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Preface

Both authors have taught the course of “Distributed Systems” for many years in the
respective schools. During the teaching, we feel strongly that “Distributed systems”
have evolved from traditional “LAN” based distributed systems towards “Internet
based” systems. Although there exist many excellent textbooks on this topic,
because of the fast development of distributed systems and network
programming/protocols, we have difficulty in finding an appropriate textbook for the
course of “distributed systems” with orientation to the requirement of the
undergraduate level study for today’s distributed technology. Specifically, from up-
to-date concepts, algorithms, and models to implementations for both distributed
system designs and application programming.

Thus the philosophy behind this book is to integrate the concepts, algorithm designs
and implementations of distributed systems based on network programming. After
using several materials of other textbooks and research books, we found that many
texts treat the distributed systems with separation of concepts, algorithm design and
network programming and it is very difficult for students to map the concepts of
distributed systems to the algorithm design, prototyping and implementations.

This book intends to enable readers, especially postgraduates and senior
undergraduate level, to study up-to-date concepts, algorithms and network
programming skills for building modern distributed systems. It enables students not
only to master the concepts of distributed network system but also to readily use the
material introduced into implementation practices.

The book takes an integrated approach to view the distributed system as a set of
programming blocks cooperating on distributed sites. The primary objective of the
concept, design and implementation is to meet the requirements or distributed
applications based on the networking environment. In this book, networking and
distribution design for applications are represented in the form of several
dimensions. Therefore, the book describes the distributed systems along a line from
general distributed system requirement of applications to system transparency that
reflect system structure and algorithm designs and implementation techniques.

The striking features of the book, differs from others, can be illustrated from two
basic aspects:

(1) The viewpoint of applications, i.e., what kinds of concepts and programming
skill are fitted for the design of distributed systems and applications.

(2) The viewpoint of system designer and implementers, i.e., the system layers and
their mapping to the design of distributed algorithms and their implementations.

The book not only provides the basic distributed systems and networks protocols
(such as RPC, group communication and Mobile IP), but it also presents the
discussion of recent technology development for Internet such as IP for next
generation (IPv6 and multicast and anycast communication). As Web/Java



xviii
technology is getting important and popular nowadays, this book illustrates how
a distributed system and network protocols can be designed and implemented with
distributed system concepts and network programming in today’s Internet
environment.

The book is composed of 15 chapters. Most chapters contain substantial materials
about concepts, algorithm designs and implementation techniques. The outline of the
book is given below.

Chapter 1. Overview of Distributed Systems: This chapter outlines the basic
concepts of distributed systems and computer networks, such as their purposes,
characteristics, advantages, and limitations, as well as their basic architectures,
networking and applications.

Chapter 2 introduces the client-server model and its role in the development of
distributed network systems. The chapter discusses the cooperation between clients
and servers/group servers in distributed network systems, and addresses extensions
to the client-server model. Service discovery, which is of crucial importance for
achieving transparency in distributed network systems, is also elaborated in this
chapter.

Chapter 3. Communication is an important issue in distributed computing systems:
This chapter addresses the communication paradigm of distributed network systems,
i.e., issues about how to build the communication model for these systems.

Chapter 4. Internetworking. Network software is arranged in a hierarchy of layers:
Each layer presents an interface to the layers above it that extends the properties of
the underlying communication system. Network functions are achieved through the
layered protocols. This chapter discusses the communication protocols in a network,
especially, TCP/IP protocols used on the current Internet. The next generation of
Internet protocol – IPv6 is also addressed in the chapter.

Chapter 5. Interprocess Communication using Message-Passing: Processes in a
distributed network system normally do not share common memory. Therefore,
message-passing is one of the effective communication mechanisms between these
processes. In this chapter we discuss the most commonly used message-passing
based interprocess communication mechanism, i.e., the socket API.

Chapter 6. TCP/UDP Communication in Java: In this chapter we want to address the
TCP/UDP programming in Java, since the Java language is currently the most
commonly used language to implement a distributed computing system. Java
provides the reliable stream-based communication for TCP as well as the unreliable
datagram communication for UDP.

Chapter 7. Interprocess Communication using RPC: When using message-passing
for interprocess communications, a programmer is aware of the passing of messages
between the two processes. However, in a remote procedure call situation, passing of
messages is invisible to the programmer. Instead, a language-level concept, the
procedure call, is used to mask the actual communication between two processes. In
this chapter we discuss two commonly used RPC tools, the DCE/RPC and the
SUN/RPC. We have developed a RPC tool, called the Simple RPC tool, which will
be described in the chapter. The idea of RPC has been extended to develop



xix
interprocess communication mechanisms for object-oriented paradigm, notably
the Remote Method Invocation (RMI) in Java. We also introduce this mechanism in
the chapter.

Chapter 8. Group Communications is highly desirable for maintaining a consistent
state in distributed systems. Many existing protocols are quite expensive and of
limited benefit for distributed systems in terms of efficiency. This chapter describes
concepts and design techniques of group communication protocol including message
ordering, dynamic assessment of membership and fault tolerance. The protocol
ensures total ordering of messages and atomicity of delivery in the presence of
communication failures and site failures, and guarantees that all operational
members belonging to the same group observe a consistent view of ordered events.
The dynamic membership and failure recovery algorithms can handle site failures
and recovery; group partitions and merges; dynamic members join and leave.

Chapter 9. Reliability and Replication Techniques: A computer system, or a
distributed system consists of many hardware/software components that are likely to
fail eventually. In many cases, such failures may have disastrous results. With the
ever-increasing dependency being placed on distributed systems, the number of
users requiring fault tolerance is likely to increase. The design and understanding of
fault-tolerant distributed systems is a very difficult task. We have to deal with not
only all the complex problems of distributed systems when all the components are
well, but also the more complex problems when some of the components fail. This
chapter introduces the basic concepts and techniques that relate to fault-tolerant
computing.

Chapter 10. Security: There is a pervasive need for measures to guarantee the
privacy, integrity and availability of resources in distributed network systems.
Designers of secure distributed systems must cope with exposed service interfaces
and insecure networks in an environment where attackers are likely to have
knowledge of the algorithms used and to deploy computing resources. In this chapter
we talk about security issues of distributed network systems, such as integrity
mechanisms and encryption techniques, and in particular, the techniques for defense
against Distributed Denial-of-Service attacks.

Chapter 11. A Reactive System Architecture for Fault-Tolerant Computing: Most
fault-tolerant application programs cannot cope with constant changes in their
environments and user requirements because they embed fault-tolerant computing
policies and mechanisms together so that if policies or mechanisms are changed the
whole programs have to be changed. This chapter presents a reactive system
approach to overcoming this limitation. The reactive system concepts are an
attractive paradigm for system design, development and maintenance because it
separates policies from mechanisms. In the chapter we propose a generic reactive
system architecture and use group communication primitives to model it. We then
implement it as a generic package, which can be applied in any distributed
applications. The system performance shows that it can be used in a distributed
environment effectively.

Chapter 12. Web-Based Databases: World Wide Web has changed the way we do
business and research. It also brings a lot of challenges, such as infinite contents,
resource diversity, and maintenance and update of contents. Web-based database
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(WBDB) is one of the answers to these challenges. In this chapter, we classify
WBDB architectures into three types: two-tier architecture, three-tier architecture,
and hybrid architectures, according to WBDB access methods. Then the existing
technologies used in WBDB are introduced as various generations, i.e. the
traditional Web (generation 1), fast and more interactive Web (generation 2), Java-
based Web (generation 3), and a new generation combining the techniques of XML
and mobile agents. Based on the introduction, we provide the challenges and some
solutions for current WBDB. Finally we outline a future framework of WBDB.

Chapter 13. Mobile Computing: Mobile computing requires wireless
communication, mobility and portability. In the past few years, we have seen an
explosion of mobile devices over the world such as notebook, multimedia PDA and
mobile phones. The rapidly expanding markets of cellular voice and limited data
service have created a great demand for mobile communication and computing.
Mobile communications applications include mobile computing and wireless
communications. Many of the advances in communications involve the use of
Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and ad hoc network
protocols. Recently much focus has been directed at advancing communication
technology in the area of mobile wireless networks especially on the IP based
wireless networks. This chapter focuses on two major issues: Mobile IP and mobile
multicast / anycast applications.

Chapter 14. Distributed Network Systems: Case Studies. In the previous chapters we
have discussed various aspects of distributed network systems. Distributed network
systems are now used everywhere, especially on the Internet. In this chapter we
study several well-known distributed network systems, as the examples of our
discussion.

Chapter 15. Distributed Network Systems: Current Development. This last chapter
outlines the most recent development in distributed network systems. In particular,
we present four “hot” topics that have attracted a lot of attention from both academia
and industry. These topics include: cluster computing, grid computing, peer-to-peer
computing, and pervasive computing. For each topic, we try to outline its current
development, its potential applications and benefits, and its challenges. The purpose
of this chapter is to broaden the reader’s knowledge in distributed network systems.

The book is suitable to any one who needs a informative introduction, basic design
and programming strategies of distributed systems and applications. It serves as an
idea textbook of one-semester course for senior undergraduates and post-graduates.
Chapters 1-6 serve as the basis for the distributed system design and network
programming. There are diverse objectives for using the book: (1) For learning of
distributed operating system design and implementations: Chapters 7, 8, 9, 10, and
14 can serve the purpose. (2) For readers who are interested in the design and
implementations of web-based databases and Internet computing, Chapters 7, 8, 12
and 15 can be used. (3) To learn the concepts of fault-tolerant distributed system
design, Chapters 8,9, 11 will serve the purpose. (4) For understanding group, RPC
communication protocols and Mobile IP, Chapters 8, 10, 13 will help.
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CHAPTER 1 OVERVIEW OF
DISTRIBUTED NETWORK SYSTEMS

In this Chapter we outline the basic concepts of distributed systems and computer
networks, such as their purposes, characteristics, advantages, and limitations, as
well as their basic architectures and their applications.

1.1 Distributed Systems

A distributed system is a system consisting of a collection of autonomous machines
connected by communication networks and equipped with software systems
designed to produce an integrated and consistent computing environment.
Distributed systems enable people to cooperate and coordinate their activities more
effectively and efficiently. The key purposes of the distributed systems can be
represented by: resource sharing, openness, concurrency, scalability, fault-tolerance
and transparency [Coulouris et al 1994].

Resource sharing. In a distributed system, the resources - hardware, software
and data can be easily shared among users. For example, a printer can be shared
among a group of users.

Openness. The openness of distributed systems is achieved by specifying the
key software interface of the system and making it available to software
developers so that the system can be extended in many ways.

Concurrency. The processing concurrency can be achieved by sending requests
to multiple machines connected by networks at the same time.

Scalability. A distributed system running on a collection of a small number of
machines can be easily extended to a large number of machines to increase the
processing power.

Fault-tolerance. Machines connected by networks can be seen as redundant
resources, a software system can be installed on multiple machines so that in
the face of hardware faults or software failures, the faults or failures can be
detected and tolerated by other machines.

Transparency. Distributed systems can provide many forms of transparency
such as:

Location transparency, which allows local and remote information to be
accessed in a unified way;

1)
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Failure transparency, which enables the masking of failures automatically;
and

Replication transparency, which allows duplicating software/data on
multiple machines invisibly.

2)

3)

Computing in the late 1990s has reached the state of Web-based distributed
computing. A basis of this form of computing is distributed computing which is
carried out on distributed computing systems. These systems comprise the
following three fundamental components:

personal computers and powerful server computers,

local and fast wide area networks, internet, and

systems, in particular distributed operating systems, and application software.

In this book we are interested in the last two issues of distributed computing
systems: networks and system and application software.

With the flourishing of the Internet and the current quick development of e-
commerce, it is very important in designing distributed systems to consider not only
traditional applications but also the requirements of distributed computing based on
the Internet.

1.2 Computer Networks

1.2.1 Network History

The following table ([Stallings 1998]) shows a brief networking history.
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1.2.2 Network Architecture

The early success of the ARPANET (sponsored by the Advanced Research Projects
Agency (ARPA) and developed during the late 1960s and early 1970s) and other
networks, and the immediate commercial potential of packet switching, satellite,
and local network technology made it apparent that computer networking was
quickly becoming an important area of innovation and commerce. It was also
apparent that to utilize the full potential of such computer networks, international
standards would be required to ensure that any system could communicate with any
other system anywhere in the world.

In 1978, a new subcommittee (SC16) was created by the International Organization
for Standardization (ISO) Technical Committee 97 on Information Processing to
develop standards for “open system interconnection (OSI)”. The term “open” was
chosen to emphasize that by conforming to OSI standards, a system would be open
to communication with any other system anywhere in the world obeying the same
standards.

The OSI reference model is a seven-layer model for inter-process communication.
Its architecture is comprised of application, presentation, session, transport,
network, data link and physical layers, and the corresponding protocols, as depicted
in Table 1.2. The detailed descriptions of these layers are given in Chapter 4.

The early-developed ARPANET adopts another type of network architecture, i.e.,
four-layer architecture: application, transport, Internet, and network interface, as
depicted in Table 1.3. The current Internet based on ARPANET uses this
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architecture, which is also known as TCP/IP reference model. In this model, the
network interface (or access) layer relies on the data link and physical layers of the
network, and the application layer corresponds to application and presentation
layers of the OSI model, since there is no session layer in the TCP/IP model. The
detail of these layers is also given in Chapter 4.

1.2.3 Network Fault Tolerance

Network reliability refers to the reliability of the overall network to provide
communication in the event of failure of a component or components in the
network. The term network fault tolerance refers to how resilient the network is
against the failure of a component.

Why fault tolerance in a networked world? A key indicator of today’s global
business systems is the reliability and uptime [Grimshaw et al. 1999]. This concern
is crucial for e-commerce sites and mission-critical business applications. Expensive
and powerful servers and system components that are designed as stand-alone
systems can be very reliable, but even an hour of downtime per month can be
deadly to online-only businesses.

For example, server clusters are increasingly used in business and academia to
combat the problems of reliability since they are relatively inexpensive and easy to
build [Buyya 1999] [TBR 1998]. By having multiple network servers working
together in a cluster and using redundant components such as more than one power
supply and RAID hard drive subsystems, the overall system uptime in theory can
approach 100 percent. However, server clusters are only a part of a chain that links
business applications together. For example, to access an HTML page of a business
web site, a user issues a request that travels from the user’s client machine, through
a number of routers and firewalls and other network devices to reach the web site.
The web site then processes the request and returns the requested HTML page via
the same or another chain of routers, firewalls and network devices. The strength of
this chain, in terms of reliability and performance, will determine the success or
failure of the business, but a chain is only as strong as its weakest link, and the
longer the chain, the weaker it is in general. Intuitively, the following two ways can
be used to make such a chain stronger: one is the use of redundancy (replication)
and concurrency (parallelism) techniques, and the other is to increase the reliability
of the weakest link of the chain.
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A networked world faces a number of challenges in fault tolerance. In particular,
Internet-connected resources have the following characteristics:

Unreliable communications;

Unreliable resources (computers, storage, software, etc.);

Highly heterogeneous environment;

Potentially very large amount of resources: scalability;

Potentially highly variable number of resources.

Communication network reliability depends on the sustainability of both hardware
and software. It is possible that, depending on failure senario, a variety of network
failures can last from a few seconds to days. Traditionally, such failures were
primarily from hardware malfunctions that result in downtime (or “outage period”)
of a network element (a node or a link). Thus, the emphasis was on the element-
level network availability and, in turn, the determination of overall network
availability. However, other types of major outages have received much attention in
recent years. Such incidents include accidental fiber cable cut, natural disasters, and
malicious attack (both hardware and software). These major failures need more than
what is traditionally addressed through network availability.

These types of failures cannot be addressed by congestion control schemes alone
because of their drastic impact on the network. Such failures can, for example, drop
a significant number of existing network connections; thus, the network is required
to have the ability to detect a fault and isolate it, and then either the network must
reconnect the affected connections or the user may try to reconnect it (if the network
does not have reconnect capability). At the same time, the network may not have
enough capacity and capability to handle such a major simultaneous “reconnect”
phase. Likewise, because of a software and/or protocol error, the network may
appear very congested to the user. Thus, network reliability nowadays encompasses
more than what was traditionally addressed through network availability.

Basic techniques used in dealing with network failures include: retry
(retransmission), complemented retry with correction, replication (e.g., dual bus),
coding, special protocols (single handshake, double handshake, etc.), timing checks,
rerouting, and retransmission with shift (intelligent retry), etc..

1.3 Protocols and QoS

Network software is arranged in a hierarchy of layers. Each layer presents an
interface to the layers above it that extends the properties of the underlying
communication system. One layer on one machine carries on a conversation with
the same layer on another machine. The rules and conventions used in this
conversation are collectively known as the protocol of this layer. Generally
speaking, a protocol is an agreement between the communication parties on how
communication is to proceed. The definition of a protocol has two important parts:

A specification of the sequence of messages that must be exchanged;
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A specification of the format of the data in the messages.

A protocol is implemented by a pair of software modules located in the sending and
receiving computers. Each network layer has one or more protocols corresponding
to it so that it can provide a service to the layer above it and extend the service
provided by the layer below it. Hence these protocols are arranged in a hierarchy of
layers as well. For example, in the OSI model, there are seven protocol layers
corresponding to each network layer. A complete set of protocol layers is referred to
as a protocol suite or a protocol stack, reflecting the layered structure.

Protocol layering brings substantial benefits in simplifying and generalizing the
software interfaces for access to the communication services of networks, but it also
carries significant performance costs. The transmission of an application-level
message via a protocol stack with N layers typically involves N transfers of control
to the relevant layer of software in the protocol suite, at least one of which is an
operating system entry, and taking N copies of the data as a part of the
encapsulation mechanisms. All of these overheads result in data transfer rates
between application processes that are much lower than the available network
bandwidth.

Quality of service facilities in some technologies, such as Asynchronous Transfer
Mode (ATM), can be quite detailed, providing users with explicit guarantees of
average delay, delay variation and data loss. In ATM terminology, QoS is the
performance observed by an end user. The principal QoS parameters are delay,
delay variation, and loss. But QoS does not necessarily guarantee particular
performance. Performace guarantees can be quite difficult and expensive to provide
in packet-switched networks, and most applications and users can be satisfied with
less stringent promises, such as prioritization only, without delay guarantees.

QoS also defines the description of how traffic is to be classified. Some QoS
implementations provide per-flow classification, in which each individual flow is
categorized and handled separately. This can be expensive if there are a lot of flows
to be managed concurrently.

Quality of Service (QoS) is a somewhat vague term referring to the technologies
that classify network traffic and then ensure that some of that traffic receives special
handling. The special handling may include attempts to provide improved error
rates, lower network transit time (latency), and decreased latency variation (jitter). It
may also include promises of high availability, which is a combination of mean
(average) time between failures (MTBF) and mean time to repair (MTTR).

1.4 Software for Distributed Computing

1.4.1 Traditional Client-Server Model

The client-server model has been a dominant model for distributed computing since
the 1980s. The development of this model has been sparked by research and the
development of operating systems that could support users working at their personal
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computers connected by a local area network. The issue was how to access, use and
share a resource located on another computer, e.g., a file or printer, in a transparent
manner. In the 1980s computers were controlled by monolithic kernel based
operating systems, where all services, including file and naming services, were part
of that huge piece of software. In order to access a remote service, the whole
operating system must be located and accessed within the computer providing the
service. This implied a need to distinguish from a kernel based operating system --
that part of software which only provides a desired service -- and embody it into a
new software entity. This entity is called a server. Thus, each user process, a client,
can access and use that server, subject to possessing access rights and a compatible
interface. Therefore, the idea of the client-server model is to build at least that part
of an operating system which is responsible for providing services to users as a set
of cooperating server processes.

In the 1990s the client-server model has been used extensively to develop a huge
number and variety of applications. The reasons are simple. It is a very clean model
that adheres well to the software modularity and usability requirements. This model
allows the programmer to develop, test and install applications very quickly. It
simplifies maintenance and lowers its costs. It also allows proving correctness of
code.

The client-server model has also influenced the building of new operating systems,
in particular distributed operating systems [Goscinski and Zhou 1999]. A distributed
operating system supports transparency. Thus, when users access their personal
computers they have the feeling of being supported by a very powerful computer,
which provides a variety of services. This means that all computers and their
connection to a communication network are hidden.

However, it is not good enough to use the simple client-server model to describe
various components and their activities of a Web-based client-server computing
system. The Internet, and in particular Web browsers and further developments in
Java programming, have expanded the client-server computing and systems. This is
manifested by different forms of cooperation between remote computers and
software components.

1.4.2 Web-Based Distributed Computing Models

The Internet and WWW have influenced distributed computing by the global
coverage of the network, Web servers distribution and availability, and architecture
of executing programs. To meet the requirements of quick development of the
Internet, distributed computing may need to shift its environment from LAN to the
Internet.

At the execution level, distributed computing/applications may rely on the
following parts:

Processes: A typical computer operating system on a computer host can run
several processes at once. A process is created by describing a sequence of
steps in a programming language, compiling the program into an executable
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form, and running the executable program in the operating system. While it is
running, a process has access to the resources of the computer (CPU time, I/O
device and communication ports) through the operating system. A process can
be completely devoted to an application, or several applications can use a single
process to perform tasks.

Threads: Every process has at least one thread of control. Some OS support the
creation of multiple threads of control within a single process. Each thread in a
process can run independently from the other threads. The threads may share
some memory such as heap or stacks. Usually the threads need synchronization.
For example, one thread may monitor input from a socket connection, while
another processes users’ requests or accesses the database.

Distributed Objects: Distributed Object technologies are best typified by the
Object Management Group’s Common Object Request Broker Architecture
(CORBA) [OMG 1998], and Microsoft’s Distributed Component Object Model
(DCOM) [Microsoft 1998]. In these approaches, interaction control among
components lies solely with the requesting object -- an explicit method call
using a predefined interface specification to initiate service access. The service
is provided by a remote object through a registry that finds the object, and then
mediates the request and its response. Although Distributed Object models
offer a powerful paradigm for creating networked applications composed of
objects potentially written in different programming languages, hard-coded
communication interactions make it difficult to reuse an object in a new
application without bringing along all services on which it is dependent, and
reworking the system to incorporate new services that were not initially
foreseen is a complex task.

Agents: It is difficult to define this overused term, i.e., to differentiate it from a
process or an (active) object and how it differs from a program. An agent has
been loosely defined as a program that assists users and acts on their behalf.
This is called end-user perspective of software agents. In contrast to the
software objects of object-oriented programming, from the perspective of end-
to-end users, agents are active entities that obligate the following mandatory
behavior rules:

R1: Work to meet designer’s specifications;

R2: Autonomous: has control over its own actions provided this does not
violate R1.

R3: Reactive: senses changes in requirements and environment, being able
to act according to those changes provided this does not violate R1.

An agent may possess any of the following orthogonal properties from the
perspective of systems:

Communication: able to communicate with other agents.

Mobility: can travel from one host to another.

Reliability: able to tolerate a fault when one occurs.
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Security: appear to be trustful to the end user.

Our definitions differ from others in which agents must execute according to
design specifications.

According to the client-server model there are two processes, a client, which
requests a service from another process, and a server, which is the service provider.
The server performs the requested service and sends back a response. This response
could be a processing result, a confirmation of completion of the requested
operation or even a notice about a failure of an operation. Following this, the current
image of Web-based distributed computing can be called the Web-based client-
server computing.

1.4.3 Web-based Client-Server Computing

We have categorized the Web-based client-server computing systems into four
types: the proxy computing, code shipping, remote computing and agent-based
computing models. The proxy computing (PC) model is typically used in Web-
based scientific computing. According to this model a client sends data and
programs to a server over the Web and requests the server to perform certain
computing. The server receives the request, performs the computing using the
programs and data supplied by the client and returns the result back to the client.
Typically, the server is a powerful high-performance computer or it has some
special system programs (such as special mathematical and engineering libraries)
that are necessary for the computation. The client is mainly used for interfacing with
users.

The code shipping (CS) model is a popular Web-based client-server computing
model. A typical example is the downloading and execution of Java applets on Web
browsers, such as Netscape Communicator and Internet Explorer. According to this
model, a client makes a request to a server, the server then ships the program (e.g.,
the Java applets) over the Web to the client and the client executes the program
(possibly) using some local data. The server acts as the repository of programs and
the client performs the computation and interfaces with users.

The remote computing (RC) model is typically used in Web-based scientific
computing and database applications [Sandewall 1996]. According to this model,
the client sends data over the Web to the server and the server performs the
computing using programs residing in the server. After the completion of the
computation, the server sends the result back to the client. Typically the server is a
high-performance computing server equipped with the necessary computing
programs and/or databases. The client is responsible for interfacing with users. The
NetSolve system [Casanova and Dongarra 1997] uses this model.

The agent-based computing (AC) model is a three-tier model. According to this
model, the client sends either data or data and programs over the Web to the agent.
The agent then processes the data using its own programs or using the received
programs. After the completion of the processing, the agent will either send the
result back to the client if the result is complete, or send the data/program/midium
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result to the server for further processing. In the latter case, the server will perform
the job and return the result back to the client directly (or via the agent). Nowadays,
more and more Web-based applications have shifted to the AC model [Chang and
Scott 1996] [Ciancarini et al 1996].

1.5 The Agent-Based Computing Models

The basic agent-based computing model has many extensions and variations.
However, there are two areas of distinction among these models, which highlight
their adaptability and extensibility: one is whether the interactions among
components are preconfigured (hard-wired) and the other is where the control for
using components or services lies (e.g., requester/client, provider/server, mediator
etc.).

Conversational Agent Model

Conversational agent technologies model communication and cooperation among
autonomous entities through message exchange based on speech act theory. The
best-known foundation technology for developing such systems is the Knowledge
Query and Manipulation Language (KQML) [http://www.cs.umbc.edu/kqml/],
which is often used in conjunction with the Knowledge Interchange Format (KIF)
[http://www.cs.umbc.edu/kqml/]. In these systems, service access control also lies
with a client, which requests a service from a service broker or name server, and
then initiates peer-to-peer communication with the provider at an address provided
by the broker. Although language-enriched interchanges occur, conversational
agents suffer from the same restriction as distributed objects in that the interactions
among components are hard-coded in the requester, thus making services inflexible
and difficult to reuse and extend.

Sun Jini

Sun Microsystems’ Jini [Sun 1999] extends the Java runtime environment from a
single virtual machine to a network of virtual machines. In Jini, control for resource
access lies with the client who requests a service based on type and attributes from a
lookup service that holds a collection of service objects (Java object and methods)
and attributes posted by providers. Clients filter responses from the lookup service,
downloads the service object for the selected service, and invokes remote methods
within the provider to obtain the service. Although the capability of downloading
the interface between service requester and provider permits a dynamic and
extensible assembly of resources, Jini’s model still places the burden and
responsibility for selecting, acquiring, and managing access with the client.

Blackboard, Publish and Subscribe Approaches

Blackboard approaches such as FliPSiDE [Schwartz 1995] or LINDA
[Schoenfeldinger 1995] allow multiple processes to communicate by reading and
writing requests and information to a global data store. Requesters post requests on
the Blackboard and poll for available results; providers poll to obtain service
requests, and use the Blackboard to post results. The Blackboard enables team
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problem-solving approaches as it can be used for posting problem subcomponents
and partial results.

Publish and subscribe approaches such as Talarian
[http://www.messageq.com/communications_middleware/talarian_2.html] and
Active Web [http://www.pinnaclepublishing.com/AW/AWmag.nsf/home!openform]
use a centralized broker as a clearinghouse for requests and information. Clients
issue a request to the broker that broadcasts it to available providers; their responses
are reflected through the broker to the client. This approach is well-suited to time-
critical problems, as its broadcast model facilitates quick responses.

Common to these approaches is their ability to enable dynamic and flexible
composition of distributed components because the interaction among components
is not predefined at codetime or tightly bound at runtime. But, with this flexibility
comes a potential inherent disadvantage because neither approach provides
programmatic control for guiding the operation, and at times this control is needed
or desired (e.g., to task a provider that best meets known requirements).

OAA’s Delegated Computing Model

The Open Agent Architecture (OAA) [http://www.ai.sri.com/~oaa/], a framework
for building flexible, dynamic communities of distributed software agents, enables a
truly cooperative computing style wherein members of an agent community work
together to perform computation, retrieve information, and serve user interaction
tasks. OAA’s approach to distributed computing shares common characteristics with
current distributed computing models, but is distinct in very important ways.

OAA is similar to the above distributed computing models in that it encourages
creation of networked applications like Distributed Objects, permits rich and
complex interactions like Conversational Agents, and enables building dynamic,
flexible, and extensible communities of components like Jini, Blackboard, and
Publish and Subscribe.

A key distinguishing feature of OAA is its delegated computing model that enables
both human users and software agents to express their requests in terms of what is
to be done without requiring specification of who is to do the work or how it should
be performed, for example, “When a message for me arrives about security, notify
me immediately.” A requester delegates control for meeting a goal to the Facilitator
-- a specialized server agent within OAA that coordinates the activities of agents for
the purpose of achieving higher-level, often complex problem-solving objectives.

The facilitator meets these objectives by making use of knowledge distributed in
four locations in OAA:

The requester, which specifies a goal to the Facilitator and provides advice on
how it should be met,

Providers, who register their capabilities with the Facilitator, know what
services they can provide, and understand limits on their ability to do so,

The Facilitator, which maintains a list of available provider agents and a set of
general strategies for meeting goals
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Meta-agents, which contain domain- or goal-specific knowledge and strategies
that are used as an aid by the Facilitator.

This knowledge is employed to foster cooperation among a set of OAA agents. The
Facilitator matches a request to an agent or agents providing that service, delegates
the task to them, coordinates their efforts, and delivers the results to the requester.
This style of cooperation among agents can be applied to perform both
straightforward and compound, multistep tasks. In addition to delegation, OAA also
provides the ability to make direct calls to a specific agent (like distributed objects
and conversational agents) and to broadcast requests (like Publish and Subscribe).

OAA’s delegation model relieves human and software agents from the responsibility
of interfacing, task planning, and execution monitoring. This has several benefits,
including

Reducing complexity for users and agents. Requesters need only specify the
work to be done and advise on its execution. Agents then focus on performing
their specialized task, not on coordinating execution and results.

Precipitating a more open and dynamically extensible computing style wherein
agents written in many languages and styles can work together. New or
different agents can be added or replaced on the fly without requiring
reprogramming to take advantage of their capabilities.

Encouraging reuse across applications and domains because inter-agent
interactions are not pre-defined and their interfaces are not hard-coded.

1.6 Summary

The key purposes of distributed systems can be represented by: resource sharing,
openness, concurrency, scalability, fault-tolerance and transparency. Distributed
computing systems comprise the three fundamental components: computers,
networks, and operating systems and application software. Computer networks were
first built in the 1960s and there are mainly two reference models for computer
networks, one is the OSI model and the other is the ARPANET model. The current
Internet is based on ARPANET, which adopts the four-layer network architecture.
The layered protocols define the services provided by these network layers. Quality
of service is a method for providing enhanced services to network traffic. With the
development of networks, especially the Internet, network fault-tolerance is
becoming more and more important. A key indicator of today’s business systems is
the reliability and uptime. Communication network reliability depends on the
substainability of both hardware and software.

