability,
we may ask the question of its actual contribution to the expressiveness of the
logic. In previous work [18], Lozes has shown that in static spatial logics, that is
spatial logics without quantifiers and dynamic operators, the adjunct connective
can be eliminated in behalf of the remaining connectives, in the sense that for
any formula of such a logic there is a (possibly hard to find) logically equivalent
adjunct-free formula. An interesting question is then whether something similar
happens in we could possibly think that the expressive power of the ad-
junct could somehow be recovered by the presence of action modalities, given
that both kinds of constructs allow some contextual observations to be made.

So and seem quite different as far as expressive power is con-
cerned. The first one seems clearly intensional (in the technical sense that logical
equivalence coincides with structural congruence), and undecidable. But for the
second, as discussed above, it would be reasonable to hope for decidability, and
expect a separation power coarser than structural congruence. All this turns out
not to be the case.

The key result of this paper is that admits the elimination of quanti-
fiers and action modalities in a precise sense (Theorem 2.1); on the way we also
show that equality is internally definable. Building on this surprising result, we
then show that and have the same separation power (Theorem 3.3),
and expressiveness in a certain sense. As a consequence, we also characterize the
separation power of showing that it coincides with structural congruence

TEAM LinG

Elimination of Quantifiers and Undecidability 243

modulo permutation of actions (Theorem 3.3). Quantifier elimination is compo-
sitional and effective, allowing us to conclude that model-checking of both
and is undecidable (Theorem 6.1). A counterexample inspired by a sug-
gestion of Yang allows us then to prove that composition adjunct contributes in
a non-trivial way to the expressiveness of both logics, thus settling a conjecture
formulated in [18] about whether this connective could also be eliminated in
spatial logics for concurrency. We conclude with a generalization of these results
to and Mobile Ambients.

Related Work. Sangiorgi first showed [21] that observation of capabilities in
the ambient calculus can be expressed inside spatial logics making use of the

and operators. This result has since then been generalized to other cal-
culi [4,17]. However, in all such encodings, the use of quantifiers, and references
to (some times fresh) names using the revelation connective seems to be essen-
tial. From this point of view, our work gives a tighter bound on the level of
expressiveness really needed to embed action modalities, since it does not use
operators beyond those expected in every pure spatial logic. A related effort ad-
dressing minimality is being developed by Hirschkoff, characterizing
behavioral equivalences with a logic with composition adjunct [15].

Adjunct elimination for a static spatial logic was first proved in [18], where
a counterexample to adjunct elimination in the presence of quantifiers was also
presented. However, the particular counterexample given there makes an essen-
tial use of name revelation, and thus only applies to calculi with hidden names
and related logical connectives. The counterexample presented here is much more
general to spatial logics, since it does not rely on such constructs.

Concerning decidability and model-checking of spatial logics, decidability of
model-checking for the adjunct-free ambient logic against the replication free cal-
culus was settled by Cardelli and Gordon in [11]. Validity and model-checking
of ambient calculus against spatial logics with existential quantifiers was shown
undecidable by Charatonik and Talbot [13]. The same authors also extended the
results of [11] to logics with constructs for restricted names, and then with Gor-
don to the finite-control ambient-calculus [12]. Model-checking the
against full adjunct-free spatial logic with behavioral modalities, hidden and
fresh name quantifiers, and recursion was shown to be decidable in [2]. Decid-
ability of validity in a static spatial logic for trees with adjunct was first shown
by Calcagno, Cardelli and Gordon in [6], building on techniques of [7]. More
recently, Conforti and Ghelli proved that similar results do not hold in logics
with operators for restricted names [14].

To our best knowledge, no results about expressiveness and decidability of
dynamic spatial logics so crisp as ours have been presented, in the sense that
they apply to a minimal spatial logic for concurrency, and focus on the crucial
combination of the composition adjunct with the dynamic modality. The elim-
ination of quantifiers (although not of variables, as we also achieve here) is an
important topic of interest in classical logic, related to decidability and com-
plexity issues (e.g., see [1]). However, we believe our work lies completely out

TEAM LinG

244 L. Caires and É. Lozes

of this scope, as on the contrary we derive undecidability of our logic from the
elimination of quantifiers.

1 Preliminaries

In this section, we introduce the process calculus and spatial logics considered
in this work. For the process calculus, we pick a fairly small fragment of CCS.

Definition 1.1. Assume given an infinite set A of actions, ranged over by
Processes are defined by the grammar:

Actions are given in pairs of distinct (co)actions, characterized by the involu-
tion sending into and such that The relation of structural
congruence is defined as the least congruence on processes such that

and Structural congruence represents
identity of the spatial structure of processes. Dynamics of processes is captured
by labeled transitions.

Definition 1.2. Given the set of labels, the relation of labeled
transition is defined by the rules

Notice that is closed under and that corresponds to the usual
relation of reduction, noted We define the depth of a process P (maximal
nesting of actions in a process P) by letting ds(0) = 0, and

ds(Q)). Let denote the set of all processes whose
depth does not exceed Then
coincides with the set of all processes. We also define the projection (by trun-
cation) by induction on by letting

and
Having defined the intended process model, we turn to logics. The logic we

consider includes the basic spatial operators found in all spatial logics namely:
the composition operator the void operator 0, and the composition adjunct
operator (guarantee). To these connectives, we add the temporal operator
(next step), to capture the dynamic behavior of processes. These operators may
be considered the core connectives for spatial logics for concurrency. We then
consider the extension of the core with modalities for actions (cf. Hennessy-
Milner logic), and quantifiers ranging over actions.

Definition 1.3. Given an infinite set X of variables, formulas are
given by:

TEAM LinG

Elimination of Quantifiers and Undecidability 245

Fig. 1. Semantics of formulas

We write for the set of formulas in the pure spatial fragment, and
for the set of all formulas. Free variables of formulas are defined as usual; we
say a formula is closed if it has no free variables. Semantics is defined in Fig. 1
by a relation of satisfaction. Satisfaction is expressed by P, where P
is a process, M is a set of processes, a formula, and is a valuation for the
free variables of A valuation is a mapping from a finite subset of X to A. For
any valuation we write for the valuation such that and

if By we denote the empty valuation. Notice that this
definition of satisfaction matches the usual one except for the presence of the
index M, which specifies the range of quantification for interpreting the adjunct
(see clause for This generalization is only a convenience for our technical
development; it is clear that corresponds to the standard non-relativized
relation of satisfaction. So, we abbreviate by moreover,
when the formula is closed we abbreviate P, by By default,
the set of processes M is so that we may abbreviate for

An action permutation is a bijection such that We
write for the action permutation that swaps and Satisfaction
verifies the fundamental property of equivariance, which in our present setting
is formulated as follows.

Definition 1.4. Let be the binary relation on processes defined by
if and only if there is an action permutation such that

Proposition 1.5 (Equivariance). Let For every action permuta-
tion if then

We frequently refer to equivalence induced on processes induced by the
logic L (where L is either or The relation is defined by
setting if for all closed formulas we have P, if and only if
Q,

Besides the basic stock of primitive connectives, we also use a few derived
ones: we list their definition and formal meaning in Fig. 2. By we denote

TEAM LinG

246 L. Caires and É. Lozes

Fig. 2. Definition and semantics of derived operators.

the maximal level of nesting of composition in the formula and by
the maximal nesting of dynamic modalities in the formula defined by

It is easy to see that a formula cannot inspect the part of the process that
lies deeper than the depth of As a consequence, the restriction to of the
denotation of a formula of depth completely charaterizes its denotation, in the
precise sense of:

Proposition 1.6 (Depth Finiteness). For all formulas for all
for all processes P, and for all valuations

if and only if if and only if

The following notation will be used. The process is abbreviated
by and by we denote the process In the same way,
we abbreviate the formula by and then denotes

TEAM LinG

Elimination of Quantifiers and Undecidability 247

2 Elimination of Quantifiers and Action Modalities

In this section we prove that, quite surprisingly, the logic which contains
quantifiers and variables, can be embedded into the core logic which does
not seem to contain related constructs, in the sense of the following main result:

Theorem 2.1. For any closed formula and any natural number
we can effectively construct a formula such that for all

processes P:

Notice that this result does not state that and have the same
expressiveness in the usual sense, however, we should note that the denotation
of a formula is completely characterized by its denotation on some subset of
the models in the sense of Proposition 1.6. Hence, the denotation of
completely characterizes the denotation of this close correspondence will be
enough to show the undecidability and separability of and independence
of the composition adjunct.

The proof of Theorem 2.1 requires considerable build up. In particular, we
need to define formulas to characterize processes of several quite specific
forms, to be used for various purposes in our encoding of into This
exercise turns out to be quite interesting: by going through it we get a better
understanding about what can be expressed in in a sometimes not really
obvious way.

We want to reduce a satisfaction judgment where is any
formula, into a satisfaction judgment for a formula of that

neither contains quantifiers, nor action modalities (and thus no occurrences of
variables whatsoever). The key idea is to represent the valuation appearing in

by a certain process to be composed with the process
P being tested for satisfaction. With this trick, the introduction of the valuation
entry for introduced in the valuation clause for can be mimicked by
the introduction of a process using action modalities are then interpreted
by detecting interactions between the process P being tested and the valuation
process More concretely, we encode the pair P, by a process
of the form where encodes the valuation, and

is a decomposition of the valuation into certain maps
and respectively called environment and naming, and is a

natural number. The role of these data will be explained below. The encoding of
valuations makes use of the notion of row process. A row process is a
sequential process of the form where the action occurs precisely

times (so that This process is interesting since it can
be characterized logically, and we will use rows to represent bindings between
variables (represented by rows of different length) and actions Moreover, by
imposing a bound K on the depth of the process P one considers, we can easily
separate the valuation part from the process that represents the “real” model,
in the “soup”

TEAM LinG

248 L. Caires and É. Lozes

We start by introducing formulas whose models are precisely the sequential
threads with a given number of actions, in the way we also define the derived
modality ?.

We have

Lemma 2.2. For all processes P, and M such that

We now give (for each a formula that characterizes the model
that is, such that we have if and only if

Using the modality as an equality tester, we define a formula
that is satisfied by the processes which belong to and are compositions of
guarded processes all with the same first action. We may then specify rows using
appropriate formulas

We now prove

Lemma 2.3. For all and process P, we have:

We can now explain our encoding of a valuation into a certain process.
First, we decompose into two functions and such that An
environment is a partial injective function from variables to naturals. When
the translation process crosses a construction, we want to allocate a fresh
number to x of the natural numbers; to do so, we note by the extension
of with and is the maximal value of that, is the number
of variables already allocated. A naming is a function from to A.
Notice that the decomposition is not unique, but will be given by the

TEAM LinG

Elimination of Quantifiers and Undecidability 249

order in which existential quantified variables are introduced in their scopes. For
any naming and environment the process is

The parameter specifies the number of rows of the appropriate length that
are needed to represent the environment entry for a variable and is related to
the number of occurrences of in the source formulas. Since interpreting also
splits the (encoding of the) valuation, we have to provide enough copies
where is related to Note that we can always filter out any undesirable
interference of with the parallel process P, since for any labeled-
transition reduct Q of Q is not an environment since it does not
have the right number of rows for each depth. Likewise, for any namings
we have if and only if

Using already defined properties, we set

Lemma 2.4. For any process P, environment and naturals K,

The formula specifies a pair process-valuation, where the pro-
cess belongs to Now we introduce formulas to match specific entries of the
(encoding of the) valuation: selection of the action associated to the variable

is achieved by filtering the set of row processes of depth

allows us to select one of the rows that represents the environ-
ment entry of the variable checks that such a row has lost
an action prefix (after a reduction step takes place). matches all
the rows that encode the environment entry for the variable To encode the
modality we need to check for the presence of the complementary of the
action To this end, we specify a row longer than any other (with
and then check (using that it may react with some row of depth (with

Let then:

We are now ready to present our encoding of formulas of into formulas
of

TEAM LinG

250 L. Caires and É. Lozes

Fig. 3. Encoding of into

Definition 2.5. Let be a formula, an environment mapping the
free variables of and K be integers such that and K > 0. Then,
the formula is inductively defined in Fig. 3.

Theorem 2.1 follows from Lemmas 2.2, 2.3, 2.4, and the following general
result:

Lemma 2.6 (Correctness of the Encoding). For all processes P, all formu-
las all environments declaring the free variables of all integers

and all K > 0 we have:

Proof. (Sketch, see [5]) By induction on For the connectives of the en-
coding is quite natural: in the case of the environment is split in two equal parts,
and tested for a sound recombination by For we must check
that the composition of the two environments coming from the left and right of
is actually an environment. This holds if both environments are defined with the
same naming For the case of any reduction involving the environment is
excluded, because otherwise the resulting environment would be ill-formed. For
the other connectives, the encoding also involves our abbreviations: the encoding
of the quantifier relies on representing the quantification over actions into
a quantification (using over processes that represent environment entries.
For action modalities, one checks for interactions between the process and a row
corresponding to the selected variable.

We can thus present the proof of Theorem 2.1.

Proof. Let be a formula of Set for some greater
than the maximal nesting of connectives in Then

TEAM LinG

Elimination of Quantifiers and Undecidability 251

so by Lemma 2.6, if and only if
which is equivalent to P, by Proposition 1.6.

3 Separability of

As a first application of the main Theorem 2.1, we define characteristic formulas
and characterize the separation power of the logic (and thus of We
conclude that is able to describe processes quite precisely, just abstracting
away from the identity of the particular names used by processes. We start by
introducing a characteristic formula C(P) for any process P. For any comple-
mentary pair of actions occurring in P, we reserve a specific variable
collected in the set

where K = ds(P). Recall that abbreviations and are defined in
Fig.2, and notice that while

Lemma 3.1. Let let be the valuation such that for
pairwise distinct actions and let be the action permutation that
sends into Then we have that if and only

Proof. Induction on P (see [5]).

if and only if

Proof. By Lemma 3.1 and Theorem 2.1 (see [5]).

We then conclude:

Theorem 3.3. The following statements are equivalent:

4 Expressiveness of Composition Adjunct

It is known that in static spatial logics, that is spatial logics without quantifiers
and dynamic operators, the adjunct connective is not independent of the remain-
ing connectives, and can in fact be eliminated, in the sense that for any formula

Lemma 3.2. For all processes Q and P,

Proof. (1) (2) because (2) (3) since and
(3) (4) by Lemma 3.2, and (4) (1) by Proposition 1.5.

TEAM LinG

252 L. Caires and É. Lozes

of such a logic we can find a logically equivalent adjunct-free formula [18]. It is
not hard to see that adjunct cannot be dispensed with in because without
adjunct one is not allowed to distinguish threads of different lenght: if we pick

we can verify by an easy induction on that if and
only if for all

In this section, we prove that the adjunct elimination property does not hold
for the spatial logic For this, we adapt a scheme suggested by Yang: on
the one hand, we define in a formula that says of a process that its number
of toplevel parallel components is even, on the other hand, we show that parity
cannot be characterized by adjunct-free formulas. We start by defining a few
formulas (where

We can verify that if and only if for some
pairwise distinct actions such that We call a process of such
a form a family. The width of such a family P is defined to be the number

of parallel threads in P. Now, we can define a formula Even2 that is
satisfied by processes that contain exactly an even number of distinct actions at
the second level.

Hence if and only if
for some actions and some pairwise distinct actions

for Now, if we compose a process P satisfying Fam in
parallel with a process Q satisfying Even2, we can check (in that the
actions that occur in the toplevel of P are exactly the same that appear in the
second level of Q using the formula Same:

Hence we have the following result

Lemma 4.1. There is a closed formula such that for any process
P, we have that if and only if P is a family and is even.

Proof. Let

A key observation is that the formula Even contains an essential use of the
composition adjunct operator. In fact, although the properties denoted by the
formulas Even2 and Fam can be expressed by appropriate adjunct-free formulas
of the same situation does not hold for the parity property expressed
by Even. In the remainder of this section, we prove that there is no formula of

able to express the same property. The argument consists in showing

TEAM LinG

Elimination of Quantifiers and Undecidability 253

that any family P considered in admits a saturation level from which
it is always possible to add an extra parallel component to it while preserving
satisfaction. We first define (the sticks number of the formula to be
the natural number defined by induction on as follows:

Given a family P and a valuation we write for the subfamily of P
of the actions that do not appear in the codomain of the valuation More
precisely, we define and We
then have:

Lemma 4.2. Let P be a family, let be a valuation and let
be an action such that and is a family. Then, for any

formula such that we have

Proof. By induction on (see [5]).

Theorem 4.3. There is no closed formula that exactly char-
acterizes the set of all families P with even.

Proof. By contradiction: if was a such formula, then we may take a family
P and an extended family with Then by previous lemma,
P, if and only if which is a contradiction.

We thus conclude that in the logic the composition adjunct operator
is independent of the remaining operators, in particular there are properties
expressible with the composition adjunct that cannot be expressed with action
modalities and quantifiers.

5 Undecidability

In this section, we show that the validity-, satisfiability- and model-checking
problems for the logic (and hence for are all undecidable. These
results are a consequence of our embedding of into (Theorem 2.1),
and of the fact that first-order logic can then be easily encoded into (along
the lines of [13]). The language of first-order logic (FOL) and its semantics is
defined as usual:

Formulas of FOL are built from a set Vars of individual variables
and without loss of generality we consider a single binary predicate symbol A
model for FOL is a pair (D, I) where D is a set of individuals (the domain of the

TEAM LinG

254 L. Caires and É. Lozes

model), and I is a binary relation For our purposes it is enough to
focus on finite models. Satisfaction of a FOL formula by a model is defined using
a valuation that assigns each individual variable an element of D as follows:

We now show how to encode any FOL satisfaction judgment
into a satisfaction judgment by means of ap-
propriate translations and We pick natural numbers K, E
such that K > E > 2. To encode a model (D,I) into a process
we start by assigning each element a distinct action and
define The domain is represented by
the process For the interpretation I, we repre-
sent each pair by the process We then
let and finally set Notice
that, by construction, we always have Processes encoding our
FOL models can be characterized by a formula Model of as follows:

Lemma 5.1. iff there is a finite FOL model (D,I) and

Proof. Interpreting the formula Model (see [5])).

Then, formulas of FOL are encoded into formulas of as follows

Finally, for valuations we set We can prove

Lemma 5.2. Let be a valuation for Then we
have if and only if

Proof. See [5].

Proposition 5.3. Let be a closed formula of FOL. Then the formula is
satisfiable if and only if the formula is satisfiable.

Proof. By Lemma 5.2, Lemma 5.1 and Theorem 2.1 (see [5]).

TEAM LinG

Elimination of Quantifiers and Undecidability 255

As a corollary of Proposition 5.3, we conclude

Theorem 6.1. The problems of validity-checking, satisfiability-checking, and
model-checking of formulas are all undecidable.

Proof. Follows from Proposition 5.3 and Trakhtenbrot’s Theorem [22].

6 Extension to the and Ambients

In this section, we briefly discuss how our results extend to richer models, namely
the and the ambient calculus. We may pick any of these calculi as
models for the core logic which is a fragment of both the ambient logic
of [11] and the logic of [4]. We discuss first the case of the ambient
calculus without name restriction, and just with the open capability. In this case,
we can show that can also encode, for processes of bounded depth, its
extension with the quantifier and modalities of the form and

However, as we might expect, the symmetry between input and output
(Theorem 3.3(4)) does not carry over to ambients: for instance, the formula

may be satisfied by the ambient but not by the guarded ambient
open For the we may consider the extension of with the
quantifier and the modalities and able to observe just the
subjects of actions. In this case, we may also prove that this extension
can be encoded in for bounded depth processes, as we did for the other
cases. From these results, we conclude

7 Concluding Remarks

We have studied a core spatial logic for concurrency, aiming at a better under-
standing of the relative role of the very basic logical operations present in most
logics of this family. In particular, we have shown that quantifiers and action
modalities can be embedded, and that the composition adjunct plays a key role
in the expressiveness of this logic; these results allowed us to also prove its un-
decidability. Ours results are expected to hold for most process calculi, even in
the presence of recursion or replication. In this light, we believe that minimality
of could be established in a precise sense.

The logics and have not been shown to have the same expressive-
ness in the strict technical sense. However, we believe this is the case for their

Theorem 6.2. The model-checking and validity problems for the and
the ambient calculus against are both undecidable.

Proof. See [5].

We should remark that Trakhtenbrot also allows us to conclude that there is
no complete proof system for validity of formulas over any of these calculi.

TEAM LinG

256 L. Caires and É. Lozes

extension with freshness quantifiers and a free name occurrence predicate. Since
Theorem 3.3(4) does not hold for calculi with name restriction, an interesting
issue is to get a better understanding of the (coarser) spatial equivalence in the
absense of logical operations dealing with restricted names.

Although the composition adjunct operation is certainly important for gen-
eral context/system specifications, our work shows that the automated veri-
fication of concurrent systems using spatial logics that make essential use of
the composition adjunct seems to be unfeasible. An important issue is then
whether other expressive and tractable forms of contextual reasoning inspired
by the composition adjunct, and extending those already provided by decidable
behavioral-spatial logics, can be identified.

We thank Hongseok Yang for the illuminating discussion that prompted our
counterexample in Section 4. We acknowledge Luís Monteiro, Daniel Hirschkoff
and Davide Sangiorgi for all the rich exchanges and encouragement; and Luca
Cardelli for many related discussions. E. Jeandel provided some references about
quantifier elimination. This collaboration was supported by FET IST 2001-33310
Profundis. E. Lozes was also funded by an “Eurodoc” grant from Région Rhône
Alpes.

References

1.

2.

3.

4.

5.

6.

7.

8.

S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic complex-
ity of quantifier elimination. In IEEE Symposium on Foundations of Computer
Science, 1994.
L. Caires. Behavioral and Spatial Properties in a Logic for the Pi-Calculus. In Igor
Walukiwicz, editor, Proc. of Foundations of Software Science and Computation
Structures’2004, number 2987 in Lecture Notes in Computer Science. Springer
Verlag, 2004.
L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). In CONCUR
2002 (13th International Conference), number 2421 in Lecture Notes in Computer
Science. Springer-Verlag, 2002.
L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information
and Computation, 186(2):194–235, 2003.
L. Caires and E. Lozes. Elimination of Quantifiers and Undecidability in Spatial
Logics for Concurrency. Technical report, ENS-Lyon LIP Report, 2004.
C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding Validity in a Spatial Logic
of Trees. In ACM Workshop on Types in Language Design and Implementation,
pages 62–73, New Orleans, USA, 2003. ACM Press.
C. Calcagno, H. Yang, and O’Hearn. Computability and complexity results for a
spatial assertion language for data structures. In Hariharan, Mukund, and Vinay,
editors, Proc. of FST TCS’2001, volume 2245 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2001.
L. Cardelli, P. Gardner, and G. Ghelli. Manipulating Trees with Hidden Labels. In
A. D. Gordon, editor, Proceedings of the Sixth International Conference on Foun-
dations of Software Science and Computation Structures (FoSSaCS ’03), Lecture
Notes in Computer Science. Springer-Verlag, 2003.

TEAM LinG

Elimination of Quantifiers and Undecidability 257

9. L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic. In
D. Sands, editor, 10th European Symposium on Programming (ESOP 2001), vol-
ume 2028 of Lecture Notes in Computer Science, pages 1–22. Springer-Verlag, 2001.
L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In S. Abram-
sky, editor, Typed Lambda Calculi and Applications, number 2044 in Lecture Notes
in Computer Science. Springer-Verlag, 2001.
L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile
Ambients. In 27th ACM Symp. on Principles of Programming Languages, pages
365–377. ACM, 2000.
W. Charatonik, A. D. Gordon, and J.-M. Talbot. Finite-control mobile ambients.
In D. Metayer, editor, 11th European Symposium on Programming (ESOP 2002),
number 2305 in Lecture Notes in Computer Science. Springer-Verlag, 2002.
W. Charatonik and J.-M. Talbot. The decidability of model checking mobile am-
bients. In Proceedings of the 15th Annual Conference of the European Association
for Computer Science Logic, Lecture Notes in Computer Science. Springer-Verlag,
2001.
G. Conforti and G. Ghelli. Decidability of Freshness, Undecidability of Revelation.
In Igor Walukiwicz, editor, Proc. of Foundations of Software Science and Computa-
tion Structures’2004, number 2987 in Lecture Notes in Computer Science. Springer
Verlag, 2004.
D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes. In CON-
CUR 2004 (15th International Conference), Lecture Notes in Computer Science.
Springer-Verlag, 2004.
D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and Decid-
ability in the Ambient Logic. In Third Annual Symposium on Logic in Computer
Science, Copenhagen, Denmark, 2002. IEEE Computer Society.
D. Hirschkoff, E. Lozes, and D. Sangiorgi. Minimality results for the spatial log-
ics. In Proc. FSTTCS’2003, number 2914 in Lecture Notes in Computer Science.
Springer Verlag, 2003.
E. Lozes. Adjunct elimination in the static Ambient Logic. In Proc. of EX-
PRESS’2003, 2003. to appear in ENTCS, Elsevier.
P. O’Hearn. Resources, Concurrency, and Local Reasoning (Abstract). In
D. Schmidt, editor, Proc. of ESOP’2004, Lecture Notes in Computer Science, pages
1–2. Springer, 2004.
J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Seventieth Annual Symposium on Logic in Computer Science, Copenhagen, Den-
mark, 2002. IEEE Computer Society.
D. Sangiorgi. Extensionality and Intensionality of the Ambient Logics. In 28th
Annual Symposium on Principles of Programming Languages, pages 4–13. ACM,
2001.
B.A. Trakhtenbrot. The impossibility of an algorithm for the decision problem for
finite models. Akademii Nauk SSR, pages 70:569–572, 1950.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

TEAM LinG

Modular Construction of Modal Logics

Corina Cîrstea1 and Dirk Pattinson2

1 School of Electronics and Computer Science, University of Southampton, UK
cc2@ecs.soton.ac.uk

2 Institut für Informatik, LMU München, Germany
pattinso@informatik.uni-muenchen.de

Abstract. We present a modular approach to defining logics for a wide
variety of state-based systems. We use coalgebras to model the behaviour
of systems, and modal logics to specify behavioural properties of systems.
We show that the syntax, semantics and proof systems associated to such
logics can all be derived in a modular way. Moreover, we show that the
logics thus obtained inherit soundness, completeness and expressiveness
properties from their building blocks. We apply these techniques to derive
sound, complete and expressive logics for a wide variety of probabilistic
systems.

1 Introduction

Modularity has been a key concern in software engineering since the conception
of the discipline [21]. This paper investigates modularity not in the context
of building software systems, but in connection with specifying and reasoning
about systems. Our work focuses on reactive systems, which are modelled as
coalgebras over the category of sets and functions. The coalgebraic approach
provides a uniform framework for modelling a wide range of state-based and
reactive systems [27]. Furthermore, coalgebras provide models for a large class
of probabilistic systems, as shown by the recent survey [3], which discusses the
coalgebraic modelling of eight different types of probabilistic systems.

In the coalgebraic approach, a system consists of a state space C and a
function which maps every state to the observations
which can be made of c after one transition step. Different types of systems can
then be represented in the by varying the type T of observations. A closer look
at the coalgebraic modelling of state based and reactive systems reveals that in
nearly all cases of interest, the type T of observations arises as the composition
of a small number of basic constructs.

The main goal of this paper is to lift this compositionality at the level of
observations to the level of specification languages and proof systems. That is,
we associate a specification language and a proof system to every basic construct
and show, how to obtain specification languages and proof systems for a com-
bination of constructs in terms of the ingredients of the construction. Our main
technical contribution is the study of the properties, which are preserved by a
combination of languages and proof systems. On the side of languages, we isolate

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 258–275, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Modular Construction of Modal Logics 259

a property which ensures that combined languages are expressive, i.e. have the
Hennessy-Milner property w.r.t. behavioural equivalence. Since this property is
present in all of the basic constructs, we automatically obtain expressive spec-
ification languages for a large class of systems. Concerning proof systems, our
main interests are soundness and completeness of the resulting logical system. In
order to guarantee both, we investigate conditions which ensure that soundness
and completeness of a combination of logics is inherited from the corresponding
properties of the ingredients of the construction. Again, we demonstrate that
this property is present in all basic building blocks.

As an immediate application of our compositional approach, we obtain sound,
complete and expressive specification logics for a large class of probabilistic sys-
tems. To the best of the authors’ knowledge, this class contains many systems,
for which neither a sound and complete axiomatisation nor the Hennessy-Milner
property was previously established, e.g. the simple and general probabilistic
automata of Segala [28].

Our main technical tool to establish the above results is the systematic ex-
ploitation of the fact that coalgebras model the one-step behaviour of a system,
i.e. that one application of the coalgebra map allows us to extract information
about one transition step. This one-step behaviour of systems is parallelled both
on the level of specification languages and proof systems. Regarding specifica-
tion languages, we introduce the notion of syntax constructor, which specifies a
set of syntactic features allowing the formulation of assertions about the next
transition step of a system. Similarly, a proof system constructor specifies how
one can infer judgements about the next transition step.

These notions are then used to make assertions about the global system
behaviour by viewing the behaviour as the stratification of the observations
which can be made after a (finite) number of steps. This is again parallelled
on the level of the languages and proof systems. Completeness, for example, can
then be established by isolating the corresponding one-step notion, which we call
one-step completeness, and then proving that this entails completeness in the
ordinary sense by induction on the number of transition steps. Expressiveness
and soundness are treated similarly by considering the associated notions of
one-step expressiveness and one-step soundness. When combining the logics, we
combine both the syntax constructors and the proof system constructors, and
show, that such combinations preserve one-step soundness, completeness and
expressiveness.

The combination of logics and specification languages has been previously
studied in different contexts. In the area of algebraic specification [30], structured
specifications are used to combine already existing specifications along with their
proof systems, see [4,6]. The main technique is the use of colimits in a category
of algebraic signatures and corresponding constructions on the level of models
and proof systems. Since the coalgebraic approach uses endofunctors to describe
the behaviour of systems, our notion of signature is much richer, and we can
accordingly investigate more constructions, with functor composition being the
prime example. Furthermore, the coupling of the language and its semantics

TEAM LinG

260 C. Cîrstea and D. Pattinson

is much stronger in the algebraic approach, due to the particular notions of
signature and model (there is a 1-1 correspondence between function symbols
on the syntactical side and functions on the level of models), so the (dual) notion
of expressiveness does not play a role there.

The combination of logical systems has also been studied in its own right,
based on Gabbay’s notion of fibring logics [11]. The result of fibring two logics is a
logic, which freely combines the connectives and proof rules from both logics. One
is interested in the preservation of soundness and, in particular, completeness
[32,7]. Our approach differs from fibring in that we consider a set of particular
combinations of logical operators. These combinations are also of a very specific
nature, since they allow to specify information about one transition step of the
system. This makes our approach specific to coalgebras and modal logics, and
allows us to use induction on the number of transition steps as a proof tool.

Finally, modal logics for coalgebras have been investigated by a number of
authors, starting with Moss [20], who describes an abstract syntax for a large
class of systems, but there is no general completeness result. Concrete logics
for coalgebras and complete proof systems are described in [20,16,26,13]. This
approach applies to an inductively defined class of systems, which is strictly
subsumed by our approach, since we also obtain logics for probabilistic systems.
Furthermore, thanks to the modularity of our construction, our logics are easily
extensible to accommodate more features of transition systems, whereas it is a
priori difficult to extend the approach of loc. cit. as one would have to work
through one large inductive proof.

Regarding further work, we plan to extend our approach to more expressive
logics, in particular to a coalgebraic version of CTL [9] and the modal calculus
[15]. Also, it remains to be explored in what way our setup induces logics for
programming languages with coalgebraically defined semantics [29,14,2].

2 Preliminaries and Notation

We denote the category of sets and functions by Set and pick a final object
Binary products (coproducts) in Set are written with

canonical projections (canonical injections
Finally, denotes the set of functions

We write for the algebraic signature specifying the boolean operators
For any set X, its power set carries the structure of a

Then, for a set L and a function wewrite for the carrier
of the free over L, and for the induced

A boolean preorder is a L together with a preorder
which is closed under the axioms and rules of propositional logic. The

category of boolean preorders and order-preserving maps is denoted by
the objects of are boolean preorders while arrows from
to are given by order-preserving from L to

We use endofunctors to specify particular system types, and
we refer to T sometimes as signature functor. More exactly, T specifies how the

TEAM LinG

Modular Construction of Modal Logics 261

information which can be observed of the system states in one step is structured.
Systems themselves are then modelled as T-coalgebras.

Definition 1 (Coalgebras, Morphisms). A T-coalgebra is a pair where
C is a set (the carrier, or state space of the coalgebra) and a
function (the coalgebra map, or transition structure). A coalgebra morphism

is a function such that The
category of T-coalgebras is denoted by CoAlg(T).

For the transition structure determines the observations
which can be made from a state in one transition step. Mor-

phisms between coalgebras preserve this one-step behaviour. The next example
shows, that coalgebras can be used to model a wide variety of state-based and
probabilistic systems:

Example 1. We use to denote the covariant powerset functor and for the
probability distribution functor, given by

for all but finitely many and

 (i) For it is easy to see that T-coalgebras
are in 1-1 correspondence with labelled transition systems (C, R)

where is defined by Similarly,
every determines a Kripke frame and vice versa.

(ii) Coalgebras for are A-labelled probabilistic transition
systems (see [10] for details).

(iii) The simple probabilistic automata and general probabilistic automata of
[28] can be modelled as coalgebras for and

Note that the endofunctors in the above examples are combinations of a
small number of simple functors (constant, identity, powerset and probability
distribution functor) using products, coproducts, exponentiation with finite ex-
ponents, and composition. In the sequel, we don’t treat exponentiation with
finite exponents explicitly, as it can be expressed using finite products. A recent
survey of systems used in probabilistic modelling [3] identified no less than eight
probabilistic system types of interest, all of which can be written as such a com-
bination. Our goal is to derive languages and proof systems for these systems,
using similar combinations on the logical level.

Apart from making this kind of compositionality explicit, the coalgebraic
approach also allows for a uniform definition of behavioural equivalence, which
specialises to standard notions of equivalence in many important examples.

Definition 2 (Behavioural Equivalence). Given T-coalgebras and
two states and are called behaviourally-equivalent (written
if there exist T-coalgebra morphisms and such that

Two states and are equivalent (denoted by if
for all where, for is the

unique map and

TEAM LinG

262 C. Cîrstea and D. Pattinson

The notion of equivalence only takes finitely observable be-
haviour into account and is strictly weaker than behavioural equivalence. It can
be shown that for both notions coincide [17]. It is often possible to
define finitary logics for which logical equivalence coincides with
equivalence. On the other hand, we can not in general hope to characterise be-
havioural equivalence by a logic with finitary syntax.

It can be shown that for weak pullback preserving endofunctors, the notion
of behavioural equivalence coincides with coalgebraic bisimulation, introduced
by Aczel and Mendler [1] and studied by Rutten [27]. All functors considered
in the sequel are weak pullback preserving. In the examples, the situation is as
follows:

3 Modular Construction of Modal Languages

In this section we introduce syntax constructors and the modal languages they
define. If we consider a modal language as an extension of prepositional logic,
the idea of a syntax constructor is that it describes what we need to add to the
prepositional language in order to obtain The important feature of syntax
constructors is, that they can be combined like the signature functors which
define the particular shape of the systems under consideration. After introducing
the abstract concept, we give examples of syntax constructors for some basic
functors and show how they can be combined in order to obtain more structured
modal languages.

Definition 3 (Syntax Constructor and Induced Language).
(i) A syntax constructor is an endofunctor which

preserves inclusions, i.e. for all
(ii) The language associated with a syntax constructor is the least set

of formulas containing

The requirement that syntax constructors preserve inclusions is mainly for
ease of exposition, since in this case they define a monotone operator on sets, and
languages can be constructed as least fixed points in the usual way. Equivalently,
one could drop the requirement of inclusion-preservation at the expense of having

Example 2. We consider some of the systems introduced in Example 1.

(i) For labelled transition systems, i.e. coalgebras for be-
havioural equivalence coincides with Park-Milner bisimulation [22,19].

(ii) The notion of behavioural equivalence for coalgebras for
that is, probabilistic transition systems, coincides with the notion of

probabilistic bisimulation considered in [18]. (This is proved in [10].)

A more detailed analysis of probabilistic systems from a coalgebraic point of
view can be found in [3].

TEAM LinG

Modular Construction of Modal Logics 263

to work with abstract (first oder) syntax, that is, constructing the language
associated with a syntax constructor as the initial algebra of the functor

Recall that an inclusion preserving endofunctor is iff, for all
sets X and all there is a finite with Hence the
requirement of ensures that the construction of the associated
language terminates after steps, that is, we are dealing with finitary logics
only.

Before we show how syntax constructors can be combined, we introduce syn-
tax constructors for some simple languages.

Example 3. (i) If A is a set (of atomic propositions), then the constant functor
is a syntax constructor. The associated language is the set of

propositional formulas over the set A of atoms.
(ii) If M is a (possibly infinite) set of modal operators with associated (finite)

arities, then is a syntax constructor, where maps a set X (of formulas)
to the set of formal expressions, given by

Viewing M as an algebraic signature, is the set of terms with exactly
one function symbol applied to variables in X. In the literature on modal logic,
M is also called a modal similarity type [5]. The language of is the set of
modal formulas with modalities in M over the empty set of variables. For later
reference, we let where has arity one, and where

each having arity one, and denotes the set of rational
numbers. The language associated with is standard modal logic over the
empty set of propositional variables. The language associated with has a
countable number of unary modalities, and will be used to describe probabilistic
transition systems.

We are now ready for the first modularity issue of the present paper: the
combination of syntax constructors to build more powerful languages from simple
ingredients.

Definition 4 (Combinations of Syntax Constructors). Consider the fol-
lowing operations on sets (of formulas):

For syntax constructors we let

Note that above operations are of a purely syntactical nature, and the addi-
tion of the symbols and serves as a way to ensure that the resulting functors
are inclusion-preserving.

When combining syntax constructors, we add another layer of modal opera-
tors to already defined syntax. Closure under propositional connectives is needed

TEAM LinG

264 C. Cîrstea and D. Pattinson

to express propositional judgements also at the level on which the construction
operates, e.g. to have formulas in

The above definition is modelled after the definition of signature functors.
In contrast to the logics treated in [26,13], our syntax constructors do not deal
with exponentiation. This is due to the fact that infinite exponents fail to be

whereas finite exponents can be simulated by finite products. The
third clause dealing with the composition of syntax constructors gives rise to

operators which are indexed by Alternatively, the com-
position of syntax constructors can be thought of as introducing an additional
sort:

Example 4. Suppose for Then the language
can be described by the following grammar:

Languages of this kind can be used to specify properties of systems, whose
signature functor T is the composition of two functors In order
to capture all possible behaviour described by T, we first have to describe the

behaviour, and then use these descriptions to specify the observations which
can be made according to Since propositional connectives will be in gen-
eral necessary to capture all possible behaviour, the definition of the syntax
constructor involves the closure under propositional connectives before
applying

Similarly, languages of form and will be used to formalise
properties of systems whose signature functors are of form and
respectively. The next proposition shows that the constructions in Definition 4
indeed give rise to syntax constructors:

In ordinary modal logic, the modal language can be viewed as stratification
where contains all modal formulas of rank This in

particular allows us to use induction on the rank of formulas as a proof principle.

Definition 5. Suppose S is a syntax constructor. Let and
If we say that has rank at most

If for a set M of modal operators, then contains the modal
formulas, whose depth of modal operators is at most The fact that can
be viewed as a stratification of for is the content of the next
lemma.

Proposition 1. are syntax constructors.

Lemma 1. and

TEAM LinG

Modular Construction of Modal Logics 265

4 Modular Construction of Coalgebraic Semantics

In the previous section, we have argued that a syntax constructor with associated
language specifies those features which have to be added to propositional logic
in order to obtain In standard modal logic, this boils down to adding the
operator which can be used to describe the observable behaviour after one
transition step. Abstracting from this example, we now introduce the one-step
semantics of a syntax constructor, which relates the additional modal structure
(specified by a syntax constructor) to the observations (specified by a signature
functor) which can be made of a system in one transition step.

Throughout the section, S denotes a syntax constructor and T is an endo-
functor; recall that is the closure of the set L under propositional connectives.
We write for the functor taking a L to the

and a to the obvious extension of
to a The following definition provides a seman-

tics to syntax constructors. As we are dealing with extensions of propositional
logic, we use algebras for the boolean signature as a notational vehicle.

Definition 6 (One-step Semantics). If L is a and X is a set,
then an interpretation of L over X is a A morphism
between interpretations and is a pair with

a and a function, such that

A one-step semantics of a syntax constructor S w.r.t. an endofunctor
T maps interpretations of L over X to interpretations of over TX, in
such a way that whenever is a morphism of interpretations,
so is We omit the superscript on the one-step
semantics if the associated endofunctor is clear from the context.

A one-step semantics provides the glue between a language constructor and an
endofunctor. The requirement that preserves morphisms of interpretations
ensures that is defined uniformly on interpretations. This will subsequently
guarantee that the (yet to be defined) coalgebraic semantics of the induced
language is adequate w.r.t. behavioural equivalence; that is, behaviourally-
equivalent states of coalgebras cannot be distinguished using formulas of the
language.

A variant of the notion of one-step semantics, which treats syntax and the as-
sociated interpretation in the same framework, was studied in [8]. For languages
with unary modalities, a one-step semantics corresponds to a choice of predicate
liftings [23,24].

The key feature of a one-step semantics of a syntax constructor is that it gives
rise to a semantics of w.r.t. T-coalgebras, that is, it defines a satisfaction

TEAM LinG

266 C. Cîrstea and D. Pattinson

relation between T-coalgebras and formulas of Furthermore, we can define
a one-step semantics of a combination of syntax constructors in terms of the
one-step semantics of the ingredients. Before describing these constructions, we
provide one-step semantics for some simple syntax constructors.

Example 5. We define one-step semantics for the syntax constructors introduced
in Example 3.

(i) Suppose A is a set. Then the function which maps an arbitrary interpre-
tation to the unique interpretation extending the identity function on A is a
one-step semantics of w.r.t. the constant functor TX = A.

(ii) A one-step semantics for w.r.t. is given by

(iii) For the syntax constructor associated with the probability distribu-
tion functor, we define a one-step semantics by

where in both cases.

We now return to the claim made at the beginning of this section and show,
that a one-step semantics gives rise to an interpretation of the associated lan-
guage over T-coalgebras.

Definition 7 (Coalgebraic Semantics). Suppose S is a syntax constructor
with one-step semantics and

The coalgebraic semantics of a formula w.r.t. a
T-coalgebra is defined inductively on the structure of formulas by

where we inductively assume that is already defined for giving rise to
the map Given we write for
and

Before showing that this definition captures the standard interpretation of
some known modal logics, we need to show that the coalgebraic semantics is well
defined, as we can have and for two different

Lemma 2. The coalgebraic semantics of is well defined, that is, for
and we have for all

Note that the definition of the coalgebraic semantics generalises the semantics
of modal formulas, as well as the semantics of the formulas considered in [12]:

TEAM LinG

Modular Construction of Modal Logics 267

Example 6. (i) Consider the syntax constructor defined in Example 3,
and the associated semantics as in Example 5. The induced coalgebraic
semantics w.r.t. is defined inductively by

This is the standard textbook semantics of modal logic [5].
(ii) Consider the syntax constructor defined in Example 3, and the asso-

ciated semantics as in Example 5. The induced coalgebraic semantics w.r.t.
is defined inductively by

The above example shows that the coalgebraic semantics specialises to known
semantics in concrete cases. We now turn to the issue of combining semantics,
and show that we can derive a one-step semantics for a combination of syntax
constructors (see Definition 4) by combining one-step semantics for the ingredi-
ents.

Definition 8 (Combinations of One-step Semantics). Let
and be interpretations of over (respec-
tively and consider the functions

If is a one-step semantics of a syntax constructor w.r.t. an endo-
functor for the one-step semantics of various combinations of
and is given as follows:

where we have notationally suppressed that is a one-step semantics
of w.r.t. for and

Note the absence of the closure operator in the last clause; this is already
taken care of by the definition of The intuitions behind the definitions
of are as follows. Assuming that and are interpreted over

and respectively, we can interpret the language (respectively
over (respectively In the first case, a formula
holds at a state iff holds in 2. Also,

holds in iff and holds in
We now show that the combination of one-step semantics is well defined. To

make notation bearable we disregard the dependency on the endofunctor.

Proposition 2. Suppose is a one-step semantics for w.r.t. for
Then and are one-step semantics for

and respectively.

TEAM LinG

268 C. Cîrstea and D. Pattinson

We have therefore seen how we can combine syntax constructors and their
associated one-step semantics. This gives rise to a modular way of constructing
languages for coalgebras. The following two sections present applications of the
modular approach. In the next section we show that a combination of logics
has the Hennessy-Milner property if all the ingredients satisfy an expressiveness
property. In the subsequent section, we show how to obtain sound and com-
plete proof systems for a combination of logics by suitably combining sound and
complete proof systems for the building blocks.

5 Behavioural Versus Logical Equivalence

In this section, we show that any two behaviourally equivalent points necessarily
have the same logical theory. In order to prove the Hennessy-Milner property
for a logic which arises from a combination of syntax constructors, we intro-
duce the notion of expressiveness for an interpretation and show that
the language associated with a one-step semantics which preserves expressive-
ness has the Hennessy-Milner property. To treat languages which arise from a
combination of syntax constructors, we show that the combination of one-step
semantics preserves expressiveness if all of the ingredients do. This in particular
allows us to establish the Hennessy-Milner property for combined languages in
a modular fashion. We begin with the easy part and show that behaviourally
equivalent states cannot be distinguished by formulas of a logic which is induced
by a syntax constructor.

Proposition 3. Suppose S is a syntax constructor with one-step semantics
and Then, whenever

The remainder of the section is concerned with the converse of Proposition 3.
For that, we introduce the notion of one-step expressiveness, which allows to
derive a Hennessy-Milner property for the language associated with a syntax
constructor. Moreover, we show that this condition automatically holds for a
combination of syntax constructors, if it is valid for the ingredients of the con-
struction.

Definition 9 (One-Step Expressiveness).

(i) An interpretation is expressive if the associated language
map given by is injective.

(ii) A one-step semantics is one-step expressive if is expressive
whenever is.

Using this terminology, our first main result can be stated as follows:

Theorem 1. If is one-step expressive, then is expressive w.r.t.
i. e. iff for all and

In other words, the logic is strong enough to distinguish all states, which
exhibit different behaviour, which can be witnessed by observing finitely many

TEAM LinG

Modular Construction of Modal Logics 269

steps only. The proof of this theorem uses induction on the rank of formulas
(see Definition 5), and a semantical representation of a formula of rank as
a subset of Using the fact that equivalence coincides with
behavioural equivalence for coalgebras of an endofunctor (see [31]),
we have the following corollary:

Corollary 1. If T is then is expressive, that is,
iff for all and all

Note that the accessibility degree of the underlying endofunctor T basically
limits the branching degree of T-coalgebras [24], so the above corollary is a
coalgebraic Hennessy-Milner result.

It is easy to see that the one-step semantics of all basic syntax constructors
are one-step expressive:

Example 7. The one-step semantics of the syntax constructors from Example 5
are one-step expressive, if we consider the finite powerset functor in clause
(ii).

Our next goal is to show that one-step expressiveness is preserved by all the
combinations of syntax constructors. Again suppressing the dependency on the
endofunctor T we obtain:

Proposition 4. Suppose are one-step expressive, for Then so are
and

Thus, Theorem 1 applies to any combination of one-step semantics which
are one-step expressive. Note that this in particular implies that the language
associated with the combination of two syntax constructors distinguishes any
two states up to equivalence, or in case T is even up
to behavioural equivalence. As an immediate application, we obtain expressive
languages for all system types discussed in Example 1.

6 Modular Construction of Proof Systems

This section extends the methods presented so far to also include the compo-
sitional construction of proof systems. Our main result shows that this can be
done in such a way that the combined proof system inherits soundness and
completeness from its building blocks. The key notion needed to formulate the
modularisation of proof systems is that of a proof system constructor.

Definition 10 (Proof System Constructor). Suppose S is a syntax con-
structor. A proof system constructor for S is a functor
such that

(i) where is the forgetful functor;
(ii) P preserves order-reflecting morphisms.

TEAM LinG

270 C. Cîrstea and D. Pattinson

The intuition is as follows. The syntax constructor S specifies a set of modali-
ties to be added to propositional logic, while the induced functor produces the
language which arises by applying the given modal operators exactly once, and
subsequently closing under propositional connectives. Now a corresponding proof
system constructor takes a boolean preorder which represents all
facts that can be proved about formulas in L, and produces a boolean preorder

which defines all provable sequents over the next transition
step, that can be derived from sequents over L. In other words, a proof system
constructor specifies how we can lift sequents to formulas containing an extra
degree of nesting of the modal operators. The second requirement in Definition
10 formalises a well-behavedness property of proof system constructors, which
will ensure that the proof systems induced by proof system constructors can be
constructed inductively.

Since the axioms of modal logic involve formulas of rank one only, we can
give a straightforward encoding of modal logic in a proof system constructor.

Example 8. Consider the syntax constructor defined in Example 3. For a
boolean preorder define where is
the relation generated by the following axioms and rules:

augmented with the axioms and rules of propositional logic. Then is a proof
system constructor for

In the case of probabilistic transition systems, the logic in [12] can also be
captured by a proof system constructor.

Example 9. Consider the syntax constructor defined in Example 3. For
[0,1], let and Also, for a finite sequence
of formulas let stand either for if

or for ff, if Thus, the formula states that, from among the
formulas at least are true at any point.

Now for each boolean preorder define where
the relation is generated by the axioms and rules in Figure 1, augmented
with the axioms and rules of propositional logic. All but the last of these axioms

Fig. 1. Axioms and Rules for where

TEAM LinG

Modular Construction of Modal Logics 271

and rules capture immediate properties of the one-step semantics defined
in Example 5. The last rule describes a more involved property of probability
distributions, see [12] for details.

The functor defined above qualifies as a proof
system constructor for

A proof system constructor P for S induces a derivability relation on the
language defined as the set of judgements, which one can infer by applying
the proof system constructor.

Definition 11 (Global Proof System Induced by P). The global proof
system induced by P is the least boolean preorder such that

In particular, since is a boolean preorder, it contains all instances of propo-
sitional tautologies. We now apply our main programme also to this definition,
and show, that the global proof system can be viewed as stratification of a se-
quence of relations This will open the road for the proof of
soundness and completeness using induction on the rank of the formulas.

Definition 12 (Inductive Proof System Induced by P). For define
by:

whenever is a propositional tautology;

The inductive proof system induced by P is given by
where denote the inclusions arising

from Lemma 1.

Lemma 3. and

The two requirements in the definition of proof system constructors are ex-
actly what is needed to show that the two proof systems induced by P coincide.

Proposition 5. The boolean preorders and coincide.

We can therefore use induction on to prove properties of In
the following, we consider soundness and completeness of w.r.t. the
coalgebraic semantics induced by some one-step semantics and show that
these follow from soundness and completeness conditions involving and P.

Definition 13 (One-Step Soundness and Completeness).
(i) A boolean preorder is sound (complete) w.r.t. an interpretation

if implies implies for any

(ii) A proof system constructor P for S is one-step sound (complete) w. r. t.
a one-step semantics if is sound (complete) w.r.t.

whenever is sound (complete) w.r.t.

TEAM LinG

272 C. Cîrstea and D. Pattinson

Using induction, we can derive soundness and completeness in the standard
way from their one-step counterparts:

Theorem 2 (Soundness and Completeness). Assume is such
that If the proof system constructor P for S is one-step sound (complete)
w.r.t. then is sound (complete) w.r.t. the coalgebraic semantics
of

In the case of probabilistic transition systems, the axioms and rules given in
Example 9 form a sound and complete proof system. This was proved in [12]
using the standard filtration method. For us, this result is of limited usefulness,
as we must show that the proof system constructor defined in Example 9 is one-
step sound and complete. This will later allow us to derive sound and complete
proof systems for more complex types of probabilistic systems.

The following proposition, which deals with the base case of the probability
distribution functor, puts us into the position to apply our techniques to a large
class of probabilistic systems.

Proposition 6. The proof system constructor of Example 9 is one-step
sound and complete w.r.t.

The proof of this result makes use of Rockafellar’s Theorem [25].
In what follows, we will show how one can combine proof system construc-

tors for simple languages in order to derive proof systems for more complex
languages. Moreover, we will show that whenever the building blocks of such
constructions are one-step sound and complete w.r.t. some given one-step se-
mantics, the resulting proof system is sound and complete w.r.t. the induced
coalgebraic semantics. To describe the combinations of proof systems, we intro-
duce the following notation:

Definition 14 (Combinations of Proof System Constructors). Let
and be boolean preorders.

(i) We let where is as in Defi-
nition 4, and the relation is generated by the following axioms and rules:

augmented with the axioms and rules of propositional logic.
(ii) We let where is as in Defi-

nition 4, and the relation is generated by the following axioms and rules:

augmented with the axioms and rules of propositional logic.

TEAM LinG

Modular Construction of Modal Logics 273

If and are proof system constructors for and respectively, define:

With these definitions we obtain that soundness and completeness is pre-
served by combinations of proof system constructors; for readability we have
suppressed the dependency of the one-step semantics on the endofunctor.

Proposition 7. Suppose is a proof system constructor for for
Then, and are proof system constructors for

and respectively. Moreover, if and are one-step sound
(complete) w.r.t. and respectively, then and
are one-step sound (complete) w.r.t. and
respectively.

Note that, if and are defined in terms of axioms and rules, all their
combinations can be described in the same way.

As we have already argued in the beginning, a large class of probabilistic
systems can be modelled as coalgebras of signature functors of the following
form:

We can therefore use Propositions 1, 2 and 7 to derive, for any probabilistic
system type of the above form, a logic which is sound, complete and expressive.

Example 10 (Probabilistic Automata). Simple probabilistic automata [28] are
modelled coalgebraically using the functor The language

obtained by applying the modular techniques presented earlier can be
described by the following grammar:

The coalgebraic semantics and the associated proof system are similarly given
by a three layer construction.

References

1.

2.

3.

P. Aczel and N. Mendler. A final coalgebra theorem. In D. H. Pitt et al, editor,
Category Theory and Computer Science, volume 389 of LNCS. Springer, 1989.
F. Bartels. On generalised coinduction and probabilistic specification formats. PhD
thesis, CWI, Amsterdam, 2004.
F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types.
In H.P. Gumm, editor, Proc. CMCS 2003, volume 82 of ENTCS. Elsevier, 2003.

TEAM LinG

274 C. Cîrstea and D. Pattinson

4.

5.

6.

7.
8.

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.
26.

27.

M. Bidoit, M. V. Cengarle, and R. Hennicker. Proof systems for structured spec-
ifications and their refinements. In H. J. Kreowski, E. Astesiano, and B. Krieg-
Brückner, editors, Algebraic Foundations of Systems Specification, IFIP State-of-
the-Art Reports, pages 385–434. Springer, 1999.
P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2000.
T. Borzyszkowski. Logical systems for structured specifications. Theoret. Comput.
Sci., 286(2):197–245, 2002.
C. Caleiro. Combining Logics. PhD thesis, 2002.
C. Cîrstea. On expressivity and compositionality in logics for coalgebras. In H.P.
Gumm, editor, Proc. CMCS 2003, volume 82 of ENTCS. Elsevier, 2003.
E. Clarke and E. Emerson. Synthesis of synchronisation skeletons for branch-
ing temporal logics. In Workshop on Logics of Programs, volume 131 of LNCS.
Springer, 1981.
E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems: a
coalgebraic approach. Theoret. Comput. Sci., 221:271–293, 1999.
D. Gabbay. Fibring Logics. Oxford University Press, 1998.
A. Heifetz and P. Mongin. Probability logic for type spaces. Games and Economic
Behaviour, 35:31–53, 2001.
B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theor.
Inform. Appl., 35(1):31–59, 2001.
M. Kick. Bialgebraic modelling of timed processes. In P. Widmayer, F. Ruiz,
R. Bueno, M. Hennessy, S. Eidenbenz, and R. Conejo, editors, Proc. ICALP 2002,
volume 2380 of LNCS. Springer, 2002.
D. Kozen. Results on the propositional mu-calculus. Theoret. Comput. Sci., 27:333–
354, 1983.
A. Kurz. Specifying Coalgebras with Modal Logic. Theoret. Comput. Sci., 260(1–
2):119–138, 2001.
A. Kurz and D. Pattinson. Definability, canonical models, and compactness for
finitary coalgebraic modal logic. In L.S. Moss, editor, Proc. CMCS 2002, volume 65
of ENTCS. Elsevier, 2002.
K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Inform. and
Comput., 94:1–28, 1991.
R. Milner. Communication and Concurrency. International series in computer
science. Prentice Hall, 1989.
L.S. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96:277–317, 1999.
P. Naur and B. Randell, editors. Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968.
Scientific Affairs Division, NATO, 1969.
D. Park. Concurrency and automata on infinite sequences. In Proceedings of the
5th GI Conference, volume 104 of LNCS. Springer, 1981.
D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability
of local consequence. Theoret. Comput. Sci., 309(1–3):177–193, 2003.
D. Pattinson. Expressive logics for coalgebras via terminal sequence induction.
Notre Dame J. Formal Logic, 2004. To appear.
R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
M. Rößiger. From Modal Logic to Terminal Coalgebras. Theoret. Comput. Sci.,
260:209–228, 2001.
J.J.M.M. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput.
Sci., 249:3–80, 2000.

TEAM LinG

Modular Construction of Modal Logics 275

28.

29.

30.

31.

32.

R. Segala. Modelling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.
D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proc.

LICS Conference, pages 280–291. IEEE, Computer Society Press, 1999.
M. Wirsing. Algebraic specification. In J. van Leuween, editor, Handbook of The-
oretical Computer Science. Elsevier, 1990.
J. Worrell. On the Final Sequence of an Accessible Set Functor. Theoret. Comput.
Sci., 2003. To appear.
A. Zanardo, A. Sernadas, and C. Sernadas. Fibring: Completeness preservation.
J. Symbolic Logic, 66(1):414–439, 2001.

TEAM LinG

Verification by Network Decomposition*

Edmund Clarke1, Muralidhar Talupur1, Tayssir Touili1, and Helmut Veith2

1 Carnegie Mellon University
2 Technische Universität München

Abstract. We describe a new method to verify networks of homoge-
neous processes which communicate by token passing. Given an arbitrary
network graph and an indexed LTL \ X property, we show how to de-
compose the network graph into multiple constant size networks, thereby
reducing one model checking call on a large network to several calls on
small networks. We thus obtain cut-offs for arbitrary classes of networks,
adding to previous work by Emerson and Namjoshi on the ring topology.
Our results on LTL \ X are complemented by a negative result which
precludes the existence of reductions for CTL \ X on general networks.

1 Introduction

Despite the big success of model checking in hardware and software verification,
the classical approach to model checking can handle only finite state systems.
Consequently, applying model checking techniques to systems involving unlim-
ited concurrency, unlimited memory, or unlimited domain sizes, is a major chal-
lenge. Researchers have sought to address these issues by different verification
methods including, among others, abstraction, regular model checking, static
analysis and theorem proving.

Many software and hardware systems however are described in terms of nat-
ural parameters, and for each concrete value of the parameters, the systems
have finite state space. A system model involving such parameters is called a
parameterized system. Verifying a property of a parameterized system amounts
to verifying this property for all values of the parameters. Examples of param-
eterized systems include, mutual exclusion protocols, cache coherence protocols
and multi-threaded systems.

* This research was sponsored by the Semiconductor Research Corporation (SRC) un-
der contract no. 99-TJ-684, the National Science Foundation (NSF) under grants no.
CCR-9803774 and CCR-0121547, the Office of Naval Research (ONR) and the Naval
Research Laboratory (NRL) under contract no. N00014-01-1-0796, and the Army Re-
search Office (ARO) under contract no. DAAD19-01-1-0485 and by the European
Community Research Training Network GAMES. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of SRC, NSF, ONR,
NRL, ARO, the U.S. Government or any other entity.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 276–291, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Verification by Network Decomposition 277

In a seminal paper, Emerson and Namjoshi [17] consider systems composed
of identical asynchronous processes which are arranged in a ring topology and
communicate by passing a boolean token. For several classes of indexed
properties [9] they provide cutoffs, i.e., reductions to single systems of constant
small size. Consequently, properties over an infinite class of networks
can be reduced to a single model checking call.

In this paper, we extend the results of Emerson and Namjoshi from rings
to arbitrary classes of networks. There are two modifications, however: first,
our results hold true only for LTL\X, and second, we introduce a more refined
notion of cut-offs. The first restriction is necessary: We show in Section 4 that
with CTL \ X it is impossible to obtain cut-offs for arbitrary networks.

The second modification actually provides an interesting new view on the
notion of cut-offs: in order to verify the parametrized system, we are allowed to
model check a constant number of small systems whose network graphs have
sizes bounded by a constant Then, the verification result for the parametrized
system is a Boolean combination of the collected results for the small systems.
We call such a reduction to a finite case distinction a reduction.

Our main results can be summarized as follows:

Verification by Network Decomposition: Verifying systems with fixed
large network graphs G (e.g., concrete instantiations of a parametrized sys-
tem) can be as challenging as verifying parameterized systems. Note that
when is the state space of the individual processes, then the state space
of the whole network can be as high as where is the number of
nodes. We show that the verification of an indexed LTL\X property for a
system with network graph G can be achieved by an efficiently computable

reduction. For the important case of 2-indexed properties, it
is sufficient to model check at most 36 networks of size 4.
Offline Verification: In a scenario where is known in advance and the
network G can change for different applications, we can first verify a constant
number of small systems offline. Later, when we get to know the network
graph G, the correctness of G with respect to specification can be verified
online by simply evaluating a constant size Boolean function, regardless of
the size of the processes.
Again, for 2-indexed properties, the offline computation involves at most 36
calls to the model checker for networks of size 4.
Cut-Offs: For every class of networks and LTL\X property
one can verify if holds on all networks in by a reduction,
where and depend only on
Depending on the complexity of the networks in finding a suitable

reduction will in general still involve manual algorithm design.
Similar to famous results about linear time algorithms for bounded tree-
width [11], our proofs just guarantee the existence of small reductions.

This paper is organized as follows: this section concludes with related work.
In Section 2, we describe the system model in detail. Section 3 contains the main

TEAM LinG

278 E. Clarke et al.

results of the paper. Section 4 describes the impossibility of cut-offs for CTL \
X. Finally, the conclusion in Section 5 briefly considers further performance
enhancements for practical applications of our method.

Related Work. Verification of parameterized systems is well known to be unde-
cidable [2,25]. Many interesting approaches to this problem have been developed
over the years, including the use of symbolic automata-based techniques [22,6,
26,7,1,4], network invariants [3,24], predicate abstraction [23], or symmetry
[10,16,20,18,19]. In [5], cut-offs were used for the verification of systems shar-
ing common resources, where the access to the resources is managed according
to a FIFO-based policy.