The client-server model has been a dominent model for distributed computing since
the 1980s. It has been used extensively to develop a huge number and variety of
applications. However, it is not good enough to describe various components and
their activities of a Web-based client-server computing system. The Internet and
WWW have influenced distributed computing by the global coverage of the
network, Web servers distribution and availability, and architecture of executing
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programs. The Web-based client-server computing systems are categorized into four
types: the proxy computing model, the code shipping model, the remote computing
model and the agent-based computing model, where the agent-based computing
model has many extensions and variations.

Exercises

What are the purposes of distributed systems? What are the fundamental
components of distributed computing systems? 1.1

When was ARPANET built? When was the Internet invented? 1.2.1

What is the OSI architecture? What is the Internet architecture? 1.2.2

Why should we consider fault-tolerance in a networked world? What
techniques are used in network fault-tolerance? 1.2.3

What is the protocol stack? What is the purpose of QoS? 1.3

Why should we use the client-server model? What types of computing model
does the Web-based client-server model have? 1.4.1, 1.4.3

What components does a Web-based distributed computing application have?
1.4.2

What variations does the agent-based computing model have? Give examples.
1.5

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
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CHAPTER 2 MODELLING FOR
DISTRIBUTED NETWORK
SYSTEMS: THE CLIENT-

SERVER MODEL

This chapter is to introduce the client-server model and its role in the development
of distributed network systems. The chapter discusses the cooperation between
clients and servers/group servers in distributed network systems, and addresses
extensions to the client-server model. Service discovery, which is of crucial
importance for achieving transparency in distributed network systems, is also
elaborated in this chapter.

2.1 Issues Leading to the Client-Server Model

By amalgamating computers and networks into one single computing system and
providing appropriate system software, a distributed computing system has created
the possibility of sharing information and peripheral resources. Furthermore, these
systems improved performance of a computing system and individual users through
parallel execution of programs, load balancing and sharing, and replication of
programs and data. Distributed computing systems are also characterised by
enhanced availability, and increased reliability.

However, the amalgamation process has also generated some serious challenges and
problems. The most important, critical challenge was to synthesise a model of
distributed computing to be used in the development of both application and system
software. Another critical challenge was to develop ways to hide distribution of
resources and build relevant services upon them. The development of distributed
computing systems is complicated by the lack of a central clock and centrally
available data to manage the whole system. Furthermore, amalgamating computers
and networks into one single computing system generates a need to deal with the
problems of resource protection, communication security and authentication.

The synthesis of a distributed computing model has been influenced by a need to
deal with the issues caused by distribution, such as locating data, programs and
peripheral resources, accessing remote data, programs and peripheral resources,
supporting cooperation and competition between programs executing on different
computers, coordinating distributed programs executing on different computers,
maintaining the consistency of replicated data and programs, detecting and
recovering from failures, protecting data and programs stored and in transit, and
authenticating users, etc.
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2.2 The Client-Server Model in a Distributed Computing System

A distributed computing system is a set of application and system programs, and
data dispersed across a number of independent personal computers connected by a
communication network. In order to provide requested services to users the system
and relevant application programs must be executed. Because services are provided
as a result of executing programs on a number of computers with data stored on one
or more locations, the whole computing activity is called distributed computing.

2.2.1 Basic Concepts

The problem is how to formalise the development of distributed computing. The
above shows that the main issue of distributed computing is programs in execution,
which are called processes. The second issue is that these processes cooperate or
compete in order to provide the requested services. This means that these processes
are synchronised.

A natural model of distributed computing is the client-server model, which is able to
deal with the problems generated by distribution, could be used to describe
computation processes and their behaviour when providing services to users, and
allows design of system and application software for distributed computing systems.

According to this model there are two processes, the client, which requests a service
from another process, and the server, which is the service provider. The server
performs the requested service and sends back a response. This response could be a
processing result, a confirmation of completion of the requested operation or even a
notice about a failure of an operation.

From the user’s point of view a distributed computing system can provide the
following services: printing, electronic mail, file service, authentication, naming,
database service and computing service. These services are provided by appropriate
servers. Because of the restricted number of servers (implied by a restricted number
of resources on which these servers were implemented), clients compete for these
servers.

An association between this abstract model and its physical implementation is
shown in Figure 2.1. In particular the basic items of the model: the client and server,
and request and response are shown. In this case, the client and server processes
execute on two different computers. They communicate at the virtual (logical) level
by exchanging requests and responses. In order to achieve this virtual
communication, physical messages are sent between these two processes. This
implies that operating systems of computers and a communication system of a
distributed computing system are actively involved in the service provision.
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Figure 2.1: The basic client-server model

A more detailed client-server model has three components:

Service: A service is a software entity that runs on one or more machines. It
provides an abstraction of a set of well-defined operations in response to
applications’ requests.

Server: A server is an instance of a particular service running on a single
machine.

Client: A client is a software entity that exploits services provided by servers. A
client can but does not have to interface directly with a human user.

2.2.2 Features and Problems of the Client-Server Model

The most important features of the client-server model are simplicity, modularity,
extensibility and flexibility. Simplicity manifests itself by closely matching the flow
of data with the control flow. Modularity is achieved by organising and integrating a
group of computer operations into a separate service. Also any set of data with
operations on this data can be organised as a separate service. The whole distributed
computing system developed based on the client-server model can be easily
extended by adding new services in the form of new servers. The servers which do
not satisfy user requirements can be easily modified or even removed. Only the
interfaces between the clients and servers must be maintained.

There are three major problems of the client-server model:

The first is due to the fact that the control of individual resources is centralised
in a single server. This means that if the computer supporting a server fails,
then that element of control fails. Such a solution is not tolerable if a control
function of a server is critical to the operation of the system (e.g., a name
server, a file server, an authentication server). Thus, the reliability and
availability of an operation depending on multiple servers is a product of
reliability of all computers and devices, and communication lines.

The second problem is that each single server is a potential bottleneck. The
problem is exacerbated as more computers with potential clients are added to
the system.
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The third problem arises when multiple implementations of similar functions
are used to improve the performance of a client-server based system because of
a need to maintain consistency. Furthermore, this increases the total costs of a
distributed computing system.

2.3 Cooperation between Clients and Servers

2.3.1 Cooperation Type and Chained Server

A system in which there is only one server and one client would not be able to
provide high performance, and reliable and cost effective services to users. As
mentioned in the previous section, it is necessary to use one server to provide
services to more than one client. The simplest cooperation between clients and
servers based on sharing allows for lowering the costs of the whole system and
more effective use of resources. An example of a service based on this cooperation
is a printing service. Figure 2.2 shows a printer server providing services to n
clients, which all are connected by a local area network.

In a distributed computing system there are two different types of cooperation
between clients and servers. The first type assumes that a client requests a
temporary service. The second one is generated by a client that wants to arrange a
number of calls to be directed to a particular serving process. This implies a need
for establishing long term bindings between this client and a server.

Figure 2.2: Printing service (a service example)

Processes can act as either clients or servers, depending on the context. A file server
that receives a request to read a file from a user’s client process must check on the
access rights of this user. For this purpose the file server sends a request to an
authentication server and waits for its response. The response of the file server to
the client depends on the response from the authentication server. This implies that
the file server acts as a client of the authentication server. Thus, a service provided
to the user by a distributed computing system based on the client-server model
could require a chain of cooperating servers.
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2.3.2 Multiple Servers

A distributed computing system has the following functions:

Improve performance through parallel execution of programs on a cluster
(sometimes called network) of workstations,

Decrease response time of databases through data replication,

Support synchronous distant meetings,

Support cooperative workgroups, and

Increase reliability by service multiplication, etc.

To perform these functions, many servers must contribute to the overall application.
This implies a need to invoke multiple services. Furthermore, it would require in
some cases simultaneous requests to be sent to a number of servers. Different
applications will require different semantics for the cooperation between clients and
servers, as illustrated in the following paragraphs.

Cooperation in the systems supporting parallel execution

In a distributed computing system supporting parallel execution, there are some
parts of a program which could be executed as individual processes on separate
computers. For this purpose a process (parent), which coordinates such parallel
processing of individual processes (children), causes them to execute on selected
idle computers and waits for computational results. In this case the parent process
acts as a client and the child processes as servers, in a one-to-many communication
pattern. However, the parent process cannot proceed any further unless all children
send back responses.

This example shows that there are two questions which should be answered in order
to improve the cooperation between the client and servers: who is responsible for
locating idle computers on which servers can run, and who is responsible for setting
up those servers on remote computers and coordinating responses.

Cooperation in the systems supporting a distributed database

Similar semantics of cooperation between a client and multiple servers in a
distributed computing system occur in supporting a distributed database. To commit
a transaction all operations performed on a set of databases must be completed
successfully. Thus, a client process which executes a transaction sends operation
requests to relevant databases (servers) and waits for the results of the operations.
The client process can be involved in other operations, however, responses from all
database servers must be received to commit the transaction.

In this case there is no need to set up servers on idle computers — there are servers
which already run on dedicated computers. However, there is an issue of who can
deal with these database servers, the client process or another entity working on
behalf of this client.
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Cooperation in the systems supporting a user application

There are different semantics of cooperation between a client and multiple servers
in a distributed computing system supporting a user application. This requires
identifying a database server which manages relevant data, accesses that database
server and carries out some operations on data, and prints that data. There are three
servers which must be engaged in supporting the application: a service discovery
server, a database server and a printer server. The client process running the
application software invokes each server in a sequential order and waits for a
response before accessing the next server.

In this case there is again no need to set up servers on idle computers. However, the
same issue exists, i.e., who can deal with these database servers, the client process
or another entity working on behalf of this client.

Cooperation in the systems supporting mission critical applications

A different form of cooperation between a client and multiple servers is required in
reliable distributed computing systems, in particular those which support mission
critical applications. In this case a request sent to a group of servers should generate
identical responses from all of them. An example of such a system is a redundant
computational server on board a space ship, or a fault-tolerant transaction oriented
database. In any case only identical operation results are accepted by the client.

These examples show that distributed computing systems have moved from the
basic one-to-one client-server model to the one-to-many and chain models in order
to improve performance and reliability. Furthermore, the issues identified when
discussing the one-to-many communication pattern of the client-server model
demonstrate that client and servers cooperation can be strongly influenced and
supported by some active entities which are extensions to the client-server model.
The following sections address these issues.

2.4 Extensions to the Client-Server Model

The need for extending the client-server model can be specified as an outcome of a
study into involvement of other entities in the provision of services, an interface
between a client and server, and the behaviour of a client after sending of a request
to a server.

2.4.1 Agents and Indirect Client-Server Cooperation

A client and server can cooperate either directly or indirectly. In the former case
there is no additional entity that participates in exchanging requests and responses
between a client and a server. Indirect cooperation in the client-server model
requires two additional entities, called agents, to request a service and to be
provided with the requested service. Figure 2.3 shows such an extension.
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Figure 2.3: Indirect client-server cooperation

The role of these agents can vary from a simple communication module which hides
communication network details to an entity which is involved in mediating between
clients and servers, resolving heterogeneity issues, and managing resources and
cooperating servers. These aspects will be elaborated in other chapters of this book.

As presented in Sections 2.3, a client can invoke desired servers explicitly by
sending direct requests to multiple servers. In this case the programmer of a user
application must concentrate both on an application and on managing server
cooperation and communication. Writing resource management and communication
software is expensive, time consuming and error prone. The interface between the
client and the server is complicated, differs from one application to another, and the
whole service provided is not transparent to the client process (user).

Clients can also request multiple services implicitly. This requires the client to send
only one request to a general server. A requested service will be composed by this
invoked server cooperating with other servers, based on information provided in the
request. After completion of necessary operations by involved servers, the invoked
server sends a response back to the client. This coordination operation can be
performed by a properly designed agent. Despite the fact that such an agent is quite
complicated, the cooperation between the client and the server is based on a single,
well-defined interface. Furthermore, transparency is provided to the client which
reduces the complexity of the application.

Cooperation between a client and multiple servers can be supported by a simple
communication system which employs a direct, one-to-one message protocol.
Although this communication model is simple, its performance is poor because each
server involved must be invoked by sending a separate message. The overall
performance of a communication system supporting message delivery in a client-
server based distributed computing system can be dramatically improved if a one-
to-many communication pattern is used. In this case a single request is sent by the
client process to all servers, specified by a single group name. The use of multicast
at the physical/data link layer does improve this system, but it is not essential.
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2.4.2 The Three-Tier Client-Server Architecture

Agents and servers acting as clients can generate different architectures of
distributed computing systems. The three-tier client-server architecture extends the
basic client-server model by adding a middle tier to support the application logic
and common services. In this architecture, a distributed application consists of the
following three types of components:

User interface and presentation processing. These components are responsible
for accepting inputs and presenting the results. They belong to the client tier;

Computational function processing. These components are responsible for
providing transparent, reliable, secure, and efficient distributed computing.
They are also responsible for performing necessary processing to solve a
particular application problem. We say these components belong to the
application tier;

Figure 2.4: Examples of three-tier configurations
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Data access processing. These components are responsible for accessing data
stored on external storage devices (such as disk drives). They belong to the
back-end tier.

These components can be combined and distributed in various ways to create
different configurations with varying complexity. Figure 2.4 shows some examples
of such configurations ranging from centralised processing to three-tier distribution.
In particular, Figure 2.4(a) shows a centralised configuration where all the three
types of components are located in a single computer. Figure 2.4(b) shows three
two-tier configurations where the three types of components are distributed on two
computers. Figure 2.4(c) shows a three-tier configuration where all the three types
of components are distributed on different computers.

Figure 2.5: An example implementation of the three-tier architecture

Figure 2.5 illustrates an example of implementation of the three-tier architecture. In
this example, the upper tier consists of client computers that run user interface
processing software. The middle tier contains computers that run computational
function processing software. The bottom tier includes back-end data servers. In a
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three-tier client-server architecture, application clients usually do not interact
directly with the data servers, instead, they interact with the middle tier servers to
obtain services. The middle tier servers will then either fulfil the requests
themselves, sending the result back to the clients, or more commonly, if additional
resources are required, servers in the middle tier will act (as clients themselves) on
behalf of the application clients to interact with the data servers in the bottom tier or
other servers within the middle tier.

Compared with a normal two-tier client-server architecture, the three-tier client-
server architecture has the following two important advantages:

Better transparency. The servers within the application tier of the three-tier
architecture allow an application to detach user interface from back-end
resources and therefore provide better location and migration transparency.
That is, the location or implementation of back-end resources can be changed
without affecting the programs within the client tier;

Better scalability. The centralised and two-tier architectures do not scale well to
support large applications. The servers within the application tier of the three-
tier architecture, however, inject another dimension of scalability into the
client-server environment.

Other benefits that the three-tier client-server architecture may achieve include
better concurrency, flexibility, reusability, load balancing, and reliability.

In addition to providing services for business logic and applications, the application
tier should provide the following key services (they sometimes are called
middleware):

Directory services. These services are required to locate application services
and resources and route messages there.

Security services. An integrated security service is needed to provide a
comprehensive inter-application client-server security mechanism.

Time services. These services provide a universal format for representing time
on different platforms running in different countries in various time zones. This
is critical in maintaining error logs and timestamps, and in keeping
synchronisation among application processes.

Transaction services. These services provide transaction semantics to support
commit, rollback, and recovery mechanisms. These mechanisms are critical to
ensure that updates across one or more databases are handled correctly and that
data integrity is not jeopardised.

2.5 Service Discovery

To invoke a desired service a client must know whether there is a server which is
able to provide this service and its characteristics if it exists, and its name and
location. This is the issue of service discovery. In the case of a simple distributed
computing system, where there are only a few servers, there is no need to identify
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an existence of a desired server. Information about all available servers is a priori.
This implies that service discovery is restricted to locating the server, which
provides the desired service. On the other hand, in a large distributed computing
system which is a federation of a set of distributed computing systems, with many
service providers who offer and withdraw these services dynamically, there is a
need to learn both whether a proper service (e.g., a very fast colour printer of high
quality) is available at a given time, and if so its name and location.

It is worth mentioning that a client in a distributed computing system managed by a
distributed operating system, which provides transparency (one of the most
important features of a distributed computing system), should only know a name of
either a server or an agent working on behalf of the server. On the other hand, a
client in a distributed computing system managed by a set of centralised operating
systems and their extensions to access remote resources and services must know
both its name and location. The reason is that transparency is not provided.

Service discovery is achieved through the following modes:

Server computer address is hardwired into client code;

Broadcast is used to locate servers;

Name server is used to locate services; and

Brokers are used to locate servers.

We discuss them in detail next.

2.5.1 Hardwiring Computer Address

This approach requires only a location of the server, in the form of computer
address, to be provided. However, it is only applicable in very small and simple
systems, where there is only one server process running on the destination
computer. Thus, an operating system knows where to deliver an incoming request.

Another version of this approach is based on a much more advanced naming
system, where requests are sent to processes rather than to computers. In this case
each process is named by a pair <computer_address, process_name>. A client is
provided with not only a name of a server, but also with the address of a server
computer. This solution is not location transparent as the user is aware of the
location of the server. The lack of transparency can create a problem when there is a
need to move a server to another computer, and a pair <computer_address,
process_name> has been hardwired in client code.

2.5.2 Broadcast Approach

According to this approach each process has a unique name (e.g., a very long
identifier can be used for this purpose). In order to send a request a client knows a
name of a destination, in particular of a server. However this is not enough because
an operating system of a computer where the server runs must know an address of
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the server’s computer. For this purpose the client’s operating system broadcasts a
special locate request containing the name of the server, which will be received by
all computers on a network. An operating system that finds the server’s name in the
list of its processes, which means that the named server runs on its computer, sends
back a ‘here I am’ response containing its address (location). The client’s operating
system receives the response and can store (cache) the server’s computer address for
future communication. This approach is transparent, however the broadcast
overhead is high as all computers on a network are involved in the processing of the
locate request.

The cooperation between clients, servers and operating systems supporting them in
a distributed computing system using the broadcast approach to locate servers is
illustrated in Figure 2.6.

Figure 2.6: Service discovery -- broadcast approach

2.5.3 Name Server Approach

This approach is very similar to the broadcast based approach, however it reduces
the broadcast overhead. In order to learn the address of a desired server, an
operating system of the client’s computer sends a ‘where is’ request to a special
system server, called a name server, asking for the address of a computer where the
desired server runs. This means that the name and location (computer address) of
the name server are known to all operating systems. The name server sends back a
response containing an address of the desired server. The client’s operating system
receives the response and can cache the server’s computer address for future
communication.

This approach is transparent and much more efficient than the broadcast based
approach. However, because the name server is centralised, the overall performance
of a distributed computing system could be degraded, as the name server could be a
bottleneck. Furthermore, reliability of this approach is low; if a name server
computer crashes, a distributed computing system cannot work.

Figure 2.7 illustrates the cooperation between clients, servers and operating systems
supporting them in a distributed computing system using the approach of server
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Figure 2.7: Service discovery -- name server and server location lookup

2.5.4 Broker-Based Location Lookup

A client in a distributed computing system supported by any of the above server
location approaches must know all servers available in that system and their names
(also the server locations (addresses) in systems which do not provide transparency)
in order to invoke a desired service. In a large distributed computing system there
could be a large number of servers. Moreover, servers of the same type can be
characterised by different attributes describing the services they provide (e.g., one
laser printer is a colour printer, another is a black and white printer). Furthermore,
servers can be offered by some users and revoked dynamically. A user is not able to
know names and attributes of all these servers, and their dynamically changing
availability. There must be a server which could support users to deal with these
problems. This server is called a broker. Thus, a broker is a server that

allows a client to identify available servers which can be characterised by a set
of attributes that describe the properties of a desired service;

mediates cooperation between clients and servers;

allows service providers to register the services they support by providing their
names, locations and features in the form of attributes;

advertises registered services and makes them available to clients; and

withdraws services dynamically.

A broker-based approach is very similar to the server location lookup performed via
a name server approach. However, there are real conceptual differences between a
broker and a name server which frees clients from remembering ASCII names or
path names of all servers (and eventually the server locations), and allows clients to
identify attributes of servers and learn about their availability. Thus, a broker is a
server, which embodies both service management and naming services. There are
two basic broker classes, which form two different forms of cooperation between
clients and servers:

Forwarding broker

Cooperation between a client and a server mediated by this broker is as follows:
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Step 1: the broker receives from a client a service enquiry in a form of a set of
attributes that characterise a desired service, and a server operation request;

Step 2: if a matching server is available, the broker sends the server operation
request to that found server; otherwise, it sends a failure response to the client;

Step 3: the server sends back a response to the broker;

Step 4: the broker passes the response to the client.

The forwarding broker possesses advantages and disadvantages of a system with a
centralised server. This means that all requests to servers and their responses are
going through this broker.

Direct broker

Cooperation between a client and a server mediated by this broker is as follows:

Step 1: the broker receives from a client a service enquiry in a form of a set of
attributes that characterise a desired service;

Step 2: if a matching server is available, the broker sends back a name and a
server computer address to the client; otherwise, it sends a failure response;

Step 3: the client sends the server operation request to the server;

Step 4: the server sends back a response to the client.

Despite the fact that the direct broker also possesses advantages and disadvantages
of a system with a centralised server, its performance is better than that of the
forwarding broker, because only service enquiry messages are sent to this broker.

2.6 Client-Server Interoperability

Reusability of servers is a critical issue for both users and software manufacture due
to the high cost of software writing. This issue could be easily resolved in a
homogeneous environment because accessing mechanisms of clients may be made
compatible with software interfaces, with static compatibility specified by types and
dynamic compatibility by protocols.

Cooperation between heterogeneous clients and servers is much more difficult as
they are not fully compatible. Thus, the issue is how to make them interoperable.
Wegner [Wegner 1996] defines interoperability as the ability of two or more
software components to cooperate despite differences in language, interface, and
execution platform.

There are two aspects of client-server interoperability: a unit of interoperation, and
interoperation mechanisms. The basic unit of interoperation is a procedure [Wegner
1996]. However, larger-granularity units of interoperation may be required by
software components. Furthermore, preservation of temporal and functional
properties may also be required.

There are two major mechanisms for interoperation:
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Interface standardisation: the objective of this mechanism is to map client and
server interfaces to a common representation. The advantages of this
mechanism are: (i) it separates communication models of clients from those of
servers, and (ii) it provides scalability, since it only requires m + n mappings,
where m and n are the number of clients and servers, respectively. The
disadvantage of this mechanism is that it is closed.

Interface bridging: the objective of this mechanism is to provide a two-way
mapping between a client and a server. The advantages of this mechanism are:
(i) openness, and (ii) flexibility — it can be tailored to the requirements of a
given client and server pair. However, this mechanism does not scale as well as
the interface standardisation mechanism, as it requires m * n mappings.

2.7 The Relationship

In Section 2.2 we said that in order to allow a client and a server to exchange
requests and responses, there is a need to employ a communication network that
links computers on which these processes run. We also demonstrated in Section 2.6
that in order to locate a server, the operating systems must be involved. The
question is what would be the architecture of a distributed computing system that
supports a distributed application developed on the basis of client-server model.
Figure 2.8 illustrates the relationship between such a distributed application, the
operating system supporting it and communication facility of a distributed
computing system.

Figure 2.8: A distributed computing system architecture

This figure shows the distributed nature of the operating system, which could be
either achieved by:

adding a module to the local centralised operating system of each computer,
which allows processes to access remote resources and services; however, in
the majority of cases this solution does not fully support transparency, or
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employing a distributed operating system, which hides distribution of resources
and services; this solution, although futuristic from the current practice point of
view, provides location transparency.

It is clear that the extensions to the basic client-server model, described in the
previous sections, are achieved through an operating system. Furthermore, network
communication services are invoked by an operating system on behalf of
cooperating clients and servers.

The overall performance of a distributed computing system developed on the basis
of client-server model depends on the performance of a communication facility.
Such a facility is comprised of an inter-process communication system of an
operating system and network protocols. Communication between clients and
servers is discussed in Chapter 5.

Another question is the role of the client-server model in the development of
operating systems and communication facilities for distributed computing systems.
It will be demonstrated in later chapters that operating systems and network
communication systems can also be developed based on the client-server model.
This is the current approach to the design of such complicated software following
the results of research and practice of software engineering.

2.8 Summary

In this chapter we introduced the client-server model and some concepts related to
this model. Partitioning software into clients and servers allows us to place these
components independently on computers in a distributed computing system.
Furthermore, it allows these clients and servers to execute on different computers in
a distributed computing system in order to complete the processing of an application
in an integrated manner. This paves the way to high productivity and high
performance in distributed computing. The client-server model is becoming the
predominant form of software application design and operation. However, to fully
benefit from the client-server model, many issues such as client and server
cooperation; agents; service discovery; and client-server interoperability, must be
investigated.

Exercises

2.1 What challenges does a distributed computing system have when servicing
users who share information and peripheral resources? 2.1

What are the functions of the client-server model? What features does it have?
2.2.1 – 2.2.2

What is a chain of servers? Give examples. 2.3.1

Why are multiple servers necessary? 2.3.2

Describe the indirect client-server cooperation. 2.4.1

2.2

2.3

2.4

2.5
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Describe the functions of each tier in the three-tier client-server architecture.
2.4.2

What methods are used for achieving service discovery? 2.5

What is client-server interoperability? 2.6

Describe the relationship between an application, the OS and the
communication facility. 2.7

2.6

2.7

2.8

2.9
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CHAPTER 3 COMMUNICATION
PARADIGMS FOR

DISTRIBUTED NETWORK
SYSTEMS

Communication is an important issue in distributed computing systems. This
chapter addresses the communication paradigm of distributed network systems, i.e.,
issues about how to build the communication model for these systems.

3.1 Introduction

Distributed computing systems, in particular those managed by a distributed
operating system, must be running fast in order to instil in users the feeling of a
huge powerful computer sitting on their desks through hiding distribution of
resources. Since we have shown in Chapter 2 that the client-server model is
commonly used in distributed network systems, this implies that the communication
between clients and servers for cooperating by exchanging requests and responses
must be fast. Furthermore, the speed of communication between remote client and
server processes should not be highly different from the speed between local
processes. Distributed systems based on clusters of workstations or PCs do not
share physical memory. Thus, requests and responses are sent in the form of
messages. The issue is how to build a communication facility within a distributed
system to achieve high communication performance.

There is a set of factors which influence the performance of a communication
facility. First, the speed of a communication network ranging from slow 10 Mbps to
very fast Gbps. Second, the communication protocols that span the connection-
oriented protocols such as OSI and TCP, which generate considerable overhead to
specialised fast protocols. Third, the communication paradigm, i.e., the
communication model supporting cooperation between clients, servers and an
operating system support provided to deal with the cooperation. In this chapter we
only concentrate on the third factor, i.e., on the communication paradigm.

There are two issues in the communication paradigm. First, as we have shown in
Chapter 2, a client can send a request to either a single server or a group of servers.
This leads to two patterns of communication: one-to-one and one-to-many (also
called group communication, see Chapter 9), which are operating system
abstractions. Second, these two patterns of inter-process communication could be
developed based on two different techniques: Message Passing, adopted for dis-
tributed systems in the late 1970s; and Remote Procedure Call (RPC), adopted for
distributed systems in mid 1980s. These two techniques are supported by two
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different sets of primitives provided in an operating system. Furthermore,
communication between processes on different computers can be given the same
format as communication between processes on a single computer.

The two techniques of interprocess communication are based on different basic
concepts. Message passing between remote and local processes is visible to the
programmer. The flow of information is unidirectional from the client to the server.
However, in advanced message passing, such as structured message passing or
rendezvous, information flow is bidirectional, i.e., a return message is provided in
response to the initial request. Furthermore, message passing is a completely
untyped technique.

The RPC technique is based on the fundamental linguistic concept known as the
procedure call. The very general term remote procedure call means a type-checked
mechanism that permits a language-level call on one computer to be automatically
turned into a corresponding language-level call on another computer. Message
passing is invisible to the programmer of RPC, which requires a transport protocol
to support the transmission of its arguments and results. It is important to note that
the term remote procedure call is sometimes used to describe just structured
message passing. Remote procedure call primitives provide bidirectional flow of
information.

The following topics are discussed in this chapter. First of all, message passing, in
particular messages in distributed systems; communication primitives; semantics of
these primitives; direct and indirect communication; blocking and non-blocking
primitives; buffered and unbuffered exchange of messages; and reliable and
unreliable primitives are considered. Second, RPC is discussed. In particular, basic
features of this technique; execution of RPC; parameters, results and their
marshalling; client-server binding; and reliability issues are presented. Third, group
communication is discussed. In particular, basic concepts of this communication
pattern; message delivery and response semantics; and message ordering in group
communication are presented. The detail implementation of a group communication
protocol is discussed in Chapter 9.

3.2 Message Passing Communication

There are two critical issues in message-passing communication: the messages used
in the communication and the mechanisms used to send and receive messages. A
user is explicitly aware of these two issues during this form of communication. In
this section, we discuss the message-passing communication based on these two
issues.

3.2.1 What is a Message?

A message is a collection of data objects consisting of a fixed size header and a
variable or constant length body, which can be managed by a process, and delivered
to its destination. A type associated with a message provides structural information
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on how the message should be identified. A message can be of any size and may
contain either data or typed pointers to data outside the contiguous portion of the
message. The contents of a message are determined by the sending process. On the
other hand, some parts of the header containing system-related information may be
supplied by the system.

Messages may be completely unstructured or structured. Unstructured messages
have the flexibility that can be interpreted by the communicating pairs. However,
the use of unstructured messages that are then interpreted as needed by user
processes has problems. That is because some parts of messages (e.g., port names)
must be interpreted by the distributed operating system or the communication
protocol because they must be translated to be meaningful to another process.
Moreover, in heterogeneous networks, only typed information allows the
transparent transfer of data items (integers, reals, strings, etc.). Structured messages
are also favored for efficiency reasons. Most information transferred between
processes is structured in that it represents data items of different types. The use of
unstructured messages for such data could be expensive because the encapsulation
and decapsulation of structured messages into unstructured linear forms adds a layer
of overhead that increases the cost of communication.

In order for any two computers to exchange data value, we need to map data
structures and data items to messages. Data structure must be flattened before
transmission and rebuilt on arrival. Flattening of structured data into a sequence of
basic data is used for the data transmission. Usually a language preprocessor
(interface compiler) can be used to generate marshalling/unmarshalling operations
automatically. When an IPC primitive is encountered involving data items of the
above type, the preprocessor generates code to do the marshalling (for a send) or
unmarshalling (for a receive) based on the type description.

Figure 3.1: CORBA CDR message

Example of structured messages:

External data representation (XDR) provided by SUN XDR and Courier for
automatic marshalling. Message consists of a sequence of 4-byte objects: (1)
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Cardinal/integer: 4 bytes; (2) Character: 1 byte; (3) represented as sequences of
bytes with the length specified. On receiving a data stream, the data structure must
be rebuilt. The diagram in Figure 3.1 is an example of CORBA CDR (Common
Data Representation) [OMG 1998].

3.2.2 Message-Passing Mechanisms

Another important issue in the message-passing communication is about the
mechanisms used to send and receive messages. These mechanisms involve a set of
primitives used for communication.

3.2.2.1 Basic Message-Passing Primitives

There are two issues related to message-passing mechanisms: one is, what is the set
of communication primitives, and the other is, what are their semantics? In
message-passing communication, a message is sent and received by explicitly
executing the send and receive primitives, respectively. The time diagram of the
execution of these two primitives is shown in Figure 3.2. It is obvious that the
receive primitive must be issued before a message arrives; otherwise the request
could be declared as lost and must be retransmitted by the client.

Figure 3.2: Time diagram of the execution of message-passing primitives

Of course, when the server process sends any message to the client process, they
have to use these two primitives as well; the server sends a message by executing
primitive send and the client receives it by executing primitive receive.