In addition to [17] mentioned above, Emerson et al. have shown a large num-
ber of fundamental results involving cut-offs. The paper [13] by Emerson and
Kahlon also considers LTL\X cut-offs for arbitrary network topologies with mul-
tiple tokens, but each of them is confined to two processes which renders their
model incomparable to ours. Other previous work by Emerson and Kahlon [12,
15,14] consider other restricted forms of process interaction. [21] considers the
verification of single index properties for systems with multiple synchronous pro-
cesses.

Indexed temporal logic was introduced in [9]. This paper also considers iden-
tical processes arranged in ring topology.

The work that is closest in spirit to our negative results on logic
is the work by Browne, Clarke and Grumberg in [8] which shows how to charac-
terize Kripke structures up to bisimilarity using fragments of Our results
show that even with only two atomic propositions is sufficient to de-
scribe an infinite class of Kripke structures which are not bisimilar to each other.
In other words, bisimilarity over the class of Kripke structures with two labels
gives rise to an infinite number of equivalence classes.

2 Computation Model

Network Topologies. A network graph is a finite directed graph G = (S, C)
without self-loops, where S is the set of sites, and C is the set of connec-
tions. Without loss of generality we assume that the sites are numbers, i.e.,

A (network) topology is a class of network graphs.

Token Passing Process. A single token passing process P (process) is a labeled
transition system such that:

where is a finite, nonempty set and B={0,1}. Elements of Q
will be called local states. The boolean component of a local state indicates
the possession of the token. We say that a local state holds the token
if

{rcv, snd} is the set of actions. The actions in are token
dependent actions, those of are called token independent actions, and
{rcv, snd} are actions to receive and send the token. The sets are
mutually exclusive.

TEAM LinG

Verification by Network Decomposition 279

is a transition relation, such that every
fulfills the following conditions:
(a) A free transition does not change token possession:
(b) A dependent transition can execute only if the process possesses the

token:
(c) A receive establishes possession of token:
(d) A send revokes the possession of token:

is the set of initial states.

Topological Composition. Let G = (S, C) be a network graph and
be a single token process. Then denotes the concurrent system

containing instances of P denoted by The only synchronization
mechanism between the processes is the passage of a token according to the
network graph G. Formally, the system is associated with a transition system

defined as follows:

exactly one of the holds the token}.
is defined as follows: a transition

is in in one of two cases:
(a) Asynchronous Transition: there exist an index and an

action such that and for all indices
we have In other words, only process makes a transition
(different from a send or receive).

(b) Token Transition: there exist a network connection in the
network graph, such that and
for all indices different from

exactly one of the holds the token}.

An execution path is considered fair if and only if every process receives
and sends the token infinitely often. We assume that every system that we
consider has fair paths. An immediate consequence of the fairness condition is
that a system can have fair paths only if G is strongly connected.

We shall use indexed temporal logics, which can refer explicitly to the atomic
propositions of each process to specify properties of the compound systems.
For each local state in Q we introduce propositional variables
The atomic proposition says that process is in state Thus, for a global
state we define

Starting from this definition for atomic propositions, we can easily define
common temporal logics such as CTL or LTL in a canonical way. Throughout
this paper, we will assume that the path quantifiers A and E quantify over fair
paths. Further we assume that LTL formulas are implicitly quantified by E. This
restriction simplifies our proofs but does not restrict generality.

Example 1. The formula says that whenever process is in
state then process will be in state sometime in the future.

TEAM LinG

280 E. Clarke et al.

For increased expressibility we permit that in an atomic formula the
process index is a variable (called index variable) which can take any value
from 1 to the total number of processes. Thus, can refer to arbitrary
processes. We shall write to indicate that the temporal formula
depends on the index variables We can substitute the index variables
in a formula by integer values in the natural way, and
denote the resulting formula by

In addition to substitution by constants, we can also quantify over the index
variables using a prefix of existential and universal quantifiers with
the natural semantics. Such formulas are called quantified temporal formulas.
For example, the formula means “For all processes there exists
a process such that the temporal formula holds.” A formula without
quantifier prefix is called quantifier-free. If all index variables in a formula are
bound by quantifiers we say that the formula is closed, and open otherwise. The
quantifier-free part of a quantified formula is called the matrix of a formula.

Example 2. The formula says that there exist two pro-
cesses and such that whenever process is in state then process
will be in state some time in future.

The formal semantics of this logic is straightforward and is omitted for the
sake of brevity.

Definition 1 Temporal Formula). Let be a temporal logic.
A temporal formula is a formula whose matrix refers to at most
different processes, i.e., there are at most different constant indices and index
variables.

3 Reductions for Indexed LTL\X Specifications

In this section, we will show how to reduce the model checking question
to a series of model checking questions on smaller systems where we can
bound the size of the network graphs as well as the number of the For
the sake of simplicity, we will start with the special case of 2-indexed existential
LTL\X specifications, which can be readily generalized to the full case.

3.1 Existential 2-Indexed LTL \ X Specifications

In this section we show how to verify simple 2-indexed LTL\X properties of the
form where We will use the combinatorial insights we obtain
from this case to obtain the more general results later on.

Recall that 2-indexed properties are concerned only with properties of two
processes in a given system. Our process communication model implies that two
processes and can only affect each other by passing or receiving a token.
Consequently, the synchronization between and crucially depends on the
paths between sites and in the network graph. The following example is
crucial to understanding the intuition behind our approach:

TEAM LinG

Verification by Network Decomposition 281

Example 3. The Figure below shows one path in a
network graph.

Suppose that we are only interested in properties concerning the processes
and but not in processes Then only the sequence of the

and in the path are of interest. Looking at from left to right, we see four
possibilities for what can happen between and (1) sends a token, and
receives it back without seeing it (formally, we will write to denote
this); (2) passes the token directly to (3) sends the token to
through several intermediate sites and (4) sends the token back to

through several intermediate sites There are two more possibilities
which do not occur in (5) and (6) The important insight is
the following: If we know which of these 6 cases can occur in a network
graph G, then we have all information needed to reason about the
communication between and

We will later construct small network graphs with 4 nodes where the sites
and are represented by two distinguished nodes and while all other
sites are represented by two “hub” nodes and

This example motivates the following definitions:

Definition 2 (Free Path). Let I be a set of indices, and be a path in a
network graph G. We say that is I-free, if does not contain a site from I.

We now define three kinds of path types which will be shown to capture all
relevant token paths between two processes and

Definition 3 (Connectivity, Characteristic Vectors). Let be indices in
a network graph G. We define three connectivity properties of the indices

“There is a path from to itself.”
“There is a path from to via a third node not in ”
“There is a direct edge from to ”

Using the connectivity properties, we define an equivalence relation on net-
work graphs: Given two network graphs and along with two pairs of indices

and we define

iff for every

and

TEAM LinG

282 E. Clarke et al.

If we say that the indices in have the
same connectivity as the indices in

The characteristic vector is the 6-tuple containing the truth val-
ues of

and

By definition it holds that iff they have the same
characteristic vectors, i.e., Since the number of
characteristic vectors is constant, it follows that has finite index. The char-
acteristic vectors can be viewed as representatives of the equivalence classes.

Fig. 1. Network Graphs A, B, realizing two different characteristic vectors

Example 4. Consider the network graphs A, B of Figure 1. It is easy to see that
has characteristic vector (1,1,1,1,1,1), i.e.,

and has characteristic vector (0,1,0,1,1,0), i.e.,

Note that a network graph will in general have several characteristic vectors
depending on the indices we consider. The set of characteristic vectors of a graph
G can be efficiently computed from G in quadratic time. The crucial insight in
our proof is that for two processes and the connectivity between their
indices in the network graph determines the satisfaction of quantifier-free
LTL\X properties over

Lemma 1 (2-Index Reduction Lemma). Let be network graphs, P
a process, and a 2-indexed quantifier-free LTL\X property. Let be
a pair of indices on and a pair of indices on The following are
equivalent:

(a) i.e., and have the same connectivity.
(b) iff

TEAM LinG

Verification by Network Decomposition 283

The lemma motivates the following model checking strategy: Given a (possi-
bly complicated) network graph and two of its sites we can try to obtain
a simpler network with two special nodes and that have
the same connectivity in as the indices and in and thus satisfies con-
dition of the lemma. For the case of two indices, we can always find such a
network graph with at most 4 sites.

Proposition 1. For each graph G and indices there exists a 4-node graph
called the connection topology of having two special sites and

such that

In other words, the indices and in G have the same connectivity as the
indices and in

Since satisfies condition of Lemma 1, we obtain the following im-
portant consequence:

Corollary 1. Let be a 2-indexed quantifier-free LTL\X property. Then

Thus, we have achieved a reduction from a potentially large network graph
G to a 4-node network graph We will now show how to actually construct
the connection topology

Construction of We construct the reduction graphs as follows,
has four sites: and The sites and are called
primary sites. They represent the sites of interest and The other sites are
called hubs, and they represent the other nodes of the graph G. Let us describe in
more detail the role of these different nodes. Recall that to satisfy Proposition 1,
the sites and in should have the same connectivity as in G.
Therefore:

If holds in G (i.e., there exists a path from to in G that goes
through a third node), then has also to hold in i.e.,
there should exist in a path from to that goes through a
third node. The site will play the role of this “third node”. Therefore,
in this case, contains an edge from to and from to

In the same manner, if holds in G (i.e., there exists a path from
to itself in G that does not go through then should also
be true in As previously, this is ensured by considering the following
edges: and
Finally, if holds in G (i.e., there exists a direct edge in G from to

then should also contain the edge
The paths from to are treated in a symmetrical way.

iff

TEAM LinG

284 E. Clarke et al.

For example, let H be a graph having as sites and (among others),
such that and then the
graphs A and B of Example 4 correspond respectively to the reduction graphs

and
Since our fairness assumption implies that the network is strongly connected,

not all characteristic vectors actually occur in practice. A closer analysis yields
the following bound:

Proposition 2. For 2 indices, there exist at most 36 connection topologies.

Proof. By our fairness assumption, every connection topology must be strongly
connected. This implies that the following conditions must hold:

Consequently a detailed counting shows that the number of different possible
characteristic vectors is 3 × 3 × 4 = 36.

Let us now return to the question of verifying properties of the form
Note that Corollary 1 only provides us with a way to verify one

quantifier-free formula Given a system we define its 2-topology, de-
noted by as the collection of all different connection topologies appearing
in G. Formally,

Definition 4. Given a network graph G = (S, C) the 2-topology of G is given
by

By Proposition 2, we know that Since we can express
as a disjunction we obtain the following result as

a consequence of Corollary 1:

Theorem 1. The following are equivalent:

Thus, we obtain the following reduction algorithm for model checking

1:
2:
3:

Determine
For each model check
If one of the model checking calls is successful then output “true” else output
“false”.

At least one of
At least one of

or
or

must be true.
must be true.

(i)
(ii) There exists a connection topology such that

TEAM LinG

Verification by Network Decomposition 285

3.2 Existential LTL\X Specifications

We will now show how to generalize the results of the previous section to
properties. Throughout this section, we will write expressions such as

to denote of indices, and to denote of variables. We will first
adapt the notion of connectivity as follows. Let be a sequence
of indices, and Then we define the following connectivity
properties:

“There is an path from to itself.”
“There is a path from to via a third node not in I.”

“There is a direct edge from to ”

By instantiating the variables and by the indices in all possible
ways, we obtain a finite number of different conditions which will describe all
possible connectivities between the indices

As in the previous section, we can define an equivalence relation where
iff the indices have the same connectivity in as the indices

in Since the number of conditions is bounded, is an equivalence relation
of finite index, and we can describe each equivalence class by a characteristic vec-
tor Like in the previous section, we define the topologies,

of the processes in G as the smallest graphs that pre-
serve all the connectivity properties between the processes The
construction of the topology graphs is illustrated in Figure 2.

The unfilled nodes in the graph are the primary sites. There
is a hub site associated with each primary site. Moreover, there is an edge from
each hub back to its primary if there is an path from
to itself. There is an edge from to if there is a path from to in G
via a third node not in I, and there is an edge from to if there exists
a direct edge in G.

Fig. 2. An example of a 5-index connection topology

TEAM LinG

286 E. Clarke et al.

Analogous to the bounds on 2-connection topologies it can be shown that
each topology has at most processes and that there are at most

distinct topologies. By an argument analogous to that
of the previous section, we obtain the following corollary

Corollary 2. Let be a quantifier-free LTL\X property. Then

The notion of is also defined completely analogously:

Definition 5. Given a network graph G = (S, C) the of G is given
by

Consequently, we obtain a model checking procedure from the following the-
orem, similar to the case of 2-indices:

Theorem 2. The following are equivalent:

(i)
(ii) There exists a connection topology such that

As mentioned before

3.3 Specifications with General Quantifier Prefixes

In this section we will show how to obtain reductions for specifications
with first order prefixes.

Let us for simplicity consider the 2-indexed formula
Over a network graph G = (S,C), it is clear that is equivalent to

A naive application of Corollary 2 would therefore re-
quire calls to the model checker which may be expensive for practical values
of In practice, however, we can bound the number of model checker calls by

since this is the maximum number of different connection topologies. We
conclude that the model checker calls must contain repetitions. In the pro-
gram, we can make sure that at most 36 calls to the model checker are needed.
We obtain the following algorithm:

1:
2:
3:
4:
5:

Determine
For each

model check
iff model checking successful, and 0 otherwise

Output

By simplifying the formula in line 5, we may further increase performance.
The algorithm can be adapted for indices in the obvious way. To state the main
theorem of this section, we define reductions, where c bounds the
number of calls to the model checker, and bounds the size of the network
graph.

TEAM LinG

Verification by Network Decomposition 287

Definition 6 Reduction). Let G, P be as above, and a
closed formula with matrix Let denote a property of
interest (e.g., the model checking property A reduc-
tion of property is given by:

a sequence of reduced network graphs such that
called reduction graphs.

a boolean function B over variables such that

iff where iff

In other words, property is decided by calls to the model checker, where
in each call the network graph is bounded by

Further, we say that a class of specifications has bounded reduction if
for all network graphs G and any the property has
reduction. We can now state our main result:

Theorem 3. Let be any LTL\X specification. Then the model
checking problem has polynomial-time1 computable

reductions.

In fact, the sequence of reduced network graphs is just the different
topologies occurring in G. This implies that given and network

graph G, all LTL\X specifications have the same reduction. Stated
another way, LTL\X has reduction.

3.4 Cut-Offs for Network Topologies

In this section, we prove the existence of cutoffs for network topologies, i.e.,
(infinite) classes of network graphs. We say that a class of network graphs has
cutoff if the question whether all the network graphs in this topology
satisfy the specification has a reduction.

Definition 7 (Cut-Off). Let be a network topology, and a class of speci-
fications, has a cut-off for if for all specifications the property

has a reduction.

It is not hard to prove that a reduction for a network graph
translates to a cut-off for a network topology:

Theorem 4. For specifications, all network topologies have
reductions.

Note that the theorem does not provide us with an effective means to find
the reduction; it does however guarantee that at least in principle we can always
find a cutoff by investigating the topology

1 In the size of the network graph G.

TEAM LinG

288 E. Clarke et al.

4 Bounded Reductions for CTL \ X Are Impossible

In this section, we show that indexed CTL\ X formulas over two indices don’t
have reductions. We will first show the following generic result
about CTL\ X:

Theorem 5. For each number there exists an CTL\ X formula with the
following properties:

is satisfiable (and has a finite model).
uses only two atomic propositions and

Every Kripke structure K where is true has at least states.
has the form

The result is true even when the Kripke structure is required to have a strongly
connected transition relation.

Proof. Our goal is to describe a formula using atomic propositions and
whose models must have at least states. We will construct a large conjunction

and describe which formulas to put in The idea is simple: needs
to contain CTL\X formulas which describe the existence of different states.
Then the formula will be the sought for

Fig. 3. The Kripke structure K, constructed for three levels. The dashed lines indicate
the connections necessary to achieve a strongly connected graph

TEAM LinG

Verification by Network Decomposition 289

Consider a Kripke structure K as in Figure 3:

In Level 0, it contains two distinct states L, R labelled with and respec-
tively. To express the presence of these states, we include the formulas, let

and and include and into
It is clear that and express the presence of two mutually ex-
clusive states.
In Level 1, K contains states, such that the first one has {L, R}-
free paths to L and R, the second one an {L, R}-free path only to L, and
the third one an {L, R}-free path only to R. The characteristic properties of
level 1 states are expressed by formulas

where denotes i.e., a variant of EF which forbids paths
through L and R. To enforce the existence of the Level 1 states in the Kripke
structure, we include into
In general, each Level has at least states which differ in their
relationship to the states in Level The presence of such states is
expressed by formulas

All these formulas are included into until the requested number of dif-
ferent states is reached. By construction, all properties required in the theorem
statement are trivially fulfilled. In particular, Figure 3 demonstrates that there
always exists a strongly connected model.

Remark 1. This result is closely related to early results about characterizing
Kripke structures up to bisimulation in [8]. The results in [8] give rise to the
following proof idea for Theorem 5: Let be all Kripke structures with
2 labels of size and let be CTL\ X formulas which characterize
them up to stuttering bisimulation. Consider now the formula
By construction every model of must have states. At this point, however,
the proof breaks down, because we do not know from the construction if is
satisfiable at all. The natural way to show that has a model would be to prove
that stuttering bisimulation over a 2-symbol alphabet has infinite index. This
property however is a corollary to Theorem 5, and we are not aware of a proof
in the literature.

For properties involving only the presence of the token, a system where
G = (S, C) essentially behaves like a Kripke structure with set of states S and
transition relation C. The proof of this assertion is not given here.

Now we can show by contradiction that indexed CTL\ X cannot have
bounded reductions. Suppose CTL\X did have reduction for some

Then, by Theorem 5, we can always find a CTL\X formula such that the
network graph underlying any system that satisfies must have size at least

Thus CTL\X does not have bounded reductions. Consequently, we also
have the following corollary:

TEAM LinG

290 E. Clarke et al.

Corollary 3. There exists a network topology for which 2-indexed CTL\ X
does not have cut-offs.

5 Conclusion and Future Work

In this paper, we have described a systematic approach for reducing the verifica-
tion of large and parameterized systems to the verification of a sequence of much
smaller systems. The current paper is primarily concerned with the algorithmic
and logical concepts underlying our approach. We will conclude this paper with
further considerations concerning the practical complexity of model checking.

For simplicity, let us again consider the case of 2-indexed properties. Suppose
the processes P in our network have state space Then our reduction requires
to model check up to 36 network graphs with 4 sites, resulting in a state space
of Even this model checking problem may be expensive in practice. By a
close analysis of our proofs, it is however possible to reduce the state space even
further to

It is easy to show that Lemma 1 will hold even when the processes at the
hubs are simple dummy processes containing two states whose mere task is to
send and receive the token infinitely often. Consequently, the systems
will have state space of size

The results in this paper on LTL\X were derived assuming fairness condition
on the systems. We can obtain similar reductions by removing this assumption.
Doing away with fairness necessitates the consideration of two more path types
other than the ones described in Section 3.1. Consequently, the topology graphs
have more than 4 sites and also the number of different topology graphs increases.
Reductions in non-fair case will be described in a future work.

References

1.

2.

3.

4.

5.

P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model-checking
made simple and efficient. In In Proceedings 13th International Conference on
Concurrency Theory (CONCUR), volume 2421 of Lecture Notes in Computer Sci-
ence, pages 116–130. Springer-Verlag, 2002.
K. Apt and D. Kozen. Limits for automatic verification of finite state concurrent
systems. Information Processing Letters, 15:307–309, 1986.
T. Arons, A. Pnueli, S. Ruah, and L. Zuck. Parameterized verification with auto-
matically computed inductive assertions. In Proc. 13th Intl. Conf. Computer Aided
Verification (CAV), 2001.
B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In 15th
Intern. Conf. on Computer Aided Verification (CAV’03). LNCS, Springer-Verlag,
2003.
A. Bouajjani, P. Habermehl, and T. Vojnar. Verification of Parametric Concur-
rent Systems with Prioritized FIFO Resource Management. In Proceedings of
CONCUR’03, 2003.

TEAM LinG

Verification by Network Decomposition 291

6.

7.

8.

9.

10.

11.
12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
12th Intern. Conf. on Computer Aided Verification (CAV’00). LNCS, Springer-
Verlag, 2000.
A. Bouajjani and T. Touili. Extrapolating tree transformations. In 14th Intern.
Conf. on Computer Aided Verification (CAV’02). LNCS, Springer-Verlag, 2002.
M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite kripke struc-
tures in propositional temporal logic. Theoretical Computer Science, 59:115–131,
1988.
M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with
many identical finite state processes. Information and Computation, 81:13–31,
1989.
E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal model
checking. In Proc. 5th Intl. Conf. Computer Aided Verification (CAV), 1993.
B. Courcelle. Graph rewriting: An algebraic and logic approach. B:459–492, 1990.
A. E. Emerson and V. Kahlon. Reducing model checking of the many to the few.
In 17th International Conference on Automated Deduction, pages 236–254, 2000.
A. E. Emerson and V. Kahlon. Model checking larage-scale and parameterized re-
source allocation systems. In Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), pages 251–265, 2002.
A. E. Emerson and V. Kahlon. Model checking guarded protocols. In Eighteenth
Annual IEEE Symposium on Logic in Computer Science (LICS), pages 361–370,
2003.
A. E. Emerson and V. Kahlon. Rapid parameterized model checking of snoopy
cache protocols. In Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), pages 144–159, 2003.
E. A. Emerson, J. Havlicek, and R. Trefler. Virtual symmetry. In LICS, 2000.
E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In ACM Symposium
on Principles of Programming Languages (POPL’95), 1995.
E. A. Emerson and A. Sistla. Utlizing symmetry when model-checking under
fairness assumptions: An automata theoretic approach. TOPLAS, 4, 1997.
E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Proc. 5th Intl.
Conf. Computer Aided Verification (CAV), 1993.
E. A. Emerson and R. Trefler. From asymmetry to full symmetry. In CHARME,
1999.
S. M. German and A. P. Sistla. Reasoning about systems with many processes.
Journal of ACM, 39, 1992.
Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. In O. Grumberg, editor, Proc. CAV’97,
volume 1254 of LNCS, pages 424–435. Springer, June 1997.
S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system
verification”. In Proc. CAV’04. To appear.
A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. In Lecture Notes in Computer Science, 2001.
I. Suzuki. Proving properties of a ring of finite state machines. Information Pro-
cessing Letters, 28:213–214, 1988.
T. Touili. Widening Techniques for Regular Model Checking. In 1st vepas work-
shop. Volume 50 of Electronic Notes in Theoretical Computer Science, 2001.

TEAM LinG

Reversible Communicating Systems

Vincent Danos1* and Jean Krivine2

1 Université Paris 7 & CNRS
2 INRIA Rocquencourt

Abstract. One obtains in this paper a process algebra RCCS, in the
style of CCS, where processes can backtrack. Backtrack, just as plain
forward computation, is seen as a synchronization and incurs no addi-
tional cost on the communication structure. It is shown that, given a
past, a computation step can be taken back if and only if it leads to a
causally equivalent past.

1 Introduction

Backtracking means rewinding one’s computation trace. In a distributed setting,
actions are taken by different threads of computation, and no currently running
thread will retain a complete description of the others past. Therefore, there is
no guarantee that when a given thread goes back in its own local computation
history, this will correspond to going back a step in the global computation trace.
Of course, one could ask a thread willing to go back a step, to first verify that it
was the last to take an action. But then all concurrent behaviour would be lost,
not speaking about the additional communication machinery this choice would
incur. On the other hand, letting any thread freely backtrack would result in
losing the initial computation structure and reaching computation states which
were formerly inaccessible. So, one has to strike a compromise here.

This is what we propose in this paper. A notion of distributed backtracking
built on top of Milner’s CCS [1] is provided. At any time, a thread may either
fork or synchronize with another thread, and in both cases, the action taken is
recorded in a memory. When the thread wants to rewind a computation step, it
has to synchronize with either its sibling, in the case the last action was a fork, or
with its synchronization partner in the case the last action was a synchronization.
Thus backtrack is considered also as a synchronization mechanism.

This mechanism can be construed as a distributed monitoring system and
it meshes well with the specifics of the host calculus CCS. Backtrack doesn’t
involve any additional communication structure and we could obtain a syntax,
termed RCCS, for reversible CCS, that stays really close to ordinary CCS.

There is another aspect in which the syntax seems to do well. The compromise
it corresponds to, has a clear-cut theoretical characterization. Given a process

* Corresponding author: Équipe PPS, Université Paris 7 Denis Diderot, Case 7014, 2
Place Jussieu 75251 PARIS Cedex 05, Vincent.Danos@pps.jussieu.fr

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 292–307, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Reversible Communicating Systems 293

and a past, one can show that the calculus allows backtrack along any causally
equivalent past. Computation traces originating from a process are said to be
causally equivalent when one can transform one in the other by commuting
successive concurrent actions, or cancelling successive inverse actions.

A similar notion of computation trace equivalence exists in which
Lévy could characterize by a suitable labelling system [2,3]. Thus, a pretty good
summary of the theoretical status of this backtracking mechanism, is to say that
RCCS is a Lévy labelling for CCS. Two reduction paths will be equivalent if
and only if they lead to the same process in RCCS. This is what we prove and
it seems to be the best one can expect on the theoretical side.1

To summarize the contribution, the present study proposes a syntax for re-
versible communicating systems, together with a characterization, in terms of
causally equivalent traces, of the exact amount of flexibility one allows in back-
tracking. One also explains how irreversible, or unbacktrackable actions, can be
included in the picture and a procedure of memory cleansing is introduced and
proved to be sound.

Following Regev [4,5], process algebras have been investigated recently for
modeling biological systems. Since reversibility is the rule in biological interac-
tion, the second author was naturally prompted to look for a theoretical setup
for distributed and reversible computations. Biological modeling in a former ver-
sion of RCCS was explored [6]. By that time soundness (here, corollary 1) was
proved directly, and the key connection to causal equivalence went unnoticed.
Future work, and in particular, applications to the synthesis of sound transac-
tional mechanisms is discussed in the conclusions.

1.1 Related Work

Process algebras with backtracking were seen early to be valuable computational
objects and independently studied by Prasad [7] and later by Bergstra et al. [8].
However, both had an exception model in mind, which while providing interest-
ing programming constructs would not have any specific theoretical structure.
Another well developed line of research, partly inspired by Lévy’s work on causal
equivalence in and partly by the need for refined non-interleaving se-
mantics, is that of the causal analysis of distributed systems [9–16]. However,
the only concern here is forward computation. Causal analysis is thought of as a
static analysis method, or a theoretical measure of how concurrent a system is,
and not as inducing some policy that threads should obey in order to backtrack
soundly. In some sense, we present here a synthesis of these two lines of research
which, to the best of our knowledge, were never brought together to interact.

1.2 Acknowledgements

The authors wish to thank the referees for their suggestions and specifically for
correcting a wrong formulation of corollary 1.

1 This crucial property can be recast in topological terms, by saying that RCCS is the
universal cover of CCS.

TEAM LinG

294 V. Danos and J. Krivine

2 RCCS

The plan to implement backtrack is to assign to each currently running thread
an individual memory stack keeping track of past communications. This memory
will also serve as a naming scheme and yield a unique identifier for the thread.
Upon doing a forward transition, the information needed for a potential roll-back
will be pushed on the memory stack.

As said briefly in the introduction, two constraints are shaping the actual
syntactic solution explained below. First the notion of past built in the memories
has to have some degree of flexibility. Even if one could somehow record the
complete succession of events during a distributed computation and only allow
backward moves in whatever precise order was taken, this would induce fake
causal dependencies on backward sequences of actions. Actions which could have
been taken in any order would have to be undone in the precise incidental order
in which they happened. So one should not be too rigid on the exact order in
which things done have to be undone.

On the other hand the notion of past should not be too flexible. Because if it
is, then one might be in danger of losing soundness, in that some backtracking
computations could give access to formerly unreachable states. Clearly, if actions
are undone before whatever action they caused is, the result is not going to be
consistent.

It turns out that the solution proposed here is at the same time consistent
and maximally flexible. The final take on this will be a theorem proving that
any two computation traces starting in a same state and reaching a same end
state are causally equivalent, or in other words that one can be rearranged so as
to obtain the other by commuting concurrent actions. Consistency will follow.

But, first of all we need a syntax to describe our processes and this is the
matter to which we turn in the next subsection.

2.1 A Syntax for Backtrack

Simple Processes. Simple processes are taken from CCS [1]:

Let us briefly remind that interaction consists only of binary synchronized
communication. In a CCS system something happens when two processes are
performing complementary actions at the same time, very much as a handshake.
Recursive definitions can be dealt with, but they are not central to the point
being made in this paper and we will do without them.

TEAM LinG

Reversible Communicating Systems 295

As the notation for choice suggests, the order in which choices add up is irrele-
vant. Simple processes will therefore be considered only up to additive structural
congruence, that is to say the equivalence relation generated by the following
usual identities:

where and represent processes of the guarded choice type.2

Monitored Processes. In RCCS, simple processes are not runnable as such, only
monitored processes are. This second kind of process is defined as follows:

To sort visually our two kinds of processes, the simple ones will be ranged
over by P, Q, . . . while the monitored ones will be ranged over by R, S, . . .

Sometimes, when it is clear from the context which kind of process is being
talked about, we will say simply process in place of monitored process.

As one may readily see from the syntax definition, a monitored process can be
uniquely constructed from a set of terms of the form which we will call its
threads. In a thread represents a memory carrying the information that
this process will need in case it wants to backtrack. That memory is organized
as a stack with the last action taken by the thread sitting on the top together
with additional information that we will comment on later. There is an evident
prefix ordering between memories which will be written

As an example we can consider the following monitored process:

It consists of two threads, namely and
Taking a closer look at we see a fork action sitting on top of its memory
stack, indicating that the last interaction the thread took part in was a fork.
Below one finds indicating that the penultimate action was an action
exchanged with an unidentified partner That part of the past of is shared by

as well. Actually, they both can be obtained from a same process
as will become evident when we have a precise notion of computation.

2 General sums are not allowed in the syntax; here as in the following, all sums will
be supposed guarded.

TEAM LinG

296 V. Danos and J. Krivine

Coherent Processes. Not all monitored processes are going to be of interest.
Since memories are also serving as a naming scheme for threads, they should
better be unique. Actually we can ask for a little more than memory uniqueness
and this is what we call coherence and proceed now to define.

Definition 1. Coherence, written is the smallest symmetric relation such
that:

Memories are coherent if they branch on a fork.

Definition 2. A monitored process is said to be coherent if its memories are
pairwise coherent.

Coherence implies in particular that memories are unique in a coherent term,
since coherence is irreflexive. But, as said, it is a bit stronger than that. For
instance is not coherent, even if its two memories are
distinct.

Define inductively the fork structure of a memory

An additional coherence requirement could be that for any memory oc-
curring in a process R, is exactly the forking address of in R, where by
the forking address of in R we mean the binary string over {1, 2} locating the
thread with memory in R. For an example of a process violating this extra
condition, consider:

2.2 From RCCS to CCS and Back

Our calculus is clearly only a “decoration” of CCS, a decoration which can be
erased by way of the forgetful map

Conversely one can lift any CCS process to RCCS with the map
One has that is the identity but not the converse ! If we go back to our

first example, we see that The transformation is
blanking all memories in a monitored process.

2.3 RCCS Structural Congruence

We now want to extend the additive structural congruence defined earlier on
simple processes, to monitored processes. The most important additional rule is
the following:

TEAM LinG

Reversible Communicating Systems 297

It explains how memory is distributed when a process divides in two sub-
threads. We see that each sub-thread inherits the father memory together with
a fork number indicating which of the two sons the thread is.

Another rule we need is:

Both rules have a natural left to right orientation corresponding to forward
computation. Take note also that both these memory rearrangements are invis-
ible in CCS, e.g., is actually equal to

Structural congruence on monitored processes is then obtained by combining
these two identities together with additive congruence. In other words, two pro-
cesses are structurally equivalent if related by the smallest equivalence relation
generated by the identities (1), (2) above, by additive congruence identities, and
closed under all syntactical constructs.

Lemma 3. Coherence is preserved by structural congruence.

The only case where memories are modified is in using identity (1) where a given
is split in and By definition and an is coherent

with iff it is coherent with both and

Usual identities associated with the product, such as are not
considered here because memories are using the actual product structure of the
term to memorize the fork actions. A quotient would force the manipulation of
terms up to tree isomorphisms on memories. That is possible and perhaps even
interesting if one wants a more mathematical view on the calculus, but certainly
results in a less convenient syntax.

2.4 Transition Rules

It remains to define a proper notion of computation. To this effect, we use a la-
belled transition system, LTS for short, that is to say a family of binary relations
over monitored processes. Specifically, transitions are of the form:

where R, S are monitored processes, is a directed action, that is either a forward
action or a backward action, while is an identifier, that is either a memory or
a pair of memories:

Basic Rules. First we have the basic transitions concerning threads:

TEAM LinG

298 V. Danos and J. Krivine

The first transition is a forward transition whereby the thread does an action
A memory triplet containing this action, as well as the leftover part Q

is pushed on top of the memory, and the thread proceeds further down its code.
The first element in the memory triplet stands for an unidentified partner.
The transition itself is indexed by the action so that it can be synchronized
with a transition bearing a complementary action, and the memory which
will be used to identify oneself in the synchronization.

The second transition goes backward. The process is now undoing an action
which is on the top of its memory and is therefore the last action it took. As
we discussed already, many actions may have happened in the meantime in the
global computation, but none originated from that particular thread, or they
were undone before. Backward actions are treated on a par with forward actions
and in particular, backtracking also involves communicating.

Contextual Rules. We have seen what transitions a thread may trigger. These
transitions can also be done in a context:

where in the (res) rule, means that is none of or The last
rule says that one can freely choose a representative in the structural congruence
class before triggering a transition. It is used to push memories down threads
using identities (1), (2) with their natural orientation.

Synchronization Rules. We end the description of transitions with the forward
and backward synchronization rules.

Both kinds of synchronizations use a notion of address instanciation in moni-
tored processes. Given a monitored process R and memories a new pro-
cess is obtained by replacing in R all memories of the form
with This is used in forward synchronization to let the thread
know the name of the other thread it synchronized with.

The complete definition is as follows:

TEAM LinG

Reversible Communicating Systems 299

When R is a coherent process, there can be at most one memory of the ap-
propriate form, and therefore and R differ at most at that particular
location. With this definition in place, we can formulate neatly the synchroniza-
tion rules:

Backward Synchronization Discussed. As one can see in the definition, backward
synchronization is also a communication. Once a thread T in R has used (syn),
its memory is instanciated, and the resulting cannot backtrack if not
with rule One doesn’t roll back a synchronization all alone.

This “locking effect” can be illustrated with the following example:

Both threads are locked together, and the only way backward for them is to
synchronize again:

Relation to CCS. Write if there exists a computation leading from R
to S in RCCS, and likewise if there exists a computation from P to Q
in CCS.

Lemma 4. If and then for some S such that

To see this, it is enough to forget about backward actions in the LTS above.
Then it becomes the ordinary LTS for CCS with memories being useless addi-
tional notations.

Thus any RCCS term R, such that can simulate P’s behaviour in
a purely forward manner. Of course, what one would like some form of converse
guaranteeing the consistency of the backtracking mechanism. We will provide
such a converse later in the paper (corollary 1).

Coherence. The transition system which we presented gives means of defining
computation traces. Especially convenient is the fact that one doesn’t have to
work up to associativity and commutativity of the product and therefore gets a
simple naming scheme for threads, where a thread can be uniquely identified by
its memory. We have to verify that transitions don’t disturb this naming scheme
and preserve coherence.

TEAM LinG

300 V. Danos and J. Krivine

Lemma 5. If and R is coherent, then so is S.

Basic transitions are only adding to, or chopping off the stack, a triplet of the
form and therefore clearly preserve coherence. Among the other rules,
with the exception only the structural congruence rule and the synchroniza-
tion rules (syn) and modify memories. The case of structural congruence
was already dealt with in a previous lemma. Synchronizations only instantiate
or de-instantiate one memory top at a time (because the process undergoing the
transition is itself coherent), and this is again a transformation clearly preserving
coherence.

As a consequence, any process obtained from some where P is a CCS
process, is coherent. Thereafter, we will assume all processes to be coherent.

3 Interlude

Let us have a short example before going to the causality section. Three conve-
nient bits of notation will ease the reading. First, and although only the canonical
notation gives a robust naming scheme, we use fork structures instead of
full memories as identifiers. Second, we use forks though this is not
official notation. Last, when the choice left over in a choice action is 0, we just
don’t write it. That said we can run our example:

One sees how the repeated synchronizations create a causal bottleneck: the
synch on caused the synch on which in turn caused the action. Therefore,
this sequence of three events is completely sequential and cannot be rearranged
in any other order. Nothing is concurrent in this computation. That much is
obvious. Less obvious is the fact that one doesn’t need to go through the whole
computation to realize this. It can be read off the stacks directly in the final
process. The rightmost thread wants to backtrack on with (identifying the
middle thread), the middle thread wants to backtrack on with (identifying
the leftmost thread), while the leftmost thread wants to backtrack on all alone.

The point of the next section is to prove that this property holds in general.
Backtracking an event is possible when and only when a causally equivalent trace
would have brought this event as the last one. In our example there is no other
equivalent trace, and indeed no other action than can be backtracked.

This example illustrates another point made later. Suppose is declared to
be unbacktrackable, or irreversible, then the process now behaves as The
last section will extend RCCS and integrate such irreversible actions.

TEAM LinG

Reversible Communicating Systems 301

4 Causality

4.1 Transitions and Traces

We need first to go through a few standard definitions.
Recall that a transition is given by a triplet with R, S monitored

processes, an identifier (that is either a memory or a pair of memories) and
a directed action. One says then that R is the source and S the target of and
that S and R are its ends. Transitions will be ranged over in this section with

and similar symbols. Two transitions are said to be coinitial if they have
the same source, cofinal if they have the same target, composable if the source
of the second is the target of the first. A transition is said to be forward or
backward depending on whether its associated action is forward or backward.

Sequences of pairwise composable transitions will be called computation traces
or simply traces, and will be ranged over by etc. All notions just defined for
transitions extend readily to traces. In particular a trace will be said forward if
all transitions it is composed of are forward. The empty trace with source R is
denoted by and when and are composable, their composition is written

A derivable transition is one that can be derived using the LTS of the second
section. We have had examples of these already. From now on we will assume
all transitions and traces to be derivable and with coherent ends (equivalently
coherent sources) since these are the ones of interest.

If is such a transition with identifier then it must have been
obtained by a synchronization, and hence and have to be distinct, since
one is assuming all processes to be coherent. So identifiers can be considered
as sets (with either one or two elements) and be handled with set-theoretic
operations. Transitions involving a one element memory will be termed unary,
others will be termed binary.

Another noteworthy point is that a derivable transition is essentially derivable
in a unique way. The only freedom is in the application of the rule and apart
from the additive congruence, it only involves pushing memories past restrictions
and products.

4.2 Causal Equivalence

Lemma 6 (Loop). For any forward transition there exists a
backward transition and conversely.

Given a forward trace, one can then obtain a backward trace, by applying
repeatedly the lemma and reversing all transitions in

Definition 7. Let and be two coinitial transi-
tions, and are said to be concurrent if

Lemma 8 (Square). Let and beconcurrent

transitions, there exists two cofinal transitions and

TEAM LinG

302 V. Danos and J. Krivine

Definition 9. Keeping with the notation of the square and loop lemmas above,
one defines the causal equivalence, written ~, as the least equivalence relation
between traces closed under composition and such that:

As said earlier, this is the analogue in CCS of the Berry-Lévy notion of
equivalence of computation traces “by permutation” [2]. The “square” part of
the definition was already considered by Boudol and Castellani [9] and they were
well aware of the connection to Lévy’s theory.

4.3 RCCS as a Lévy Labelling

Theorem 1. Let and be coinitial, then iff and are cofinal.

By construction if then and must be coinitial and cofinal, so
the only if part is trivial. The if part is not. We first need a lemma.

Lemma 10. Let be a trace, there exists both forward such that

We prove this by lexicographic induction on the length of and the distance
to the beginning of of the earliest pair of transitions in contradicting the
property. If there is no such contradicting pair, then we are done. If there is one,
say and then and can be swapped by virtue of the
square lemma, resulting in a later earliest contradicting pair, and by induction
the result follows since swapping keeps the length constant.

Suppose now and suppose further that is unary and write
for By definition of a unary transition is pushing some triplet

on top of the stack at a triplet which is then popping. This forces to be
unary as well, since there is no partner it may synch backwards with. But then

and one can apply the loop lemma, hence the total length decreases and
again by induction the result follows.

Suppose finally is binary, then has to be as well, because of the locking
effect discussed above, and again and the loop lemma applies and so does
the inductive hypothesis.

Intuitively, the lemma says that, up to causal equivalence, one can always
reach for the maximum freedom of choice, going backward, and only then go
forward. Even more intuitively, one could picture such traces as parabolas, the
process first draws potential energy from its memories and only then moves
onward. So let us call such traces parabolic.3

3 The converse decomposition as would not work. Indeed, a backward transition
can create some new forward possibility. Consider for instance that can
go to in a backward step followed by a forward one. There is no way
these two steps can be swapped or be cancelling each other as in the argument above.

TEAM LinG

Reversible Communicating Systems 303

Our lemma already has an interesting corollary, namely that backtracking is
consistent with respect to CCS, in the weaker sense that RCCS will not generate
traces reaching processes the projections of which are unreachable in CCS.

Corollary 1. if and only if for some R, and

The only if part is easy, basically saying that forward CCS computations can
be simulated by RCCS ones, a fact that was recorded as an earlier lemma. The
if part follows from the lemma above. Indeed, suppose is an RCCS trace with
source and target R, then the lemma says for some well chosen
forward traces and but then surely must be empty since its source is
a process that has an empty memory and therefore is incapable of backtrack.
So that there is forward trace equivalent to Since forward computations
coincide in both systems, P reduces to

Lemma 11. Let be coinitial and cofinal traces and be forward, then
there exists a forward trace shorter than and such that

We prove this last lemma by induction on the length of If is forward
we are done. Else by lemma 10 we may suppose is parabolic. Let be
the only two successive transitions in with opposite directions and call the
identifiers of Whatever takes off the memories in has to be put back later
down by some forward transition. Else, because is forward the difference
will stay visible. Call the earliest such transition in For the same reason,
that transition has to be the exact inverse of One can then bubble up to
meet with Indeed, if a transition is conflicting with on its way to by con-
struction it must be some forward transition the application of which results
in a memory in which is impossible since no backward transitions happened
since So by applying repeatedly the square lemma, and then applying (5),
one obtains a shorter equivalent and conclude by induction.

Proof of Theorem. With our lemmas 10 and 11 in place, we can handle the
theorem.

Let then be two traces with same source and target. We prove these
are causally equivalent, using a lexicographic induction on a pair consisting of
the sum of the lengths of and and the depth of the earliest disagreement
between them. By lemma 10, we may suppose these are parabolic. Call and

the earliest transitions were they disagree. There are three main cases in the
argument depending on whether these are forward or backward.

1. If is forward and is backward, one has and
for some Lemma 11 applies to which is forward, and which
is parabolic, so has a shorter forward equivalent, and so has a shorter
equivalent and the result follows by induction.

2. If are both forward, they can’t possibly be conflicting.

4 The fact that has an empty memory is essential in the statement. We may
consider again the same example which can move, while its projection

can’t.

TEAM LinG

304 V. Danos and J. Krivine

Suppose they take different additive choices in a same thread, say
respectively pushing on the memory and

Since by assumption and are not the same transition, P and Q have to be
different (not even additively congruent that is), and this difference would stay
visible onward contradicting and beingcofinal.

So whenever they work on a same thread they have to make the same additive
choices. In particular, this rules out the case where they are both unary, and also
the case where they are both binary and working on the same two threads. Let us
check the other cases. If one of the transitions is unary and the other is binary,
their actions can’t coincide on their common memory, since one will push a
triplet of the form and the other will push one of the form for
some If both are binary and only intersect on one memory, then again
the triplets are distinct since the other partner identifiers, say and are
different, because these identifiers come from different threads and all processes
are assumed coherent. In any case, there would be a visible and permanent
difference.

So we know they are indeed concurrent. Call the identifier of Since
is forward and is parabolic, whatever pushes to is staying there onward
in Hence, there must be a transition at in as well, call it so that

That transition has to be of the same arity as and with
else again the difference stays visible onward. Since is parabolic as

well, all transitions in standing in between and are forward and one can
apply repeatedly the square lemma and bubble up to get a trace equivalent
to and of the form A last application of the same square
lemma yields an equivalent with a later earliest divergence with and same
length so that one can call on the induction hypothesis.

3. Suppose finally both and are backward. They can’t possibly be con-
flicting either, because of the locking effect, so they must be concurrent. Either
actions undone by are redone later in in which case one argues as in lemma
11 and shortens into an equivalent or they are not redone and therefore
these same actions must be undone also in else there would be a visible
difference between their visible targets, and one argues as in 2 above.

5 Irreversible Actions

Having finally reached for the theoretical property we wanted, we now turn to a
more practical issue, namely that of integrating unbacktrackable or irreversible
actions in RCCS.

These will be written etc. The transition system is adapted by adding
rules for the new actions:

with ranging over irreversible actions. Since an irreversible action will never be
backtracked, there is no need to remember anything, and we use instead of the

TEAM LinG

Reversible Communicating Systems 305

usual triplet, a placeholder For the same reason, there is no rule inverse to
(commit), and no longer a need to instanciate and in the synchronization
rule. One sees that the syntax hardly changes, and that when all actions are
taken to be irreversible, it essentially becomes CCS. What was proved in the
last section remains valid.

We have seen in Section 3 that all actions that caused the action became de
facto unbacktrackable, even if they were themselves reversible. It seems there-
fore interesting to understand how irreversible actions can “domino-effect” in a
process and this is what we do now.

5.1 Propagating Irreversible Actions

Let stand for the set of occurrences of memories in R. Say a memory is
locked in R if no trace starting from R can modify it, that is to say, whenever

there is an such that for the prefix ordering. Let
be the subset of formed of these locked memories.

Lemma 12. satisfies:

Points 1 and 2 are obvious, point 3 is saying that in order to backtrack a
synch, one needs to do a synch, a fact which we called the locking effect, and
point 4 is saying that to undo some action in one has first to fuse back
with one’s former sibling in the fork.

Coherence alone is not strong enough for these closure properties to capture
all locked memories. For instance, is locked in simply because the
fork sibling is missing. However it does for CCS reachable processes.

5.2 An Example

To illustrate how the lemma works in practice to simplify processes, let us con-
sider the usual encoding of internal sum in CCS:

with chosen reversible and irreversible. With the usual notational simpli-
fications, and representing locked memories with heavy angles

Using clauses 2, 3, 4, one can tag further memories as locked:

1.
2.
3.
4.

TEAM LinG

306 V. Danos and J. Krivine

so that in the end all memories are locked in and and R has been turned
into a weak external sum !5

6 Conclusion

We have proposed an enrichment of CCS with memories which processes can
use to backtrack. Memories are themselves distributed and the syntax stays
close to the original concept of CCS. On the theoretical side, we have proved
that backtracking is done in exact accordance with the true concurrency concept
of causal equivalence. We also have shown how to integrate irreversible actions,
and have given a procedure collecting obsolete memories.

There are many directions in which this study can be extended. First, one
should rephrase this construction in terms of Winskel’s event structures for
CCS [17]. RCCS seems to provide an internal language for reversible event struc-
ture and this should be made a precise statement. Second, one should seriously
study the notion of bisimulation that is generated by the LTS and study pro-
cess composition in RCCS, perhaps using notions of history-preserving bisim-
ulations [18]. Third, preliminary investigations show that the whole strategy
developed here can be imported in There are more things to be re-
membered and the amount of symbol-pushing needed for a comparable theory
gets daunting. So, beginning within the simpler framework of CCS might have
been good start. But is a lot more expressive and this is a strong incentive to
develop a notion of reversible Besides, one could think of bootstrap-
ping the system and encode reversible into

Finally, the example of the internal sum given in the last section is strongly
suggesting that transactional mechanisms can be understood in terms of RCCS.
One starts with a rough encoding of the external sum, which is the simplest
possible transaction in some sense. And since RCCS provides a foolproof dead-
lock escape mechanism on reversible actions, carefully choosing them results in
a correct encoding. We feel that one contribution of the current paper is to lay
down the foundations to explore this matter further.

References

1.

2.
3.

4.

Robin Milner. Communication and Concurrency. International Series on Computer
Science. Prentice Hall, 1989.
Jean-Jacques Lévy. Réductions optimales en PhD, 1978.
Gérard Berry and Jean-Jacques Lévy. Minimal and optimal computation of recur-
sive programs. JACM, 26:148–175, 1979.
Aviv Regev, William Silverman, and Ehud Shapiro. Representation and simulation
of biochemical processes using the process algebra. In R. B. Altman,
A. K. Dunker, L. Hunter, and T. E. Klein, editors, Pacific Symposium on Biocom-
puting, volume 6, pages 459–470, Singapore, 2001. World Scientific Press.

5 By weak external sum, we mean that R has infinite traces where it constantly hesi-
tates between its irreversible actions and

TEAM LinG

Reversible Communicating Systems 307

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Application
of a stochastic name-passing calculus to representation and simulation of molecular
processes. Information Processing Letters, 2001.
Vincent Danos and Jean Krivine. Formal molecular biology done in CCS. In
Proceedings of BIO-CONCUR’03, Marseille, France, volume ? of Electronic Notes
in Theoretical Computer Science. Elsevier, 2003. To appear.
K.V.S. Prasad. Combinators and bisimulation proofs for restartable systems. PhD,
1987.
Jan A. Bergstra, Alban Ponse, and Jos van Wamel. Process algebra with back-
tracking. In REX School Symposium, pages 46–91, 1993.
Gérard Boudol and Ilaria Castellani. Permutation of transitions: An event structure
semantics for CCS and SCCS. Lecture Notes in Computer Science: Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, 354:411–
427, 1989.
Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. A partial ordering se-
mantics for CCS. Theoretical Computer Science, 75:223–262, 1990.
Gérard Boudol, Ilaria Castellani, Matthew Hennesy, and Astrid Kiehn. Observing
localities. In Proceedings MFCS’91, volume 114, pages 31–61, 1991.
Pierpaolo Degano and Corrado Priami. Proved trees. In Automata, Languages and
Programming, volume 623 of LNCS, pages 629–640. Springer Verlag, 1992.
Gérard Boudol, Ilaria Castellani, Matthew Hennesy, and Astrid Kiehn. A theory
of processes with localities. Formal Aspect of Computing, 1992.
Ilaria Castellani. Observing distribution in processes: Static and dynamic localities.
International Journal of Foundations of Computer Science, 6(4):353–393, 1995.
Pierpaolo Degano and Corrado Priami. Non interleaving semantics for mobile
processes. In Automata, Languages and Programming, volume 944 of LNCS, pages
660–667. Springer Verlag, 1995.
Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in
the Acta Informatica, 35, 1998.
Glynn Winskel. Event structure semantics for CCS and related languages. In
Proceedings of 9th ICALP, volume 140 of LNCS, pages 561–576. Springer, 1982.
Marek A. Bednarczyk. Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. ICS PAS Report, April 1991.

TEAM LinG

Parameterised Boolean Equation Systems
(Extended Abstract)

Jan Friso Groote1 and Tim Willemse1,2

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J.F.Groote@tue.nl

2 Faculty of Science, Mathematics and Computing Science,
University of Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

timw@cs.kun.nl

Abstract. Boolean equation system are a useful tool for verifying for-
mulas from modal mu-calculus on transition systems (see [9] for an ex-
cellent treatment). We are interested in an extension of boolean equation
systems with data. This allows to formulate and prove a substantially
wider range of properties on much larger and even infinite state systems.
In previous works [4,6] it has been outlined how to transform a modal
formula and a process, both containing data, to a so-called parameterised
boolean equation system, or equation system for short. In this article we
focus on techniques to solve such equation systems.

We introduce a new equivalence between equation systems, because
existing equivalences are not compositional. We present techniques sim-
ilar to Gauß elimination as outlined in [9] that allow to solve each equa-
tion system provided a single equation can be solved. We give several
techniques for solving single equations, such as approximation (known),
patterns (new) and invariants (new). Finally, we provide several small
but illustrative examples of verifications of modal mu-calculus formulas
on concrete processes to show the use of the techniques.

1 Introduction

Boolean Equation Systems (BESs) [9–11] are systems of the form

where is either a least fixpoint symbol or a greatest fixpoint symbol and
is a propositional formula. These systems can be seen as generalisations of

nested and alternating fixpoint expressions, interpreted over a Boolean lattice.
BESs have been studied in detail by Vergauwen and Lewi [11], and Mader [9,

10] in the context of model checking modal formulae. In [10], Mader
shows that the model checking problem can be solved by solving BESs.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 308–324, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Parameterised Boolean Equation Systems 309

Furthermore, she provides a complete proof system for solving BESs by means
of algebraic manipulations.

Parameterised Boolean Equation Systems (PBESs) (also known as First-
Order Boolean Equation Systems) [4,6,12] are sequences of equations of the
form

where is either a least or a greatest fixpoint symbol, is a data variable of
sort and is a predicate formula. The sort is referred to as
the parameter-space of a parameterised boolean equation.

PBESs form an extension of plain BESs. Groote and Mateescu [4] introduced
these PBESs as an intermediate formalism for model checking processes with
(arbitrary) data. Extending on the results of Mader [9,10], they showed that
their model checking problem could be translated to the problem of solving
PBESs. In [4], they provided four proof rules for approximating the solutions
of single parameterised equations: two for the least fixpoint and two for the
greatest fixpoint. In [6,12] we showed that PBESs can be solved automatically
by an algorithm that combines the essentials of Gauß-elimination [9,10] and
approximation (see e.g. [3]).

While this algorithm worked well for certain equation systems, it did not
work for others as it for instance required transfinite approximations of fixpoint
expressions. The emphasis on automation set a scene where possible remedies
for such situations where hard to find.

Inspired by this latter observation, we take a different approach altogether
in this paper, and focus on algebraic techniques to solve PBESs by hand. While
this may seem a step back to some, being able to solve PBESs by hand provides
a better understanding of the techniques that are involved. We intentionally
proved many properties about systems manually, some of which can be found
in the second part of this paper, with as primary goal to extend the range of
effective techniques to solve parameterised boolean equation systems. Although
it is not the focus of this paper, we expect that these techniques will also have a
positive impact on the mechanised and automatic verification of modal formulas
on processes in a setting with data.

The approach we describe in this paper is similar in spirit to the algebraic
approach for solving BESs, taken by Mader [10]. We separate the problems of
solving PBESs as a whole, and parameterised boolean equations in isolation.
Central to our approach are the notions of a system equivalence and system
ordering that allow us to reason compositionally about PBESs. While in [10], also
a system equivalence is introduced for BESs, it turns out that this equivalence
is not compositional. We illustrate this fact by a simple example in section 3.

Based on our new notion of system equivalence, we present an overall and
complete technique, allowing to solve all PBESs using syntactic manipulations
only, provided the means to solve a single parameterised boolean equation in
isolation are available.

We consequently investigate various techniques for solving a single param-
eterised boolean equation. These include a theorem allowing logical reasoning

TEAM LinG

310 J.F. Groote and T. Willemse

using predicate calculus and results on approximation from [4] in terms of the
new system equivalence.

Some of the parameterised boolean equation systems that we encountered
were not easily solved using known techniques. But we noticed that many of
these had a very similar pattern. For some of the most common patterns we could
give a standard solution. We, however, believe that we have only scratched this
topic on the surface. We expect a situation comparable to solving differential
equations, where identifying and solving differential equations of a particular
form has become a field of its own. There have been a number of typical patterns
that we have not been able to solve and that deserve a separate investigation.

While invariants are an effective tool in diverse areas, esp. program analy-
sis [2], they have not yet been connected to BESs and PBESs. So, we set out
to find their counterpart in parameterised boolean equations. Our notion of an
invariant in equation systems plays a very helpful role in many of the examples
in section 5 and so we believe that it will become a similarly effective tool as
invariants are elsewhere.

The structure of this paper is as follows. Section 2 introduces the terminol-
ogy used throughout this paper, together with a short overview of PBESs, their
semantics and several smaller results. In section 3 an equivalence for PBESs is
introduced and compared against the equivalence for BESs that can be found
in the literature. Section 4 then focuses on techniques for solving PBESs glob-
ally and parameterised boolean equations in isolation. As an illustration of these
techniques, we apply these to several smaller examples in section 5. A full ver-
sion of this paper appeared as [7]. It contains more results, examples and all the
proofs.

Acknowledgements. We thank Marc Voorhoeve, Joost-Pieter Katoen and
Kees van Hee for discussions regarding this paper, and anonymous referees for
their useful comments.

2 Definition of a Parameterised Boolean Equation
System

We are interested in solving sequences of fixpoint equations where the equations
have the form

where indicates a minimal fixpoint, or

where indicates that this is a maximal fixpoint equation.
Each equation has a predicate variable X (from a set of variables) at its

left hand side that depends on zero or more data variables of sorts
For simplicity and without loss of generality, we restrict ourselves

to a single variable at the left hand side in all our theoretical considerations.
We treat data in an abstract way. So, we assume that there are non empty data

TEAM LinG

Parameterised Boolean Equation Systems 311

sorts, generally written using letters D, E, F, that include the sort of booleans
containing and representing false and true, respectively. We have a set of
data variables, with typical elements and we assume that there is some
data language that is sufficiently rich to denote all relevant data terms. For a
closed term we assume an interpretation function that maps to the data
element it represents. For open terms we use a data environment that maps
each variable from to a data value of the right sort. The interpretation of an
open term of sort denoted as is given by where is extended to
terms in the standard way.

The right hand side of each equation is a predicate formula containing data
terms, boolean connectives, quantifiers over (possibly infinite) data domains and
data and predicate variables. Predicate formulae are defined by the following
grammar:

where is a data term of sort X is a predicate variable, is a data variable
of sort D and is a data term. Note that negation does not occur in predicate
formulae, except possibly as an operator in data terms.

In the sequel it turns out to be necessary to lift predicate formulas to functions
from data to formulas. We use conventional typed lambda calculus to denote
such functions. E.g. denotes a function from elements from data sort D
to predicates. Sometimes, the lambda is omitted if that leads to a more compact
notation. For instance is generally simply written as X.

Predicate formulae are interpreted in a context of a data environment and
a predicate environment The semantics of predicate formulae is
defined below. For an arbitrary environment (be it a data environment or
predicate environment), we write for the environment in which the
variable has been assigned the value For a predicate formula a predicate
environment and a data environment we write denoting the formula

in which all free predicate variables X have received the value and all
free data variables have received the value Environments are applied to
functions, where bound variables are respected.

Definition 1. Let be a data environment and be a predicate
environment. The interpretation maps a predicate formula to “true” or
“false” and is inductively defined as follows:

TEAM LinG

312 J.F. Groote and T. Willemse

Consider for an arbitrary data sort D, all (total) functions The set
of all such functions is denoted The ordering on is defined as

iff for all d:D, we have implies The set is a complete
lattice. For a subset A of we write for the infimum of the set A
and for the supremum of the set A.

We denote the set of all predicate environments by The order-
ing on is defined as iff for all we have
The set is also a complete lattice.

Definition 2. A parameterised boolean equation system is inductively defined
as follows: the empty parameterised boolean equation system is denoted and
for a parameterised boolean equation system also is a pa-
rameterised boolean equation system where is a fixpoint symbol and
a predicate formula.

In the remainder of this article, we abbreviate parameterised boolean equa-
tion system with equation system if no confusion can arise. The set of binding
predicate variables in an equation system denoted by is defined as

and i.e. a binding vari-
able is a variable that occurs at the left-hand side of an equation. An equation
system is said to be well-formed iff all binding predicate variables of are
unique. Thus, is not a well-formed equation system. We
only consider well-formed equation systems in this paper. We say an equation
system is closed whenever all predicate variables occurring at the right-hand
side of the equations in (collected in the set are binding variables,
i.e. if an equation system is not closed, we say is open.
We say an equation is solved if contains no predicate variables.
Likewise, an equation system is solved iff all its constituting equations are
solved. We say that a parameterised boolean equation system is solved in X if
the predicate variable X does not occur in any right hand side. The solution of
an equation system is defined in the context of a predicate environment and a
data environment

Definition 3. The solution of an equation system in the context of a predi-
cate environment and a data environment is inductively defined as follows
(cf. definition 3.3 of [10]):

where is defined as

TEAM LinG

Parameterised Boolean Equation Systems 313

In the remainder of this paper, we only consider data-closed equation systems,
i.e. equation systems in which all data variables that occur on the right hand
side of an equation are bound in the left hand side of this equation. This means
that we can use the empty data environment for all our considerations without
affecting the solution of the equation system. In general, we do not explicitly
write down the empty data environment.

As an illustration, consider the equation system For a
given predicate environment its solutions are Note that the so-
lution for is This illustrates that the sequence
in which the equations occur is of importance.

3 Equivalences for Equation Systems

Boolean equation systems (BESs) have been studied in great detail [10]. BESs
are instances of our parameterised boolean equation systems, i.e. the proposition
variables in a BES do not carry data parameters. We introduce two notions of
equivalence. The first equivalence is based on the equivalence between BESs,
and can be found in [10]. We argue that this equivalence is not suitable and
introduce an equivalence that is slightly finer.

Definition 4. Let be equation systems. We write iff for all predi-
cate environments it holds that We write iff both
and The relation is referred to as the standard (equation) system
ordering, whereas the relation ~ is referred to as the standard (equation) system
equivalence.

It follows immediately from the definition of and ~ that is a partial
ordering and ~ is an equivalence relation. However, the standard system equiv-
alence ~ does not allow for compositional reasoning.

To illustrate this, consider the two open BESs and It
is easy to see that since both have the same solutions
for all predicate environments. However, this does not imply that the two BESs
are equivalent in all contexts, since the predicate variable Y can interfere. For
example, if we add the equation to the two BESs, the resulting BESs
are different, i.e. we have since the
solution to the first BES is whereas the solution to the second BES
is

To mend this situation, we redefine the standard system equivalence and the
standard system ordering. Throughout this paper we use this new notion and
not the one from [10].

Definition 5. Let be equation systems. We write iff for all predicate
environments and all equation systems with
it holds that We write iff both and The
relation is referred to as the (equation) system ordering, whereas the relation

is referred to as (equation) system equivalence.

TEAM LinG

314 J.F. Groote and T. Willemse

The relation is reflexive, anti-symmetric and transitive and is an equiv-
alence relation. Furthermore, these relations are compositional, as the following
theorem states.

Theorem 1. Let be equation systems for which
Then

1.
2.

Proof. The second property follows immediately from the definition of Thus,
we concentrate on the first property. We use induction on the length of

1.

2.

Assume is the empty equation system. We must show that but
this holds by assumption,
Let be a predicate environment. Assume is of the form
By definition, equals Us-
ing the induction hypothesis and the monotonicity of equation systems over
environments, this is at most

By another application of the induction hypothesis, we find that this is at
most This equals by
definition. Thus

which concludes the proof.

Corollary 1. For all equation systems we have

1.
2.

and

provided

The standard system equivalence and ordering are very much related to the
system equivalence and ordering, as defined in definition 5. We find that for
closed equation systems the two notions coincide.