Several points should be discussed at this stage. All of them are connected with a
problem stated as follows: what semantics should these primitives have? The
following alternatives are presented:
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Direct or indirect communication ports;

Blocking versus non-blocking primitives;

Buffered versus unbuffered primitives;

Reliable versus unreliable primitives; and

Structured forms of message passing based primitives.

3.2.2.2 Direct and Indirect Communication Ports

The very basic issue in message-based communication is where messages go.
Message communication between processes uses one of two techniques: the sender
designates either a fixed destination process or a fixed location for receipt of a
message. The former technique is called direct communication and it uses direct
names; the latter is called indirect communication and it exploits the concept of a
port.

In direct communication, each process that wants to send or receive a message must
explicitly name the recipient or sender of the communication. Direct
communication is easy to implement and to use. It enables a process to control the
times at which it receives messages from each process. The disadvantage of this
scheme is the limited modularity of the resulting process definition. Changing the
name of the process may necessitate the examination of all other process
definitions. All references to the old process must be found, in order to modify them
to the new name. This is not desirable from the point of view of separate
compilation.

Direct communication does not allow more than one client. That is because, at the
very least, issuing the receive primitive would be required for each client. The
server process cannot reasonably anticipate the names of all potential clients.
Similarly, direct communication does not make it possible to send one request to
more than one identical server. This implies the need for a more sophisticated
technique. Such a technique is based on ports.

A port can be abstractly viewed as a protected kernel object into which messages
may be placed by processes and from which messages can be removed, i.e., the
messages are sent to and received from ports. Processes may have ownership, and
send and receive rights on a port. Each port has a unique identification (name) that
distinguishes it. A process may communicate with other processes by a number of
different ports.

Logically associated with each port is a queue of finite length. Messages that have
been sent to this port, but have not yet been removed from it by a process, reside on
this queue. Messages may be added to this queue by any process which can refer to
the port via a local name (e.g., capability). A port should be declared. A port
declaration serves to define a queuing point for messages, that is, the interface
between the client and server. A process that wants to remove a message from a port
must have the appropriate receive rights. Usually, only one process may receive
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access to a port at a time. Messages sent to a port are normally queued in FIFO
order. However, an emergency message can be sent to a port and receive special
treatment with regard to queuing.

A port can be owned either by a process or by the operating system. If a port is
owned by a process, the port is attached to or defined as a part of the process.
Ownership of a port can be passed in a message from one process to another. A port
can be created by a process which subsequently owns that port. The process also has
a receive access to that port. If a single process both owns and has receive access to
a port, this process may destroy it. The problem is what can happen to a port when
its owner dies. If this process has receive access to that port, the best solution to this
problem is automatic destruction of the port. Otherwise, an emergency message is
sent to the process which has access rights to it. If the process that is not the owner
but has access rights to a port dies, then the emergency message is sent to the
owner.

If the operating system owns a port, it provides a mechanism that allows a process
to: create a new port (the process is its owner by default); send and receive
messages through the port; and destroy a port.

A finite length of the message queues attached to ports is used to prevent a client
from queuing more messages to a server than can be absorbed by the system, and as
a means for controlling the flow of data between processes of mismatched
processing speed. Some implementations can allow the processes owning a port to
specify the maximum number of messages which can be queued for that port at any
time.

3.2.2.3 Blocking versus Non-blocking Primitives

One of the most important properties of message passing primitives concerns
whether their execution could cause delay. We distinguish blocking and non-
blocking primitives. We say that a primitive has non-blocking semantics if its
execution never delays its invoker; otherwise a primitive is said to be blocking. In
the former case, a message must be buffered.

It is necessary to distinguish two different forms of the blocking primitives, in
particular send. These forms are generated by different criteria. The first criterion
reflects the operating system design, addresses buffer management and message
transmission. The blocking and non-blocking send primitives developed following
this criterion are illustrated in Figure 3.3. If the blocking send primitive is used, the
sending process (client) is blocked, i.e., the instruction following the send primitive
is not executed until the message has been completely sent. The blocking receive
implies that the process which issued this primitive remains blocked (suspended)
until a message arrives, and being put into the buffer specified in the receive
primitive. If the non-blocking send primitive is used, the sending process (client) is
only blocked for the period of copying a message into the kernel buffer. This means
that the instruction following the send primitive can be executed even before the
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message is sent. This can lead toward parallel execution of a process and message
transmission.

Figure 3.3: Send primitives: (a) blocking; (b) non-blocking

The second criterion reflects the client-server cooperation and the programming
language approach to deal with message communication. In this case the client is
blocked until the server (receiver) has accepted the request message and the result
or acknowledgment has been received by the client. The blocking send primitives
developed following this criterion is illustrated in Figure 3.4.

Figure 3.4: Blocked send primitive
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There are three forms of receive primitive. The blocking receive is the most
common, since the receiving process often has nothing else to do while awaiting
receipt of a message. There are also a non-blocking receive primitive, and a
primitive for checking whether a message is available to receive. As a result, a
process can receive all messages and then select one to process. Blocking primitives
provide a simple way to combine the data transfer with the synchronisation
function.

With non-blocking primitives:

Send returns control to the user program as soon as the message has been
queued, for subsequent transmission, or a copy made (these alternatives are
determined by the method of cooperation between the network interface and the
processor);

When a message has been transmitted (or copied to a safe place for subsequent
transmission), the program is interrupted to inform it that the buffer may be
reused;

The corresponding receive primitive signals a willingness to receive a message
and provides a buffer into which the massage may be placed; and

When a message arrives, the program is informed by interrupt.

The advantage of these non-blocking primitives is that they provide maximum
flexibility. Moreover, these primitives are useful for real-time applications. The
disadvantages of these non-blocking primitives are that they may require buffering
to prevent access or change to message contents. These accesses and changes to the
message may happen before or during transmission, or while the message is waiting
to be received. Buffering may occur on source or destination sites. If a buffer is full,
a process must be blocked, which contradicts the original definition of this
primitive; make programming tricky and difficult (non-reproducible, timing
dependent programs are painful to write and difficult to debug).

3.2.2.4 Buffered versus Unbuffered Message Passing Primitives

In some message-based communication systems, messages are buffered between the
time they are sent by a client and received by a server. If a buffer is full when a send
is executed, there are two possible solutions: the send may delay until there is a
space in the buffer for the message, or the send might return to the client, indicating
that, because the buffer is full, the message could not be sent.

The situation of the receiving server is different. The receive primitive informs an
operating system about a buffer into which the server wishes to put an arrived
message. The problem occurs when the receive primitive is issued after the message
arrives. The question is what to do with the message. The first possible approach is
to discard the message. The client could time out and re-send, and hopefully the
receive primitive will be invoked in the meantime. Otherwise, the client can give
up. The second approach to deal with this problem is to buffer the message in the
operating system area for a specified period of time. If during this period the
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appropriate receive primitive is invoked, the message is copied to the invoking
server space. If the receive primitive is not invoked and the timeout expires, the
message is discarded. Unbuffered and buffered message passing are illustrated in
Figure 3.5, where (a) represents unbuffered message passing (messages are
discarded before the server issues the receive primitive); and (b) represents buffered
message passing (messages are buffered in the OS area for a limited time).

Figure 3.5: Unbuffered and buffered message passing.

Let us consider two extremes: a buffer with unbounded capacity and one with finite
bounds. If the buffer has unbounded capacity, then a process is never delayed when
executing a send. Systems based on this approach are called systems with
asynchronous message passing or systems with no-wait send. The most important
feature of asynchronous message passing is that it allows a sender to get arbitrarily
far ahead of a receiver. Consequently, when a message is received it contains
information about the sender’s state that may no longer be valid. If the system has
no buffering, execution of send is always delayed until a corresponding receive is
executed. Then the message is transferred and both proceed.

When the buffer has finite bounds, we deal with buffered message passing. In this
case the client is allowed to get ahead of the server, but not arbitrarily far ahead. In
buffered message-passing based systems, the client is allowed to have multiple
sends outstanding on the basis of a buffering mechanism (usually in the operating
system kernel). In the most often used approach, the user is provided with a system
call create_buffer, which creates a kernel buffer, of a size specified by the user. This
solution implies that the client sends a message to a receiver’s port, where it is
buffered until requested by the server.

Buffered message-passing systems are characterised by the following features. First,
they are more complex than unbuffered message-passing based systems, since they
require creation, destruction, and management of the buffers. Second, they generate
protection problems, and cause catastrophic event problems, when a process owning
a port dies or is killed. In a system with no buffering strategy, processes must be
synchronised for a message transfer to take place. This synchronisation is called
rendezvous see [Gammage and Casey 1985] and [Gammage et al. 1987].
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3.2.2.5 Unreliable versus Reliable Primitives

Different catastrophic events, such as a computer crash or a communication system
failure may happen to a distributed system. These can cause either a request
message being lost in the network, or a response message being lost or delayed in
transit, or the responding computer “dying” or becoming unreachable. Moreover,
messages can be duplicated, or delivered out of order. The primitives discussed
above cannot cope with these problems. These are called unreliable primitives. The
unreliable send primitive merely puts a message on the network. There is no
guarantee of delivery provided and no automatic retransmission is carried out by the
operating system when a message is lost.

Dealing with failure problems requires providing reliable primitives. In a reliable
inter-process communication, the send primitive handles lost messages using
internal retransmissions, and acknowledgments on the basis of timeouts. This
implies that when send terminates, the process is sure that the message was received
and acknowledged.

The question arises of whether reliability should be dealt with at such a high level.
Should recovery mechanisms be provided by a network communication facility, in
particular either by a transport protocol or lower level protocols? These problems
were attacked in [Saltzer et al. 1984]. The authors proposed design principles that
help guide placement of functions among modules of a distributed system. One of
these principles, called end-to-end argument, suggests that “functions placed at a
low level of a system may be redundant or of little value when compared with the
cost of providing them at that low level”. This allows us to suggest that the
placement of recovery mechanisms at a process level is sound.

Figure 3.6: Message passing; (a) unreliable; (b) reliable
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Reliable and unreliable receives differ in that the former automatically sends an
acknowledgment confirming message reception, whereas the latter does not. Two-
way communication requires the utilisation of these simple message-passing
primitives in a symmetrical way. If the client requested any data, the server sends
reply messages (responses) using the send primitive. For this reason the client has to
set the receive primitive up to receive any message from the server. Reliable and
unreliable primitives are contrasted in Figure 3.6.

Dealing with multiple requests

Two types of semantics are defined, depending on what the server does if it receives
multiple copies of a message. It might repeat its processing of the message, even if
only one execution was actually desired. Since in this case the reliable primitives do
their best to ensure that the request is executed at least once (Figure 3.7(a)). This is
called communication with at-least-once semantics.

In many cases, of course, repeated execution of a request could destroy the
consistency of information, so it is desirable to have primitives which ensure that a
request is executed once and only once. This means that a request is idempotent. A
primitive with exactly-once semantics makes sure that only one execution of the
receiver’s operation is performed. It is the most desired semantics, but the most
difficult to implement.

Exactly-once primitives can be implemented on the basis of a request list
maintained by the responding end of the system (Figure 3.7(b)). In this case, each
time a request message is received, the server checks whether the message_id is on
the request list. If yes, this means that this request has been retransmitted and a
response message is lost. The previously computed result is sent in a new response
message. Otherwise, the message_id is placed on the request list, the requested task
is performed, a result is associated with a message_id entry, and a response message
is sent out.

Figure 3.7: Message-passing semantics. (a) at-least-once; (b) exactly-once
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3.2.3 Structured Forms of Message-Passing Based Communication

A structured form of communication using message passing is achieved by
distinguishing requests and replies, and providing for bidirectional information
flow. This means that the client sends a request message and waits for a response.
The send primitive combines the previous client’s send to the server with a receive
to get the server’s response. On the other site the receiver (server) acquires a
message containing work for them to do and sends the response to the client.

It should be emphasised that different semantics can be linked with these primitives.
The result of the send and receive combination in the structured form of the send
primitive is one operation performed by the inter-process communication system.
This implies that rescheduling overhead is reduced, buffering is simplified (because
request data can be left in a client’s buffer, and the response data can be stored
directly in this buffer), and the transport-level protocol is simplified (because error
handling as well as flow control exploit the response to acknowledge a request and
authorise a new request) [Cheriton 1988].

When the requesting process is blocked waiting for a reply, it can be blocked
indefinitely. This can occur because of a communication failure, a destination
computer failure, or simply because the server process does not exist any longer or
is too busy to compute a response in a reasonable time. This requires provision of a
mechanism to allow the requesting process to withdraw from the commitment to
wait for the response.

3.3 Remote Procedure Calls

Message passing between remote and local processes is visible to the programmer.
It is a completely untyped technique. Programming message-passing based
applications is difficult and error prone. An answer to these problems is the RPC
technique that is based on the fundamental linguistic concept known as the
procedure call. The very general term remote procedure call means a type-checked
mechanism that permits a language-level call on one computer to be automatically
turned into a corresponding language-level call on another computer. The first and
most complete description of the RPC concept was presented by [Birrell and Nelson
1984].

3.3.1 Executing Remote Procedure Calls

The idea of remote procedure calls (RPC) is very simple and is based on the model
where a client sends a request and then blocks until a remote server sends a
response. This approach is very similar to a well-known and well-understood
mechanism referred to as a procedure call. Thus, the goal of a remote procedure call
is to allow distributed programs to be written in the same style as conventional
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programs for centralised computer systems. This implies that RPC must be
transparent. This leads to one of the main advantages of this communication tech-
nique: the programmer need not be aware that the called procedure is executing on a
local or a remote computer.

When remote procedure calls are used a client interacts with a server by means of a
call. To illustrate that both local and remote procedure calls look identical to the
programmer, suppose that a client program requires some data from a file. For this
purpose there is a read primitive in the program code.

In a system supported by a classical procedure call, the read routine from the library
is inserted into the program. This procedure, when executing, firstly, puts the
parameters into registers, and next traps to the kernel as a result of issuing a read
system call. From the programmer point of view there is nothing special; the read
procedure is called by pushing the parameters onto the stack and is executed. In a
system supported by RPC, the read routine is a remote procedure which runs on a
server computer. In this case, another call procedure, called a client stub, from the
library is inserted into the program. When executing, it also traps to the kernel.
However, rather than placing the parameters into registers, it packs them into a
message and issues the send primitive, which forces the operating system to send it
to the server. Next, it calls the receive primitive and blocks itself until the response
comes back.

The server’s operating system passes the arrived message to a server stub, which is
bound to the server. The stub is blocked waiting for messages as a result of issuing
the receive primitive. The parameters are unpacked from the received message and
a procedure is called in a conventional manner. Thus, the parameters and the return
address are on the stack, and the server does not see that the original call was made
on a remote client computer. The server executes the procedure call and returns the
results to the virtual caller, i.e., the server stub. The stub packs them into a message
and issues a send to return the results. The stub comes back to the beginning of the
loop to issue the receive primitive, and blocks waiting for the next request message.

The result message on the client computer is copied to the client process (practically
to the stub’s part of the client) buffer. The message is unpacked, the results
extracted, and copied to the client in a conventional manner. As a result of calling
read, the client process finds its data available. The client does not know that the
procedure was executing remotely. The whole sequence of operations is illustrated
in Figure 3.8.

As we could see above, the RPC mechanism can be used to provide an inter-process
communication facility between a single client process and a single server process.
Such a mechanism can be extended to a system of many clients and many servers.
Furthermore, the RPC facility can be used in homogeneous as well as
heterogeneous computer systems.
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3.3.2 Basic Features and Properties

It is evident that the semantics of remote procedure calls is analogous to local
procedure calls: the client is suspended when waiting for results; the client can pass
arguments to the remote procedure; and the called procedure can return results.
However, since the client’s and server’s processes are on different computers (with
disjoint address spaces), the remote procedure has no access to data and variables of
the client’s environment.

Figure 3.8: An RPC example: a read call

The difference between procedure calls and remote procedure calls is implied by the
fact that the client and called procedure are in separate processes, usually running
on separate computers. Thus, they are prone to the failures of computers as well as
communication systems, they do not share the same address space, and they have
separate lifetimes.

There is also a difference between message passing and remote procedure calls.
Whereas in message passing all required values must be explicitly assigned into the
fields of a message before transmission, the remote procedure call provides
marshalling of the parameters for message transmission, i.e., the list of parameters is
collected together by the system to form a message.

A remote procedure call mechanism should exhibit the following six properties
[Nelson 1981], [LeBlanc 1982], [Hamilton 1984] and [Goscinski 1991]:

The implementation of a transparent remote procedure call must maintain the
same semantics as that used for local procedure calls.
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The level of static type checking (by the compiler) applied to local procedure
calls applies equally to remote procedure calls.

All basic data types should be allowed as parameters to a remote procedure
call.

The programming language that supports RPC should provide concurrency
control and exception handling.

A programming language, which uses RPC, must have some means of
compiling, binding, and loading distributed programs onto the network.

RPC should provide a recovery mechanism to deal with orphans when a remote
procedure call fails.

3.3.3 Parameters and Results in RPCs

Parameter passing and the representation of parameters and results in messages are
among the most important problems of the remote procedure call.

3.3.3.1 Representation of Parameters and Results

Parameters can be passed by value or by reference. By-value message systems
require that message data be physically copied. Thus, passing value parameters over
the network is easy: the stub copies parameters into a message and transmits it. If
the semantics of communication primitives allow the client to be suspended until
the message has been received, only one copy operation is necessary. Asynchronous
message semantics often require that all message data be copied twice: once into a
kernel buffer and again into the address space of the receiving process. Data
copying costs can dominate the performance of by-value message systems. Moreo-
ver, by-value message systems often limit the maximum size of a message, forcing
large data transfers to be performed in several message operations reducing
performance.

Passing reference parameters (pointers) over a network is more complicated. In
general, passing data by-reference requires sharing of memory. Processes may share
access to either specific memory areas or entire address spaces. As a result,
messages are used only for synchronisation and to transfer small amounts of data,
such as pointers to shared memory. The main advantage of passing data by-
reference is that it is cheap — large messages need not be copied more than once.
The disadvantages of this method are that the programming task becomes more
difficult, and it requires a combination of virtual memory management and inter-
process communication, in the form of distributed shared memory.

A unique, a system wide pointer is needed for each object so that it can be remotely
accessed. For large objects (e.g., files), some kind of capability mechanism could be
set up using capabilities as pointers, but for small objects (e.g., integers, booleans)
the overhead involved in creating a capability and sending it is too large, so that is
highly undesirable. However, the data must be finally copied.
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Linking both approaches, passing data by-value and passing data by-reference, can
be the most effective solution. The representation of parameters and results in
messages is natural for homogeneous systems. The representation is complicated in
heterogeneous systems.

3.3.3.2 Marshalling Parameters and Results

Remote procedure calls require the transfer of language-level data structures
between two computers involved in the call. This is generally performed by packing
the data into a network buffer on one computer and unpacking it at the other site.
This operation is called marshalling.

More precisely, marshalling is a process performed both when sending the call
(request) as well as when sending the result, in which three actions can be
distinguished:

Taking the parameters to be passed to the remote procedure and results of
executing the procedure;

Assembling these two into a form suitable for transmission among computers
involved in the remote procedure call; and

Disassembling them on arrival.

The marshalling process must reflect the data structures of the language. Primitive
types, structured types, and user defined types must be considered. In the majority
of cases, marshalling procedures for scalar data types and procedures to marshal
structured types built from the scalar ones are provided as a part of the RPC
software. According to [Nelson 1981], the compiler should always generate in-line
marshalling code for every remote call. This permits more efficient marshalling than
interpretive schemes but can lead to unacceptably large amounts of code. However,
some systems allow the programmer to define marshalling procedures for types that
inplude pointers [Bacon and Hamilton 1987].

3.3.4 Client Server Binding

Usually, RPC hides all details of locating servers from clients. However, as we
stated in Section 2.3, in a system with more than one server, e.g., a file server and a
print server, the knowledge of location of files or a special type of printer is
important. This implies the need for a mechanism to bind a client and a server, in
particular, to bind an RPC stub to the right server and remote procedure.

Naming and addressing

[Birrell and Nelson 1984] identified two aspects of binding:

The way a client specifies what it wants to be bound to — this is the problem of
naming;
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The way of determination by a client (caller) of the computer address for the
server and the specification of the procedure to be invoked — this is the
problem of addressing.

The first aspect of binding, i.e., naming, was solved in [Birrell and Nelson 1984] in
terms of interface names. In their proposal, individual procedures are identified by
entry point numbers within an interface. Interface names are user created. The
second problem is how to locate a server for a client. This issue was discussed in
Section 2.6.

As discussed in Section 2.3.1, in a distributed system there are two different forms
of cooperation between clients and servers. The first form assumes that a client
requests a temporary service. The second form indicates that a client wants to
arrange for a number of calls to be directed to a particular serving process. In the
case of requests for a temporary service, the problem can be solved using broadcast
and multicast messages to locate a process or a server. In the case that a solution is
based on a name server this is not enough, because the process wants to call the
located server during a time horizon.

This means that a special binding table should be created and registered containing
established long term binding objects, i.e., client names and server names. The RPC
run-time procedure for performing remote calls expects to be provided with a
binding object as one of its arguments. This procedure directs a call to the binding
address received. It should be possible to add new binding objects to the binding
table, remove binding objects from the table (which in practice means breaking a
binding), and update the table as well. In systems with name server(s), broadcasting
is replaced by the operation of sending requests to a name server requesting a
location of a given server and sending a response with an address of this server.

In summary, binding can be performed in two different ways: statically through the
third party such as a name server; clients and servers are user processes, and
dynamically this binding is between a client channel and a server process, and is
controlled by the server which can allocate its server process to active channels.

Binding time

It is important to know when binding can take place. The construction and use of an
RPC-based distributed application can be divided into three phases: compile time,
link time, and call time [Bershad et al. 1987].

Compile time:

The client and server modules are programmed as if they were intended to be
linked together.

A description of the interface implemented by a server is produced. It yields
two stubs: client and server. The client stub, which looks to the client like a
server, is linked with the client. The server stub, which looks to the server like a
client, is linked with the server.

The stubs shield the client and server from the details of binding and transport.
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Ideally the stubs are produced mechanically from the definition of the interface,
by a stub generator.

Link time:

A server makes its availability known by exporting (or registering) itself
through the RPC routine support mechanism.

A client binds itself to a specific server by making an import call to this
mechanism.

Calls can take place, once the binding process has been completed.

It is expected that binding will be performed less frequently than calling.

Call time:

In providing procedure call semantics by the inter-process communication
facility of an operating system, the stubs employ some underlying transport
layer protocol to transmit arguments and results reliably between clients and
servers.

The RPC facility should include some control information in each transport
packet to track the state of a call.

The problem arises of deciding which of the two inter-process communication
techniques presented above is better, if any, and whether there are any suggestions
for when, and for what systems, these facilities should be used.

First of all, the syntax and semantics of the remote procedure call are the functions
of the programming language being used. On the other hand, choosing a precise
syntax and semantics for message passing is more difficult than for RPC because
there are no standards for messages. Moreover, neglecting language aspects of RPC
and because of the variety of message-passing semantics, these two facilities can
look very similar. Examples of a message-passing system that looks like RPC are
message passing for the V system (which in [Cheriton 1988] is called now the
remote procedure call system), message passing for Amoeba [Tanenbaum and van
Renesse 1985] and RHODOS [De Paoli et al. 1995].

Secondly, the RPC has an important advantage that the interface of a remote service
can be easily documented as a set of procedures with certain parameter and result
types. Moreover, from the interface specification, it is possible to automatically
generate code that hides all the details of messages from a programmer. Note that a
simplified structure that hides message details reduces the range of communication
options available to applications programmers. On the other hand, a message-
passing model provides flexibility not found in remote procedure call systems.
However, this flexibility is at the cost of difficulty in the preparation of precisely
documented behaviour of a message-passing interface.

3.4 Message Passing versus Remote Procedure Calls
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The problem is, when these facilities should be used. The message-passing
approach appears preferable when serialisation of request handling is required. The
RPC approach appears preferable when there are significant performance benefits to
concurrent request handling. RPC is particularly efficient for request-response
transactions.

Inter-process communication is a distributed system facility whose performance has
been extensively studied, in contrast to other facilities or issues. Unfortunately,
these studies have been carried out mainly for one particular system [Cheriton 1988]
[Rashid 1986] [Welch 1986]. This implies that it is very hard to say which form of
inter-process communication offers the best performance.

3.5 Group Communication

When there is a need to send a request to a number of servers, group communication
should be used for the performance and ease of programming reasons. The details of
group communication will be presented in Chapter 9. In this section, we briefly
introduce some basic concepts about group communication.

3.5.1 Basic Concepts

Distributed computing systems provide opportunities to improve the overall
performance through parallel execution of programs on a cluster of workstations,
decrease response time of databases using data replication, support synchronous
distant meetings and cooperative workgroups, and increase reliability by service
multiplication. In these cases many servers must contribute to the overall
application. This implies a need to invoke multiple services by sending a
simultaneous request to a number of servers, called a group.

The concept of a process group is not new. The V-system [Cheriton and
Zwaenepoel 1985], Amoeba [Tanenbaum 1990], Chorus [Rozier et al. 1988], and
RHODOS [Joyce and Goscinski 1997] all support this basic abstraction in providing
process groups to applications and operating system services with the use of one-to-
many communication pattern, called group communication.

A group is a collection of processes that share common features (described by a set
of attributes) or application semantics, for instance file servers and printer servers.
In general, processes are grouped in order to [Liang et al. 1990]:

deal with a set of processes as a single abstraction;

form a set of servers which can provide an identical service (but not necessary)
of the same quality);

provide a high-level communication abstraction to simplify user level programs
in interacting with a group of receivers;

encapsulate the internal state and hide interactions among group members from
the clients, and provide a uniform interface to the external world;
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deliver a single message to multiple receivers thereby reducing the sender and
receiving overheads; and

construct larger systems using groups as their fundamental blocks.

There are several issues which allow us to set up a taxonomy of process groups:
group structure, group behaviour, and group types.

3.5.1.1 Group Structures

Four group structures are often supported to provide the most appropriate policy for
a wide range of user applications, as shown in Figure 3.9.

Figure 3.9: Group structures

The peer group is composed of a set of member processes that cooperate for a
particular purpose, see Figure 3.9(a). Fault-tolerant and load sharing
applications dominate this type of group style. The major problem of the peer
group style is that they do not scale very well.

The client-server group is made from a potentially large number of client
processes with a peer group of server processes, see Figure 3.9(b).

The diffusion group is a special case of the client-server group, see Figure
3.9(c). Here, a single request message is sent by a client process to a full set of
server and client processes.

The hierarchical group is an extension to the client-server group, see Figure
3.9(d). In large applications with a need for sharing between large numbers of
group members, it is important to localise interactions within smaller clusters of
components in an effort to increase performance. In client-server applications
with the hierarchical server, the client is bound transparently to a subgroup that
accepts requests on its behalf. The subgroup is responsible for performing the
mapping. However, the major problem with hierarchical groups is that they
require a base group that may fail leaving the group inoperative.
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3.5.1.2 Behaviour Classification of Process Groups

The application programmer must be aware of the behaviour of the application
before a suitable policy can be formulated. According to the external behaviour,
process groups can be classified into two major categories: deterministic and non-
deterministic [Neufield et al. 1990] [Joyce and Goscinski 1997].

Deterministic groups: a group is considered deterministic if each member must
receive and act on a request. This requires the coordination and synchronisation
between the members of the group. In a deterministic group, all members are
considered equivalent. When receiving the same request in the same state, all
members of the group will execute the same procedure and every member of
the group will transfer to the same new state and produce the same response
and external events.

Non-deterministic groups: non-deterministic groups assume their applications
do not require consistency in group state and behaviour, and they relax the
deterministic coordination and synchronisation. Each group member is not
equivalent and can provide a different response to a group request, or not
respond at all, depending on the individual group member’s state and function.
Due to the relaxed group consistency requirements of the non-deterministic
groups, the overheads associated with this group communication are
substantially less than those of the deterministic groups.

3.5.1.3 Closed and Open Groups

In general, there are two group types of groups: closed or open [Tanenbaum 1990].
In the closed group only the members of the group can send and receive messages
to access the resource(s) of the group. In the open group not only can the members
of the group exchange messages and request services but non-members of the group
can send messages to group members. Importantly, the non-members of the group
need not join the group nor have any knowledge that the requested service is
provided by a group.

Closed groups are typically used to support parallel processing where a group of
process servers work together to formulate a result which does not require the
interaction of members outside the group. Closed groups are often implemented in a
peer group or diffusion group structure. Conversely, an open group would best suit
a replicated file server where process members of the group should have the ability
to send messages to the group members. A common group structure for the open
group is the client-server or hierarchical group.

3.5.2 Group Membership Discovery and Operations

Group membership is responsible for providing a consistent view to all the members
of the current group. Each member of the group must exchange messages amongst
themselves to resolve the current status and membership of the group. The
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identification of the current members of the group is important in providing the
specified message ordering semantics. Any change in group membership will
require all members to be notified to satisfy the requested message requirements.
For instance, if fault tolerance is required by the application program, not only must
membership changes be provided to all group members before the next message,
but all group members must be notified of the change at the same point in the
message sequence of the group.

An extension to the group membership semantics is the dynamic and static group
membership. Static group membership does not allow any members to leave or join
the group after initiation of the group. On the other hand, dynamic group
membership semantics allow processes to join and leave the group.

There are two different sets of primitives, the first used to support group
membership discovery [Cristian 1991], and the second to support group association
operations [Amir et al. 1993] [Birman and Joseph 1987] [Jia et al 1996]. Group
membership discovery allows a process to determine a state of the group and its
membership. However, as the requesting process has no knowledge of the group
members location, network broadcast is required. The overheads associated with
this method can be prohibitive if the network is large.

There are four operations that address group association: create, destroy, join, and
leave. Initially a process requiring group communication creates the required group.
A process is considered to be a group member after it has successfully issued a
group join primitive, and will remain a member of the group until the process issues
a leave group primitive. When the last member of the group leaves, the group will
be destroyed.

Essential to the role of group operations is state management for its members.
Whenever a process issues and completes a join group primitive, it will be provided
with the complete state of the group. The groups’ state will be provided from the
current group members and will contain a copy of the current groups’ view,
delivered messages, and current message sequence. The state transferred must not
violate the message ordering and reliability of the application messages.

Unfortunately, group membership is greatly complicated by network partitioning
and process or computer failure. The group association primitives allow member
processes to leave and join at any given time of the life of the group. Following
network partitioning members of a group can be un-reachable for some period of
time. This is further complicated as in an asynchronous environment, such as a
distributed system, where it is almost impossible to distinguish between the slow
response of a remote process to that of a partitioned network [Amir et al. 1992].
Hence, the group membership facility must provide the flexibility to maintain
serviceable performance during network partitioning (although slightly degraded)
by allowing a subgroup to form inside the communicating group. When the network
partitions disappear the group membership support should allow the subgroups to
join back into the original process group. This joining of the subgroups must re-
synchronise the state of each member of the group to maintain consistency of the
data and messages.
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In fault tolerant applications, if a group member process terminates and leaves the
group without notifying the current group members, the group will have to identify
by its own means the terminated member. Once the group has come to an agreement
on the member that has terminated, (i.e., the terminated process no longer
responding to any incoming messages) the group membership state can be
committed. Therefore, if the application requires consistent data between the
members of the group, the terminated member may be removed from the group with
the group membership support providing a consistent view of all the messages and
events that have occurred. Depending upon the application, the group membership
support must maintain the message ordering semantics requested by providing the
appropriate state, message, and data consistency for all current group members.