Lemma 1. Let and be closed equation systems. Then iff

4 Proof Techniques for Equation Systems

4.1 Global Techniques for Solving Equation Systems

The focus in this section is on algebraic techniques for solving equation systems
as a whole. The first lemma also appeared (in the setting of boolean equation

TEAM LinG

Parameterised Boolean Equation Systems 315

systems) in [10] as lemma 6.3 using a slightly different phrasing. It allows to
substitute the right hand side of an equation for the left hand side in all the
equations preceding it. In [10], this step formed an essential part of the so-called

elimination procedure to solve boolean equation systems.

Lemma 2 (Substitution). Let be an equation system for which X,Y
then:

The sequence in which equations in a parameterised boolean equation system
occur is important. It is only allowed to change this order under very particu-
lar circumstances. The following lemma in this section deals with reordering of
equations.

Lemma 3 (Migration). Let be a solved equation, i.e.
and an equation system, such that then:

The following theorem states that we have the means to solve an equation
system if we can solve a single equation.

Theorem 2. Assume we can derive for all equations
such that X does not occur in Then all closed equation sys-

tems can be rewritten to solved equation systems using the rules of migration
and substitution.

The full version of this paper [7] contains some additional results that apply
globally to an equation system. These allow to change the order of equations
and to transfer results in terms of system ordering to system equivalence.

4.2 Local Techniques for Solving Equation Systems

In theorem 2 it has been shown that we can solve a parameterised boolean
equation system, if we can solve each equation of the form in X,
i.e. if we can find an equivalent equation in which X does not occur in the right
hand side. In this section, we focus on techniques to find such equations.

We do not strive for completeness in any formal sense here. Our focus in
this paper is to yield a set of rules that allows effective manual verification,
and we have shown efficacy by applying our rules to numerous examples some
of which occur in section 5. General incompleteness results indicate that com-
pleteness can only be achieved under particular circumstances. For instance, it
is possible to prove completeness using infinitary logics (see e.g. [8]). But such
means are unwieldy for practical purposes and generally only satisfy a general
desire for completeness results. Completeness can also be achieved for restricted
data types. This is useful as such exercises can reveal new verification rules and
techniques. Albeit interesting, we do not treat such questions in this paper and
postpone these to further investigations in the field.

TEAM LinG

316 J.F. Groote and T. Willemse

A self evident way of solving a single equation is by applying the standard
rules of predicate calculus. In order to use these, we first define logical implication
for our setting.

Definition 6. Let be arbitrary predicate formulae. We write repre-
senting logical implication which is defined as implies for all data
environments and predicate environments We write as a shorthand
for and

Note that in this definition we used a data environment, which is only impor-
tant if free data variables occur in formulae. In line with the rest of this paper,
we omit the data environment elsewhere.

Lemma 4. Let and be predicate formulae such that Then

A straightforward but often laborious method for solving an equation
in X is by means of an iterative approximation of the fixpoint

solution of X, which is possible as we are dealing with a monotonic operators
over a poset. One starts with an initial solution for X being either
(for or (for Then the approximate solutions of the
form are calculated repeatedly. A stable approximant is
an approximant that is logically equivalent to its next approximation. A stable
approximant is in fact the fixpoint solution to the equation.

Definition 7. Let be predicate formulae and X a predicate variable. We
inductively define where is of sort

1.

2.

and

Thus, represents the result of recursively substituting for X in
Note that for any and all predicate formulae the expression
is a predicate formula. Below we state that and are approx-
imations of the solution of an equation and that a stable approximant is the
solution to an equation.

Lemma 5. Let be a predicate formula and be an arbitrary natural number.
Then

1.
2.
3.
4.

Invariants characterise ‘the reachable parameter space’ of a parameterised
boolean equation. As in the verification of programs they can be used to prove
properties that only hold within the reachable state space. Within parameterised

If then
If then

TEAM LinG

Parameterised Boolean Equation Systems 317

boolean equation systems they can be used to simplify equations with a partic-
ular parameter instantiation.

A formal definition of an invariant is given below. In our setting the defini-
tion looks uncommon, but still expresses what is ordinarily understood as an
invariant. Note that our invariants only have the transfer property, and do not
involve an initial state.

Definition 8. Let be an equation and let be a predicate
formula in which no predicate variable occurs. Then, I is an invariant of X iff

The theorem below says that if is a solution for the equation
under invariant I (condition 1) and X is used in an equation in
a situation where I implies X (condition 2), then we may substitute solution
for X in

Theorem 3. Let and be equations and let
be an invariant of X. Let be a parameterised boolean equation system such that

If for some predicate formula such that

1.
2.

and

then

We encountered several typical equation systems for which none of the tech-
niques for finding the solution we discussed so far apply. For instance, iterative
approximation is not always applicable, as the following example shows.

Example 1. Consider the following greatest fixpoint equation:
where N is some arbitrary natural number. By approximating,

we obtain infinitely many approximants, without ever reaching the solution.
Obviously, the solution to this equation should be which can be
further reduced to

In order to be able to solve such an equation effectively, we need to resort
to a different method altogether. We provide generic patterns of equations and
solutions to these. Equations, such as the one from the above example, can then
be recognised to be of a certain form, and be solved by looking them up. Note
that identifying ‘patterns’ is very common in mathematics, for instance when
solving differential equations.

The first pattern is obtained by generalising the equation in the example given
above. Note that the solutions for the minimal and maximal fixpoint equations
are dual. Let be an arbitrary, total function. We assume the existence
of a function written as with the property that
and

TEAM LinG

318 J.F. Groote and T. Willemse

Theorem 4. Let be an equation, where
is an arbitrary total function and X does not occur in and

1.

2.

The solution to X for is

The solution to X for is:

When more than one occurrence of X occurs in the right hand side of the
pattern in theorem 4 we have a straightforward generalisation for which we can
find a solution in a similar vein.

In this case we assume that functions for for some given N
are given. We let be an arbitrary function. We assume
the existence of functions with the property that and

Theorem 5. Let be some arbitrary natural number and let

be an equation, where are arbitrary total functions and X does not
occur in and

1.

2.

The solution to X for is

The solution to X for is

A pattern that we encountered but were not able to solve thus far is the
following:

for arbitrary data sort E. Actually, — and we pose this as a very interesting
open question — it might be possible to device a method to solve all single fixed
point equations of the form by replacing by a first order formula
in which X does not occur. Using Gauß elimination, this would yield a complete
method that allows to transform each parameterized boolean equation system
to a first order formula.

5 Applications

In this section, we study three systems by proving the validity of certain modal
formulas governing their behaviour. We translate the process descriptions and
the formulas to parameterised boolean equation systems that are subsequently
solved. For a detailed account on how these equations can be derived from a

TEAM LinG

Parameterised Boolean Equation Systems 319

process and a formula, we refer to [4, 6, 12]. Although our examples do not use
parallelism, the available techniques are perfectly suited for it. For the remainder
of this paper, we assume the reader is familiar with the use of the specification
language (see e.g. [5]), and the use of the first-order modal with
data [4, 6] to specify logical properties of systems.

5.1 Merging Infinite Streams

Combining several input streams into a single stream is a technique that is
found frequently in streaming media applications. The way streams are combined
depends on a particular application. Here, we study a small system that reads
data from two (infinite) input streams, one-by-one, and produces a new output
stream that is locally ascending, see figure 1. Our particular merge system is

Fig. 1. Combining Two Input Streams into a Single Output Stream

described by the four process equations below. The initial process is Merge.
It reads data from stream via action where and the output is
produced via action

The process Merge reads an arbitrary natural number via channel (ex-
pressed using the sum or choice operator and proceeds by executing process

Or (expressed by +) it reads a value via channel and proceeds with
In the definition of the triangles represents the then-if-else,

saying that if is chosen, and otherwise
is executed.

Clearly, on ascending input streams, the merge system should produce an
ascending output. This is expressed by the following formula where modalities
such as mean that whenever action can be performed in a certain
state, must hold in the next state:

TEAM LinG

320 J.F. Groote and T. Willemse

The process Merge must first be converted to linear form if we are to verify
this property. This is fairly straightforwardly achieved by introducing an addi-
tional parameter Process is represented by whereas
represents process Merge itself. Combining the resulting linear process specifi-
cation with the above formula according to the translation of [4, 6, 12] together
with some simplifications, yields:

where the ascending input/output property holds if holds.
A closer inspection of the equation reveals a striking similarity in the use of

the variables and and, likewise, in the variables and This is in fact
no coincidence. In the linear process, representing process Merge, the variables

and register the last read values of stream 1 and stream 2, respectively.
The variables and appearing in the modal formula have a similar pur-
pose. This redundancy is identified by the invariant
Furthermore, the variable out satisfies the invariant It is
straightforward to verify that both properties are invariants in the sense of defi-
nition 8. Thus, rather than immediately solving this equation, it pays off to solve
the equation with the invariant.

It is straightforward to approximate this equation, where denotes the
approximation.

The approximation is stable and hence it is the solution for
Now we cannot use this solution to construct a solution for

simply because it does not satisfy the invariant. However, if we consider
then using theorem 3 we can use the solution for as the solution for

X. More concretely, is always true.

TEAM LinG

Parameterised Boolean Equation Systems 321

Approximating the fixpoint equation for X directly does not terminate as
quickly and is awkward due to a universal quantifier that remains present in the
approximations.

5.2 An Identity Tag Generator

Many applications depend on a mechanism that produces identity tags for ob-
jects. Illustrative examples of such tags are phone-numbers, but also IP-addresses
and message-header tags in e-mails. In essence, the mechanism for producing
identity tags is a process that writes an infinite stream of identities. We rep-
resent these identities by means of natural numbers, see figure 2. The process

Fig. 2. Identity tag generator

Generator is a generic process that generates identity tags according to some
predefined function that is passed as a parameter to process Generator. The
generator is initialised with the value

Thus, by executing process Generator(succ,0), where succ is the successor
function for natural numbers, we can generate the natural numbers. Most ap-
plications, using the generator, rely on the generator to produce unique tags.
Thus, any two outputs of the system should be different. This is expressed by
the following modal formula. It says that always in the future whenever a tag

is generated, every tag generated later is not equal to The modality
holds in a state if for each action that can be performed holds in the

subsequent state.

An alternative but more complex formulation of this property would be to
store all outputs in a set and check that each tag being generated does not occur
in the set. The fact that this is not needed in the above modal formula is due to
the greatest fixpoint operators which allow to state properties about all infinite
runs of a system. Verifying this modal formula on process Generator allows us
to find the conditions on the generator function that ensures all produced tags
are unique. In order to do so, we need to solve the following equation system:

TEAM LinG

322 J.F. Groote and T. Willemse

Obviously, all universal quantifiers can be removed in the equations above.
Thus, we can rewrite this equation system to the following equivalent equation
system.

These equations are both of the form of the pattern of theorem 4. Hence, the
solution to Y is The solution to X is

which is logically equivalent to This
is exactly the requirement we expected, and it is nice to see that we can also
systematically derive it.

5.3 A Lossy Channel

Consider a simple lossy channel that reads information from a stream, and tries
to send it to the other side where a message is lost occasionally.

We wish to verify that when data is not always lost, messages eventually get
across. We formulate this using the following modal formula

We first translate the process to linear form:

The process is equal to for any and is equal to

The equation system we obtain is the following:

Approximation quickly leads to a solution without involving

where is a stable solution. Thus, in whatever state the process C
starts, messages always get across if not always lost.

TEAM LinG

Parameterised Boolean Equation Systems 323

A slightly more involved property, taken from [1, page 309], says that delivery
via action is fairly treated if there are no paths where is enabled
infinitely often, but occurs only finitely often:

This formula and process C are translated to the following equation system

We approximate Z and find a stable solution in three steps:

We substitute the solution for Z in the second equation obtaining the equa-
tion:

Using one approximation step it is easily seen that the solution of this equa-
tion is So, substitution of this solution in the first equation yields

The property does not hold for our process.

References

1.

2.

3.

4.

5.

6.

J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction. In,
J.A. Bergstra, A. Ponse and S.A. Smolka, Handbook of process algebra, pp. 293–
330, Elsevier, 2001.
P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 1981.
E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In First IEEE Symposium on Logic in Computer Science,
LICS’86, pages 267–278. IEEE Computer Society Press, 1986.
J.F. Groote and R. Mateescu. Verification of temporal properties of processes in
a setting with data. In A.M. Haeberer, AMAST’98, volume 1548 of LNCS, pp.
74–90. Springer-Verlag, 1999.
J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra,
A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, chapter 17, pages
1151–1208. Elsevier (North-Holland), 2001.
J.F. Groote and T.A.C. Willemse. A checker for modal formulas for processes
with data. Technical Report CSR 02-16, Eindhoven University of Technology,
Department of Mathematics and Computer Science, 2002.

TEAM LinG

324 J.F. Groote and T. Willemse

7.

8.

9.

10.

11.

12.

J.F. Groote and T.A.C. Willemse. Parameterised boolean equation systems. Com-
puter Science Report 04/09, Department of Mathematics and Computer Science,
Eindhoven University of Technology, 2004.
D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983.
A. Mader. Modal model checking and gauß elimination. In E. Brinksma,
R.W. Cleaveland, K.G. Larsen, T. Margaria, and B. Steffen, Tools and Algorithms
for Construction and Analysis of Systems, First International Workshop, TACAS
’95, Aarhus, Denmark, volume 1019 of Lecture Notes in Computer Science, pages
72–88. Springer-Verlag, 1995.
A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD
thesis, Technical University of Munich, 1997.
B. Vergauwen and J. Lewi. Efficient local correctness checking for single and
alternating boolean equation systems. In S. Abiteboul and E. Shamir, editors,
Proceedings ICALP’94, volume 820 of Lecture Notes in Computer Science, pages
302–315. Springer-Verlag, 1994.
T.A.C. Willemse. Semantics and Verification in Process Algebras with Data and
Timing. PhD thesis, Eindhoven University of Technology, February 2003.

TEAM LinG

An Extensional Spatial Logic
for Mobile Processes

Daniel Hirschkoff

LIP – ENS Lyon, France

Abstract. Existing spatial logics for concurrency are intensional, in the
sense that they induce an equivalence that coincides with structural
congruence. In this work, we study a contextual spatial logic for the

which lacks the spatial operators to observe emptyness, parallel
composition and restriction, and only has composition adjunct and hid-
ing. We show that the induced logical equivalence coincides with strong
early bisimilarity. The proof of completeness involves the definition of
non-trivial formulas, including characteristic formulas for restriction-free
processes up to bisimilarity. This result allows us to isolate the exten-
sional core of spatial logics, decomposing spatial logics into a part that
counts (given by the intensional operators) and a part that observes
(given by their adjuncts). We also study how enriching the core exten-
sional spatial logic with intensional operators affects its separative power.

1 Introduction

Spatial logics extend classical logic with constructions to reason about the struc-
ture of the underlying model (when applied to concurrent systems, the models
are processes). The additional connectives belong to two families. Intensional
operators allow one to inspect the structure of the model. A formula is
satisfied whenever we can split the structure into two parts satisfying the cor-
responding subformula In presence of restriction in the underlying
model, a structure P satisfies formula if we can write P as with

satisfying Finally, formula 0 is only satisfied by the empty structure. Con-
nectives and ® come with adjunct operators, called guarantee and hiding

respectively, that allow one to extend the structure being observed. In this
sense, these can be called contextual operators. P satisfies whenever the
spatial composition (using of P with any structure satisfying satisfies
and P satisfies if P satisfies

Previous studies have demonstrated that in existing spatial logics, the in-
tensional character prevails. In the static case, where spatial logics are used to
reason about semi-structured data [CG01a], or about memory along the execu-
tion of a program that manipulates pointers [Rey02], the guarantee operator is
eliminable, in the sense that every formula involving can be replaced by an
equivalent formula that does not make use of [Loz03, Loz04, DGG04]. In spa-
tial logics for concurrency [CG00, CC01], that also include a temporal modality,

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 325–339, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

326 D. Hirschkoff

this is not the case. However, the equivalence on processes induced by the logic
coincides with structural congruence, a very fine grained relation on processes
— much finer in particular than behavioural equivalence [San01, HLS02, CL04].
This situation is in contrast with standard modal logics for concurrency like the
Hennessy-Milner (HM for short) logic [MPW93], for which logical equivalence is
known to coincide with bisimilarity.

Technically, the ability for spatial logic to capture structural congruence on
processes is based on two aspects of its expressiveness. The first aspect is the
ability to count, i.e., to express arithmetical properties about the number of
substructures exhibited by a given system. The second aspect is the definability
of modalities à la Hennessy-Milner within the logic, i.e., one is able to capture
parts of the behaviour of processes. This has been shown in [San01, HLS02], and
further studied in [HLS03], using a logic with a restricted set of operators, and
applying it to both the Ambient calculus and the (modality formulas
are also derived in [CL04]). In [HLS03], in particular, the derivability of modality
formulas for the and for Mobile Ambients heavily relies on the use of
intensional operators, in conjunction with guarantee: and 0 are used to isolate
some kind of elementary components of interaction (called ‘threads’), while the
revelation operator makes it possible to test the free names of a process, in order
to deduce behavioural properties.

In this work, we renounce to the intensional connectives, and study the re-
sulting contextual spatial logic, called only has spatial composition adjunct

revelation adjunct a simple temporal modality and an operator
for fresh name quantification. We apply to reason about the and
we show extensionality of the logic, in the sense that induces the same separa-
tive power as strong early bisimilarity (and thus as Hennessy-Milner logic). This
result suggests that the two families of operators in spatial logics serve different
purposes: while intensional operators allow one to count (as illustrated by the
study in [DLM04], where it is shown that a particular static spatial logic, in
which is eliminable, characterises Presburger arithmetic), we show that con-
textual operators are enough to bring extensionality.

To establish our main result, we exploit the characterisation of strong bisim-
ilarity (written ~) in terms of barbed equivalence (written The elementary
observations available in are indeed reminiscent of the definition of However,
technically, we still need to define a way to perform instantaneous observations
(to detect barbs) in which is a priori not obvious given the definition of the
logic. We are only able to define formulas for barbs when imposing a bound on
the size of processes, but this is enough for our purposes. Another aspect of the
expressive power we need in order to capture is the ability to let two pro-
cesses ‘pass the same tests’. This is achieved by defining characteristic formulas
for restriction-free processes up to ~. These formulas exploit the constructions
for barbs, and are relatively concise thanks to some specific properties of bisimi-
larity on the calculus without restriction. As hinted above, due to the absence of
intensional operators, our constructions depart from the formulas for modalities
defined in related works [San01, HLS02, HLS03, CL04].

TEAM LinG

An Extensional Spatial Logic for Mobile Processes 327

While we use in order to show that logical equivalence for coincides
with ~, the argument does not follow the classical proof that is included in
~, and we instead use the ideas we just sketched. We briefly study also an
adaptation of that is closer to the observations given in (detecting barbs is
primitive in We show that is also an extensional logic.

Having isolated a core extensional spatial logic, we may wonder what lies
between and full spatial logics for concurrency. To address this question, we
establish some results about the expressive and separative power we obtain when
enriching with (some) intensional operators. These results suggest that from
the point of view of separability, the most powerful intensional operator is ®.

Outline. We introduce the calculus and the logic we study in Section 2. Formulas
for (some of the) modalities and to characterise bisimilarity classes
of restriction-free processes are presented in Section 3. In Section 4, we exploit
these constructions to prove that is extensional. Section 5 is devoted to the
discussion of variants and enrichments of and we conclude in Section 6.

2 Preliminaries

2.1 The

The finite synchronous is introduced using an infinite set of names,
ranged over using Processes, ranged over using P, Q, R,...,
are defined by the following syntax:

Trailing occurrences of 0 will often be omitted. Name is bound in an input-
prefixed term and in a restricted term P. A name that is not bound
is free, and fn(P) will denote the set of free names of P. We write for
the process resulting from the capture-avoiding replacement of with in P.

Actions of the labelled transition system, ranged over with are defined by
the following syntax (notice the presence of free input):

Given an action we define its names free names and bound
names as usual. Figure 1 presents the transition rules that define the
operational semantics of the (symmetrical versions of rules involving

parallel composition are omitted). We write whenever

or
Structural congruence, is the least equivalence relation that is a congruence

and that satisfies the rules of Figure 2. Given a (possibly empty) sequence of
names will stand for We will also
implicitly reason up to permutation of consecutive restrictions, thus treating
as a set of names.

TEAM LinG

328 D. Hirschkoff

Fig. 1. Early operational semantics

Fig. 2. Structural congruence

The public consists in the set of restriction-free processes. We shall
also call P a public process whenever for some Q in the public
Given a process P, we write size(P) for the number of prefixes of P. By definition,
if then size(P) = size(Q). A process P is an atom if size(P) = 1.

We define some basic observations, usually called barbs, as follows: we write
whenever

for some and such that
We shall write relation composition using juxtaposition, and the negation of

a relation will be written We do not give the usual definition of reduction,
and instead equivalently (see [SW01]) set

2.2 Behavioural Relations

Definition 1 (Behavioural Equivalences).

Strong bisimilarity, ~, is the greatest symmetrical relation such that when-
ever P ~ Q and there is such that and
Strong barbed bisimilarity, is the greatest symmetrical relation such that
whenever
(i) For any and
(ii) For any s.t. there exists s.t. and
P and Q are strong barbed equivalent, written iff for any process
R,

In the sequel, we shall often omit the word ‘strong’ when mentioning these
equivalences. The labelled transition system-based and reduction-based presen-
tations for behavioural equivalence coincide, as expressed by the following result.

TEAM LinG

An Extensional Spatial Logic for Mobile Processes 329

Theorem 1 ([SW01]). P ~ Q iff

We shall need the following results about behavioural equivalence.

Proposition 1. Define like ~ except that for actions of the form mn,
when comparing two processes P and Q, we only consider names belonging to
the (finite) set where Then

Lemma 1. and

Lemma 2. Given a process P, we have the following:

1.
2.

There exist names and a public process such that
If for some integer then P cannot perform a sequence of
reductions of length equal to

Proof. The first result follows from the two laws (when
and P ~ where is a prefix of the form or

with

Note that the results of this lemma hold because we work in a finite calculus.
The following lemma shows that on the public bisimilarity is a

quite discriminating relation.

Lemma 3. Given two public processes P and Q, if P ~ Q, then fn(P) = fn(Q),
size(P) = size(Q) and moreover P and Q have the same number of input (resp.
output) prefixes. In particular, for P public, P ~ 0 implies

2.3 The Logic

Formulas of the contextual spatial logic, are ranged over using and
are given by the following grammar:

Name is bound in and we let stand for the set of free names of
(resp. stands for the formula obtained by replacing (resp.

permuting) all occurrences of with (resp. and in

Definition 2 (Satisfaction in Logical Equivalence). The judgement
saying that process P satisfies formula is defined as follows:

always;
iff not (also written

iff and
iff there exists s.t. and

iff for any Q s.t.
iff
iff for any s.t. and

TEAM LinG

330 D. Hirschkoff

P and Q are logically equivalent, written iff for any formula
iff

We will also make use in our constructions of the following derived formulas:

The interpretation of and (‘always’) is standard.
iff there exists Q s.t. and Operators and are right

associative, and we define the following abbreviation: and

We also set and
A process P satisfies iff P, put in parallel with processes satisfying
satisfies iff P can perform reductions and then satisfy

Proposition 2. If then for any Q, implies

This result implies that and that for any P and iff
where is the HM modality corresponding to [MPW93].

3 Expressiveness of the Logic

3.1 Auxiliary Formulas – Characterising Basic Processes

We start by some technical constructions to capture elementary terms.

We briefly comment on these formulas. Using the strong interpretation of
operator we can capture the class of processes that are bisimilar to an atom:

TEAM LinG

An Extensional Spatial Logic for Mobile Processes 331

formula atom says that these are processes that necessitate the addition of a
context in order to evolve in one step of reduction to a process satisfying 0.
We then distinguish between the input and output polarity by exploiting the
ability for a process to interact on a received fresh channel, in formula
This formula is then used to derive formulas to characterise the ~-class of some
processes of sizes 1, 2 and 3. The following lemma states this formally:

Lemma 4. The above formulas have the following interpretation:

iff P ~ 0.
iff there is no reduction sequence

with such that cannot perform any
iff or for some for formula atom,

name is not fixed.
iff or for some
iff and iff for some

When iff for some
iff for some
iff when and

Proof (Sketch). The interpretation of formulas nil, atom and is
easy. We sketch the proof of some of the other cases. We say that P is ~-atomic
if

Suppose and take s.t. and We put P in
presence of a process Q bisimilar to or to for some Since
reduces to a process that admits as a free name and
and thus because The reduction is necessarily an interaction
between P and Q, since it leads to a term satisfying and Hence

for some and As we can conclude.
Suppose We put P in presence of a process Q satisfying

the reduction step must be an interaction between P and Q, and P is ~-atomic,
otherwise we could not reach a ~-atomic process. Necessarily because
otherwise it could not react with Q and lead to a process satisfying

Suppose and P cannot interact at and can
receive at leading to a process which is bisimilar to This is enough
to conclude.

Suppose and We reason like in
the case of to deduce that P is put in presence with a process bisimilar to

This implies that and hence

3.2 Detecting Barbs

Although allows us to put a process in an arbitrary context built using parallel
composition and restriction, what is missing to capture behavioural equivalence
is the ability to perform instantaneous observations. We achieve this by intro-
ducing formulas to characterise barbs, i.e., the possibility for a term to offer an

TEAM LinG

332 D. Hirschkoff

interaction. We have not been able to define such formulas in the general case.
Instead, our constructions depend on the size of the tested process, and are thus
parametric over a natural number

Lemma 5. Given a process P and an integer we have:

iff P is bisimilar to a term of the form
for some names and

iff and with

 iff for some when

iff for some when

Proof (sketch). We focus on formula We first show that if for
some and then When P is put in parallel with the processes
specified by the formula for we can observe the following two reaction steps:
P can interact with the process satisfying thus liberating a process
that can perform an output on which can in turn react with the term satis-
fying yielding a state where formula is satisfied (thanks to
communications on

Suppose now and The scenario described by
formula expresses a property of the reductions of a process of the form

where the are tester processes specified by the for-
mula:

can perform an input at followed by an output at
starts by performing an input on and then (independently from the

received value) is liable to do outputs at
just performs an input at while canperform inputs at

First observe that, since and are fresh, process cannot reduce
on its own, and can only perform an input at

Then, consider a reduction and suppose that it comes from a
reduction the remaining inactive. We show that formula
does not hold for For this, we look for a term s.t. and

TEAM LinG

An Extensional Spatial Logic for Mobile Processes 333

1. Suppose the reduction to results from performing a free output at
(the case where performs a bound output is treated similarly) and

synchronising with then we obtain a process

where for some and This entails that we can
derive from an interaction between and As
a result, process is stuck in all possible evolutions of U, since does
not know names and So the only possible reductions of U are reductions
resulting from on its own. Since we can conclude using
Lemma 2 that
Suppose the reduction to results from performing a reduction step on
its own, to a process Then there are two cases:

(a) Either there exists R s.t. and for some and
In this case, we reason as above to show that

and in the resulting state, process
is stuck, which shows that The case where R does

a bound output at is treated similarly.
(b) Either such an R does not exist, in which case is frozen in

all possible evolutions of and, since

2.

So finally, there is no process fulfilling the conditions stated above. This
implies that no reduction of T involving only P can lead to a state where the
formula is satisfied. So necessarily, P has to interact with which
is possible only if P can perform an output at

The interpretation of formula follows the same ideas, the testing process
being specified using formula testln instead of duo.

When clear from the context, we will omit the superscript
we will do so in particular when P is fixed (cf. the proof of Lemma 8).

3.3 Characteristic Formulas for Public Processes

As remarked above, has the modality due to the presence of constructor
We further have derivability of the following modalities, that will be useful

below to define characteristic formulas.

Lemma 6 (Modality Formulas). The formulas above have the following in-
terpretation, when

iff and for some

iff and for some

TEAM LinG

334 D. Hirschkoff

Proof (Sketch). In the case of we put the candidate process in pres-
ence of a process bisimilar to for fresh. The remainder of the
formula specifies that after two steps of reduction, the process must not exhibit
a barb on and must satisfy the continuation formula This is possible only
if a communication on has happened, preceded by the output at

The formula for the free output modality follows similar ideas, the tester
process being more complex due to the necessity to recognise two names in the
prefix that is triggered.

Remark 1. An important property of our constructions is that at the end of the
‘experiment’, no garbage process is left, so that we can go on with the satisfaction
of This allows us to avoid using in formulas like is done e.g. in [HLS03].

Remark 2 (Bound Output Modality). Although we have no formal proof for this,
we believe that we cannot define a formula for the bound output modality in
general in Intuitively, the reason is that in order to define a formula
we should be able to impose satisfaction of under the restriction binding the
extruded name, which is not possible (see also the extensions of in 5.2).

However, we can observe the ability for a process to perform a bound output:

Lemma 7. Given P, and such that there exists a formula

such that iff for some and

For lack of space, we do not present the proof of this result. The main idea is to
express the fact that there is no way for a process coming from ‘outside the tested
process’ to interact on the name received at We use for this some formulas
whose interpretation contain a form of universal quantification on names (to give
an idea, this is the case for example for formula atom introduced in 3.1).

The formulas given by Lemma 6 allow us to derive the following result.

Theorem 2 (Characterising Public Processes). For any public process P,
there exists a formula such that for any process Q, iff P ~ Q.

Proof (Sketch). We exploit the characterisation of ~ in Proposition 1, as well
as Lemma 3 to simplify the formulas we manipulate. We define by induction
over the size of the transition system for generated by P, using ni l for the
bisimilarity class of 0. According to the result given in Proposition 1, we first
pick fresh names where is the number of input prefixes in P, and
define We define as the following set of actions:

We also set and, for a free input or output action
We then define:

where stands for and satisfies

TEAM LinG

An Extensional Spatial Logic for Mobile Processes 335

The construction of is rather standard, and consists in describing the
transitions a state can make by expressing the possible actions and their contin-
uations, as well as those actions that cannot be performed.

Remark 3. The characteristic formulas we define are valid for the whole calculus,
and in particular they are also satisfied by all processes with restriction that
are bisimilar to a public process. The logic also allows us to characterise some
processes outside this class, as illustrated by the following formula

which captures the processes bisimilar to for (this is
the case e.g. for We have not been able to define characteristic
formulas for the whole calculus, though, and do not believe that this would be
feasible along the lines of the constructions presented above.

Remark 4 (On the Role of We could get rid of in the constructions we
have presented. This is possible by defining a formula that says
that name is not liable to be used in the first interactions of a given process
P provided is not sent to P (we can easily express (dis)equality of names in
Note that this property is different from being a fresh name for P, as a process
bisimilar to 0 can have free occurrences of names. Intuitively, to obtain exten-
sionality (Theorem 4 below), we only need to be able to pick enough ‘unactive
names’ to build the characteristic formula for a given public process. Without
having checked formally that this is the case, we do believe that our main result
can be proved in a logic without

4 Extensionality

We now show that coincides with ~.

Theorem 3 (Behavioural Implies Logical). P ~ Q implies

Proof (Sketch). We prove by structural induction on that whenever P ~ Q
and we have The cases corresponding to the adjunct operators

and follow from congruence properties of ~ w.r.t. parallel composition and
restriction, respectively (see [SW01]).

Lemma 8 (Characteristic Formulas for Barbed Bisimilarity). Given a
process P and a finite set of names such that there exists a
formula such that for any Q such that iff

Proof. The formula is defined by induction on the size of P as follows:

TEAM LinG

336 D. Hirschkoff

In this formula, stands for the quotient of modulo The above conjunc-
tion is finite because is finite and reduction is image-finite up to ([SW01]).
The definition is well-formed because is smaller (in the senze of size) than P
in the recursive calls.

By definition of iff as long as all free names of Q are
inspected by formula which is guaranteed by the condition

Theorem 4 (Logical Implies Behavioural). implies P ~ Q.

Proof. Suppose by Theorem 1, i.e., for some R.
Write using Lemma 2 where is public and

We have that and hence

Take and define Observe
that we have Suppose now this means that for
all such that which entails by Lemma 8 that

implies
and hence, since and by transitivity of we obtain

a contradiction. So and finally

Note that the proof above exploits the two presentations of ~: characteristic
formulas for public processes are derived using the labelled transition system,
while the overall structure of the proof follows the definition of

5 Variants and Extensions of

5.1 Changing the Primitive Observation

The most tedious constructions in Section 3 are the formulas to detect barbs
(cf. Theorem 5). We consider here a variant of called in which we remove

and add a primitive formula whose satisfaction is defined by iff
With respect to allows one to build less contexts, while

providing the ability to perform instantaneous observations independently from
the size of the tested process.

We first remark that the only place where is used in the formulas presented
in Section 3 is in the definition of that can be rewritten in asfollows:

To show that logic induces an equivalence that also coincides with ~,
the completeness proof of Section 4 has to be adapted. The main point is to
observe that testing for against public processes is enough to get the same
discriminative power as as expressed by the following lemma.

Lemma 9. Define iff for any R public, Then

This result allows us to replay the proof of Theorem 4 in the case of
without using and we have:

TEAM LinG

An Extensional Spatial Logic for Mobile Processes 337

Theorem 5. Two processes are logically equivalent for iff they are bisimilar.

5.2 Enriching with Intensional Operators

Our main result, given by Theorems 3 and 4, isolates the extensional subset of
spatial logics for concurrency. To explore the spectrum between extensional and
intensional spatial logics, we now consider enrichments of with (some of the)
intensional operators 0, and ®.

Observing Emptyness. Formula 0 gives us an elementary form of observation: in
(using an obvious notation), we can detect garbage, in the sense that

we can use 0 to separate for example processes 0 and (which are
bisimilar). As a consequence, using 0 instead of nil in the constructions of Sec-
tion 3, we can define characteristic formulas for ‘minimal-size public processes’,
i.e., characteristic formulas up to ~ that are satisfied only by public processes.

Separating. In we get a finer equivalence than ~. In particular, we have:

Lemma 10. In logical equivalence on public terms coincides with

On the full calculus, it would be interesting to study the relationship with dis-
tributed bisimulation [CH89], a behavioural equivalence that is able to separate
for example In presence of restriction, though, the
definition of distributed bisimulation is rather complex, even for CCS [Kie89].

Revealing Names. The results in [HLS03] show that revelation brings a lot of
expressiveness to the logic. In formula 0 is derivable, as well as a formula
to test the free occurrence of a name at any depth in a process:

(the second formula is from [CG01b] — note that in the static case, can
be defined using only [CG04]). Having the ability to observe under restrictions,
we can define a modality formula for bound output:

Lemma 11. In given a formula and a process P such that

there exists a formula such that iff

and for some

We believe that characteristic formulas up to ~ for the whole calculus are
definable in this enriched logic. ® actually gives us a greater precision. Indeed,
the induced logical equivalence is rather fine-grained, but we have not been able
to provide a precise characterisation of it. For example, can be
separated from while and are equivalent
in

Combining Intensional Observations. In on the other hand, the logic
separates the two latter processes while equating the first two. Finally, logic

is intensional: logical equivalence coincides with This can be shown
by adapting the proofs in [HLS02] using the constructions of the present paper.

TEAM LinG

338 D. Hirschkoff

The following graph sums up the observations made above. Vertices contain
relations, and two relations situated on the same vertex coincide stands
for the equality induced by the logic An arrow between two edges repre-
sents strict inclusion between the corresponding relations, and unrelated ver-
tices correspond to uncomparable relations. More detailed explanations are given
in[Hir04].

6 Conclusion

We have defined a spatial logic and shown that the induced logical equivalence
coincides with bisimilarity. We can remark that while HM logic and induce the
same equivalence on processes, model-checking in seems a priori much more
difficult, due to the presence of We can also remark that has a restricted set
of operators, and is minimal in the sense of [Loz03]: getting rid of a connective
of hinders the expressive and separative powers of the logic.

The observations provided in suggest that this logic is to barbed equiv-
alence what Hennessy-Milner logic is to bisimilarity. The constructions in 3.2
show that, to some extent, has the ability to express the observations of
We do not see how the converse could hold, i.e. how hiding could be expressed
within At least we believe there is no compositional encoding that could
translate a formula of the form into A perhaps more interesting
question would be to find out whether is eliminable in the logic resulting from
the ‘union’ of and along the lines of adjunct elimination in [Loz03, Loz04,
DGG04].

In contrast with existing spatial logics, that all include intensional opera-
tors, satisfaction in is defined with no direct reference to structural congru-
ence. It would be interesting to look for a way to recover some of the separating
power of intensional spatial logics while keeping logical equivalence close to some
existing, previously defined, relation on processes. In another direction, we
would like to see whether we can combine the ideas presented here with the con-
structions defined in [CL04], which would mean studying a contextual
logic with no reference to names. Logical equivalence is up to name permutation
in the name-free logic of [CL04]: we conjecture that is bisimilarity up
to name permutation. This would mean that extensionality of spatial logics is
brought by an observation that is already suggested by the results of this
paper.

Finally, our techniques do not apply directly if we renounce to the strong in-
terpretation we adopt for (which we use here to count, in some way): studying
logical equivalence in a ‘weak version’ of represents a challenging question.

TEAM LinG

An Extensional Spatial Logic for Mobile Processes 339

Acknowledgements. We would like to thank Étienne Lozes, Davide Sangiorgi and
Luís Caires for inspiring discussions about the results presented in this paper.
This work has been supported by european FET - Global Computing project
PROFUNDIS and by the french ACI GEOCAL.

References

[CC01]

[CG00]

[CG01a]

[CG01b]

[CG04]

[CH89]

[CL04]

[DGG04]

[DLM04]

[Hir04]

[HLS02]

[HLS03]

[Kie89]

[Loz03]

[Loz04]

[MPW93]

[Rey02]

[San01]

[SW01]

L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). In
Proc. of TACS’01, LNCS. Springer Verlag, 2001.
L. Cardelli and A. Gordon. Anytime, Anywhere, Modal Logics for Mobile
Ambients. In Proc. of POPL’00, pages 365–377. ACM Press, 2000.
L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic.
In Proc. of ESOP’01, volume 2028 of LNCS, pages 1–22. Springer Verlag,
2001. invited paper.
L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In
Proc. of TLCA’01, volume 2044 of LNCS. Springer Verlag, 2001.
G. Conforti and G. Ghelli. Decidability of Freshness, Undecidability of
Revelation. In Proc. of FOSSACS’04, volume 2987 of LNCS, pages 105–
120. Springer Verlag, 2004.
I. Castellani and M. Hennessy. Distributed Bisimulations. J. ACM,
36(4):887–911, 1989.
L. Caires and E. Lozes. Elimination of Quantifiers and Undecidability in
Spatial Logics for Concurrency. this volume, 2004.
A. Dawar, P. Gardner, and G. Ghelli. Games for the Ambient Logic. draft,
2004.
S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A Logic You Can Count on.
In Proc. of POPL 2004. ACM Press, 2004.
D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes. Technical
report, LIP - ENS Lyon, 2004. to appear.
D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and
Decidability in the Ambient Logic. In Proc. of LICS’02, pages 423–432.
IEEE Computer Society, 2002.
D. Hirschkoff, E. Lozes, and D. Sangiorgi. Minimality Results for the Spatial
Logics. In Proc. of FSTTCS’03, volume 2914 of LNCS, pages 252–264.
Springer Verlag, 2003.
A. Kiehn. Distributed Bisimulations for Finite CCS. Technical Report
7/89, University of Sussex, 1989.
E. Lozes. Adjunct Elimination in the Static Ambient Logic. In Proc. of
EXPRESS’03, ENTCS. Elsevier, 2003.
E. Lozes. Separation logic preserves the expressiveness of classical logic. In
Proc. of SPACE’04, 2004.
Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile
processes. Theoretical Computer Science, 114(1):149–171, 1993.
J. Reynolds. Separation logic: a logic for shared mutable data structures.
In Proc. of LICS’02. IEEE Computer Society, 2002.
D. Sangiorgi. Extensionality and Intensionality of the Ambient Logic. In
Proc. of 28th POPL, pages 4–17. ACM Press, 2001.
D. Sangiorgi and D. Walker. The a Theory of Mobile Processes.
Cambridge University Press, 2001.

TEAM LinG

Timed vs. Time-Triggered Automata

, Leonid Mokrushin1, P.S. Thiagarajan2, and Wang Yi1

1 Dept. of Information Technology, Uppsala University, Sweden
{pavelk,leom,yi}@it.uu.se

2 Dept. of Computer Science, National University of Singapore
thiagu@comp.nus.edu.sg

Abstract. To establish a semantic foundation for the synthesis of exe-
cutable programs from timed models, we study in what sense the timed
language (i.e. sequences of events with real-valued time-stamps) of a
timed automaton is recognized by a digital machine. Based on the non-
instant observability of events, we propose an alternative semantics for
timed automata. We show that the new semantics gives rise to a natural
notion of digitalization for timed languages. As a model for digital ma-
chines we use time-triggered automata – a subclass of timed automata
with simplified syntax accepting digitalized timed languages. A time-
triggered automaton is essentially a time table for a digital machine (or
a digital controller), describing what the machine should do at a given
time point, and it can be easily transformed to an executable program.
Finally, we present a method to check whether a time-triggered automa-
ton recognizes the language of a timed automaton according to the new
semantics.

1 Introduction

Timed automata [AD94] have been recognized as a basic model for real time
systems. A number of tools based on timed automata have been developed (e.g.

and applied successfully to model and verify industrial sys-
tems (e.g. A recent line of work uses timed automata for the
schedulability analysis of tasks in real time systems [FPY02,KY04,WH04]. The
main idea here is to use timed automata to describe the arrival patterns of ex-
ternal events triggering real-time tasks. One implicit assumption in this line of
work and its extensions to synthesize executable code is that the ar-
rival sequences of events described by the automaton can be admitted instantly
by the interrupt-processing system of the given platform. However, this is not
realistic in realizations involving a digital computer driven by a system clock
with a fixed granularity of time.

Therefore, we wish to study the notion of timely executions of task arrival
patterns in settings where the implementation model is explicitly clock-driven.
Time-triggered architecture [KB01,Kop98] is one such well-recognized implemen-
tation paradigm for the design of safety-critical real-time systems, a program-
ming language Giotto [HKH03] provides an abstract model for implementation

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 340–354, 2004.
© Springer-Verlag Berlin Heidelberg 2004

1

TEAM LinG

Timed vs. Time-Triggered Automata 341

of time-triggered systems. In a time-triggered system, computation steps are
controlled by one global clock; at each time moment only actions enabled by
the clock value can be taken. Thus, computations are time-deterministic in such
systems.

We present a (finite state) model of computations running on time-triggered
architectures called time-triggered automata accepting digitalized versions of
timed languages. A time-triggered automaton may take transitions (to consume
external events) only at integer time points determined by periodic and non-
periodic timing constraints denoted and respectively. A transition la-
beled with means that every time units, it should check if has occurred;
a transition labeled with means that in time units from now, it should
check if has occurred. Our time-triggered automata capture only the basic
aspect of time-triggered architectures. In the present setting they could as well
be called “digital automata”. However, we consider time-triggered architectures
and protocols to be important and the model we propose here is a simple but
potentially useful first step towards formalizing this framework in an automata
theoretic setting. A time-triggered automaton is essentially a timetable for a digi-
tal controller, describing what the controller should do at a given time point, and
it can be easily transformed to an executable program. Time-triggered automata
can be viewed as special kinds of timed automata. However, their intended role
is to capture the behavior of digital machines and their syntax is geared towards
achieving this in a transparent way.

Our main goal is to semantically tie together the timed-automata based spec-
ifications to the time-triggered-automaton based implementations. We do so by
associating a deadline parameter with the timed automaton. The idea is that
there is a buffer1 into which the event arrivals generated by the timed automaton
will be put and each such event will be observable for time units from the time
it was released (i.e. put into the buffer). A correct implementation mechanism is
then required to pick up each event before its deadline expires. The parameter

associated with the timed automaton and the unit of time associated with
the time-triggered automaton are with reference to the same global time scale.
Further, both types of automata share a common alphabet of events. These two
components provide the handle for semantically relating the language of the
timed automaton to that of the time-triggered automaton.

More specifically, given a timed automaton TA and the deadline parameter
we extract the timed language of TA. In loose terms, this language
is obtained by taking a timed trace of TA and converting the timestamp of
each event into an integer-valued time provided does not exceed This
captures the idea that an event released at time can be, in principle, picked up
at integer time before the deadline associated with this release has expired.

We then associate a digitalized timed language with the corresponding time-
triggered automaton TTA and formulate the notion of TTA correctly accepting

1 For ease of presentation we consider the buffer to be FIFO, but the same ideas apply
also to random access buffer modeled as a multiset.

TEAM LinG

342 et al.

of the timed language of TA. This notion is intended to capture
the processing by TTA of the request patterns generated by TA. Each event
generated by TA will be put in the buffer with an associated timer set to
At integer time points dictated by its transition relation, the TTA will pick
up a specified sequence of events from the buffer provided none of these events
have an expired timer. This whole process fails anytime an event misses its
deadline before it gets picked by the TTA. In order to simplify the presentation
we have identified the servicing of the request represented by an event with
being picked up by the TTA in time. In other words, we have abstracted away
the tasks associated with the events and their timely executions on the chosen
platform which may be limited resource-wise. Further, we assume the same fixed
observability period (i.e. deadline) for each event.

Finally, we show that it is possible to effectively decide whether a TTA cor-
rectly services the request patterns generated by the TA. The proof technique
is an adaptation of the timed automaton based technique used in [FPY02] for
solving schedulability problems.

1.1 Related Work

In the literature on timed automata, there has been a considerable amount of
work related to discretization issues, e.g. [HMP92,LY97,GHJ97] where just the
timed traces with integral timestamps of events are used to characterize the real
time semantics, and to identify (digitizable) dense-time properties that can be
checked based on the integral traces. A recent study on digitalization is [OW03]
which is also a very good source for other related work. Despite the overlap
in terminology the key difference is that here we do not consider the actual
timed traces of a timed automaton. Rather, we study in what sense the timed
traces of an automata can be recognized by a digital computer (i.e. a digital
controller). The controller should consume (or record) all the timed traces of a
timed automaton, not only those in which the timestamps of events are integers.
Due to the non-instant observability of events, this consumption can take place at
any integer time point shortly (within time units) after the event has occurred.

The idea of checking whether all events generated by an environment are
picked-up by a synchronous program sufficiently fast has been also studied
in Here authors use ESTEREL programs an-
notated with temporal constraints as event handlers to consume events. A timed
automata model of the application can be automatically generated out of such
a program. Then the behavior of the model is checked against the environ-
ment (modeled again in ESTEREL with added non-deterministic primitive and
then translated to a timed automaton). The presented methodology has been
implemented in the tool TAXYS and successfully used for industrial
applications. Our focus here is on the basic semantic issues that arise in the in-
teraction between timed automata and digital machines and our study is carried
out in a language-independent automata theoretic setting. We consider timed
automata as timed specifications and study in what sense such a specification
involving dense time is implemented by a digital machine that is described as

TEAM LinG

Timed vs. Time-Triggered Automata 343

time-triggered automaton. For our correctness checking coincides with
checking of throughput constraint satisfaction described in

Recently, a new semantics for timed automata geared towards their imple-
mentation was proposed in [WDR04]. This work is also based on non-instant
observability of events. Its main goal is to detect timed automata where two
consecutive actions are taken shortly one after another. When this is not the
case, the timed automaton can be implemented as an event-driven controller
using sampling. In contrast with our semantics, this work deals with real timed
traces. Also the implementation simulates timed automaton specification of a
controller whereas in our case there is no timed automata model of a controller
(in our case, the environment in the only specification).

The rest of the paper is organized as follows: Section 2 contains a brief in-
troduction to timed automata and a detailed description of the and
gives two alternative formalizations of digitalization. The syntax and semantics
of time-triggered automata is defined in Section 3. Section 4 presents a cor-
rectness criterion for time-triggered automata and our technique for verifying
correctness. Section 5 concludes the paper.

2 Timed Automata: and Digitalization

In the following, we briefly introduce the standard semantics for timed automata.
To capture the non-instant observability of timed events, we present a new se-
mantics for timed automata. It gives rise to a simple and natural notion of
digitalization for timed languages.

2.1 Timed Automata

A timed automaton [AD94] is a standard finite-state automaton extended with
a finite collection of real-valued clocks. Events are accepted by an automaton at
real-time points satisfying given timing constraints. Assume a set of real-valued
clocks denoted by and a finite alphabet whose elements represent events.

Definition 1. A timed automaton is a tuple where

is a set of real-valued clocks,
is a finite alphabet of events,
is a finite set of locations,

is the initial location, and
is the set of edges (describing possible transitions).

The set of clock constraints is defined as a set of conjunctive formulas
of atomic constraints in the form: or where are
clocks, and are natural numbers. A clock valuation

is a function mapping clocks to non-negative real numbers. We
use to denote the clock assignment which maps each clock to the value

TEAM LinG

344 et al.

and for to denote the clock assignment which maps
each clock in to 0 and agrees with for the other clocks (i.e. An edge

represents a transition from location to location
accepting an input symbol (we will call it an event) and resetting clocks
in to zero, if the current values of clocks satisfy

Fig. 1. An example timed automaton

An example timed automaton is shown in Figure 1. It consists of the set of
locations where is the initial location, the set of clocks
the alphabet of events and the set of clock constraints

A timed event is a pair where is an event accepted by after
time units since has been started. This absolute time is called a

timestamp of the event A timed trace is a (possibly infinite) sequence of timed
events over events associated with the corresponding
timestamps where

Definition 2. A run of a timed automaton over a timed
trace is a (possibly infinite) sequence of the form

where is a clock valuation, satisfying the following conditions:

for all
for all there is an edge such that
satisfies and

The timed language over alphabet is the set of all timed traces
for which there exists a run of over

For example, the timed automaton shown in Figure 1 can run over the fol-
lowing timed trace:

2.2 The and Digitalization

One can interpret a timed automaton as the model of an environment producing
events. For example, at some real-time points a plant can produce events to
which a controller should respond. It is a natural assumption that each such event
remains observable for a short time interval during which it can be picked up

TEAM LinG

Timed vs. Time-Triggered Automata 345

by a controller. However, the non-instant observability of events is not reflected
in the standard semantics for timed-automata. We introduce the to
capture the fact that each event remains observable for time units after its
occurrence.

Assume that an event occurring at time is put in a communication buffer
between the environment and the controller and remains there until consumed
by the controller or expired at We introduce a queue to represent the
buffer between the environment and the controller. Elements of are pairs
where is an event and is the relative deadline of in We denote

the queue with a pair inserted in the back of it, and the queue
with removed from it where is the head of the queue We write

for the queue in which deadlines in all pairs are decreased by The
states of a timed automaton in the are in the form: where

is the current location,
is the current clock valuation,
is the current event queue, and
is the current time i.e. the global time elapsed since the automaton has

been started in the initial state.

For simplicity, we assume that all events are associated with a fixed constant
 (by we denote the set of positive natural numbers). However, the

setting can be easily extended to allow the constant to be a positive rational
number.

Definition 3. Let be a positive natural number. The of a
timed automaton with initial state where is an
empty queue and is a labeled transition system defined by the following
rules:

Consumption: if such that
Production: if such that

satisfies and

Delay:

If an event has not been consumed after time units by means of consumption
transition then no other consequent event would be consumed later. Such a state
is considered as a failure of a controller to consume all events. Note also that
environments are allowed to produce infinitely many events in a finite time.
Naturally, a controller for such environments cannot be implemented.

In order to describe how events produced by a timed automaton are consumed
by a digital machine, we introduce a notion of a digitalized timed trace. In the

several events can be consumed at the same time but only in the order
they have been produced, i.e. the controller cares about dependencies between
events.

Definition 4. An timed trace in is a (possibly infinite)
sequence such that there exists a path in where

TEAM LinG

346 et al.

are labels on the consumption transitions in the order in which
they occur on the path, are their absolute timestamps respectively,
and for all

The timed language over alphabet according to the
is the set of all timed traces in for

We shall see (in the following subsection) that for each run of
can have several corresponding timed traces in which the distance
between the real-valued timestamp and corresponding digitalized timestamp for
each event is limited by For the case when there is only one such

timed trace for each run of This is a useful property of our
notion of digitalization. It means that any sequence of events with timestamps
in the standard semantics will be caught by at least one digitalized trace. This
enables to formulate the correctness criterion as a language inclusion property.

2.3 An Alternative Characterization

We present an alternative characterization of the timed language
for timed automata. This characterization establishes a connection between a
timed trace and its versions. In the following we use rounded-up
time points where denotes the least integer such that

Definition 5. For a timed trace , an
timed trace is a (possibly infinite) sequence such
that there exists a sequence where for all

and is a non-decreasing sequence of timestamps.
The timed language over alphabet is the set of all

timed traces where

For all are equal to 0, and 1-rounded-up timed trace can be con-
structed just by rounding-up all timestamps of all timed events. Moreover, there
is just one 1-rounded-up timed trace for each timed trace For example,
for the timed trace the 1-rounded-up timed
trace is

Intuitively, an event occurring at a real-valued time point should remain
observable by the controller until the closest integral time point Therefore,
all events with timestamp such that are consumed by a
digital machine at the nearest greater (or equal) integer point

For there are several timed traces for each timed trace.
Each timed trace describes at which (integer) time point each
event is consumed. A timed event can be consumed at any time point

where Also, for each two timed events
and in the same timed trace where the event must be handled
before the event For example, for and the timed trace we have
two examples of digitalized timed traces: and

TEAM LinG

Timed vs. Time-Triggered Automata 347

In the following proposition we state the equivalence of language
and language. It will allow us to use timed traces in-
stead of ones and to exploit the fact that the former can be obtained
from a timed trace in a natural way by rounding-up the timestamps of all its
events.

Theorem 1. For each timed automaton

Proof. By induction on the length of the timed trace accepted by

3 Time-Triggered Automata

In this section, we present an automaton model for time-triggered systems and
define the digitalized languages they accept. Time-triggered systems, in contrast
to event-driven systems, run according to a given timetable. They have a global
reference clock and the behavior of the system at each time point is determined
by a part of the timetable corresponding to the value of the global clock. We
want to remark again that time-triggered automata can be easily represented as
timed automata and we introduce them only to capture the behavior of digital
machines syntactically in a transparent way.

Similar to finite automata, time-triggered automata are finite labeled directed
graphs. An input alphabet for these automata is a finite set of finite event se-
quences. We will refer to each such sequence as a request. We could use single
events instead of sequences but this would make it awkward for the automata
to be able to read several events at one integer time point. Each transition of a
time-triggered automaton is labeled with a request and a time constraint from

where (read as “at denotes instantaneous (non-
periodic) constraints and (read as “every time units”) denotes periodic
constraints. Intuitively, constraints specify a pattern of time points at which
requests are accepted by a time-triggered automaton. If a request is specified
together with a periodic constraint then the automaton will check every time
units whether it is on the input. Instantaneous constraints determine only a
single time point for handling the corresponding request.

Definition 6. A time-triggered automaton is a tuple where

is a finite alphabet of events,
S is a finite set of locations,

is the initial location, and
is a finite set of edges.

We will use to denote and to denote
We use symbol null to denote an empty sequence of events

(sequence of length 0).

Figure 2 shows a time-triggered automaton recognizing the digitalized lan-
guage of the timed automaton in Figure 1. For example, in state every 1 time

TEAM LinG

348 et al.

Fig. 2. An example time-triggered automaton

unit, the automaton checks if has occurred, and if is observed, it consumes
and moves to In if ba is observed at time 3 (since it entered it

consumes ba and moves back to If nothing is observed (represented by null)
in at time 3, the automaton moves to

Time-triggered automata are non-deterministic in general. However, in order
to make them implementable one has to deal with the deterministic subclass
which can be obtained by prohibiting the following pairs of transitions outgoing
from the same location:

where

where and

From now on we will consider only deterministic time-triggered automata.

3.1 Semantics

Generally, time-triggered automata can make the same types of transitions as
timed automata, i.e. they can either change the location performing an action or
delay in the same location. An automaton may change the location only when
a transition outgoing from this location is enabled. Transitions are enabled at
certain time points determined by their time constraints and the global time.
Each edge with instantaneous constraint is enabled when exactly time units
elapsed since the automaton has entered the location. Each edge with periodic
constraint is enabled every time units after the automaton has entered the
location.

A state of the time-triggered automaton is a pair where is
a location in and is the time since has entered

Definition 7. The semantics of a time-triggered automaton with
initial state is a labeled transition system defined by the following rules:

TEAM LinG

Timed vs. Time-Triggered Automata 349

if and

if and
if

The condition where is the greatest integer such that
in the third rule ensures that no integer time point can be skipped

by a delay transition. Allowing real-valued delays is not necessary here, but it
will help us later when we will compose timed automata and time-triggered
automata together. Note, that in the transition system for a deterministic
there cannot be a state with two outgoing transitions labeled by the same
request Now we can define a run of over a digital timed trace (time
trace with integral timestamps only). Let where

and be the function unrolling a request associated with
the timestamp into a digital timed trace.

Definition 8. A run of a time-triggered automaton overa
digital timed trace is a sequence of the form

where is a location in satisfying the following requirements:

for all there is a transition and there is no

transition in the transition system induced
by

The language is the set of all digital timed traces for which there
exists a run of over

The first requirement says that must consume all timed events at the
correct time and in the specified order. We consider consuming a request (a
sequence of events) as consuming several events at the same time point, but in
the order in which they appear in the request. The second requirement specifies
when a request can be consumed. Note, that if only a transition labeled by
null is enabled then it must be taken immediately. By this, we want to ensure
deterministic behavior of

4 Correctness Checking

We now show in which sense a time-triggered automaton handles correctly
the events produced by a timed automaton where each event expires within

time units after having been released.
For time-triggered automata we apply maximal progress assumption, i.e. if

a particular transition of is enabled and there is a corresponding request

TEAM LinG

350 et al.

(sequence of events produced by on the input it must be performed im-
mediately. This gives us temporal determinism of the composition of and

does not have to guess whether to perform an action or whether
to leave the events in the buffer and perform this action at the next time tick.

Ideally we want that for each timed trace of the corresponding
timed trace should be accepted by The problem is that when

there are several timed traces for each timed trace
For example, the shown in Figure 3(a) has a run over the timed trace

Given there are several traces for for in-
stance and Let us assume that we are given
the shown in Figure 3(b) which can run over but cannot run over

However, according to the maximal progress assumption, as appears in
at 0.5, it should be picked up by no later than at 1. Unfortunately,
does not accept which means that it is not correct with respect to and

(even if there exists an timed trace for which is accepted by
Thus, for given and we want to select just those timed

traces which correspond to the maximal progress assumption for namely
and check whether they are accepted by

Fig. 3. A timed automaton (a) and a time-triggered automaton (b)

Definition 9. Given and a finite timed trace we define the notion of
promptly accepting an timed trace inductively.

1.
2.

If is the length of then is accepted promptly.
If then is accepted promptly iff is
accepted promptly, is accepted by and no timed
trace for where is also accepted by

Finally we say that (possibly infinite) sequence is accepted promptly iff
all its finite prefixes are accepted promptly.

Now we can define our notion of correctness.

Definition 10. Given a timed automaton and a time-triggered
automaton we say that is correct with respect to and iff for
each timed trace there exists an timed trace which
is promptly accepted by

TEAM LinG

Timed vs. Time-Triggered Automata 351

As timed trace specifies all servicing time points within the
deadline and prompt acceptance corresponds to a possible run of (sat-
isfying the maximal progress assumption) in which all events are picked-up in
specified time points, the above definition ensures that no deadline will be missed.

For the case it follows at once that the correctness criterion can be
captured by a simple language inclusion property as stated below.

Proposition 1. For a time-triggered automaton is correct with
respect to a timed automaton and iff

Proof. For prompt acceptance coincides with (simple) acceptance and
for each timed trace there exists exactly one timed trace
According to Definition 5,

We now propose an effective method (which can in fact be automated) to
verify the correctness of with respect to and Our strategy is to
reduce this verification problem to the problem of checking schedulability for
timed automata extended with asynchronous tasks.

In [FPY02] a classical notion of schedulability has been extended to timed
automata asynchronously releasing tasks for execution when discrete transitions
are taken. Tasks have to complete their execution before the deadline. A process-
ing unit (e.g. CPU) executes the released tasks stored in a queue according to
some scheduling policy (e.g. FPS or EDF). The goal of the schedulability analysis
is then to check that all the released tasks meet their deadlines along all possible
runs of an automaton.

Since we consider as a device which handles requests that come from
it is natural to interpret as a timed automaton extended with asyn-

chronous tasks. Each request produced by corresponds to a task annotated
with the relative deadline equal to When released by a task is put in the
task queue, which we will denote In its turn, can be seen as a processing
unit (Run-function in [FPY02]) that executes the ready queue of tasks according
to a scheduling strategy (First Come First Served (FIFO), in our case). The set-
ting used to perform an automatic verification of the correctness of with
respect to and is shown in Figure 4.

Fig. 4. The setting for verification of correctness of w.r.t.

TEAM LinG

352 et al.

We define a machine used for automatic correctness checking
of with respect to and as a triple A state of

is where is a location in is a clock assign-
ment, is a state of the task queue is a location in and is
the time elapsed since has entered

We denote the queue with a pair inserted in the back of the queue,
and the queue with removed
from it, where are the foremost pairs in the queue

Otherwise, it is not possible to perform We remove
events from the queue in the order they have been inserted (FIFO).

Definition 11. The semantics of where
with initial state is a labeled transition

system defined by the following rules:

if and
if it is possible to perform

and or where
if and if

then there is no enabled edge labeled with request in such that it is
possible to perform

A state of is called faulty if for some pair
an event misses its deadline, i.e. is called schedulable iff no
faulty state is reachable from the initial state of

Theorem 2. is correct with respect to and iff is
schedulable. Further, one can effectively decide the schedulability of

Sketch of Proof. The first part of the result follows from the construction of
According to Definition 10 we are looking for timed

traces promptly accepted by for each run of As follows from Propo-
sition 1 and Definition 3, each such timed trace corresponds to a
path in the labeled transition system for We can view prompt acceptance
of such a word as a path in the transition system obtained as the synchronous
product of and the transition system induced by Now, production,
consumption, and delay transitions in this product correspond to the transitions
of respectively. Faulty states in correspond to states
in where event consumption failed.

The second part of the result boils down to a straightforward adaptation
of the decidability argument for the schedulability of timed automata extended
with tasks developed in [FPY02]. In this work, a timed automaton extended with
tasks, the task queue, the Run-function, and a scheduling policy are encoded as
a timed automaton and the schedulability problem is reduced to the reachabil-
ity of a predefined faulty state. As corresponding to the Run-function is
deterministic, it can be easily encoded in this timed automaton instead of the
Run-function.

TEAM LinG

Timed vs. Time-Triggered Automata 353

5 Conclusions

In this paper we propose to use timed automata (TAs) as event-triggered models
for real time applications. A real time application may be a plant or simply a real
time environment that generates sequences of events according to the pattern
and timing constraints specified by a timed automaton. The sequences of events
are picked up and served by a digital controller. We are aiming at synthesizing
executable code (implementing a digital controller) for time-triggered architec-
tures from such event-triggered specifications. As a first step, we abstract away
from the computation tasks associated with the events, and only focus on the
mechanism for admitting the events into the time-triggered environment before
their observability deadlines expire. We have developed an automaton model
called time-triggered automata (TTAs) to model finite state implementations of
a controller that services the request patterns modeled by a timed automaton.
A time-triggered automaton is deterministically driven by a timetable defined
w.r.t. a fixed granularity of time. It is intended to be a finite state abstraction
of computations realized on a time-triggered architectures [KB01,Kop98].