3.6 Distributed Shared Memory

There are two basic paradigms for interprocess communication in distributed
systems: one is the message-passing paradigm, which includes message-passing
systems and remote procedure call (RPC) introduced above, the other is shared-
memory paradigm. The message-passing paradigm uses two basic primitives, Send
and Receive for interprocess communication, while the shared-memory paradigm
provides processes in a system with a shared address space. Processes use this
address space in the same way they use normal local memory. That is, processes
access data in the shared address space through Read and Write primitives. This
section introduces the distributed shared memory system.

3.6.1 What is a Distributed Shared Memory (DSM) System?

Distributed shared memory (DSM) is an abstraction used for sharing data between
computers that do not share physical memory. Processes access DSM by reads and
updates to what appears to be ordinary memory within their address space.
However, an underlying run-time system ensures transparently that processes
executing at different computers observe the updates made by one another. It is as if
the processes access a single shared memory, but in fact the physical memory is
distributed, as depicted in Figure 3.10, where processes running on each computer
access the DSM as if they access a single shared memory; each computer is
connected with one another through the network.
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Figure 3.10: The distributed shared memory abstraction

The main point of DSM is that it spares the programmer the concerns of message
passing when writing applications that might otherwise have to use it. DSM is
primarily a tool for parallel and distributed (group) applications in which individual
shared data items can be accessed directly. DSM is in general less appropriate in
client-server systems, however, servers can provide DSM that is shared between
clients.

As a communication mechanism, DSM is comparable with message-passing rather
than with request-reply based communication (client-server model), since its
application to parallel processing, in particular, entails the use of asynchronous
communication. The DSM and message-passing approaches can be compared as
follows:

Programming model: Under the message-passing model, variables have to be
marshalled from one process, transmitted and unmarshalled into other variables at
the receiving process. By contrast, with shared memory, the processes involved
share variables directly, so no marshalling is necessary -- even of pointers to shared
variables – and thus no separate communication operations are necessary.

Synchronization between processes is achieved in the message model through
message passing primitives themselves, using techniques such as the lock server
implementation. In the case of DSM, synchronization is via normal constructs for
shared-memory programming such as locks and semaphores. Finally, since DSM
can be made persistent, processes communicating via DSM may execute with non-
overlapping lifetimes. A process can leave data in an agreed memory location for
the other to examine when it runs. By contrast, processes communicating via
message passing must execute at the same time.

Efficiency: Experiments show that certain parallel programs developed for DSM
can be made to perform about as well as functionally equivalent programs written
for message passing platforms on the same hardware [Carter et al 1991] – at least in
the case of relatively small numbers of computers (ten or so). However, this result
can not be generalized. The performance of a program based on DSM depends upon
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many factors, particularly the pattern of data sharing, such as whether an item is
updated by several processes.

3.6.2 Design and Implementation Issues

There are several design and implementation issues concerning the main features
that characterize a DSM system. These are the structure of data held in DSM; the
synchronization model used to access DSM consistently at the application level; the
DSM consistency model, which governs the consistency of data values accessed
from different computers; the update options for communicating written values
between computers; the granularity of sharing in a DSM implementation; and the
problem of thrashing.

3.6.2.1 Structure

Structure defines the abstratc view of the shared-memory space to be presented to
the application programmers of a DSM system. For example, the shared-memory
space of one DSM system may appear to its programmers as a storage for words,
while the programmers of another DSM system may view its shared-memory space
as a storage for data objects. The three commonly used approaches for structuring
the shared-memory space of a DSM system are as follows:

No structuring. Most DSM systems do not structure their shared-memory
space. In these systems, the shared-memory space is simply a linear array of
words. An advantage of the use of unstructured shared-memory space is that it
is convenient to choose any suitable page size as the unit of sharing and a fixed
grain size may be used for all applications. Therefore, it is simple and easy to
design such a DSM system. It also allows applications to impose whatever data
structures they want on the shared memory.

Structuring by data type. In this method, the shared-memory space is structured
either as a collection of objects or as a collection of variables in the source
language. The granularity in such DSM systems is an object or a variable. But
since the sizes of the objects and data types vary greatly, these DSM systems
use variable grain size to match the size of the object/variable being accessed
by the application. The use of variable grain size complicates the design and
implementation of these DSM systems.

Structuring as a database. Another method is to structure the shared memory
like a database. In this method, the shared-memory space is ordered as an
associative memory (a memory addressed by content rather than by name or
address) called a tuple space, which is a collection of immutable tuples with
typed data items in their fields. A set of primitives that can be added to any
base language (such as C or FORTRAN) are provided to place tuples in the
tuple space and to read or extract them from tuple space. To perform updates,
old data items in the DSM are replaced by new data items. Processes select
tuples by specifying the number of their fields and their values or types.
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Although this structure allows the location of data to be separated from its
value, it requires programmers to use special access functions to interact with
the shared-memory space. Therefore, access to shared data is non-transparent.
In most other systems, access to shared data is transparent.

3.6.2.2 Synchronization Model

Many applications apply constraints concerning the values stored in shared
memory. In order to use DSM, a distributed synchronization service needs to be
provided, which includes familiar constructs such as locks and semaphores. Even
when DSM is structured as a set of objects, the implementors of the objects have to
be concerned with synchronization. Synchronization constructs are implemented
using message passing. DSM implementations take advantage of application-level
synchronization to reduce the amount of update transmission. The DSM then
includes synchronization as an integrated component.

3.6.2.3 Consistency

A DSM system is a replication system and allows replication of shared data items.
In such a system, copies of shared data items may simultaneously be available in the
main memories of a number of nodes. In this case, the main problem is to solve the
memory coherence that deals with the consistency of a piece of shared data lying in
the main memories of two or more nodes. In other words, the issue of consistency
arises for a DSM system which replicates the contents of shared memory by caching
it at separate computers.

Consistency requirements vary from application to application. A consistency
model besically refers to the degree of consistency that has to be maintained for the
shared-memory data for the memory to work correctly for a certain set applications.
It is defined as a set of rules that application must obey if they want the DSM
system to provide the degree of consistency guaranteed by the consistency model.
Several consistency models have been proposed in the literature. Of these, the main
ones will be introduced in the next section.

3.6.2.4 Update Options

Applicable to a variety of DSM consistency models, two main implementation
choices have been devised for propagating updates made by one process to the
others: write-update and write-invalidate.

Write-update: The updates made by a process are made locally and multicast to
all other replica managers processing a copy of the data item, which
immediately modify the data read by local processes. Processes read the local
copies of data items without the need for communication. In addition to
allowing multiple readers, several processes may write the same data item at
the same time; this is known as multiple-reader/multiple-writer sharing.
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Write-invalidate: This is commonly implemented in the form of multiple-
reader/single-writer sharing. At any time, a data item may either be accessed in
read-only mode by one or more processes, or it may be read and written by a
single process. An item that is currently accessed in read-only mode can be
copied indefinitely to other processes. When a process attempts to write to it, a
multicast message is first sent to all other copies to invalidate them and this is
acknowledged before the write can take place; the other processes are thereby
prevented from reading stale data (that is, data that are not up to date). Any
processes attempting to access the data item are blocked if a writer exists.
Eventually, control is transferred from the writing process, and other accesses
may take place once the update has been sent. The effect is to process all
accesses to the item on a first-come, first-served basis.

3.6.2.5 Granularity

An issue that is related to the structure of DSM is the granularity of sharing.
Conceptually, all processes share the entire contents of a DSM. As processes
sharing DSM execute, however, only certain parts of the data are actually shared
and then only for certain times during the execution. It would be clearly very
wasteful for the DSM implementation always to transmit the entire contents of
DSM as processes access and update it. What should be the unit of sharing in a
DSM implementation? That is, when a process has written to DSM, which data does
the DSM run-time send in order to provide consistent values elsewhere?

In many cases, DSM implementations are page-based implementations. There are a
few factors that influence the choice of unit (block size), such as paging overhead,
directory size, thrashing and false sharing etc. The relative advantages and
disadvantages of small and large unit sizes make it difficult for a DSM designer to
decide on a proper block size. Therefore, a suitable compromise in granularity,
adopted by several existing DSM systems, is to use the typical page size of a
conventional virtual memory implementation as the block size of a DSM system.
Using page size as the block size (unit) of a DSM system has the following
advantages:

1. It allows the use of existing page-fault schemes (i.e., hardware
mechanisms) to trigger a DSM page fault. Thus memory coherence
problems can be resolved in page-fault handlers.

It allows the access right control (needed for each shared entity) to be
readily integrated into the functionality of the memory management unit of
the system

As long as a page can fit into a packet, page sizes do not impose undue
communication overhead at the time of network page fault.

Experience has shown that a page size is a suitable data entity unit with
respect to memory contention.

2.

3.

4.
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3.6.2.6 Thrashing

A potential problem with write-invalidate protocols is thrashing. Thrashing is said
to occur where the DSM run-time spends an inordinate amount of time invalidating
and transfering shared data compared with the time spent by application processes
doing useful work. It occurs when several processes compete for the same data
item, or for falsely shared data items. If, for example, one process repeatly reads a
data item that another is regularly updating, then this item will be constantly
transferred from the writer and invalidated at the reader. This is an example of a
sharing pattern for which write-invalidate is inappropriate and write-update would
be better.

3.6.3 Consistency Models

This section describes several most common used consistency models for DSM
systems.

3.6.3.1 Sequential Consistency Model

The sequential consistency model was proposed by [Lamport 1978]. A shared-
memory system is said to support the sequential consistency model if all processes
see the same order of all memory access operations on the shared memory. The
exact order in which the memory access operations are interleaved does not matter.
That is, if the three operations read (r1), write (w1), read (r2) are performed on a
memory address in that order, any of the orderings (r1, w1, r2), (r1, r2, w1), ...... of
the three operations is acceptable provided all processes see the same ordering. If
one process sees one of the orderings of the three operations and another process
sees a different one, the memory is not a sequentially consistent memory.

The consistency requirement of the sequential consistency model is weaker than
that of the strict consistency model because the sequential consistency model does
not guarantee that a read operation on a particular memory address always returns
the same value as written by the most recent write operation to that address. As a
consequence, with a sequentially consistent memory, running a program twice may
not give the same result in the absence of explicit synchronization operations.

A DSM system supporting the sequential consistency model can be implemented by
ensuring that no memory operation is started until all the previous ones have been
completed. A sequentially consistent memory provides one-copy/single-copy
semantics because all the processes sharing a memory location always see exactly
the same contents stored in it. This is the most intuitively expected semantics for
memory coherence. Therefore, sequential consistency is acceptable by most
applications.
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3.6.3.2 Weak Consistency Model

The weak consistency model is designed to attempt to avoid the costs of sequential
consistency on multiprocessors, while retaining the effect of sequential consistency.
This model takes advantage of the following two characteristics common to many
applications:

1.

2.

It is not necessary to show the change in memory done by every write
operation to other processes. The results of several write operations can be
combined and sent to other processes only when they need it. For example,
when a process executes in a critical section, other processes are not
supposed to see the changes made by the process to the memory until the
process exits from the critical section. In this case, all changes made to the
memory by the process while it is in its critical section need be made
visible to other processes only at the time when the process exits from the
critical section.

Isolated accesses to shared variables are rare. That is, in many applications,
a process makes several accesses to a set of shared variables and then no
access at all to the variables in this set for a long time.

Both characteristics imply that better performance can be achieved if consistency is
enforced on a group of memory reference operations rather than on individual
memory reference operations. This is exactly the basic idea behind the weak
consistency model.

The main problem in implementing this idea is determining how the system can
know that it is time to show the changes performed by a process to other processes
since this time is different for different applications. Since there is no way for the
system to know this on its own, the programmers are asked to tell this to the system
for their applications. For this, a DSM system that supports the weak consistency
model uses a special variable called a synchronization variable. The operations on it
are used to synchronize memory. That is, when a synchronization variable is
accessed by a process, the entire (shared) memory is synchronized by making all the
changes to the memory made by all processes visible to all other processes. Note
that memory synchronization in a DSM system will involve propagating memory
updates done at a node to all other nodes having a copy of the same memory
addresses.

3.6.3.3 Release Consistency Model

In the weak consistency model the entire (shared) memory is synchronized when a
synchronization variable is accessed by a process, and memory synchronization
basically involves the following operations:

1. All changes made to the memory by the process are propagated to other
nodes.
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2. All changes made to the memory by other processes are propagated from

other nodes to the process’s node.

A closer observation shows that this is not really necessary because the first
operation need only be performed when the process exits from a critical section and
the second operation need only be performed when the process enters a critical
section. Since a single synchronization variable is used in the weak consistency
model, the system cannot know whether a process accessing a synchronization
variable is entering a critical section or exiting from a critical section. Therefore,
both the first and second operations are performed on every access to a
synchronization variable by a process. For better performance and development of
the weak consistency model, the release consistency model was designed to provide
a mechanism to clearly tell the system whether a process is entering a critical
section or exiting from a critical section so that the system can decide and perform
only either the first or the second operation when a synchronization variable is
accessed by a process. This is achieved by using two synchronization variables
(called acquire and release) instead of a single synchronization variable. Acquire is
used by a process to tell the system that it is about to enter a critical section, so that
the system performs only the second operation when this variable is accessed. On
the other hand, release is used by a process to tell the system that it has just exited
from a critical section, so that the system only performs the first operation when the
variable is accessed. Programmers are responsible for putting acquire and release at
suitable places in their programs.

3.6.3.4 Discussion

There still are other consistency models including:

Causal consistency: Reads and writes may be related by the happened-before
relationship. This is defined to hold between memory operations and when either (a)
they are made by the same process; (b) a process reads a value written by another
process; or (c) there exists a sequence of such operations linking the two operations.
The model’s constraint is that the value returned by a read must be consistent with
the happened-before relationship.

Processor consistency: The memory is both coherent and adheres to the pipelined
RAM model (see beblow). The simplest way to think of processor consistency is
that the memory is coherent and that all processes agree on the ordering of any two
write accesses made by the same process – that is, they agree with its program
order.

Pipelined RAM: All processors agree on the order of writes issued by any given
processor.

Among the consistency models described above, the most commonly used model in
DSM systems is the sequential consistency model because it can be implemented, it
supports the most intuitively expected semantics for memory coherence, and it does
not impose any extra burden on the programmers. Another important reason for its
popularity is that a sequential consistent DSM system allows existing
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multiprocessor programs to be run on multicomputer architectures without
modification. This is because programs written for multiprocessors normally
assume that memory is sequentially consistent. However, it is very restrictive and
hence suffers from the drawback of low consistency. Therefore, several DSM
systems are designed to use other consistency models that are weaker than
sequential consistency.

Weak consistency, release consistency and some of the other consistency models
weaker than sequential consistency and using explicit sunchronization variables
appear to be more promising for use in DSM design because they provide better
concurrency and also support the intuitively expected semantics. It does not seem to
be a significant disadvantage of these consistency models that synchronization
operations need to be known to the DSM run-time – as long as those supplied by the
system are sufficiently powerful to meet the needs of programmers. Hence the only
problem with these consistency models is that they require the programmers to use
the synchronization variables properly. This imposes some burden on the
programmers.

3.7 Summary

In this chapter we described two issues of the communication paradigm for the
client-server cooperation. Firstly, the communication pattern, including one-to-one
and one-to-many (group communication). Secondly, two techniques, message-
passing and RPC, which are used to develop distributed computing systems. The
message-passing technique allows clients and servers to exchange messages
explicitly using the send and receive primitives. Various semantics, such as direct
and indirect, blocking and non-blocking, buffered and unbuffered, reliable and
unreliable can be used in message passing. The RPC technique allows clients to
request services from servers by following a well-defined procedure call interface.
Various issues are important in RPC, such as marshalling and unmarshalling of
parameters and results, binding a client to a particular server, and raising
exceptions. Two very important aspects are presented for group communication:
semantics of message delivery and message response, and message ordering. These
aspects strongly influence quality of and cost of programming and application
development.

In addition to message-passing paradigm, we also discussed the distributed shared
memory systems. Distributed shared memory (DSM) is an abstraction used for
sharing data between computers that do not share physical memory. DSM is
primarily a tool for parallel applications or for any distributed application or group
of applications in which individual shared data items can be accessed directly.
Various design and implementation issues about DSM have been discussed in this
chapter. Among them, we focused on consistency models since a DSM system is a
replication system and consistency is the most important concern in such a system.
Several consistency models are presented, of these, the sequential consistency
model is most commonly used.
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Exercises

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

What factors influence the performance of a communication facility? 3.1

What are structured and unstructured messages? 3.2.1

What are the basic message-passing primitives? Describe how they work.
3.2.2

Discuss advantages and disadvantages of direct communication. 3.2.2

Why is the message queue associated with a port finite length? 3.2.2

What is the difference between blocking and nonblocking send primitives
based on the first criterion? 3.2.2

What are the buffered and unbuffered primitives? Compare their features.
3.2.2

Describe the difference between at-least-once semantics and exactly-once
semantics when dealing with multiple requests. 3.2.2

What is the RPC? What features does it have? 3.3.1

What are called by-value parameter passing and by-reference parameter
passing? 3.3.3

Describe how to marshal data from one computer to another computer. 3.3.3

What are the basic aspects of client server binding? 3.3.4

Compare the difference between message passing and RPC. 3.4

Why should we use a group? What structures do groups have in distributed
computing? 3.5.1

What operations can be used in group memebership management? What
happens if failures occur in a group? 3.5.2

What’s a DSM system? What is its purpose? 3.6.1

Why do we use page size as the block size of a DSM system? 3.6.2

What problem may a DSM system with sequential consistency model have?
3.6.3



CHAPTER 4 INTERNETWORKING

As mentioned before, network software is arranged in a hierarchy of layers. Each
layer presents an interface to the layers above it that extends the properties of the
underlying communication system. Network functions are achieved through the
layered protocols. This chapter discusses the communication protocols in a network,
especially, TCP/IP protocols used on the current Internet. The next generation of
Internet protocol – IPv6 is also addressed in the chapter.

4.1 Communication Protocol Architectures

4.1.1 The OSI Protocol Architecture

In the mid-1970s, different types of distributed systems (based on different types of
computer networks) started to appear. As most of them were implemented using
proprietary network models and protocols, it was very difficult to make machines
and distributed systems from different vendors talk to each other. As a result, a
range of standards started to be introduced.

The Open System Interconnection (OSI) Reference Model has been under
development by the International Standards Organisation (ISO) since 1977. The
reference model attempts to define a comprehensive set of protocols which will
allow computers and other devices to communicate. Networks that are implemented
using the model are “open” since they do not use proprietary protocols and therefore
will not be restricted to use equipment that is supplied by a particular manufacturer.
Once the OSI model has been fully defined and implemented, it is expected to
dominate all inter-computer communications. It is therefore liable to have a
profound effect on the way in which distributed programs will be structured.

The OSI reference model uses a layered protocol hierarchy, as illustrated in Figure
4.1. The following notations are applied to this model:

In order to specify the layer i protocol, we must precisely define the types of
protocol data unit used in this layer’s protocol entity. We also need to specify the

Layer i offers an interface to users at layer i+1. The interface is the only point
at which a user at layer i+1 can access the lower layers and is called the layer i
protocol service access point (SAP).

Layer i uses the interface provided by layer i-1 to implement its interface to
layer i+1 and the layer i protocols. The data unit used in the layer i protocol is
called the layer i protocol data unit (PDU).

By convention, layer 0 is considered as primitive.
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Figure 4.1: The layered protocol model

The approach taken in the OSI reference model is to identify a series of seven
protocol layers. Each layer builds upon the services offered by the subordinate
layers to offer an enhanced service to the upper layers, this policy is illustrated in
Figure 4.2.

Figure 4.2: The OSI reference model

operations (services) provided by this layer to transmit the PDUs of layer i+1 to the
peer protocol entity in a remote system. Of course, descriptions of the services used
by this layer (provided by the layer i-1) are also needed.
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Programs that need to communicate with each other but reside on separate hosts
may call upon the services offered by the top layer of protocol, or may use the
protocol services offered by the same layer. This may depend on which layer the
programs reside in (in terms of the OSI hierarchy). For example, assume program

on host A wants to communicate with program on host B using the layer 7
application protocols. After issues a PDU (message), the message is sent to the
lower layers to process. Each layer of the protocol then processes the request and
calls a series of lower-level operations that are provided by the subordinate layer.
Eventually the bottom layer is reached and a series of message are physically
transmitted to machine B by the communications hardware. At the destination
machine B the messages are passed up the layers to the application layer and then
delivered to

The operations provided by each layer of the OSI model are as follows:

Physical layer: is concerned with transmitting raw (uninterpreted) bits over a
communication channel. It mainly deals with mechanical, electrical, and
procedural interfaces (such as RS232, RS449 and X.21), and the physical
transmission medium.

Data link layer: provides the protocols which control the flow of information
over the link and makes the link appear free of transmission errors by using
error correction or error detection and retransmission techniques. The PDUs
used in this layer are usually called frames.

Network layer: controls the operation of the subnet (communication system
used by the network), implements higher level functions concerning the routing
of packets (PDUs used by network layer) from one machine to another and the
forwarding of packets between intermediary sites.

Transport layer: implements a “transport service” which moves information
from one machine to another. The services that are offered by this layer are
independent of the underlying mechanisms that are used by the lower three
layers to transmit information. Information may travel over a number of
communications channels using different technologies, and the details should
be hidden from the users of the transport layer. This layer is responsible for the
end-to-end transmission of the data.

Session layer: provides the protocols concerned with the establishment of
sessions (dialogues) between users (or user programs). Example applications
are remote login and file transfer.

Presentation layer: implements the mapping between the representations of
information used on different machines. The lower layers are concerned with
the transmission of uninterpreted information between processes; the
presentation layer is concerned with its meaning. The services provided by this
layer range from the low-level mapping, such as from one character set to
another, to the representations of higher level objects, such as arrays, records or
graphical representations of information.
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Application layer: provides the higher level functions or utility services that are
commonly needed when using computer networks, such as mail systems and
directory services.

4.1.2 Internet Architecture

The current “Internet” can be defined as “the collection of all computers that can
communicate, using the Internet protocol suite, with the computers and networks
registered with the Internet Network Information Center (InterNIC).” This
definition includes all computers to which one can directly send Internet Protocol
packets (or indirectly, through a firewall).

Internet is the largest data network in the world and is actually an interconnection of
several packet-switched networks. The Internet has a layered architecture: Figure
4.3 shows the comparison of Internet and OSI architectures.

Figure 4.3: Comparison of Internet and OSI architectures

The functions of each Internet layer are as follows:

Network access layer: This layer relies on the data link and physical layer
protocols of the appropriate network and no specific protocols are defined.
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Internet layer. The Internet Protocol (IP) defined for this layer is a simple
connectionless datagram protocol. It offers no error recovery and any error
packets are simply discarded.

Transport layer: Two protocols are defined: the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP). TCP is a connection-oriented
protocol that permits the reliable transfer of data between the source and
destination end users. UDP is a connectionless protocol that offers neither error
recovery nor flow control.

User process layer (application): This layer describes the applications and
technologies that are used to provide end-user services.

Internet Protocol enables communication between computers on the Internet by
routing data from a source computer to a destination computer. However, computer-
to-computer communication only solves half of the network communication
problem. In order for an application program, such as a mail program, to
communicate with another application, such as a mail server, there needs to be a
way to send data to specific programs within a computer.

Ports, or addresses within a computer, are used to enable communication between
programs. An application server, such as a Web server or an FTP server, listens on a
particular port for service requests, performs whatever service is requested, and
returns information to the port used by the application program requesting the
service. Popular Internet application protocols are associated with well-known
ports. The server programs that implement these protocols listen on these ports for
service requests. The well-known ports for some common Internet application
protocols are shown in Table 4.1.

4.2 TCP/IP Protocol Suite

The ARPANET, sponsored by the Advanced Research Projects Agency (ARPA)
and developed during late the 1960s and early 1970s, is a milestone for computer
networks. In the early 1980s, a new family of protocols was specified as the
standard for the ARPANET. Although the accurate name for this family of
protocols is the “DARPA Internet protocol suite” it is commonly referred as the
TCP/IP protocol suite, or just TCP/IP.
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The Internet domain sockets on BSD UNIX use the TCP/IP protocol suite as the
communication protocols among processes generally located on different computers
across a network. We introduce the TCP/IP in this section.

4.2.1 Communication Protocols

Communications between computers connected by computer networks use well-
defined protocols. A protocol is a set of rules and conventions agreed by all of the
communication participants. As we have mentioned, in the OSI reference model, the
communication protocols are modelled in seven layers. Layered models are easier to
understand and make the implementation more manageable. A protocol suite is
defined as a collection of protocols from more than one layer that forms a basis of a
useful network. This collection is also called a protocol  family. The TCP/IP protocol
suite is an example.

There are many protocols defined in the TCP/IP protocol suite. We are going to
describe three of them: the Transport Control Protocol (TCP), the User Datagram
Protocol (UDP) and the Internet Protocol (IP). In the OSI reference model, the TCP
and UDP protocols are Transport layer protocols, while the IP protocol is a Network
layer protocol. Figure 4.4 illustrates the relationship of these protocols and their
positions in the OSI reference model.

Figure 4.4: The Layered TCP/IP protocol suite
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The TCP protocol is a connection-oriented protocol that provides a reliable, full-
duplex, byte stream for interprocess communications. The UDP protocol, on the
other hand, is a connectionless protocol that provides an unreliable datagram
service: there is no guarantee that UDP datagrams ever reach their intended
destinations. Acknowledgement must be used in order to provide reliable services
when using the UDP protocol.

4.2.2 Network Layer Protocol: IP

The IP protocol is connectionless and unreliable. It is based on internet datagrams.
The protocol takes a datagram from the transport layer (for example, from the TCP
protocol). A datagram is up to 64K bytes long and it may be part of a longer
message. Each datagram is transmitted over the network independently so the
communication is connectionless. During transmission, a datagram may be lost or
may be further fragmented into smaller units (called IP packets) as it goes through
the protocol layers. When all the IP packets of a datagram finally arrive at the
destination computer, they are reassembled to form the datagram and then
transferred to the transport layer of the destination site. If any of the IP packets of a
datagram are lost or corrupted, the entire datagram is discarded by the destination
site so the IP protocol is therefore unreliable because it cannot guarantee the
delivery of a datagram.

The IP datagram consists of a header and a text part. The header includes
information such as the type of service, the length of the header, the length of the
text part, the address of the source computer, the address of the destination
computer, and other information.

4.2.2.1 IP Address

It is the IP layer that handles the routing through networks. The Internet address is
used to identify networks and computers and is used in an IP datagram header to
denote the source and destination computer addresses. An Internet address has 32
bits and encodes both a network ID number and a host ID number. Every host on a
TCP/IP internet must have a unique Internet address. The network ID numbers are
assigned by some kind of authority, e.g., the Network Information Center (NIC)
located at SRI International, while the host ID numbers are assigned locally.

The common notation of an Internet address is to use 4 bytes, as shown in the
following:

Depending on the network’s class (described below), the network number can be
field_1, or field_1.field_2 or field_1.field_2.field_3. That
means the host number can be field_2.field_3.field_4,
field_3.field_4, or field_4.

where 1 <= i <= 4.
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Networks are classified into three classes, as listed in Table 4.2.

Class A networks are the largest networks with more than 65,536 hosts. A class
A network ID number is field_1.

Class B networks are mid-size networks with host IDs ranging from 256 to
65,536. A class B network ID number is field_1.field_2.

Class C networks are the smallest networks with up to 256 hosts. A class C
network ID number is field_1.field_2.field_3.

Figure 4.5 illustrates the Internet address formats of these three network classes. For
example, if we have an Internet address 98.15.12.63, we can tell that it is a class A
network because is within the range of 0 - 126. Its network ID number is 98
and host ID number is 15.12.63. If we have an Internet address 130.194.1.106, we
can tell that it is a class B network because the is within the range of
128 - 191.254. Its network ID number is 130.194 and host ID number is 1.106.

Figure 4.5: Internet network classes

Some IP addresses have significant meanings. For example, the address of 127.0.0.1
is the address of the local machine. It is used for allowing IP communications to the
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local machine so that sockets and other systems may run even when the machine is
isolated from the network.

It is evident that an Internet address can only be assigned to one host. But a host can
have several Internet addresses. This is because in some situations, we want a host
to be connected to several networks.

4.2.2.2 Domain Name System

Although an Internet address clearly specifies the address of a host, few persons
want to use Internet addresses directly: they are too hard to remember. Domain
Name System (DNS) is used to name host addresses in more human-oriented ways
and to find the Internet addresses corresponding to machine names.

The DNS is a hierarchical naming system: its name space is partitioned into sub-
domains, which can themselves be further divided. The DNS is also a distributed
system: the name space is delegated to local sites that are responsible for
maintaining their part of the database. Programs called name servers manage the
database.

The DNS name space can be represented as a tree, with the nodes in the tree
representing domain names. A fully qualified domain name is identified by the
components (nodes) of the path from the domain name to the root. A component is
an arbitrary string of up to 63 octets in length; the length of a fully qualified domain
name is limited to 256 octets. By convention, a domain name is written as a dot-
separated sequence of components, listed right to left, starting with the component
close to the root. The root is omitted from the name. Thus,
wan_res.cm.deakin.edu.au is a fully qualified domain name. It is certainly easier to
remember than the corresponding Internet addresses 139.130.118.102.

DNS name space is divided into zones of authority, and name servers have complete
control of the names within their zones (domains). For easier management of
domains, a large domain can be split into smaller sub-domains, and name servers
can delegate authority to other name servers for sub-domains. For example, if
edu.au represents the domain of all educational institutions in Australia, then
deakin.edu.au and anu.edu.au are its two sub-domains. Queries for DNS
information within sub-domain deakin.edu.au are first dealt with by the name server
of this sub-domain. If this name server cannot answer a query, the query is then
directed to the name server of edu.au domain. At last, the name server of the root
can answer the query.

4.2.3 Transport Layer Protocol: TCP and UDP

As we have shown in Figure 4.3, user processes interact with the TCP/IP protocol
suite by sending and receiving either TCP data or UDP data. To emphasise that the
IP protocol is used, we sometimes refer to them as the TCP/IP or UDP/IP protocols.
TCP provides a connection-oriented, reliable, full-duplex, byte-stream service,
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similar to a virtual circuit, to an application program. UDP, on the other hand,
provides a connectionless, unreliable datagram service to an application program.

As we mentioned in the previous section, the Internet address is used to identify
networks and computers. In order to let many processes use the TCP or UDP
simultaneously (these processes may reside on any computers of a network), both
protocols use 16-bit integer port numbers for identifying data associated with each
user process. The association of port numbers and user processes last as long as the
communication, so the following 5-tuple uniquely identifies a communication:

The protocol (TCP or UDP);

The local computer’s Internet address;

The local port number;

The foreign computer’s Internet address;

The foreign port number.

For example, if we have a communication using TCP protocol. The server is on a
host with domain name of wan_res.cm.deakin.edu.au (Internet address
139.130.118.102), using port number 5100. The client is on a host with domain
name of sky3.cm.deakin.edu.au (Internet address 139.130.118.5), using port number
5101. The 5-tuple which uniquely defines the communication is:

Because the host name is easier to understand and there are some system calls to
convert between a host name and its Internet address, the above 5-tuple can then be
written as:

Because wan_res.cm.deakin.edu.au and sky3.cm.deakin.edu.au are within the same
sub-domain, we can even write the 5-tuple as:

There are some restrictions in using port numbers. In TCP and UDP, port numbers
in the range 1 through 255 are reserved. All well-known ports (some commonly
used utilities use these ports) are in this range. For example, the File Transfer
Protocol (FTP) server uses the well-known port number 21 (decimal). Some
operating systems also reserve additional ports for privileged usages. For example,
4.3BSD reserves ports 1-1023 for superuser processes. Only port numbers of 1024
or greater can be assigned by user processes.

A TCP protocol entity accepts arbitrarily long messages from user processes, breaks
them into datagrams of up to 64k bytes, and sends them to the IP layer. Before the
real communication happens, a connection must be set up between the sender and
the recipient. After the communication, the connection must be disconnected. The
TCP protocol has a well-defined service interface. There are primitives used to
actively and passively initiate connections, to send and receive data, to gracefully
and abruptly terminate connections, and to ask for the status of a connection.
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As the IP layer does not guarantee the proper delivery of a datagram, it is the
responsibility of the transport layer to ensure that a datagram arrives at the
destination properly using time-out and retransmission techniques. Also as
datagrams are transmitted independently, the datagrams of a message may arrive at
the destination out of order and it is also the TCP protocol’s responsibility to
reassemble them into the message in the proper sequence.

Each datagram submitted by the TCP to IP layer contains a TCP header and a data
part. The whole TCP datagram is viewed by the IP as data only and an IP header is
added to form an IP datagram. The TCP header contains the source port number, the
destination port number, the sequence number, and other information.

A UDP protocol entity also accepts arbitrarily long messages from user processes,
breaks them into datagrams of up to 64k bytes, and sends them to the IP layer.
Unlike the TCP protocol, the UDP protocol has no connection involved to guarantee
the delivery or sequencing of datagrams. In effect, UDP is simply a user interface to
IP. A header is also added into a datagram by UDP, which contains the source port
number and the destination port number.

4.3 The Next Generation Internet Protocol: IPv6

4.3.1 Why IPv6?

The current Internet protocol (IP) version is IPv4, which has been used for many
years and also has critical limitations. Challenges faced by the current IPv4 can be
summarized as follows:

Growth of the Internet. Maximum: 4 billion.

When will addresses run out? Estimates: 2005.

Single IP address for devices.

Mobile Internet

Internet services from everywhere.

Removing location dependency.

Address spaces

Security

End-to-end encryption.

Data integrity and authentication requirements for the new protocol can be
described as follows:

Support billions of hosts.

Reduce size of routing tables.

Simplify protocol, process packets faster.
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Provide better security (authentication & privacy).

Better QoS (particularly for real-time data).

Aid multicasting, anycasting.

Make it possible for a host to roam without changing its address.

The primary motivation for change from IPv4 to IPv6 is the limited address space.
The 32-bit IPv4 address can only include just over a million networks on the
Internet. At the current growth rate, each of the possible network prefixes will soon
be assigned and no further growth will be possible.

The second motivation for change comes from requirements of new applications,
especially applications that require real-time delivery of audio and video data. The
current IP has limited capabilities for routing real-time data.

4.3.2 IPv6 Features

IPv6 retains many design features of IPv4, e.g., it still is connectionless. However,
IPv6 also has many new features. It has practically unlimited address space,
optional header fields (better support for options). It also simplifies packet header,
provides authentication and privacy capability to make a network more secure, and
pays more attention to type of service, e.g., Plug & Play, - better configuration
options, etc. The new features of IPv6 can be summarized as follows:

Address size: Instead of 32, each IPv6 address is 128 bits. The address space is
large enough for many years of growth of Internet.

Header format: The IPv6 header has a complete format compared to IPv4
headers.

Extension header: Unlike IPv4, which uses a single header format for all
datagrams, IPv6 encodes information into separate headers. A datagram of IPv6
contains a base header followed by 0 or more extension headers, and data.

Support for audio and video: IPv6 includes a mechanism that allows a sender
and receiver to establish a high-quality path through the underlying network
and to associate datagrams with that path.

Extensible protocol: Unlike IPv4, IPv6 does not specify all possible protocol
features. Instead, the designers have provided a scheme that allows a sender to
add additional information to a datagram. The extension makes IPv6 more
flexible than IPv4.

Network management: IPv6 has auto configuration ability. It can automate
network address renumbering. DHCP support is mandated, i.e., every host can
download its network configurations from a server at startup time. Auto-
configuration allows hosts to operate in any location without any special
support.
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Auto address changes: Address changes in IPv6 can also be automated. It has
two ways to change an address:

Stateless: routers advertise prefixes that identify the subnet(s) associated
with a link. Hosts generate an “interface token” that uniquely identifies an
interface on a subnet. An address is formed by combining the above two.

Stateful: clients obtain address and/or configuration from a DHCP server.
The DHCP server maintains the database and has a tight control over
address assignments.

Mobility: IPv6 was specifically designed to support mobility, which is based on
core features of IPv6. Mobility is not an “Add-on” feature in IPv6. All IPv6
networks, LANs/Subnets, and nodes are mobile ready.

One of the questions in the IPv6 design is, why does IPv6 use separate extension
headers? This can be explained from the following aspects:

Economy: Partitioning the datagram functionality into separate headers is
economical because it saves space. Having separate headers in IPv6 makes it
possible to define a large set of features without requiring each datagram
header to have at least one field for each feature.

Extensibility: When adding a new feature, existing IPv6 protocol headers can
remain unchanged. A new next header type can be defined as well as a new
header format.

Advantage: The chief advantage of placing new functionality in a new header
lies in the ability to experiment with a new feature before changing all
computers on the Internet.

4.4 Summary

Network architecture can have one of two types, one is defined by the OSI reference
model and the other defined by the ARPANET model. The OSI reference model has
seven protocol layers each of which builds upon the services offered by the
subordinate layers to offer an enhanced service to the upper layers. The current
Internet architecture was built on the ARPANET model which adopts four protocol
layers. The main protocols used in the Internet architecture for network
communication are TCP, UDP and IP protocols. IP protocol is a network layer
protocol while TCP and UDP are transport layer protocols. The current IPv4 has a
critical limitation, i.e., the limited address space so that it can not meet the demands
of rapid growth of Internet. The study on the next generation of Internet protocol –
IPv6 has been conducted for many years and will provide many new features as
well as advantages compared with IPv4.

Exercises

4.1 What is the OSI reference model? What layers does it have? 4.1.1
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How do programs residing on different computers communicate with each
other in the OSI model? 4.1.1

What is the difference between the OSI architecture and the Internet
architecture? 4.1.2

What method is used for application programs communication with each other
on the Internet? 4.1.2

Describe how TCP/IP was evolved? 4.2.1

What is an IP address? Explain its meaning using examples. 4.2.1

What contents does an IP datagram have? 4.2.2

How does IP work? 4.2.2

How does TCP protocol overcome the unreliability of IP protocol? 4.2.2

What is a domain name system? 4.2.2

How to specify a communication uniquely? Give an example. 4.2.3

Why is UDP unreliable? 4.2.3

What is IPv6? Why do we need IPv6? 4.3

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
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4.13



CHAPTER 5 INTERPROCESS
COMMUNICATION USING

MESSAGE PASSING

Processes in a distributed network system normally do not share common memory.
Therefore, message passing is one of the effective communication mechanisms
between these processes. In this chapter we discuss the most commonly used
message-passing based interprocess communication mechanism, i.e., the socket
API.

5.1 Developing Distributed Applications Using Message Passing

5.1.1 Communication Services in Message Passing

When talking about communications between different entities (computer hosts or
programs) of a distributed software system, we can also view them as connection-
oriented communications or connectionless communications. Transport protocols
(TCP/UDP) are used to deliver information from one port to another using these
two kinds of communication between application programs. TCP is a connection-
oriented protocol, and UDP is a connectionless transport protocol. These
communications can also be reliable or unreliable. We will discuss these forms of
communication in this section.

5.1.1.1 Connection-Oriented and Connectionless Communications

For connection-oriented communications, the following three steps are needed:

Connection. One of the communicating entities issues a connection call and a
communication path between the two communicating entities is established
before the real data exchange occurs.

Data exchange. After the connection establishment, the two communicating
entities can then exchange their data in any direction. The order of data packets
is preserved.

Disconnection. After the data exchange, one of the communicating entities may
issue a disconnection call and disconnect the communication path.

In connectionless communications, no connection path is required before the real
data exchange between two communicating entities. Any entity wanting to send a
message can send it immediately to the underlying communication system. The
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message may carry some information other than the real message, such as the
source identifier, the destination identifier, priority, etc. One of the characteristics of
connectionless communication is that the message order may be different between
the sender and the recipient.

Usually a connection-oriented service is more expensive than a connectionless
service, because the former needs to establish, maintain, and disconnect the
connection. The connection-oriented service is modeled like a telephone system. To
talk to your correspondent, you pick up the phone and dial a number (connection),
then talk (data exchange), then hang up (disconnection). The essential aspect of a
connection is that it acts like a tube: the sender pushes messages into the tube at one
end, and the receiver takes them out from the other end in the same order. The TCP
connection-oriented protocol establishes a communication link between a source
port/IP address and a destination port/IP address. The ports are bound together via
this link until the connection is terminated and the link is broken.

In contrast, the connectionless service is modeled like a postal system. To send a
letter (message) to your correspondent, you write the full destination address on the
envelope, pack your letter into the envelope and drop it into the mail box. All these
letters are routed through the postal system independently. It is possible that the
letters arrive at the receiver’s side in a different order to that sent. The UDP
connectionless protocol differs from the TCP connection-oriented protocol in that it
does not establish a link for the duration of the connection. When using UDP, an
application program writes the destination port and IP address on a datagram and
then sends the datagram to its destination.

5.1.1.2 Reliable Communication

A reliable communication service is one that never loses data. In this kind of
service, usually an acknowledgement is sent back to the sender from the receiver
indicating that a message has been correctly received. The acknowledgement
introduces overhead and delay. Sometimes this is worthwhile, and sometimes this is
not necessary. For example, during file transfer, the file owner wants every bit of
the file to arrive at the destination in the same order as it is sent, and with no errors.
In that case, a reliable connection-oriented communication service is appropriate.
But if the application is digitised voice traffic, an unreliable connection-oriented
service is appropriate: it is preferable for users to hear some noise on the line or lose
a few words from time to time than to introduce a delay to await acknowledgement.

Reliable connection-oriented service has two minor variations: message sequences
and byte streams. In the former, the message boundaries are preserved. This is
appropriate when, for example, transferring a book over a network to a laser printer
and these pages are sent as separated messages. In the latter, the connection is
simply a stream of bytes, with no message boundaries. This is appropriate when, for
example, the application is a remote login from a terminal to a mainframe.

A connectionless service can also be reliable or unreliable. An unreliable (meaning
not acknowledged) connectionless service is often called a datagram service, by
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analogy with a telegram service, which also does not provide an acknowledgement
back to the sender. An acknowledged datagram service provides a reliable and
connectionless service. It is like sending a registered letter and requesting a return
receipt. When the receipt comes back, the sender is absolutely sure that the letter
was delivered to the intended correspondent.

The reliability of the TCP communication between the source and destination
programs is ensured through error-detection and error-correction mechanisms that
are implemented within TCP. TCP implements a connection as a stream of bytes
from source to destination. This feature allows the use of the stream I/O classes
provided by java.io. UDP is less reliable than TCP because there are no delivery-
assurance or error-detection and error-correction mechanisms built into the protocol.

5.1.2 A Generic Framework for Distributed Applications

In a distributed application, there are usually a number of computers and processes
managing some shared information, such as databases, files, or objects. User
programs access these computers and processes to obtain the information the user
needs, or to update the stored information through these computers and processes.
Time, in a generic distributed application, is not as critical as in a distributed real-
time application. Figure 5.1 is a generic framework of a distributed application.

According to Figure 5.1, a distributed application consists of several client
programs and several server programs. Usually a server program is located on a
remote computer and a client program is located on the user’s (local) computer. A
client program interfaces with the user, manages the local application process, and
performs the communication between the client program and other related (remote)
server programs. A server program usually manages an object (e.g., one part of a
distributed database), performs the operations required by other programs, and
manages the communications. Of course, the client program may also perform some
operations directly on the local objects. This is not shown in the diagram because
we want to emphasise the distributed characteristics of the application here. So, we
can divide a distributed application into three parts:

User interface. This deals with the interactions between the client program and
the user.

Distributed frame. This performs the communications among all the co-
operative parts over the network.

Application modules. They manage the objects and perform operations.

5.2 Sockets

TCP/IP networking software typically supports a number of different types of
application programming interfaces (APIs) for communicating over an internet.
However, many operating systems adopt the socket API, which originated as part of
the BSD UNIX operating system. The socket interface provides an API for network
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communication that is very close to the API provided for doing ordinary I/O with
local devices. The socket interface has been implemented on a wide variety of
UNIX and non-UNIX operating systems, and programs that access sockets can be
used for implementing network communication in a heterogeneous environment in
which hosts of all types must be able to communicate. The socket API is currently
the most commonly used API for network programming in the TCP/IP environment
and in other networking environments as well. We will introduce socket
programming in this part.

Figure 5.1: The distributed application model

5.2.1 Socket Abstraction

A socket is just another I/O abstraction. Figure 5.2 depicts a client-server system
with socket API, where a client process in local UNIX domain requests a
connection to a remote server process. The server process first creates a server
socket and then listens to client requests. Once the client process creates its client
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socket which will request a connection to the server socket, the server will accept
the request and establish the connection between the server and the client.

Figure 5.2: BSD interprocess sockets

Creating a socket is very much like opening a file, in that an integer “file handle” is
returned to the caller. A program can read and write data to or from a socket by
using the integer “file descriptor” in the same way it does I/O to a file, as shown in
Figure 5.3. The difference is that the data written by one process is sent directly to a
buffer in the process that owns the socket at the other end. Thus, a socket
connection between two processes is like a bidirectional pipe.

Figure 5.3: File and socket descriptors

5.2.2 BSD Internet Domain Sockets

The Internet domain sockets on BSD UNIX use the TCP/IP protocol suite as the
communication protocols among processes generally located on different computers
across a network.

5.2.2.1 Socket Model

The message-passing communication uses the socket model to implement the
communication. The socket model consists of three parts: the socket layer, the
protocol layer and the device layer, as depicted in Figure 5.4. This layered model is
designed to support the following properties:
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Transparency: Communication between processes should not depend on
whether or not the processes are on the same machine.

Efficiency. The applicability of any interprocess communication facility is
limited by its performance.

Compatibility: Existing naive UNIX processes that read from the standard input
file and write to the standard output file should be usable in a distributed
environment without change.

Figure 5.4: Socket model

5.2.2.2 Internet Domain Socket Naming

The socket naming facility in the Internet domain is quite complex. It is an
association of local and foreign addresses, and local and foreign ports. Port numbers
are allocated out of separate spaces for each Internet protocol. Associations
(protocol, local address, local port, foreign address, and foreign port) must always
be unique for each socket.

The definition of a socket name in the Internet domain is in netinet/in.h:
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This is quite complex, especially the sin_addr field. Fortunately we have some
special system calls to deal with these fields and they can make the naming process
much simpler. We will describe these system calls later. Actually, the name of an
Internet Domain socket consists of two parts: a host name part and a port number
part. As long as we know these two parts, we can use the socket.

Various types of socket addresses (e.g., the UNIX domain socket address, the
Internet domain socket address as well as the XNS address) can be combined
together into a uniform socket address, as defined in sys/socket.h:

All the system calls that use a socket address as one of their parameters actually ask
for a type sockaddr instead of individual types (such as sockaddr_in). However the
best way to pass a parameter to socket-related system calls is to use the cast method
in the C language. For example, no matter where my_sock is defined as a UNIX
domain socket address sockaddr_un, or an Internet address sockaddr_in, we can use
the following format for a connect call:

The sockaddr structure definition is also the reason that in some situations in the
UNIX domain only 14 characters of a path name are recognised by the system.
Because only 14 characters are defined in the sockaddr’s protocol-specific address
buffer, and the address types are usually cast to sockaddr type, only the first 14
characters are recognised.

5.2.2.3 Socket Types

Sockets are typed according to the communication properties visible to a user.
Properties such as reliability, ordering, and prevention of duplication of messages
are determined by types. Processes are presumed to communicate only between
sockets of the same type. The basic set of socket types is defined in sys/socket.h,
where five types of sockets are defined: stream socket, datagram socket, raw socket,
sequenced packet socket, and reliable-delivered message socket:



A stream socket provides for the bi-directional, reliable, sequential, and
unduplicated flow of data without record boundaries. It models connection-oriented
virtual circuits. Sockets of type SOCK_STREAM are full-duplex byte streams,
similar to pipes. A stream socket must be in a connected state before any data can
be sent or received on it. A connection to another socket is created with a connect
call (described later). Once connected, data can be transferred using read and write
calls or some variant of the send and recv calls. When a session has been completed,
a close may be performed.

The communication protocols used to implement a stream socket
(SOCK_STREAM) type ensure that data is not lost or duplicated. If a piece of data
for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and
calls will indicate that an error with -1 returns and with ETIMEDOUT as the
specific code in the global variable errno. The protocols optionally keep sockets
“warm” by forcing transmissions roughly every minute in the absence of other
activity. An error is then indicated if no response can be elicited on an otherwise
idle connection for an extended period (for example, 5 minutes). A SIGPIPE signal
is raised if a process sends on a broken stream; this causes processes to interrupt
their handling of the signal and then to exit.

A datagram socket (SOCK_DGRAM) supports bi-directional flow of data that is
not promised to be sequential, reliable, or unduplicated. A datagram is defined as a
connectionless, unreliable message of a fixed maximum length (typically small). So
a process receiving messages on a datagram socket may find duplicated messages,
and possibly in an order different from the order in which they were sent. An
important characteristic of a datagram socket is that record boundaries in data are
preserved. No connection is required to use a datagram socket and sendto and
recvfrom calls are used to send and receive datagrams. This socket type closely
models the facilities found in many contemporary packet switched networks.

A raw socket (SOCK_RAW) is used for unprocessed access to internal network
layers. It has no specific semantics. These sockets are normally datagram-oriented.
But their exact characteristics depend on the interface provided by the protocol.
They have been provided mainly for further development and are now available
only to the super-user.

The sequenced packet socket (SOCK_SEQPACKET) is similar to a datagram
socket except that data are guaranteed to be received in the sequence that they are
sent. These socket type also guarantees error-free data exchange. The reliably-
delivered message socket (SOCK_RDM) is planned but not yet implemented.

As we usually only use stream and datagram sockets, we will not describe other
socket types in this book.

5.3 Basic Socket System Calls

86
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5.3.1 Some Special Functions

A number of functions have been provided by BSD UNIX for using sockets more
easily. We are going to introduce some of them in this section.

When dealing with socket addresses, we usually need to do some operations on bit
and byte strings. The following three functions are provided for this purpose:

These functions do not check the null byte for the end of a string, as is normally
done in string operations. Instead, strings used here are treated as bit and byte
strings. The bcopy function copies length bytes from string b1 to the string b2. The
bzero function places length 0 bytes in the string b1. The bcmp function compares
byte string b1 against byte string b2. Both strings are length bytes long, if they are
identical a zero is returned, otherwise a nonzero value is returned.

Different computer architectures may have different byte orders. Byte orders are
important when expressing Internet addresses, so the following functions are
provided to convert values between host and network byte orders:

These functions convert 16-bit (short integer) and 32-bit (long integer) quantities
between network byte order and host byte order. htonl is used to convert host-to-
network, in long integer; htons is used to convert host-to-network, in short integer;
ntohl is used to convert network-to-host, in long integer; ntohs is used to convert
network-to-host, in short integer;

Sometimes it is very important to know on which host our program is executing.
The following system call is used to obtain the local host name:
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The gethostname returns the standard host name for the current process in name,
such as sky3.cm.deakin.edu.au. The parameter namelen specifies the size of the
name array. The returned name is null-terminated unless insufficient space is
provided. If the call succeeds, a value of 0 is returned. If the call fails, then a value
of -1 is returned and an error code is placed in the global location errno.

As we mentioned in Section 5.2.3, a 5-tuple uniquely defines a communication:

where addresses are hosts’ Internet addresses. A host Internet address data structure
hostent is defined in the netdb.h header file containing host information. It is
defined as:

The h_name field is the host’s name string, the same as we obtained from
gethostname call. The h_aliases field is a zero terminated array of alternate names
for the host. The h_addrtype field currently is always AF_INET. The h_length field
gives the length of the address (in bytes). The h_addr_list field is a pointer to the
network address for the host. And the h_addr field is the host’s first network
address.

The following functions are used to get host information:

The gethostbyname call returns the hostent data structure of the matching name. The
name string can be obtained from call gethostname. The gethostbyaddr call returns
the hostent data structure of the matching addr, len and type.

As we can see from the above description, the Internet address data structure is very
complex. Fortunately, BSD UNIX has provided a group of functions for
manipulating Internet addresses. They are described in inet(3n) of the BSD UNIX
manual. We only describe the following call for our purpose:
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This call converts an Internet address to an ASCII string representing the address in
“.” notation (e.g., 139.130.118.102).

The following is a short program that prints out the host’s information. It is named
phn.c (print host name). By default it prints out the local host’s information. If you
specify a host name, it prints out the information for that host. The program is as
follows:
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If you simply execute the program by typing in phn, then the information for the
local host is printed out. One possible output could be:

If you execute the program by specifying a host name, such as phn turin, then the
information of host turin will be printed out as:

5.3.2 Socket Creation

Several system calls are provided to create, use and manage sockets. Before using a
connection-oriented socket, one must first create it, bind it to a name and connect it
to another socket. For a server, after creation and binding, the socket may listen for
a connection and accept it. All these are performed by a group of system calls. In
most cases, three files will be included before using these calls, they are sys/types.h,
sys/socket.h and netinet/in.h.

To create a socket, use the socket system call:

The domain is, of course, AF_INET. The type can be currently SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW, whereas the protocol specifies a particular
protocol to be used by the socket. If a 0 (zero) is specified in the protocol parameter,
the system will select the proper protocol for you.

Normally only a single protocol exists to support a particular socket type using a
given address format (domain). The most used protocols in the Internet domain are
TCP (Transmission Control Protocol) and UDP (User Datagram Protocol), and they
are used for sockets of type SOCK_STREAM and SOCK_DGRAM, respectively.

The returned value is actually a small integer which represents a socket, and the
user may use it in the later system calls which operate on sockets.

5.3.3 Name Binding

After creation, generally a name will be bound to the socket so that the user can
then use that socket. The bind call is used to assign a name to an unnamed socket:
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Internet domain socket naming is more complex than that of UNIX domain, but if
you know the host name and the communication port (both are local), then the
following fragment would be used (suppose the host name is sky3, the port is 5100
and we also want to bind the name to descriptor):

5.3.4 Connection Establishment

In the Internet domain the following three system calls are used for socket
connection: listen, accept, and connect.

Suppose we have socket descriptorSer in a server program and socket descriptorCli
in a client program. If the server now is willing to offer its service, it uses a listen
system call and then uses an accept system call that passively waits for the client to
make connection. On the other hand, the connect system call is used by the client to
initialise a connection. Please note, however, it is not necessary for UPD
(connectionless) sockets to perform these steps.

The listen system call is quite simple:

where the last parameter is the maximum number of outstanding connections which
may be queued waiting to be accepted by the server to accept, and 5 is the system
limitation of maximum connection on any one queue.

After listening, the server uses the accept call to accept a connection:

The returned value descriptorCom is a new socket and it is used in the input/output
calls when needed. If the server wishes to find whom the client is, then several
system calls can be applied to that socket, and they will return the client name
sockCli.

The connect system call for a socket in the Internet domain looks like:
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In some situations the connect call may fail. These situations are very important
when considering fault tolerance of the application system.

5.3.5 Transfer Data and Discard Sockets

Several system calls can be used to transfer data between connected sockets. The
simplest group of such calls are write and read calls. They are identical to write and
read for disk files:

where descriptor is the socket created by the client in a client program and is the
value returned from the server’s accept call in a server program.

In a write call, the array buf contains the message to be sent and msglen gives the
number of bytes to be sent. If a character string is to be sent, strlen(buf) can be used
for the message length. By default, write does asynchronous writes. That is, after
the data is written to a buffer cache, control returns to the program. The actual write
to a device takes place after control returns. Upon successful completion, the
number of bytes actually written is returned. Otherwise, a -1 is returned, and errno
is set to indicate the error. The errno is the UNIX error number variable and is
defined in errno.h. To use errno, the errno.h file must be included.

Upon successful completion, read returns the number of bytes actually read and
placed in the array buf. The system returns the number of bytes requested
(sizeof(buf)) if the descriptor references a stream which has that many bytes left
before the end-of-file. If the returned value is 0, then end-of-file has been reached.
Otherwise, a $-1$ is returned and the global variable errno is set to indicate the
error.

Alternatively, programs might use the send and recv system calls as follows:

where descriptor in both server and client programs are the same as above. The
flags can be 0 or can be specified explicitly. The most interesting flags are:

A program can use the MSG_PEEK flag to look at the available data, without
having the system discard the data after the recv call. The MSG_OOB flag specifies
that the data to be sent or received is of type out-of-bound or expedited. With this
type of data, we want the sending and receiving services to process these data
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before any other data that have been buffered. Out-of-bound type is only defined for
stream sockets, and the UNIX domain stream sockets do not support it.

It is also possible to use the standard stdio to read the socket. In that case, an fdopen
call can be used to open the socket for reading and the fgetc call can be used to read
characters from the opened socked in the same manner as in file reading.

The above calls are generally used in connection-oriented communications. There
are other data transmission calls that can be used at both connection-oriented and
connectionless communication services. We mention the sendto/recvfrom pair here:

In a sendto call, the address of the target is given by to, with tolen specifying the
address size. The length of the message is given by len. If the message is too long
to pass atomically through the underlying protocol, the error EMSGSIZE is
returned, and the message is not transmitted.

The sendto call returns the number of characters sent, or -1 if an error occurred.
Return values of - 1 only indicate some locally detected errors. If message space is
unavailable at the socket to hold the message to be transmitted, sendto blocks,
unless the socket has been placed in nonblocking I/O mode.

In a recvfrom call, if from is nonzero, the source address of the message is filled in
on return. The fromlen is a value-result parameter, initialised to the size of the
buffer associated with from, and modified on return to indicate the actual size of the
address stored there. The length of the message is returned in cc. If the message is
too long to fit in the supplied buffer, excess bytes can be discarded, depending on
the type of socket sending the message. That is, if the sending socket is a sequenced
packet stream socket, the excess bytes will be discarded.

If no messages are available at the socket, the recvfrom call waits for a message to
arrive, unless the socket is nonblocking. If the socket is nonblocking then a cc of -1
is returned, and the global variable errno is set to EWOULDBLOCK.

Once a socket descriptor is no longer of use, it may be discarded by applying a
close system call to the socket:

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and the global variable, errno, is set.

If there are some data associated with a SOCK_STREAM type socket when the
close call takes place, the system will continue to attempt to transfer the data.
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However, if after about four minutes the data is still not delivered, it will be
discarded. The shutdown system call can be used prior to a close call to discard the
pending data if the user is not interested in it:

Where how is 0 if the user is no longer interested in reading data, 1 if no more data
will be sent, or 2 if no data is to be sent or received. Applying shutdown to a socket
causes any data queued to be immediately discarded. A zero (0) is returned if the
shutdown call succeeds, - 1 if it fails.

5.4 Examples in C

5.4.1 Using Stream Sockets: A Simple Example

In this example, two programs use connection-oriented Internet stream sockets to
communicate with each other. The server program is supposed to be executed first.
It creates an Internet stream socket and binds the socket to a name, then it listens to
the socket and waits for a connection. If a connection request arrives, the server
reads in a message from the client, displays it and writes back an acknowledgement
to the client program. After that, the server program closes the socket and exits.

The server program is named ismpser.c indicating that it uses Internet domain
sockets, and is a simple example of a server program. By default, it uses stream
sockets. The listing is the following:
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The client program is supposed to be executed after the server program’s execution.
After the creation of an Internet stream socket, the client program initialises a
connection to the server. If the connection succeeds, the client writes a message to
the server and reads a reply from the server. The reply is then displayed and the
client program exits.

The client program is named ismpcli.c indicating that it uses Internet domain
sockets and is a simple example of a client program. By default, it uses stream
sockets. The listing is the following:
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The communication can only be executed once by using the above two programs. In
order to execute the communication many times, either a looping server or a
concurrent server program would be used. We present a concurrent version of the
server program here.

The concurrent version of the server program is named ismpsercon.c indicating
that it uses Internet domain sockets and is a simple example of concurrent version of
server program.
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The “shutdown” message can be sent by modifying the client program.

5.4.2 Using Datagram Sockets: A Simple Example

Next is an example of using Internet datagram sockets for simple communications.
The example performs the same functions as the previous one. The main differences
between using a datagram socket and using a stream socket are the socket creation
and the data transfer calls. In this example program, we create datagram sockets and
use sendto/recvfrom calls to transfer data between server and client programs.

The server program is named ismdser.c indicating that it uses Internet sockets
and is a simple example of a server program using datagram sockets. The listing is
the following:
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The client program is named ismdcli.c indicating that it uses Internet domain
sockets and is a simple example of a client program using datagram sockets. Its
listing is as follow.
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Similarly we have a concurrent version of the Internet datagram socket example.
The concurrent server program is named ismdsercon.c as listed in the
following:
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5.5 Summary

Message passing is one of the most effective communication mechanisms between
processes in a distributed network system. In this chapter we discussed the most
commonly used message-passing based interprocess communication API for
network programming - the socket API. TCP/IP networking software typically
supports a number of different types of application programming interfaces (APIs)
for communicating over a network. However, many operating systems adopt the
socket API, which was originated as part of the BSD UNIX operating system. The
socket interface provides an API for network communication that is very close to
the API provided for doing ordinary I/O with local devices. In the chapter we
mainly discussed the BSD Internet domain sockets. A number of issues, such as
naming, types, and system calls about the BSD sockets were addressed. Two
examples in C were also presented to demonstrate how to write socket
programming.

Exercises

5.1 What are connection-oriented communication and connectionless
communication? Give examples. 5.1.1

5.2 How can one achieve a reliable communication? 5.1.1

5.3 Describe the purposes of client and server programs in the distributed
application system. 5.1.2

5.4 What is a socket? Why is it important? 5.2.1

5.5 Why do we divide a socket model into three parts? 5.2.2

5.6 What does a socket name consist of? 5.2.2
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5.7 What is the best way to pass a parameter to socket-related system calls?

Give an example. 5.2.2

5.8 What is a stream socket? How does one send and receive data using it? 5.2.2

5.9 What is a datagram socket? How does one send and receive data using it?
5.2.2

5.10 How do you convert values between host and network byte order? 5.3.1

5.11 How do you get host information? Run the program phn.c on your machine
to get your host information. 5.3.1

5.12 Suppose there are two sockets located in a server and a client program
respectively. Write a simple program using listen, accept and connect calls
to connect them. 5.3.4

5.13 What system calls mentioned in the book can be used at both connection-
oriented and connectionless communication services? Explain them briefly.
5.3.5

5.14 Understand programs ismpser.c and ismpcli.c for both stream socket and
datagram socket. Compile and run them on your machine. Describe what is
the difference between stream socket programming and datagram socket
programming. 5.4
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CHAPTER 6 TCP/UDP
COMMUNICATION IN JAVA

Chapter 5 discussed the BSD Internet socket, which is currently the most commonly
used API for network programming. The BSD Internet domain sockets use the
TCP/IP (or UDP/IP) protocol suite as the communication protocols among
processes. In this chapter we want to address the TCP/UDP programming in Java,
since the Java language is currently the most commonly used language to
implement a distributed computing system. Java provides the reliable stream-based
communication for TCP as well as the unreliable datagram communication for
UDP.