To relate the behaviors specified using TAs and TTAs, we have proposed a
new semantics for TAs based on the non-instant observability of events, which
gives rise to a simple notion of digitalization of timed languages. This enables to
formulate the correctness criterion on TTA implementations of TA specifications
as a language inclusion property. Our main result is that we can effectively decide
whether a TTA correctly services the request patterns generated by a TA, that
is, the TTA implements the TA specification.

We hope that the results presented in this paper may serve as a semantic basis
for automatic code generation from abstract specifications in real time settings.
Currently we are looking at how to automatically synthesize time-triggered au-
tomata from timed automata according to the correctness criterion presented in
this paper.

References

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.
T. Amnell, E. Fersman, P. Pettersson, H. Sun, and W. Yi. Code synthesis
for timed automata. Nordic Journal of Computing, 9(4):269–300, 2002.
V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil,
and S. Yovine. Taxys = Esterel + Kronos. A tool for verifying real-time
properties of embedded systems. In Proceedings of International Conference
on Decision and Control, CDC’01. IEEE Control Systems Society, 2001.
M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.

Kronos: A model-checking tool for real-time systems. In Proceedings of
CAV’98, volume 1427 of LNCS, pages 546–550. Springer–Verlag, 1998.
J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F. Lars-
son, P. Pettersson, and W. Yi. Verification of an audio protocol with bus
collision using UPPAAL. In Proceedings of CAV’96, pages 244–256. LNCS,
1996.

[AD94]

TEAM LinG

354 et al.

[BPS00]

[DY00]

[FPY02]

[GHJ97]

[HKH03]

[HMP92]

[KB01]

[Kop98]

[KY04]

[LPY97]

[LY97]

[OW03]

[STY03]

[WDR04]

[WH04]

Valérie Bertin, Michel Poize, and Joseph Sifakis. Towards validated real-
time software. In Proceedings of the 12 th Euromicro Conference on Real
Time Systems, pages 157–164. IEEE, 2000.
E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine.
Taxys: a tool for the developpment and verification real-time embedded
systems. In Proceedings of CAV’01, volume 2102 of LNCS. Springer–Verlag,
2001.
A. David and W. Yi. Modeling and analysis of a commercial field bus
protocol. In Proceedings of Euromicro Conference on Real-Time. IEEE
Computer Society, 2000.
E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous
processes: Schedulability and decidability. In Proceedings of TACAS’02,
volume 2280 of LNCS, pages 67–82. Springer–Verlag, 2002.
V. Gupta, T. Henzinger, and R. Jagadeesan. Robust timed automata. In
Hybrid and Real-Time Systems, pages 331–345, Grenoble, France, 1997.
Springer Verlag, LNCS 1201.
T.A. Henzinger, C.M. Kirsch, and B. Horowitz. Giotto: A time-triggered
language for embedded programming. Proceedings of the IEEE, 91(1):84–99,
January 2003.
T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
Proceedings of ICALP’92, volume 623 of LNCS, pages 545–558. Springer-
Verlag, 1992.
H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, Special Issue on Modeling and Design of Embedded Software,
2001.
H. Kopetz. The time-triggered model of computation. Proceedings of the
19th IEEE Systems Symposium (RTSS’98), 1998.

and Wang Yi. Decidable and undecidable problems in schedula-
bility analysis using timed automata. In Proceedings of TACAS’04, volume
2988 of LNCS, pages 236–250. Springer–Verlag, 2004.
K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.
K. G. Larsen and W. Yi. Time-abstracted bisimulation: Implicit specifica-
tions and decidability. Information and Computation, 134(2):75–101, 1997.
J. Ouaknine and J. Worrell. Revisiting digitization, robustness and decid-
ability for timed automata. In Proceedings of LICS’03, pages 198–207. IEEE
Press, 2003.
J. Sifakis, S. Tripakis, and S. Yovine. Building models of real-time sys-
tems from application software. Proceedings of the IEEE, Special issue on
modeling and design of embedded systems, 91(1):100–111, 2003.
M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From
timed models to timed implementations. In Proceedings of HSCC’04, vol-
ume 2993 of Lecture Notes in Computer Science, pages 296–310. Springer–
Verlag, 2004.
L. Waszniowski and Z. Hanzálek. Analysis of real time operating system
based applications. In Proceedings of FORMATS’03, volume 2791 of LNCS,
pages 219–233. Springer-Verlag, 2004.

TEAM LinG

Extended Process Rewrite Systems:
Expressiveness and Reachability*

and

Faculty of Informatics, Masaryk University Brno
Botanická 68a, 602 00 Brno, Czech Republic
{kretinsky,rehak,strejcek}@fi.muni.cz

Abstract. We unify a view on three extensions of Process Rewrite Sys-
tems (PRS) and compare their expressive power with that of PRS. We
show that the class of Petri nets is less expressive up to bisimulation
equivalence than the class of PA processes extended with a finite state
control unit. Further we show our main result that the reachability prob-
lem for PRS extended with a so called weak finite state unit is decidable.

1 Introduction

An automatic verification of current software systems often needs to model them
as infinite-state systems, i.e. systems with an evolving structure and/or operat-
ing on unbounded data types. Infinite-state systems can be specified in a number
of ways with their respective advantages and limitations. Petri nets, pushdown
automata, and process algebras like BPA, BPP, or PA all serve to exemplify this.
Here we employ the classes of infinite-state systems defined by term rewrite sys-
tems and called Process Rewrite Systems (PRS) as introduced by Mayr [May00].
PRS subsume a variety of the formalisms studied in the context of formal veri-
fication (e.g. all the models mentioned above).

A PRS is a finite set of rules where is an action under which
a subterm can be reduced onto a subterm Terms are built up from an empty
process and a set of process constants using (associative) sequential “.” and
(associative and commutative) parallel operators. The semantics of PRS
can be defined by labelled transition systems (LTS) – labelled directed graphs
whose nodes (states of the system) correspond to terms modulo properties of “.”
and and edges correspond to individual actions (computational steps) which
can be performed in a given state. The relevance of various subclasses of PRS
for modelling and analysing programs is shown e.g. in [Esp02], for automatic
verification see e.g. surveys [BCMS01,Srb02].

*

* *
This work has been supported by grant No. 201/03/1161.
The co-author has been supported by Marie Curie Fellowship of the European
Community Programme Improving the Human Research Potential and the Socio-
economic Knowledge Base under contract number HPMT-CT-2000-00093.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 355–370, 2004.
© Springer-Verlag Berlin Heidelberg 2004

**,

TEAM LinG

356 et al.

Mayr [May00] has also shown that the reachability problem (i.e. given terms
is reducible to for PRS is decidable. Most research (with some re-

cent exceptions, e.g. [BT03,Esp02]) has been devoted to the PRS classes from
the lower part of the PRS hierarchy, especially to pushdown automata (PDA),
Petri nets (PN) and their respective subclasses. We mention the successes of
PDA in modeling recursive programs (without process creation), PN in mod-
eling dynamic creation of concurrent processes (without recursive calls), and
CPDS (communicating pushdown systems [BET03]) modeling both features.
All of these formalisms subsume a notion of a finite state unit (FSU) keeping
some kind of global information which is accessible to the redices (the ready
to be reduced components) of a PRS term – hence a FSU can regulate rewrit-
ing. On the other hand, using a FSU to extend the PRS rewriting mechanism
is very powerful since the state-extended version of PA processes (sePA) has
a full Turing-power [BEH95] – the decidability of reachability is lost for sePA,
including all its superclasses (see Figure 1), and CPDS as well.

This paper presents a hierarchy of PRS classes and their respective extensions
of three types: fcPRS classes ([Str02], inspired by concurrent constraint program-
ming [SR90]), wPRS classes PRS systems equipped with weak FSU
inspired by weak automata [MSS92]), and state-extended PRS classes [JKM01].
The classes in the hierarchy (depicted in Figure 1) are related by their expressive
power with respect to (strong) bisimulation equivalence. As the main contribu-
tion of the paper we show that the reachability problem remains decidable for
the very expressive class of wPRS. This result deserves some additional remarks:

It determines the decidability borderline of the reachability problem in the
mentioned hierarchy; the problem is decidable for all classes except those
with Turing power. In other words, it can be seen as a contribution to studies
of algorithmic boundaries of reachability for infinite-state systems.
In the context of verification, one often formulates a property expressing
that nothing bad occurs. These properties are called safety properties. The
collection of the most often verified properties [DAC98] contains 41% of such
properties. Model checking of safety properties can be reduced to the reach-
ability problem. Moreover, many successful verification tools concentrate on
reachability only. Therefore, our decidability result can be seen as a contri-
bution to an automatic verification of infinite-state systems as well.
Given a labelled transition system with a distinguished ac-
tion we define a weak trace set of a state as

where means that there is some such that and
is equal to without actions. Two systems are weak trace equivalent

if the weak trace sets of their initial states are the same. So far it has been
known that weak trace non-equivalence is semi-decidable for Petri nets (see
e.g. [Jan95]), pushdown processes (due to [Büc64]), and PA processes (due
to [LS98]). Using the decidability result, it is easy to show that the weak

TEAM LinG

Extended Process Rewrite Systems 357

trace set is recursive for every state of any wPRS. Hence, the weak trace
non-equivalence is semi-decidable for (all subclasses of) wPRS.
Our decidability result has been recently applied in the area of cryptographic
protocols. Hüttel and Srba [HS04] define a replicative variant of a calculus
for Dolev and Yao’s ping-pong protocols [DY83]. They show that the reach-
ability problem for these protocols is decidable as it can be reduced to the
reachability problem for wPRS.

The outline of the paper is as follows: after some preliminaries we introduce
a uniform framework for specifying all extended PRS formalisms in Section 3 and
compare their relative expressiveness with respect to bisimulation equivalence in
Section 4. Here we also solve (to the best of our knowledge) an open problem
on the relationship between the PN and sePA classes by showing that PN is
less expressive (up to bisimulation equivalence) than sePA. In Section 5 we show
that all classes of our fcPRS and wPRS extensions keep the reachability problem
decidable. The last section summarises our results.

Related Work: In the context of reachability analysis one can see at least two
approaches: (i) abstraction (approximate) analysis techniques on stronger ‘mod-
els’ such as sePA and its superclasses with undecidable reachability, e.g. see a
recent work [BET03], and (ii) precise techniques for ‘weaker’ models, e.g. PRS
classes with decidable reachability, e.g. [LS98] and another recent work [BT03].
In the latter one, symbolic representations of set of reachable states are built
with respect to various term structural equivalences. Among others it is shown
that for the PAD class and the same equivalence as in this paper, when prop-
erties of sequential and parallel compositions are taken into account, one can
construct nonregular representations based on counter tree automata.

2 Preliminaries

A labelled transition system (LTS) is a tuple where S is a set
of states or processes, Act is a set of atomic actions or labels,
is a transition relation (written instead of is
a distinguished initial state.

We use the natural generalization for finite sequences of actions
The state is reachable if there is such that

A binary relation R on set of states S is a bisimulation [Mil89] iff for each
the following conditions hold:

Bisimulation equivalence (or bisimilarity) on a LTS is the union of all bisim-
ulations (i.e. the largest bisimulation).

Let Const = {X, . . .} be a countably infinite set of process constants. The
set of process terms (ranged over by is defined by the abstract syntax

TEAM LinG

358 et al.

where is the empty term, X Const is a process
constant (used as an atomic process), and ‘.’ mean parallel and sequential
compositions respectively.

The set is the set of all constants occurring in a process term
We always work with equivalence classes of terms modulo commutativity and
associativity of and modulo associativity of ‘.’ We also define
and

We distinguish four classes of process terms as:
1 – terms consisting of a single process constant only, in particular
S – sequential terms - without parallel composition, e.g. X.Y.Z,
P – parallel terms - without sequential composition, e.g.
G – general terms with arbitrarily nested sequential and parallel compositions.

Definition 1. Let be a countably infinite set of atomic actions,
such that An (process rewrite system)

is a pair where

R is a finite set of rewrite rules of the form where
are process terms and is an atomic action,
is an initial state.

Given PRS we define as the set of all constants occurring in
the rewrite rules of or in its initial state, and as the set of all actions
occurring in the rewrite rules of We sometimes write instead
of

The semantics of is given by the LTS where
and is the least relation satisfying the

inference rules:

If no confusion arises, we sometimes speak about a “process rewrite system”
meaning a “labelled transition system generated by process rewrite system”.

Some classes of correspond to widely known models as finite state
systems (FS), basic process algebras (BPA), basic parallel processes (BPP), pro-
cess algebras (PA), pushdown processes (PDA, see [Cau92] for justification), and
Petri nets (PN). The other classes were introduced (and named as PAD, PAN,
and PRS) by Mayr [May00]. The correspondence between classes
and acronyms just mentioned can be seen in Figure 1.

3 Extended PRS

In this section we recall the definitions of three different extensions of process
rewrite systems, namely state-extended PRS (sePRS) [JKM01], PRS with a fi-
nite constraint system (fcPRS) [Str02], and PRS with a weak finite-state unit

TEAM LinG

Extended Process Rewrite Systems 359

In all cases, the PRS formalism is extended with a finite state
unit of some kind.

sePRS. State-extended PRS corresponds to PRS extended with a finite state
unit without any other restrictions. The well-known example of this extension is
the state-extended BPA class (also known as pushdown processes).

wPRS. The notion of weakness employed in the wPRS formalism corre-
sponds to that of weak automaton [MSS92] in automata theory. The
behaviour of a weak state unit is acyclic, i.e. states of state unit are ordered
and non-increasing during every sequence of actions. As the state unit is fi-
nite, its state can be changed only finitely many times during every sequence of
actions.

fcPRS. The extension of PRS with finite constraint systems is motivated
by concurrent constraint programming (CCP) (see e.g. [SR90]). In CCP the
processes work with a shared store (seen as a constraint on values that variables
can represent) via two operations, tell and ask. The tell adds a constraint to the
store provided the store remains consistent. The ask is a test on the store – it
can be executed only if the current store implies a specified constraint.

Formally, values of a store form a bounded lattice (called a constraint system)
with the lub operation (least upper bound), the least element tt, and the
greatest element ff. The execution of changes the value of the store from

to (provided – consistency check). The can be executed
if the current value of the store is greater than

The state unit of fcPRS has the same properties as the store in CCP. We add
two constraints to each rewrite rule. The application of a rule corresponds
to the concurrent execution of and rewriting:

a rule can be applied only if the actual store satisfies and
the application of the rule rewrites the process term and changes the store
to

We first define the common syntax of the aforementioned extended PRS and
then we specify the individual restrictions on state units.

Definition 2. Let be a countably infinite set of atomic actions,
such that An extended is a tuple

where

M is a finite set of states of the state unit,
is a binary relation over M,

R is a finite set of rewrite rules of the form where
and

Pair forms a distinguished initial state of the system.

The specific type of an extended is given by further requirements
on An extended is

TEAM LinG

360 et al.

without any requirements on 1

iff is a partially ordered set.
iff is a bounded lattice. The lub operation (least upper

bound) is denoted by the least and the greatest elements are denoted by
tt and ff, respectively. We also assume that

To shorten our notation we prefer mt over As in the PRS case, instead
of where we usually write

The meaning of (process constants used in rewrite rules or
in and (actions occurring in rewrite rules) for a given extended PRS

is also the same as in the PRS case.
The semantics of an extended system is given by the corre-

sponding labelled transition system where2

and the relation is defined as the least relation satisfying the inference rules
corresponding to the application of rewrite rules (and dependent on the concrete
formalism):

and two common inference rules

where and

Instead of (1,S)-sePRS, (1,S)-wPRS, (1, S)-fcPRS,... we use a more natural
notation seBPA, wBPA, fcBPA, etc. The class seBPP is also known as multiset
automata (MSA) or parallel pushdown automata (PPDA), see [Mol96].

4 Expressiveness

Figure 1 describes the hierarchy of PRS classes and their extended counterparts
with respect to bisimulation equivalence. If any process in class X can be also
defined (up to bisimilarity) in class Y we write If additionally
holds, we write and say X is less expressive than Y. This is depicted by

1 In this case, the relation can be omitted from the definition.
2 If is an fcPRS, we eliminate the states with ff from S as they are unreachable.

TEAM LinG

Extended Process Rewrite Systems 361

Fig. 1. The hierarchy of classes defined by (extended) rewrite formalisms

the line(s) connecting X and Y with Y placed higher than X in Figure 1. The
dotted lines represent the facts where we conjecture that hold.

Some observations (even up to isomorphism) are immediate, for example

1.
2.
3.

the classes FS, PDA and PN coincide with their extended analogues,
if and then and

for all
PRS.

The strictness of the PRS-hierarchy has been proved by Mayr [May00],
that of the corresponding classes of PRS and fcPRS has been proved in [Str02],
and the relations among MSA and the classes of fcPRS and wPRS have been
studied in Note that the strictness relations seX hold for all X
= PA, PAD, PAN, PRS due to our reachability result for wPRS given in Sec. 5
and due to the full Turing-power of sePA [BEH95].

TEAM LinG

362 et al.

These proofs together with Moller’s result establishing [Mol98]
complete the justification of Figure 1 – with one exception, namely the relation
between the PN and sePA classes. Looking at two lines leaving sePA down to
the left and down to the right, we note the “left-part collapse” of (S, S)-PRS and
PDA proved by Caucal [Cau92] (up to isomorphism). The right-part counterpart
is slightly different due to the previously mentioned result that In the
next subsection we prove that (in fact it suffices to demonstrate

as the strictness is obvious).

4.1

We now show that Petri nets are less expressive (with respect to bisimilarity)
than sePA processes. In this section, a Petri net is considered in traditional
notation (see e.g. [Pet81]). Let a state
of a PN is written as and called marking. Each is the number of
tokens at the place Any rewrite rule (where

is written as and called transition3. The
heart of our argument is a construction of a sePA bisimilar to a given PN

The main difficulty in this construction is to maintain the number of tokens at
the places of a PN. To this end, we may use two types of sePA memory: a finite
control (FSU), which cannot represent an unbounded counter, and a term of
an unbounded length, where just one constant can be rewritten in one step.

Our construction of a sePA can be reformulated on intuitive level as fol-
lows. Let a marking mean that we have units of the currency,

An application of a PN transition has
the effect of a currency exchange from to for all A sePA re-
seller will have finite pockets (in its FSU) and bank accounts (a parallel
composition of sequential terms The reseller maintains an invariant

for all To mimic a PN transition he must obey sePA
rules, i.e. he may use all his pockets, but just one of his accounts in one ex-
change. A solution is to do transfers cyclically,
Hence, rebalancing the reseller must be able to perform the next

exchanges without accessing (while visiting the other accounts).
Therefore, needs sufficiently large (but finite) pockets and sufficiently high
(and fixed) limits for transfers. We show these bounds exist.

In one step the amount of the currency cannot be changed by more than
is a PN transition}, thus

is an upper bound for the total effect of consecutive steps. Any rebalancing
of sets its value into (or if
is empty). Hence, after transitions the value of is in
In the next rebalancing can be increased or decreased (if it is not empty)
by to get between (or 0 if is empty) and again.

3 Till now, denoted the parallel composition of copies of X. In the rest of the
section, it denotes the sequential composition of copies of X.

TEAM LinG

Extended Process Rewrite Systems 363

Each state of sePA consists of a state of a FSU and a term (parallel
composition of stacks representing accounts). A state of a FSU is in the product

The update controller goes around the range and refers to the account being
updated (rebalanced) in the next step. The value of each (subsequently
denoted by is equal to the number of tokens at counted modulo

We define process constants where represents the
bottom of the stack and each represents tokens at place The
stack is of the form where

For a given initial marking of a PN we construct the
initial state of the sePA where denoting
max(0, div – 1) we put and In other
words we have and moreover if is
big enough (i.e.

For each transition of the PN we construct the
set of sePA rules such that they obey
the following conditions:

Update controller conditions: and
The general conditions for pockets

(i.e. the transition can be performed),
if then

We now specify and the terms The first two Bottom rules are the
rules for working with the empty stack. The next three Top rules describe the
rewriting of process constant Depending on the value of
there are dec, inc, and basic variants manipulating the stack.

Theorem 1. with respect to bisimulation equivalence.

Proof. (Sketch) Let is a PN and is the sePA constructed as described
above. In the following refers to a state
of the sePA while refers to a marking of the PN We show

is a bisimulation relation.

TEAM LinG

364 et al.

Let us assume that and a transition
fired in leads to Exactly one sePA rule derived from this PN transition
(see the table of rules) is applicable on (This statement is due to the straight-
forward observations: if then hence iff The
application of this rule on leads to
which satisfies and for all
Hence, The symmetric case proceeds in a similar way.

Note that the pair of the initial marking of the PN and the initial state
of the sePA is in R. Hence, and are bisimilar. We have demonstrated

that (with respect to bisimulation equivalence).
The strictness of this relation follows from two of the results mentioned in the

introduction, namely the full Turing-power of sePA [BEH95] and the decidability
of reachability for PN [May81].

We note that the sePA system constructed by our algorithm does not need
to be isomorphic to the original PN system (e.g. due to the different values of
the update controller).

5 Reachability for wPRS Is Decidable

In this section we show that for a given wPRS and its states it is
decidable whether is reachable from or not (recall that is reachable
from if a sequence of actions such that exists).

Our proof exhibits a similar structure to the proof of decidability of the
reachability problem for PRS [May00]; first we reduce the general problem to
the reachability problem for wPRS with rules containing at most one occur-
rence of a sequential or parallel operator, and then we solve this subproblem
using the fact that the reachability problems for both PN and PDA are decid-
able [May81,Büc64]. The latter part of our proof is based on a new idea of passive
steps presented later.

To get just a sketch of the following proof we suggest to read the definitions
and statements (skipping their technical proofs). Some of them are preceded by
comments that provide some intuition.

As the labels on rewrite rules are not relevant here, we omit them in this
section. To distinguish between rules and rewriting sequences we use
to denote that the state is reachable from in wPRS Further, states of
weak state unit are called weak states.

Definition 3. Let be a wPRS. A rewrite rule in is parallel or sequential
if it has one of the following forms:

where X, Y, Z are process constants and are weak states. A rule is trivial if
it is both parallel and sequential (i.e. it has the form or
A wPRS is in normal form if every rewrite rule in is parallel or sequential.

TEAM LinG

Extended Process Rewrite Systems 365

Lemma 1. For a wPRS terms and weak states there are terms
of wPRS in normal form satisfying

Moreover, wPRS and terms can be effectively constructed.

Proof. In this proof we assume that the sequential composition is left-associative.
It means that the term X.Y.Z is (X.Y).Z and so its subterms are X, Y, Z, and
X.Y, but not Y.Z. However, the term is a subterm of

Let denote the number of sequential and parallel operators in term
Given any wPRS let be the number of rules that are
neither parallel nor sequential and where

Thus, is in normal form iff for every In this case,
let Otherwise, let be the largest such that exists as the set
of rules is finite). We define to be the pair

We now describe a procedure transforming (if it is not in normal form) into
a wPRS and terms into terms such that
(with respect to the lexicographical ordering) and

Let us assume that wPRS is not in normal form. Then there is a rule that
is neither sequential nor parallel and has the maximal size. Take a non-atomic
and proper subterm of this rule and replace every subterm in (i.e. in rewrite
rules and initial term) and in and by a fresh constant X. Then add two
rules and for each weak state This yields a new wPRS

and terms and where the constant X serves as an abbreviation for the
term By the definition of norm we get The correctness
of our transformation remains to be demonstrated, namely that

The implication is obvious. For the opposite direction we show that every
rewriting step in from to under the rule corresponds
to a sequence of several rewriting steps in leading from to where

are equal to with all occurrences of replaced by X. Let us assume
the rule modifies a subterm of and/or a subterm appears in

after the rule application (the other cases are trivial). If the rule modifies
a subterm of there are two cases. Either includes the whole and then the
corresponding rule in (with replaced by X) can be applied directly on
or, due to the left-associativity of a sequential operator, is not a subterm of
the right part of any sequential composition in and thus the application of
the corresponding rule in on is preceded by an application of the added
rule The situation when appears in after the application of the
considered rule is similar. Either includes the whole and then the application
of the corresponding rule in results directly in or is not a subterm
of the right part of any sequential composition in and thus the application
of the corresponding rule in is followed by an application of the added rule

reaching the state
By repeating this procedure we finally get a wPRS in normal form and

terms satisfying

TEAM LinG

366 et al.

Mayr’s proof for PRS now transforms the PRS in normal form into the
PRS in so-called transitive normal form satisfying whenever

This step employs the local effect of rewriting under sequential rules in
a parallel environment and vice versa. Intuitively, whenever there is a rewriting
sequence

in a PRS in normal form, then the rewriting of each parallel component is inde-
pendent in the sense that there are also rewriting sequences

and This does not hold for wPRS in normal form as the rewriting in
one parallel component can influence the rewriting in other parallel components
via a weak state unit. To get this independence back we introduce the concept of
passive steps emulating changes of a weak state produced by the environment.

Definition 4. A finite sequence of weak state pairs satisfying
is called passive steps.

Let be a wPRS and PS be passive steps. By + PS we denote a system
with an added rule for each in PS and For

all terms and weak states we write

iff via trivial rules,

iff via sequential rules,

iff via parallel rules.

Informally, means that the state can be rewritten into
state provided a weak state can be passively changed from to for every
passive step in PS. Thanks to the finiteness and ‘weakness’ of a weak state
unit, the number of different passive steps is finite.

Definition 5. Let wPRS be in normal form. If for every
weak states and passive steps PS it holds that

then is in flatted normal form,

then is in sequential flatted normal form,

then is in parallel flatted normal form.

The following lemma says that it is sufficient to check reachability via se-
quential rules and via parallel rules in order to construct a wPRS in flatted
normal form. This allows us to reduce the reachability problem for wPRS to the
reachability problems for wPN and wPDA (i.e. to the reachability problems for
PN and PDA).

Lemma 2. If a wPRS is in both sequential and parallel flatted normal form then
it is in flatted normal form as well.

Proof. We assume the contrary and derive a contradiction. Let be a wPRS in
sequential and parallel flatted normal form. Let us choose passive steps PS and
a rewriting sequence in leading from rX to sY such that

TEAM LinG

Extended Process Rewrite Systems 367

the number of applications of non-trivial rewrite rules applied in the sequence
is minimal, and all steps of PS are used during the sequence. As the wPRS

is in both sequential and parallel flatted normal form, and
Hence, both sequential and parallel operators occur in the rewrit-

ing sequence. There are two cases.

1.

2.

Assume that a sequential operator appears first. The parallel operator is
then introduced by the rule in the form applied to a state

where is a sequential term. From and the fact
that at most one process constant can be removed in one rewriting step, it
follows that in the rest of the sequence considered, the term is rewritten
onto a process constant (say V) and a weak state (say first. Let be
passive steps of PS between weak states and
Assume that a parallel operator appears first. The sequential operator is
then introduced by the rule in the form applied on a state

where is a parallel term. The rest of the sequence subsumes steps
rewriting the term T.S onto a process constant (say V) and a weak state
(say Contrary to the previous case, these steps can be interleaved with
steps rewriting the parallel component and possibly changing weak state.
Let be passive steps of PS (between weak states and merged with
the changes of weak states caused by rewriting of

Consequently, we have a rewriting sequence in from pU to oV with
fewer applications of non-trivial rewrite rules. As the number of applications
of non-trivial rewrite rules used in the original sequence is minimal we get

This contradicts our choice of rX, sY, and PS.

Example 1. Here, we illustrate a possible change of passive steps (PS to
described in the second case of the proof above. Let us consider a wPRS with
weak states and the following rewrite rules

as well as the following sequence i.e.

where redices are underlined. The sequence constructed due to the case 2 is as:

The following lemma employs the algorithms deciding the reachability prob-
lem for PDA and PN. Recall that the classes PDA and PN coincide with the
classes of wPDA and wPN, respectively.

Lemma 3. For every wPRS in normal form, terms over and
weak states of a wPRS can be constructed such that is in flatted
normal form and satisfies

TEAM LinG

368 et al.

Proof. To obtain we enrich by trivial rewrite rules transforming the sys-
tem into sequential and parallel flatted normal forms, which suffices thanks to
Lemma 2. Using algorithms deciding reachability for PDA and PN, our algorithm
checks if there are some weak states constants and pas-
sive steps (satisfying and as weak states pairs
beyond this range are of no use here) such that
and We finish if the answer is negative. Otherwise we add to
rules for and
where are fresh process constants (if then we add just the rule

The algorithm then repeats this procedure on the system with the
added rules with one difference; the X, Y range over the constants of the original
system This is sufficient as new constants occur only in trivial rules4. The
algorithm terminates as the number of iterations is bounded by the number of
pairs of states rX, sY of times the number of passive steps PS. The correct-
ness follows from the fact that the added rules have no influence on reachability.

Theorem 2. The reachability problem for wPRS is decidable.

Proof. (Sketch)Let be a wPRS with states We want to decide whether
or not. Clearly where X, Y are fresh

constants and arises from by the addition of the rules and
Hence we can directly assume that are process constants, say

X, Y. Lemma 1 and Lemma 3 successively reduce the question whether
sY to the question whether where is in flatted normal form –
note that Lemma 1 does not change terms if they are process constants.
The definition of flatted normal form implies
Finally the relation is easy to check.

6 Conclusions

We have unified a view on some (non-conservative) extensions of Process Rewrite
Systems. Comparing (up to bisimulation equivalence) the mutual expressiveness
of the respective subclasses, we have added some new strict relations, including
the class of Petri nets being less expressive than the class of PA processes ex-
tended with a finite state control unit. Finally, we have shown that a weak state
unit extension (and thus a finite constraint system extension as well) of process
rewrite systems keep the reachability problem decidable.

Acknowledgements. We would like to thank Hans Hüttel and for dis-
cussions, comments, and pointers; and Luca Aceto for invaluable suggestions.

4 If the system with added rules is not in sequential or parallel flatted normal form,
then there is a counterexample with the constants X, Y of the original system

5 If then this is not a correct rule. In this case we need to add to a rule
for each rule

TEAM LinG

Extended Process Rewrite Systems 369

References

[BCMS01]

[BEH95]

[BET03]

[BT03]

[Büc64]

[Cau92]

[DAC98]

[DY83]

[Esp02]

[HS04]

[Jan95]

[JKM01]

[LS98]

[May81]

[May00]

[Mil89]
[Mol96]

[Mol98]

[MSS92]

O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.
A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem
of nonregular properties for nonregular processes. In LICS’95. IEEE, 1995.
A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static
analysis of concurrent programs with procedures. International Journal on
Foundations of Computer Science, 14(4):551–582, 2003.
A. Bouajjani and T. Touili. Reachability Analysis of Process Rewrite
Systems. In Proc. of FST&TCS-2003, volume 2914 of LNCS, pages 74–
87. Springer, 2003.
J. R. Büchi. Regular canonical systems. Arch. Math. Logik u. Grundla-
genforschung, 6:91–111, 1964.
D. Caucal. On the regular structure of prefix rewriting. Theoretical Com-
puter Science, 106:61–86, 1992.
M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification pat-
terns for finite-state verification. In Mark Ardis, editor, Proc. 2nd Work-
shop on Formal Methods in Software Practice (FMSP-98), pages 7–15, New
York, 1998. ACM Press.
D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2): 198–208, 1983.
J. Esparza. Grammars as processes. In Formal and Natural Computing,
volume 2300 of LNCS. Springer, 2002.
H. Hüttel and J. Srba. Recursion vs. replication in simple cryptographic
protocols. Submitted for publication, 2004.

High Undecidability of Weak Bisimilarity for Petri Nets. In
Proc. of TAPSOFT, volume 915 of LNCS, pages 349–363. Springer, 1995.

and R. Mayr. Deciding bisimulation-like equivalences
with finite-state processes. Theoretical Computer Science, 258:409–433,
2001.

and Process Rewrite Systems with
Weak Finite-State Unit. Technical Report FIMU-RS-2003-05, Masaryk
University Brno, 2003. to appear in ENTCS as Proc. of INFINITY 03.
D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes.
In Proc. of CONCUR’98, volume 1466 of LNCS, pages 50–66, 1998.
E. W. Mayr. An algorithm for the general Petri net reachability problem.
In Proc. of 13th Symp. on Theory of Computing, pages 238–246. ACM,
1981.
R. Mayr. Process rewrite systems. Information and Computation,
156(1) :264–286, 2000.
R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
F. Moller. Infinite results. In Proc. of CONCUR’96, volume 1119 of LNCS,
pages 195–216. Springer, 1996.
F. Moller. Pushdown Automata, Multiset Automata and Petri Nets, MFCS
Workshop on concurrency. Electronic Notes in Theoretical Computer Sci-
ence, 18, 1998.
D. Muller, A. Saoudi, and P. Schupp. Alternating automata, the weak
monadic theory of trees and its complexity. Theoret. Computer Science,
97(1–2):233–244, 1992.

TEAM LinG

370 et al.

[Pet81]

[SR90]

[Srb02]

[Str02]

J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-
Hall, 1981.
V. A. Saraswat and M. Rinard. Concurrent constraint programming. In
Proc. of 17th POPL, pages 232–245. ACM Press, 1990.
J. Srba. Roadmap of infinite results. EATCS Bulletin, (78):163–175, 2002.
http://www.brics.dk/˜srba/roadmap/.

Rewrite systems with constraints, EXPRESS’01. Electronic
Notes in Theoretical Computer Science, 52, 2002.

TEAM LinG

A General Approach to Comparing Infinite-State
Systems with Their Finite-State Specifications

and Philippe Schnoebelen2

1 Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic

tony@fi.muni.cz
2 LSV, ENS de Cachan & CNRS UMR 8643,

61, av. Pdt. Wilson, 94235 Cachan Cedex, France
phs@lsv.ens-cachan.fr

Abstract. We introduce a generic family of behavioral relations for
which the problem of comparing an arbitrary transition system to some
finite-state specification can be reduced to a model checking problem
against simple modal formulae. As an application, we derive decidabil-
ity of several regular equivalence problems for well-known families of
infinite-state systems.

1 Introduction

Verification of infinite-state models of systems is a very active field of research,
see [9, 8, 5, 19, 31] for surveys of some subfields. In this area, researchers consider
a large variety of models suited to different kinds of applications, and three main
kinds of verification problems: (1) specific properties like reachability or termina-
tion, (2) model checking of temporal formulae, and (3) semantic equivalences or
preorders between two systems. With most models, termination and reachabil-
ity are investigated first. Positive results lead to investigations of more general
temporal model checking problems. Regarding equivalence problems, positive
decidability results exist mainly for strong bisimilarity (some milestones in the
study include [3, 13, 12, 14, 11, 30]). For other behavioral equivalences, results are
usually negative.

Regular Equivalence Problem. Recently, the problem of comparing some infinite-
state process with a finite-state specification has been identified as an
important subcase1 of the general equivalence checking problem [19]. Indeed,

* On leave at LSV, ENS de Cachan, France. Supported by the Grant Agency of the
Czech Republic, grant No. 201/03/1161.

1 We refer to this subcase as “the regular equivalence problem” in the rest of this
paper. For example, if we say that “regular weak bisimilarity is decidable for PA
processes”, we mean that weak bisimilarity is decidable between PA processes and
finite-state ones.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 371–386, 2004.
© Springer-Verlag Berlin Heidelberg 2004

1*

TEAM LinG

372 and P. Schnoebelen

in equivalence-based verification, one usually compares a “real-life” system with
an abstract behavioral specification. Faithful models of real-life systems often
require features like counters, subprocess creation, or unbounded buffers, that
make the model infinite-state. On the other hand, the behavioral specification is
usually abstract, hence naturally finite-state. Moreover, infinite-state systems
are often abstracted to finite-state systems even before applying further
analytical methods. This approach naturally subsumes the question if the
constructed abstraction is correct (i.e., equivalent to the original system). It
quickly appeared that regular equivalence problems are computationally eas-
ier than comparing two infinite-state processes, and a wealth of positive results
exist [19].

The literature offers two generic techniques for deciding regular equivalences.
First, Abdulla et al. show how to check regular simulation on well-structured
processes [2]. Their algorithm is generic because a large collection of infinite-
state models are well-structured [10].

The second approach is even more general: one expresses equivalence with
via a formula of some modal logic is called a characteristic formula for

wrt. the given equivalence. This reduces regular equivalence problems to more
familiar model checking problems. It entails decidability of regular equivalences
for all systems where model checking with the logic is decidable. It is easy
to give characteristic formulae wrt. bisimulation-like equivalences if one uses
the modal [32, 26]. Browne et al. constructed characteristic formulae
wrt. bisimilarity and branching-bisimilarity in the logic CTL [7]. Unfortunately,
CTL (or model checking is undecidable on many process classes
like PA, Petri nets, lossy channel systems, etc. Later, it has been shown that
characteristic formulae wrt. strong and weak bisimilarity can be constructed
even in the fragment of CTL [15]. This logic is sufficiently
simple and its associated model-checking problem is decidable in many classes
of infinite-state systems (including PA, lossy channel systems, and pushdown
automata) [24].

Our Contribution. We introduce full regular equivalences, a variant of regular
equivalences, and develop a generic approach to the reduction of full regular
equivalences to model checking (essentially) the EF fragment of modal logic2.
Compared to regular equivalences, full regular equivalence has the additional re-
quirement that the state-space of the infinite system must be included in the
state-space of the finite system up to the given equivalence. We argue that
full regular equivalence is as natural as regular equivalence in most practical
situations (additionally the two variants turn out to coincide in many cases).
Moreover, an important outcome of our results is that full regular equivalence
is “more decidable” than regular equivalence for trace-like and simulation-like
equivalences. For example, regular trace equivalence is undecidable for BPA (and
hence also for pushdown and PA processes), while full regular trace equivalence

2 In fact we provide reductions to and to two different
fragments of modal logic that have incomparable expressive power.

TEAM LinG

A General Approach to Comparing Infinite-State Systems 373

is decidable for these models. Similar examples can be given for simulation-like
equivalences. See Section 2 and Section 6 for further comments.

We offer two main reductions. One applies to a large parameterized fam-
ily of equivalences defined via a transfer property (we call them MTB equiva-
lences). The other applies to a large parameterized family of equivalences based
on sets of enriched traces (we call them PQ equivalences). Together they cover
virtually all process equivalences used in verification [33]. For all of these, full
regular equivalence with some is reduced to EF model-checking, hence shown
decidable for a large family of infinite-state models. More precisely, the construc-
tions output a characteristic formula for wrt. a given equivalence, which ex-
presses the property of “being fully equivalent to In particular, this works for
bisimulation-like equivalences (weak, delay, early, branching), and thus we also
obtain a refinement of the result presented in [7] which says that a characteristic
formula wrt. branching bisimilarity is constructible in CTL. The main “message”
of this part is that full regular equivalence is decidable for many more seman-
tic equivalences and classes of infinite-state models than regular equivalence.
In this paper we do not aim to develop specific methods for particular models
and equivalences. (Such methods can be more efficient than our generic (model-
independent) algorithm—for example, it has recently been shown in [20] that
full regular equivalence with PDA processes can be decided by a PDA-specific
algorithm which needs only polynomial time for some MTB equivalences and
some subclasses of PDA processes.)

Another contribution of this paper is a model-checking algorithm for the
logic and lossy channel systems. This allows one to
apply the previous abstract results also to processes of lossy channel systems
(for other models like, e.g., pushdown automata, PA processes, or PAD pro-
cesses, the decidability of model-checking problem with the logic EF is already
known).

Due to space constraints, we had to omit all proofs. These can be found in a
full version of this paper [21].

2 (Full) Regular Equivalence

We start by recalling basic definitions. Let be a countably
infinite set of actions, and let be a distinguished silent action. For

denotes the set We use to range over A
transition system is a triple where S is a set of states,
is a finite alphabet, and is a transition relation. We write
instead of and we extend this notation to elements of in the
standard way. We say that a state is reachable from a state written
if there is such that Further, for every we define
the relation as follows: iff there is a sequence of the form

where where iff there are such
that From now on, a process is formally understood as a state of
(some) transition system. Intuitively, transitions from a given process model

TEAM LinG

374 and P. Schnoebelen

possible computational steps, and the silent action is used to mark those steps
which are internal (i.e., not externally observable). Since we sometimes consider
processes without explicitly defining their associated transition systems, we also
use to denote the alphabet of (the underlying transition system of) the
process A process is if

Let ~ be an arbitrary process equivalence, a (general) process, a finite-
state system, and a process of

Definition 1 (Full Regular Equivalence). We say is fully equivalent to
(in iff:

is equivalent to and
for all there is some in s.t. (every process reachable
from has an equivalent in

Observe that the equivalent does not have to be reachable from
In verification settings, requiring that some process is fully equivalent to

a finite-state specification puts some additional constraints on its whole
state-space must be accounted for in a finite way. To get some intuition why this
is meaningful, consider, e.g., the finite-state system with three states
and transitions Suppose that all transitions of a given infinite-
state system are labeled by Then regular trace equivalence to means
that can do infinitely many (assuming that is finitely branching), while
full regular trace equivalence to means that can do infinitely many and
whenever it decides to terminate, it can reach a terminated state in at most one
transition. This property cannot be encoded as regular bisimulation equivalence
or regular simulation equivalence by any finite-state system. Let us also note that
when ~ is an equivalence of the bisimulation family, then regular equivalence is
automatically “full”.

3 MTB Preorder and Equivalence

In this paper, we aim to prove general results about equivalence-checking be-
tween infinite-state and finite-state processes. To achieve that, we consider an
abstract notion of process preorder and process equivalence which will be intro-
duced next.

A transfer is one of the three operators on binary relations defined as follows:
sim(R) = R, A mode is a subset of

(the and are just two different symbols). A basis is an equivalence over
processes satisfying the following property: whenever and
then also

Definition 2. Let be a binary relation over processes and M a mode. A move
is tightly with M if either and or there is a

sequence where such that the

TEAM LinG

A General Approach to Comparing Infinite-State Systems 375

following holds: (1) if then for all (2) if
then for all

The loose of with M is defined in the same way, but the
conditions (1), (2) are weakened—we only require that and

Definition 3. Let T be a transfer, M a mode, and B a basis. A binary relation
over processes is a tight (or loose) MTB-relation if it satisfies the following:

whenever then for every tightly (or loosely, resp.)
move there is a tightly (or loosely, resp.) move
such that

We write (or resp.), if there is a tight (or loose, resp.) MTB-
relation such that We say that are tightly (or loosely, resp.)
MTB-equivalent, written (or resp.), if and (or
and resp.).

It is standard that such a definition entails that and are preorders,
and ~ and are equivalences over the class of all processes. The relationship
between and relations is clarified in the next lemma (this is where we need
the defining property of a base).

Lemma 1. We have that (and hence also

Before presenting further technical results, let us briefly discuss and jus-
tify the notion of MTB equivalence. The class of all MTB equivalences can
be partitioned into the subclasses of simulation-like, bisimulation-like, and
contrasimulation-like equivalences according to the chosen transfer. Additional
conditions which must be satisfied by equivalent processes can be specified by
an appropriately defined base. For example, we can put B to be true, ready, or
terminate where

for all and
iff

iff and are either both terminating, or both non-
terminating (a process is terminating iff implies and
cannot perform an infinite sequence of

The mode specifies the level of ‘control’ over the states that are passed
through by transitions. In particular, by putting T = bisim, B = true, and
choosing M to be or one obtains weak bisimilarity [25],

[4], delay-bisimilarity, and branching bisimilarity [34], respectively3.

3 Our definition of MTB equivalence does not directly match the definitions of
delay-, and branching bisimilarity that one finds in the literature. However, it is
easy to show that one indeed yields exactly these equivalences.

TEAM LinG

376 and P. Schnoebelen

“Reasonable” refinements of these bisimulation equivalences can be obtained by
redefining B to something like terminate—sometimes there is a need to distin-
guish between, e.g., terminated processes and processes which enter an infinite
internal loop. If we put T = sim, B = true, and we obtain weak sim-
ulation equivalence; and by redefining B to ready we yield a variant of ready
simulation equivalence. The equivalence where T = contrasim, B = true, and

is known as contrasimulation (see, e.g., [35])4.
The definition of MTB equivalence allows to combine all of the three pa-

rameters arbitrarily, and our results are valid for all such combinations (later we
adopt some natural effectiveness assumptions about B, but this will be the only
restriction).

Definition 4. For every the binary relations and are
defined as follows: iff iff and for every
tightly move there is some tightly move
such that

The relations are defined in the same way, but we require only loose
of moves in the inductive step. Finally, we put iff and

and similarly iff and

A trivial observation is that
and for each In general, however,

if we restrict ourselves to processes of some fixed finite-state system, we can
prove the following:

Lemma 2. Let be a finite-state system with states. Then
where all of the relations are

considered as being restricted to F × F.

Theorem 1. Let be a finite-state system with states, a
process of F, and some (arbitrary) process. Then the following three conditions
are equivalent.

(a)
(b)
(c)

and for every there is some such that
and for every there is some such that
and for every there is some such that

3.1 Encoding MTB Equivalence into Modal Logic

In this section we show that the conditions (b) and (c) of Theorem 1 can be
expressed in modal logic. Let us consider a class of modal formulae defined by
the following abstract syntax equation (where ranges over

4 Contrasimulation can also be seen as a generalization of coupled simulation [27, 28],
which was defined only for the subclass of divergence-free processes (where it coin-
cides with contrasimulation). It is worth to note that contrasimulation coincides with
strong bisimilarity on the subclass of processes (to see this, realize that one
has to consider the moves even if is This is (intuitively) the reason
why contrasimulation has some nice properties also in the presence of silent moves.

TEAM LinG

A General Approach to Comparing Infinite-State Systems 377

The semantics (over processes) is defined inductively as follows:

for every process
iff and
iff
iff there is such that
iff there is such that
iff there is such that
iff either and or there is a sequence

The dual operator to EF is AG, defined by
Let range over The (syntax of the)

logic consists of all modal formulae built over the modalities

Let ~ be an MTB equivalence. Our aim is to show that for every finite there
are formulae of and of such that for every
process where we have that (or iff the processes

and satisfy the condition (b) (or (c), resp.) of Theorem 1. Clearly such
formulae cannot always exist without some additional assumptions about the
base B. Actually, all we need is to assume that the equivalence B with processes
of a given finite-state system is definable in the aforementioned
logics. More precisely, for each there should be formulae and of
the logics and respectively, such that for every
process where we have that iff iff Since
we are also interested in complexity issues, we further assume that the formulae

and are efficiently computable from An immediate consequence of this
assumption is that B over F × F is efficiently computable. This is because the
model-checking problem with and is decidable
in polynomial time over finite-state systems. To simplify the presentation of our
complexity results, we adopt the following definition:

where such that for all and

Definition 5. We say that a base B is well-defined if there is a polynomial
(in two variables) such that for every finite-state system the set

can be computed, and the relation can be decided,
in time

Remark 1. Note that a well-defined B is not necessarily decidable over process
classes which contain infinite-state processes—for example, the ready base in-
troduced in the previous section is well-defined but it is not decidable for, e.g.,
CCS processes. In fact, the formulae are only required for the construction
of and the formulae are required only for the construction of (This is

TEAM LinG

378 and P. Schnoebelen

why we provide two different formulae for each Note that there are bases for
which we can construct only one of the and families, which means that
for some MTB equivalences we can construct only one of the and formu-
lae. A concrete example is the terminate base of the previous section, which is
definable in but not in

For the rest of this section, we fix some MTB-equivalence ~ where B is
well-defined, and a finite-state system with states.

Let and be unary modal operators whose semantics
is defined as follows:

iff either and or there is a sequence of the
form where such that
for all for all and

iff either and or there is a sequence of the
form where such that

and

We also define as an abbreviation for and sim-
ilarly is used to abbreviate

Lemma 3. The and modalities are expressible in
and respectively:

Since the conditions (b) and (c) of Theorem 1 are encoded into
and along the same scheme, we present both constructions at
once by adopting the following notation: stands either for
or denotes either denotes either or and

denotes either or respectively. Moreover, we write to denote that
there is either a tightly move or a loosely
move respectively.

Definition 6. For all and we define the formulae and
inductively as follows:

where

if then otherwise
if then otherwise
if T = sim, then and
if T = bisim, then
if T = contrasim, then and

The empty conjunction is equivalent to tt, and the empty disjunction to ff.

TEAM LinG

A General Approach to Comparing Infinite-State Systems 379

The meaning of the constructed formulae is explained in the next theorem.
Intuitively, what we would like to have is that for every process where
it holds that iff and iff However, this is
(provably) not achievable—the preorder with a given finite-state process is
not directly expressible in the logics and The
main trick (and subtlety) of the presented inductive construction is that the
formulae and actually express stronger conditions.

Theorem 2. Let be an (arbitrary) process such that Then for all
and we have the following:

(a)

(b)

(c)

iff further, iff and for each
there is such that

iff further, iff and for each
there is such that

iff further, iff and for each
there is such that

In general, the of moves can be expressed in a given
logic only if one can express the equivalence with and Since and
can be infinite-state processes, this is generally impossible. This difficulty was
overcome in Theorem 2 by using the assumption that and are equivalent
to some and of F. Thus, we only needed to encode the equivalence
with and which is (in a way) achieved by the and formulae.
An immediate consequence of Theorem 1 and Theorem 2 is the following:

Corollary 1. Let be an (arbitrary) process such that and let
Then the following two conditions are equivalent:

(a)
(b)

and for every there is some such that

Since the formula is effectively constructible, the
problem (a) of the previous corollary is effectively reducible to the problem
(b). A natural question is what is the complexity of the reduction from (a) to
(b). At first glance, it seems to be exponential because the size of is
exponential in the size of However, the number of distinct subformulae in

is only polynomial. This means that if we represent the formula
by a circuit5, then the size of this circuit is only polynomial

in the size of This is important because the complexity of many model-
checking algorithms actually depends on the size of the circuit representing a
given formula rather than on the size of the formula itself. The size of the circuit
for is estimated in our next lemma.

Lemma 4. The formula can be represented by a cir-
cuit constructible in time.

5 A circuit (or a DAG) representing a formula is basically the syntax tree for
where the nodes representing the same subformula are identified.

TEAM LinG

380 and P. Schnoebelen

4 PQ Preorder and Equivalence

Let M, N be sets of processes. We write iff for every there is some
such that In the next definition we introduce another parametrized

equivalence which is an abstract template for trace-like equivalences.

Definition 7. Let P be a preorder over the class of all processes and let
For every we inductively define the relation as follows:

for every process and every set of processes M such that
if then for every
if then for some

if and for every there is such that

Slightly abusing notation, we write instead of Further, we
define the PQ preorder, denoted by iff for every
Processes are PQ equivalent, written iff and

For every process let for some (note that
Now consider the preorders T, D, F, R, S defined as follows:

for all (true).
iff both and are either empty or non-empty (deadlock

equivalence).
iff (failure preorder).
iff (ready equivalence).
iff and are trace equivalent (that is, iff

Now one can readily check that TQ, and equivalence
is in fact trace, completed trace, failure, failure trace, readiness, ready trace, and
possible futures equivalence, respectively. Other trace-like equivalences can be
defined similarly.

Lemma 5. Let be a finite-state system with states. Then
where all of the relations are considered as being

restricted to

Lemma 6. For all processes and sets of processes M, N we have
that

(a)
(b)

if and then also
if and for every there is some such that then
also

Theorem 3. Let be a finite-state system with states, a
process of F, and some (arbitrary) process. Then the following two conditions
are equivalent.

TEAM LinG

A General Approach to Comparing Infinite-State Systems 381

(a)
(b)

and for every there is some such that
and for every there is some such that

Now we show how to encode the condition (b) of Theorem 3 into modal logic.
To simplify our notation, we introduce the operator defined as follows:
stands either for (if or (if Moreover,

Similarly as in the case of MTB equivalence, we need some
effectiveness assumptions about the preorder P, which are given in our next
definition.

Definition 8. We say that P is well-defined if for every finite-state system
and every the following conditions are satisfied:

There are effectively definable formulae of the logic such
that for every process where we have that iff
and iff
There is a polynomial (in two variables) such that for every finite-state
system the set can be computed, and the
relation can be decided, in time

Note that the T, D, F, and R preorders are clearly well-defined. However,
the S preorder is (provably) not well-defined. Nevertheless, our results do apply
to possible-futures equivalence, as we shall see in Remark 2.

Lemma 7. If P is well-defined, then the relation over can be computed
in time which is exponential in and polynomial in

4.1 Encoding PQ Preorder into Modal Logic

Definition 9. For all and we define the sets

For all and we define the formulae and
inductively as follows:

The empty conjunction is equivalent to tt, and the empty disjunction to ff.

The sets are effectively constructible in time exponential in and poly-
nomial in (Lemma7), hence the formulae are effectively constructible
too.

Theorem 4. Let be an (arbitrary) process such that Then for all
and we have the following:

TEAM LinG

382 and P. Schnoebelen

(a)

(b)

(c)

iff further, iff and for each
there is such that

iff further, iff and for each
there is such that

iff further, iff and for each
there is such that

Corollary 2. Let be an (arbitrary) process such that and let
Then the following two conditions are equivalent:

(a)
(b)

and for every there is some such that

Note that the size of the circuit representing the formula
is exponential in and can be constructed in exponential

time.

Remark 2. As we already mentioned, the S preorder is not well-defined, because
trace equivalence with a given finite-state process is not expressible in modal
logic (even monadic second order logic is (provably) not sufficiently powerful to
express that a process can perform every trace over a given finite alphabet).
Nevertheless, in our context it suffices to express the condition of full trace
equivalence with which is achievable. So, full possible-futures equivalence with

is expressed by the formula where for every
we define and to be the formula which expresses full trace equivalence
with This “trick” can be used also for other trace-like equivalences where the
associated P is not well-defined.

5 Model Checking Lossy Channel Systems

In this section we show that the model checking of
formulae is decidable for lossy channel systems (LCS’s). This result was inspired
by [6] and can be seen as a natural extension of known results.

We refer to [1, 29] for motivations and definitions on LCS’s. Here we only need
to know that a configuration of a LCS C is a pair of a control state
from some finite set Q and a finite word describing the current contents
of the channel (for simplicity we assume a single channel). Here is
a finite alphabet of messages. The behavior of C is given by a transition system

where steps describe how the configuration can evolve. In the rest of
this section, we assume a fixed LCS C.

Saying that the system is lossy means that messages can be lost while they
are in the channel. This is formally captured by introducing an ordering between
configurations: we write when and is a subword
of (i.e. one can obtain by erasing some letters in possibly all letters,

TEAM LinG

A General Approach to Comparing Infinite-State Systems 383

possibly none). Higman’s lemma states that is a well-quasi-ordering (a wqo),
i.e. it is well-founded and any set of incomparable configurations is finite.

Losing messages in a configuration yields some with The crucial
fact we shall use is that steps of LCS’s are closed under losses:

Lemma 8 (see [1, 29]). If is a step of then for all configurations
and is a step of too.

We are interested in sets of configurations denoted by some simple expres-
sions. For a configuration we let denote the upward-closure of i.e. the
set A restricted set is denoted by an expression of the form

(for some configurations This denotes an upward-
closure minus some restrictions (the

An expression is trivial if it denotes the empty set. Clearly
is trivial iff for some A constrained set is a finite union of restricted sets,
denoted by an expression of the form Such an expression is reduced
if no is trivial. For a set S of configurations, is
the set of (immediate) predecessors of configurations in S.

Lemma 9. Constrained sets are closed under intersection, complementation,
and Pre. Furthermore, from reduced expressions and one can compute
reduced expressions for and

We can now compute the set of configurations that satisfy an EU formula:

Lemma 10. Let and be two constrained sets. Then the set S of con-
figurations that satisfy EU is constrained too. Furthermore, from reduced
expressions for and one can compute a reduced expression for S.

By combining Lemma 9 and Lemma 10, we obtain the result we were aiming
at:

Corollary 3. Let be a modal formula in The set of configura-
tions that satisfy is a constrained set, and one can compute a reduced expres-
sion for this set.

Theorem 5. The model checking problem for formu-
lae is decidable for lossy channel systems.

6 Applications

A Note on Semantic Quotients. Let be a transition system,
and ~ a process equivalence. Let The ~-quotient
of is the process of the transition system where
iff there are such that and

For most (if not all) of the existing process equivalences we have that
for every process (see [17,18]). In general, the class of temporal properties

TEAM LinG

384 and P. Schnoebelen

preserved under ~-quotients is larger than the class of ~-invariant properties
[18]. Hence, ~-quotients are rather robust descriptions of the original systems.
Some questions related to formal verification can be answered by examining the
properties of ~-quotients, which is particularly advantageous if the ~-quotient is
finite (so far, mainly the bisimilarity-quotients have been used for this purpose).
This raises two natural problems:

(a)
(b)

Given a process and an equivalence ~, is the ~-quotient of finite?
Given a process an equivalence ~, and a finite-state process is the
~-quotient of

The question (a) is known as the strong regularity problem (see, e.g., [16]
where it is shown that strong regularity wrt. simulation equivalence is decid-
able for one-counter nets). For bisimulation-like equivalences, the question (a)
coincides with the standard regularity problem.

Using the results of previous sections, the problem (b) is reducible to the
model-checking problem with the logic Let
be a finite state system and ~ an MTB or PQ equivalence. Further, let us assume
that the states of are pairwise non-equivalent (this can be effectively checked).
Consider the formula

where is the formula expressing full ~-equivalence with It is easy to see that
for every process s.t. we have that iff is the ~-quotient
of

Observe that if the problem (b) above is decidable for a given class of pro-
cesses, then the problem (a) is semidecidable for this class. So, for all those
models where model-checking with the logic is decidable we
have that the positive subcase of the strong regularity problem is semidecid-
able due to rather generic reasons, while establishing the semidecidability of the
negative subcase is a model-specific part of the problem.

Results for Concrete Process Classes. All of the so far presented results are
applicable to those process classes where model-checking the relevant fragment
of modal logic is decidable. In particular, model-checking is
decidable for

pushdown processes. In fact, this problem is PSPACE-complete [36]. More-
over, the complexity of the model-checking algorithm depends on the size of
the circuit which represents a given formula (rather than on the size of the
formula itself) [37];
PA (and in fact also PAD) processes [24, 22]. The best known complexity
upper bound for this problem in non-elementary.
lossy channel systems (see Section 5). Here the model-checking problem is
of nonprimitive recursive complexity.

TEAM LinG

A General Approach to Comparing Infinite-State Systems 385

Prom this we immediately obtain that the problem of full MTB-equivalence,
where B is well-defined, is

decidable in polynomial space for pushdown processes. For many concrete
MTB-equivalences, this bound is optimal (for example, all bisimulation-
like equivalences between pushdown processes and finite-state processes are
PSPACE-hard [23]);
decidable for PA and PAD processes;
decidable for lossy channel systems. For most concrete MTB-equivalences,
the problem is of nonprimitive recursive complexity (this can be easily de-
rived using the results of [29]).

Similar results hold for PQ-equivalences where P is well-defined (for push-
down processes we obtain EXPSPACE upper complexity bound). Finally, the
remarks about the problems (a),(b) of the previous paragraph also apply to the
mentioned process classes.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. I&C,
127(2):91–101, 1996.
P.A. Abdulla, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis
of programs with well quasi-ordered domains. I&C, 160(1–2):109–127, 2000.
J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivar
lence for processes generating context-free languages. JACM, 40(3):653–682, 1993.
J.C.M. Baeten and R.J. van Glabbeek. Another look at abstraction in pro-
cessalgebra. In Proceedings of ICALP’87, volume 267 of LNCS, pages 84–94.
Springer, 1987.
A. Bouajjani. Languages, rewriting systems, and verification of infinite-state
systems. In Proceedings of ICALP’2001, volume 2076 of LNCS, pages 24–39.
Springer, 2001.
A. Bouajjani and R. Mayr. Model-checking lossy vector addition systems. In
Proceedings of STACS’99, volume 1563 of LNCS, pages 323–333. Springer, 1999.
M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. TCS, 59(1–2):115–131, 1988.
O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of
Process Algebra, pages 545–623. Elsevier, 2001.
J. Esparza and M. Nielsen. Decidability issues for Petri nets — a survey. Journal
of Information Processing and Cybernetics, 30(3):143–160, 1994.
A. Finkel and Ph. Schnoebelen. Well structured transition systems everywhere!
TCS, 256(1–2):63–92, 2001.
Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for normed
process algebra. In Proceedings of ICALP’99, volume 1644 of LNCS, pages
412–421. Springer, 1999.
Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding
bisimilarity of normed context-free processes. TCS, 158(1–2):143–159, 1996.
Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding
bisimulation equivalence of normed basic parallel processes. MSCS, 6(3):251–259,
1996.

TEAM LinG

386 and P. Schnoebelen

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

Undecidability of bisimilarity for Petri nets and some related problems.
TCS, 148(2):281–301, 1995.

and R. Mayr. Deciding bisimulation-like equivalences with
finite-state processes. TCS, 258(1–2):409–433, 2001.

and F. Moller. Simulation and bisimulation over one-
counter processes. In Proceedings of STACS’2000, volume 1770 of LNCS, pages
334–345. Springer, 2000.

On finite representations of infinite-state behaviours. IPL, 70(1):23–30,
1999.

and J. Esparza. A logical viewpoint on process-algebraic quotients.
JLC, 13(6):863–880, 2003.

and Equivalence-checking with infinite-state systems:
Techniques and results. In Proceedings of SOFSEM’2002, volume 2540 of LNCS,
pages 41–73. Springer, 2002.

and R. Mayr. A generic framework for checking semantic equivalences
between pushdown automata and finite-state automata. In Proceedings of IFIP
TCS’2004. Kluwer, 2004. To appear.

and Ph. Schnoebelen. A general approach to comparing infinite-state
systems with their finite-state specifications. Technical report FIMU-RS-2004-05,
Faculty of Informatics, Masaryk University, 2004.
D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes. TCS,
274(l–2):89–115, 2002.
R. Mayr. On the complexity of bisimulation problems for pushdown automata. In
Proceedings of IFIP TCS’2000, volume 1872 of LNCS, pages 474–488. Springer,
2000.
R. Mayr. Decidability of model checking with the temporal logic EF. TCS,
256(1–2):31–62, 2001.
R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
M. Müller-Olm. Derivation of characteristic formulae. ENTCS, 18, 1998.
J. Parrow and P. Sjödin. Multiway synchronization verified with coupled
simulation. In Proceedings of CONCUR’92, volume 630 of LNCS, pages 518–533.
Springer, 1992.
J. Parrow and P. Sjödin. The complete axiomatization of cs-congruence. In
Proceedings of STACS’94, volume 775 of LNCS, pages 557–568. Springer, 1994.
Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive
complexity. IPL, 83(5):251–261, 2002.
G. Sénizergues. L(A)=L(B)? Decidability results from complete formal systems.
TCS, 251(1–2):1–166, 2001.
J. Srba. Roadmap of infinite results. EATCS Bulletin, 78:163–175, 2002.
B. Steffen and A. Ingólfsdóttir. Characteristic formulae for processes with
divergence. I&C, 110(1):149–163, 1994.
R.J. van Glabbeek. The linear time—branching time spectrum II: The semantics
of sequential systems with silent moves. In Proceedings of CONCUR ’93, volume
715 of LNCS, pages 66–81. Springer, 1993.
R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics. JACM, 43(3):555–600, 1996.
M. Voorhoeve and S. Mauw. Impossible futures and determinism. IPL,
80(1):51–58, 2001.
I. Walukiewicz. Model checking CTL properties of pushdown systems. In Proceed-
ings of FST&TCS’2000, volume 1974 of LNCS, pages 127–138. Springer, 2000.
I. Walukiewicz. Private communication, September 2003.