6.1 Java Sockets

The socket API in Java is provided in the java.net package which has several
classes supporting socket-based client/server communication.

6.1.1 Java Net Package

Client and server sockets for connection-oriented and connectionless
communication are implemented by the Socket, ServerSocket, DatagramSocket, and
MulticastSocket classes in the java.net package. In addition to these socket related
classes, the java.net package also contains other classes that can help the
communication. In particular, the InetAddress class encapsulates Internet IP
addresses and supports conversion between dotted decimal addresses and host
names. The DatagramPacket class is used to construct UDP datagram packets. The
SocketImpl and DatagramSocketImpl classes and the SocketImplFactory interface
provide hooks for implementing custom sockets.

High-level browser-server Web connections are implemented through the URL,
URLConnection, HttpURLConnection, and URLEncoder classes. The
ContentHandler and URLStreamHandler classes are abstract classes that can be
used for the implementation of Web content and stream handlers. They are
supported by the ContentHandlerFactory and URLStreamHandlerFactory
interfaces. The FileNameMap interface is used to map filenames to MIME types.

The classes in the java.net package can be listed as follows:

The Classes

ContentHandler
DatagramPacket
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DatagramSocket
DatagramSocketImpl
HttpURLConnection
InetAddress
MulticastSocket
ServerSocket
Socket
SocketImpl
URL
URLConnection
URLEncoder
URLStreamHandler

The Interfaces

ContentHandlerFactory
FileNameMap
SocketImplFactory
URLStreamHandlerFactory

Exceptions

BindException
ConnectException
MalformedURLException
NoRouteToHostException
ProtocolException
SocketException
UnknownHostException
UnknownServiceException

In this section we mainly discuss the Socket and ServerSocket classes. Other classes
such as DatagramSocket and DatagramPacket etc. are discussed later.

6.1.2 The Socket Class

Connection-based sockets for clients are implemented through the Socket class.
These sockets are used to develop client applications that utilize services provided
by connection-oriented server applications.

The access methods of the Socket class are used to access the I/O streams (a stream
is a high level abstraction representing a Java connection channel, a file, or a
memory buffer, and is the basis for most Java communications) and connection
parameters associated with a connected socket. Here are some access methods for
the Socket class:
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Methods for accessing the socket information. The getInetAddress() and
getPort( ) methods get the IP address of the destination host and the destination
host port number to which the socket is connected. The getLocalPort( ) method
returns the source host local port number associated with the socket. The
getLocalAddress( ) method returns the local IP address associated with the
socket.

Methods for I/O. The getInputStream() and getOutputStream() methods are
used to access the input and output streams associated with a socket.

Other interesting methods. The close() method is used to close a socket. The
toString( ) method returns a string representation of the socket.

6.1.3 The ServerSocket Class

A server works like a receptionist. She sits in the front desk of a company and waits
for customers. She has no idea who will come or when they come. However, once a
customer comes in, the receptionist will normally arrange a suitable staff of the
company to actually work on the customer’s request. After that, the receptionist will
then wait for the next customer to arrive, or to serve the next waiting customer. Java
provides the ServerSocket class to allow programmers to write servers that behave
like a receptionist.

A TCP server socket is implemented by the ServerSocket class. Once a Java
ServerSocket is established, it runs on a server and listens on a particular port of the
server machine for incoming TCP connections. When a client Socket on a remote
host attempts to connect to the port, the server tries to accept the connection request,
negotiates the connection between the server and the client, and opens a regular
Socket between the two hosts for the regular communication between the client and
the server. The ServerSocket cannot be used for regular communications.

Only one client can connect to a server’s ServerSocket any time. Multiple clients
trying to connect to the same port on a server at the same time will be queued up.
However, once the server has established a regular Socket for client and server
communicaiton, the next queued client will be served. Incoming data is
distinguished by the server port to which it is addressed, the client host and the
client port from which it came.

Similarly, no more than one server socket can listen to a particular port on a host at
one time. Therefore, since a server may need to handle many connections at once,
server programs tend to be heavily multi-threaded. Generally speaking, a server
socket listening on a port will only accept connections (just like the receptionist). It
then passes off the actual processing of connections to a separate thread (just like an
actual staff to serve the customer request).

The ServerSocket has three constructors that specify a paort to which the server
socket is to listen for incoming connection requests, an optional maximum
connection request queue length, and an optional Internet address. The Internet
address argument allows multihomed hosts (that is, hosts with more than one
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Internet address) to limit connections to a specific interface. These three
constructors are listed as follows:

The operating system stores incoming connection requests addressed to a particular
port in an FIFO (first-in-first-out) queue. The default length of the queue is
normally 50 (this can vary from operating system to operating system). Incoming
connections are refused if the queue is already full and the operating system is
responsible for anaging the incoming. The default queue length can be changed by
using the above constructors (up to the maximum length set by the operating
system). Most medium size applications set the default queue length between 5 and
50.

Normally you only need to specify a port you want to listen on in the constructor of
a ServerSocket, as shown below:

The newly created ServerSocket object will attempt to bind to the port on the local
host given by the port argument (80 in the above example). However, if the port is
already occupied by server, then a java.net.BindException, a subclass of
java.io.IOException, is thrown, as no more than one process or thread can listen to a
particular port at a time. This includes non-Java processes or threads. For example,
if there is already an HTTP server running on port 80 (the default port for an HTTP
server), the above program segment will not be able to bind to port 80. On Unix
systems (but not Windows or the Mac) users’ programs must be running as root to
bind to a port between 1 and 1023.

Port number zero (0) is a special number. It lets the operating system to pick an
available port. The details of the allocated port can be found out by using the
getLocalPort( ) method. This is useful if the client and the server have already
established a separate channel of communication over which the chosen port
number can be communicated.

The methods provided by the ServerSocket include:

The accept() method. It is used to cause the server socket to listen and wait
until an incoming connection is established. It returns an object of class Socket
once a connection is made. This Socket object is then used to carry out a service
for a single client.
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The information methods. The getInetAddress( ) method returns the address of
the host to which the socket is connected. The getLocalPort( ) method returns
the port on which the server socket listens for an incoming connection.

Other interesting methods. The toString( ) method returns the socket’s address
and port number as a string in preparation for printing. The close( ) method
closes the server socket.

6.2 Building TCP Clients and Servers

6.2.1 Essential Components of Communication

The Java client-server communication shows some basic steps that are needed to
establish a TCP communication connection. The essential components of any
communication are:

The underlying communication protocol. In this instance, the TCP.

The application’s communication protocol.

The client program.

The server program.

In a TCP communication, the following steps are needed:

Create the server socket and listen to client connection request.

Create the client socket and issue a connection request to the server.

The server accepts the connection. The communication channel is then
established and communications between the client and the server can be
carried out using the application’s communication protocol.

The application’s protocol is like the following in the simplest case:

The client sends a “Hello, Server” string to the server.

The server replies a string “You have connected to the Very Simple Server.”.

Both client and server exit.

6.2.2 Implementing a TCP Client Program

The following steps are carried out when implementing our example TCP client
program:

Create a socket for communicating with the server on a specific port.

Create an InputStream, in our case, a BufferedReader, to receive responses
from the server.
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Create an OutputStream, in our case, a PrintWriter, to send messages to the
server.

Write to the OutputStream.

Read from the InputStream.

Close the InputStream, the OutputStream, and the socket before the client exits.

The client program, named C.java, is as follows.
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The program assumes that the server runs on the “local host” (i.e., with an IP
address of 127.0.0.1) and uses a default port number of 6789. The statement

displays the server host IP address and the port number that the client has connected
to.

6.2.3 Implementing a TCP Server Program

When implementing the example TCP server, the following steps are carried out:

Create a server socket to listen and accept client connection requests.

Create an InputStream, in our case, a BufferedReader, to read messages from
the client.

Create an OutputStream, in our case, a PrintWriter, to send replies to the client.

Read from the InputStream.

Write to the OutputStream.

Close the InputStream, the OutputStream, and the socket before the server
exits.

The server program, named S.java, is as follows:
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The server uses a default port of 6789 for communication. When a connection
request is accepted, the server uses the following statement to display the IP address
of the client computer:

6.3 Examples in Java

The above simple communication example is of no practical use at all. A number of
issues need to be addressed in order to improve the simple example for practical
use:

The exchange of multiple messages between the client and the server.

The ability to run the server and the client programs on any Internet host.

The ability for the server to deal with multiple client connections
simultaneously.

6.3.1 Exchange of Multiple Messages

The first issue is to define the application’s communication protocol to allow
multiple exchanges of messages. Here is an example:

The server:

After establishing the connection, the server sends an initial message to the
client.

The server waits for the client’s messages.
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When the message arrives, the serve responds with an “OK” to the clients and
then displays the message. If the incoming message is “Server Exit”, then the
server exits. Otherwise, it returns to the waiting step.

The client:

After a successful connection, the client displays the initial response from the
server.

The client reads a line from the keyboard, and sends it to the server. Then the
client reads the response from the server and displays it.

The input string from the keyboard is checked. The client exits if the keyboard
input string is “Server Exit” or the server is disconnected. Otherwise, it returns
to the previous step.

The server program, named S1.java, is as follows:
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The client program, named C1.java, is as follows:
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6.3.2 Executing the Programs on Internet Hosts

The first requirement to execute the client-server programs on Internet hosts is to
know the IP addresses or/and the host names of the computers. The following
program, named InetExample.java, from the text book displays the details of
a host:
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The main( ) method first calls the PrintLocalAddress( ) method to display the local
host name and IP address. Then it sits in a loop that reads host names from the
keyboard and uses the PrintRemoteAddress( ) method to display the InetAddress
information about the host.

To allow our client-server program to run on any host, we only need to change the
client program; the server program can remain the same. Here is the new client
program, named as C2.java:
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In this version, we use a variable

to store the IP address entered from the keyboard. The socket is then created using
the following statement:

6.3.3 Supporting Multiple Clients

To support multiple clients, only the server program needs to be changed; the client
program remains the same. When the server is initialized, we obtain the server
socket and wait for client connection requests. When a client connection request is
accepted, we use a thread to deal with the accepted incoming client connection. The
server then goes back to wait for new connection requests. Clients can issue two
commands during this time, one is a “Client Exit” command, telling the server that
the current client is willing to disconnect. The other is the “Server Exit” command,
in which the whole program exits.
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6.4 A More Complex Example - A Java Messaging Program using
TCP

In this section we use connection-oriented mechanism (TCP) to build a simple
“messaging” system. The system consists of a server program and a client program.
The client has two basic functions: a message sending function and a message
receiving function. Using the message sending function, one user (the sender) can
send a message addressed to another user (the receiver) to the system The server
will then store the message for the receiver until the receiver uses the message
receiving function of the client to retrieve his/her messages from the server. Then
the received message is deleted from the server. Also, the sender should be able to
accept simultaneous connections from multiple clients and should be able to send
the same message to a number of receivers simultaneously.
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6.4.1 The Design

The system is divided into a server component and a client component. The action
sequence of the server is as follows:

Wait for a client to connect and build a connection when accept request
from client

Create a new server thread object to handle the connection

Receive the username from the sender and store it in the username list

Broadcast the username list to all users

Receive the message addressed to specified users (receiver) from the client
and store the message for those users respectively.

Send back to client all messages stored for a particular user when required.

The action sequence of the client is as follows:

Set up an interface for the user to interact with the system

Connect to the server

Send own username to the server

Receive username list from the server and show it in the system

Get the message from the user’s input

Get the selection of receivers from the username list. The specified
message will be addressed to all selected receivers

Send the message to the server

Retrieve all messages for the user from the server

Close the connection to the server

For better scalability and modularity, the client program is divided into two classes.
One class, MessageClient, provides functions for connecting to the server; storing a
message and retrieving messages. Another class, MessageApplet, provides the
graphical user interface to the user and invokes functions in MessageClient to carry
out the communication to the server. To achieve this, a MessageApplet is associated
with a MessageClient.

The server program also has two classes: MessageServer and
MessageServerThread. The MessageServer class uses a username list to store the
names for all users.. The MessageServerThread class, which is used to handle
interaction with individual MessageClient, needs to store the messages belong to the
client. The MessageServer also has a list of MessageServerThread. According to the
creation and destroy of threads, MessageServer constantly updates its username list
and MessageServerThread list.
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6.4.2 The Implementation

To launch a server, a user can choose a port number to run the server on a machine.
When the port number is not specified, a default port number (6789) is used. The
user can also specify the Internet address and the port number of the server to run
the client java application. When the address of the server is not provided, a default
value is set to localhost.

A simple application protocol is designed to enable the communication between the
client and the server: Any messages passing through the system is started with a
number at the range of 1 to 4.

Number 1 indicates storing message. It is used only from the client to the
server. Following the number 1, is a number indicating the number of
receivers. Then follows an index list of receivers. After that is the message.

Number 2 indicates retrieval of messages for a particular user. When the
client requests its messages from the server, it merely sends a number 2.
The response of the server also starts with a number 2. After that, a number
indicating the number of messages is sent, followed by the messages one
by one.

Number 3 indicates the query and answer of a message. The server sends a
number 3 to the client at the start of a connection session. The client replies
with its username following a number 3.

Number 4 indicates the broadcast of the username list. It is only used by
the server: a server sends a number 4 to the client indicating the following
messages is the username list. Firstly, the number of usernames is sent.
Then, the usernames are sent one by one.

Empty strings are not permitted to be stored on the server. When the client runs in
java applet inside a web page, the Java policy needs to be set to allow the client
machine to trust the server program. The general method to set this is through the
running of the policytool on the client machine and to add socket permission into
the permission list. A message without a receiver cannot be sent.

The username is contained in the Applet parameter from the HTML file. If it is not
specified, the username will be set to the IP address and port number of the client
machine in the format of xxx.xxx.xxx.xxx:yyy.

To launch the server, type in java MessageServer [portno] in the
command line and the server will up on the specified port. If port number is not
provided, the server will use the default port number of 6789. The server prints a
message and awaits until a client requests a connection. For every message stored
the server prints out the received message. For a client retrieving messages, the
server prints out a message to indicate the event. When a client quits the program,
the server prints out the information indicating the corresponding username is
removed from the username list.
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The MessageApplet class is an applet runs in a web page or appletviewer. Files
messagel.html, message2.html and message3.html are created with different value
of username parameters. Type appletviewer message[1–3].html will
start the applet with a particular username. Three parameters, the host name, the
port number and the username, can be set as parameters in the HTML file. If they
are not specified, the system will use the default values, which are localhost and
6789. A textfield is placed on the upper part of the applet with a store button on its
right. Type message in the textfield and click the store button then the message will
be sent to the server. The textfield is then cleared. Underneath the textfield, there is
a textarea that supports multiple lines. Right to the textarea is a button called
retrieve. By clicking this button, messages are retrieved from the server and
displayed in the textarea. The textarea is not editable. The messages will stay in the
textarea until next retrieval. At the bottom, there is a List showing all the usernames
of clients currently connected to the server. To send a message addressing to
particular users, the username should be selected and shown in highlighted color.
The list will be updated automatically during the execution of the program.

6.4.3 The Programs

The MessageServer.java program is shown below:
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Here is the MessageServerThread.java program:
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The MessageApplet.java program contains the source code of both the
MessageApplet class and the MessageClient class. It is shown below:
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File message1.html is listed below:

The other two files, message2.html and message3.html, are almost the same as the
message1.html file, except that the “username” is changed to “User 2” and “User
3”, respectively.

6.5 Datagram Communications in Java

6.5.1 Why Datagram Communication ?
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For many applications the convenience of the TCP sockets outweighs the overhead
required. However, for certain applications it is much more efficient to utilize
datagrams: small, fixed-length messages sent between computers of a network.

A TCP connection carries a number of overhead factors. First, one needs to go
through several steps to open a connection. This takes a certain time. Once a
connection is open, sending and receiving data involves several steps. The final step
is to tear down the connection after the communication. If one is to send a large
amount of data that must be reliably delivered, then the TCP protocol is suitable.
However, if one only needs to send a short, simple message quickly, then all these
steps may not be worthwhile.

The difference between datagram and TCP connections is like the difference
between post offices and telephones. With a telephone, you make a connection to a
specific telephone number, if the person on the destination answers the phone, you
two are able to talk for a certain period of time, exchanging an arbitrary amount of
information, and then you close the connection. With a post offices, you typically
send a letter with the destination address on the envelope. Because of errors in
sorting, transportation and delivery and delays you cannot be certain if or when the
person addressed receives the letter. The only way to know is to request and receive
some kind of acknowledgement. You may retry several times if you get no
response, then give up.

On an IP network such as the Internet, the UDP (User Datagram Protocol) is used to
transmit fixed-length datagrams. This is the protocol that Java taps with the
DatagramSocket class.

6.5.2 Java Datagram-based Classes

Datagrams have the following advantages:

Speed. UDP involves low overhead since there is no need to set up connections,
to maintain the order and correctness of the message delivery, or to tear down
the connections after the communication.

Message-oriented instead of stream-oriented. If the message to be sent is small
and simple, it may be easier to simply send the chunk of bytes instead of going
through the steps of converting it to and from streams.

Two java.net classes define the heart of datagram-based messaging in Java: they are
the DatagramSocket and the DatagramPacket classes. A DatagramSocket is an
interface through which DatagramPackets are transmitted. A DatagramPacket is
simply an IP-specific wrapper for a block of data.

The DatagramSocket class provides a good interface to the UDP protocol. This
class is responsible for sending and receiving DatagramPacket via the UDP
protocol. The most commonly used DatagramSocket methods are listed below:

DatagramSocket(). Constructor comes in two formats: one is used to specify
the local port used and the other picks an ephemeral local port for you.
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receive(). Receive a DatagramPacket from any remote server.

send(). Send a DatagramPacket to the remote server specified in the
DatagramPacket.

close(). Tear down local communication resources. After this method is called,
the object involved is released.

getLocalPost(). Return the local port this DatagramSocket is using.

Note that there are two flavors of DatagramSocket: those created to send
DatagramPackets, and those created to receive DatagramPackets. A “send”
DatagramSocket uses an ephemeral local port assigned by the native UDP
implementation. A “receive” DatagramSockect requires a specific local port
number.

A DatagramPacket represents the datagram transmitted via a DatagramSocket. The
most frequently used methods of DatagramPacket are:

DatagramPacket(). Constructor comes in two formats: a “send” packet and a
“receive” packet. For the send packet, you need to specify a remote InetAddress
and a port to which the packet should be sent, as well as a data buffer and
length to be sent. For the receive packet, you need to provide an empty buffer
into which data should be stored, and the maximum number of bytes to be
stored.

getAddress(). This method allows one to either obtain the InetAddress of the
host that sends the DatagramPacket, or to obtain the InetAddress of the host to
which this packet is addressed.

getData(). This method allows one to access the raw binary data wrapped in the
DatagramPacket.

getLength(). This method allows one to determine the length of data wrapped in
the DatagramPacket without getting a reference to the data block itself.

getPort(). This method returns either the port of the server to which this packet
will be sent, or the port of the server that sends this packet, depending on
whether the packet was built to be sent or built to receive data.

It is also possible to exchange data via datagrams using the Socket class. To do so,
you must use one of the Socket constructors that includes the Boolean useStream
parameter, as in,

and set useStream to false. This tells Socket to use the faster UDP. The advantage to
using this interface is that it provides a stream interface to a datagram. Also, there is
no need to instantiate and maintain a separate DatagramPacket to hold the data.

But there are significant disadvantages as well. First, there is no way to detect if a
particular datagram sent does not arrive at the destination. Your stream interface can
lie to you. Second, you still have to go through the hassle of setting up the
connection.



130
UDP ports are separate from TCP ports. Each computer has 65,536 UDP ports as
well as its 65,536 TCP ports. You can have a ServerSocket bound to TCP port 20 at
the same time as a DatagramSocket is bound to UDP port 20. Most of the time it
should be obvious from context whether or not I’m talking about TCP ports or UDP
ports.

6.6 Building UDP Servers and Clients

6.6.1 Sending and Receiving UDP Datagrams

To send data to a particular server, you must first convert the data into byte array.
Next you pass this byte array, the length of the data in the array (most of the time
this will be the length of the array), the local InetAddress and the port to which you
wish to send it, into the DatagramPacket constructor. For example,

Next you create a DatagramSocket object and pass the packet to its send() method.
For example,

To receive data sent to you, you construct a DatagramSocket object with a port on
which you want to listen. Then you pass an empty DatagramPacket object to the
DatagramSocket’s receive() method.

The calling thread blocks until a datagram is received. Then the datagram dp is
filled with the data from that datagram. You can then use getPort() and getAddress()
to tell where the packet came from, getData() to retrieve the data, and getLength()
to see how many bytes were in the data. If the received packet was too long for the
buffer, then it’s truncated to the length of the buffer. For example,
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6.6.2 Datagram Server

The steps for setting up a datagram server are as follows:

Create a DatagramPocket for receiving the data, indicating the buffer to hold
the data and the maximum length of the buffer.

Create a DatagramSocket on which to listen.

Receive a packet from a client.

Here is a simple server example (DatagramReceive.Java) .

The main() method first builds an empty DatagramPacket object using a designated
buffer. Then it creates a DatagramSocket using the default port. The
DatagramSocket will receive a DatagramPacket which will fill the previous
DatagramPacket. Then the program extracts the string from this datagram packet
and prints it out.
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6.6.3 Datagram Client

The steps of setting up a datagram client are as follows:

Find the destination’s IP address.

Create a DatagramPacket based on the destination address and the data to be
sent.

Create a DatagramSocket for sending the packet.

Send the DatagramPacket over the DatagramSocket.

Here is the program named DatagramSend.java:
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The main() method first designs a string “I’m a datagram and I’m O.K.”
and translates it into a byte array. It also gets the local IP address using the
InetAddress class and then builds a DatagramPacket object using the above byte
array, the length of the string, the IP address and the default port. Then it creates a
sending DatagramSocket and sends out the DatagramPacket built before by
invoking the send() method. After that, the program closes the DatagramSocket.

6.7 Summary

As mentioned in Chapter 5, the BSD Internet domain sockets use the TCP/IP (or
UDP/IP) protocol suite as the communication protocols among processes. TCP is a
connection-oriented protocol and it implements a connection as a stream of bytes
from source to destination, while UDP is a connectionless transport protocol and
uses datagrams to implement its communication. In this chapter we discussed the
datagrams for the TCP/UDP communications. Java provides the reliable stream-
based communication for TCP as well as the unreliable datagram communication
for UDP. The stream-based communication is like a telephone system which has the
connection built first, whereas datagram communication is like a mail system which
has no fixed connection. Java various input/output streams allow application
programs to input and output various data, such as bytes, string, file etc. The Java
socket API provides the basis of TCP/UDP communication. Various examples
presented in the chapter have been a great help for readers in writing Java TCP/UDP
programs of their own.

Exercises

6.1

6.2

6.3

6.4

6.5

6.6

1.

2.

How does one build a connection between a Java socket and a Java server
socket? Write a program. 6.2

How does one close a socket? Give an example. 6.2

How does one write a TCP server program? Give an example. 6.3.3

Write a client/server program using stream communication to implement the
following functions: 6.4

The server can accept multiple clients and they can exchange multiple
messages.

The server can send a message to all clients simultaneously.

Hint: use a separate thread to manage each connection and use suspend()
and resume() methods of Thread class.

Compile the three programs in the chat example (6.4) and test run the server
on one machine, the client instances on at least two machines. If possible, form
a group to test run the chat program (the server runs on one site and the client
is run on multiple sites).

Discuss the advantages and disadvantages of TCP and UDP. 6.5.1
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6.7

6.8

6.9

Is it possible to exchange data via datagrams using the Socket class? How?
6.5.2

How does one write a datagram client program? 6.6.3

Write a client/server program using datagram communication to implement
the following functions: the server can communicate with multiple clients and
print out each client’s message. Hint: use getAddress() to get a client address.
6.7



CHAPTER 7 INTERPROCESS
COMMUNICATION USING

RPC

When using message passing for interprocess communications, a programmer is
aware of the passing of messages between the two processes. However, in a remote
procedure call situation, passing of messages is invisible to the programmer.
Instead, a language-level concept, the procedure call, is used to mask the actual
communication between two processes. In this chapter we discuss two commonly
used RPC tools, the DCE/RPC and the SUN/RPC. We have developed an RPC tool,
called the Simple RPC tool, which will be described in the chapter.

The idea of RPC has been extended to develop interprocess communication
mechanisms for object-oriented paradigm, notably the Remote Method Invocation
(RMI) in Java. We also introduce this mechanism in the chapter.

7.1 Distributed Computing Environment (DCE)

Open Software Foundation’s Distributed Computing Environment (DCE) [OSF
1990] is a vendor-neutral platform for supporting distributed applications. DCE is a
standard software structure for distributed computing that is designed to operate
across a range of standard Unix, VMS, OS/2, and other operating systems. It
includes standards for RPC, name (binding) services, time (synchronisation)
services, security services, and thread services all sufficient for client-server
computing across heterogeneous architectures. DCE/RPC is based on Apollo’s
Network Computing System (NCS) and can be used in several programming
language environments (e.g., C and Pascal).

DCE is based on the client-server model. It uses the client-server model to support
its infrastructure and transparent services. All DCE services are provided through
servers. By using DCE, application programmers can avoid considerable work in
creating supporting services, such as creating communication protocols for various
parts of a distributed program, building a directory service for locating those pieces,
and maintaining a service for providing security, in their own program. They can
rely on DCE for providing these services.

7.1.1 The Architecture of DCE

The architecture of DCE masks the physical complexity of the networked
environment by providing a layer of logical simplicity. The layer is composed of a
set of services that can be used separately or in combination to form a
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comprehensive distributed computing system. Figure 7.1 shows the architecture of
DCE. Servers that provide DCE services usually run on different computers, so do
clients and servers of a distributed application program that uses DCE.

DCE is based on a layered model which integrates a set of fundamental
technologies. To applications, DCE appears to be a single logical system with two
broad categories of services [Chappell 1994], [OSF 1992]:

Figure 7.1: DCE architecture

The DCE Core Services

These services provide tools with which software developers can create end-user
applications and system software products for distributed computing. These services
include:

Threads: DCE supports multithreaded applications;

RPC: The DCE/RPC is the fundamental communication mechanism and is used
in building all other services and applications. It masks differences in data
representation on different hardware platforms and thus allows distributed
programs to work transparently across heterogeneous systems;

Security Services: The DCE Security Service provides the mechanism for
writing applications that support secure communication between clients and
servers;

Directory Services: The DCE Cell Directory Service (CDS) provides a
mechanism for logically naming objects within a DCE cell (a group of client
and server computers). DCE cells can also participate in a world-wide directory
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service using the DCE Global Directory Service (GDS), which is based on the
X.500 standard, or the Internet-style Domain Name Service (DNS);

Time Services: The DCE Distributed Time Service (DTS) provides a way to
synchronise the clocks on different computers in a distributed computing
system.

DCE Data-Sharing Services

In addition to the core services, DCE provides important data-sharing services,
which require no programming on the part of the end user and facilitate the better
use of shared information. These services include:

Distributed File Services: The DCE Distributed File Service (DFS) provides a
high- performance, scalable, secure method for sharing remote files;

Enhanced File Services: The Enhanced File Service provides features which
greatly increase the availability and further simplify the administration of DFS.

DCE is a highly integrated package and its components depend on one another for
correct functioning. Some pairs of components (e.g., Security Service and RPC)
have mutual dependencies. For example, the Security Service is implemented using
RPC, and it requires the use of the Security Service to make RPCs secure.

In a typical distributed environment, most clients perform their communication with
only a small set of servers. In DCE, computers that communicate frequently are
placed in a single cell. A cell’s size and geographical location are determined by the
people administering the cell. Cells may exist along social, political, or
organisational boundaries and may contain up to several thousand computers.
Although DCE allows clients and servers to communicate in different cells, it
optimises for the more common case of intra-cell communication. One computer
can belong to only one cell at a time.

A user is authenticated within one local cell. All other cells to which a particular
user has access are considered foreign cells. If a cell is configured to participate in a
global naming service, users from foreign cells which also participate in the global
naming service may be permitted to access data in the local cell.

7.1.2 The Role of RPC

DCE RPC is based on the Apollo’s Network Computing System (NCA/RPC). RPC
fits very naturally into the client-server model. The components of DCE RPC can be
split into the following two groups according to the stage of their usage:

Used in development. They include IDL (Interface Definition Language) and
the idl compiler. The IDL is a language used to define data types and operations
applicable to each interface in a platform independent manner. The idl compiler
is a tool used to translate IDL definitions into code (usually in C) which can be
used in distributed applications;
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Used in runtime. They include RPC runtime library, rpcd (RPC daemon), and
rpccp (RPC control program).

To build a basic DCE application, the application developer has to supply the
following three files:

The interface definition file. It defines the interfaces (data structures, procedure
names, and parameters) of the remote procedures that are offered by the server;

The client program. It defines the user interfaces, the calls to the remote
procedures of the server, and the client side processing functions;

The server program. It implements the calls offered by the server.

The first step for building a DCE application is to compile the interface definition
file using the idl compiler to produce the interface header file, and the client and the
server stubs. Then the client program and server program are compiled with their
related stub files and the interface header. Finally, the client and server executables
are generated by linking these object files with the RPC runtime library. Figure 7.2
shows these operations.

Figure 7.2: Build a DCE application

DCE uses threads to improve the efficiency of RPCs. A thread is a ‘lightweight’
process that executes a portion of a program, cooperating with other threads
concurrently executing in the same address space of a process. Most of the
information that is a part of a process can then be shared by all threads executing
within the process’ address space. By sharing common information, the overhead
incurred in creating and maintaining the information, and the amount of information
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Figure 7.3: Using threads in a client-server application

7.1.3 The DCE Services

All the high-level DCE services, such as directory services, security services, time
services, and distributed file services, are provided by relevant servers. This section
briefly discusses these services and servers.

that needs to be saved when switching between threads of the same program is
reduced significantly.

The thread facility can be provided by the operating system or DCE, but in both
cases DCE specifies an application programming interface (API) to access thread
services from applications. The API routines allow programmers to create and
terminate threads, have one thread waiting for another to complete, and perform
thread synchronisation. To provide a service, for example, a separate server can be
used to interface with a group of clients and a separate thread within a particular
server can be used to process an RPC from a client (Figure 7.3(a)). In this case, a
server can serve many clients from many groups simultaneously. Within a client, a
separate thread can be used to perform an RPC, allowing several RPCs to be
executed at the same time (Figure 7.3(b)).
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7.1.3.1 Directory Services

The main job of the directory services is to help clients find the locations of
appropriate servers. To let clients access the services offered by a server, the server
has to place some binding information into a directory. As mentioned in Chapter 2,
to access the services of a server, a client needs to acquire that server’s binding
information from the directory and to bind the information with the client. The
client can then access the server directly.

A directory is a hierarchically structured database that stores dynamic system
configuration information. The directory is a realisation of the naming system. Each
name has attributes associated with it, which can be obtained via a query using the
name.

Each cell in a DCE distributed computing system has its own directory service,
called the Cell Directory Service (CDS), which stores the directory service
information for a cell [Bond 1995]. It is optimised for intra-cell access, since most
clients communicate with servers in the same cell. Each CDS consists of CDS
servers and CDS clerks. A CDS server runs on a node containing a database of
directory information (called the clearinghouse). Each clearinghouse contains some
number of directories, similar to (but not the same as) directories in a file system.
Each directory, in turn, can logically contain other directories, object entries, or soft
links (an alias that points to something else in CDS). Figure 7.4 shows the directory
hierarchy of a clearinghouse.

Each cell may have multiple CDS servers. Nodes which do not run a CDS server
must run a CDS clerk. A CDS clerk acts as an intermediary between a distributed
application and the CDS server on a node not running a CDS server.

When a server wishes to make its binding information available to clients, it exports
that information on one of its cell’s CDS servers. When a client wishes to locate a
server within its own cell, it imports that information from the appropriate CDS
server by calling on the CDS clerk on its node.

Figure 7.4: The CDS directory hierarchy
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DCE uses the Domain Name System (DNS) or Global Directory Service (GDS,
based on the X.500 standard) to enable clients to access servers in foreign cells. To
access a server in a foreign cell, a client gives the cell’s name and the name of the
desired server in that cell. A CDS component called a Global Directory Agent
(GDA) extracts the location of the named cell’s CDS server from DNS or GDS,
then a query is sent directly to this foreign server. Figure 7.5 shows the components
of the DCE directory service.

Figure 7.5: Components of the DCE directory service

CDS supports replication of its information. Replication is done at the directory
level, so any directory and the objects it contains can be copied by a cell
administrator and kept in two or more CDS servers running concurrently within a
cell. There are two types of directory replicas: master replicas and read-only
replicas. Master replicas can accept any directory service operations (such as read
and update operations) whereas read-only replicas can only accept read operations.

All the update operations happen on a master replica [Rosenberg et al. 1992], [Bond
1995]. There are two methods for maintaining data consistency between a master
replica and its read-only replicas: immediate propagation and skulking. With
immediate propagation, a change to the master replica causes the change to be
immediately applied to all of its read-only replicas. However, if read-only replica is
not available during the propagation, the change is simply not made to that replica.
With skulking, the changes are carried out on a periodical basis. The skulking
operation ensures that when a failed replica restarts its information will be
consistent with other replicas.

7.1.3.2 Security Services

DCE provides the following four security services:

Authentication. When a client requests some service from a server, it must
identify itself and must provide some information to prove its true identity;

Authorisation. Once a client’s identity has been authenticated, the next question
is whether the client has the right to perform the service it is requesting;
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Data integrity. This service guards against the alteration of data during the
transmission of the data. It allows a recipient of a message to determine
whether the data has been tampered with;

Data privacy. It ensures that data sent between clients and servers cannot be
read by anyone but the parties involved in the communication.

A security server (it may be replicated) is responsible for providing these services
within a cell. The security server has the following three components:

Registry service is a database of principal (a user of the cell), group, and
organisation accounts, their associated secret keys and administration policies.

Key distribution service provides tickets to clients. A ticket is a specially
encrypted object that contains a conversation key and an identifier that can be
presented by one principal to another as a proof of identity.

Privilege service supplies the privileges of a particular principal. It is used in
authorisation.

The security server must run on a secure computer, since the registry on which it
relies contains a secret key, generated from a password, for every principal in the
cell.

DCE security services are based on the Kerberos V5.0, created by the MIT/Project
Athena [MIT 1994], and DCE extends Kerberos version 5 by providing
authorisation services [Chappell 1994].

7.1.3.3 Time Services

Distributed time service (DTS) of DCE is designed to keep a set of clocks on
different computers synchronised. DTS uses the usual client-server structure: DTS
clients, daemon processes called clerks, request the correct time from some number
of servers, receive responses, and then reset their clocks as necessary to reflect this
new knowledge. How often a clerk resynchronises, and thus how accurate that
system’s clock will be, is configured by the system administrator.

Time in DTS is expressed as an interval (a time plus or minus an inaccuracy). A
new time interval is calculated as the intersection of all the received intervals. For
example, as shown in Figure 7.6, if a clerk receives four time intervals from time
server 1, 2, 3, and 4, then the time synchronisation of the clerk is performed (the
value returned by time server 3 is regarded to be faulty since it does not intersect
with the majority, and is ignored). As a result, the clerk’s time is set to be the
intersection of time intervals from time server 1,2, and 4.

There are several components that comprise the DCE DTS:

Time clerk is the client side of DTS. It runs on a client computer and keeps the
computer’s local time synchronised by asking a time server for the correct time
and adjusting the local time accordingly.
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Figure 7.6: Time synchronisation using intervals

Time servers are of three types. The local time server maintains the time
synchronisation of a given LAN. The global time server and courier time
servers are used to synchronise time among interconnected LANs. A time
server synchronises with other time servers by asking these time servers for
correct times and adjusts its time accordingly.

DTS API provides an interface where application programs can access time
information provided by the DTS.

Figure 7.7 shows the time synchronisation among time servers and clerks within a
cell with multiple LANs. Within LAN 3, the time clerk synchronises its time by
receiving (the dashed lines) time intervals from three time servers (time servers on
computer 1, computer 2 and computer 3). The new time interval of the time clerk is
then calculated from these received time intervals. Time synchronisation between
the interconnected LANs (LAN 1, LAN 2 and LAN 3) are carried out by the global
time servers within each LAN (the solid lines). An application (in Computer 4)
accesses time information through the API provided by the DTS.

7.1.3.4 Distributed File Services

DCE uses its distributed file services (DFSs) to join the file systems of individual
computers within a cell into a single file space. A uniform and transparent interface
is provided for applications to accessing files located in the network. DFS is derived
from the Andrew File System (AFS) [Satyanarayanan 1989]. It uses RPC for client-
server communication, uses threads to enhance parallelism, relies on the DCE
directory to locate servers, and uses DCE security services to protect from attackers.

DFS uses the client-server model. DFS clients, called cache managers,
communicate with DFS servers using RPC on behalf of user applications. There are
two types of DFS servers:
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Figure 7.7: Time synchronisation within a multi-LAN cell

A fileset location server which stores the locations of system and user files in
DFS;

A file server which manages files.

When a file is first accessed by an application from a computer, that computer’s
cache manager copies the file’s first chunk (the default size is 64K bytes, so many
files will be copied in their entirety) to its local disk (cache). Applications on that
computer are then free to read and write the data on the cache. If multiple computers
are caching the same chunk of a file, a somewhat elaborate token mechanism is
used to maintain consistency among their caches.

A typical interaction between various components of DFS is shown in Figure 7.8,
where the number represents steps:

Step 1: At first, the application issues a file request call to the cache manager in its
computer;
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Step 2: If the requested file is located in the local cache, the request is served using
the local copy of the file. Otherwise, the cache manager locates the fileset location
server through the CDS server (cell directory service, see Section 7.1.1);

Step 3: The location of the file server that stores the requested file is found through
the fileset location server;

Step 4: Finally, the cache manager calls the file server and the file data is accessed.

Figure 7.8: Interactions between DFS components

7.2 The DCE/RPC

In an application developed using DCE/RPC, a user accesses a distributed
application program by interacting with a client program and the client program
interacts with a server program (probably through the underlying structure) to
perform the user’s tasks. Usually a client program may have direct access to network
brokers and server support tools, but may have no direct access to the underlying
basic heterogeneous interconnect. A dashed line is used to mark the interaction
between client programs and the basic heterogeneous interconnect.

The server programs are designed to perform specific functions and they can be
located in any of the hosts of a computer network. Similar to a client program, a
server program usually has direct access to network brokers and server support
tools, but may have no direct access to the underlying basic heterogeneous
interconnect.

The network brokers are used for locating server locations. At the beginning of a
server program’s execution, the server usually registers itself with location brokers.
A client program then uses the location brokers to locate a server that it needs to
communicate with. By using these location brokers, it is possible that server
locations are transparent to user (client) programs.
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The server support tools provide some facilities for simplifying distributed
application programming and the heterogeneous interconnect provides the basic
interconnection between heterogeneous computing systems.

7.2.1 DCE/RPC Facility

The following components are provided by DCE to assist the development and
execution of the RPC programs related to DCE:

Remote procedure call runtime library,

Network Interface Definition Language (NIDL) compiler, and

Location Broker.

The RPC runtime library provides the system calls that enable a local program to
execute procedures on remote hosts. The Location Broker then provides the
information of remote (and local, of course) servers. The NIDL compiler is a tool
for developing DCE applications.

7.2.1.1 DCE Application Development

The process of a typical DCE application development might be as follows. At first,
the programmer uses the NIDL language to write an interface definition file which
defines all of the remote service interfaces (procedures). The programmer then
compiles this definition using the NIDL compiler. In general, there are four output
files for an interface definition, where two of them are client stubs (one is called a
client stub and the other a client switch. We will describe them more fully later),
one is a server stub, and the last one is an include file for the use of both client and
server programs. The programmer then builds the server program, which
implements the remote interfaces described in the interface definition, and the client
program, which makes use of the remote procedures and other application functions
(as well as providing a user interface). The formats for the remote procedure calls in
the client program are defined in the interface definition. Finally, the server program
is linked with the server stub and the client program is linked with the client stubs.
Now the server program can run on a remote host and the client program running on
a local host can execute the remote procedures in the same way as it requests local
procedures.

The above process is for developing “non-replicated” client/server programs, that is,
only one server is responsible for managing an object (eg, a database file). If we
want to replicate a very important object in several locations, we need to develop
“replicated” servers to manage these replicated objects. As these replicated servers
need to communicate with each other to maintain the consistency of the replicated
objects, a replicated server will have the function of both a server and a client
program. That is, a replicated server needs to be linked with stub files provided for
both server and client programs. This will cause naming conflicts between stub
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routines because the same procedure (service interface) names are defined in both
server and client stub files.

The method used in DCE to solve this problem is to use two client stub files, one is
called the client stub and the other the client switch [Kong 1990]. The client switch
contains “public” procedure names (the same names defined in the interface
definition file and can be referenced by client programs), while the client stub
contains only “private” procedure names (these procedures have the same function
as the public procedures) that are not visible outside the stub program.

To build an ordinary (non-replicated) client, both the client stub and client switch
files are linked with the client program. An RPC call in the client program will then
go to the client stub, the client switch, and then to the particular procedure. To build
a replicated server, only the client stub (of course, the server stub as well) needs to
be linked with the server program. An RPC call in the server program will then go
to the client stub directly, and then to the particular procedure.

7.2.1.2 Location Broker

Note that we did not mention the Location Broker above. A small and specific
application needn’t have recourse to the Location Broker because the client program
knows where the remote services are located. The Location Broker is very useful in
general, however. Usually, a server program must register all of its services with the
Location Broker. The client program can then find the service through the Location
Broker. After the client finds the location of the service, it then calls the service
directly. This is called unbound (or allocated) calling. DCE also supports other
calling semantics, such as bound-to-host and fully bound calls [Kong 1990].

There are two kinds of location brokers, one called the Global Location Broker
(GLB) and the other called the Local Location Broker (LLB), respectively. The
LLB provides the services information for its local host, and the GLB provides the
services information for the whole network. When the difference between these
location brokers is not important, we will use the term Location Broker (LB) to
refer to them. There are some system calls provided by DCE to manage the location
brokers. Because there may be many services registered in a Location Broker, a
unique naming facility called the Universal Unique Identifier (UUID) is employed.
Each service has to be assigned a UUID before it is registered with the LB. These
UUIDs are used by DCE to distinguish one service from another.

7.2.1.3 RPC Handle

In DCE, an object is an entity manipulated by well-defined operations. Each object
is identified by an object UUID. On the other hand, the RPC runtime library is
implemented on the basis of sockets. When a client makes a remote procedure call,
requesting that a particular operation be performed on a particular object, the RPC
runtime library needs some information about the object and server. This
information is represented by an RPC handle. DCE provides several system calls to
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create and manage handles. After a handle is bound to a server, the client can use
this handle to access the server. An RPC handle can be in three states:

Unbound (or allocated).

Bound-to-host.

Bound-to-server (or fully bound).

If a client knows an object’s UUID (and, of course, its interface operations), but
does not know its location, an unbound handle can be used. When the client uses
this handle to make a remote procedure call to request a particular operation on the
object, the runtime library broadcasts a message to all hosts on the local network.
Any host which supports the operation on the object may respond to the request.
The caller runtime library then accepts the first response as the one it requested.
After that, the handle becomes fully bound to that server.

If a client knows an object’s UUID and the host on which it is located, a bound-to-
host handle can be used. When the client uses this handle to make a remote
procedure call, the runtime library sends a message to the host’s Location Broker. If
the requested interface is registered on the Location Broker, the proper server will
get this message and respond to the client. Again, the handle becomes fully bound
after this call.

If a client knows an object’s UUID, its host, and its server address, then a fully
bound handle can be used. When the client uses this handle to make a remote
procedure call, the runtime library sends a message directly to the socket address of
the handle.

7.2.1.4 Concurrent Programming Support

In addition to the RPC runtime library, NIDL compiler, and Location Broker, the
Apollo also provides a Concurrent Programming Support (CPS) software tool to
support the execution of DCE. This tool consists of four classes of system calls:

Task programming calls that create and manage multitasking environments.

Eventcount system calls that create and manage eventcounts for
synchronising programming events.

Mutex programming calls that provide applications with mutual exclusion,
resource-sharing and synchronisation

Pfm programming calls that control signals, faults, and exceptions for faults.

A distributed program in DCE can be functionally divided into two parts: the server
part and the client part. Each part can be located on any host in the network.
Usually, a server part manages an object, and a client part accesses the object by
using the remote procedures provided by the server. An RPC-oriented program (in
short, an RPC program) may consist of several servers and clients, and all these
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parts of the program work together concurrently on the programmer’s task. A server
or client can fork to several processes if necessary.

After a programmer compiles his interface definition with the NIDL compiler, the
source code for the server and client stubs are generated, and their object files
linked with the server and client programs respectively. When a remote procedure
call is issued in the client program, it actually goes to the client stub, which then
communicates with the server stub (if the server’s address is known). Then the
procedure implementing the required service is called by the server stub, and the
return data are transferred through the server and client stubs back to the client
program. The RPC runtime library contains the routines, tables, and data that
support the communication of remote procedure calls between server and client
stubs.

7.2.2 Related Tools

In DEC workstations running the Ultrix operating system (similar to BSD UNIX),
the DCE/RPC tools are located in the /etc/ncs directory. We will first describe
how to set up location brokers and then describe the use of the lb_admin and
uuid_gen tools.

Usually the global and local location brokers are set up by system programmers. On
a LAN, there can be more than one global location broker and on each workstation
there should be a local location broker. As the DEC’s Ultrix system only uses non-
replicated global location brokers, this means only one global location broker can be
set up in a LAN. A global location broker can be executed on any host of the LAN.
The non-replicated global location broker is invoked by

and the local location broker is invoked by

These programs are better invoked when the system is booted.

A tool called lb_admin is used to manage the information stored in these location
brokers. UUIDs are used in these brokers for identifying different server objects.
Actually, a server object is uniquely identified to location brokers by:

whereobject, type and interface are UUIDs and socket address consists
of a host name and a port number.

With lb_admin, you can select to use either global or local location brokers. After
you selected this (default is local), the location broker remains unchanged until your
next selection. The tool is invoked by

Then the tool prompts lb_admin: and waits for your command. The main
commands are:
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The uuid_gen program is used to generate a UUID. It is useful when programming
a server’s NIDL interface definition file. In that case, you may need to specify the
UUIDs for your server object. It is invoked by

The program then prints out a new UUID.

7.2.3 Exception Handling

In each RPC call, there is a parameter used specially for the return status (usually it
is the last parameter). It is a data type of status_$t, defined as follows:

Usually only the all field is considered. It reports the return status of the remote
procedure call. If this field is not equal to status_$ok, an internal defined
constant, then there may have been something wrong during the call. A client
program may receive the following three classes of errors when using RPCs:

Communication errors.

Server-failure errors.

Interface mismatch errors.

When the underlying communication facility fails, the client’s remote call may fail
to reach the server or may fail to receive the response from the server. This failure is
indicated by the rpc_$comm_failure status in the status return of the call. To
overcome this, the client program may try to find another server with the same
service.

If a server process crashes while handling a remote call, a failure status is returned
to the calling client. In this case, the error is signalled in the same manner as if the
server had been locally linked with the client.

If the version of an interface used to generate the server stub file is not identical to
the version of the interface used to generate the client stub and switch files, an
interface mismatch error occurs. This is because in the NIDL interface definition,
one can set a version number to indicate a change in the interface. After a change,



151
new server and client stubs are generated and should be linked with both server and
client programs. One cannot recover from this error. The only remedy is to re-build
the out-of-date client or server.

Apart from checking status returned, one can use cleanup handlers to catch RPC
errors. The RPC runtime library always signals a failure if an error occurs during a
remote procedure call. This signal invokes the topmost cleanup handler on a handler
stack set up by the user program.

The pfm_$cleanup system call is used to set a cleanup handler. If the operating
system detects a fault while a cleanup handler is set, it first “unwinds” the process
stack to the most recent pfm_$cleanup call and releases that cleanup handler.
The system then returns from the pfm_$cleanup call with the status value for the
error that caused the failure. Program execution then continues with the code
immediately following the pfm_$cleanup call. This will usually be code that
handles the fault.

The code should first test the return value of the pf m_$cleanup call to see if the
handler is set. If it is not set (that is, this cleanup handler has been released by the
operating system), some error must have occurred and the error handling code can
be executed. If an RPC call is successful, a pfm_$rls_cleanup call should be
used to release the cleanup handler set before the RPC call. In that case the previous
cleanup handler will become the topmost one, and will be invoked if a subsequent
RPC call fails. It is good practice to enclose all important RPC calls with the
pfm_$cleanup and pfm_$rls_cleanup calls.

7.3 SUN/RPC

Sun RPC was designed for client-server communication in the Sun NFS network
file system. Sun RPC is sometimes called ONC (Open Network Computing) RPC. It
is supplied as a part of the various Sun and other UNIX operating systems and is
also available with other NFS insallations.

7.3.1 Interface Definition Language

The Sun RPC system provides an interface language called XDR and an interface
compiler called rpcgen which is intended for use with the C programming language.

The Sun XDR language, which was originally designed for specifying external data
representations, was extended to become an interface definition language. It may be
used to define a service interface for Sun RPC by specifying a set of procedure
definitions together with supporting type definitions. The features of the Sun XDR
language can be summarized as follows:

Most languages allow interface names to be specified, but Sun RPC does not -
instead of this, a program number and a version number are supplied. The
program numbers can be obtained from a central authority to allow every
program to have its own unique number. The version number changes when a
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procedure signature changes. Both program and version number are passed in
the request message, so that client and server can check that they are using the
same version.

A procedure definition specifies a procedure signature and a procedure number.
The procedure number is used as a procedure identifier in request messages. It
would be possible for the interface compiler to generate procedure identifiers.

Only a single input parameter is allowed. Therefore, procedures requiring
multiple parameters must include them as components of a single structure.

The output parameters of a procedure are returned via a single result.

The procedure signature consists of the result type, the name of the procedure,
and the type of the input parameter. The type of both the result and the input
parameter may specify either a single value or a structure containing several
values.

The interface definition language provides a notation for defining constants,
typedefs, structures, enumerated types, unions and programs. Typedefs, structures
and enumerated types use the C language syntax. The interface compiler rpcgen can
be used to generate the following from an interface definition:

Client stub procedures;

Server main procedure, dispatcher and server stub procedures;

XDR marshalling and unmarshalling procedures for use by the dispatcher and
client and server stub procedures.

A client stub file that contains one stub procedure for each procedure defined in the
interface definition file can be created by rpcgen. A client stub procedure name is
the name of the procedure given in the interface definition, converted to lowercase
and with an underscore and the version number appended. The name of the client
stub file is formed by taking the base name of the input file to rpcgen and adding a
_clnt.c suffix.

A server stub file that contains the main routine, the dispatcher routine, and one
stub procedure for each procedure defined in the interface definition file plus a null
procedure can be generated by rpcgen. The main routine creates the transport
handles and registers the service. The default is to register the program on both the
UDP and TCP transports. However, a user can select which transport to use with a
command-line option to rpcgen. The dispatcher routine dispatches incoming remote
procedure calls to the appropriate procedure. The name used for the dispatch routine
is formed by mapping the program name to lowercase characters and appending an
underscore followed by the version number. The name of the server stub file is
formed by taking the base name of the input file to rpcgen and adding a _svc.c
suffix.

An XDR filters file can be produced by rpcgen to contain XDR marshalling and
unmarshalling procedures. These procedures are used by the client and server stub
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procedures. The name of this file is formed by taking the base name of the input file
to rpcgen and adding a _xdr.c suffix.

Now using the files generated by rpcgen, an RPC application is created in the
following steps:

The application programmer manually writes the client program and server
program for the application.

The client program file is compiled to get a client object file.

The server program file is compiled to get a server object file.

The client stub file and the XDR filters file are compiled to get a client
stub object file.

The server stub file and the XDR filters file are compiled to get a server
stub object file.

The client object file, the client stub object file, and the client-side RPC
runtime library are linked together to get the client executable file.

The server object file, the server stub object file, and the server-side RPC
runtime library are linked together to get the server executable file.

1.

2.

3.

4.

5.

6.

7.

7.3.2 Security Services

Sun RPC supports the following three types of authentication (often referred to as
flavors):

No authentication. This is the default type. In this case, no attempt is made by
the server to check a client’s authenticity before executing the requested
procedure. Consequently, clients do not pass any authentication parameters in
request messages.

UNIX-style authentication. This style is used to restrict access to a service to a
certain set of users. In this case, the uid and gid of the user running the client
program are passed in every request message, and based on this authentication
information, the server decides whether to execute the requested procedure or
not.

DES-style authentication. Data Encryption Standard (DES) is an encryption
technique. In DES-style authentication, each user has a globally unique name
called netname. The netname of the user running the client program is passed in
encrypted form in every request message. On the server side, the encrypted
netname is first decrypted and then the server uses the information in netname
to decide whether to execute the requested procedure or not.

The DES-style authentication is recommended for users who need more security
than UNIX-style authentication. RPCs using DES-style authentication are also
referred to as secure RPC.
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Clients have the flexibility to select any of the above three authentication flavors for
an RPC. The type of authentication can be specified when a client handle is created.
It is possible to use a different authentication mechanism for different remote
procedures within a distributed aplication by setting the authentication type to the
flavor desired before doing the RPC.

7.3.3 Some Issues

7.3.3.1 Call Semantics

Sun RPC supports at-least-once semantics. After sending a request message, the
RPC runtime library waits for a timeout period for the server to reply before
retransmitting the request. The number of retries is the total time to wait divided by
the timeout period. The total time to wait and the timeout period have default values
of 25 and 5 seconds, respectively. These default values can be set to different values
by the users. Eventually, if no reply is received from the server within the total time
to wait, the RPC runtime library returns a timeout error.

7.3.3.2 Exception Handling

The RPC runtime library of Sun RPC has several procedures for processing detected
errors. The server-side error-handling procedures typically send a reply message
back to the client side, indicating the detected error. However, the client-side error-
handling procedures provide the flexibility to choose the error-reporting
mechanism. That is, errors may be reported to users either by printing error
messages to stderr or by returning strings containing error messages to clients.

7.3.3.3 Client-Server Binding

Sun RPC does not have a networkwide binding service for client-server binding.
Instead, each node has a local binding agent called portmapper that maintains a
database of mapping of all local services (as mentioned earlier, each service is
identified by its program number and version number) and their port numbers. The
portmapper runs at a well-known port number on every node.

When a server starts up, it registers its program number, version number, and port
number with the local portmapper. When a client wants to do an RPC, it must first
find out the port number of the server that supports the remote procedure. For this,
the client makes a remote request to the portmapper at the server’s host, specifying
the program number and version number. This means that a client must specify the
host name of the server when it imports a service interface. In effect, this means that
Sun RPC has no location transparency.

The procedure clnt_create is used by a client to import a service interface. It
returns a client handle that contains the necessary information for communicating
with the corresponding server port, such as the socket descriptor and socket address.
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The client handle is used by the client to directly communicate with the server when
making subsequent RPCs to procedures of the service interface.

7.3.4 Critiques of Sun RPC

In spite of its popularity, some of the criticisms made against Sun RPC are as
follows:

Sun RPC lacks location transparency because a client has to specify the host
name of the server when it imports a service interface.

The interface definition language of Sun RPC does not allow a general
specification of procedure arguments and results. It allows only a single
argument and a single result. This requirement forces multiple arguments or
return values to be packaged as a single structure. While DCE RPC IDL allows
a completely general specification of procedure arguments and results.

Sun RPC is not transport independent and the transport protocol is limited to
either UDP or TCP. However, a transport-independent version of Sun RPC,
known as TI-RPC (transport-independent RPC), has been developed by Sun-
soft, Inc. TI-RPC provides a simple and consistent way in which transports can
be dynamically selected depending upon user preference and the availability of
the transport.

In UDP, Sun RPC messages are limited to 8 kilobytes length.

Sun RPC supports only at-least-once call semantics, which may not be
acceptable for some applications. DCE RPC supports at-most-once semantics.

Sun RPC does not have a networkwide client-server binding service, while
DCE RPC does.

Sun RPC does not include any integrated facility for threads in the client or
server, although Sun OS has a separate threads package.

1.

2.

3.

4.

5.

6.

7.

7.4 The Simple RPC

One of the problems of existing RPC systems is that they are very complex and not
easy to use. A programmer has to get many preparations before he can make use of
an RPC system for his distributed programming. This is typically true when an RPC
system is been used for teaching purpose. The Simple RPC (SRPC) was developed
by one of our authors in 1992 to overcome the complexity problem. Its source can
be downloaded from: http://www.it.deakin.edu.au/~wanlei/srpcv1_1.tar.Z.

7.4.1 An Introduction of SRPC

SRPC is a simple remote procedure call (RPC) system. The main design purpose is
to understand basic RPC principles and to serve as a tool for further research and
development. The system is small, simple, expandable and concise. It is easy to
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understand and easy to use. The SRPC only contains the essential features of an
RPC system, such as a location server and a stub generator, among other things.
Two features are left for further expanding: the concurrent processing of client calls
within a server, and the use and representation of complex data types and structures.

Apart from simplicity, another interesting feature of SRPC system is that, the stub
compiler (we call it stub and driver generator, or SDG in short) not only produces
the server and client stubs, but also creates remote procedures’ framework, makefile,
and driver programs for both server and client. So, after using this make utility, a
user can test the program’s executability by simply executing the server and client
driver programs.

The client/server model is used in SRPC programs. So an SRPC program has two
parts: a server part and a client part. The server part is composed of a server driver,
a stub, and a file which implements all the remote procedures (called procedure
file). The server part (or a server program as it is sometimes called) is a “forever”
running program which resides on a host and awaits calls from clients.

The client part (or a client program) consists of a driver and a stub. It runs on a host
(usually a different host from the server’s host) and makes calls to the server by
using the remote procedures exported by the server.

When the client driver makes a call, it goes to the client stub. The client stub then
makes use of the Internet entity of the client host for sending the calling message to
the Internet entity of the server’s host. At the server side, the Internet entity will
send the calling message to the server stub. The server stub then reports the call to
the server and an appropriate procedure defined in the procedures file is executed.
The result of the call follows the calling route in reverse, through the server stub,
the Internet entity of the server host, the Internet entity of the client host, and the
client stub, and backs to the client driver.

The pre-condition of the above calling is that the client knows the address of the
server before the call. With the help of a location server (LS), the run-time address
of a server can be easily accessed.

One typical scenario of SRPC programs using LS can be described below: When
the server is started, it first registers its location to the LS and then waits for clients’
calls. The clients know the server by a name (character string) defined by the user.
When a client is invoked, it consults the LS for the server’s location. After the
location is found, the client then can make any number of RPC calls to that server
by using the obtained location. If a “shutdown” call is issued by a client program,
the server un-registers itself from the LS and exits from the system.

SRPC is implemented by using Internet socket. So it can be used on any BSD-like
operating systems, such as BSD4.2, BSD4.3, Ultrix and other similar UNIX
systems.
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7.4.2 Installation

The distributed version is the SRPC version 1.1. It consists of a compressed file
called srpcv1_1.tar.Z. The following steps can be used to install it:

Make a sub-directory called srpc (or whatever you want to call it). Copy
the compressed file srpcv1_1.tar.Z into this directory. Also make a
lib sub-directory (at the same level as srpc) if you have no such
directory.

Uncompress the file:

Un-tar the file:

Make library files:

Make stub and driver program generator:

Make Location Server (LS):

1.

2.

3.

4.

5.

6.

Now the SRPC system is ready to use.

7.4.3 The SRPC System Architecture

SRPC version 1.1 has three components: a library, a Location Server and a Stub and
Driver Generator.

7.4.3.1 The System Library

One of the advantages of using RPC systems is that a user does not need to know
the implementation details of remote procedures. The user only needs to call a pre-
defined remote procedure like he/she calls a local procedure.

The system library is one way to achieve the transparency. The library contains all
the low-level and system-oriented calls. Its main function is to make the low-level
facilities transparent to the upper-level programs. So the stub and driver programs
of both server and client will not deal with their Internet entities directly.

The library is named asIsc.a and is located in the lib directory. It must be
linked to the server and client programs respectively.

There are three source files:

asI.h Header file
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asIsc.c Main source file

make_lib Shell file for making the library

All the library calls can be divided into the following call levels (in the up-down
order):

SRPC Level is the highest level. It contains calls that deal with RPC-related
operations.

Remote Operation Level contains calls that deal with remote operations. These
remote operations follow the definitions of OSI Application level primitives.

Socket Level contains calls that deal with socket level operations.

Utility Level contains all the utility calls used in different levels.

The System Calls section of the SRPC Programmer’s Manual lists all the library
calls.

7.4.3.2 The Location Server

Another way of hiding the implementation details is the use of the Location Server
(LS). LS is used to hide server locations from a user. It is executed before any other
SRPC program is started. After that, it resides on a host and awaits calls from
servers and clients.

A location of a server in SRPC can be expressed in a triple:

where the host is the host name or address on which the server is running, the
port is the socket port number of the server and the protocol is the protocol
used in client-server communication. The host name and address is assigned by
system programmers. The port number can be an integer greater than 1024 (lower
port numbers are reserved by the operating system and other system utilities). The
protocols used in SRPC are Internet stream and Internet datagram.

LS uses a “well-known” address. By default, it is assigned to

A maintenance tool is also provided to maintain the location database of the
location server. It provides calls to register, to un-register, and to locate an entry of
the database. It also can be used to list all the database entries and shut down the
location server.

LS is also implemented by using the SRPC system. Following files are related to the
location server:

loc.def LS server definition file (refer to next section for the
details of server definition files)

loc.h LS header file
locSer.c LS server driver program
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locStubSer.c LS server stub
locOps.c LS remote procedures
locCli.c LS client driver program
locStubCli.c LS client stub
mkloc LS make file

After using command:

two executable files are created:

locSer LS server
locCli LS maintenance program

By default, locSer must be executed on host 137.132.87.2 (sun.iscs.nus.sg
), but this can be changed by editing the LS header file loc.h and library call
header file asI.h, and re-compile the library and location server by using the
above commands. You can change the following two definitions in both loc. h and
as I. h files to suit your own needs:

In order to register to the LS, a server has to provide its location to the LS, with the
port number as an optional. If the registering server has no port number, the LS will
assign it one. The assignment range is from 5050 to 9999. Each time one number is
assigned, the LS adds 1 to the number. If the number reaches 9999, the next number
will start again from 5050.