TEAM LinG

Model Checking Timed Automata
with One or Two Clocks

F. Laroussinie1, N. Markey1,2, and Ph. Schnoebelen1

1 Lab. Spécification & Vérification
ENS de Cachan & CNRS UMR 8643

61, av. Pdt. Wilson, 94235 Cachan Cedex, France
{fl,markey,phs}@lsv.ens-cachan.fr

2 Département d’Informatique – CP 212
Université Libre de Bruxelles

Bd du Triomphe, 1050 Bruxelles, Belgique
nmarkey@ulb.ac.be

Abstract. In this paper, we study model checking of timed automata
(TAs), and more precisely we aim at finding efficient model checking
for subclasses of TAs. For this, we consider model checking TCTL and

over TAs with one clock or two clocks.
First we show that the reachability problem is NLOGSPACE-comp-

lete for one clock TAs (i.e. as complex as reachability in classical graphs)
and we give a polynomial time algorithm for model checking
over this class of TAs. Secondly we show that model checking becomes
PSPACE-complete for full TCTL over one clock TAs. We also show that
model checking CTL (without any timing constraint) over two clock TAs
is PSPACE-complete and that reachability is NP-hard.

1 Introduction

Model checking is widely used for the design and debugging of critical reactive
systems [Eme90,CGP99]. During the last decade, it has been extended to real-
time systems, where quantitative information about time is required.

Timed Models. Real-time model checking has been mostly studied and developed
in the framework of Alur and Dill’s Timed Automata (TAs) [ACD93,AD94], i.e.
automata extended with clocks that progress synchronously with time. There
now exists a large body of theoretical knowledge and practical experience for
this class of systems. It is agreed that their main drawback is the complexity
blowup induced by timing constraints: most verification problems are at least
PSPACE-hard for Timed Automata [Alu91,CY92,ACD93,AL02].

Real-time automata are TAs with a unique clock which is reset after every
transition. This subclass has been mostly studied from the language theory point
of view [Dim00], but it is also considered in [HJ96] for modeling real-time sys-
tems. Clearly this subclass is less expressive than classical TAs with an arbitrary

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 387–401, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

388 F. Laroussinie et al.

number of clocks but still it is natural and convenient for describing behavior of
simply timed systems. For example, it may be useful to model systems where
timing constraints are local, i.e. depend only of the time elapsed since the last
transition. The use of a real valued clock offers a convenient and abstract concept
of time. Moreover such kinds of restricted TAs are more natural and more ex-
pressive than models based on discrete Kripke Structures where some durations
are associated with transitions (see for example Timed Transition Graphs [CC95]
or Durational Kripke Structures [LMS02]).

Timed Specifications. In order to express timing aspects of computations, we
consider extensions of the classical temporal logic CTL. The idea is to use tim-
ing constraints tagging temporal modalities [AH92]. For example, the formula

A states that it is possible to reach a state verifying A (“EF A”) in less
than 10 time units. Timing constraints can have three main forms: and

set a lower or upper bound for durations, while requires a precise
value. TCTL is the extension of CTL with all three types of constraints, while

is the fragment of TCTL where the constraints are forbidden.

Our Contribution. In this paper, we aim at finding subclasses of Timed Au-
tomata that admit efficient model checking algorithms. For this purpose we con-
sider one clock TAs (1C-TAs) which extend real-time automata because the clock
is not required to be reset after each transition. First we show that reachability
problem is NLOGSPACE-complete for 1C-TAs (i.e. as efficient as reachability
in classical graphs) and we give a polynomial time algorithm for model check-
ing over 1C-TAs. These results are surprising because adding simple
timing constraints induces generally a complexity blowup. Note efficient model
checking over 1C-TAs requires to use an ad-hoc algorithm: the clas-
sical region graph technique or the symbolic algorithms based on DBMs [Dil90]
are not polynomial over this subclass.

Secondly we show that model checking becomes PSPACE-complete for full
TCTL over 1C-TAs. Then we address the case of TAs with two clocks (2C-
TAs), since it is well known that three clocks lead to PSPACE-hardness for
reachability [CY92]. We show that model checking CTL (without any timing
constraints) over 2C-TAs is already PSPACE-complete and that reachability is
NP-hard.

These results emphasize the good properties of 1C-TAs and real-time au-
tomata, leading to efficient timed model checking.

Related Work. Quantitative logics for Timed Automata are now well-known and
many results are available regarding their expressive power, or the satisfiability
and model checking problems [AH94,ACD93,AH93,AFH96,Hen98]. That exact
durations may induce harder model checking complexity was already observed
in the case of LTL and Timed Automata [AFH96]. Complexity of timed model
checking is considered in [CY92] where it is shown that three clocks are suffi-
cient to have PSPACE-hardness for the reachability problem. In [AL02], model

TEAM LinG

Model Checking Timed Automata with One or Two Clocks 389

checking is studied for several timed modal logics. In [ACH94] the expressive
power of clocks in TAs is studied from the language theory point of view.

2 Timed Automata

Let and denote the sets of natural and non-negative real numbers, respec-
tively. Let be a set of real valued clocks. We use to denote the set of
boolean expressions over atomic formulae of the form 1 with
and Constraints of are interpreted over valuations for

clocks, that are functions from to The set of valuations is denoted by
For every and we use to denote the time assignment which
maps each clock to the value For every we write
for the valuation which maps each clock in to the value 0 and agrees with
over Let AP be a set of atomic propositions.

Definition 2.1. A timed automaton (TA) is a 6-tuple
where is a finite set of control states, is a finite set of clocks and
is the initial state. The is a finite set of

action transitions: for is the enabling condition (or guard) of
the transition and is the set of clocks to be reset with the transition (we write

assigns a constraint, called an invariant, to any
control state. Finally labels every control state with a subset of
AP.

A state (or configuration) of a timed automaton A is a pair where
is the current control state and is the current clock valuation.

The initial state of A is where is the valuation mapping all clocks in
to 0.
There are two kinds of transition. From it is possible to perform the

action transition if and and then the
new configuration is It is also possible to let time elapsing, and
reach for some whenever the invariant is satisfied. Formally
the semantics of a TA A is given by a Timed Transition System (TTS)

where:

and s.t. and
and we have iff

either and for any

or and and

labels every state with the subset of AP

1 Considering diagonal constraints does not matter for the complexity.

— we write

— we write

TEAM LinG

390 F. Laroussinie et al.

An execution of A is an infinite path in Let be an A-configuration.

An execution from can be described as an infinite sequence

for some Such an execution goes through any configura-
tion reachable from some by a delay transition of duration — we
write Let be the set of all executions from

The standard notions of prefix, suffix and subrun apply for paths in TTS.
Given any finite prefix leading to a configuration (denoted

has a duration, defined as the sum of all delays along
Let be the set of all prefixes of

Given and we say that precedes strictly along
(written iff there exists a finite subrun in s.t. and

contains at least one non null delay transition or one action transition (i.e.

is not reduced to Note that a configuration may have several occurrences
along and then it may be that or and

The size of a TA is where the
size of a constraint is its length (constants are encoded in binary). We use
to denote the number of transitions in A.

3 Timed CTL

TCTL is the quantitative extension of CTL where temporal modalities are sub-
scripted with constraints on duration [ACD93]. Formulae are interpreted over
TTS states.

Definition 3.1 (Syntax of TCTL). TCTL formulae are given by the follow-
ing grammar:

where ~ can be any comparator in any natural number and

Standard abbreviations include as well as
(for (for (for and (for

Further, the modalities U, F and G without subscripts are shorthand
for and The size of a formula is defined in the standard
way, with constants written in binary notation.

Definition 3.2 (Semantics of TCTL). The following clauses define when a
state of some TTS satisfies a TCTL formula written

by induction over the structure of (semantics of boolean operators is
omitted).

TEAM LinG

Model Checking Timed Automata with One or Two Clocks 391

Thus, in the classical until is extended by requiring that be
satisfied within a duration (from the current state) verifying the constraint

Given a TA and a TCTL formula we write
when

4 Complexity of Timed Model Checking

Given a TA A, the TTS may have an infinite number of states and then
standard model checking techniques cannot be applied directly. Indeed the decid-
ability of verification problems over TAs is based on the region graph technique:
The infinite state space of configurations is partitioned in a finite number of
regions (equivalence classes of a relation over valuations) which have the “same
behavior” w.r.t. the property to be checked, then a standard model checking
algorithm can be applied over this finite abstraction. The region graph mainly
depends on the number of clocks and the constants occurring in the guard. One
of the main drawbacks of timed model checking is that the size of the region
graph is exponential in the number of clocks and the (encoding of) constants.
Several data-structures have been proposed to verify non-trivial timed systems
(for ex. DBM see [Dil90,Bou04]).

Reachability problem of timed automata is known to be PSPACE-complete
[AH94]. In [CY92], reachability in TA is shown to be PSPACE-complete even
when the number of clocks is 3 or when the constants occurring in the guard
belong to {0,1}.

For TCTL, model checking is PSPACE-complete [ACD93]. And it is EXP-
TIME-complete for many variants of timed [AL02]; Checking timed
bisimilarity is also an EXPTIME-complete problem. Note that all these results
hold for a or as time domain and these results still hold when considering
a parallel composition of TAs instead of a single one [AL02].

In this paper, we consider two subclasses of TAs whose complexity for timed
verification is not known: we will study TAs with one clock (1C-TAs) or two
clocks (2C-TAs). Clearly these subclasses are more expressive than real-time
automata where the unique clock is reset after any transition and than extensions
of Kripke structures with integer durations.

We will assume that in 1C-TAs, the guards are given by two constants defining
the minimal (resp. maximal) value for to perform the transition: it is always
possible to reduce, in polynomial time, any 1C-TA to an equivalent automaton
verifying such a property.

TEAM LinG

392 F. Laroussinie et al.

5 Model Checking One Clock Timed Automata

For a 1C-TA, a valuation is just a real value: the time assignment associated
with the automaton clock First we consider the reachability problem: “Given
a TA and a control state is it possible to reach a configuration from the
initial state?”

Proposition 5.1. Reachability in 1C-TAs is NLOGSPACE-complete.

Proof. The NLOGSPACE-hardness comes from complexity of reachability in
classical graphs. Now we give a NLGOSPACE algorithm. A 1C-TA configuration
is a control state and a value for the clock It is sufficient to consider only the
integer value of and to know if the fractional part is zero or not, but the integer
value cannot be stored directly in a logarithmic space algorithm and we have to
use a more concise encoding.

Let A be a 1C-TA. Let be the set of integer values used in the guards and
zero. We use to range over and assume and

The set defines a set of intervals with

We will encode
the configuration by the pair s.t. Since it
is possible to store in logarithmic space.

First the algorithm counts the number of different constants in guards of A:
This is done by verifying that the constants occurring in the transition are
different from the constants used in the transition with (this test is
done by enumerating each bit of the constant to be checked and verify the
equivalence, it requires a space in

Then given a pair the algorithm non-deterministically guesses another
and verifies that is reachable from i.e. either and

(this is a delay transition), or there exists a transition s.t.
is satisfied by any value in and (resp. if (resp.
Assume then checking can be done by counting
the number of different constants less than and the number of those
greater than Finally iff and (resp.
and if is even (resp. is odd). These operations requires only
a logarithmic space.

This result entails that analysing a 1C-TA is not more complex than analysing
an untimed graph from the complexity theory. After this positive result, we now
consider model checking for 1C-TA and

Theorem 5.2. Model checking over 1C-TAs is P-complete.

Proof. P-hardness follows from the case of CTL model checking. We present a
polynomial algorithm to construct, for any state and subformula of an
union of intervals over containing the valuations for s.t.
iff Assume with and
We will see that it is sufficient to consider We choose

TEAM LinG

Model Checking Timed Automata with One or Two Clocks 393

and if in order to keep its size (i.e. the number of intervals)
small; Indeed we will show that We denote by

the set of all constants occurring in A (either in guards or in invariants)
plus 0.

We only present here the labeling procedure for the modality the
case of boolean operators and atomic propositions is straightforward and the
procedures for other modalities are given in Appendix A.

Assume Assume also that and have been
already constructed. In order to compute we build a (finite) graph

where every node corresponds to a set of configurations
where is an interval over s.t. (1) these configurations verify either

or (2) for any guard in an A-transition, or This last
requirement implies that the same sequences of action transitions are enabled
from any configuration of

Every G-transition will correspond to an action transition of A or an abstract
delay transition (leading to another node with different properties): G can be
seen as a kind of region graph. The definition of intervals depends on
and and also on guards of A. Let be the finite set

s.t. We enumerate as with
We define as the pairs where (1) is of the form or

and (2) we have or The G-transitions are:

actions: if there exists in A such that
(resp. if (resp. and
abstract delays: if where Succ is
the function: and if

and otherwise.

Note that We can now restrict G to the
nodes satisfying by a standard algorithm and then clearly the nodes in

represent all A configurations satisfying We now have to see when
there exists a path leading to a and being short enough (i.e. to
witness For this we can compute for any node a duration function

s.t. is the duration of a shortest path from to some state
verifying (along a path satisfying The crucial point is that such a duration
function over has a special structure: it is first constant and then decreases
with the slope –1. The constant part corresponds to configurations for which a
shortest path starts by a sequence of action transitions where the clock is reset
at least once before any time elapsing (and clearly this also holds for previous
positions in and the decreasing part corresponds to positions from which a
delay transition occurs before reseting along a shortest path. These functions
can easily be encoded as pairs with with the following meaning:

TEAM LinG

394 F. Laroussinie et al.

Of course, it is also possible to have a pure constant function over (then
or a pure decreasing function (then See Figure 1

for more intuition.

Fig. 1. Example of duration functions

The structure of the duration functions allows us to compute them by adapt-
ing the Bellman-Ford algorithm for single source shortest path over G. This
algorithm is given in Appendix A. The idea is to compute the by suc-
cessive approximations. Consider a shortest path (SP) in starting from

leading to a state verifying with intermediary states satisfying The

path can be described as a sequence of Such a path in is associated

with a path in G where the delay transitions are replaced by a sequence
of abstract delay transitions. Clearly along a SP, a node occurs at most
once: given a configuration with either a SP starts as the previous
positions in and it starts by action transitions that can be performed
from or the SP starts by delaying until and in both cases it is
not necessary to come back to later. Assume the size of a SP in G is
then is bounded by and then it is discovered after the step of the
algorithm.

Once the have been computed, it remains to see which intervals or
part of intervals contain positions whose distance to is less than This step
may lead to cut an interval in two parts (still at an integer point) and add new
constants in in Appendix A we show that the size of is bounded
by and the number of new constants in is
bounded by

From the previous procedure and those in Appendix A, we can deduce that
This entails that the most complex procedure

runs in This globally provides a complexity of
for the full labeling procedure. More precisely we could show that

the algorithm is in where is the number
of subformulae of the form or

TEAM LinG

Model Checking Timed Automata with One or Two Clocks 395

When considering exact durations in subscripts, model checking becomes
PSPACE-hard, i.e. as hard as model checking TAs with several clocks:

Theorem 5.3. Model checking TCTL on 1C-TAs is PSPACE-complete.

Proof. Membership in PSPACE follows from the general result for TAs [ACD93].
PSPACE-hardness is shown by reducing QBF instance to a model checking prob-
lem over 1C-TA.

Consider a QBF instance any
is a boolean variable for and is a propositional formula

over the

Fig. 2. 1C-TA associated with QBP instance

To reduce the QBF instance to a model checking problem, we consider the
1C-TA depicted in Figure 2 and the formulae with defined
as:

Now we show that is valid iff Indeed, interpreting over
makes that every formula with is interpreted over some

configurations in a set located at duration from More precisely
is composed by and with A configuration

in can be seen as a boolean valuation for The truth value of
is iff the control state is and the value of is given by the

bit of the binary encoding of Moreover this valuation is preserved
in the two possible successor configurations in at duration from the
current position. The alternation of existential EF and AF allows to simulate the
alternation of quantifiers over the in

TEAM LinG

396 F. Laroussinie et al.

Finally is interpreted over configurations of which define valuations
for The configurations of the form (resp. with

are located at distance (resp. to
Consider such a configuration and assume

Reaching takes it remains to spend in the loop
and clearly holds after this duration iff the bit of is 1.

Note that the automaton depicted in Figure 2 is a real-time automaton is
reset after every transition) and then we can deduce the following corollary:

Corollary 5.4.

Reachability in real-time automata is NLOGSPACE-complete.
Model checking over real-time automata is P-complete.
Model checking TCTL over real-time automata is PSPACE-complete.

6 Model Checking Two Clocks Timed Automata

When a timed automaton has two clocks, there is a complexity blow-up for
model checking. First we have the following result for reachability:

Proposition 6.1. Reachability problem in 2C-TAs is NP-hard.

Proof. This follows from a simple encoding of the SUBSET-SUM problem [GJ79,
p. 223]: assume we are given a set of integers and a goal one asks
whether there exists a subset s.t. This problem is
known to be NP-complete.

This problem is obviously equivalent to the reachability problem for state G
in the automaton shown on figure 3.

Fig. 3. Encoding of SUBSET-SUM in a 2C-TA

This complexity blow-up compared to the one clock case increases when con-
sidering model-checking:

Theorem 6.2. The model checking problems for CTL, or TCTL on
2C-TAs are PSPACE-complete.

Proof. The PSPACE-membership comes from PSPACE model checking algo-
rithm for TCTL over classical TAs. It is sufficient to show PSPACE-hardness
for the CTL case. Let be a QBF instance

and is boolean formula over the Consider the 2C-TA de-
picted in Figure 4.

TEAM LinG

Model Checking Timed Automata with One or Two Clocks 397

Fig. 4. The 2C-TA associated with the QBF instance

Let be the following CTL formula:

with A path from to defines a boolean valuation for

the performing the transition assigns
to And in the configuration the valuation is encoded

in the value (the total amount of time used to reach Then the branch
allows us to check the value of the bit of that is

exactly the truth value of

Note that this last result is proved for a very simple subclass: the automaton
used in proof of Theorem 6.2 has a clock which is reset after each transition.
Despite this, model checking (untimed) CTL leads to PSPACE-hardness.

7 Conclusion

Figure 5 gives an overview of the results presented in the paper and a comparison
with the results for classical Timed Automata. The main results concern one-
clock automata. First the reachability problem in 1C-TAs is as efficient as the
reachability in classical graphs. Moreover model checking can be done efficiently
if the property is expressed with logic. This result is surprising because
usually, in TCTL model checking, the timing constraints are handled by adding a
new clock in the system and we also have seen that any model checking problem,
even for the untimed CTL, is PSPACE-hard over simple 2C-TAs. Moreover note
that the efficiency requires an ad hoc algorithm to handle timing constraints.

TEAM LinG

398 F. Laroussinie et al.

Fig. 5. Summary of the results

In timed model checking, an important challenge consists in developing data
structures enabling to manage complexity blow-up due to timing constraints
and to parallel composition of components; indeed it would be very interesting
to have the benefits of DBMs for the timing constraints and those of BDDs for
the control state explosion, but today no convincing solution exists. Our results
motivate research for algorithms and data structures for simply timed systems
composed by a unique clock and a parallel composition of processes. Of course,
analysing such systems is PSPACE-hard due to the composition, nevertheless
efficient data structures for handling such systems could be more easily defined
due to the simple timing constraints.

References

[ACD93]

[ACH94]

[AD94]

[AFH96]

[AH92]

[AH93]

[AH94]

[AL02]

[Alu91]

R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.
R. Alur, C. Courcoubetis, and T. A. Henzinger. The observational power of
clocks. In Proc. 5th Int. Conf. Theory of Concurrency (CONCUR’94), Upp-
sala, Sweden, Aug. 1994, volume 836 of Lecture Notes in Computer Science,
pages 162–177. Springer, 1994.
R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.
R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146, 1996.
R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In
Real-Time: Theory in Practice, Proc. REX Workshop, Mook, NL, June 1991,
volume 600 of Lecture Notes in Computer Science, pages 74–106. Springer,
1992.
R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressive-
ness. Information and Computation, 104(1):35–77, 1993.
R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181–203, 1994.
L. Aceto and F. Laroussinie. Is your model checker on time? On the complex-
ity of model checking for timed modal logics. Journal of Logic and Algebraic
Programming, 52–53:7–51, 2002.
R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD
thesis, Stanford Univ., August 1991. Available as Tech. Report STAN-CS-
91-1378.

TEAM LinG

Model Checking Timed Automata with One or Two Clocks 399

[Bou04]

[CC95]

[CGP99]

[CY92]

[Dil90]

[Dim00]

[Eme90]

[GJ79]

[Hen98]

[HJ96]

[LMS02]

P. Bouyer. Forward analysis of updatable timed automata. Formal Methods
in System Design, 24(3):281–320, 2004.
S. Campos and E. M. Clarke. Real-time symbolic model checking for discrete
time models. In T. Rus and C. Rattray, editors, Theories and Experiences for
Real-Time System Development, volume 2 of AMAST Series in Computing,
pages 129–145. World Scientific, 1995.
E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.
C. Courcoubetis and M. Yannakakis. Minimum and maximum delay prob-
lems in real-time systems. Formal Methods in System Design, 1(4):385–415,
1992.
D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Proc. Int. Workshop Automatic Verification Methods for Finite
State Systems (CAV’89), Grenoble, June 1989, volume 407 of Lecture Notes
in Computer Science, pages 197–212. Springer, 1990.
Catalin Dima. Real-time automata and the Kleene algebra of sets of real
numbers. In Proc. of STACS 2000, 17th Annual Symposium on Theoretical
Aspects of Computer Science, Lille, France, February 2000, volume 1770 of
Lecture Notes in Computer Science, pages 279–289, 2000.
E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 16, pages
995–1072. Elsevier Science, 1990.
M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to
the Theory of NP-Completeness. Freeman, 1979.
T. A. Henzinger. It’s about time: real-time logics reviewed. In Proc. 9th
Int. Conf. Concurrency Theory (CONCUR’98), Nice, France, Sep. 1998,
volume 1466 of Lecture Notes in Computer Science, pages 439–454. Springer,
1998.
Dang Van Hung and Wang Ji. On the design of hybrid control systems
using automata models. In Proc. 16th Conf. Found. of Software Technology
and Theor. Comp. Sci. (FST&TCS’96), Hyderabad, India, Dec. 1996, vol-
ume 1180 of Lecture Notes in Computer Science, pages 156–167. Springer,
1996.
F. Laroussinie, N. Markey, and Ph. Schnoebelen. On model checking dura-
tional Kripke structures (extended abstract). In Proc. 5th Int. Conf. Foun-
dations of Software Science and Computation Structures (FOSSACS’2002),
Grenoble, France, Apr. 2002, volume 2303 of Lecture Notes in Computer
Science, pages 264–279. Springer, 2002.

A (End of) proof of Theorem 5.2

We use a kind of Bellman-Ford algorithm to compute the
it uses the natural min operation over duration functions:

The duration functions are first initialized to
0 if or to otherwise (no path leading to states has been yet
discovered) and then we use the following procedure:

TEAM LinG

400 F. Laroussinie et al.

Then it remains to build from the duration functions and the
threshold iff This may lead to cut an interval in two
parts. A crucial point of the algorithm is to merge as much as possible these
(fragments of) G intervals, and we have to show that the size of can be
bounded enough to ensure a polynomial algorithm. We are going to bound (1)
the number of intervals of coming from a given interval of and
(2) the number of new constants (not present in that can appear due to the
cuts.

Consider an interval I of This interval corresponds to a finite se-
quence of G-nodes s.t. The threshold
may cut these intervals and provide non-adjacent intervals in We can
distinguish two cases of cuts: (1) the cut is done between two intervals, or (2) the
cut is done inside an interval. In both cases the cut is due to a unique constraint
in a transition or which can only cut this interval. Since a transition
may contain at most two such constraints, the size of will be bounded
by Indeed:

1.

2.

Consider a cut between two intervals and Assume and
Moreover assume and If

there is a cut in then The shortest paths enabled from
do not exist from and then these SPs start by a sequence of action
transitions and one of them (performed before any delay and reset) have a
guard This transition can only cut in the intervals of The
case and is similar.
Consider a cut inside an interval Then the cut occurs in the
decreasing part of and we have The cut occurs
in and introduces a new (integer) constant. For the valuations
in the decreasing part, i.e. between and the shortest
paths have delay transitions before any reset. This required delay is due to
a guard of the form or along the SP. Such a constraint induces
the cut and only this one (in configurations of the form

TEAM LinG

Therefore a guard may induce at most two cuts in
then And it creates at most one
new integer constant (this also holds for the other modalities) and this entails

Finally the complexity of the procedure is in
with and This provides an algorithm
in for

For building we use the same idea as for
formula based on the graph but here we label nodes

by and We restrict ourself to nodes satisfying
and we introduce a new atomic proposition in order to label every node

in G belonging to a strongly connected set of nodes satisfying and where
at least one edge is an abstract delay transition. Labeling states for can
be done in time once they are labeled for

We can now solve the original problem. There are two ways a state can satisfy

Either a path with loops is required so that a long enough duration is reached:
such a state verifies the CTL formula since any G state satisfies

This can be done in
Or a simple path is enough. Then we can use a (simple) variant of the
earlier shortest paths method, this times geared towards longest acyclic paths
(LAP). For this we just remove states labeled by consider states
satisfying as final states and remove loops with null durations. The
algorithm runs in and we keep (sub-)intervals whose LAP is
above the threshold

Finally we build by merging the states of G satisfying
As for labeling the procedure may add new constants (in the second
case) and split intervals of into several intervals in but we can
argue as in the previous case and show that the size of is bounded
by The procedure runs in with

and This gives an
algorithm in

We reduce to the previous cases using the following equivalences

We use the equivalence And it
is easy to write a labeling procedure for over the same G-graph used
for A node verifies iff it verifies and after the
first abstract delay transition has to hold.

Strict subscripts: The modalities with < or > are treated as the previous
ones.

Model Checking Timed Automata with One or Two Clocks 401

TEAM LinG

On Flatness for 2-Dimensional Vector Addition
Systems with States

Jérôme Leroux1* and Grégoire Sutre2

1 DIRO, Université de Montréal, Montréal, QC, Canada
leroujer@iro.umontreal.ca

2 LaBRI, Univ. de Bordeaux & CNRS UMR 5800, Talence, France
sutre@labri.fr

Abstract. Vector addition systems with states (VASS) are counter au-
tomata where (1) counters hold nonnegative integer values, and (2) the
allowed operations on counters are increment and decrement. Acceler-
ated symbolic model checkers, like FAST, LASH or TReX, provide generic
semi-algorithms to compute reachability sets for VASS (and for other
models), but without any termination guarantee. Hopcroft and Pansiot
proved that for 2-dim VASS (i.e. VASS with two counters), the reacha-
bility set is effectively semilinear. However, they use an ad-hoc algorithm
that is specifically designed to analyze 2-dim VASS. In this paper, we
show that 2-dim VASS are flat (i.e. they “intrinsically” contain no nested
loops). We obtain that — forward, backward and binary — reachability
sets are effectively semilinear for the class of 2-dim VASS, and that these
sets can be computed using generic acceleration techniques.

1 Introduction

Distributed systems have regained much attention recently, especially due to
the popularization of the Internet. Ensuring correctness of distributed systems
is usually challenging, as these systems may contain subtle errors that are very
hard to find. To overcome this difficulty, a formal verification approach can be
employed: model the system, model the desired property, and algorithmically
check that the system satisfies the property.

Petri nets, and equivalently vector addition systems with states (VASS), are
a widely used formalism to model concurrent distributed systems. Basically, a
VASS is a counter automaton where (1) counters hold nonnegative integer values,
and (2) the allowed operations on counters are increment and decrement. As the
counters are unbounded, VASS are naturally infinite-state systems.

Various formalisms have been proposed to model desired properties on sys-
tems. In this work, we only consider safety properties: these properties (of the
original system) may often be expressed by reachability properties on the model.

* This work was partly carried out during the first author’s doctoral studies at Lab.
Specification and Verification, ENS de Cachan (France).

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 402–416, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

On Flatness for 2-Dimensional Vector Addition Systems 403

Reachability properties are algorithmically checkable for finite-state systems
(and efficient implementations exist). However, the situation is more complex for
infinite-state systems: the reachability problem is undecidable even for restricted
classes of systems, such as Minsky machines [Min67].

Accelerated Symbolic Model-Checking. Verification of reachability properties usu-
ally proceeds through an iterative fixpoint computation of the forward reachabil-
ity set (resp. backward reachability set starting from the initial states
(resp. from the error states). When the state space is infinite, finite symbolic rep-
resentations for sets of states are required [HM00]. To help termination of this
fixpoint computation, so-called acceleration techniques (or meta-transitions) are
applied [BW94, BGWW97, BH99, BJNT00, FIS03, FL02]. Basically, accelera-
tion consists in computing in one step the effect of iterating a given loop (of the
control flow graph). Accelerated symbolic model checkers such as LASH [Las],
TReX [ABS01], and FAST [BFLP03] implement this approach.

Accelerated symbolic model-checking is only a semi-algorithm: it does not
provide any guarantee of termination. Still, this approach is very promising as
it behaves well in practice. It would be desirable to determine some classes of
systems for which termination is guaranteed. A natural sufficient condition for
termination is flatness [CJ98]: a system S is called flat1 when we can “extract”
from S a finite number of subsystems such that (1) each contains
no nested loops, and (2) reachability in S is equivalent to reachability in
When the system is flat, and if every loop can be accelerated, then (a symbolic
representation of) is computable. In fact, flatness is also a necessary
condition for termination of acceleration-based semi-algorithms. Hence, flatness
turns out to be a crucial notion for termination analysis of accelerated symbolic
model-checking.

Dedicated Algorithms for VASS. Many specialized algorithms have been de-
signed to solve verification problems for various extensions and restrictions of
VASS. The reachability problem for VASS has been proved decidable [May84,
Kos82]. The reachability sets and are effectively semilinear for Lossy
VASS [BM99]. The class of 2-dimensional VASS (i.e. VASS with only two coun-
ters) has received much attention. Hopcroft and Pansiot proved that the reach-
ability sets and are effectively semilinear for this class [HP79]. It
was later shown that are still effectively semilinear for various ex-
tensions of 2-dim VASS [FS00b, FS00a]. However, these methods suffer from
serious drawbacks: (1) they cannot be easily extended or combined, and (2)
from an implementation perspective, a dedicated tool would be needed for each
specialized algorithm.

Our Contribution. Recall that the reachability sets and have been
shown to be effectively semilinear for the class of 2-dim VASS [HP79]. In this

1 Our notion of flatness is actually more general than in [CJ98]: there, a system is
called flat when it contains no nested loops.

TEAM LinG

404 J. Leroux and G. Sutre

paper, we investigate termination of the generic acceleration-based computation
of for this class. The reader familiar with Petri nets will observe
that our results also hold for the class of Petri nets having only two unbounded
places. Our main result is the following:

Since every loop in a VASS can be accelerated [CJ98, FL02], we also obtain
the following new results:

i)

ii)

the binary reachability relation is effectively semilinear for the class of
2-dim VASS.
the semilinear sets and of any 2-dim VASS can be computed
using generic acceleration techniques.

In particular, we get that accelerated symbolic model checkers such as LASH ,
TReX, or FAST, terminate on 2-dim VASS (if a suitable search strategy is used).
From a practical viewpoint, our approach has several benefits: (1) we can apply
a generic algorithm, which was designed for a much larger class of systems, with
no need for a preliminary syntactic check, and (2) the sets and
can be computed using the same algorithm. For instance, we directly obtain
that all six VASS examples given in [BLW03] are flat, and hence their binary
reachability relation can be computed by means of acceleration.

The effective semilinearity of the binary reachability relation is also a
surprising theoretical result, which can prove useful in pratice. Indeed, we may
express many properties on the model as a first order formula over states using
(binary) predicates and For instance, we can check relationships between
input values and output values for a 2-dim VASS modeling a function. We may
also use this computation of for parameter synthesis: for instance, we can
compute the set of initial states such that the counters stay bounded, or such
that the system terminates. We may also express and check subtle properties on
the system’s strongly connected components (SCC).

Our results obviously extend to the class of (arbitrary) VASS where only two
counters are modified. To guide the analysis of a complex modular VASS, we
may choose to replace some flat subsystems (e.g. subsystems manipulating only
two counters) by equivalent semilinear meta-transitions. Such a flatness-guided
approach would surely help termination of accelerated symbolic model checkers.

Outline. The paper is organized as follows. Section 2 presents vector addition
systems with states. We introduce the notion of flatness in Section 3 and we show
that the binary reachability relation of any flat VASS is effectively semilinear.
As a first step towards flatness, Section 4 investigates the notion of ultimate
flatness. Finally, in Section 5, we focus on dimension 2 and we prove our main
result: every 2-dim VASS is flat.

Some proofs had to be omitted due to space constraints. A self-contained
long version of this paper (with detailed proofs for all results) can be obtained
from the authors.

TEAM LinG

On Flatness for 2-Dimensional Vector Addition Systems 405

2 Vector Addition Systems with States (VASS)

This section is devoted to the presentation of vector addition systems with states.
We first give basic definitions and notations that will be used throughout the
paper.

2.1 Numbers, Vectors, Relations

Let denote the set of integers (resp. nonnegative inte-
gers, nonpositive integers, rational numbers, nonnegative rational numbers). We
denote by the usual total order on Given we write (resp.

for the interval of integers (resp.
We write the cardinal of any finite set X.

Given a set X and we write for the set of vectors x of
elements in X. For any index we denote by the component of
an x.

We now focus on vectors of (integer or rational) numbers. We write 0
for the all zero vector: for all We also denote by the usual
partial order on defined by if for all we have

Operations on vectors are componentwise extensions of their scalar
counterpart (e.g. for is the vector defined by

for all For and is the vector
defined by for all

These operations are classically extended on sets of vectors (e.g. for
Moreover, in an operation

involving sets of vectors, we shortly write x for the singleton {x} (e.g. for
and we write x + P for {x} + P).

A binary relation R on some set X is any subset of X × X. We shortly
write whenever Given two binary relations on X, the
composed binary relation on X is defined by if we have
and for some We denote by the reflexive and transitive closure
of R. The identity relation on X is the binary relation
In the rest of the paper, we will only consider binary relations, and they will
shortly be called relations.

2.2 Vector Addition Systems with States

Definition 2.1. An vector addition system with states (VASS for short)
is a 5-tuple where Q is a finite non empty set of locations, T
is a finite non empty set of transitions, and are the source
and target mappings, and is a transition displacement labeling.

An VASS is basically a finite graph whose edges are labeled by
vectors of integers. Each component corresponds to a counter

ranging over Operationally, control flows from one location to another along
transitions, and counters simultaneously change values by adding the transition’s
displacement (as long as the counters remain nonnegative).

TEAM LinG

406 J. Leroux and G. Sutre

Formally, let be an VASS. The set of configuration
of V is and the semantics of each transition is given by the

transition reachability relation over defined by:

We write for the set of all non empty words with and
denotes the empty word. The set of all words over T is denoted by

Transition displacements and transition reachability relations are naturally
extended to words:

A language over T is any subset L of We also extend displacements
and reachability relations to languages: and

Definition 2.2. Given a VASS the one-step reachability
relation of V is the relation shortly written The global reachability
relation of V is the relation shortly written

Remark that the global reachability relation is the reflexive and transitive
closure of the one-step reachability relation. The global reachability relation of a
VASS V is also usually called the binary reachability relation of V. A reachabil-
ity subrelation is any relation For the reader familiar with transition
systems, the operational semantics of V can be viewed as the infinite-state tran-
sition system

Consider two locations and in a VASS V. A word is called a path
from to if either (1) and or (2) and satisfies:

and for every A path from to
is called a loop on or shortly a loop. We denote by the set of all paths
from to in V. The set of all paths in V is written

Notation. In the following, we will simply write instead of
(resp. when the underlying VASS is unambiguous. We will also some-

times write instead of

We will later use the following fact, which we leave unproved as it is a well
known property of VASS. Recall that a prefix of a given word is any
word such that for some word

Fact 1. For any configurations and of a VASS V, and for any word
we have:

TEAM LinG

On Flatness for 2-Dimensional Vector Addition Systems 407

Fig. 1. A 3-dim VASS weakling computing the powers of 2

Observe that for any word the relation is non empty iff is a
path.

Example 2.3. Consider the 3-dim VASS E depicted on Figure 1. This example
is a variation of an example in [HP79]. Formally, this VASS is the 5-tuple

where
and and is defined by:

and
Intuitively, the loop on transfers the contents of the third counter into

the second counter, while the loop on transfers twice as much as the contents
of the second counter into the third counter. However, the VASS may change
location (using transition or before the transfer completes (a “zero-test”
would be required to ensure that the transfer always completes). Transition
acts as a “silent transition”, and transition decrements the first counter by 1.
The loop on has been added to simplify the expression of

Consider the path It is readily seen that the reachability
subrelation is precisely the set of pairs
with This little VASS exhibits a rather complex global reachability
relation, since it can be proved2 that: iff

and

3 Effective Semilinearity of for Flat VASS

An important concept used in this paper is that of semilinear sets [GS66]. For
any subset we denote by the set of all (finite) linear combinations
of vectors in P:

A subset is said to be a linear set if for some
and for some finite subset moreover x is called the basis and vectors
in P are called periods. A semilinear set is any finite union of linear sets. Let us

2 This proof is an adpatation of the proof in [HP79], and is left to the reader.

TEAM LinG

408 J. Leroux and G. Sutre

recall that semilinear sets are precisely the subsets of that are definable in
Presburger arithmetic [GS66].

Observe that any finite non empty set Q can be “encoded” using a bijection
from Q to Thus, these semilinearity notions naturally carry3 over

subsets of and over relations on

Definition 3.1. A linear path scheme (LPS for short) for a VASS V is any
language of the form where are
words. A semilinear path scheme (SLPS for short) is any finite union of LPS.

Remark that a language of the form with is an
LPS iff (1) is a path, and (2) is a loop for every

Definition 3.2. Given a VASS V, a reachability subrelation is called
flat if for some SLPS We say that V is flat when is flat.

The class of flat reachability subrelations is obviously closed under union and
under composition.

From a computability viewpoint, any (finitely “encoded”) set S is said to
be effectively semilinear if (1) S is semilinear, and (2) a finite basis-period de-
scription (or equivalently a Presburger formula) for S can be computed (from
its “encoding”). The following acceleration theorem shows that the reachability
subrelation “along” any SLPS is an effectively semilinear set. This theorem was
proved in [C J98, FL02] for considerably richer classes of counter automata. We
give a simple proof for the simpler case of VASS.

Theorem 3.3 ([CJ98, FL02]). For any SLPS in a VASS V, the reachability
subrelation is effectively semilinear.

Proof. Let V denote an VASS. Observe that for any transition in V, the
reachability subrelation is effectively semilinear. As the class of effectively
semilinear reachability subrelations is closed under union and under composition,
it suffices to show that is effectively semilinear for any loop Consider a
loop on some location It is readily seen that:

Hence we get that is effectively semilinear, which concludes the proof.

Corollary 3.4. The global reachability relation of any flat VASS V is ef-
fectively semilinear.

3 Obviously, the extension of these notions does not depend on the “encoding”

TEAM LinG

On Flatness for 2-Dimensional Vector Addition Systems 409

Proof. Assume that V is a flat VASS. Since V is flat, there exists an SLPS
satisfying In order to compute such an SLPS, we may enumerate
all SLPS and stop as soon as satifies All
required computations are effective: is readily seen to be effectively semi-
linear, semilinear relations are effectively closed by composition, and equality is
decidable between semilinear relations. We then apply Theorem 3.3 on

Moreover, the semilinear global reachability relation of any flat VASS V
can be computed using an existing “accelerated” symbolic model checker such
as LASH [Las], TReX [ABS01], or FAST [BFLP03]. In this paper, we prove that
every 2-dim VASS is flat, and thus we get that the global reachability relation
of any 2-dim VASS is effectively semilinear. This result cannot be extended to
dimension 3 as the 3-dim VASS E of Example 2.3 has a non semilinear global
reachability relation.

Given an VASS V and a subset of configurations, we denote by
the set of successors of S, and we denote

by the set of predecessors of S. It is well
known that for any 2-dim VASS V, the sets and are effectively
semilinear for every semilinear subset S of configurations [HP79]. One may be
tempted to think that the semilinearity of is a consequence of this result.
The following proposition shows that this is not the case.

Proposition 3.5. There exists a 3-dim VASS V such that (1) and
are effectively semilinear for every semilinear subset and (2)

the global reachability relation is not semilinear.

4 Acceleration Works Better in Absence of Zigzags

The rest of the paper is devoted to the proof that every 2-dim VASS is flat. We
first establish in this section some preliminary results that hold in any dimension.
We will restrict our attention to dimension 2 in the next section.

It is well known that the set of displacements of all paths between
any two locations and is a semilinear set. We now give a stronger version of
this result: this set of displacements can actually be “captured” by an SLPS.

Lemma 4.1. For every pair of locations in a VASS V, there exists an
SLPS such that

Given any two locations and in a VASS V, the “counter reachability
subrelation” between and is clearly
contained in the relation According to
the lemma, there exists an SLPS such that Still,

does not necessarily contain the reachability subrelation between and
as shown by the following example.

Example 4.2. Consider again the VASS E of Example 2.3. The set of displace-
ments is equal to where is the SLPS contained in

TEAM LinG

410 J. Leroux and G. Sutre

defined by: Note that is the semi-
linear set with and

It is readily seen that satisfies: iff either
(1) and or (2) and
Hence, according to Example 2.3, does not contain all pairs
such that

As a first step towards flatness, we now focus on reachability between config-
urations that have “big counter values”. This leads us to the notion of ultimate
flatness, but we first need some new notations.

Notation. Consider an VASS V with a set of locations Q, and let R denote
any (binary) relation on For any subset the restriction of R
to X, written is the relation

Definition 4.3. An VASS V is called ultimately flat if the restriction
is flat for some

Remark 4.4. For any ultimately flat VASS V, there exists such that the
restriction is semilinear.

In the rest of this section, we give a sufficient condition for ultimate flatness.
This will allow us to prove, in the next section, ultimate flatness of every 2-dim
VASS. This sufficient condition basically consists in assuming a stronger version
of Lemma 4.1 where the considered SLPS are zigzag-free. In the following,
we consider a fixed VASS

Definition 4.5. An LPS is said to be zigzag-free if for every
the integers have the same sign. A zigzag-free

SLPS is any finite union of zigzag-free LPS.

Intuitively, an LPS is zigzag-free iff the displacements of all loops in
“point” in the same hyperquadrant, where by hyperquadrant, we mean a subset
of of the form with

The following lemma shows that the intermediate displacements along any
path in a zigzag-free LPS belong to fixed hypercube (that only depends on
and This result is not very surprising: since all loops in “point” in the same
“direction”, the intermediate displacements along any path in can not deviate
much from this direction.

Lemma 4.6. Given any zigzag-free LPS there exists an integer such
that for every path the displacement of any prefix of satisfies:

for every

We may now express, in Proposition 4.8, our sufficient condition for ultimate
flatness. The proof is based on the following lemma.

TEAM LinG

On Flatness for 2-Dimensional Vector Addition Systems 411

Lemma 4.7. Let denote two locations, and let be any zigzag-
free SLPS such that There exists such that for every

if then

Proposition 4.8. Let V be a VASS. Assume that for every pair of lo-
cations, there exists a zigzag-free SLPS such that

Then V is ultimately flat.

Observe that all proofs in this section are constructive. From Lemma 4.1,
we can compute for each pair of locations an SLPS
such that Assume that these SLPS can be effectively
“straightened” into zigzag-free SLPS with the same displace-
ments: Then we can compute an integer such
that is contained in where Consequently, we
can conclude using the acceleration theorem, Theorem 3.3, that is
effectively semilinear. We will prove in the next section that this “straightening”
assumption holds in dimension 2.

5 Flatness of 2-Dim VASS

We now have all the necessary background to prove our main result. We first
show that every 2-dim VASS is ultimately flat. We then prove that every 1-dim
VASS is flat, and we finally prove that every 2-dim VASS is flat.

5.1 Ultimate Flatness in Dimension 2

In order to prove ultimate flatness of all 2-dim VASS, we will need the following
technical proposition.

Proposition 5.1. For any finite subset P of and for any vector
there exists two finite subsets of such that:

Of course, this proposition also holds in dimension 1. The following remark
shows that the proposition does not hold in dimension 3 (nor in any dimension
above 3).

Remark 5.2. Consider the linear set with basis x = (1,0,0) and set
of periods P = {(1,0,0), (0,1, –1),(0, –1,2)}. Observe that

Let and denote two finite subsets of There exists
such that and hence

Therefore, there does not exist two finite subsets of such
that

TEAM LinG

412 J. Leroux and G. Sutre

We may now prove that every 2-dim VASS is ultimately flat. We first show
that any LPS in a 2-dim VASS can be “straightened” into a zigzag-free SLPS
with the same displacements.

Lemma 5.3. For any location of a 2-dim VASS V and for any LPS
there exists a zigzag-free SLPS such that

Proposition 5.4. Every 2-dim VASS is ultimately flat.

Remark 5.5. There exists a 3-dim VASS that is not ultimately flat. To prove
this claim, consider VASS E from Example 2.3. For every the restriction

is clearly non semilinear. According to Remark 4.4, we conclude that
E is not ultimately flat.

5.2 Flatness and Effective Semilinearity of for 1-Dim VASS

Let be any 1-dim VASS and let us prove that V is flat.
Proposition 5.4 is trivially extended to 1-dim VASS as any 1-dim VASS is “equal”
to a 2-dim VASS whose second counter remains unchanged. Therefore, V is
ultimately flat, and hence there exists such that is flat. Let

and let us denote by F and the intervals
and

Recall that is flat. The restriction is also flat since it is a finite
reachability subrelation. As the class of flat reachability subrelations is closed
under union and under composition, we just have to prove the following inclusion:

Assume that for some path If or then
or which concludes the proof

since contains
Now suppose that either (1) and or (2) and and

consider the case (1) and Let be the longest prefix of such
that As the prefix can not be equal to
So the path can be decomposed into with and and

such that and We have
where and Remark that and hence

From we deduce that and
as we obtain that So far, we have proved
that Symmetrically, for the case (2)
and we deduce

This concludes the proof that V is flat. We have just proved the following
theorem.

Theorem 5.6. Every 1-dim VASS is flat.

TEAM LinG

On Flatness for 2-Dimensional Vector Addition Systems 413

5.3 Flatness and Effective Semilinearity of for 2-Dim VASS

Let be any 2-dim VASS and let us prove that V is flat.
According to Proposition 5.4, V is ultimately flat, and hence there exists
such that is flat. Let and let us denote
by F and the intervals and The set is covered
by 4 subsets:

Recall that is flat. The restriction is also flat since it is
a finite reachability subrelation.

Lemma 5.7. The reachability subrelations and are flat.

Proof. We only prove that is flat (the proof that is flat is
symmetric). Observe that this reachability subrelation is the reachability relation
of a 2-dim VASS whose first counter remains in the finite set F. So the relation

is first shown to be “equal” to the reachability relation of the 1-dim
VASS defined as follows:

Observe that reachability in V and are closely related: for every
and we have:

Let denote the letter morphism defined by We
deduce from the previous equivalence, that the two following assertions hold for
every and

As is a 1-dim VASS, Theorem 5.6 shows that there exists a SLPS for
such that The language is an SLPS for V. Let us

prove that
Consider Since is “equal”

to we obtain that As we get
that there exists a path such that the pair

belongs Recall that “contains”
We deduce that We

have shown that which concludes the proof.

TEAM LinG

414 J. Leroux and G. Sutre

Let us denote by the reachability subrelation
where Id denotes the identity relation on Recall that we

want to prove that V is flat. As the class of flat reachability subrelations is
closed under union and under composition, we just have to prove the following
“flatness witness” inclusion:

Consider two configurations and and a path such
that An intermediate vector for the triple is
a vector such that for some prefix of with
Observe that for any such intermediate vector there exists a state
and a decomposition of into with satisfying:

Let We first prove the following lemma.

Lemma 5.8. For any such that there is no intermediate vector
in G, we have

Proof. Assume that is such that there is no intermediate vector
in G. Remark that we can assume that The intermediate vectors

are either in or in Assume by
contradiction that there exists both an intermediate vector in

and in So there exists such that either
or with and

Let us consider the case We have
From we obtain which contradicts

As the case is symmetric, we have proved that
we cannot have both an intermediate state in and in

By symmetry, we can assume that all the intermediate
states are in Let be the first transition of As
is an intermediate state, we have In particular,

Symmetrically, by considering the last transition of we deduce
Therefore, we have proved that

We may now prove the “flatness witness” inclusion given above. Consider
any two configurations and such that There ex-
ists a path such that We are going to prove
that there exists a prefix of and a suffix of such that there is no
intermediate vectors of or in F × F and
such that If there is no intermediate vector of

in F × F, then we can choose and So we can
assume that there is at least one intermediate state in F × F. Let be the least
prefix of such that there is no intermediate vector of in F × F

TEAM LinG

On Flatness for 2-Dimensional Vector Addition Systems 415

and and let be the least suffix of such that there is no intermedi-
ate vector of in F × F and Now, just remark that

By decomposing in the same way the two paths and such that there is no
intermediate vector in we have proved that for any path
and for any there exists

such that the intermediate vectors are
not in G and such that and are in

and such that Therefore, we have
proved the “flatness witness” inclusion given above.

This concludes the proof that V is flat. We have just proved the following
theorem.

Theorem 5.9. Every 2-dim VASS is flat.

Corollary 5.10. The global reachability relation of any 2-dim VASS V is
effectively semilinear.

The generic semi-algorithm implemented in the accelerated symbolic model
checker FAST is able to compute the reachability set of 40 practical VASS [BFLP03].
Theorem 5.9 shows that this model checker, which was designed to often com-
pute the reachability set of practical VASS, also provides a generic algorithm
that always computes the reachability relation of any 2-dim VASS.

References

[ABS01]

[BFLP03]

[BGWW97]

[BH99]

[BJNT00]

[BLW03]

A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reach-
ability analysis of complex systems. In Proc. 13th Int. Conf. Computer
Aided Verification (CAV’2001), Paris, France, July 2001, volume 2102
of Lecture Notes in Computer Science, pages 368–372. Springer, 2001.
S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. In Proc. 15th Int. Conf. Computer Aided
Verification (CAV’2003), Boulder, CO, USA, July 2003, volume 2725 of
Lecture Notes in Computer Science, pages 118–121. Springer, 2003.
B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. In Proc. Static Analysis 4th Int. Symp. (SAS’97), Paris, France,
Sep. 1997, volume 1302 of Lecture Notes in Computer Science, pages
172–186. Springer, 1997.
A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-
channel systems with nonregular sets of configurations. Theoretical Com-
puter Science, 221(1–2):211–250, 1999.
A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. In Proc. 12th Int. Conf. Computer Aided Verification
(CAV’2000), Chicago, IL, USA, July 2000, volume 1855 of Lecture Notes
in Computer Science, pages 403–418. Springer, 2000.
B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large.
In Proc. 15th Int. Conf. Computer Aided Verification (CAV’2003), Boul-
der, CO, USA, July 2003, volume 2725 of Lecture Notes in Computer
Science, pages 223–235. Springer, 2003.

TEAM LinG

416 J. Leroux and G. Sutre

[BM99]

[BW94]

[CJ98]

[FIS03]

[FL02]

[FS00a]

[FS00b]

[GS66]

[HM00]

[HP79]

[Kos82]

[Las]

[May84]

[Min67]

A. Bouajjani and R. Mayr. Model checking lossy vector addition sys-
tems. In Proc. 16th Ann. Symp. Theoretical Aspects of Computer Science
(STACS’99), Trier, Germany, Mar. 1999, volume 1563 of Lecture Notes
in Computer Science, pages 323–333. Springer, 1999.
B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
Proc. 6th Int. Conf. Computer Aided Verification (CAV’94), Stanford,
CA, USA, June 1994, volume 818 of Lecture Notes in Computer Science,
pages 55–67. Springer, 1994.
H. Comon and Y. Jurski. Multiple counters automata, safety analysis
and Presburger arithmetic. In Proc. 10th Int. Conf. Computer Aided
Verification (CAV’98), Vancouver, BC, Canada, June-July 1998, volume
1427 of Lecture Notes in Computer Science, pages 268–279. Springer,
1998.
A. Finkel, S. P. Iyer, and G. Sutre. Well-abstracted transition systems:
Application to FIFO automata. Information and Computation, 181(1):1–
31, 2003.
A. Finkel and J. Leroux. How to compose Presburger-accelerations: Ap-
plications to broadcast protocols. In Proc. 22nd Conf. Found. of Software
Technology and Theor. Comp. Sci. (FST&TCS’2002), Kanpur, India,
Dec. 2002, volume 2556 of Lecture Notes in Computer Science, pages
145–156. Springer, 2002.
A. Finkel and G. Sutre. An algorithm constructing the semilinear
for 2-dim reset/transfer vass. In Proc. 25th Int. Symp. Math. Found.
Comp. Sci. (MFCS’2000), Bratislava, Slovakia, Aug. 2000, volume 1893
of Lecture Notes in Computer Science, pages 353–362. Springer, 2000.
A. Finkel and G. Sutre. Decidability of reachability problems for classes
of two counters automata. In Proc. 17th Ann. Symp. Theoretical Aspects
of Computer Science (STACS’2000), Lille, France, Feb. 2000, volume
1770 of Lecture Notes in Computer Science, pages 346–357. Springer,
2000.
S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and
languages. Pacific J. Math., 16(2):285–296, 1966.
T. A. Henzinger and R. Majumdar. A classification of symbolic transition
systems. In Proc. 17th Ann. Symp. Theoretical Aspects of Computer
Science (STACS’2000), Lille, Prance, Feb. 2000, volume 1770 of Lecture
Notes in Computer Science, pages 13–34. Springer, 2000.
J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-
dimensional vector addition systems. Theoretical Computer Science,
8(2):135–159, 1979.
S. R. Kosaraju. Decidability of reachability in vector addition systems. In
Proc. 14th ACM Symp. Theory of Computing (STOC’82), San Francisco,
CA, May 1982, pages 267–281, 1982.
LASH homepage. http://www.montefiore.ulg.ac.be/~boigelot/
research/lash/.
E. W. Mayr. An algorithm for the general Petri net reachability problem.
SIAM J. Comput., 13(3):441–460, 1984.
M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall,
London, 1 edition, 1967.

TEAM LinG

Compiling Pattern Matching in Join-Patterns

Qin Ma and Luc Maranget

INRIA-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
{Qin.Ma, Luc.Maranget}@inria.fr

Abstract. We propose an extension of the join-calculus with pattern
matching on algebraic data types. Our initial motivation is twofold: to
provide an intuitive semantics of the interaction between concurrency
and pattern matching; to define a practical compilation scheme from
extended join-definitions into ordinary ones plus ML pattern matching.
To assess the correctness of our compilation scheme, we develop a the-
ory of the applied join-calculus, a calculus with value-passing and value
matching.

1 Introduction

The join-calculus [5] is a process calculus in the tradition of the of Mil-
ner, Parrow and Walker [16]. One distinctive feature of join-calculus is the simul-
taneous definition of all receptors on several channels through join-definitions.
A join-definition is structured as a list of reaction rules, with each reaction rule
being a pair of one join-pattern and one guarded process. A join-pattern is in
turn a list of channel names (with formal arguments), specifying the synchro-
nization among those channels: namely, a join-pattern is matched only if there
are messages present on all its channels. Finally, the reaction rules of one join-
definition define competing behaviors with a non-deterministic choice of which
guarded process to fire when several join-patterns are satisfied.

In this paper, we extend the matching mechanism of join-patterns, such that
message contents are also taken into account. As an example, let us consider the
following list-based implementation of a concurrent stack:1

The second join-pattern & State(ls) is an ordinary one: it is matched
whenever there are messages on both State and push. By contrast, the first join-
pattern is an extended one, where the formal argument of channel State is an
(algebraic) pattern, matched only by messages that are cons cells. Thus, when
the stack is empty (i.e., when message [] is pending on channel State), pop
requests are delayed.

1 We use the Objective Caml syntax for lists, with nil being [] and cons being the
infix : :.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 417–431, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

418 Q. Ma and L. Maranget

Note that we follow the convention that capitalized channels are private: only
push and pop will be visible outside.

A similar stack can be implemented without extended join-patterns, by
using an extra private channel and ML pattern matching in guarded processes
instead:

However, the second definition obviously requires more programming effort.
Moreover, it is not immediately apparent that messages on Some are non-empty
lists, and that the ML pattern matching thus never fails.

Join-definitions with (constant) pattern arguments appear informally in func-
tional nets [18]. Here we generalize this idea to full patterns. The new semantics
is a smooth extension, since both join-pattern matching and pattern matching
rest upon classical substitution (or semi-unification). However, an efficient im-
plementation is more involved. Our idea is to address this issue by transforming
programs whose definitions contain extended join-patterns into equivalent pro-
grams whose definitions use ordinary join-patterns and whose guarded processes
use ML pattern matching. Doing so, we leave most of the burden of pattern
matching compilation to an ordinary ML pattern matching compiler. However,
such a transformation is far more than just straightforward. Namely, there is
a gap between (extended) join-pattern matching, which is non-deterministic,
and ML pattern matching, which is deterministic (following the “first-match”
policy). For example, in our definition of a concurrent stack with extended join-
patterns, State(ls) is still matched by any message on State, regardless of the
presence of the more precise in the competing reaction rule that
precedes it. Our solution to this problem relies on partitioning matching values
into non-intersecting sets. In the case of our concurrent stack, those sets simply
are the singleton {[]} and the set of non-empty lists. Then, pattern State(ls) is
matched by values from both sets, while pattern is matched only
by values of the second set.

The rest of the paper is organized as follows: Section 2 first gives a brief
review of patterns and ML pattern matching, then goes on presenting the key
ideas of our solution to carry out the transformation informally. We explain how
the idea come into being step by step, and especially how we deal with the non-
determinism problem. Section 3 presents the semantics of our extended calculus
as well as appropriate equivalence relations. Section 4 formalizes the transfor-
mation as a compilation scheme and presents the algorithm which essentially
works by building a meet semi-lattice of patterns. We go through a complete ex-
ample in Section 5, and finally, we deal with the correctness of the compilation
scheme in Section 6. Most of the proof details are confined to the complementary
technical report [14] for lack of space.

TEAM LinG

Compiling Pattern Matching in Join-Patterns 419

2 A Journey Through Patterns

2.1 Patterns and ML Pattern Matching

Patterns and values are built as usual as (well-sorted) terms, over constructor
signatures defined by algebraic data types. In contrast to values, patterns may
have variables2 in them; we require all variables in a pattern to be pairwise
distinct. That is, patterns are linear. A value (of type is an instance of
pattern (of type when there exists a substitution such that In
other words, pattern describes the prefix of instance and additionally binds
its variables to sub-terms of In the following, we write for the set of the
instances of pattern We have the following relations among patterns (see [11]
for full details):

Pattern and are incompatible when
Pattern is less precise then pattern when
Patterns and are compatible when they share at least one instance.
Two compatible patterns admit a least upper bound (for written
whose instance set is
Patterns and are equivalent when If so, their
least upper bound is their representative, written 3

ML pattern matching is deterministic, even when patterns are overlapping
(i.e., compatible). More precisely, consider the following ML pattern matching

Pattern is matched by the values in set and only by
those. In other words, given some value patterns are checked
for having as an instance, in that order, stopping as soon as a match is found,
pattern matching is exhaustive when is the whole set of values (of
the considered type).

2.2 Transform Pattern Arguments in Join to ML Pattern Matching

The implementation of extended join-synchronization requires to test message
contents against pattern arguments, while ordinary join-synchronization only
requires to test message presence. Our idea is to separate algebraic pattern test-
ing from join-synchronization, and to perform the former operation by using
ML-pattern matching. To avoid inappropriate message consumption, message
contents are tested first. Let’s consider the following join-definition:

We refine channel into more precise ones, each of which carries the instances
of patterns or

2

3
In patterns, we freely replace variables whose names are irrelevant by wild-cards “_”.
Because of typing, there exists non-trivial equivalences such as at any pair type, we
have _ (_,_).

TEAM LinG

420 Q. Ma and L. Maranget

Then, we add a new reaction rule to dispatch the messages on channel to
either or

The notation stands for the null process, which is used in the last matching
rule to discard messages that match neither nor

The simple compilation above works perfectly, as long as and are in-
compatible. Unfortunately, it falls short when and have common instances,
namely, the non-determinism problem. However, further refinements can handle
this situation.

If (but that is if all instances of are instances of
then, to get a chance of meeting its instances, pattern must come first:

But now, channel does not carry all the possible instances of pattern
anymore, instances shared by pattern are dispatched to As a conse-
quence, the actual transformation of the initial reaction rules is as follows:

Observe that non-determinism is now more explicit: an instance of sent
on channel can be consumed by either reaction rule. We can shorten the
new definition a little by using or in join-patterns:

If then matching by their representative is enough:

Finally, if neither nor holds, with and being never-
theless compatible, then an extra matching by pattern is needed:

TEAM LinG

Compiling Pattern Matching in Join-Patterns 421

Note that the relative order of and is irrelevant here.

In the transformation rules above, we paid little attention to variables in pat-
terns, by writing We now demonstrate variable management by means
of our stack example. Here, the relevant patterns are and and
we are in the case where (and because of instance []). Our idea
is to let dispatching focus on instance checking, and to perform variable binding
after synchronization:

One may believe that the matching of the pattern needs to be per-
formed twice, but it is not necessary. The compiler in fact knows that the match-
ing of against (on first line) cannot fail. As a consequence, no test needs
to be performed here, only the binding of the pattern variables. Moreover, the
existing optimizing pattern matching compiler of [11] can be fooled into pro-
ducing minimal code for such a situation by simply asserting that the compiled
matching is exhaustive.

3 The Applied Join-Calculus

In this section, we define the applied join-calculus by analogy with “the applied
[1]. The applied join-calculus inherits its capabilities of communi-

cation and concurrency from the pure join-calculus [5]. Moreover it extends to
support algebraic value-passing, and algebraic pattern matching in both join-
patterns and guarded processes.

3.1 Syntax and Scopes

The syntax of the applied join-calculus is given in Figure 1. Constructors of
algebraic data types have an arity and are ranged over by C. A constructor
with arity 0 is a constant. We assume an infinite set of variables, ranged over by

Two new syntactic categories are introduced: expressions and patterns. At
the first glance, both expressions and patterns are terms constructed from vari-
ables and constructors, where matches the arity of constructor C. However,
we require patterns to be linear. ML pattern matching is added as a process,
which matches the value of the expression against a list of patterns. Moreover,
in contrast to ordinary name-passing join-calculus, there are two more radical

TEAM LinG

422 Q. Ma and L. Maranget

Fig. 1. Syntax of the applied join-calculus

extensions: first, message contents become expressions, that is, we have value-
passing; second, when a channel name is defined in a join-pattern, we also specify
what pattern the message content should satisfy.

There are two kinds of bindings: the definition process def D in P binds all
the channel names defined in D (dn[D]) in the scope of P; while the reaction rule

or the ML pattern matching match with bind
all the local variables in the scope of P or

The definitions of the set of defined channel names dn[·], the set of local
variables rv[·], and the set of free variables fv[·] are almost the same as in the join-
calculus, except for the following modifications or extensions to adopt patterns.

We assume a type discipline in the style of the type system of the join-
calculus [7], extended with constructor types and the rule for ML pattern match-
ing. Without making the type discipline more explicit, we consider only well-
typed terms (whose type we know), and assume that substitutions preserve
types. It should be observed that the arity checking of polyadic join-calculus
is replaced by a well-typing assumption in our calculus, which is monadic and

TEAM LinG

Compiling Pattern Matching in Join-Patterns 423

Fig. 2. RCHAM of the applied join-calculus

whose message contents can be tuples. However, one important consequence of
typing is that any (free) variable in a term possesses a type and that we know
this type. Hence, we can discriminate between those variables that are of a type
of constructed values and those that are of channel type. Generally speaking, in
name-passing calculi semantics, the latter kind of variables are (almost) treated
as channel names, that is, values. While, in any reasonable semantics, the former
kind of variables cannot be treated so. Reduction will operate on variable-closed
(closed for short) terms, whose free variables are all of channel type.

Finally, we use the or construct in join-patterns as syntax sugar, in the fol-
lowing sense:

3.2 Reduction Semantics

We establish the semantics in the reflexive chemical abstract machine style [5,
3]. A chemical solution is a pair where is a multiset of join-definitions,
and is a multiset of processes. Extending the notion of closeness to solutions,
a solution is closed when all the join-definitions and processes in it are closed.
The chemical rewrite rules are given in Figure 2. They apply to closed solutions,
and consist of two kinds: structural rules or represent the syntactical
rearrangement of the terms, and reduction rules represent the computation
steps. We follow the convention to omit the part of the solution which remains
unchanged during rewrite.

Matching of message contents by formal arguments is integrated in the sub-
stitution in rule REACT. As a consequence this rule does not formally change
with respect to ordinary join-calculus. However its semantical power has much
increased. The MATCH rule is new and expresses ML pattern matching.

According to the convention of processes as solutions, namely P as P, the
semantics is also defined on closed processes in the following sense.

TEAM LinG

424 Q. Ma and L. Maranget

Definition 1. Denote as the transitive closure of

1. iff
2. iff

Obviously, we have the structural rule, namely, if and
then

3.3 Equivalence Relation

In this section, we equip the applied join-calculus with equivalence relations to
allow equational reasoning among processes. The classical notion of barbed con-
gruence is a sensible behavioral equivalence based on a reduction semantics and
barb predicates. It was initially proposed by Milner and Sangiorgi for CCS [17],
and adapted to many other process calculi [9,2], including the join-calculus [5].
We take weak barbed congruence [17] as our basic notion of “behavioral equiva-
lence” for closed processes.

Definition 2 (Barb Predicates). Let P be a closed process, and be a channel
name

1.

2.

P has a strong barb on iff for some D, Q
and
P has a weak barb on channel iff such that

Definition 3 (Weak Barbed Bisimulation). A binary relation on closed
processes is a weak barbed bisimulation if, whenever we have

1.
2.

If then s.t. and and vice versa.
For any iff

By definition, Weak barbed bisimilarity is the largest weak barbed
bisimulation.

A context C[·] is a term built by the grammar of process with a single process
placeholder [·]. An executive contexts E[·] is a context in which the placeholder
is not guarded. Namely:

We say a context is closed if all the free variables in it are of channel type.

Definition 4 (Weak Barbed Congruence). A binary relation on closed pro-
cesses is a weak barbed congruence if it is a weak barbed bisimulation and closed
by application of any closed executive context. We denote the largest weak barbed
congruence as

The weak barbed congruence is defined on the closed subset of the
applied join-calculus. Although the definition itself only requires the closure of
executive contexts, it can be proved that the full congruence does not provide

TEAM LinG

Compiling Pattern Matching in Join-Patterns 425

more discrimination power. Similarly to what Fournet has established for the
pure join-calculus in his thesis [4], we first have the property that is closed
under substitution because, roughly, name substitutions may be mimicked by
executive contexts with “forwarders”.

Lemma 1. Given two closed processes P and Q, if then for any sub-
stitution (Note that “closed” stands for “variable-closed”.)

Then based on this property, the full congruence is also guaranteed.

Theorem 1. Weak barbed congruence is closed under application of any
closed context.

Up to now, we define the weak barbed congruence as expressing the equiva-
lence of two processes at runtime. However, this is not sufficient for reasoning the
behavior of our compilation, which applies perfectly well to processes with free
variables. In other words, we also need a way to express the equivalence of two
processes statically. Of course, the static equivalence must imply the runtime
one. Therefore, the equivalence relation of any processes, whether closed or not,
is defined in terms of the runtime equivalence relation using substitutions
to close up.

Definition 5 (Static Equivalence). Two processes P and Q are statically
equivalent if for any substitution such that and are closed,

Following the definition, we can check that is closed by substitution.

Lemma 2.

More importantly, is also closed with respect to all contexts. Namely, the
following theorem holds.

Theorem 2. The static equivalence is a full congruence.

There is still a good property worth noticing: in fact, for the closed subset
of the applied join-calculus, we have and coincide. This is almost
straightforward following the definition of static equivalence and Lemma 1.

4 The Compilation

We formalize the intuitive idea described in Section 2 as a transformer which
transforms a join-definition w.r.t. channel The algorithm essentially works by
constructing the meet semi-lattice of the formal pattern arguments of channel in
D, modulo pattern equivalence and with relation as partial order. Moreover,
we visualize the lattice as a Directed Acyclic Graph, namely, vertices as patterns,
and edges representing the partial order. If we reason more on instance sets than
on patterns, this structure is quite close to the “subset graph” of [20].

Algorithm Given D, the join-definition to be transformed.

TEAM LinG

426 Q. Ma and L. Maranget

Step 0: Pre-process
1.

2.

3.
4.

Collect all the pattern arguments of channel into the sequence:

Let be formed from by taking the of all equivalent patterns; thus
is a sequence of pairwise non-equivalent patterns.

Perform exhaustiveness check on if not exhaustive, issue a warning.
IF There is only one pattern in and that is exhaustive
THEN goto Step 5 (In that case, no dispatching is needed.)

Step 1: Closure of Least Upper Bound
For any pattern and pattern sequence we define
as the sequence where the are the patterns
from X that are compatible with
We also define function F, which takes a pattern sequence X as argument
and returns a pattern sequence.
IF X is empty
THEN F(X) = X
ELSE Decompose X as and state
Compute the sequence It is worth noticing that is the sequence
of valid patterns with
and where we decompose as

Step 2: Up to Equivalence
As in Step 0.2, build from

Step 3: Build DAG
Corresponding to the semi-lattice build a directed acyclic graph
G(V,E).
1.
2.

3.

For each pattern in add a new vertex into V and labeled the
vertex with written as

if then add an edge from
to into E.

Step 4: Add Dispatcher
Following one topological order, the vertices of G are indexed as
We extend the join-definition D with a dispatcher on channel of the form:

with where is a fresh variable and is built as follows:
1.

2.

Let ranges over Following the above topological order, for
all vertices in V append a rule to where is
a fresh channel name.
If is not exhaustive, then add a rule at the end.

Step 5: Rewrite Reaction Rules
For each reaction rule defining channel in D: we rewrite it
according to the following policy. Let with where
is a fresh variable.
IF coming from Step 0
THEN rewrite to
ELSE

TEAM LinG

Compiling Pattern Matching in Join-Patterns 427

1.
2.

3.

Let be the unique vertex in V, s.t.
We collect all the predecessors of in G, and we record the indexes
of them, together with into a set notated as
Rewrite to where is the generalized or
construct of join-patterns.

Assume where we assume an order on the
channel names. To transform a join-definitions D, we just apply
And the compilation of processes is defined as follows.

Observe that the compilation preserves the interface of join-definitions.
Namely, it only affects definitions D, while message sending remains the same.

5 Example of Compilation

Given the following join-definition of an enriched integer stack

The insert channel inserts an integer as the second topmost element, but only
when the topmost element is 0. The last channel gives back the last element in
the stack, keeping the stack unchanged. The swap channel exchange the topmost
two elements in the stack. The pause channel temporarily freezes the stack when
it is empty, while the resume channel brings the stack back into work. We now
demonstrate our transformation w.r.t. channel State.

Step 0. We collect the pattern arguments of channel State into

Because none of these patterns is equivalent to another, Addition-
ally, is exhaustive (pattern ls alone covers all possibilities).

Step 1,2. extends with all possible least upper bounds. Then we form
from by taking the of all equivalent patterns.

TEAM LinG

428 Q. Ma and L. Maranget

Note that the last two patterns are new, where

Step 3. We build the semi-lattice see Figure 3.
Step 4. One possible topological order of the vertices is also given at the right

of Figure 3. Following that order, we build the dispatcher on channel State.

Step 5. We rewrite the original reaction rules. As an example, consider the third
reaction rule for the insert behavior: the pattern in State(0:: xs) corresponds
to vertex 4 in the graph, which has two predecessors: vertex 1 and vertex 2.
Therefore, the reaction rule is rewritten to

where and are the fresh channel names corresponding
to vertices 1, 2, 4 respectively, and is a fresh variable.

As a final result of our transformation, we get the disjunction of the following
rules and of the dispatcher built in Step 4.

As discussed at the end of Section 2, ML pattern matchings in the guarded
processes are here only for binding pattern variables. Therefore, if the original
pattern does not contain any variables (c.f . the pause rule), we can discard the
ML pattern matching, as shown in the above program.

TEAM LinG

Compiling Pattern Matching in Join-Patterns 429

Fig. 3. The semi-lattice of patterns and the topological order

6 Correctness

A program written in the extended join-calculus of Section 3 is a process P. The
compilation replaces all the join-definitions D in P by (D), where

To guarantee the correctness, we require the programs
before and after the compilation to be statically equivalent. Namely, the following
theorem should hold.

Theorem 3. For any process P,

Proof. By structural induction on processes, and because is a full congruence
and a transitive relation, it suffices to prove the following Lemma 3.

Lemma 3. For any join-definition D, channel name and process P,

This lemma is crucial to the correctness of the compilation. The proof relies on
the properties of the meet semi-lattice constructed from the pattern arguments.
In particular the proof exploits the deterministic semantics of the ML pattern
matching in the dispatcher, which is built following the topological order of the
lattice. For lack of space, we omit the proof. Please refer to the complementary
technical report.

7 Conclusion and Future Work

In this paper we have introduced the applied join-calculus. The applied join-
calculus inherits its capabilities of communication and concurrency from the
pure join-calculus and supports value-passing. The one significant extension lies
in providing the power of pattern matching. Thus, the applied join-calculus is
a more precise and realistic model combining both functional and concurrent
programming.

Our calculus is thus “impure” in the sense of Abadi and Fournet’s applied
[1]. We too extend an archetypal name-passing calculus with pragmatic

TEAM LinG

430 Q. Ma and L. Maranget

constructs, in order to provide a full semantics that handles realistic language
features without cumbersome encodings. It is worth noticing that like in [1], we
distinguish between variables and names, a distinction that is seldom made in
pure calculi. Since we aim to prove a program transformation correct, we define
the equivalence on open terms, those which contain free variables. Abadi and
Fournet are able to require their terms to have no free variables, since their goal
is to prove properties of program execution (namely the correctness of security
protocols).

Our compilation scheme can be seen as the combination of two basic steps:
dispatching and forwarding. The design and correctness of the dispatcher essen-
tially stems from pattern matching theory, while inserting an internal forwarding
step in communications is a natural idea, which intuitively does not change pro-
cess behavior. Various works give formal treatments of the intuitive correctness
of forwarders, in contexts different from ours. For instance, forwarders occur in
models of concrete distribution in the [15, 8]. Of course, our interest
in forwarders has quite different motivations. In particular, our dispatcher may
forward messages on several channels, taking message contents into account,
thereby performing some demultiplexing. However, the proof techniques and ob-
jective (which can be summarized as “full abstraction”) are quite similar.

As regards implementation, we claim that our transformation can be inte-
grated easily in the current JoCaml system [10]. The JoCaml system is built
on top of Objective Caml [12], a dialect of ML, which features a sophisticated
ML pattern matching compiler [11]. Our transformation naturally takes place
between the typing and ML pattern matching compilation phases of the existing
compiler. More significantly, this should be the only addition. In particular, our
solution does not require any modification of the existing runtime system since
the join-pattern synchronization remains as before. It is worth observing that
a direct implementation of extended join-pattern matching at the runtime level
would significantly complicate the management of message queues, which would
then need to be scanned in search of matching messages before consuming them.

The integration of pattern matching into the join-calculus is part of our effort
to develop a practical concurrent programming language with firm semantical
foundations (a similar effort is for instance Scala [19]). In our opinion, a pro-
gramming language is more than an accumulation of features. That is, features
interact sometimes in unexpected ways, especially when intimately entwined.
Here, we introduce algebraic patterns as formal arguments of channel definitions.
Doing so, we provide a more convenient (or “expressive”) language to program-
mers. From that perspective, pattern matching and join-calculus appear to live
well together, with mutual benefits.

In previous work, we have designed an object-oriented extension of the join-
calculus [6,13], which appeared to be more difficult. The difficulties reside in the
refinement of the synchronization behavior of objects by using the inheritance
paradigm. We solved the problem by designing a delicate way of rewriting join-
patterns at the class level. However, the introduction of algebraic patterns in
join-patterns impacts this class-rewriting mechanism. The interaction is not im-

TEAM LinG

Compiling Pattern Matching in Join-Patterns 431

mediately clear. Up to now, we are aware of no object-oriented language where
the formal arguments of methods can be patterns. We thus plan to investigate
such a combination of pattern matching and inheritance, both at the calculus
and language level.

Acknowledgements. The authors wish to thank James Leifer and Jean-Jacques
Lévy for fruitful discussions and comments.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proceedings of POPL’01, pages 104–115, 2001.
R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous Theoretical Computer Science, 195(2):291–324, 1998.
G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217–248, 1992.
C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Nov. 1998.
C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of POPL’96, pages 372–385, 1996.
C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join calculus.
Journal of Logic and Algebraic Programming, 57(1-2):23–69, 2003.
C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Implicit typing à la ML for the
join-calculus. In Proceedings of CONCUR’97, LNCS 1243, pages 196–212, 1997.
P. Gardner, C. Laneve, and L. Wischik. Linear forwarders. In Proceedings of
CONCUR’03, LNCS 2761, pages 415–430, 2003.
K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 151(2):437–486, 1995.
F. Le Fessant. The JoCaml system. http://pauillac.inria.fr/jocaml, 1998.
F. Le Fessant and L. Maranget. Optimizing pattern-matching. In Proceedings of
ICFP’01, pages 26–37, 2001.
X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
System, version 3.07. http://caml.inria.fr/, 2003.
Q. Ma and L. Maranget. Expressive synchronization types for inheritance in the
join calculus. In Proceedings of APLAS’03, LNCS 2895, pages 20–36, 2003.
Q. Ma and L. Maranget. Compiling pattern matching in join-patterns. Rapport de
recherche 5160, INRIA-Rocquencourt, Apr. 2004. Available at http://pauillac.
inria.fr/˜ma/papers/ptjoin-tr.ps.
M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proceedings
of ICALP’98, LNCS 1443, pages 856–867, 1998.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and
II. Information and Computation, 100:1–40 and 41–77, 1992.
R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings of ICALP’92,
volume LNCS 623, pages 685–695, 1992.
M. Odersky. Functional nets. In Proceedings of ESOP’00, LNCS 1782, pages 1–25,
2000.
M. Odersky. The Scala Language.http://lamp.epfl.ch/˜odersky/scala/, 2002.
P. Pritchard. On computing the subset graph of a collection of sets. Journal of
Algorithms, 33(2):187–203, 1999.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

TEAM LinG

Model Checking Restricted Sets of Timed Paths

Nicolas Markey and Jean-François Raskin

Département d’Informatique
Université Libre de Bruxelles
Bld du Triomphe – CP 212

1050 Brussels – Belgium
{nmarkey,jraskin}@ulb.ac.be

Abstract. In this paper, we study the complexity of model-checking
formulas of three important real-time logics (MTL, MITL, and TCTL)
over restricted sets of timed paths. The classes of restricted sets of timed
paths that we consider are (i) a single finite (or ultimately periodic) timed
path, (ii) a infinite set of finite (or infinite) timed paths defined by a finite
(or ultimately periodic) path in a region graph, (iii) a infinite set of finite
(or infinite) timed paths defined by a finite (or ultimately periodic) path
in a zone graph.

Introduction

Timed automata have been introduced in [2] as a formal notation to model beha-
viors of real-time systems. Requirements for real-time systems modeled as timed
automata are conveniently expressed using real-time logics. Real-time logics are
quantitative extensions of temporal logics. Three main logics have been defined
to express real-time requirements: TCTL [1] is a real-time extension of the CTL
logic, while MTL and MITL [3] are extensions of the LTL logic. The model check-
ing problems for those logics over sets of timed paths defined by timed automata
have been studied. The results are as follows: For the logic TCTL, the model
checking problem has been shown PSPACE-complete in [1]. For the logic MTL,
the problem has been shown undecidable in [4]. For the logic MITL, the problem
has been shown EXPSPACE-complete in [3].

In this paper, we study the model checking problems for those real-time
logics on several classes of restricted sets of timed paths. We consider the model
checking problems related to TCTL, MTL, and MITL when the set of timed
paths is (i) a single finite (or ultimately periodic) timed path, (ii) a set of finite
(or infinite) timed paths defined by a finite (or ultimately periodic) path in a
region graph, (iii) a set of finite (or infinite) timed paths defined by a finite (or
ultimately periodic) path in a zone graph. Note that in cases (ii) and (iii), the
sets contain uncountably many timed paths. Note also that finite or ultimately
periodic region paths as well as zone paths can be seen as simple form of timed
automata.

Beside the theoretical interest to study the complexity of the model checking
problems for those subcases, there are important practical reasons to study them.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 432–447, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Model Checking Restricted Sets of Timed Paths 433

First, verification algorithms for timed automata have to manipulate sym-
bolically infinite state spaces. This is done either through the region graph or
through the zone graph. When the verification of a safety or a linear-time prop-
erty fails, those symbolic algorithms identify a finite or an infinite ultimately
periodic path in the region graph or in the zone graph [6]. This path is the sym-
bolic representation of an infinite set of timed paths that are counter-examples
to the property. Usually, the information that is given back to the user is a
single timed path extracted from this symbolic path. Nevertheless, it may be
much more interesting to give to the user not only a single counter-example but
the entire infinite set of counter-examples actually computed by the symbolic
algorithm. As this counter example is symbolic, the possibility to analyze this
counter-example using model checking should be given to the user. In fact, in or-
der to better understand this infinite set of counter examples, the user may want
to formulate model checking questions about this set. We should then look if we
can specialize our verification algorithms for those (possibly) simpler problems.

Second, a real-time system that is executing constructs naturally a timed
path that represent the evolution of its state along time. Correctness require-
ments about this single execution path can be expressed using a linear real-time
logic, like MTL. Can we efficiently verify properties expressed by MTL formulas
on this single timed path? In the dense-time framework, we know from the un-
decidability result for MTL that we cannot construct, as in the finite state case
for LTL, a monitor (in the form of a timed automaton for example) that will
enter a bad state in the case the formula is not satisfied. It is clear again that
we need to look at specific techniques.

Third, if a timed automaton is too complex to be completely verified, we
may be interested to test it instead. Testing a timed automaton against a set
of real-time formulas consists in: (i) extracting a set of timed paths out of the
timed automaton by executing it, and (ii) verifying that the set of extracted
path verify some given real-time formulas. The set of timed paths can be either
extracted by explicit execution of the timed automaton (in this case it is a finite
set) or, more interestingly, extracted through symbolic execution of the timed
automaton which amounts to visit a subset of its region or zone graph. In the
two latter cases, we must check real-time formulas on infinite sets of timed paths
defined by a finite set of region or zone paths. Again, for those subcases, we
should look at the existence of specialized techniques.

The results that we have obtained for the model checking problems of the
three real-time logics over the six classes of restricted sets of timed paths are
given in Table 1. To the best of our knowledge, only the three results from the
first line were known, all the other results are new. The undecidability and EXP-
SPACE-hard result for the model checking of MTL and MITL over ultimately
periodic region paths were unexpected and their proofs have required new en-
coding techniques for Turing Machine computations using timed paths. Those
hardness results imply hardness results for ultimately periodic zone paths. In
those proofs, all the information about the tape of the Turing Machine (TM for
short) is encoded into the timing information of the path, the sequence of pro-

TEAM LinG

434 N. Markey and J.-F. Raskin

positional assignments being fixed by the ultimately periodic region path. This
situation is rather different from the classical proofs in [4] and in [3]. Note also
that the complexity of TCTL model checking goes from PSPACE-complete to
PTIME in the case of region paths which is not the case for zone paths for which
the problem stays PSPACE-complete. On the other hand, when we consider finite
region or zone paths, the model checking problem for MTL becomes decidable
and is co-NP-complete. The proofs for those results are based on (i) a polynomial
time algorithm for checking the truth value of a MTL formula over a single finite
timed path and on (ii) the proof that transitions between regions (respectively
zones) in a region (respectively zone) path can be chosen nondeterministically
in a finite subset of the rationals with polynomially many elements to establish
if a region (respectively zone) path has at least one concretization that satisfies
the MTL formula.

Related Work. Path model checking has been introduced in [10], where efficient
algorithms are proposed for several untimed temporal logics (LTL, LTL+Past, ...).
The basic remark there is that a CTL algorithm can be applied in order to verify
LTL specifications, since path quantifier would refer to the only possible run of
the structure. This does not hold here when we deal with region or zone paths.

Runtime verification and monitoring is another related issue. In that case,
properties are verified on the fly during the run, as the events occur. Recently,
monitoring algorithms have been proposed in the discrete-time framework for
MTL [11].

In our work, we verify properties expressed in three important timed temporal
logics. The case where the property is expressed as a timed automaton is treated
in [5], where the authors show that deciding if a timed trace corresponds to an
execution of a given timed automaton is PSPACE-complete. This result can
easily be extended to region paths.

Structure of the Paper. The rest of the paper is structured as follows. In a first
section, we define the classes of restricted sets of timed paths for which we study

TEAM LinG

Model Checking Restricted Sets of Timed Paths 435

the complexity of the model checking problems. We also recall in this section
the syntax and semantics of MTL, MITL, and TCTL. In a second section, we
present complexity results that can be interpreted as negative: we show that for
some classes of restricted sets of timed models, some model checking problems
are not easier than in the general case (when the set of timed paths is defined by
a timed automaton). In a third section, we present complexity results that can
be interpreted as positive: we show that for some interesting classes of restricted
set of timed paths, some model checking problems are easier than in the general
case.

1 Preliminaries

1.1 Timed Automata and Paths

We write for the set of positive real numbers. In the sequel, all intervals we
consider are convex subsets of with rational greatest lower and least upper
bounds. An interval is said to be singular if it contains only one value. Given
two intervals I and J, and a positive rational number we write for the set

and I – J for the set Given
an interval I, we note the greatest lower bound of I and least upper
bound of I. An interval J follows an interval I if is convex, and

A finite (resp., infinite) sequence of intervals with
(resp. partitions a set if for any (resp. interval

follows and (resp.
Let H be a set of variables. We define the set of clock difference con-

straints inductively as follows:

for any two variables and in H, for ~ in and for any integer
Given a valuation for the variables in H, the boolean value of a difference

constraint is defined in the obvious way. Moreover, for any real we define
the valuation as being the valuation and for any subset C
of H, the valuation as being the valuation

Definition 1. Given a set of states Q, and a set of clocks H, a timed path1

is a (finite or infinite) sequence s.t.:

is a sequence of states in Q;
is a sequence of intervals forming a partition of (or possibly of an

interval or in the case of a finite path);
is the valuation of clocks in H when entering location at

date We require that, for each and each clock either
or

1 For the sake of brevity, we only consider dense time in the sequel. However, our
results still hold when considering super-dense time [9].

TEAM LinG

436 N. Markey and J.-F. Raskin

for each either or there exists a clock s.t.
This ensures that, at each step along that sequence, either we

change location or we reset at least one variable2.

A position along a timed path is a triple
for which there exists an integer s.t. and and
For each there exists exactly one position along which we
denote by Given a timed path and a position along
the suffix of starting at position denoted by is the timed path

where (1) for all (2) for and
(3) for and

Definition 2. A timed automaton (TA) is a 6-tuple
where: Q is a (finite) set of states; is a subset of Q containing the set of
initial states; H is a finite set of real-valued clocks; is a function
labeling each state with atomic propositions of AP; Inv is a function
labeling each state with a set of timing constraints (called “invariants”);

is a set of transitions; is a subset of Q containing
the set of accepting states.

Definition 3. Given a set of states Q and a set of clocks H, a timed path
is a concretization of a TA if

In the sequel, we generally identify a location with its labeling if
no ambiguity may arise from this notation. A position in a TA is a couple
where is a state and is a valuation of clocks in H satisfying

For each and for each valuation satisfies
For each there exists a transition s.t. valuation

satisfies and for all and for all

either the timed path is infinite or its last state is accepting, that is

Definition 4. Two clock valuations and are said to be equivalent w.r.t. a
family of constants, if the following conditions hold:

for all clocks either both and are greater than or both
have the same integer part;
for all clocks if then iff
for all with and if
then where fract stands for the fractional part.

This obviously defines an equivalence relation. A clock region is an equival-
ence class for the equivalence relation between clocks. [2] proves that there are
finitely many clock regions, more precisely at most

2 This conditions rules out “stuttering” paths. This is not restrictive as our logics, as
you’ll see later, cannot distinguish between timed traces with or without stuterring.

TEAM LinG

Model Checking Restricted Sets of Timed Paths 437

A clock region is a time-successor of a clock region if for each valuation
there exists a positive s.t. valuation is in and for each

s.t. valuation is in It can be proved that, each clock
region has exactly one time-successor, which we will denote by in the
sequel. A clock region is a boundary class if for any valuation and for
any positive real valuation is not in

Definition 5. Given a TA , and the family of
maximal constants to which each clock is compared in the region graph
of is the labeled graph defined as follows:

V is the product of the set of states of and the set of clock regions;
is defined by

E is the set of edges, containing two type of edges: Edges representing the
elapse of time: for each vertex in V, there is an edge to if

exists and contains a valuation satisfying the invariant Edges
corresponding to transitions in for each vertex in V, for each edge

in T, if there exists a valuation satisfying and s.t.
satisfies then there is an edge from to where is the
region containing valuation

Definition 6. A region path is a (finite or infinite) sequence where
are locations and are regions s.t. for all either and

or there exists a valuation and a set of clocks C s.t.

Definition 7. A zone is a convex union of regions. It can equivalently be defined
as the set of clock valuations satisfying a difference constaint in A zone
path is a (finite or infinite) sequence where are locations,
are zones and are the sets of clocks that are reset when entering

A region (resp. zone) path is said to be ultimately periodic (u.p. for short)
if it can be written under the form where and are finite region (resp.
zone) paths. In both cases, finite paths are special cases of u.p. paths. A timed
path is ultimately periodic if it is finite or if there exist two integers and
and a real s.t. for any and

Note that a finite (or u.p.) region path is a special case of a TA, where states
are pairs the set of initial states is the singleton invariants are
region constraints, clocks that are reset are clocks whose value is 0 when entering
the target region, and the set of final states F is the last state pair if
the path is finite and is empty otherwise. A concretization of a region path is
a concretization of the corresponding TA. The following proposition provides a
simplified characterization.

Proposition 1. Let be a region path. We say that a timed path
is compatible with or is a concretization of iff (1) and

are either both finite or both infinite, and for all (2) for all for
all valuation belongs to region

TEAM LinG

438 N. Markey and J.-F. Raskin

Similarly, finite or u.p. zone paths form another subclass of the class of TA.
We have the following simplified characterization of a concretization for a zone
path:

Proposition 2. Let be a zone path. We say that a timed path
is compatible with or is a concretization of iff (1) and

are either both finite or both infinite, and for all (2) for all for all
valuation belongs to zone (3) for all for all

Note that a concretization of an u.p. region (or zone) path is generally not
u.p. However, verifying that an u.p. timed path is a concretization of a region
(or zone) path may be done in polynomial time [5].

1.2 Timed Temporal Logics

Definition 8. Let AP be a set of atomic propositions. The logic MTL is defined
as follows:

where I is an interval with integer greatest lower and least upper bounds and
belong to AP. The logic MITL is the sub-logic of MTL where intervals

may not be singular.

MTL (and MITL) formulas are interpreted along timed paths3. Given a timed
path and an MTL formula we say that satisfies (written

when:

if then
if then

if then or
if then there exists a position along s.t.

and, for all

Standard unary modalities and are defined with the following se-
mantics: and where is always true. We simply
write F and G for and respectively.

Definition 9. Let be a TA, and be an MTL formula. The model checking
problem defined by and consists in determining if, for any concretization
of starting in an initial state, we have that

Definition 10. Let AP be a set of atomic propositions. The logic TCTL is
defined as follows:

3 For the sake of simplicity, we interpret MTL (and MITL) formulas directly on timed
paths instead of defining a notion of timed model where states and clocks are hidden.

TEAM LinG

s.t.

s.t.

Model Checking Restricted Sets of Timed Paths 439

where I is an interval with integer greatest lower and least upper bounds and
belong to AP.

TCTL formulas are interpreted at a position in a TA. Given a TA a position
and a TCTL formula we say that position in satisfies written

when:

if then
if then

if then or
if then there exists a concretization of s.t.

and and a position along
and all intermediate position

with
if then for any concretization of with

and there exists a position along
and all intermediate position

with

We also define standard unary abbreviations and
respectively as and We omit

the subscript I when it equals
Since region and zone paths can be seen as TA, satisfaction of a TCTL formula

at a position along a region or zone path is defined in the obvious way. Note
that contrary to the untimed case [10], TCTL is not equivalent to MTL along a
region or zone path, since such a path contains (infinitely) many timed paths.

Definition 11. Let be a TA, be a position of and be a TCTL
formula. The model-checking problem defined by and consists in de-
termining if

In the sequel, for the two problems defined above, we consider the subcases where
is (i) a single finite (or u.p.) timed path, (ii) a finite (or u.p.) region path,

(iii) a finite (or u.p.) zone path.

2 Negative Results

The main goal of restricting to subclasses of TA is to obtain feasible algorithms
for problems that are hard in the general case. This section presents cases where
our restrictions are not sufficient and do not reduce complexity.

2.1 Linear Time Logics Along Ultimately Periodic Region Paths

What we expected most was that model checking MTL would become decidable
along an u.p. region path. This is not the case, as shown in Theorem 1. The proof

TEAM LinG

440 N. Markey and J.-F. Raskin

Fig. 1. Encoding of the tape of a Turing Machine

of this theorem requires an encoding of a TM computation by timing informa-
tion only. Remember that the proof for the general model checking problem (for
sets of models defined by TA) is simply a reduction from the satisfiability prob-
lem of MTL. The technique needed here is different: We encode the tape of an
unbounded TM on a unit-length path by an atomic proposition being true for a
strictly positive (but as small as we want) amount of time. MTL can distinguish
between those two cases, and allows us to ensure that the path really encodes a
computation of the TM. See Fig. 1 for an example.

Theorem 1. Model checking a MTL formula along an u.p. region path is unde-
cidable.

Proof. This is done by encoding the acceptance problem for a TM (does
accept to the problem of verifying a MTL formula along a region path. Wlog,
we assume that the alphabet has only two letters and a special symbol #
for empty cells. Since the ordering of atomic propositions along the path is fixed,
the contents of the tape has to be encoded through timing informations only.
Since we have no bound on the total length needed for the computation, encoding
of one letter must be arbitrarily compressible. Encoding of an is done by atomic
proposition being true at only one precise moment (with duration 0), while
is encoded by being true for a positive amount of time. An atomic proposition

is used in the same way for indicating the beginning and end of the encoding
of the tape. See top of Fig. 1 for an example. For any atomic proposition we
write and Then is encoded with and with

A third letter, is used for encoding the position of the control head: is
true (between and at the position where the control head stands, and is
false everywhere else. Encoding the control state for some between 0 and

is done through 1-time-unit-long slices of the path. Along each slice,
and will never be satisfied; will be true only in the slice, meaning
that the current control state is and false everywhere else. Fig. 1 shows a
complete encoding of one configuration. The configuration separator will be the
only slice where will hold, for a fourth atomic proposition There is one last

TEAM LinG

Model Checking Restricted Sets of Timed Paths 441

Fig. 2. The region path

atomic proposition, used for filling up all the gaps. The region path generating
such an encoding is shown on Fig. 2.

With this encoding, it is possible to write MTL formulas ensuring the correct
behavior of the TM.

In the same way, MITL model checking problems are not easier with u.p.
region paths than in the general case. Again, the proof for the general model
checking problem is a reduction from the satisfiability problem for MITL. Here,
we cannot proceed that way and must encode the computation of an exponential
space TM using a single region path and an MITL formula.

Theorem 2. Model checking an MITL formula along an u.p. region path is
EXPSPACE-complete.

2.2 TCTL Along Finite or Ultimately Periodic Zone Paths

Since zones are more general than regions, hardness results for region paths
extend to zone paths. Thus model checking MITL and MTL along a zone path
is respectively EXPSPACE-complete and undecidable.

Regarding TCTL, the algorithm we propose for region paths (see Section 3.3)
could be extended to zone paths, but would result in an exponential explosion
in the number of states (since a zone may contain an exponential number of
regions). In fact, this explosion cannot be avoided (unless PTIME=PSPACE),
since we have the following result:

Theorem 3. Model checking TCTL along an ultimately periodic zone path is
PSPACE-complete.

3 Positive Results

Restricting to paths sometimes allows for more efficient algorithms. This happens
for MTL and MITL along single timed paths as well as along finite region or zone
paths, and for TCTL along u.p. region paths.

3.1 Linear Time Logics and Timed Paths

Along a timed path, all quantitative information is precisely known, and model
checking MTL can be performed quite efficiently.

TEAM LinG

442 N. Markey and J.-F. Raskin

Theorem 4. Model checking MTL along a u.p. timed path is in PTIME.

Proof. Consider a finite4 timed path The idea is to compute,
for each subformula of the MTL formula under study, the set of reals s.t.

We represent this set as a union (which we prove is finite) of
intervals whose interiors are disjoint.

The sets are computed recursively as follows:

For atomic propositions, the intervals are trivially computed by “reading”
the input path;
For boolean combinations of subformulas, they are obtained by applying
the corresponding set operations, and then possibly merging some of them
in order to get disjoint intervals. Obviously the union of two families
and of intervals contains at most intervals, and the complement
of contains at most intervals. Thus the intersection of
and contains at most intervals;
For subformulas of the form the idea is to consider, for each interval

and each interval the interval It
precisely contains all points in satisfying with a witness for in

This construction seems to create intervals, but a more careful
enumeration shows that it only creates at most indeed,
the procedure only creates at most one interval for each non-empty interval

and the intersection of and contains at most
intervals.

At the end of this procedure, contains intervals, and iff 0
is in one of these intervals. Our algorithm thus runs in time

Timed paths could be seen as timed automata if rational difference con-
straints were allowed in guards and invariants. In that case, the semantics of
TCTL along a timed path would have been equivalent to the semantics of MTL,
since timed automaton representing a timed path would be completely determ-
inistic.

3.2 MTL and MITL Along Finite Region and Zone Paths

The difficulty for model checking MTL along infinite u.p. region or zone paths
was that we had to remember precise timing information about the (infinite, not
periodic) concretization against which we verify the MTL formula. In the finite
case, we prove we only have to guess and remember a finite (in fact, polynomial)
amount of information, making the problem decidable:

Lemma 1. Model checking MTL along a finite zone path is in co-NP.

4 We describe our algorithm only for finite paths, but it can easily be extended to
infinite u.p. paths, by reasoning symbolicaly about the periodic part.

TEAM LinG

Model Checking Restricted Sets of Timed Paths 443

Proof. We prove that the existential model checking problem is in NP, which is
equivalent. The basic idea is to non-deterministically guess the dates at which
each of the transitions is fired. Once these dates are known, we have a timed
path and we can check in polynomial time that this path is a concretization of
the initial zone path and that it satisfies the MTL formula (see Theorem 4).

What remains to be proved is that can be chosen in polynomial time,
i.e. the number of non-deterministic steps is polynomial. To that purpose, we
consider an MTL formula and prove that if is true along the region path,
i.e. if there exist timestamps s.t. the corresponding timed path satisfies then
there exists timestamps in the set
where is the number of states in the zone path, is the sum of the constants
appearing in the zone path and is the sum of the constants appearing in

The proof of this last statement is as follows: the set of (in)equalities must
satisfy are: (In)equalities related to the zone path: when are “fixed”, we can
compute all valuations of clocks along the zone path. The constraints those
valuations must satisfy give constraints that must satisfy. These constraints
have the form or (In)equalities related to the formula:
for each subformula, we can compute a set of disjoint time intervals (depending
on in which the subformula is true (see proof of Theorem 4).

This leads to a disjunction of difference constraints, which has a solution
iff the formula is true along one concretization of the finite zone path. Since
a difference constraints cannot distinguish between two equivalent valuations
(for the equivalence of Definition 4), if there exists a solution, any equivalent
valuation of is a solution. This ensures that if there is a solution, then there
is a solution in Moreover, each date can be bounded with the
sum of all the constants appearing in the zone path or in the formula: Indeed,
constraints between only involves constants lower than this sum. Thus the
dates can be guessed in polynomial time.

This algorithm is in fact optimal, and we have the following result:

Theorem 5. Model checking MTL or MITL along finite region (or zone) paths
is co-NP-complete.

The co-NP-hardness proof is similar to the one of Theorem 3, and consists
in encoding 3-SAT into an (existential) model checking problem.

3.3 TCTL Along Ultimately Periodic Region Paths

We prove that TCTL properties can be verified in polynomial time along region
paths. This contrasts with the negative results we got previously for MTL and
MITL, and intuitively relies on the fact that, contrary to MTL, we don’t have
to “remember” the precise values of the clocks when we fire a transition, since
path quantifiers are applied to all modalities of the formula.

In this section, we describe our algorithm. It first requires to compute tem-
poral relations between any two regions.

TEAM LinG

444 N. Markey and J.-F. Raskin

Definition 12. Let be a region path. Given two integers and we
say that a real is a possible delay between regions and if there exists a
concretization of and a real s.t. and We
write delay for the set of possible delays between and along

The following two lemmas prove that possible delays form an interval with
integer bounds:

Lemma 2. Given a region path and two integers and is an
interval.

Lemma 3 ([7]). Let be a region path, and be three integers. If there
exists s.t. then

There remains to compute both upper and lower bounds. [8] designed al-
gorithms for computing minimum and maximum delays between valuations and
regions. We could apply them in our case. However, their algorithms would com-
pute delays between regions of a finite structure, and we need to compute delays
between any two regions of the infinite, u.p. path.

It happens that possible delays in an u.p. region path are u.p., but won’t
necessarily have the same initial and periodic parts. Below, we compute a table
containing the minimum and maximum delays between one region and any future
region, by computing those delays for a finite set of regions until a periodicity is
detected. Thus, we build a table containing “initial” delays of the minimal and
maximal paths, plus the length and duration of their periodic parts.

Lemma 4. Let be an u.p. region path. We can effectively build in
time the table containing all the necessary information for computing

Proof. We build the region graph G of the product of seen as a timed auto-
maton, and shown on Fig. 3. Graph G is not u.p. in the general case: see
Fig. 4 for an example.

Since we add one new clock which is bounded by 1, the total number of
regions is at most multiplied by corresponding to the
possible ways of inserting among the fractional parts of the other clocks.

In automaton is the fractional part of
the total time elapsed since the beginning of the
path, and the number of times has been reset
is the integral part of that total time. Extracting
the minimal and maximal delay paths is now an
easy task, since in each region of G:

either and possibly two transitions
may be firable: one corresponding to letting
time elapse, going to a region where and
the other one corresponding to the transition
in

Fig. 3. Automaton

TEAM LinG

Model Checking Restricted Sets of Timed Paths 445

Fig. 4. Computation of possible delays between regions

or and clock can’t reach value 1 in that region, because another
clock will reach an integer value before; The only possible outgoing edge is
the transition of the original region path;
or and clock can reach value 1 (and then be reset to 0). Two
cases may arise: resetting might be the only outgoing transition, or there
could be another possible transition derived from the original region path.
If there are two outgoing edges, firing the transition that resets amounts

TEAM LinG

446 N. Markey and J.-F. Raskin

to letting time elapse, and firing the other transition amounts to running as
quickly as possible.

In all cases, we also have the condition that we cannot cross two success-
ive immediate transitions, since the resulting region path would not have any
concretization.

Now, the maximal delay path is obtained by considering the path where we
always select the transition corresponding to time elapsing, i.e. resetting or
switching from to when such a transition is available; The
minimal delay path is the one we get when always selecting the other transition.
Moreover, those minimal and maximal delay paths are u.p., since G has finitely
many regions and the paths are built deterministically. They have at most

regions in their initial part and at most regions in
their periodic part.

From these paths, we can build a table containing all relevant information
for computing minimal and maximal delays between the initial region and any
region along (see Fig. 4(c)). Any value inbetween is a possible delay thanks to
lemma 2. Computing this table takes time Computing
possible delays between any two states along can be achieved by repeating
the above procedure starting from the first states of (since removing
longer prefixes gives rise to the same paths), thus in total time

Theorem 6. Model checking a TCTL formula along an u.p. region path can
be done in polynomial time (more precisely

Proof. This is achieved by a labeling algorithm. We label region of with
subformula of iff This is not ambiguous as a TCTL formula cannot
distinguish between two equivalent valuations [1].

The labeling procedure runs in time Since delays between
regions must be computed, the global TCTL model checking problem along u.p.
region paths can be performed in time

References

[1]

[2]

[3]

[4]

[5]

R. Alur, C. Courcoubetis, and D. L. Dill. Model-Checking in Dense Real-Time.
Information and Computation, 104(1), pages 2–34, Academic Press, May 1993.
R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2), pages 183–235, Elsevier Science, Apr. 1994.
R. Alur, T. Feder, and Th. A. Henzinger. The Benefits of Relaxing Punctuality.
Journal of the ACM, 43(1), pages 116–146, ACM Press, Jan. 1996.
R. Alur and Th. A. Henzinger. A Really Temporal Logic. Journal of the ACM,
41(1), pages 181–203, ACM Press, Jan. 1994.
R. Alur, R. P. Kurshan, and M. Viswanathan. Membership Question for Timed
and Hybrid Automata. In Proc. 19th Symp. Real-Time Systems (RTS’98),
Dec. 1998, pages 254–263. IEEE Comp. Soc. Press, Dec. 1998.

TEAM LinG

Model Checking Restricted Sets of Timed Paths 447

[6]

[7]

[8]

[9]

A. Bouajjani, S. Tripakis, and S. Yovine. On-the-Fly Symbolic Model Checking for
Real-Time Systems. In Proc. 18th Symp. Real-Time Systems (RTS’97), Dec. 1997,
pages 25–35. IEEE Comp. Soc. Press, Dec. 1997.
V. Bruyère, E. Dall’Olio, and J.-F. Raskin. Durations, Parametric Model Checking
in Timed Automata with Presburger Arithmetic. In H. Alt and M. Habib, eds,
Proc. 20th Symp. Theoretical Aspects of Computer Science (STACS 2003), Feb.–
Mar. 2003, vol. 2607 of LNCS, pages 687–698. Springer Verlag, Feb. 2003.
C. Courcoubetis and M. Yannakakis. Minimum and Maximum Delay Problems
in Real-Time Systems. Formal Methods in System Design, 1(4), pages 385–415,
Kluwer Academic, Dec. 1992.
Z. Manna and A. Pnueli. Verifying Hybrid Systems. In R. L. Grossman, A. Nerode,
A. P. Ravn, and H. Rischel, eds, Hybrid Systems, vol. 736 of LNCS, pages 4–35.
Springer Verlag, 1993.
N. Markey and Ph. Schnoebelen. Model Checking a Path (Preliminary Report).
In R. Amadio and D. Lugiez, eds, Proc. 14th Intl Conf. Concurrency Theory
(CONCUR 2003), Aug.-Sept. 2003, vol. 2761 of LNCS, pages 251–265. Springer
Verlag, Aug. 2003.
P. Thati and Monitoring Algorithms for Metric Temporal Logic Specific-
ations. In K. Havelund and eds, Proc. 4th Intl Workshop on Runtime
Verification (RV 2004), Apr. 2004, ENTCS, pages 131–147. Elsevier Science,
Apr. 2004.

[10]

[11]

TEAM LinG

Asynchronous Games 2:
The True Concurrency of Innocence

Paul-André Melliès

Equipe Preuves Programmes Systèmes
CNRS & Université Paris 7

Abstract. In game semantics, one expresses the higher-order value pass-
ing mechanisms of the as sequences of atomic actions ex-
changed by a Player and its Opponent in the course of time. This is
reminiscent of trace semantics in concurrency theory, in which a process
is identified to the sequences of requests it generates. We take as work-
ing hypothesis that game semantics is, indeed, the trace semantics of the

This brings us to a notion of asynchronous game, inspired by
Mazurkiewicz traces, which generalizes the usual notion of arena game.
We then extract the true concurrency semantics of from their
interleaving semantics formulated as innocent strategies. This reveals
that innocent strategies are positional strategies regulated by forward
and backward interactive confluence properties. We conclude by defin-
ing a non uniform variant of the whose game semantics is
formulated as a trace semantics.

1 Introduction

Game semantics has taught us the art of converting the higher-order value pass-
ing mechanisms of the into sequences of atomic interactions exchanged
by a Player and its Opponent in the course of time. This metamorphosis of
higher-order syntax into interactive semantics has significantly sharpened our
understanding of the simply-typed either as a pure calculus, or as a
calculus extended with programming features like recursion, conditional branch-
ing, local control, local states, references, non determinism, probabilistic choice,
etc.

Game semantics is similar to trace semantics in concurrency theory. A process
is commonly described as a symbolic device which interacts with its environment
by emitting or receiving requests. A sequence of such requests is called a trace.
The trace semantics of a process is defined as the set of traces generated by this
process. In many cases, this semantics characterizes the contextual behaviour of
the process.

Game semantics develops quite the same story for the The termi-
nology changes obviously: requests are called moves, and traces are called plays.
But everything works as in trace semantics: the semantics of a M of type
A is the set of plays generated by the M; and this set characterizes

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 448–465, 2004.
© Springer- Verlag Berlin Heidelberg 2004

TEAM LinG

The True Concurrency of Innocence 449

the contextual behaviour of the One original aspect of game semantics
however, not present in trace semantics, is that the type A defines a game, and
that the set defines a strategy of that game.

The starting point of this work is that game semantics is really the trace
semantics of the The thesis is apparently ingenuous. But it is surpris-
ingly subversive because it prescribes to reevaluate a large part of the technical
and conceptual choices accepted in game semantics... in order to bridge the gap
with concurrency theory. Three issues are raised here:

1. The treatment of duplication in mainstream game semantics (eg. in arena
games) distorts the bond with trace semantics, by adding justification point-
ers to traces. According to our methodology, this particular treatment of du-
plication should be revisited. This is done in the first article of our series on
asynchronous games [21]. We recall below the indexed and group-theoretic
reformulation of arena games operated there.
Thirty years ago, a theory of asynchronous traces was formulated by An-
toni Mazurkiewicz in order to relate the interleaving and true concurrency
semantics of concurrent computations. Game semantics delivers an inter-
leaving semantics of the formulated as innocent strategies. What
is the corresponding true concurrency semantics? The task of this second
article on asynchronous games is to answer this question precisely.
Ten years ago, a series of full abstraction theorems for PCF were obtained
by characterizing the interactive behaviour of as either innocent, or
history-free strategies, see [3, 13, 24]. We feel that the present work is an-
other stage in the “full abstraction” program initiated by Robin Milner [23].
For the first time indeed, we do not simply characterize, but also derive
the syntax of from elementary causality principles, expressed in
asynchronous transition systems. This reconstruction requires the mediation
of [21] and of its indexed treatment of threads. This leads us to an in-
dexed and non-uniform from which the usual follows
by group-theoretic principles. In this variant of the the game
semantics of a may be directly formulated as a trace semantics, per-
forming the syntactic exploration or parsing of the

2.

3.

The Treatment of Duplication. The language of traces is limited, but sufficient
to interpret the affine fragment of the in which every variable occurs
at most once in a In this fragment, every trace (=play) generated by a

is an alternating sequence of received requests (=Opponent moves) and
emitted requests (=Player moves). And a request appears at most once in a
trace.

The extension from the affine fragment to the whole requires to
handle semantically the duplication mechanisms. This is a delicate matter. Sev-
eral solutions have been considered, and coexist today in the litterature. By way
of illustration, take the chosen by Church to interpret the natural number
2:

TEAM LinG

450 P.-A. Melliès

In front of two P and Q, the M duplicates its first argu-
ment P, and applies it twice to its second argument Q. This is performed syn-
tactically by two

Obviously, the remainder of the computation depends on the P and
Q. The game-theoretic interpretation of the M has to anticipate all cases.
This requires to manipulate several threads of the P simultaneously —
and many more than two copies when the uses its first argument
several times in

Now, the difficulty is that each thread of P should be clearly distinguished. A
compact and elegant solution has been introduced by Martin Hyland, Luke Ong
and Hanno Nickau, in their arena games [13, 24]. We recall that an arena is
a forest, whose nodes are the moves of the game, and whose branches
are oriented in order to express the idea that the move justifies the move

A move is initial when it is a root of the forest, or alternatively, when
there is no move such that A justified play is then defined as a
pair consisting of a sequence of moves and a partial
function providing the so-called pointer structure.
The partial function associates to every occurrence of a non-initial move
the occurrence of a move such that One requires that

to ensure that the justifying move occurs before the justified move
Finally, the partial function is never defined on the occurrence of any

initial move
The pointer structure provides the necessary information to distinguish

the several threads of a in the course of interaction — typically the
several threads or copies of P in example (1). The pointer structure is con-
veniently represented by drawing “backward pointers” between occurrences of
the sequence By way of illustration, consider the arena in
which the only initial move is A typical justified play of this arena is
represented graphically as:

Because adding justification pointers distorts the bond with trace semantics,
in particular with Mazurkiewicz traces, we shift in [21] to another management
principle based on thread indexing, already considered in [3, 12]. The idea is to
assign to each copy of the P in example (1) a natural number (its
index) which characterizes the thread among the other copies of P. In the case
of the justified play (2), this amounts to (a) adding a dumb move in order to
justify the initial moves of the sequence, (b) indexing every justification pointer
of the resulting sequence with a natural number:

TEAM LinG

The True Concurrency of Innocence 451

then finally (c) encoding the sequence (3) as the sequence of indexed moves
below:

Obviously, the translation of a justified play depends on the choice
of indices put on its justification pointers. Had we not taken sides with trace
semantics and concurrency theory, we would be tempted (as most people do in
fact) to retract to the notation (2) which is arguably simpler than its trans-
lation (4). But we carry on instead, and regulate the indexing by asking that
two justification pointers starting from different occurrences and of the same
move and ending on the same occurrence receive different indices

and This indexing policy ensures that every indexed move occurs at most
once in the sequence (4). In this way, we are back to the simplicity of the affine
fragment of the

An interesting point remains to be understood: what can be said about two
different encodings of the same justified play? The first article of our series [21]
clarifies this point. Every game is equipped with a left and right group actions
on moves:

where M denotes the set of (indexed) moves, and G and H the two groups acting
on M. Intuitively, the right (resp. left) group action operates on an indexed move

by altering the indices assigned by Opponent (resp. the indices
assigned by Player). The orbit of an (indexed) move is precisely the set
of all (indexed) moves of the form Now, the action of and
on (indexed) moves induces a left and right action on plays, defined pointwise:

It appears that the justified plays of the original arena game coincide with the
orbits of plays modulo the left and right group actions. Typically, the justified
play (2) is just the play (4) modulo pointwise group action (6). One nice contri-
bution of this second article on asynchronous games, is to explain the syntactic
meaning of the group action (5). This is done in a non-uniform variant of the

introduced in Section 6.

Asynchronous Traces. After these necessary preliminaries on thread indexing,
we shift to the core of this article: true concurrency vs. interleaving in game
semantics. Two requests and are called independent in a process when they
can be emitted or received by in any order, without interference. Independence

TEAM LinG

452 P.-A. Melliès

of and is represented graphically by tiling the two sequences and in
the 2-dimensional diagram:

The true concurrency semantics of a process is then extracted from its in-
terleaving semantics, by quotienting the traces of modulo the homotopy equiv-
alence ~ obtained by permuting independent requests. Expressing concurrency
by permuting events is a pervading idea in concurrency theory. It originates
from the work of Antoni Mazurkiewicz on asynchronous traces over a partially
ordered alphabet [18, 19] and appears in the theory of asynchronous transition
systems [25, 15, 27] as well as in rewriting theory [20]. The pre-
sentation of the idea, and the connection to (directed) homotopy in cubical sets,
is formulated in [26, 10].

In comparison, mainstream game semantics is still very much 1-dimensional.
By way of illustration, take the sequential boolean game starting by an Op-
ponent question followed by a Player answer true or false:

The plays of the tensor product are obtained by interleaving the plays
of the two instances and of Thus, (a fragment of) the game looks
like this:

We point out in [22] that the two plays in (9) are different from a procedural
point of view, but equivalent from an extensional point of view, since both of
them realize the “extensional value” (true, false). We thus bend the two paths,
and tile the resulting 2-dimensional octagon as follows:

By doing so, we shift from usual sequential games played on trees, to sequen-
tial games played on directed acyclic graphs (dags). This enables us to analyze

TEAM LinG

The True Concurrency of Innocence 453

the extensional content of sequential games, and to obtain a game-theoretic proof
of Ehrhard’s collapse theorem [9].

However instructive, the framework developed in [22] is not entirely satisfac-
tory, because the permutation tiles are global — that is, they involve more than
two moves in general. In contrast, the asynchronous game model presented here
admits only local permutations tiles, similar to tile (7). By way of illustration,
this decomposes the global tile (10) into four local tiles:

It is interesting that by shifting from (10) to (11), concurrent plays like
appear in the model. From our point of view, this means that a satisfactory
theory of sequentiality requires a concurrent background.

The Non-uniform Here comes the most surprising, most difficult,
and maybe most controversial, part of the paper. In Section 2, we define an
asynchronous game as an event structure whose events are polarized +1 for
Player moves and –1 for Opponent moves. This polarization of events gives rise
to a new class of events consisting of an Opponent move followed by
a Player move We call OP-moves any such pair of moves. Just like ordinary
moves, two OP-moves and may be permuted in a play, in the
following way:

The permutation diagram (12) induces an homotopy relation between
plays. The dual relation is defined symmetrically, by permuting PO-moves

instead of OP-moves, where by PO-move we mean an Opponent
move followed by a Player move Note that both and preserve
alternation of plays.

Now, there is a well-established theory of stable asynchronous transition sys-
tems, see for instance [25, 15, 20], in which every sequence of transitions is
characterized (modulo homotopy) as a directed acyclic graph of so-called canon-
ical forms. The canonical form of a transition in a sequence of transitions,
expresses the cascade of transitions necessary for the enabling of the transition

Formally, a sequence of transitions is a canonical form of when (1)

TEAM LinG

454 P.-A. Melliès

for some and (2) whenever then cannot be permuted
before The stability property ensures that this canonical form is unique.

The theory may be applied to the asynchronous transition system with OP-
moves as transitions, which happens to be stable. From this follows that every
OP-move in an alternating play has a unique canonical form.
Strikingly, this canonical form is precisely the so-called Player view
of the play introduced by Martin Hyland et al. in arena games [13, 24]
and adapted to asynchronous games in Section 3.

We claim that here lies the essence of the syntax of the It has been
already noted in [7] that every Player view of a justified play corresponds
to the branch of an Böhm tree. When adapted to the indexed treatment
of threads described in [21] and recalled above, the correspondence defines the
branch of a non-uniform Böhm tree. The definition of the non-uniform

is given in Section 6. A nice feature of the calculus is that the strategy
associated to a non-uniform may be defined in the same way as a trace

semantics. This is also done in Section 6.

Related Works. The idea of relating a dynamic and a static semantics of inter-
action is formulated for the first time by Patrick Baillot et al. in [6]. The idea
reappears implicitly in the concurrent game semantics introduced by Samson
Abramsky and the author [5], in which games are complete lattices of positions,
and strategies are closure operators. As a closure operator, every strategy is at
the same time an increasing function on positions (the dynamic point of view)
and a set of positions (the static point of view). The present paper is the re-
sult of a long journey (five years!) to connect this concurrent game semantics to
mainstream sequential game semantics. See also [2].

Martin Hyland and Andrea Schalk develop in [14] a notion of games on graphs
quite similar to the constructions presented here and in [22]. One difference is
the treatment of duplication: backtracking in [14, 22], repetitive and indexed
here. From this choice follows that the permutation tilings are global in [14, 22]
whereas they are local here. Another difference is that our positions are defined
as ideals of moves.

Outline. In the remainder of the article, we define our notion of asynchronous
game (Section 2) and adapt the usual definition of innocent strategy to our
setting (Section 3). We then characterize the innocent strategies in two ways:
diagrammatically (Section 4) and positionally (Section 5). This leads to a non-
uniform variant of the for which we define a trace semantics, and
which we relate to the usual (Section 6). Finally, we deliver a series
of refinements of asynchronous games (Section 7).

2 Asynchronous Games

We choose the simplest possible definition of asynchronous game, in which the
only relation between moves is an order relation which reformulates the justi-

TEAM LinG

The True Concurrency of Innocence 455

fication structure of arena games. This is enough to describe the language PCF,
a simply-typed enriched with arithmetic, conditional branching, and
recursion. Other more expressive variants are discussed in section 7.

Event Structures. An event structure is an ordered set such that every
element defines a finite downward-closed subset

Asynchronous Games. An asynchronous game is a triple
consisting of:

an event structure whose elements are called the moves of the
game,
a function which associates to every move a polarity
+1 (for the Player moves) or –1 (for the Opponent moves).

Positions. A position of an asynchronous game A is any finite downward closed
subset of

The Positional Lattice. The set of positions of A is denoted Since posi-
tions are ordered by inclusion, and closed under finite union, the partial order

defines a sup-lattice. The empty position, which is the least element
of is denoted Positions are also closed under arbitrary nonempty
intersection. Adding a top element to provides a neutral element to
intersection, and induces a complete lattice The greatest
least bound and least upper bound of a family of positions in are
computed respectively as:

We call the positional lattice associated to the game A.

The Positional Graph. Every asynchronous game A induces a graph

whose nodes are the positions
whose edges are the moves verifying where +
denotes disjoint union, or equivalently, that and that the move

is not element of

We call this graph the positional graph of the game A. We write
for a path

TEAM LinG

456 P.-A. Melliès

between two positions and Note that there is no repetition of move in the
sequence:

The target of the path may be deduced from the source and
the sequence of moves using the equation:

A path of is thus characterized by its source (or alternatively, its target)
and the sequence of moves

Homotopy. Given two paths in we write when
and for two moves The homotopy equivalence ~ between
paths is defined as the least equivalence relation containing and closed under
composition; that is, for every four paths and and

We also use the notation ~ in our diagrams to indicate that two (necessarily
different) moves and are permuted:

Note that our current definition of asynchronous game implies that two paths
and are homotopic iff and Thus,

homotopy becomes informative only in the presence of an independence relation
between moves, see Section 7.

Alternating Paths. A path is alternating when:

Alternating Homotopy. Given two paths in we write
when and where the moves
are Opponent and the moves moves are Player. The situation is
summarized in diagram (12). The relation is defined as the least equivalence
relation containing and closed under composition. Note that
implies but that the converse is not true, since in diagram (12) one has

without having

TEAM LinG

The True Concurrency of Innocence 457

Plays. A play is a path starting from the empty position

in the positional graph The set of plays is noted

Equivalently, a play of A is a finite sequence of moves, without
repetition, such that the set is downward closed in for
every

Strategy. A strategy is a set of alternating plays of even length such that:

the strategy contains the empty play,
every nonempty play starts by an Opponent move,

is closed by even-length prefix:

is deterministic:

We write when is a strategy of A.

3 Innocent Strategies

The notion of innocence has been introduced by Martin Hyland, Luke Ong
and Hanno Nickau in the framework of arena games [13, 24]. It is designed to
capture the interactive behaviour of the simply-typed with a constant

for non-termination, either formulated as Böhm trees [7], as proofs of
Polarized Linear Logic [17], or (after a continuation-passing style translation) as
PCF programs augmented with local control [16, 4, 11]. Asynchronous games
enable to reformulate the notion of innocence in a concurrency friendly way.
The original definition of innocence is based on the notion of Player view of
a justified play defined using the pointer structure In asynchronous
games, the situation is slightly simpler than in arena games, because the play
is non repetitive. In particular, there is no need to distinguish a move from
its occurrences in the play. More: every play comes with an implicit pointer
structure derived from the causality relation between moves, as follows.

Justification Pointers. Suppose that and are two different moves of an
asynchronous game A. We write and say that justifies when:

and
for every move such that either or

TEAM LinG

458 P.-A. Melliès

View Extraction. We define the binary relation as the smallest relation be-
tween alternating plays such that:

for every alternating play and nonempty path such that is an Opponent
move which does not justify any move in and is a Player move which does
not justify any move in

Player View. The relation defines a noetherian and locally confluent rewrit-
ing system on alternating plays. By Newman’s lemma, the rewriting system is
confluent. Thus, every alternating play induces a unique normal form
noted and called its Player view:

Asynchronous Innocence. A strategy is innocent in an asynchronous game A
when for every plays for every Opponent move and Player
move

Asynchronous innocence is equivalent to usual innocence in the intuitionistic
fragment [13, 24]. In that fragment, indeed, every move has at most one justifying
move, and thus, the two Player views and are
iff they are equal. On the other hand, asynchronous innocence generalizes the
usual notion of innocence to more “concurrent” arenas, in which several moves

may justify the same move — a situation which does not occur in
arena games associated to intuitionistic types.

4 Diagrammatic Innocence

In this section, we reformulate diagrammatically the notion of innocence in asyn-
chronous games.

Backward Consistency. A strategy is called backward consistent when for every
play for every path for every moves it follows
from

that

TEAM LinG

The True Concurrency of Innocence 459

Forward Consistency. A strategy is called forward consistent when for every
play and for every moves it follows from

that

We prove by a diagrammatic reasoning inspired by Rewriting Theory that,
for every strategy of an asynchronous game A:

Proposition 1 (Diagrammatic Characterization). The strategy is inno-
cent iff it is backward and forward consistent.

5 Positional Innocence

We establish below the main result of the paper: innocent strategies are posi-
tional strategies (Theorem 2). We then characterize innocent strategies as po-
sitional strategies (Proposition 3) and identify them as concurrent strategies in
the sense of [5] (Proposition 4).

Positional Strategy. A strategy is called positional when for every two
plays in the strategy and every path of one
has:

Every positional strategy is characterized by the set of positions of it
reaches, defined as:

Theorem 2 (Positionality). Every innocent strategy is positional.

The positional characterization of innocence (Proposition 3) works in any asyn-
chronous game in which justification is alternated, that is, where implies

for every move and In particular, it works in any interpre-
tation of a formula of intuitionistic linear logic.

Proposition 3 (Positional Characterization). A positional strategy is in-
nocent iff the set of positions satisfies:

is closed under intersection:
is closed under union:

forward confluence: if and is an Opponent move,
then there exists a unique Player move such that
backward confluence: if and is a Player move, then
there exists a unique Opponent move such that
initial condition: is element of

TEAM LinG

460 P.-A. Melliès

Proposition 4. Every innocent strategy defines a closure operator on
the complete lattice of positions.

This series of properties explicates the true concurrency nature of innocence.
Proposition 4 bridges sequential arena games with concurrent games as formu-
lated in [5]. In particular, positionality implies that strategies may be composed
just as relations, or as cliques in the hypercoherence space model [8].

If the reader finds the idea of positionality difficult to grasp, we hope that the
Proposition below will clarify the situation. It is quite straightforward to define
a notion of innocent counter-strategy interacting against the strategy The
counter-strategy may withdraw at any stage of the interaction. Every such
withdraw of induces an even-length play in the strategy whose
target position is of even cardinality. Our next result states that the
static evaluation (by intersection) of against coincides with the dynamic
evaluation (by interaction) of against

Proposition 5. For every position

It is nearly routine to construct a category with asynchronous games as
objects, and innocent strategies as morphisms. The only difficulty is to interpret
the exponentials, which is done by equipping every game with a left and right
group action, in the spirit of [21]. The resulting category defines a model of
intuitionistic linear logic without additives. The usual category of arena games
and innocent strategies [13, 24] embeds fully and faithfully (as a cartesian closed
category) in the kleisli category associated to the category and to its comonad !.

6 The Non-uniform

We introduce a non-uniform variant of the It is called non-uniform
because the argument of a function is not a Q, but a vector of

where is an index for each occurrence (or function call)
of the variable in P. The calculus is affine in nature (never two occurrences of

occur in the same term), but the simply-typed may be encoded in
it, thanks to group-theoretic ideas developed in our first article on asynchronous
games [21].

Definition of the Calculus. The non-uniform P and vectors of arguments
are defined by mutual induction:

vector of non-uniform indexed by an integer

TEAM LinG

The True Concurrency of Innocence 461

where a located variable consists of a variable in the usual sense, and an
integer We require that every located variable appears at most once
in a term. Note that a non-uniform is generally infinite. The
is defined as

where denotes the non-uniform obtained by replacing each
located variable in P by the non-uniform The non-uniform

are typed by the simple types of the built on the base type

Here, a context may contain an infinite number of located variables,
since the rule involves a family of derivation trees

The point is that the rule may migrate an infinite number
of located variables from the context to the

Non- Uniform Böhm Trees. The non-uniform Böhm trees of simple
type are of three kinds:

1. where
every variable is of type for
the located variable is of type for some
type B,
every non uniform Böhm tree is of type for
and

2.
3.

or where is a fixed constant of type B,
or where is a fixed constant of type and every variable
is of type for

Trace Semantics. We describe a trace semantics for non-uniform Böhm
trees, which coincides with the game semantics delivered by our asynchronous
game model. The Opponent moves are generated by the rule

where and the variable is of type for every index
The Player moves are generated by the rule

where is a located variable of type and is
the vector which associates to every index the constant for every

TEAM LinG

462 P.-A. Melliès

Last point, every move from an Böhm tree is labelled by a
subtree of the type A, once translated in linear logic as an infinite formula, using
the equation and the definition of the exponential modality
as infinite tensor:

Uniformity and Bi-invariance. The usual (uniform) Böhm trees of the
are extracted from their non-uniform counterpart by applying a bi-

invariance principle introduced in [21]. As recalled in the introduction, see (5),
every game there is equipped with a left and right group action on moves. A
strategy is called bi-invariant when, for every play and every right action

there exists a left action such that This characterizes
the strategies which are “blind to thread indexing”, and thus the strategies
which behave as if they were defined directly in an arena game. The concept of
bi-invariance remains formal and enigmatic in [21]. Here, quite fortunately, the
non-uniform provides a simple syntactical explanation to this concept
of bi-invariance, what we explain now.

Every intuitionistic type A defines a left and right group action (5) on the
asynchronous game [A] interpreting it in the asynchronous game model. These
two group actions may be understood syntactically as acting on the non-uniform

Böhm trees P of type A, as follows: the effect of a right group action
is to permute the indices inside the vectors of arguments in P, while the effect
of a left group action is to permute the indices of the located variables

in P. By analogy with [21], a non-uniform Böhm tree P is called
bi-invariant when for every permutation there is a permutation
such that It is not difficult to see that an Böhm tree in
the usual is just a bi-invariant Böhm tree in the non-uniform

modulo left group action (that is, permutation of the indices of the
located variables.) For instance, let denote the non-uniform Böhm tree

of type where associates to
every index the located variable Obviously, is bi-invariant, and
represents the uniform Böhm tree of same type A. Note that
is equivalent to any modulo left group action. The trace (or game) semantics
of is given by:

Here, the move by Opponent (labelled by the type A) asks for the value
of the head variable of and the move by Player (labelled by the type

answers then, the move by Opponent (labelled by in
asks for the value of the head variable of the argument of

inducing the vector of arguments for and finally the
move by Player (labelled by answers etc... This example illustrates
the fact that the trace (or game) semantics of a non-uniform Böhm tree
is simply the exploration (or parsing) of that tree by the Opponent.

TEAM LinG

The True Concurrency of Innocence 463

7 Additional Structures

For clarity’s sake, we deliver the simplest possible definition of asynchronous
game in Section 2. We review below possible extensions of this definition.

Compatibility. One may add an incompatibility relation # between moves, in
order to obtain a model of intuitionistic linear logic with additives. The relation
indicates when two moves cannot appear in the same position, and thus cannot
appear in the same play. The coherence axiom is
required for every moves just as in event structures [27].

Independence. There is a well-established tradition in trace semantics to describe
interference mechanisms using an independence relation I between events [19].
Similarly, an independence relation between moves may be added to asynchronous
games, in order to study interference in imperative programming languages. Take
the game model of Idealized Algol presented in [1]. Suppose that an indepen-
dence relation indicates that the moves read and write are interfering in the
interpretation of the variable type var, for every natural number In that case,
the interference between read and write induces obstructions (“holes”) to
the homotopy relation ~ on the game var. Quite interestingly, the asynchronous
definition of innocence adapts smoothly, and remains compositional in the pres-
ence of interfering moves (that is, it defines a category).

8 Conclusion

The theory of asynchronous games is designed to bridge the gap between main-
stream game semantics and concurrency theory. Our preliminary results are ex-
tremely encouraging. We establish indeed that the cardinal notion of sequential
game semantics: innocence, follows from elementary principles of concurrency
theory, formulated in asynchronous transition systems. We deduce from this a
non-uniform whose game semantics is expressed as a trace seman-
tics. This provides a concurrency-friendly picture of the and new
diagrammatic foundations for the understanding of its syntax and semantics.

References

[1]

[2]

[3]

[4]

S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions, 1997.
Samson Abramsky. Sequentiality vs. concurrency in games and logic. Report
Research Report RR-01-08, Oxford University, Programming Research Group,
April 2001.
Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction
for PCF. Information and Computation, 163(2):409–470, 2000.
Samson Abramsky and Guy McCusker. Game Semantics. Springer Verlag, 1999.

TEAM LinG

464 P.-A. Melliès

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Samson Abramsky and Paul-André Melliès. Concurrent games and full complete-
ness. In Logic in Computer Science 99, pages 431–442, Trento, July 1999. IEEE
Computer Society Press.
Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier. Timeless
games. In Morgen Nielsen and Wolfgang Thomas, editors, Proceedings of CSL’97,
number 1414 in Lecture Notes in Computer Science, pages 56–77, Aarhus, 1997.
Springer Verlag.
Vincent Danos, Hugo Herbelin, and Laurent Regnier. Games semantics and ab-
stract machines. In Proceedings of the Symposium on Logic in Computer
Science, pages 394–405, New Brunswick, 1996. IEEE Computer Society Press.
Thomas Ehrhard. Hypercoherences: a strongly stable model of linear logic. Math-
ematical Structures in Computer Science, 3(4):365–385, 1993.
Thomas Ehrhard. A relative definability result for strongly stable functions and
some corollaries. Information and Computation, 1997.
Eric Goubault. Geometry and concurrency: A user’s guide. Mathematical Struc-
tures in Computer Science, 10(4), August 2000.
R. Harmer. Games and full abstraction for nondeterministic languages. Phd
thesis, University of London, 2000.
Martin Hyland. Game Semantics. Publications of the Newton Institute. Cam-
bridge University Press, 1997.
Martin Hyland and Luke Ong. On full abstraction for PCF: I, II and III. Infor-
mation and Computation, 163(2):285–408, December 2000.
Martin Hyland and Andrea Schalk. Games on graphs and sequentially realizable
functionals. In Logic in Computer Science 02, pages 257–264, Kopenhavn, July
2002. IEEE Computer Society Press.
Dietrich Kuske. Non deterministic automata with concurrency relations and do-
mains. In Proceedings of the Colloquium on Trees in Algebra and Programming,
CAAP’94, volume 787 of Lecture Notes in Computer Science. Springer Verlag,
1994.
James Laird. Full abstraction for functional languages with control. In Logic in
Computer Science, pages 58–67, 1997.
Olivier Laurent. Polarized games (extended abstract). In Proceedings of the
seventeenth annual symposium on Logic In Computer Science, pages 265–274,
Copenhagen, July 2002. IEEE Computer Society Press.
Antoni Mazurkiewicz. Concurrent program schemes and their interpretations.
Technical Report DAIMI PB 78, Aarhus University, 1977.
Antoni Mazurkiewicz. The book of traces, chapter Introduction to trace theory.
World Scientific Publishing, 1995.
Paul-André Melliès. Axiomatic rewriting 4: a stability theorem in rewriting theory.
In Logic in Computer Science ’98. IEEE Computer Society Press, July 1998.
Paul-André Melliès. Asynchronous games 1: a group-theoretic formulation of
uniformity. Prépublication électronique PPS//04/06//n°31 (pp), Equipe Preuves,
Programmes et Systèmes, April 2003.
Paul-André Melliès. Sequential algorithms and strongly stable functions.
Prépublication électronique PPS//03/09//n°23 (pp), Equipe Preuves, Pro-
grammes et Systèmes, April 2003. To appear in the special issue “Game Theory
Meets Theoretical Computer Science” of Theoretical Computer Science.
Robin Milner. Fully abstract models of typed lambda-calculi. Theoretical Com-
puter Science, 4:1–22, 1977.

TEAM LinG

The True Concurrency of Innocence 465

[24]

[25]

[26]

[27]

Hanno Nickau. Hereditarily sequential functionals. In A. Nerode and Yu. V.
Matiyasevich, editors, Proceedings of the Symposium on Logical Foundations of
Computer Science: Logic at St. Petersburg, volume 813 of Lecture Notes in Com-
puter Science, pages 253–264. Springer Verlag, 1994.
E. W. Stark P. Panangaden, V. Shanbhogue. Stability and sequentiality in data
flow networks. In A. Nerode and Yu. V. Matiyasevich, editors, International
Conference on Automates, Languages and Programming, volume 443 of Lecture
Notes in Computer Science, pages 253–264. Springer Verlag, 1990.
Vaughn Pratt. Modeling concurrency with geometry. In Proceedings of the eigh-
teenth annual symposium on Principles Of Programming Languages, pages 311–
322. ACM, IEEE Computer Society Press, January 1991.
G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume
4. Oxford University Press, 1995.

TEAM LinG

Open Maps, Alternating Simulations
and Control Synthesis

Paulo Tabuada

Department of Electrical Engineering
University of Notre Dame

Notre Dame, IN 46556
ptabuada@nd.edu

Abstract. Control synthesis is slowly transcending its traditional ap-
plication domain within engineering to find interesting and useful appli-
cations in computer science. Synthesis of interfaces, distributed network
monitors or reactive programs are some examples that benefit from this
design paradigm. In this paper we shed new light on the interplay be-
tween the fundamental notion of bisimulation and the control synthesis
problem. We first revisit the notion of alternating simulation introduced
by Alur and co-workers as it naturally captures important ingredients of
the control synthesis problem. We then show that existence of controllers
enforcing specifications through bisimulation, alternating simulation or
simulation can be characterized by the existence of certain alternating
simulations and bisimulations between the specification and the system
to be controlled. These results highlight and unify the role of simula-
tions and bisimulations in the control synthesis setting for a wide range
of concurrency models. This is achieved by developing our study within
the framework of open maps. We illustrate our results on transition sys-
tems and timed transition systems.

1 Introduction

Computer Science and Control Theory. The control synthesis problem is
the central theme of control theory. The traditional setup consists of a system,
usually modeled by a differential equation with certain inputs that can be freely
assigned, and a specification. The objective is to synthesize a controller, which
based on the observation of the current system state, changes the system in-
puts in order to alter its behavior and to enforce the specification. However,
many man made systems are not adequately described by differential equations
and in the late 80’s Ramadage and Wonham initiated the application of control
theoretic ideas to the control of systems described by finite state automata [1].
Even though a different model is used, the same control synthesis problem was
shown to be relevant in this context. As introduced by Ramadge and Wonham,
the control synthesis problem consists in synthesizing a supervisor finite state
automaton C whose parallel composition with the finite state automaton P,
modeling the system to be controlled, recognizes a specified regular language S.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 466–480, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

Open Maps, Alternating Simulations and Control Synthesis 467

If one interprets P, S and C as software models, the same problem immediately
suggests different applications within computer science such as synthesis of in-
terfaces between software modules [2], distributed monitoring of networks [3],
synthesis of reactive embedded controllers [4], etc.

Approximately at the same time that Ramadage and Wonham were obtaining
the first results on supervisory control, a similar problem was being investigated
in the computer science community: Pnueli and Rosner considered synthesis of
reactive software [5,6]. Synthesis of software from (temporal logic) specifications
had already been addressed by the computer science community [7,8] for closed
systems. Independently of the (computer or control) perspective, it is the au-
thor’s belief that control synthesis problems benefit from the different approaches
and contributions originating from computer science and control communities.

Motivation. In this paper we revisit the control synthesis problem in a branch-
ing time framework with 3 main objectives:

Unify control synthesis results across several different concurrency models
such as transition systems, asynchronous transition systems, probabilistic
transition systems, timed transition systems, Petri nets, etc.
Highlight the fundamental role played by the notions of bisimulation, alter-
nating simulation and simulation in control synthesis problems.
Reduce decidability and complexity of control synthesis to decidability and
complexity of bisimulation, alternating simulation and simulation.

To accomplish the first objective, we develop our results within the general
framework of open maps introduced by Joyal and co-workers [9]. Open maps
provide a unified language to discuss and prove results for a large class of appar-
ently different concurrency models. We will use transition systems as a source
of motivation and examples throughout the paper and we will also apply our
results to timed transition systems which underlie timed automata. However,
the general framework of open maps allows to export the presented results to
other classes of concurrency models as described in [10, 9, 11, 12].

The second objective motivated us to generalize Alur and co-workers [13]
notion of alternating simulation to the open maps framework. Such generaliza-
tion provides the right language to formulate the control synthesis problem by
considering the environment as an opponent trying to violate the specification.
The proposed notion coincides with Alur and co-workers notion for transition
systems and provides notions of alternating simulation for other classes of con-
currency models through the co-reflections introduced in [10]. Such notions and
corresponding logic characterizations remain largely unexplored as we focus, in
this paper, on the control synthesis problem.

The open maps framework was also crucial in highlighting the similarities
and differences between the different versions of the control synthesis problem
we have considered. We studied three natural requirements to be enforced by
control: bisimulation, alternating simulation and simulation. For each different
requirement, we show that existence of a controller is characterized by existence
of a bisimulation, alternating simulation or simulation between the specification

TEAM LinG

468 P. Tabuada

and the system to be controlled. In addition to unifying existing results and to
highlight the role of bisimulation and similar notions, the developed results also
allow to reduce decidability and complexity of control synthesis to decidability
and complexity of bisimulation and related notions.

Related Work. The control synthesis problem for transition systems in a
branching time framework has been shown to be decidable by Madhusudan and
Thiagarajan in [14]. The main ingredient was the characterization of controllers
in terms of good subgraphs and strong subgraphs whose existence can be decided.
However, it was not clear in [14] how such objects depend on the underlying
concurrency model (transition systems) neither how they relate with alternating
simulations. Our results show that such graphs correspond in fact to certain
simulations and bisimulations between specification and the system to be con-
trolled. Furthermore, by reformulating existence results in terms of such well
known notions, the results become applicable to other classes of systems where
these notions make sense. The relation between bisimulation and supervisory
control problems was also discussed in [15]. However, bisimulation was used as
a way to efficiently compute controllers in a linear time framework, rather than
as an essential ingredient for branching time. A different approach was discussed
in [16] using co-algebraic methods. Even though bisimulation was used in a
fundamental way, through co-inductive definitions and proofs, the approach is
rather different from the one considered in this paper. In [16], the adversarial
effect of disturbances is captured by a new composition operator rather than by
the use of alternating simulations. It is therefore not possible to understand how
the requirements for the existence of controllers can be weakened by weakening
the required relation between specification and controlled system. Supervisory
controllers in branching time were also considered in [17], however failure seman-
tics was used instead of bisimulation to specify the desired behavior. Other lines
of research in branching time scenarios considered supervisory control problems
for CTL or specifications [18–20].

2 The Model

The control synthesis problem can naturally be viewed as a game between the
controller and the environement. To provide motivation for the abstract setup
used throughout the paper we will consider such games on a certain class of
transition systems, which we will call game structures.

Definition 1. A game structure is a tuple where:

1.
2.
3.

4.

Q is a finite set of states;
is a set of initial states;

A is a finite set of actions partitioned in two components and satisfying
and Intuitively, the set represents the set of

controller actions while represents the set of environment actions;
is a transition relation.

TEAM LinG

Open Maps, Alternating Simulations and Control Synthesis 469

A game structure is said to be deterministic if and
implies

We will frequently resort to the more intuitive notation to rep-
resent We will also restrict our attention to deterministic
games where the actions of each player uniquely determine the next state. This is
a natural assumption when the nondeterminism in the controller (environment)
actions is due to environmental (controller) effects. However, the specification
and the controller are allowed to be nondeterministic.

Note that the adopted game model does not require explicit alternation be-
tween controller and environment moves, neither does preclude it. However, con-
troller and environment do not play simultaneously. This is simply a technical
artifact, since we can consider their actions simultaneous if no information about
the opponent move can be used at the time of play. Other game formulations
consider game structures where simultaneous play is built in the transition re-
lation as is the case in [13]. These game models, from now on called simul-
taneous, have a similar structure to the introduced game structures, except
that is replaced by Simultaneous game models

can be embedded in our framework resulting in
games defined by:

1.
2.
3.
4.

5.

and
in X with iff and there is a state

and an action such that in
in X with iff and in

We shall not elaborate on the properties of such embedding as it will only be
used to relate the notions of alternating simulation and bisimulation introduced
in [13] with the ones proposed in this paper. Before introducing such notions,
we introduce morphisms between games so as to define the category where we
shall develop our study of the control synthesis problem.

Definition 2. A morphism between two game structures
and is given by a pair of

maps with a totally defined map and
a partially defined map satisfying:

1.
2.

3.

and

in X implies in Y if is defined and
if is not defined.

It is not difficult to see that game structures with the above defined mor-
phisms constitute a category. We shall denote such category by G. Furthermore,

TEAM LinG

470 P. Tabuada

since our game models are in particular transition systems, the category G is, in
many respects, similar to the category of transition systems introduced in [10]
thus sharing many of its properties.

3 Bisimulation and Open Maps

In this section we quickly review the open maps framework introduced by Joyal
and co-workers [9]. We consider a category M of machines with morphisms

describing how machine Y simulates machine X. In this framework,
the notion of bisimulation is introduced by resorting to the notion of computation
path. We thus consider a subcategory P of M of path objects whose morphisms
describe how paths objects can be extended.

To illustrate this approach we take G as the category of machines and for P
we consider the full subcategory of G consisting of objects of the form:

with as initial state and for We also define the control length of
an object M of P, denoted by as the number of (not necessarily distinct)
controller actions in (1). Similarly, the environment length of M, denoted by

is given by the number of environment actions in (1). Given two path

objects M and N, a morphism sends the initial state of M into the
initial state of N, the immediate successor of into the immediate successor
of and so on. We thus see that only exists when
in which case N can be seen as an extension of M. A game path in a game X

is now defined as a morphism from a path object M into X, that is
Intuitively, morphism describes a possible evolution of the game
modeled by X. A morphism between games can now be seen as
describing how Y simulates the game evolution or path by the game
evolution path

Bisimulation is described through a special path lifting property:

Definition 3. A morphism is said to be P-open if given the left
commutative diagram in (2), where M and N are path objects, there exists a

diagonal morphism making the right diagram in (2) commutative,
that is, and

TEAM LinG

Open Maps, Alternating Simulations and Control Synthesis 471

In the category G with the above defined path category, the notion of P-open
morphism admits the following characterization:

Proposition 1 (Adapted from [9]). A morphism is P-open iff for
all reachable states of X:

if in Y, then in X, and

We now consider the fiber subcategories and defined by the objects
of G and P having the same action set A and morphisms satisfying
In these subcategories we recover Park [21] and Milner’s [22] notion of strong
bisimulation through a span of maps:

Theorem 1 ([9]). Let X and Y be objects in X is bisimilar to Y iff there

exists a span with a P-open morphism and a P-open
morphism.

In this setting, a deterministic game model X in can be characterized by
the existence of at most one morphism from a path object in to X.

4 Alternating Simulation and Open Maps

To introduce alternating simulations we follow a similar route as the one outlined
in the previous section by considering two path categories, one for each player:

Definition 4. The controller (environment) path category consists of

the objects of P and morphisms satisfying and
and

Note that when and path N extends path
M only by controller moves and when and
path N extends path M only by environment moves. Similarly to our discussion
in Section 3 we have the following characterization of and
morphisms which is a straightforward generalization of Proposition 1:

Proposition 2. Let be a morphism in G. Then, is

iff for any reachable state in X, in Y implies
in X, and with

The above result immediately suggests the following definition of controller
and environment simulations:

Definition 5. Let X and Y be objects in G. Game X

game Y if there exists a span with a
morphism and a morphism.

The previous definition captures Alur and co-workers notion of alternating
simulation [13] when two player simultaneous games are considered. For later
use we recall such notion in this context:

TEAM LinG

472 P. Tabuada

Definition 6 (Adapted from [13]). Let and
be simultaneous games. A relation

is a from X to Y if for all states we have:
for every controller action available at there exists a controller

action available at such that for every environment action
available at there is an environment action available at

satisfying in X, in Y and

Environment simulations or are obtained from controller simu-
lations or by reversing the role of the controller and environment.
The precise equivalence between Definition 5 and Definition 6 is characterized
in the following result:

Theorem 2. Let X and Y be two simultaneous game models and NS(X) and
NS(Y) the corresponding objects in G. Then, NS(X)
NS(Y), in the sense of Definition 5, iff X Y in the
sense of Definition 6.

It is now clear that the notion of alternating simulation can be naturally de-
scribed within the open maps framework. An interesting question not addressed
in this paper is the study of alternating simulation notions induced by Defini-
tion 5 in other classes of concurrency models as well as the corresponding logic
characterizations. Alternating simulation will play a fundamental role in the
control synthesis problem described in the next section.

5 Control Synthesis

Co-fibrations and Parallel Composition. The control synthesis problem
requires, in addition to bisimulations and alternating simulations, a notion of
parallel composition. As detailed in [10], the usual notions of parallel composition
can not be described by a single categorical construct. Instead, they are obtained
by a sequence of product, restriction and relabeling operations. In this paper,
we consider only the usual composition by synchronization on common events,
although through a simpler alternative description resorting to co-fibrations. To
motivate the notion of co-fibration, we revisit our game category G.

Every game model X contains a set of actions and every morphism contains
a map transforming actions into actions. This suggests a “projection” functor
V from G to the category of sets and partial maps between sets. Such functor has
the obvious definition and

For a given set A, we denote by the fiber category consisting of the
objects X of G satisfying V (X) = A and morphisms satisfying

Consider now a morphism in G and let and
We can construct an object from X and by replacing

every in X with This new object allows to factor as

where and Furthermore,

TEAM LinG

Open Maps, Alternating Simulations and Control Synthesis 473

for any other morphism with there exists a unique

morphism such that as is pictorially represented in (3).

Such unique factorization properties are abstracted into the notion of co-
fibration that we now introduce following [23].

Definition 7. Let be a functor and a morphism of E. A
morphism of D is pre-cocartesian over if:

1.
2. if is a morphism of E such that there exists a unique

morphism in the fiber such that

Pre-cocartesian morphisms are used to define co-fibrations as follows:

Definition 8. A functor is said to be a co-fibration if:

At this point the reader may find useful to return to diagram (3) and the dis-
cussion preceding it. Once again looking at G, we see that every pre-cocartesian
morphism is P-open, since every in was obtained from

a transition in X with which implies P-openness of by
Proposition 2. Based on this observation, we will make the following assumption
which will hold throughout the paper:

A.I The game category G is equipped with a functor which is a
co-fibration. Furthermore, the co-fibration respects open maps in the sense that
every pre-cocartesian morphism in G is P-open.

We now turn to another important ingredient, parallel composition. We shall
abstract the usual notion of parallel composition by synchronization on common
events to our framework through the following assumption:

A.II The parallel composition operator restricts to a fiber product, that is,
for objects X and Y in the fiber Furthermore,

comes equipped with morphisms
We now recall the definition of composition by synchronization on common

events with the purpose of illustrating the above assumption.

1.

2.

for every morphism of E and every object X in the fiber over J,
there exists in D a pre-cocartesian morphism over
the composition of two pre-cocartesian morphisms is again pre-cocartesian.

TEAM LinG

474 P. Tabuada

Definition 9. Let X and Y be objects in G. The parallel composition of X and
Y by synchronization on common events is the object

defined by in
if:

1.

2.

3.

in X, in Y and or

in X, and or

in Y, and or

This notion of parallel composition comes equipped with projection mor-
phisms defined by if
and undefined in Morphism is similarly defined. Furthermore,
when coincides with the categorical product on
the fiber category Recall that the categorical product is the object
of equipped with morphisms and satisfying the
following property: for every in there is one and only
one morphism such that and

Assumptions A.I and A.II provide a general setup allowing to study the con-
trol synthesis problem across several different categories of game or computation
models. In addition to the working example of transition systems, in Section 6
we will apply the developed results to timed transition systems.

Existence and Synthesis of Controllers (Bisimulation). We now consider
the control synthesis problem for bisimulation equivalence, that is, given a plant
P and a specification S we seek to determine if a controller C rendering
bisimilar to S exists. More specifically we have:

Definition 10. Let P, S and C be objects in G. Object C is a bisimulation
controller for plant P, enforcing specification S, if the following holds:

1.

2.

Morphism is

There exists a span with a P-open morphism and
cp a P-open morphism, that is, S bisimulates

The first condition requires controller C not to restrict environment moves
as these cannot be influenced by the controller. The second condition asks for
bisimulation equivalence between the controlled game and the specifi-
cation, a natural requirement in a branching time framework. Necessary and
sufficient conditions for the existence of such controller can be formulated in
terms of certain P-open and morphisms:

Theorem 3. Let P be a deterministic object in G and S an arbitrary object in
G. There exists a bisimulation controller C for plant P enforcing specification
S iff there is a span with a P-open morphism and a

morphism. Furthermore, when a bisimulation controller C exists, we
can take which has the same set of actions as P.

TEAM LinG

Open Maps, Alternating Simulations and Control Synthesis 475

The previous result shows that existence of a bisimulation controller is equiv-
alent to the requirement that P must simulate a bisimilar version Z of S while
ensuring that every environment move in P is also possible in Z. This is a nat-
ural requirement as the controller C will restrict P to the image under of Z.

Existence and Synthesis of Controllers We now restrict
attention to safety environment properties and liveness control specifications.
These requirements are modeled by requiring the specification to the
controlled game. A controller enforcing the specification through an
restricts the effect of disturbances to accommodate safety properties while being
as live as required by the specification. Formally, we define con-
trollers as follows:

Definition 11. Let P, S and C be objects in G. Object C is a
controller for plant P, enforcing specification S, if the following holds:

1. Morphism is
2. There exists a span with a morphism and

cp a morphism, that is, S

This kind of specification appears to be new since the Ramadge-Wonham
framework only considers language equality, which corresponds to bisimulation
in the branching time setting, or language inclusion which corresponds to simu-
lation in the branching time setting. Simulation requirements are in fact weaker
than requirements and are discussed below.

Theorem 4. Let P be a deterministic object in G and S an arbitrary object in
G. There exists an controller C for plant P enforcing specification
S iff there is a span: with a morphism and a

morphism. Furthermore, when an controller C exists, we
can take which has the same set of actions as P.

It is interesting to note that, with respect to Theorem 3, only the assump-
tions of the left leg of span have been weakened. The same
observation holds with respect to the results of the next section where a weaker
version of the control synthesis problem is considered.

Existence and Synthesis of Controllers (Simulation). We now further
weaken the control synthesis problem by only requiring the specification to simu-
late the controlled game. To illustrate the difference with respect an
requirement, we consider the specification, plant, controller and controlled sys-
tem displayed in Figure 1. Controller C enforces the specification S by preventing
the occurrence of action at the initial state. By looking at the controlled game

we see that there is an obvious inclusion morphism from to S show-
ing that S simulates the controlled game. However, C fails to be an
controller since it violates the liveness requirement to perform action at the
initial state. Simulation requirements are therefore weaker than re-
quirements and constitute a natural specification when controllers

TEAM LinG

476 P. Tabuada

Fig. 1. Pictorial representation of the plant P, specification S, controller C and corre-
sponding controlled system

cannot be obtained. Nevertheless, requiring the specification only to simulate
the controlled game may result in a trivial control synthesis problem since a
controller preventing the occurrence of any controller action may constitute a
solution. To rule out such trivial controllers we follow the Ramadge-Wonham
approach by imposing a mild liveness restriction on the controller. We will re-
quire the possible controller to enforce the specification without creating blocking
states on the controlled game. Such nonblocking assumption is formalized in our
context through the notion of maximal paths.

Definition 12. Let X be an object in G and a path in X. Path
is said to be maximal for X if given any other path such that

there is one and only one morphism satisfying

A morphism is said to preserve maximal paths if for every maximal
path is also a maximal path.

Given the above definitions we consider a controller C nonblocking, when the
morphism preserves maximal paths. This definition captures the
supervisory control notion of nonblocking controller as shown in the next result.

Proposition 3. Let C and P be objects in G. Morphism

preserves maximal paths iff for any reachable state in

in P implies in

We are now ready to formulate the simulation version of the control synthesis
problem:

Definition 13. Let P, S and C be objects in G. Object C is a simulation con-
troller for plant P, enforcing specification S, if the following holds:

1. Morphism is and preserves maximal paths.
2. There exists a span with cp a P-open morphism, that

is, S simulates

Theorem 5. Let P be a deterministic object in G and S an arbitrary object in
G. There exists a simulation controller C for plant P enforcing specification S
iff there is a span with a morphism preserving
maximal paths. Furthermore, when a simulation controller C exists, we can take

which has the same set of actions as P.

TEAM LinG

Open Maps, Alternating Simulations and Control Synthesis 477

Once again, only the assumptions on the left leg of span
have been reduced to the requirement that is simply a morphism. On the
other hand the new nonblocking requirement is now reflected on the maximal
path preservation assumption. The simplicity of Theorems 3, 4 and 5 and their
applicability to a large class of concurrency models illustrates the merit of the
open maps approach. To further emphasize applicability, we describe in the next
section how the developed results can be used with timed transition systems.

6 Timed Transition Systems

In this section we briefly outline how the presented results can also be used for
timed transition systems control synthesis problems. Timed transition systems
are transition systems enriched with timing information. They correspond to
timed automata [24] without acceptance conditions or accepting states. By par-
titioning the action set into controller and environment actions we can also talk
about timed games on timed game structures:

Definition 14. A timed game structure is a tuple where:

1. Q is a finite set of states;
2. is a finite set of initial states;
3. A is a finite set of actions partitioned in two components and satisfying

and Intuitively, the set represents the set of
controller actions while represents the set of environment actions;

4. is a finite set of clocks;
5. is a transition relation where is a clock

constraint generated by the grammar with
and clock variables.

We will resort to the more intuitive notation to represent

Intuitively, the set of clocks records the passage of time which is
then used to determine if and when a transition can be taken. Timing conditions
on transitions are captured by clock constraints If we are using clocks,
then a clock constraint can be identified with a subset of denoted by

representing the clock values satisfying the constraint. Given a function
between two sets of clocks and a constraint on the clocks in

we denote by the constraint induced by on the clocks in By
associating the discrete state with the current value of the clocks
in we obtain a configuration Sequences of configurations describe how
the states of a given timed transition system evolve over time. Such sequences:

can take place when for each there exists a transition in the timed

game structure, the transition time satisfies the clock constraint1

1 We denote by 1 the element of in which every component is equal to 1.

TEAM LinG

478 P. Tabuada

and the jth clock time is updated by
if or if To completely describe our category of timed
game structures, we define morphisms following [25].

Definition 15. A morphism between two timed game structures
and is given by

a pair of maps with and satisfying:

1.

2. in X implies in Y with

and

Note that we are only considering timed game structures with the same label-
ing set A and morphisms relating actions through the identity map on actions.
This means that we are in fact working on the fiber subcategory over A. This
also means that assumption A.I is automatically satisfied since pre-cocartesian
morphisms are simply identity morphisms given the fact that for
every morphism Assumption A.II is also satisfied as we will consider the
categorical product between timed game structures as our notion of parallel
composition [25]. The path subcategory P required to define bisimulation is now
introduced through the use of timed words.

Definition 16. A timed word over an alphabet A is an element of
that is, a finite sequence:

satisfying and for

As detailed in [25], timed words can be embedded into TG as the following
objects:

where and are appropriately chosen to create a full and faithful functor from
the category of timed words and morphisms describing timed word extensions
into TG. We refer the interested readers to [25] for the details of such embed-
ding and consider P as the category of objects of the form (4) with morphisms
describing how such objects can be extended. We also define the controller (envi-
ronment) length of an object M in P, denoted by as the number
of not necessarily distinct controller (environment) actions appearing in M. Con-
troller and environment lengths allow to define and as the subcategories
of P, where morphisms satisfy and
when M and N are objects of and and when
M and N are objects of Similarly to the un-timed case we only consider
deterministic timed game structures.

With respect to definitions 10, 11 and 13, we now have the following charac-
terization for the different control synthesis problems on timed game structures.

Theorem 6. Let P and S be objects in TG.

TEAM LinG

Open Maps, Alternating Simulations and Control Synthesis 479

1. There exists a bisimulation controller C for plant P enforcing specification
S iff there is a span with a P-open morphism and a

morphism.
2. There exists an controller C for plant P enforcing specification

S iff there is a span with a morphism and a
morphism.

3. There exists a simulation controller C for plant P enforcing specification S

iff there is a span with a morphism preserving
maximal paths.

Furthermore, when a bisimulation or simulation) controller C
exists, we can take C = Z.

7 Future and Ongoing Work

We have only considered the control synthesis problem for deterministic systems.
Determinism is a natural assumption when nondeterminism in the effect of con-
troller (environment) actions is captured by the environment (controller) actions.
However, nondeterminism may also exist due to other causes such as abstraction.
It is therefore natural to extend the presented results to the nondeterministic
case, especially since some of the proofs use determinism in a essential way.
Other unexplored avenues include the instantiation of the developed results for
other classes of systems such as Petri nets for which purely linear algebraic tech-
niques [26] exist for controller synthesis. A different direction being currently
investigated is the extension of the presented work to accommodate different
notions of parallel composition.

References

1.

2.

3.

4.

5.

6.

Ramadge, P., Wonham, W.M.: The control of discrete event systems. Proceedings
of IEEE 77 (1989) 81–98
de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
Proceedings of the First International Workshop on Embedded Software. Volume
2211 of Lecture Notes in Computer Science. (2001) 148–165
Benveniste, A., Haar, S., Fabre, E., Jard, C.: Distributed monitoring of concurrent
and asynchronous systems. In Amadio, R.M., Lugiez, D., eds.: Proceedings of the
14th International Conference on Concurrency Theory (CONCUR). Volume 2761
of Lecture Notes in Computer Science., Springer-Verlag (2003) 1–26
Tabuada, P., Pappas, G.J.: Linear time logic control of linear systems. (2004)
Submitted for publication, available at www.nd.edu/~ptabuada.
Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM Symposium on Principles of Programming Languages. (1989)
170–190
Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In
Press, I., ed.: Proceedings of the 31st Annual Symposium on Foundations of Com-
puter Sience, St. Louis, Missouri (1990) 746–757

TEAM LinG

480 P. Tabuada

7.

8.

9.

Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2 (1982) 241–266
Manna, Z., Wolper, P.: Synthesis of communication processes from temporal logic
specifications. ACM Transactions on Programming Languages and Systems 6
(1984) 68–93
Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information
and Computation 127 (1996) 164–185
Winskel, G., Nielsen, M.: Models for concurrency. In Abramsky, Gabbay, Maibaum,
eds.: Handbook of Logic and Foundations of Theoretical Computer Science. Vol-
ume 4. Oxford University Press, London (1994)
Nielsen, M., Cheng, A.: Observing behaviour categorically. In Thiagarajan, P.S.,
ed.: Foundations of Software Technology and Theoretical Computer Science. Vol-
ume 1026 of Lecture Notes in Computer Science., Springer (1995) 263–278
Haghverdi, E., Tabuada, P., Pappas, G.: Bisimulation relations for dynamical and
control systems. In Blute, R., Selinger, P., eds.: Electronic Notes in Theoretical
Computer Science. Volume 69., Elsevier (2003)
Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement rela-
tions. In: CONCUR 97: Concurrency Theory, 8th International Conference. Num-
ber 1466 in Lecture Notes in Computer Science (1998) 163–178
Madhusudan, P., Thiagarajan, P.: Branching time controllers for discrete event
systems. Theoretical Computer Science 274 (2002) 117–149
Barret, G., Lafortune, S.: Bisimulation, the supervisor control problem and strong
model matching for finite state machines. Journal of Discrete Event Systems 8
(1998) 337–429
Rutten, J.: Coalgebra, concurrency, and control. In Kluwer, ed.: Proceedings of
the 5th Workshop on Discrete Event Systems (WODES 2000). (2000) 31–38
Overkamp, A.: Supervisory control using failure semantics and partial specifica-
tions. IEEE Transactions on Automatic Control 42 (1997) 498–510
Kupferman, O., Madhusudan, P., Thiagarajan, P.S., Vardi, M.Y.: Open systems
in reactive environments: Control and synthesis. In: Proceedings of the 11th In-
ternational Conference on Concurency Theory. Volume 1877 of Lecture Notes in
Computer Science., Springer-Verlag (2000) 92–107
Antoniotti, M., Mishra, B.: NP-completeness of the supervisor synthesis problem
for unrestricted CTL specifications. In Smedinga, R., Spathopoulos, M., Kozk,
P., eds.: Proceedings on the International Workshop on Discrete Event Systems,
WODES96, Edinburgh, Scotland, UK (1996)
Shengbing, J., Kumar, R.: Supervisory control of discrete event systems with

 temporal logic specifications. In: Proceedings of the 40th IEEE Conference
on Decision and Control. Volume 5. (2001) 4122–4127
Park, D.: Concurrency and automata on infinite sequences. Volume 104 of Lecture
Notes in Computer Science. (1981) 167–183
Milner, R.: Communication and Concurrency. Prentice Hall (1989)
Borceux, F.: Handbook of Categorical Algebra. Cambridge University Press (1994)
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126 (1994) 183–235
Nielsen, M., Hune, T.S.: Bisimulation and open maps for timed transition systems.
Fundamenta Informaticae 38 (1999) 61–77
Moody, J.O., Antsaklis, P.J.: Supervisory Control of Discrete Event Systems Using
Petri Nets. Kluwer Academic Publishers (1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.

25.

26.

TEAM LinG

Probabilistic Event Structures and Domains

Daniele Varacca1*, Hagen Völzer2, and Glynn Winskel3

1 LIENS - École Normale Supérieure, France
2 Institut für Theoretische Informatik - Universität zu Lübeck, Germany

3 Computer Laboratory - University of Cambridge, UK

Abstract. This paper studies how to adjoin probability to event struc-
tures, leading to the model of probabilistic event structures. In their sim-
plest form probabilistic choice is localised to cells, where conflict arises;
in which case probabilistic independence coincides with causal indepen-
dence. An application to the semantics of a probabilistic CCS is sketched.
An event structure is associated with a domain—that of its configura-
tions ordered by inclusion. In domain theory probabilistic processes are
denoted by continuous valuations on a domain. A key result of this paper
is a representation theorem showing how continuous valuations on the
domain of a confusion-free event structure correspond to the probabilis-
tic event structures it supports. We explore how to extend probability
to event structures which are not confusion-free via two notions of prob-
abilistic runs of a general event structure. Finally, we show how proba-
bilistic correlation and probabilistic event structures with confusion can
arise from event structures which are originally confusion-free by using
morphisms to rename and hide events.

1 Introduction

There is a central divide in models for concurrent processes according to whether
they represent parallelism by nondeterministic interleaving of actions or directly
as causal independence. Where a model stands with respect to this divide affects
how probability is adjoined. Most work has been concerned with probabilistic
interleaving models [LS91,Seg95,DEP02]. In contrast, we propose a probabilistic
causal model, a form of probabilistic event structure.

An event structure consists of a set of events with relations of causal depen-
dency and conflict. A configuration (a state, or partial run of the event struc-
ture) consists of a subset of events which respects causal dependency and is
conflict free. Ordered by inclusion, configurations form a special kind of Scott
domain [NPW81].

The first model we investigate is based on the idea that all conflict is resolved
probabilistically and locally. This intuition leads us to a simple model based on

* Work partially done as PhD student at BRICS - Aarhus, Denmark Basic Research in
Computer Science (www.brics.dk), funded by the Danish National Research Foun-
dation.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 481–496, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

482 D. Varacca et al.

confusion-free event structures, a form of concrete data structures [KP93], but
where computation proceeds by making a probabilistic choice as to which event
occurs at each currently accessible cell. (The probabilistic event structures which
arise are a special case of those studied by Katoen [Kat96]—though our concen-
tration on the purely probabilistic case and the use of cells makes the definition
simpler.) Such a probabilistic event structure immediately gives a “probability”
weighting to each configuration got as the product of the probabilities of its
constituent events. We characterise those weightings (called configuration valua-
tions) which result in this way. Understanding the weighting as a true probability
will lead us later to the important notion of probabilistic test.

Traditionally, in domain theory a probabilistic process is represented as a
continuous valuation on the open sets of a domain, i.e., as an element of the
probabilistic powerdomain of Jones and Plotkin [JP89]. We reconcile probabilis-
tic event structures with domain theory, lifting the work of [NPW81] to the
probabilistic case, by showing how they determine continuous valuations on the
domain of configurations. In doing so however we do not obtain all continuous
valuations. We show that this is essentially for two reasons: in valuations proba-
bility can “leak” in the sense that the total probability can be strictly less than
1; more significantly, in a valuation the probabilistic choices at different cells
need not be probabilistically independent. In the process we are led to a more
general definition of probabilistic event structure from which we obtain a key
representation theorem: continuous valuations on the domain of configurations
correspond to the more general probabilistic event structures.

How do we adjoin probabilities to event structures which are not necessarily
confusion-free? We argue that in general a probabilistic event structure can be
identified with a probabilistic run of the underlying event structure and that
this corresponds to a probability measure over the maximal configurations. This
sweeping definition is backed up by a precise correspondence in the case of
confusion-free event structures. Exploring the operational content of this general
definition leads us to consider probabilistic tests comprising a set of finite con-
figurations which are both mutually exclusive and exhaustive. Tests do indeed
carry a probability distribution, and as such can be regarded as finite probabilis-
tic partial runs of the event structure.

Finally we explore how phenomena such as probabilistic correlation between
choices and confusion can arise through the hiding and relabeling of events. To
this end we present some preliminary results on “tight” morphisms of event
structures, showing how, while preserving continuous valuations, they can pro-
duce such phenomena.

2 Probabilistic Event Structures

2.1 Event Structures

An event structure is a triple such that

TEAM LinG

Probabilistic Event Structures and Domains 483

E is a countable set of events;
is a partial order, called the causal order, such that for every

the set of events is finite;
is an irreflexive and symmetric relation, called the conflict relation, sat-
isfying the following: for every if and then

Causal dependence and conflict are mutually exclusive. If two events are not
causally dependent nor in conflict they are said to be concurrent.

A configuration of an event structure is a conflict-free downward closed
subset of E, i.e. a subset of E satisfying: (1) whenever and
then and (2) for every it is not the case that Therefore,
two events of a configuration are either causally dependent or concurrent, i.e., a
configuration represents a run of an event structure where events are partially
ordered. The set of configurations of partially ordered by inclusion, is denoted
as The set of finite configurations is written by We denote the
empty configuration by

If is a configuration and is an event such that and is a
configuration, then we say that is enabled at Two configurations are
said to be compatible if is a configuration. For every event of an event
structure we define and It is easy to see that any
event is enabled at

We say that events and are in immediate conflict, and write
when and both and are configurations. Note that
the immediate conflict relation is symmetric. It is also easy to see that a conflict

is immediate if and only if there is a configuration where both and
are enabled.

2.2 Confusion-Free Event Structures

The most intuitive way to add probability to an event structure is to identify
“probabilistic events”, such as coin flips, where probability is associated locally.
A probabilistic event can be thought of as probability distribution over a cell,
that is, a set of events (the outcomes) that are pairwise in immediate conflict
and that have the same set of causal predecessors. The latter implies that all
outcomes are enabled at the same configurations, which allows us to say that
the probabilistic event is either enabled or not enabled at a configuration.

Definition 2.1. A partial cell is a set of events such that implies
and A maximal partial cell is called a cell.

We will now restrict our attention to event structures where each immediate
conflict is resolved through some probabilistic event. That is, we assume that cells
are closed under immediate conflict. This implies that cells are pairwise disjoint.

Definition 2.2. An event structure is confusion-free if its cells are closed under
immediate conflict.

TEAM LinG

484 D. Varacca et al.

Proposition 2.3. An event structure is confusion-free if and only if the reflexive
closure of immediate conflict is transitive and inside cells, the latter meaning that

It follows that, in a confusion-free event structure, the reflexive closure of
immediate conflict is an equivalence with cells being its equivalence classes. If
an event is enabled at a configuration all the events of are enabled as
well. In which case we say that the cell is accessible at Confusion-free event
structures correspond to deterministic concrete data structures [NPW81,KP93]
and to confusion-free occurrence nets [NPW81].

We find it useful to define cells without directly referring to events. To this
end we introduce the notion of covering.

Definition 2.4. Given two configurations we say that covers
if there exists such that For every finite configuration
of a confusion-free event structure, a partial covering at is a set of pairwise
incompatible configurations that cover A covering at is a maximal partial
covering at

Proposition 2.5. In a confusion-free event structure if C is a covering at
then is a cell accessible at Conversely, if is accessible
at then is a covering at

2.3 Probabilistic Event Structures with Independence

Once an event structure is confusion-free, we can associate a probability dis-
tribution with each cell. Intuitively it is as if we have a die local to each cell,
determining the probability with which the events at that cell occur. In this way
we obtain our first definition of a probabilistic event structure, a definition in
which dice at different cells are assumed probabilistically independent.

Definition 2.6. When is a function, for every we
define A cell valuation on a confusion-free event structure

is a function such that for every cell we have

Assuming probabilistic independence of all probabilistic events, every finite
configuration can be given a “probability” which is obtained as the product of
probabilities of its constituent events. This gives us a function
which we can characterise in terms of the order-theoretic structure of by
using coverings.

Proposition 2.7. Let be a cell valuation and let be defined
by Then we have

(a) (Normality)
(b) (Conservation) if C is a covering at then
(c) (Independence) if are compatible, then

TEAM LinG

Probabilistic Event Structures and Domains 485

Definition 2.8. A configuration valuation with independence on a confusion-
free event structure is a function that satisfies normality,
conservation and independence. The configuration valuation associated with a
cell valuation as in Prop. 2.7 is denoted by

Proposition 2.9. If is a configuration valuation with independence and
is a mapping such that for all then is a

cell valuation such that

Condition from Proposition 2.7 is essential to prove Proposition 2.9. We
will show later (Theorem 5.3) the sense in which this condition amounts to
probabilistic independence.

We give an example. Take the following confusion-free event structure
with the discrete causal ordering and with and

We define a cell valuation on by
The corresponding configuration valuation is defined as

In the event structure above, a covering at consists of while a
covering at consists of

We conclude this section with a definition of a probabilistic event structure.
Though, as the definition indicates, we will consider a more general definition
later, one in which there can be probabilistic correlations between the choices at
different cells.

Definition 2.10. A probabilistic event structure with independence consists
of a confusion-free event structure together with a configuration valuation with
independence.

3 A Process Language

Confusion-freeness is a strong requirement. But it is still possible to give a seman-
tics to a fairly rich language for probabilistic processes in terms of probabilistic
event structures with independence. The language we sketch is a probabilistic
version of value passing CCS. Following an idea of Milner, used in the context
of confluent processes [Mil89], we restrict parallel composition so that there is
no ambiguity as to which two processes can communicate at a channel; parallel
composition will then preserve confusion-freeness.

Assume a set of channels L. For simplicity we assume that a common set of
values V may be communicated over any channel The syntax of processes
is given by:

TEAM LinG

486 D. Varacca et al.

Here ranges over value variables, X over process variables, A over subsets
of channels and over injective renaming functions on channels, over boolean
expressions (which make use of values and value variables). The coefficients
are real numbers such that

A closed process will denote a probabilistic event structure with indepen-
dence, but with an additional labelling function from events to output labels

input labels where is a channel and a value, or At the cost of
some informality we explain the probabilistic semantics in terms of CCS con-
structions on the underlying labelled event structures, in which we treat pairs of
labels consisting of an output label and input label as complementary.
(See e.g. the handbook chapter [WN95] or [Win82,Win87] for an explanation of
the event structure semantics of CCS.) For simplicity we restrict attention to
the semantics of closed process terms.

The nil process 0 denotes the empty probabilistic event structure. A closed
output process can perform a synchronisation at channel
outputting a value with probability whereupon it resumes as the process

Each for will denote a labelled probabilistic event structure with
underlying labelled event structure The underlying event structure of
such a closed output process is got by the juxtaposition of the family of prefixed
event structures

with in which the additional prefixing events labelled are put in
(immediate) conflict; the new prefixing events labelled are then assigned
probabilities to obtain the labelled probabilistic event structure.

A closed input process synchronises at channel inputting a value
and resuming as the closed process Such a process denotes a

labelled probabilistic event structure with underlying labelled event structure
The underlying labelled event structure of the input process is got as

the parallel juxtaposition of the family of prefixed event structures

with the new prefixing events labelled are then assigned probabilities
1.

The probabilistic parallel composition corresponds to the usual CCS parallel
composition followed by restricting away on all channels used for communication.
In order for the parallel composition to be well formed the set of input
channels of and must be disjoint, as must be their output channels. So,
for instance, it is not possible to form the parallel composition

In this way we ensure that no confusion is introduced through synchronisa-
tion.

We first describe the effect of the parallel composition on the underlying
event structures of the two components, assumed to be and This is got
by CCS parallel composition followed by restricting away events in a set S:

TEAM LinG

Probabilistic Event Structures and Domains 487

where S consists of all labels for which appears in and in
or vice versa. In this way any communication between and is forced when
possible. The newly introduced corresponding to a synchronisation
between an with probability and an with probability 1,
are assigned probability

A restriction P \ A has the effect of the CCS restriction

on the underlying event structure; the probabilities of the events which re-
main stay the same. A renaming has the usual effect on the underlying
event structure, probabilities of events being maintained. A closed conditional
(if then else has the denotation of when is true and of when

is false.
The recursive definition of probabilistic event structures follows that of event

structures [Win87] carrying the extra probabilities along. Though care must be
taken to ensure that a confusion-free event structure results: one way to ensure
this is to insist that for recX.P to be well-formed the process variable X may
not occur under a parallel composition.

4 Probabilistic Event Structures and Domains

The configurations of a confusion-free event structure ordered by
inclusion, form a domain, specifically a distributive concrete domain (cf.
[NPW81,KP93]). In traditional domain theory, a probabilistic process is denoted
by a continuous valuation. Here we show that, as one would hope, every prob-
abilistic event structure with independence corresponds to a unique continuous
valuation. However not all continuous valuations arise in this way. Exploring why
leads us to a more liberal notion of a configuration valuation, in which there may
be probabilistic correlation between cells. This provides a representation of the
normalised continuous valuations on distributive concrete domains in terms of
probabilistic event structures. (The Appendix includes a brief survey of the do-
main theory we require. The rather involved proofs of this section can be found
in [Var03].)

4.1 Domains

The probabilistic powerdomain of Jones and Plotkin [JP89] consists of contin-
uous valuations, to be thought of as denotations of probabilistic processes. A
continuous valuation on a DCPO D is a function defined on the Scott open
subsets of D, taking values on and satisfying:

TEAM LinG

488 D. Varacca et al.

(Strictness)
(Monotonicity)
(Modularity)
(Continuity) if is a directed family of open sets,

A continuous valuation is normalised if Let denote the
set of normalised continuous valuations on D equipped with the pointwise order:

if for all open sets U, is a DCPO [JP89,Eda95].
The open sets in the Scott topology represent observations. If D is an al-

gebraic domain and is compact, the principal set is open. Principal
open sets can be thought of as basic observations. Indeed they form a basis of
the Scott topology.

Intuitively a normalised continuous valuation assigns probabilities to ob-
servations. In particular we could think of the probability of a principal open set

as representing the probability of

4.2 Continuous and Configuration Valuations

As can be hoped, a configuration valuation with independence on a confusion-
free event structure corresponds to a normalised continuous valuation on the
domain in the following sense.

Proposition 4.1. For every configuration valuation with independence on
there is a unique normalised continuous valuation on such that for every
finite configuration

Proof. The claim is a special case of the subsequent Theorem 4.4.

While a configuration valuation with independence gives rise to a continuous
valuation, not every continuous valuation arises in this way. As an example,
consider the event structure as defined in Section 2.3. Define

and extend it to all open sets by modularity. It is easy to verify that it is in-
deed a continuous valuation on Define a function
by This is not a configuration valuation with independence; it
does not satisfy condition of Proposition 2.7. If we consider the compatible
configurations then

Also continuous valuations “leaking” probability do not arise from proba-
bilistic event structures with independence.

Definition 4.2. Denote the set of maximal elements of a DCPO D by
A normalised continuous valuation on D is non-leaking if for every open set

we have

TEAM LinG

Probabilistic Event Structures and Domains 489

This definition is new, although inspired by a similar concept in [Eda95].
For the simplest example of a leaking continuous valuation, consider the event
structure consisting of one event only, and the valuation defined as

The corresponding function
violates condition of Proposition 2.7. The probabilities in the cell of do not
sum up to 1.

We analyse how valuations without independence and leaking valuations can
arise in the next two sections.

4.3 Valuations Without Independence

Definition 2.10 of probabilistic event structures assumes the probabilistic inde-
pendence of choice at different cells. This is reflected by condition in Proposi-
tion 2.7 on which it depends. In the first example above, the probabilistic choices
in the two cells are not independent: once we know the outcome of one of them,
we also know the outcome of the other. This observation leads us to a more
general definition of a configuration valuation and probabilistic event structure.

Definition 4.3. A configuration valuation on a confusion-free event structure
is a function such that:

(a)
(b) if C is a covering at then

A probabilistic event structure consists of a confusion-free event structure
together with a configuration valuation.

Now we can generalise Proposition 4.1, and provide a converse:

Theorem 4.4. For every configuration valuation on there is a unique nor-
malised continuous valuation on such that for every finite configuration

Moreover is non-leaking.

Theorem 4.5. Let be a non-leaking continuous valuation on The func-
tion defined by is a configuration valuation.

The two theorems above provide a representation of non-leaking continu-
ous valuations on distributive concrete domains—see [Var03], Thm. 6.4.1 and
Thm. 7.6.2 for their proof. Using this representation result, we are also able
to characterise the maximal elements in as precisely the non-leaking
valuations—a fact which is not known for general domains.

Theorem 4.6. Let be a confusion-free event structure and let
Then is non-leaking if and only if it is maximal.

Proof. See [Var03], Prop. 7.6.3 and Thm. 7.6.4.

TEAM LinG

490 D. Varacca et al.

4.4 Leaking Valuations

There remain leaking continuous valuations, as yet unrepresented by any proba-
bilistic event structures. At first sight it might seem that to account for leaking
valuations it would be enough to relax condition of Definition 4.3 to the
following

if C is a covering at then

However, it turns out that this is not the right generalisation, as the following
example shows. Consider the event structure where with the flat
causal ordering and no conflict. Define a “leaking configuration valuation” on
by

The function satisfies conditions and but it cannot be extended to
a continuous valuation on the domain of configurations. However, we can show
that the leaking of probability is attributable to an “invisible” event.

Definition 4.7. Consider a confusion-free event structure For
every cell we consider a new “invisible” event such that and if
then Let is a cell}. We define to be where

is extended by if for all
is # extended by if there exists

So is extended by an extra invisible event at every cell. Invisible events
can absorb all leaking probability, as shown by Theorem 4.9 below.

Definition 4.8. Let be a confusion-free event structure. A generalised config-
uration valuation on is a function that can be extended to
a configuration valuation on

It is not difficult to prove that, when such an extension exists, it is unique.

Theorem 4.9. Let be a confusion-free event structure. Let
There exists a unique normalised continuous valuation on with

if and only if is a generalised configuration valuation.

Proof. See [Var03], Thm. 6.5.3.

The above theorem completely characterises the normalised continuous valu-
ations on distributive concrete domains in terms of probabilistic event structures.

5 Probabilistic Event Structures as Probabilistic Runs

In the rest of the paper we investigate how to adjoin probabilities to event
structures which are not confusion-free. In order to do so, we find it useful to
introduce two notions of probabilistic run.

Configurations represent runs (or computation paths) of an event structure.
What is a probabilistic run (or probabilistic computation path) of an event

TEAM LinG

Probabilistic Event Structures and Domains 491

structure? One would expect a probabilistic run to be a form of probabilistic
configuration, so a probability distribution over a suitably chosen subset of con-
figurations. As a guideline we consider the traditional model of probabilistic
automata [Seg95], where probabilistic runs are represented in essentially two
ways: as a probability measure over the set of maximal runs [Seg95], and as a
probability distribution over finite runs of the same length [dAHJ01].

The first approach is readily available to us, and where we begin. As we
will see, according to this view probabilistic event structures over an underlying
event structure correspond precisely to the probabilistic runs of

The proofs of the results in this section are omitted, but they can be found
in the technical report [VVW04].

5.1 Probabilistic Runs of an Event Structure

The first approach suggests that a probabilistic run of an event structure be
taken to be a probability measure on the maximal configurations of

To do so requires some notions from measure theory. A measurable space is
a pair where is a set and is a over A measure over
a measurable space is a countably additive function
If we talk of a probability measure. Let D be an algebraic domain.
Recall that denotes the set of maximal elements of D and that for every
compact element the principal set is Scott open. The set

is called the shadow of We shall consider the on
generated by the shadows of the compact elements. The configurations of an
event structure form a coherent domain, whose compact elements
are the finite configurations [NPW81].

Definition 5.1. A probabilistic run of an event structure is a probability
measure on where is the generated by the shadows of
the compact elements.

There is a tight correspondence between non-leaking valuations and proba-
bilistic runs.

Theorem 5.2. Let be a non-leaking normalised continuous valuation on a
coherent domain D. Then there is a unique probability measure on

such that for every compact element
Let be a probability measure on Then the function defined on open

sets by is a non-leaking normalised continuous valuation.

According to the result above, probabilistic event structures over a common
event structure correspond precisely to the probabilistic runs of Among
these we can characterise probabilistic event structures with independence in
terms of the standard measure-theoretic notion of independence. In fact, for
such a probabilistic event structure, every two compatible configurations are
probabilistically independent, given the common past:

TEAM LinG

492 D. Varacca et al.

Proposition 5.3. Let be a configuration valuation on a confusion-free event
structure Let be the corresponding measure as of Propositions 4.1 and
Theorem 5.2. Then, is a configuration valuation with independence iff for
every two finite compatible configurations

Note that the definition of probabilistic run of an event structure does not
require that the event structure is confusion-free. It thus suggests a general defi-
nition of a probabilistic event structure as an event structure with a probability
measure on its maximal configurations, even when the event structure is not
confusion-free. This definition, in itself, is however not very informative and we
look to an explanation in terms of finite probabilistic runs.

5.2 Finite Runs

What is a finite probabilistic run? Following the analogy heading this section,
we want it to be a probability distribution over finite configurations. But which
sets are suitable to be the support of such distribution? In interleaving models,
the sets of runs of the same length do the job. For event structures this won’t
do.

To see why consider the event structure with only two concurrent events
The only maximal run assigns probability 1 to the maximal configuration
This corresponds to a configuration valuation which assigns 1 to both and

Now these are two configurations of the same size, but their common “prob-
ability” is equal to 2! The reason is that the two configurations are compatible:
they do not represent alternative choices. We therefore need to represent alter-
native choices, and we need to represent them all. This leads us to the following
definition.

Definition 5.4. Let be an event structure. A partial test of is a set C of
pairwise incompatible configurations of A test is a maximal partial test. A
test is finitary if all its elements are finite.

Maximality of a partial test C can be characterised equivalently as complete-
ness: for every maximal configuration there exists such that The
set of tests, endowed with the Egli-Milner order has an interesting structure: the
set of all tests is a complete lattice, while finitary tests form a lattice.

Tests were designed to support probability distributions. So given a sensible
valuation on finite configurations we expect it to restrict to probability distribu-
tions on tests.

Definition 5.5. Let be a function Then is called a test
valuation if for all finitary tests C we have

Theorem 5.6. Let be a probabilistic run of Define by
Then is a test valuation.

TEAM LinG

Probabilistic Event Structures and Domains 493

Note that Theorem 5.6 is for general event structures. We unfortunately do
not have a converse in general. However, there is a converse when the event
structure is confusion-free:

Theorem 5.7. Let be a confusion-free event structure. Let be a function
Then is a configuration valuation if and only if it is a test

valuation.

The proof of this theorem hinges on a property of tests. The property is
that of whether partial tests can be completed. Clearly every partial test can be
completed to a test (by Zorn’s lemma), but there exist finitary partial tests that
cannot be completed to finitary tests.

Definition 5.8. A finitary partial test is honest if it is part of a finitary test.
A finite configuration is honest if it is honest as partial test.

Proposition 5.9. If is a confusion-free event structure and if is a finite
configuration of then is honest in

So confusion-free event structures behave well with respect to honesty. For
general event structures, the following is the best we can do at present:

Theorem 5.10. Let be a test valuation on Let be the on
generated by the shadows of honest finite configurations. Then there

exists a unique measure on such that for every honest
finite configuration

Theorem 5.11. If all finite configurations are honest, then for every test valu-
ation there exists a unique continuous valuation v, such that

But, we do not know whether in all event structures, every finite configu-
ration is honest. We conjecture this to be the case. If so this would entail the
general converse to Theorem 5.6 and so characterise probabilistic event struc-
tures, allowing confusion, in terms of finitary tests.

6 Morphisms

It is relatively straightforward to understand event structures with independence.
But how can general test valuations on a confusion-free event structures arise?
More generally how do we get runs of arbitrary event structures? We explore
one answer in this section. We show how to obtain test valuations as “projec-
tions” along a morphism from a configuration valuation with independence on
a confusion-free event structure. The use of morphisms shows us how general
valuations are obtained through the hiding and renaming of events.

Definition 6.1 ([Win82,WN95]). Given two event structures a mor-
phism is a partial function such that

TEAM LinG

494 D. Varacca et al.

whenever then
for every for all if are both defined and

then

A morphism expresses how the occurrence of an event in induces
a synchronised occurrence of an event in Some events in are hidden (if is
not defined on them) and conflicting events in may synchronise with the same
event in (if they are identified by

The second condition in the definition guarantees that morphisms of event
structures “reflect” reflexive conflict We now introduce morphisms
that reflect tests; such morphisms enable us to define a test valuation on from
a test valuation on To do so we need some preliminary definitions. Given a
morphism we say that an event of is if it is not in the
domain of Given a configuration of we define to be minus all its
maximal events. Clearly is still a configuration and
If we say that is

Definition 6.2. A morphism of event structures is tight when

if and if there exists such that
if and if there exists such that
all maximal configurations are (no maximal event is

Proposition 6.3. A tight morphism of event structures is surjective on config-
urations. Given tight, if is a finitary test of then the set of

inverse images of along is a finitary test in

We now study the relation between valuations and morphisms. Given a func-
tion and a morphism we define a function

by and is

Proposition 6.4. Let be event structures, be a test valuation on and
a tight morphism. Then the function is a test valuation on

Therefore we can obtain a run of a general event structure by projecting a run
of a probabilistic event structure with independence. Presently we don’t know
whether every run can be generated in this way.

7 Related and Future Work

In his PhD thesis, Katoen [Kat96] defines a notion of probabilistic event struc-
ture which includes our probabilistic event structures with independence. But his
concerns are more directly tuned to a specific process algebra. So in one sense his
work is more general—his event structures also possess nondeterminism—while
in another it is much more specific in that it does not look beyond local proba-
bility distributions at cells. Völzer [Voe01] introduces similar concepts based on
Petri nets and a special case of Theorem 5.10. Benveniste et al. have an alter-
native definition of probabilistic Petri nets in [BFH03], and there is clearly an
overlap of concerns though some significant differences which require study.

TEAM LinG

Probabilistic Event Structures and Domains 495

We have explored how to add probability to the independence model of event
structures. In the confusion-free case, this can be done in several equivalent ways:
as valuations on configurations; as continuous valuations on the domain of con-
figurations; as probabilistic runs (probability measures over maximal configura-
tions); and in the simplest case, with independence, as probability distributions
existing locally and independently at cells. Work remains to be done on a more
operational understanding, in particular on how to understand probability ad-
joined to event structures which are not confusion-free. This involves relating
probabilistic event structures to interleaving models like Probabilistic Automata
[Seg95] and Labelled Markov Processes [DEP02].

Acknowledgments

The first author wants to thank Mogens Nielsen, Philippe Darondeau, Samy
Abbes and an anonymous referee.

References

[AJ94]

[Alv00]

[AES00]

[BFH03]

[dAHJ01]

[DEP02]

[Eda95]

[JP89]

[Kat96]

[KP93]

[LS91]

[Mil89]
[NPW81]

S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in Com-
puter Science, volume 3. Clarendon Press, 1994.
M. Alvarez-Manilla. Measure Theoretic Results for Continuous Valuations
on Partially Ordered Spaces. PhD thesis, University of London - Imperial
College of Science, Technology and Medicine, 2000.
M. Alvarez-Manilla, A. Edalat, and N. Saheb-Djaromi. An extension result
for continuous valuations. Journal of the London Mathematical Society,
61(2):629–640, 2000.
A. Benveniste, E. Fabre, and S. Haar. Markov nets: Probabilistic models
for distributed and concurrent systems. IEEE Transactions on Automatic
Control, 48(11):1936–1950, 2003.
L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for
probabilistic systems. In Proc. 12th CONCUR, volume 2154 of LNCS, pages
351–365, 2001.
J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled
markov processes. Information and Computation, 179(2):163–193, 2002.
A. Edalat. Domain theory and integration. Theoretical Computer Science,
151(1):163–193, 13 November 1995.
C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations.
In Proceedings of 4th LICS, pages 186–195, 1989.
J.-P. Katoen. Quantitative and Qualitative Extensions of Event Structures.
PhD thesis, University of Twente, 1996.
G. Kahn and G. D. Plotkin. Concrete domains. Theoretical Computer
Science, 121(l-2):187–277, 1993.
K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Information and Computation, 94(l):l–28, 1991.
R. Milner. Communication and Concurrency. Prentice Hall, 1989.
M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures and
domains, part I. Theoretical Computer Science, 13(1):85–108, 1981.

TEAM LinG

496 D. Varacca et al.

[Seg95]

[Voe01]

[Var03]

[VVW04]

[Win82]

[Win87]

[WN95]

R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, MIT, 1995.
H. Völzer. Randomized non-sequential processes. In Proceedings of 12th
CONCUR, volume 2154 of LNCS, pages 184–201, 2001. Extended version
as Technical Report 02-28 - SVRC - University of Queensland.
D. Varacca. Probability, nondeterminism and Concurrency. Two denota-
tional models for probabilistic computation. PhD thesis, BRICS - Aarhus
University, 2003. Available at http://www.brics.dk/~varacca.
D. Varacca, H. Völzer and G. Winskel. Probabilistic Event Structures and
Domains. BRICS Technical Report RS-04-10 - Aarhus University, 2004.
G. Winskel. Event structure semantics for CCS and related languages. In
Proceedings of 9th ICALP, volume 140 of LNCS, pages 561–576. Springer,
1982.
G. Winskel. Event structures. In Advances in Petri Nets 1986, Part II;
Proceedings of an Advanced Course, Bad Honnef, September 1986, volume
255 of LNCS, pages 325–392. Springer, 1987.
G. Winskel and M. Nielsen. Models for concurrency. In Handbook of logic
in Computer Science, volume 4. Clarendon Press, 1995.

Appendix: Domain Theory—Basic Notions

We briefly recall some basic notions of domain theory (see e.g. [AJ94]). A directed
complete partial order (DCPO) is a partial order where every directed set Y has
a least upper bound An element of a DCPO D is compact (or finite) if for
every directed Y and every there exists such that The set
of compact elements is denoted by Cp(D). A DCPO is an algebraic domain if or
every is the directed least upper bound of It is
if Cp(D) is countable.

In a partial order, two elements are said to be compatible if they have a
common upper bound. A subset of a partial order is consistent if every two of
its elements are compatible. A partial order is coherent if every consistent set
has a least upper bound.

The Egli-Milner order on subsets of a partial order is defined by if
for all there exists and for all there exists

A subset X of a DCPO is Scott open if it is upward closed and if for
every directed set Y whose least upper bound is in X, then Scott
open sets form the Scott topology.

TEAM LinG

Session Types for Functional Multithreading

Vasco Vasconcelos1, António Ravara2, and Simon Gay3

1 Departamento de Informática, Faculdade de Ciências,
Universidade de Lisboa, 1749-016 Lisboa, Portugal

vv@di.fc.ul.pt
2 Departamento de Matemática, Instituto Superior Técnico,

1049-001 Lisboa, Portugal
amar@math.ist.utl.pt

3 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
simon@dcs.gla.ac.uk

Abstract. We define a language whose type system, incorporating ses-
sion types, allows complex protocols to be specified by types and verified
by static typechecking. A session type, associated with a communica-
tion channel, specifies the state transitions of a protocol and also the
data types of messages associated with transitions; thus typechecking
can verify both correctness of individual messages and correctness of se-
quences of transitions. Previously session types have mainly been studied
in the context of the instead, our formulation is based on a
multi-threaded functional language with side-effecting input/output op-
erations. Our typing judgements statically describe dynamic changes in
the types of channels, our channel types statically track aliasing, and
our function types not only specify argument and result types but also
describe changes in channels. We formalize the syntax, semantics and
typing rules of our language, and prove subject reduction and runtime
type safety theorems.

Keywords: Session types, static typechecking, concurrent programming,
specification of communication protocols.

1 Introduction

Communication in distributed systems is typically structured around protocols,
which specify the sequence and form of messages passing over communication
channels. Correctness of such systems implies that protocols are obeyed.

The theory of session types [9,10,18,5] allows the specification of a protocol
to be expressed as a type; when a communication channel is created, a ses-
sion type is associated with it. Such a type specifies not only the data types
of individual messages, but also the state transitions of the protocol and hence
the allowable sequences of messages. By extending the standard methodology of
static typechecking, it becomes possible to verify, at compile-time, that an agent
using the channel does so in accordance with the protocol.

The theory of session types has been developed in the context of the
[13,17], an idealized concurrent programming language which focuses

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 497–511, 2004.
© Springer- Verlag Berlin Heidelberg 2004

TEAM LinG

498 V. Vasconcelos et al.

on inter-process communication. Session types have not yet been incorporated
into a mainstream programmming language, or even studied theoretically in
the context of a standard language paradigm: functional, imperative or object-
oriented. Vallecillo et al. [19] use session types to add behavioural information to
the interfaces of CORBA objects, and use Gay and Hole’s [5] theory of subtyping
to formalize compatibility and substitutability of components, but they have not
attempted to design a complete language.

The Vault [2] and Cyclone [8] languages extend C with facilities for safe
control of stateful resources. In Cyclone, locks must be acquired and released;
Vault goes further by allowing operations on a resource to be statically checked
against an automaton which specifies valid transitions. In contrast, session types
are specialized to communication channels as a particular kind of resource, but
as a result they enable further typechecking in association with each state tran-
sition: typechecking verifies the types of individual messages, as well as verifying
that a sequence of messages obeys a given protocol. (These languages are further
discussed in section 7.)

In previous work [4] we have presented a language supporting typed func-
tional programming with inter-process communication channels, but we only
considered individual processes in isolation. Here we address collections of func-
tional threads communicating via channels. This formulation allows us to prove
a runtime safety property: well-typed programs do not misuse channels.

By transferring the concept of session types from the to a multi-
threaded functional language with side-effecting input/output operations, we
show that static checking of session types could be added to a language such as
Concurrent ML [16], at least without imperative features. In particular we have
addressed the key differences between a conventional programming style and the
programming notation of the

The operations on channels are independent terms, rather than prefixes of
processes, so we have introduced a new form of typing judgement which
describes the effect of a term on channel environment.
We have separated creation and naming of channels, and because this in-
troduces the possibility of aliasing, we represent the types of channels by
indirection from the main type environment to the channel environment.

The structure of the paper is as follows. In Section 2 we explain session types
in connection with a progressively more sophisticated example. Sections 3, 4
and 5 define the syntax, operational semantics and type system of our language.
In Section 6 we present the runtime safety result. In Sections 7 and 8 we discuss
related and future work.

2 Session Types and the Maths Server

Input, Output and Sequencing Types. First consider a server which pro-
vides a single operation: addition of integers. A suitable protocol can be defined
as follows.

TEAM LinG

Session Types for Functional Multithreading 499

The client sends two integers. The server sends an integer which is their
sum, then closes the connection.

The corresponding session type, from the server’s point of view, is

in which ? means receive, ! means send, dot (.) is sequencing, and End indicates
the end of the session. The type does not correspond precisely to the specifica-
tion, because it does not state that the server calculates the sum. However, the
type captures the parts of the specification which we can reasonably expect to
verify statically. The server communicates with a client on a channel called
we think of the client engaging in a session with the server, using the channel
for communication. In our language, the server looks like this:

or more concisely: send on
Interchanging ? and ! yields the type describing the client side of the protocol:

and a client implementation uses the server to add two particular integers; the
code may use but cannot use the channel except for closing it.

Branching Types. Now let us modify the protocol and add a negation opera-
tion to the server.

The client selects one of two commands: add or neg. In the case of add
the client then sends two integers and the server replies with an integer
which is their sum. In the case of neg the client then sends an integer
and the server replies with an integer which is its negation. In either
case, the server then closes the connection.

The corresponding session type, for the server side, uses the constructor &
(branch) to indicate that a choice is offered.

Both services must be implemented. We introduce a case construct:

TEAM LinG

500 V. Vasconcelos et al.

The type of the client side uses the dual constructor (choice) to indicate
that a choice is made.

A client implementation makes a particular choice, for example:

Note that the type of the subsequent interaction depends on the label which
is selected. In order for typechecking to be decidable, it is essential that the label
add or neg appears as a literal name in the program; labels cannot result from
computations.

If we add a square root operation, sqrt, then as well as specifying that the
argument and result have type Real, we must allow for the possibility of an error
(resulting in the end of the session) if the client asks for the square root of a
negative number. This is done by using the constructor on the server side,
with options ok and error. The complete English description of the protocol is
starting to become lengthy, so we will omit it and simply show the type of the
server side.

This example shows that session types allow the description of protocols that
cannot be easily accommodated with objects, that is, with sequences of the form:
select a method; send the arguments; receive the result.

Recursive Types. A more realistic server would allow a session to consist of a
sequence of commands and responses. The corresponding type must be defined
recursively, and it is useful to include a quit command. Here is the type of the
server side:

The server is now implemented by a recursive function, in which the positions
of the recursive calls correspond to the recursive occurrences of S in the type
definition. To simplify the theory we decided not to include recursive types in
this paper; the interested reader may refer to report [4].

TEAM LinG

Session Types for Functional Multithreading 501

Function Types. We have not mentioned the type of the server itself. Clearly, it
accepts a channel (in state &: and returns nothing (described
by the Unit type). The body of the function “consumes” the channel, leaving it
in a state ready to be closed (described by type End). We write all this as follows,
where is the (runtime) channel denoted by the (program) variable

Note how the function type describes, not only the type of the parameter
and that of the result, but also, its effect on channel It can also be useful to
send functions on channels. For example we could add the component1

to the branch type of the server, with corresponding server code, to be placed
within the server’s case above.

A client which requires a primality test service (perhaps the server has fast
hardware) can be written as follows.

Establishing a Connection. How do the client and the server reach a state in
which they both know about channel We follow Takeuchi, Kubo and Honda
[18], and propose a pair of constructs: request for use by clients, and accept
for use by servers. In use, request and accept occur in separate threads, and
interact with each other to create a new channel. The value in both request
and accept, denotes the common knowledge of the two threads: a shared name
used solely for the creation of new channels. We may then write:

Note that the same type for the shared name is used both for the server
and for the client; it is the accept/request construct that distinguishes one from

1 We often omit the empty channel environment on each side of the arrow.

TEAM LinG

502 V. Vasconcelos et al.

the other. This is also where we introduce the operation to close a channel:
accept/request creates a channel; close destroys it.

Sharing Names. In order for a name to become known by a client and a
server, it must be created somewhere and distributed to both. To create a new,
potentially shared, name, we write new. To distribute it to a second thread, we
fork a new thread, in whose code the name occurs.2 Our complete system creates
a name and launches three threads (a server and two clients), all sharing the
newly created name.

Given the above implementation of server, one of the clients will be forever
requesting Fortunately, it is easy to extend the server to accept more than
one connection in its life time.

Sending Channels on Channels. Imagine two clients that need to cooperate
in their interaction with the server: one client establishes a connection, selects the
neg operation, and sends the argument; the second client receives the result. Af-
ter selecting neg, the first client must provide the second with the channel to the
server. In order to do so, both clients must share a name of type ?(?lnt.End).End
(call this type S) and establish a connection for the sole purpose of transmitting
the server channel.

It is instructive to follow the evolution of the state (the type) of channels
and connected to variables and respectively. After the execution of the
first line of getNeg, has type S =?(?Int.End).End; after the second line, is
reduced to End, but shows up with type ?Int.End; after the third line both
channels are of type End, that is, ready to be closed. By the end of the fourth
line, we gather no more information on channels and for they are now closed.
That is the sort of analysis our type system performs.

2 Alternatively, we may send on an existing channel.

TEAM LinG

Session Types for Functional Multithreading 503

After sending a channel, no further interaction on the channel is possible.
Note that askNeg cannot close for otherwise the channel’s client side would
be closed twice (in askNeg and in getNeg). On the other hand, channel must
be closed at both its ends, by askNeg and by getNeg.

Channel Aliasing. As soon as we separate creation and naming of channels,
aliasing becomes an issue. Consider the function below.

Function sendSend can be used in a number of different ways including the
one where and become aliases for a single underlying channel.

Clearly our type system must track aliases in order to be able to correctly
typecheck programs such as this. Our approach is to introduce indirection into
type environments. In the body of function sendSend, the types of and are
both Chan The state of initially !Int.!Int.End, is recorded separately.

Free Variables in Functions. If we write

then function sendSend becomes In order to type sendTwice, thus
effectively aliasing and in sendSend, we must have3

in a typing environment associating the type Chan to the free variable of
sendFree. However, if aliasing and is not sought, then we must have

in a typing environment containing Chan Note how this type for sendFree
captures channel changes, parameters to the function or not.

Polymorphism. We have seen that sendFree admits at least two different types.
In order to allow for code reuse we work with a type-free syntax, and type our
functions as many times as needed, potentially with different types. The para-
graph above showed a share/not-share kind of polymorphism. Other forms in-
clude channel polymorphism and session polymorphism. For the former consider

3 We abbreviate to

TEAM LinG

504 V. Vasconcelos et al.

Fig. 1. Syntax of values, expressions, threads and configurations

Fig. 2. Structural congruence

where S is !Int.!Int.End. Here sendTwice must be typed once with channel and
another with channel For the latter we have:

where sendTwice must be typed once with !Int.!Int.!Int.!Int.End, and a second
time with !Int.!Int.End.

3 Syntax

Most of the syntax of our language has been illustrated in the previous section;
here we define it formally by the grammar in Figure 1.

We use channel identifiers name identifiers term variables
and labels and define values terms threads and configurations C.
Channel identifiers and name identifiers are not available in the top-level syntax
of threads; they arise only during reduction, in a request/accept synchronization,
and in a new operation, respectively, as described in section 4.

In section 2 we used several derived constructors. An expression (some-
times implied in our examples by the indentation) is an abbreviation for let

in provided does not occur free in Idioms like send (receive (receive
on need appropriate de-sugaring into consecutive lets, making the evalua-

tion order explicit. We sometimes “terminate” threads with an expression rather
than a value: a thread is short for let in Recursive function definitions
must be made explicit with rec.

4 Operational Semantics

The binding occurrences are in rec let in in (vn)C and
in (vc)C. Free and bound identifiers are defined as usual and we work up

TEAM LinG

Session Types for Functional Multithreading 505

Fig. 3. Reduction rules

to Substitution, of values for variables, is defined as expected.
We define a reduction semantics on configurations (figure 3), making use of a
simple structural congruence relation [13] (figure 2), allowing rearrangement of
the threads in a configuration, so that reduction may happen.4

We now explain the reduction rules. R-INIT synchronizes two threads on a
shared name creating a new channel known to both threads. Rules R-COM,
R-BRANCH, and R-CLOSE synchronize two threads on a channel c: R-COM

transmits a value from one thread to the other; R-BRANCH, rather than trans-
mitting a value, chooses one of the branches in the case thread; and R-CLOSE
closes a channel in both threads simultaneously. R-NEW creates a new name
and records the fact that the name is potentially shared, by means of a (vn)
in the resulting configuration. The last four rules allow reduction to happen
underneath restriction, parallel composition, and structural congruence.

Unlike other thread models, the value a thread reduces to is not communi-
cated back to its parent thread (the one that forked the terminating thread).

4 We could easily arrange for structural congruence to garbage collect all threads of
the form for closed.

TEAM LinG

506 V. Vasconcelos et al.

Fig. 4. Syntax of types

Such behaviour would have to be programmed by arranging for both threads to
share a channel and explicitly sending the result back to the parent.

5 Typing

The syntax of types is described in figure 4. We define session types S, channel
environments data types D, and term types T. The type Chan represents
the type of the channel with identity the session type associated with is
recorded separately in a channel environment Channel type bottom, de-
notes a channel that has been closed or that is already in use by two threads,
hence that cannot be used further. Similarly to channel and name identifiers,

is not available at the top level syntax, arising only via the channel environ-
ment composition operator, defined below. Among datatypes we have
channel-state annotated functional types and types for names [S]
capable of establishing sessions of type S.

The type system is presented in figures 5, 6, and 7. Typing judgements for
configurations are of the form where is a map from variables and
names to types, and are channel environments as in section 3. Judgements
for expressions also describe the type of the expression, and
those for constants do not mention channel environments, for constants,
having no behaviour, do not change channels. The difference between and
reflects the effect of an expression (or a configuration) on the types of channels,
for example

Typing Values (Figure 5). T-CHAN that says that a channel named has
type Chan The actual type (or state) of channel is to be found in a channel
environment in the rules for expressions. In T-ABS, the initial and final
channel environments of the function body are recorded in the function type.

Fig. 5. Typing rules for values

TEAM LinG

Session Types for Functional Multithreading 507

Fig. 6. Typing rules for expressions

Typing Expressions (Figure 6). There are two rules for receive and two rules
for send, for these constructors are overloaded: they allow transmission of data
as well as channels. In T-RECEIVED, the prefix ?D., of the type for channel
is consumed, provided that we are receiving on a value aliased to channel (of
type Chan In T-RECEIVES, we receive a channel, that we decided to call
the type of the expression is Chan and we add a new entry to the final channel
environment, where we record the type for The particular form of the final
channel environment allows the continuation to hold both ends of the channel.
The rules T-SENDD and T-SENDS, for sending values and channels, are similar.
In T-SELECT, the type for in the final channel environment is that of branch

in the type for in the source channel environment. In T-CASE, all branches
must produce the same final channel environment. This enables us to know the
environment for any code following the case, independently of which branch is
chosen at runtime. The same applies to the two branches of the conditional in
T-IF. Rule T-CLOSE requires that the channel must be ready to be closed (of

TEAM LinG

508 V. Vasconcelos et al.

type End). We replace the type of by to mean that no further interaction at
is possible.

Rules T-REQUEST and T-ACCEPT both introduce a new channel in the
channel environment, of dual polarities [5,9,10,18,19]. The dual of a session
type S, denoted is defined for all session types except and is obtained
by interchanging output ! and input ?, and by interchanging branching & and
selection and leaving S otherwise unchanged. In proofs we use an inductive
definition.

In T-APP, the initial and final channel environments in the type of the func-
tion are released into the typing for the application. T-VAL says that constants
do not affect the state of channels. Expression new has any type of the form
[S], denoting a name that, when shared by two threads, is able to produce (via
accept/request) new channels of type S.

Rule T-FORK composes the initial and the final channel environments of
two configurations, by checking that the types of the channels occurring in both
environments are dual. The composition of two channel environments,
is defined only when for all In this case

and is when
and is when for

Rule T-POLYLET allow types the various forms of polymorphism identified
in section 2, by separately typing different copies of the polymorphic value [14].

Typing Configurations (Figure 7). T-PAR is similar to T-FORK. T-NEWN
makes sure that only names are used to start sessions. T-NEWC says that a
channel must be used with dual modes by exactly two threads; its side condition
ensures that channels are closed.

Subject Reduction. Our Subject Reduction theorem describes the evolution
of the channel environment as the program is executed. The invariance of
during reduction steps reflects the fact that is the final channel environment
of a program.

Theorem 1 (Subject Reduction). If and then
for some

6 Type Safety

In our language of functional communicating threads different sorts of prob-
lems may occur at runtime, ranging from the traditional error of testing, in a

Fig. 7. Typing rules for configurations

TEAM LinG

Session Types for Functional Multithreading 509

conditional expression, a value that is not true or false; through applying close
to a value that is not a channel; to the most relevant to our work: having one
thread trying to send on a given channel, and another trying to select on the
same channel, or having three or more threads trying to synchronize on the same
channel.

In order to define what we mean by a faulty configuration, we start by calling
a any thread ready to perform an operation on channel that is a thread
of the form and similarly for send, case, select, and close. A

is the parallel composition of two threads ready to communicate on chan-
nel that is and similarly for
case/select, close/close. A configuration C is faulty when and

is

1.

2.
3.

4.
5.

the thread where is i) if then _ else _ with false,
or is ii) with and or is
the thread where is not a name;
the thread where is i) receive/close or ii) send _ on or
iii) case of _, or iv) select _ on with not a channel; or is
the parallel composition of two that do not form a or is
the parallel composition of three or more

Theorem 2 (Type Safety). Typable configurations are not faulty.

7 Related Work

Cyclone [8] is a C-like type-safe polymorphic imperative language. It features
region-based memory management, and more recently threads and locks [7], via
a sophisticated type system. The multithreaded version requires “a lock name
for every pointer and lock type, and an effect for every function”. Our locks are
channels; but more than mutual exclusion, channels also allow a precise descrip-
tion of the protocol “between” acquiring and releasing the lock. In Cyclone a
thread acquires a lock for a resource, uses the resource in whichever way it needs,
and then releases the lock. Using our language a thread acquires the lock via a
request operation, and then follows the protocol for the resource, before closing
the channel obtained with request.

In the Vault system [2] annotations are added to C programs, in order to
describe protocols that a compiler can statically enforce. Similarly to our ap-
proach, individual runtime objects are tracked by associating keys (channels, in
our terminology) with resources, and function types describe the effect of the
function on the keys. Although incorporating a form of selection the type
system describes protocols in less detail than we can achieve with session types.
“Adoption and Focus” [3], by the same authors, is a type system able to track
changes in the state of objects; the system handles aliasing, and includes a form
of polymorphism in functions. In contrast, our system checks the types of indi-
vidual messages, as well as tracking the state of the channel. Our system is more

TEAM LinG

510 V. Vasconcelos et al.

specialized, but the specialization allows more type checking in the situation
that we handle.

Igarashi and Kobayashi have developed a generic framework in which a range
of type systems can be defined [12]. Although able to express se-
quencing of input and output types similarly to session types, it cannot express
branching types.

A somewhat related line of research addresses resource access. Walker, Crary,
and Morrisett [20] present a language to describe region-based memory manage-
ment together with a provably safe type system. Igarashi and Kobayashi [11]
present a general framework comprising a language with primitives for creating
and accessing resources, and a type inference algorithm that checks whether pro-
grams access resources in a disciplined manner. Although types for resources in
this latter work are similar in spirit to session types, we work in a much simpler
setting.

Type and effect systems can be used to prove properties of protocols. Gordon
and Jeffrey [6] use one such system to prove progress properties of communication
protocols written in Rajamani et al.’s Behave [1,15] uses CCS to
describe properties of programs, verified via a combination of type and
model checking. Since our system is purely type checking (not model checking)
we expect verification to be more efficient and easier to implement.

8 Future Work

We outline some of the issues involved in extending our language to include a
wider range of standard features.

Recursive Session Types. We have introduced recursive session types in a pre-
vious work [4]. We feel its incorporation in the present setting would not present
major difficulties, although care must be taken in the definition of duality [19].

Principal Typings. For practical type inference, for separate compilation and
modularity, one needs a notion of principal typings for the language. Particularly
challenging is the share/not-share kind of polymorphism identified in section 2.

Type Inference. We are working on a constraint-based type inference algorithm
for (the monomorphic fragment of) the language.

ML-style References and Assignment. This would introduce further issues
of aliasing. We do not yet know whether our present infrastructure for type-
checking in the presence of aliasing would be sufficient for this extension.

Acknowledgements. This work was partially supported by the EU IST proac-
tive initiative FET-Global Computing (projects Mikado, IST–2001–32222, and
Profundis, IST–2001–33100), Fundação para a Ciência e a Tecnologia (via CLC,
CITI, and the project MIMO, POSI/CHS/39789/2001), and a Treaty of Wind-
sor grant from the British Council in Portugal and the Portuguese Council of
University Rectors.

TEAM LinG

Session Types for Functional Multithreading 511

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model checking message-
passing programs. In POPL, pages 45–57. ACM Press, 2002.
R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software.
In PLDI, pages 59–69. ACM Press, 2001.
J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type Qualifiers. In PLDI,
pages 1–12, Berlin, Germany, June 2002.
S. J. Gay, V. T. Vasconcelos, and A. Ravara. Session types for inter-process commu-
nication. TR 2003–133, Department of Computing Science, University of Glasgow,
March 2003.
S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions. In
S. D. Swierstra, editor, ESOP’99, LNCS 1576, pages 74–90. Springer-Verlag, 1999.
A. Gordon and A. Jeffrey. Typing correspondence assertions for communication
protocols. Theoretical Computer Science, 300:379–409, 2003.
D. Grossman. Type-safe multithreading in cyclone. In ACM Workshop on Types
in Language Design and Implementation. ACM Press, 2003.
D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in cyclone. In PLDI (pp. 282–293). ACM Press, 2002.
K. Honda. Types for dyadic interaction. In CONCUR’93, volume 715 of LNCS,
pages 509–523. Springer-Verlag, 1993.
K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. In C. Hankin, editor, ESOP’98,
volume 1381 of LNCS, pages 122–138. Springer-Verlag, 1998.
A. Igarashi and N. Kobayashi. Resource usage analysis. In POPL, pages 331–342.
ACM Press, 2002.
A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1–3):121–163, 2003.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–77, September 1992.
B. Pierce. Types and Programming Languages. The MIT Press, 2002.
S. K. Rajamani and J. Rehof. A behavioral module system for the pi-calculus. In
P. Cousot, editor, Static Analysis: 8th International Symposium, SAS 2001, volume
2126 of LNCS, pages 375–394. Springer-Verlag, 2001.
J. Reppy. CML: a higher order concurrent language. In PLDI, pages 293–305.
ACM Press, 1991.
D. Sangiorgi and D. Walker. The a Theory of Mobile Processes. Cam-
bridge University Press, 2001.
K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In PARLE ’94, LNCS 817. Springer-Verlag, 1994.
A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of objects
and components using session types. In FOCLASA 2002, volume 68 of Electronic
Notes in Theoretical Computer Science. Elsevier, August 2002.
D. Walker, K. Crary, and G. Morrisett. Typed memory management via static
capabilities. TOPLAS, 22(4):701–771, 2000.

TEAM LinG

A Higher Order Modal Fixed Point Logic

Mahesh Viswanathan1 and Ramesh Viswanathan2

1 University of Illinois at Urbana-Champaign
vmahesh@uiuc.edu
2 Bell Laboratories

rv@research.bell–labs.com

Abstract. We present a higher order modal fixed point logic (HFL)
that extends the modal to allow predicates on states (sets of
states) to be specified using recursively defined higher order functions on
predicates. The logic HFL includes negation as a first-class construct and
uses a simple type system to identify the monotonic functions on which
the application of fixed point operators is semantically meaningful. The
model checking problem for HFL over finite transition systems remains
decidable, but its expressiveness is rich. We construct a property of finite
transition systems that is not expressible in the Fixed Point Logic with
Chop [1] but which can be expressed in HFL. Over infinite transition
systems, HFL can express bisimulation and simulation of push down au-
tomata, and any recursively enumerable property of a class of transition
systems representing the natural numbers.

1 Introduction

An attractive methodology for compositional or heirarchical verification is the
assumption-guarantee paradigm [2], in which a component of a system is speci-
fied in terms of assumptions it makes about its environment (other components),
and properties it guarantees about its behavior, provided the assumptions hold.
Using to syntactically denote the property that under the assumptions

the property is guaranteed, the semantics of the assume guarantee prop-
erty needs to accomodate the following circular compositional rule: for a system

if satisfies the property and satisfies the property
then P satisfies That such a semantics can be defined, for cer-

tain properties, was first observed by Misra and Chandy [3], and later formalized
by Abadi and Lamport [4, 5]. Subsequently, it has been extended to other con-
currency models and richer classes of properties [6, 7]. A unifying framework was
provided in [8], in which the assume guarantee semantics was defined for proper-
ties expressible as fixed points; previously proposed rules then arise as instances
of this framework.

To utilize the assume-guarantee paradigm in developing a formal system for
compositional reasoning of concurrent programs, an obvious necessity is a logic
or language in which the assume-guarantee semantics can be expressed. A nat-
ural candidate logic is the modal [9] which contains almost all other

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 512–528, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TEAM LinG

A Higher Order Modal Fixed Point Logic 513

temporal specification logics [10], and for which model-checking is decidable [11].
The distinguishing feature of the is the presence of fixed points that
allow recursive definitions of predicates on states (subsets of states), thus cor-
responding exactly to the class of properties considered in [8]. But, as we show
in Section 2, there are assume-guarantee properties that cannot be expressed in
the i.e., assume-guarantee properties between two recursively defined
subsets of states are not necessarily, in turn, expressible recursively. However, as
also detailed in Section 2, there is a simple way to express all assume-guarantee
properties by using a recursively defined function that takes as arguments sub-
sets of states and returns a subset of states. Consequently, we were interested in
a logic in which we can express recursively defined higher order functions.

A natural way to extend the modal to include higher order func-
tions is to add the operations of together with higher-order fixed
points. The main technical difficulty with such an extension is a suitable account-
ing of nonmonotonic operators such as negation. In the modal it can
be assumed (without any loss of expressiveness) that negation is applied only to
propositional constants and not to arbitrary formulas — in particular, negation
cannot be applied to variables. This automatically ensures that formulas are
monotonic in all their free variables thus assuring the semantic well-definedness
of recursively binding them. Making such an assumption in the higher-order case
would however be overly restrictive. The reason is that while the only intended
use of variables in the modal is for recursive definitions, the extension
with also includes variables that are i.e., used as formal
parameters of functions which are semantically well-defined independent of be-
ing monotonic. Thus, restricting the use of negation, would force all definable
functions to be monotonic, and it may lead to a loss in expressivity. In par-
ticular, the function that we use in expressing assume-guarantee properties is
antimonotonic in one of its arguments, and furthermore requires the application
of negation to a variable that stands for a formal function parameter. However,
allowing the free use of negation means that formulas expressible in the logic can
be of arbitrary monotonicity in their free variables and the logic needs to incor-
porate a systematic means of distinguishing semantically meaningful recursive
definitions from invalid ones.

We present a logic that we call higher order fixed point logic (HFL). At the
level of terms, HFL is a simple full-fledged union of propositional logic, modality
operators, and with fixed point operators. It thus allows arbitrary use
of negation and can accomodate recursive definitions of functions of arbitrary
monotonicity. However, we formulate a type system that is an enrichment of the
simply-typed which identifies the monotonicity of terms in their free
variables and assures all well-typed terms to be semantically well-defined.

While the ability to define higher-order functions may be interesting, their
impact on the class of definable predicates on states is not obvious a priori.
The formulation of the logic HFL allows us to precisely explore this question.
We consider the Fixed Point Logic with Chop (FLC), first proposed in [1], and
further studied in [12, 13]. Formulas in FLC denote unary functions from sets of

TEAM LinG

514 M. Viswanathan and R. Viswanathan

states to sets of states and the logic includes fixed points allowing such predicate
transformers to be expressed recursively. FLC is strictly more expressive than

and can express, for example, context-sensitive languages of finite linear
processes. We exhibit a translation of FLC into HFL that preserves the semantics
of formulas, thus showing that HFL is as expressive as FLC. We then construct a
property of finite transition systems that is not expressible in FLC but which is
shown to be definable in HFL. This shows that definable functions of more than
one argument and higher-order contribute to increased expressivity. Similarly,
it can be proved that HFL is strictly more expressive than every sublogic of HFL
in which the number of arguments or order of functional arguments is restricted
to any finite level, i.e., the increased expressivity resulting from the order of the
functions used continues through at all levels. Inspite of this richer expressiveness
even over finite transition systems, model checking for the full logic HFL is
decidable. Furthermore, properties of transition systems expressible in HFL are
shown to be closed upto bisimulation. However, the satisfiability and validity
problems are undecidable for FLC [1], and are therefore a fortiori undecidable
for HFL as well.

The property shown to be provably not expressible in FLC is constructed
by encoding FLC formulas as finite transition systems and diagonalizing over
them. To our knowledge, the encoding is novel and provides the first inexpress-
ibility result for FLC. On the other hand, this construction does not yield a
particularly natural property although it is inherently dictated by the fact that
FLC can express context sensitive languages and the only known proofs that
certain languages are not context sensitive are ultimately based on diagonaliza-
tion (c.f . [14]). Examples of more directly presentable properties expressible in
HFL are: (a) Simulation and bisimulation of Push Down Automata (PDA) pro-
cesses [15–17], and (b) Partial recursive functions and recursively enumerable
properties over a class of infinite transition systems representing the natural
number; due to space limitations, these constructions are not detailed in this
paper. The expressibility of both these properties (as well as assume-guarantee
properties) rely on recursively defined functions that take multiple arguments,
and would therefore not be (directly) describable in FLC. Besides these ex-
amples, HFL may be well-suited for reasoning about higher-order concurrent
programs that include procedural or object-oriented abstractions.

The rest of the paper is organized as follows. Section 2 details the motivating
context of assume-guarantee properties. The syntax and semantics of HFL are
defined in Section 3, and expressivity results for HFL are detailed in Section 4.

2 Motivation: Assume Guarantee Properties

Let S be the set of states of a transition system (formally defined in Section 3).
In the semantics of formulas are subsets of states, i. e., for a
formula its semantics where denotes the powerset of S; a transi-
tion system satisfies a formula if its initial state belongs to Such subsets
of states can be defined recursively as least or greatest fixed points of mono-

TEAM LinG

A Higher Order Modal Fixed Point Logic 515

tonic functions we use to denote the least fixed point and
for the greatest fixed point. The Tarski-Knaster [18] construction ap-

proximates the fixed points through repeated iterations of F whose limit yields
the desired fixed point. In the case of greatest fixed points, the approxi-
mation, denoted by is defined inductively as and

Assume-guarantee specifications will be syn-
tactically denoted by and their informal reading is that
the guarantee specification is satisfied whenever the assumption spec-
ification is satisfied. The semantics of an assume-guarantee property

given in Definition 11 below (from [8]), requires that if
the environment ensures that the approximation of A is satisfied, then the

approximation of G must be satisfied.

Definition 1. For monotonic functions
is defined as iff

The salient property of the semantics given by Definition 1 is that for any
state such that and we
have that — this can be shown using induction [8].

We now show that the is not closed under assume-guarantee spec-
ifications. Consider the formulas and

which assert that there is a path where an and transition respectively
is always enabled. A transition system then satisfies iff it has the property
that for every if there is a path of length of transitions from the initial state
then there is a path of length of transitions from the initial state. Viewing
this as a property of computation trees (the unrolling of a transition system to
yield a possibly infinite tree) we show that this is not a regular tree language.
Since the set of computation trees associated with models satisfying a
formula define a regular language, it follows that the property cannot be
expressed in The intuition behind why a tree automaton cannot rec-
ognize this property is because the tree automaton will need to “remember” the
length of the longest and use this to check against the length of a
sequence in another part of the transition system. Since the sequence can be
of arbitrary length, the automaton does not have enough “memory” to do the
necessary checks. Formalizing this argument yields the following proposition.

Proposition 1. There exist properties and expressible in such
that is not expressible in

The properties that we have exhibited are in fact expressible in CTL as
well. Hence Proposition 1 actually demonstrates that all the classical branching-
time logics, i.e., CTL, and cannot express all assume-guarantee
specifications built from any formulas in the respective logic.

1 This special instance of the more general definition is applicable to fixed points whose
approximations converge within ordinal

TEAM LinG

516 M. Viswanathan and R. Viswanathan

However, assume-guarantee properties can be expressed naturally using a
recursively defined function on predicates of states. Writing ¬ X to denote the
complement S – X for a set and to denote the intersection of
sets X, Y, consider the function (where monotonic)
which takes two arguments and returns an element of which is the
greatest solution satisfying the following recursive definition:

The function returns a set of states such that
iff By using S for and G(S) for we can get
the assume-guarantee property as
where we write tt to denote the set S.

The property can thus be written using a function on
subsets of sets that is not monotonic in one of its arguments
and which is recursively defined using a body that applies negation to one of
its parameters Because of the use of negation, it is not even clear that the
recursive solution that we require for is semantically well-defined.
This motivates the formulation of a logic in which such functions can be defined
and their semantic validity can be established.

3 The Logic HFL

Similar to the our logic will be interpreted over labelled transition
systems. Let be a set of propositional constants, and

be a set of action names. A labelled transition system is a structure
where S is a set of states, for each is

a binary relation on states, with for any being the set of
propositional constants that are true in state and is the state designated
as the initial state. We use the infix notation to denote that The
transition system is finite if the set of states S is finite.

The types of the logic are given by the following grammar:

We use letters A,B,... to range over types. Each type will be interpreted
as a partially ordered set. The base type Prop intuitively represents the type
of “properties” — its elements are subsets of states ordered by set inclusion.
The elements of the type are functions from A to B that respect the
ordering on the type A in a manner given by the variance — the type
consists of functions that are monotonic with respect to the ordering on A, the
type consists of functions that are antimonotonic with respect to the
ordering on A, and the type consists of arbitrary functions that are not
required to be monotonic or antimonotonic. These intuitions are formalized in

TEAM LinG

A Higher Order Modal Fixed Point Logic 517

Definition 2 below, where for partial orders we use
to denote the partial order of monotone functions ordered pointwise, i.e.,

the underlying set of is and
the ordering relation given by iff

Definition 2 (Semantics of Types).

1.

2.

For any binary relation on a set A, define the binary relations
as follows: and

For any partial order define the partial order
as where

Let be a labelled transition system. The se-
mantics of any type A is a partial order defined by induction on the
type A as:

It is easily verified that for any partial order the structure
is a partial order (i.e., the relation is also reflexive, transitive, and antisym-
metric) and since is a partial order for any partial orders it follows
that is a well-defined partial order for any type A. Furthermore, the par-
tial order is a complete lattice (with set unions and intersections giving
joins and meets respectively) and for any partial order and complete lattice

the partial order is a complete lattice (with joins and meets computed
pointwise); it therefore follows that for any type A, is a complete lattice.
For a partial order that is a complete lattice, we use and to denote
its join and meet operations, and and to denote its least and greatest
elements.

Let be a set of variable names. The terms of the logic are
generated by the following grammar, where ranges over the set of propositional
constants ranges over the set of variable names and ranges over the
set of action names Act.

We use to range over terms. In comparing with the propositional
the new term form corresponds to function definitions and

denotes the value of the function on the argument Additionally, least
fixed points are now available at all types, with the type annotation
A on the variable indicating the type at which the fixed point is being
taken. In the term the type annotation A corresponds to the expected
type of its argument and the variance annotation corresponds to the expected
variance of the function in its argument We identify terms upto renaming of
bound variables with and being the variable-binding con-
structs, and use for the substitution of term for variable in the term

(with suitable renaming of bound variables to avoid capturing free variables).
Terms for propositional conjunction, modalities, and greatest fixed points can

TEAM LinG

518 M. Viswanathan and R. Viswanathan

be derived and therefore not included in the syntax of primitive terms. Following
standard conventions, we write to mean the type

and as shorthand for
We use a type system to identify a subset of the terms generated by the above

grammar as being well-formed. Besides restricting the application of functional
terms to arguments of the right type, the main purpose of the typing rules is
to ensure that in a term the term is monotonic in its vari-
able to assure the existence of the least fixed point. The type system consists
of proof rules for deriving judgements of the form where the context

is a sequence of the form with variables all
distinct and each variance annotation A derivable judgement

is read as consisting of two assertions: (1) if variables
have types respectively then is a well-formed term of

type A, and (2) the variance of the term in the variable is given by the anno-
tation if then is monotonic in if then is antimonotonic
in and if then nothing about the variance in is asserted.

In defining the typing rules, we use the following notation. For a variance
we define its negation as: and This definition is
extended pointwise to contexts, so that for a context

the context is defined to be The type system is given
in Table 1 and consists of axioms for ff, propositional constants, and variables,
and inference rules for the remaining term constructs. As is to be expected,
the proof rule requires the variable to appear monotonically in
the body. The most interesting typing rule is that for application which splits
into three cases depending on the variance of the function being applied in its
argument. It is most easily understood on the basis of the semantic requirement
of derivable typing judgements given by the second part of Lemma 1 below.
The typing rules are simple but account faithfully for some of the subtleties
in the interaction of negation with variables of higher-order type. As a simple
example, consider the term which at first glance seems to

TEAM LinG

A Higher Order Modal Fixed Point Logic 519

have appearing negatively. Following the typing rules (var) and (not), we can
see that appears positively and appears negatively, but the variance in
depends on the variance of the variable in its argument type; it would in
fact be a positive occurrence if is antimonotonic. Indeed, using the typing
rules, we can derive from which
it follows that is a well-typed term of
type — a recursive definition of an antimonotonic function.

The following proposition states a technically useful property of the type
system, where we use to denote syntactic identity.

Proposition 2 (Unique Types). If and are derivable, then

In particular, every closed term has a unique type. From Proposition 2 and
the form of the typing rules (every construct has a unique rule for its introduction
except for application but whose proof rule is uniquely determined by the type of
the subterm), it follows that the derivation tree is unique as well (upto renaming
of any bound variables). The proof of Proposition 2 is a straightforward induction
on the length of the derivation, but it holds only because of the inclusion of the
type and variance annotations for bound variables in the syntax of terms. For
example, without type annotations, the term can be given any type A,
and without variance annotations, the term would have both the
types and

We are now ready to define the semantics of terms. Let be a transition
system. An environment is a possibly partial map on the variable set For a
context we say that is written if

for We write for the environment that maps
to and is the same as on all other variables: if and for

some type A then where is a variable that does not appear
in For any well-typed term and environment Table 2 defines

TEAM LinG

520 M. Viswanathan and R. Viswanathan

its semantics to be an element of Referring to Table 2, in
the case of the application term the type is the unique type (as
given by Proposition 2) of the term in the context the context is if

and is if
For a context we define the preorder relation

on environments as iff for
(the relation as given by Definition 2). We then show by induction on the
typing derivation that the semantics of terms given in Table 2 is well-defined
as an element of the appropriate type and is monotonic with respect to the
preordering on the context.

Lemma 1 (Semantics of Terms). Let be a transition system. For any
derivable and environments we have the following:

1.
2.

(Well-Definedness): and is uniquely defined.
(Variance): If then

Since for any closed term there is a unique type such that
is derivable, we use to denote where the environment is
undefined on all variables. Formulas are closed terms of type Prop, i.e., terms
such that is derivable. As is standard, a transition system satisfies
a formula, iff the initial state A property of a class of
transition systems is simply a subset A property of a class of transition
systems is expressible if there is a characteristic formula such that for any

we have that iff For a closed term we write for
the derivability of

3.1 Invariance Under Bisimilarity

Satisfaction of any HFL formula by a transition system is invariant under bisim-
ilarity of transition systems. This property cannot be established directly by
induction because HFL formulas (closed terms of type Prop) can have sub-
terms of higher-order type — we therefore need to suitably relate the seman-
tics of higher-order terms in different transition systems. For transition systems

and and states
we write to denote that (with respect to is (label-

respecting) bisimilar to (with respect to and iff For
any type A, we define a binary relation by induction on
the type A as follows (where we use the infix notation to denote that

For a context define the relation between

and as iff for The

TEAM LinG

A Higher Order Modal Fixed Point Logic 521

following lemma establishes the connection between the semantics of higher-
order terms in different models and is proved by induction on the structure of
terms. As an immediate corollary, bisimilar transition systems satisfy the same
set of HFL formulas.

Lemma 2. Let be any derivable term. For any transition systems
and respective environments with we have that

Corollary 1 (Bisimilarity Invariance). If then for any formula
iff

3.2 Model Checking

The model checking problem for HFL is decidable over finite state transition
systems. This is an immediate consequence of the fact that for any finite transi-
tion system the underlying set of is finite for every type B. It therefore
follows that can be computed inductively on the term (follow-
ing the definition in Table 2) and using the standard iterative approximations
to compute the semantics of fixed point terms. These iterative approximations
for a fixed point term of type B converge after at most iterations where
is the length of the longest strictly increasing chain in the partial order
(which is a finite number for any type B). This model-checking procedure is
effective but not the most efficient; we leave exploration of other model-checking
methods such as those based on tableaux to future work.

4 Expressiveness of HFL

Section 4.1 describes some basic definable operations in HFL that are used in
developing the expressivity results, and Section 4.2 shows that HFL can express
the assume-guarantee semantics of [8]. In Section 4.3, we show that the fixed
point logic with chop (FLC)[1] can be translated into HFL so that any property
expressible in FLC can also be expressed in HFL. In Section 4.4, we describe a
representation of FLC formulas as transition systems over which we can diago-
nalize to construct properties inexpressible in FLC. In Section 4.5, we show that
such a diagonalized property can be expressed in HFL, thereby establishing that
HFL is strictly more expressive than FLC.

4.1 Definable Operations

Using standard dualities, we can define terms tt (the set of all states),
(set intersection), and each of these terms is of type Prop and require
to be of type Prop. Greatest fixed points, written can be defined at
arbitrary types A and require to be of type A with appearing positively.

TEAM LinG

522 M. Viswanathan and R. Viswanathan

For any type A, we can define a closed term denoting the least ele-
ment at the type A. Call a transition system finitely strongly connected if it is
strongly connected under transitions that have labels belonging to some finite
set. Over a finitely strongly connected transition system, we can define func-
tions on the type Prop by case-analysis. Let be terms of type Prop,
and be terms of type for some type A. We can define
a term of type denoting a func-
tion that when applied to a singleton set is a state), returns if

and returns if
We use as syntactic sugar for the missing else clause
returning Note that by its very definition, the case-defined function
cannot be monotonic or antimonotonic in its argument (of type Prop).

4.2 Assume Guarantee Properties

In this section, we show how assume-guarantee properties can be expressed in
HFL. The encoding directly follows the informal recursive definition presented
in Section 2; the main interest here is illustrating its well-typedness and its type.
We define the closed term AssGuar as

which is typable as AssGuar: This typ-
ing judgement can be read as asserting that the assumption property (its first
argument) and the guarantee property (its second argument) are required to
be monotonic and that the assume-guarantee property itself varies antimono-
tonically in its assumption and monotonically in its guarantee. Constructing the
type derivation for AssGuar is instructive in showing how these natural properties
of AssGuar follow directly from the constraints imposed by the type system of
Table 1.

The following proposition shows that the term AssGuar encodes assume-
guarantee properties and establishes that HFL is closed under assume-guarantee
specifications.

Proposition 3 (Expressibility of Assume-Guarantee). Consider any tran-
sition system with state set S and any monotonic functions
Then we have that

4.3 Translating FLC into HFL

Let Act, and be as described in Section 3.
The following grammar describes the syntax of FLC formulas, where

TEAM LinG

A Higher Order Modal Fixed Point Logic 523

The formula is the negation of thus, negation in FLC is only applicable
to propositional constants. Formulas are interpreted in FLC as predicate trans-
formers, i.e., functions that are monotonic with respect to the subset
ordering. The formula term denotes the identity function, and the chop operator;
denotes function composition. An environment for a formula is a map from
variables to monotonic functions from to that is defined on all the free
variables of For such an environment the FLC-semantics of a formula, writ-
ten, yields a monotonic function from to The reader is referred
to [1] for the details of this definition, though it should also be clear from the
translation into HFL that we next describe. A transition system satisfies a closed
FLC formula, written iff i.e., the intial state is in the
set obtained by applying the semantics to the full state set S. The superscript
or subscript refers to the semantics or satisfaction relation in the FLC logic.

Every FLC formula can be interpreted naturally as an HFL term of type
Table 3 details the straightforward inductive translation of any

FLC formula into an HFL term it follows almost directly the semantics
of FLC defined in [1]. The HFL term forms tt, and used
in the translation are the definable operations of Section 4.1, and the
variable used in the translation of is one that does not appear free in
the formula being translated. For an FLC formula define the HFL context

to be for some enumeration
of the free variables of The following theorem shows that the translation is
well-typed and preserves the semantics.

Theorem 1. For any FLC formula and transition system we have the
following properties:

1.
2.

is derivable.
For any FLC environment for we have that and

As a straightforward corollary, any property of transition systems expressed
by an FLC formula can be expressed by the HFL formula tt. From the

TEAM LinG

524 M. Viswanathan and R. Viswanathan

results established in [1], it then also follows that satisfiability and validity of
HFL formulas is undecidable.

Corollary 2. For any transition system and closed FLC formula we have
that tt iff

4.4 Properties Inexpressible in FLC

Define the set of subformulas of any FLC formula in the standard way
with where is or v. Call an FLC formula
well-named if each bound variable in the formula is distinct. In this case, there
is a well-defined function that maps each variable

to a unique formula of the form where is or v.
We identify four action names from the set Act which we call lc, rc, ev, and dm
and let A = {lc,rc,ev,dm}. These four names can be read as “left child”, “right
child”, “evaluation”, and “dummy”. We also identify propositional constants
from that we will refer to by pterm, and for
each

We now give our representation of FLC formulas as labelled transition sys-
tems.

Definition 3. For any well-named FLC formula whose action names all be-
long to the set A = {lc, rc, ev,dm}, the transition system is defined to be

where:

The labelling function is defined according to the form of the formula:
if is one of tt, ff , for some if

is of the form term, or for where O is one
of and where is or v.

For any action name The pairs where
is of the form for some or where O is one of

and is one of v. The pairs where is of the
form for some and O one of The pairs

which satisfy one of the four conditions: (1) is the formula tt,
(2) is for some and (3) is for some
and (4) is a variable and is Finally, the

pairs (where is the formula being represented) and is
one of tt, ff , for

The transition system is finite and strongly connected by the transitions
from A.

Definition 3 can be intuitively understood as follows. The transition system
for a formula is essentially its parse tree (with sharing of the trees for common
subformulas) with edges directed from child to parent. These parse tree edges
are labelled with the lc, rc transitions, and the propositional labeling indicates
the outermost construct of the corresponding subformula (with standing for

TEAM LinG

A Higher Order Modal Fixed Point Logic 525

constant literals and for variables). Additionally, we have transitions labeled
ev to the constant literals tt,ff , from all the states in which the literals hold
(ff does not hold anywhere), and to variables from their defining fixed point
formula. Note that because the formula is well-named, there is exactly one tran-
sition labeled ev to every node Finally, the dummy transition edges dm are
added from the root to every leaf node — the only purpose of these edges is
to make the transition system strongly connected (thus allowing us to use the
case-construct over these transition systems). It also allows us to identify the
initial state (as the only one that has a dm transition enabled).

By diagonalizing over this representation, we obtain properties of finite tran-
sition systems that cannot be expressed in FLC.

Theorem 2. Let C be any property of finite transition systems such that for
any closed well-named formula with actions from A, we have that iff

Then C is not expressible in FLC.

Note that the inexpressible property described by Theorem 2 is unconstrained
on transition systems that are not a

4.5 HFL Is More Expressive Than FLC

We now show how to construct a formula in HFL that expresses a property of
the form prescribed by Theorem 2. Table 4 defines HFL terms whose types are
as follows:

TEAM LinG

526 M. Viswanathan and R. Viswanathan

with the HFL formula flc-diag expressing a property of the form prescribed by
Theorem 2. The properties of the terms decode and init defined in Table 4 are
given by the following theorem:

Theorem 3. Let be a closed well-named FLC formula over the action set A.

1.

2.

Consider any subformula and FLC environment
For any function such that

for every free in

The heart of the construction is decode that shows how to decode (in HFL) the
transition system representing an FLC formula. Its definition given in Table 4
is easiest understood on the basis of its property given in Theorem 3, with
the variable read as standing for the function representing an
environment and the variable in each of the cases read as standing
for the singleton set On an argument the formula is decoded in
cases according to its outermost form which in turn is inferred based on which
of the propositional constants holds in (standing for For all
constructs other than variables and fixed points, their corresponding cases can be
understood by close analogy with the HFL-translation of these constructs given
in Table 3 together with the understanding that and yield singleton
sets including the corresponding subformulas of and that for constant literals
term yields the set of states in which the literal holds. If is a variable,
we evaluate the environment on the set (as given by the property
of which is yielded by the term If is a fixed point formula, we
correspondingly bind (using or v) a new variable and decode the subformula
of (given by but in an environment that is obtained by modifying the
current environment to map (given by to (the case-term used for
the environment argument to in the fixed point cases yields this updated
environment). This ensures that when decoding the subformulas of any use
of a variable corresponding to this recursive definition will be decoded as
The decoding of the fixed-point cases explains the presence of the environment
argument in defining decode. Finally, it is worth noting that: (1) decode is a
recursive definition of a higher-order function, and (2) because decode is defined
by case-analysis, it is not monotonic in the argument (standing for the formula
being decoded). These features of HFL are therefore crucial to its definition.

As an easy corollary of Theorem 3, we get the relevant properties of the terms
flc-sem and flc-diag.

Corollary 3. For any closed well-named FLC formula over the action set A,
we have that

TEAM LinG

A Higher Order Modal Fixed Point Logic 527

1.
2. iff

Combined with Theorem 2 this gives us that the HFL formula flc-diag is a
characteristic formula for a property of finite transition systems that is inex-
pressible in FLC, and thus HFL is strictly more expressive than FLC even over
finite transition systems.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Müller-Olm, M.: A Modal Fixpoint Logic with Chop. In: Proceedings of the Sym-
posium on the Theoretical Aspects of Computer Science Volume 1563 of Lecture
Notes in Computer Science., Springer (1999) 510–520
Pnueli. A.: In transition from global to modular temporal reasoning about pro-
grams. In: Logics and Models of Concurrent Systems. NATO ASI Series. Springer-
Verlag (1984) 123–144
Misra, J., Chandy, K.M.: Proofs of network processes. IEEE Transactions on
Software Engineering SE-7 (1981) 417–426
Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems 15 (1993) 73–132
Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems 17 (1995) 507–534
McMillan, K.: Circular compositional reasoning about liveness. In Pierre, L.,
Kropf, T., eds.: CHARME 99: Correct Hardware Design and Verification. Volume
1703 of Lecture Notes in Computer Science., Springer-Verlag (1999) 342-345
Henzinger, T.A., Qadeer, S., Rajamani, S.K., Tasiran, S.: An assume-guarantee
rule for checking simulation. In: Gopalakrishnan, G., and Windley, P., eds: FMCAD
98: Formal Methods in Computer-aided Design, Volume 1522 of Lecture Notes in
Computer Science., Springer-Verlag (1998) 421–432
Viswanathan, M., Viswanathan, R.: Foundations of Circular Compositional Rea-
soning. In: Proceedings of the International Colloquim on Automata, Languages
and Programming. Lecture Notes in Computer Science, Springer (2001)
Kozen, D.: Results on the propositional Theoretical Computer Science,
27 (1983) 333–354
Stirling, C.: Modal and Temporal Logics. In Handbook of Logic in Computer
Science. Volume 2. Claredon Press, Oxford, UK (1992) 477–563
Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the and
its fragments. Theoretical Computer Science 258 (2001) 491–522
Lange, M., Stirling, C.: Model Checking Fixed Point Logic with Chop. In: Proceed-
ings of the Foundations of Software Science and Computation Structures. Volume
2303 of Lecture Notes in Computer Science., Springer (2002) 250–263
Lange, M.: Local model checking games for fixed point logic with chop. In: Pro-
ceedings of the Conference on Concurrency Theory, CONCUR’02. Volume 2421 of
Lecture Notes in Computer Science., Springer (2002) 240–254
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)
Burkart, O. Caucal, D., Moller, F., Steffen, B.: Verification on Infinite Structures.
In: Handbook of Process Algebra. Elsevier Science Publishers (2001) 545–623

TEAM LinG

528 M. Viswanathan and R. Viswanathan

16.

17.

18.

Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisim-
ilarity of normed context-free processes. Theoretical Computer Science 15 (1996)
143–159
Sénizergues, G.: Decidability of bisimulation equivalence for equations graphs of
finite out-degree. In: Proceedings of the IEEE Sysmposium on the Foundations of
Computer Science. (1998) 120–129
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics 5 (1955) 285–309

TEAM LinG

Author Index

Abdulla, Parosh Aziz 35
Amadio, Roberto M. 68
Andrews, Tony 1

Baldan, Paolo 83
Baudru, Nicolas 99
Berger, Martin 115

131
Bollig, Benedikt 146
Borgström, Johannes 161
Bozga, Liana 177
Brázdil, Tomáš 193
Briais, Sébastien 161
Brookes, Stephen 16
Bruns, Glenn 209
Bugliesi, Michele 225

Caires, Luís 240
Cîrstea, Corina 258
Clarke, Edmund 276
Colazzo, Dario 225
Corradini, Andrea 83
Crafa, Silvia 225

Dal Zilio, Silvano 68
Danos, Vincent 292

Ene, Cristian 177

Gay, Simon 497
Groote, Jan Friso 308

Hirschkoff, Daniel 325

Jagadeesan, Radha 209
Jeffrey, Alan 209
Jonsson, Bengt 35

König, Barbara 83
340

355
Krivine, Jean 292

193, 371

Lakhnech, Yassine 177
Laroussinie, F. 387
Leroux, Jérôme 402
Leucker, Martin 146
Lozes, Étienne 240

Ma, Qin 417
Maranget, Luc 417
Markey, Nicolas 387, 432
Melliès, Paul-André 448
Mokrushin, Leonid 340
Morin, Rémi 99

Nestmann, Uwe 161
Nilsson, Marcus 35

O’Hearn, Peter W. 49

Pattinson, Dirk 258

Qadeer, Shaz 1

Rajamani, Sriram K. 1
Raskin, Jean-François 432
Ravara, António 497

355
Rehof, Jakob 1
Riely, James 209

Saksena, Mayank 35
Schnoebelen, Philippe 371, 387

193
355

Sutre, Grégoire 402

Tabuada, Paulo 466
Talupur, Muralidhar 276
Thiagarajan, P.S. 340
Touili, Tayssir 276

Varacca, Daniele 481
Vasconcelos, Vasco 497
Veith, Helmut 276
Viswanathan, Mahesh 512
Viswanathan, Ramesh 512
Völzer, Hagen 481

Walukiewicz, Igor 131
Willemse, Tim 308
Winskel, Glynn 481

Xie, Yichen 1

Yi, Wang 340

TEAM LinG

This page intentionally left blank

TEAM LinG

This page intentionally left blank

TEAM LinG

This page intentionally left blank

TEAM LinG