Usually there should be one LS (or equivalent entity) running on each host for most
existing RPC systems. In that case the LS’s location can also be hidden from users.
Also, multiple LSs may have the potential of offering a fault-tolerant system. We
only use one LS in SRPC because the simplicity is one of our design priorities. We
feel the sacrifice is not too much because the SRPC only needs to be installed once
on a network and that is the only place that one has to know the location of the LS.

7.4.4 The Stub and Driver Generator

7.4.4.1 Syntax

The purpose of the stub and driver program generator is to generate stubs and driver
programs for server and client programs according to Server Definition Files (SDF).
Listing 7.1 is the syntax of a server definition file:

Listing 7.1: Server definition file syntax
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We use a modified BNF to denote the syntax of definition files. In this notation,
non-terminals are denoted in brackets < and > , and terminals are denoted as in
normal font, while the symbol ::= denotes “defined as”. Three operators are
involved, namely:

the construct { x } means that x is replaced an arbitrary number of
times,

the construct [ x ] means that x is optional, and

the construct x y means that one of the items is selected.

1.

2.

3.

The following notes apply to Listing 7.1.

The “variable”, “integer”, and “string” have the same meanings as in the C
programming language.

The “constant” and “declarator” have the same meaning as in the C
programming language (only character strings are allowed now).

Comments are allowed in the definition file. They are the same as in the C
programming language (using /* and */).

1.

2.

3.

7.4.4.2 Semantics

A server definition file is defined as a <HEADER> part followed by a <FUNCS>
part. The <HEADER> includes a server’s name, a comment string, a
communication protocol, a client port number, a server host name or address, and a
server port number. The last two parts are optional.

The server’s name is defined as a variable in the C language. This name will be used
in many places. For example, when a client asks the LS to locate a server, it
provides the server’s name defined here. The name is also used as a prefix in naming
all the files generated by the SDG.

The comment string usually specifies what the server is going to do. The comment
string is stored with the server registering message. By looking at this string, one
can determine the purpose of the server.
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The communication protocol part is used to define which communication protocol
is to be used. Currently only Internet stream and Internet datagram protocols are
allowed.

The client port is necessary only if the Internet datagram protocol is defined. For
Internet stream protocol, this part is not used. A port number of greater than 5050 is
recommended if the client port part is to be defined.

The server host part, together with the server port number part, is optional. It
defines on which host the server is going to run. It can be defined as a host name
(such as sun.iscs.nus.sg) or a host address (such as 137.132.87.2).

The server port part defines on which port the server is going to listen. It is usually
larger than 1024 and less than, say, 10000. Note that the port number 5010 is
reserved by the LS server. For safety reasons, the users are suggested to use port
numbers that are larger than 5050.

The <CONST> part is optional. It defines constants used in remote procedures. The
format is the same as in C language.

The <FUNCS> part defines the remote procedures of the server. At least one remote
procedure must be defined. Each remote procedure is defined as a name part and a
parameter (<PARAMS>) part. The name of a remote procedure is simply a variable.
There can be zero or several parameters, each consisting of a class and a
declaration. The class can be in or out, which tells the SRPC system that the
parameter is used for input or output, respectively. The declaration part is the same
as in the C language. In this version, only a simple character string is allowed in
parameter definitions.

7.4.5 Implementation

The generator has the following five source files:

sersers.h Header file.
autopre.h Header file.
autopre.c Pre-processing module.
autodp.c Main module of the generator.
mkdrpc Make file.

When executing command

the generator’s executable file “autodp” will be created.

After a programmer sends a server definition file to the generator, the generator first
does syntax checking. If no errors are found, several program source files and a
makefile are generated.

The subsequent processing is specified by the makefile. That is, when using the
make utility, the executable files of both the server and client will be generated. By
default, if there is no Server Host and Server Port definition in an SDF
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file, the SDG generated server driver will register itself to the LS at the beginning
and un-register itself before exiting from the system. The SDG generated client
driver then will locate the server through the LS before making an RPC call. If there
are above definitions in an SDF file, the SDG generated server driver will not
register itself to the LS server and therefore there will be no un-registering before it
exits. For the corresponding client driver, there will be no locating operation before
calling. It will call the RPC directly because the client driver knows the server
address already.

7.4.6 An Application Example

For example, suppose we have a server definition file called sf.def (it is included
with the distribution). It defines a “send-and-forward” system in that the server acts
as a message storage and the client acts as both message sender and receiver.
Listing 7.2 is the server definition file:

Listing 7.2: Server definition file example

Three remote procedures are defined in this SDF file. As there are no Server
Host and Server Port definitions, the server program is going to run on any
host and the LS will be responsible for assigning a server port to the server during
the server’s registration. The following command will produce the appropriate stub
and driver files:

The generated files are:

sf.h Header file, must be included by both server and client
stubs.

sfSer.c Server driver file.
sfStubSer.c Server stub file.
sfOps.c Frameworks of server procedures file.
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sfCli.c Client driver file.
sfStubCli.c Client stub file.
makefile Make file.

After using the make utility (simply use “make” command), two executable files
are created:

sfSer Server program.
SfCli Client program.

Note that the sf Ops.c file only defines the frameworks of the remote procedures.
Their details are to be programmed by the programmer. A sample programming of
these remote procedures is listed in file sfops.c. So you can simply copy this file
tosfOps.c.

The server driver is simple. It does the initialisation first. Then it loops “forever” to
process incoming calls until the client issues a “shutdown” call. In that case the
server exits. The incoming calls are handled by the server stub and underlying
library functions.

The generated client driver can execute the server’s remote procedures one-by-one.
If the server driver is running and the client driver is invoked, the client driver then
first lists all the remote procedures provided by the server, and asks the user to
choose from the list. After the selection, the input parameters of the named remote
procedure are then input from the keyboard. After that, the driver program does
some initialisation and the remote procedure is executed and the returned results are
displayed. The actual calling and displaying are handled by the client stub and
underlying library functions.

The termination of the server program also needs to be mentioned. After the server
program is started, it will run forever unless the programmer kills its process or
there exists a facility to terminate the server. Here we provide a facility to do that
job. We add a “remote shutdown” procedure into the server, and allow the remote
shutdown of the server in the server program. Hence when the client driver calls the
remote shutdown procedure of the server, the server will shut down itself and exit
from the system.

7.5 Remote Method Invocation (RMI)

7.5.1 RMI Architecture

Java Remote Method Invocation (RMI) is a simple, yet powerful, Java-based
framework for distributed object design and implementation. A remote invocation is
a form of the RPC, where procedures can be invoked from remote machines. Java
RMI extends the RPC further to the distributed objects’ world, that is, RMI permits
executing methods of objects residing on remote machines, with results returned to
the calling environment.
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RMI is a higher level abstraction than servers. In client-server computing, we
typically develop an application level protocol to communicate between Java clients
and servers, but with RMI we do not need to do this as RMI takes care of
communication details for us. Using RMI is as simple as invoking a method of an
object.

Figure 7.9: The RMI architecture

A client RMI call invokes the client-side stub (the proxy of the remote method that
resides on the client’s machine). The stub uses Object Serialization to marshal the
arguments, i.e., render argument object values into a stream of bytes that can be
transmitted over a network. The stub then passes control to the Java Virtual
Machine’s RMI layer. The skeleton on the server side dispatches the call to the
actual remote object after unmarshaling the arguments into variables in memory.
The stub and skeleton programs are generated by the rmic compiler.

The Remote Reference layer permits various protocols for remote invocation, such
as unicast point-to-point (the one currently has been implemented).

Before a remote object can be accessed, it has to be registered into the naming
server. The RMI framework provides a simple naming service. Remote objects can
register to the naming server using the java.rmi.Naming class with a URL-like
naming scheme.

7.5.2 RMI Implementation

The key interfaces and classes in RMI are:

Remote is an interface in the java.rmi package. It defines all remote interfaces.

RMI server functions are provided by the RemoteObject and its subclasses.

Figure 7.9 shows the RMI architecture in which a Java client invokes a remote Java
server object.
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RemoteServer is a subclass of RemoteObject.

UnicastRemoteObject is a subclass of RemoteObject in the java.rmi.server
package.

Remote Exception is a class in the java.rmi package, used for RMI to throw
exceptions at runtime.

The RMI implementation involves the following steps:

Defining the remote interface. This is the interface through which remote
clients will access the server and is done by extending the Remote interface and
defining methods that can be invoked remotely.

Implementing the remote interface. Remote method calls will ultimately be
made upon their implementations. The interface is normally implemented via
the extending of the UnicastRemoteObject class. The UnicastRemoteObject
class defines a remote object which is valid when the server is running. This
object hides the implementation of the interface from the public interface and
can contain some methods that are not visible through the interface. Any
remote object passed as an argument to RMI must also be defined as an
interface.

Creating stubs and skeletons using rmic compiler.

Compiling the remote interface and implementation file using javac compiler.

Creating a client program, either a pure Java application or an applet and the
HTML page to invoke the server services.

A Simple RMI Example

This example creates a simple date server to provide the date and time information
to clients. The first step is to define the server interface, named DateServer, that
lists all methods a client can call. In this example, only one method is defined. Here
is the Java program DateServer.java:

Note that the getDate() method must throw a RemoteException to allow the program
to detect problems occurred in remote invocation. The second step is to implement
the remote object interface, through the program DateServerImpl.java:



166

All remote object implementations must extend RemoteObject or one of its
subclasses (such as the UnicastRemoteObject, provided by the JDK for
implementing TCP-based client-server programs). The getDate() method simply
returns the date information of the server host. The main() method creates a new
DateServerImpl named dateServer and registers it to the RMI naming registry using
the name of “Date Server”. If the name is already registered, then an
AlreadyBoundException will be raised. To overcome this, we could use the rebind()
method instead of the bind() method.

The third step is to generate the stub and the skeleton programs:

The two classes (DateServerImpl_Stub.class and DateServerImpl_Skel.class) will
be generated after the compilation.

The fourth step is to create the client program to access the services provided by the
server. The client is named DateClient.java:

The client program uses the lookup() method of java. rmi. Naming to get the
information of the “Date Server” from the registry. The lookup() method has two
parameters, one provides the location of the registry and the other provides the
name of the server.

The last step of using this simple RMI program is to run it via the following
executions:
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Start the registry: rmiregistry

Start the server: java DateServerImpl

Start the client: java DateClient localhost

7.5.3 Interfaces and Classes

The main packages for the RMI framework are: java.rmi, java.rmi.server,
java.rmi.registry, java.rmi.dgc, and java.rmi.activation (Java 1.2).

java.rmi: provides the Remote interface, a class for accessing remote names,
the MarshalledObject class, and a security manager for RMI.

java.rmi.registry: provides classes and interfaces that are used by the remote
registry.

java.rmi.server: provides the classes and interfaces used to implement remote
objects, stubs, and skeletons, and to support RMI communication. This package
implements the bulk of the RMI API.

java.rmi.activation: supports persistent object references and remote object
activation.

java.rmi.dgc: provides classes and interfaces that are used by the RMI
distributed garbage collector.

7.6 An Interesting RMI Application

In this section we re-implement the messaging system of Section 6.4 using the RMI
method.

Here we do not need to provide the application protocol in the messaging system
when we use the RMI for the implementation. The client side application or applet
save or retrieve messages simply through access to the remote object. Because the
abstraction provided by RMI is at a higher level, the client can invoke the methods
just like accessing the local object. This could simplify both server and client side
program.

Generally, the RMI is treated as a service provided by the server to the clients. The
service is named and bound to an object in the implementation. That is, a server is
mainly provided by a single object, even though there are many service requests.
Moreover, the clients of the messaging system need to interact in terms of
addressing messages to each other. The server needs to provide depository to all the
messages for all the clients rather than store a single message queue for a single
user. As a result, users will be identified by an ID or username. This ID or username
will be provided when a client enters the system or retrieves messages. Also, the
client has to provide the list of recipients while the client wants to address a
message to multiple users.
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The message storage and retrieval is rather a passive service, that is, the server
responses only after the client sends the request. The service is passive so that the
service does not need to be implemented in threads. On the other hand, a client of
the system has to update the username lists constantly because it needs to send
messages to other users via the server. The service of query and retrieve of the latest
username list have to be invoked constantly. Because the service is passive, the
server cannot automatically send the username list to all users. However, the
username list retrieval can be seen as a service. A client can invoke the service in
every time frame, such as a tenth second. Therefore, a client should have a thread to
handle the username list.

The interface remains the same as the implementation of multiple threads message
server described in section 6.4. A text field is used for entering a message by the
user. A text area is used to show the retrieved messages. A list is used to show the
latest user list. Two buttons are used to store (send) message and retrieve messages,
respectively.

There are three program files: RMIMessageClient.java, RMIMessageServer.java
and RMIMessageServerImpl.java.

The file RMIMessageServer.java is the interface of remote objects and also the
source of stub and sketch class.

The RMIMessageServerImpl.java is an implementation of RMIMessageServer.java,
which carries out the actually functionalities.
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The RMIMessageClient.java is a Java application with graphical user interface
provided by the frame.
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The following steps are used to compile the programs:

Compile the server stub: javac RMIMessageServer.java

Create the stub and the sketch classes: rmic RMIMessageServerImpl

Compile the server implementation: javac RMIMessageServerImpl.java

Compile the client application: javac RMIMessageClient.java

The following steps are used to run the system:

1.

2.

3.

Run registry for RMI: rmiregistry

Start the server implementation: java RMIMessageServerImpl

Start the client application: java RMIMessageClient <host> <username>

7.7 Summary

In this chapter we discussed two commonly used RPC tools, the DCE/RPC and the
SUN/RPC, and the Remote Method Invocation (RMI) in Java. First, we described
applications of the client-server model in the development of an advanced
distributed computing environment, DCE. DCE is built on top of existing operating
systems and it hides the heterogeneity of underlying computers by providing an
integrated environment for distributed computing. DCE consists of many integrated
services, such as thread and RPC services, security services, directory services, time
services, and distributed file services, that are necessary in performing client-server
computing in a heterogeneous environment. Most of these services are implemented
as individual servers or groups of co-operating servers. Application processes, that
act as clients of DCE servers, obtain services from DCE servers. DCE RPC makes
use of all the DCE features.

Sun RPC was designed for client-server communication in the Sun NFS network
file system. It is supplied as a part of the various Sun and other UNIX operating
systems. Despite its popularity, Sun RPC has some disadvantages most of which
DCE RPC can overcome. Therefore, DCE RPC and Sun RPC are most commonly
used RPC tools. In the chapter, we also introduced the SRPC system, which can
overcome the complexity problem of existing RPC systems. The SRPC only
contains the essential features of an RPC system, but is easy to understand and use.

We also introduced the Java Remote Method Invocation (RMI) in the chapter,
because it is a simple, yet powerful, Java-based framework for distributed object
design. A remote invocation is a form of the RPC, where procedures can be invoked
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from remote machines. Java RMI extends the RPC further to the distributed objects’
world.

Exercises

What services can a DCE provide? 7.1.1

What is a cell in DCE? What are foreign cells? 7.1.1

How does one build a basic DCE application? 7.1.2

What is a CDS? What components does it have? Explain their purposes. 7.1.3

What services can a security server provide in DCE? 7.1.3.2

How does one calculate a DTS interval? Give an example. 7.1.3.3

How does one develop a replicated DCE program? Describe the process. 7.2.1

What types of handle does an RPC have? Explain their functions. 7.2.1

What is the lb_admin tool in DCE Ultrix system? 7.2.2

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10 How does one use the pfm_$cleanup call to handle a failure in DCE? 7.2.3

7.11How does one create a Sun RPC application using rpcgen? 7.3.1

7.12 What method is used in Sun RPC for building a client-server binding? 7.3.2

7.13 Can a Sun RPC system use a transport protocol rather than TCP and UDP?
Why? 7.3.4

7.14 How many components does an SRPC have? How do they work? 7.4.1

7.15 What mechanism is used in an SRPC to achieve the call transparency? 7.4.3.1

7.16 How many location servers are there in an SRPC? 7.4.3.2

7.17 How does one use SDF and SDG to make an SRPC application and run it?
7.4.5-7.4.6

7.18 Re-write the server definition file in Listing 7.2 giving the specific server host
and server port in order to run the server program on a particular machine. 7.4.6

7.19 What is an RMI? How does one implement it? 7.5.1-7.5.2

7.20 What are steps to write a client/server program using RMI? Design an RMI
program in which the server provides the weekly course information to clients.
7.5.2

7.21 What components and their functions does the Java RMI package have? 7.5.3

7.22 Design an RMI application in which clients can calculate Math questions. 7.6
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CHAPTER 8 GROUP
COMMUNICATIONS

Group communication is highly desirable for maintaining a consistent state in
distributed systems. Many existing protocols are quite expensive and of limited
benefit for distributed systems in terms of efficiency. This chapter describes
concepts and design techniques of group communication protocol including
message ordering, dynamic assessment of membership and fault tolerance. The
protocol ensures total ordering of messages and atomicity of delivery in the
presence of communication failures and site failures, and guarantees that all
operational members belonging to the same group observe a consistent view of
ordered events. The dynamic membership and failure recovery algorithms can
handle: site failures and recovery; group partitions and merges; members’ dynamic
join and leave procedures.

8.1 Introduction

Distributed systems providing overall services need careful design and
implementation in order to preserve consistency of shared information among the
cooperative processes and servers (such as mirror sites of web servers). Group
communication is used to increase the availability of the systems. The key idea is to
replicate system data/servers running on distributed computers. Achieving the
correct function of the replicated servers requires all the members to have a
consistent view of cooperative tasks in a group of servers. However, the underlying
communication and distributed systems are imperfect and they are subject to a
number of possible failures, such as site crashes and communication failures. The
unreliable Internet communication medium may lose messages or reorder the
messages. For example, the network may be partitioned into separate segments.
Currently, the most practical systems use reliable multicast protocol to achieve a
consistent view among operational processes. In this chapter, we focus on the local
area network server group and we use a “Process” to denote such a member server
process that runs the protocol on a site.

To see the usefulness of the reliable multicast protocol, consider, for example, a
well-known “transaction commit problem” which arises in distributed database
systems. The problem is for all the data manager processes that have participated in
a particular transaction to agree on whether to install the transaction results in the
database or discard them. Whatever decision is made, all data manager processes
must make the same decision in order to preserve the consistency of the database.
Reliable multicast, in contrast to unicast communication which involves a single
source and a single destination, refers to a single source and a set of destinations. A
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multicast group is a collection of members that are the destinations of the same
sequence of messages. The multicast protocol guarantees the following properties:

Ordering. A sequence of delivered messages is identical at all operational
receivers.

Atomicity. A message issued by a sender either correctly reaches all operational
receivers in a group or none of them.

Termination. All non-faulty processes will finally deliver its messages within a
finite number of message transmissions (this issue is difficult and we refer the
interested readers to [Fischer et al 1985]).

A well-known approach to achieving a consistent view in a cooperating group in
spite of failures is provided by the concept of reliable broadcast protocols [Chang
and Maxemchuk 1984] [Birman et al 1991]. These protocols guarantee delivery of a
sequence of messages to the group members in a specific order (e.g., total order).
Multicast protocols can be exploited on all system levels. To demonstrate the
usefulness of reliable group protocols on the application level, consider, for
example, a parallel application. Typically, a number of processes cooperate to
compute a single result. If one of the processes finds a partial result (e.g., a better
bound in a parallel branch and bound program) it is desirable that this partial result
is multicasted immediately to the other processes. By receiving this partial result as
soon as possible, the other processes do not waste cycles on outdated computions.

8.2 Features of Group Communication

Group communication is an operating system abstraction that supports the
programmer by offering convenience and clarity. This operating system abstraction
must be distinguished from the message transmission mechanisms such as multicast
(one-to-many physical entities connected by a network) or its special case broadcast
(one-to-all physical entities connected by a network).

In group communication, a client sends a request to a group of servers which share a
common group name and provide the desired services. This request is delivered
following the semantics of an agreed primitive. The primitive should be constructed
such that there is no difference between invoking a single server or a group of
servers. This means that communication pattern transparency is provided to the
programmer.

Thus, groups should be named in the same manner single processes are named.
Each group is treated as one single entity; its internal structure and interactions are
not shown to the users. The mapping of group names on multicast addresses is
performed by an interprocess communication facility of an operating system and
supported by a naming server. However, if multicast or even broadcast are not
provided, group communication could be supported by one-to- one communication
at the network level.
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Communication groups are dynamic. This means that new groups can be created
and some groups can be destroyed. A process can be a member of more than one
group at the same time. It can leave a group or join another one.

In summary, group communication shares many design features with message
passing and RPC. However, there are some issues which are very specific, and their
knowledge could be of great value to the programmer of distributed computing
systems and applications. Furthermore, group communication is characterised by
basic policies and mechanisms to allow the programmer to implement an
application. The following issues are of primary importance in group
communication: message delivery, response, and ordering.

8.2.1 Message Delivery Semantics

Message delivery semantics relate to the successful delivery of a message to proc-
esses in a group. There are four choices of delivery semantics [Joyce and Goscinski
1997] [Wang and Zhou 1998a]:

Single (unreliable) delivery. Single delivery semantics require that only one of
the current group members needs to receive the message for the group
communication successfully;

K-delivery. In the k-delivery semantics, at least k members of the current group
will receive the message successfully;

Quorum (best effort) delivery. With quorum delivery semantics, a majority of
the current group members will receive the message successfully;

Atomic delivery. With atomic delivery all current members of the group
successfully receive the message or none does. This delivery semantic is the
most stringent as processes can and do fail and networks may also partition
during the delivery process of the request messages, making some group
members un-reachable.

Note that group communication should provide all these semantics in an effort to
support a wide range of applications. Importantly, the policy of an application is
supported by the transport protocol used by the group communication.

8.2.2 Message Response Semantics

By providing a wide range of message response semantics the application
programmers are capable of applying flexible group communication to a variety of
applications. The message response semantics specify the number and type of
expected message responses. There are five broad categories for response
semantics:

No responses. By providing no response to a delivered request message the
group communication facility is only able to provide unreliable group
communication;
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Single response. The client process expects (for successful delivery of a
message) a single response from one member of a group;

K-responses. The client process expects to obtain k responses for the delivered
message from the members of a process group. By using k response semantics
the group resilience can be defined [Kaashoek and Tanenbaum 1994]. The
resilience of a group is based on the minimum number of processes that must
receive and respond to a message;

Majority response. The client process expects to receive a majority of
responses from the members of a process group;

Total response. The client process requires all members of a group to respond
to the delivery of a request message.

Importantly, the response semantics are based on the services a group is attempting
to supply. With these message delivery and response semantics the group
communication facility is capable of providing communication support to a wide
range of applications. For example, a file update operation in a distributed file
service will require all members of a group to receive messages and respond to the
requesting process with an acknowledgment message stating the success or failure
of the operation.

8.2.3 Message Ordering in Group Communication

The ordering of message delivery in group communication has become a hotly
debated topic [Birman 1993] [Birman 1994] [Cheriton and Skeen 1993]. The reason
is that, the semantics of message ordering are an important factor in providing better
application performance and reduction in the complexity of distributed application
programming. This is of critical importance for reliable processing in distributed
systems. The order of message delivery to members of a group will dictate the type
of group it is able to support.

There are four possible message ordering semantics [Joyce and Goscinski 1997]:

No ordering. This semantic implies that all request messages will be sent to the
current group of processes in no apparent order, as soon as they arrive at a
workstation. No ordering is easy but makes application programmers work
harder as they have to cope with their own message ordering protocol.

FIFO ordering. This semantic implies that all request messages transmitted by
a client process to the current members of a group will be delivered in the first
in first out (FIFO) order. FIFO ordering ensures that all messages issued by a
sender will be delivered to the members in the same order. For example, if a
site multicasts a message m before it multicasts a message m’, then no correct
site delivers m’ unless it has previously delivered m. However, messages
coming from different workstations can arrive out of order.

Causal ordering. The causal ordering semantic is defined in [Lamport 1978] to
reflect the logical ordering of messages. Causal order is the reflexive transitive
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closure of the message order relation. This implies that if the sending of a
message m’ causally follows the delivery of a message m, then each process in
the group receives m before m’. Three rules define the relations of message m,
m’ and m” as below:

Message m causally precedes message m’ if a site S sends m before it
sends m’ and this relation is denoted as m->m’, as depicted in Figure
8.1(a);

Message m causally precedes message m’ if a site S receives m before it
sends m’ and is denoted as m->m’, as depicted in Figure 8.1(b);

If  m->m’ and m’->m”, then m->m” (transitive closure);

If m and m’ do not have the above relation, then they are called the
concurrent message, denoted as

(i)

(ii)

(iii)

(iv)

Causal ordering has been motivated by Lamport’s definition of the ordering of
events in a distributed system. This is often referred to as the “happen before”
relationship [Lamport 1978].

Figure 8.1: Causal ordering rule (Group G={S1, S2, S3})

Total ordering. Total ordering semantic implies that all messages are reliably
delivered in sequence to all members of a group. Also, total ordered semantic
guarantees that all group members see the same order of messages. All
messages arriving at all workstations are ordered. Total ordering is the most
stringent ordering as all message transfers between all members of the group
are in order. This implies that all processes within the group perceive the same
total ordering of messages. In causal ordering we are concerned with the
relationship of two messages while in total ordering we are concerned with
seeing the same order of messages for all group member processes.

Total ordering ensures that each correct member delivers all messages in the same
relative order. Of course, the total ordering must not violate the causal ordering, i.e.,
the property of total ordering is stronger than causal ordering. There are differences
between the casual and total ordering. To illustrate the difference, assume a server
replicates objects for client processes to increase availability and reliability. It
guarantees that all the replicas are consistent. If a client may only update its own
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objects, it is sufficient that all messages from the same client will be ordered. If a
client may update any of the objects, the causal order is not sufficient since the
order of messages may be different between any two clients even though the causal
order is guaranteed for each individual client. More specifically, we use the
following figure to indicate the difference of the two kinds of ordering. In Figure
8.2, assume group G = {S2, S3}, and messages a and b are concurrent messages; a
and b do not obey the total ordering in the left and do obey it in the right.

Figure 8.2: Causal ordering and total ordering

8.3 Reliable Multicast Protocol

8.3.1 Reliable Multicast System

Figure 8.3 depicts a group communication system providing reliable multicast
services. In this architecture, each site runs a multicast protocol server process
which accepts multicast requests from its local application. A server accepts
requests via a submittal queue and delivers messages to its application via a delivery
queue. For simplicity, we assume the queues never overflow. Whenever there is a
local request (message) in either of the queues, both the server and the local
application will process them as soon as they can.

Figure 8.3: Reliable multicast system architecture
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Communication among the sites is achieved by exchanging broadcast or point-to-
point messages. User group application processes running on the upper level of the
system access the common resources (e.g., file, shared objects and database
systems) and share common information. Assume the continued executions of the
multicast servers in a group of processors. The application on one of the processors
works as follows. In case of needing the reliable multicast service, it opens a port
(e.g., TCP stream socket) to the server. The server listens to the connection request
and accepts the connection. Upon building the connection, the application is able to
send a message to other applications of the group via its server by entrusting the
message into the port. On receiving a multicast message from its server, the
application is sure that the message is totally ordered and received by all the other
members in the group (atomicity) even in the presence of message lost or site crash.

Each site in the system is connected to the network via a network interface. The
interface monitors the network and copies messages identified with its address code
into a buffer that can be accessed by a connected site. Unfortunately, there is no
guarantee that a site will receive every message addressed to it. For example,

the buffer might be full when a message is received by the interface;

the interface might not monitor the network at the time the message is
delivered;

in a contention network, an undetected collision that affects certain network
interfaces could cause them to miss a message;

a site may suddenly halt, killing all the processes that are executing there and
losing all its volatile states. Consequently, no message from this site is ever
received by all others.

We here abstract two kinds of failure scenario:

(1)

(2)

Lost message. Messages may be lost because of a buffer overflow or they
may be discarded due to a transmission error. An arbitrary number of
messages may be lost; however, all of the messages received at a site are
free of transmission errors (Ethernet properties [MB76]);

Fail stop. When a site fails, the site simply stops processing. It does not
send malicious messages or perform any incorrect action.

8.3.2 Design Issues

To identify the characteristics of the reliable multicast protocol and how it is
designed, several design issues have to be considered: acknowledgement,
addressing, ordering, reliability, delivery semantics, and dynamic group:

Acknowledgement: two styles of acknowledgement systems exist in the current
group multicast protocol designs, namely, positive acks and negative acks. In
the positive acks, upon receiving a message, the receiver explicitly sends back a
message to acknowledge the reception. For the negative acks, the message
sender (source) assigns a sequence number to each message. It is not necessary
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for the receivers to explicitly acknowledge the messages. Lost messages can be
detected when a higher sequence number than expected is received, and
retransmissions of the lost messages can be requested. Therefore, the negative
acks can be used to reduce the packet transmission and synchronization
overhead.

Multicast addressing: two methods are used to indicate the multicast
addressing. The simplest one is allowing a sender to explicitly indicate the
destinations to which a message should be delivered. The second one is using
one single address for a group of sites (IP address). In this case, a sender can
issue a message for a single address even though the sender does not know who
are the members in the group. This method saves bandwidth and simplifies
communication design.

Ordering: ordering is an important criterion for the design of multicast
communication. Most group communication systems categorized the ordering
as no ordering, FIFO, causal, and total ordering with increasing strength. They
have been introduced in the previous section.

Reliability: reliability deals with recovering from communication and site
failures, such as buffer overflows, distorted packets, missed packets and site
crashes, and even more serious failures such as network partitions. Reliability is
more difficult to implement for group communication than for point-to-point
communication.

Delivery semantics: this semantics involves successfully delivering a message
to a group. There are four common choices: 1-delivery, k-delivery, quorum
delivery, and atomic delivery, which have been introduced before.

Dynamic group membership: this allows the group size (membership) changes
dynamically without interfering message ordering and reliability. The change
also should not suspend normal operation for a long time. All the group
members view a join/leave event in a consistent way. A newly joined member
is able to transfer its state to reflect the group communication.

8.4   Multicast Approaches

A number of algorithms has been published recently, addressing reliable atomic
message multicast. In the following, we summarize three typical reliable multicast
approaches and restrict our discussions mainly to the algorithms that are designated
for asynchronous computing environments. For a detailed comparision of our
protocol with related work, the interested reader is referred to [Jia et al 1996].

8.4.1 Centralized Approach

The typical protocols of this approach were the algorithms of Chang and
Maxemchuk [Chang and Maxemchuk 1984]. They have described a family of
protocols that achieve totally ordered broadcasts determined by a “token site”. A
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sender broadcasts a message to all recipients. If the token site receives the message,
it broadcasts an acknowledgement message containing the message id and a
timestamp (total order, see Figure 8.4). A message may be committed only when the
token has been passed around some of the sites in the token list to achieve message
fault tolerance.

Figure 8.4: A group comprises of n+1 sites. Member transmits its
multicast request m to the token site orders m and multicasts it over the group

and can be identical).

Kaashoek and Tanenbaum have simplified the approach of Chang and
Maxemchuck’s protocol by using a fixed sequencer [Kaashoek and Tanenbaum
1991]. Whenever the sequencer receives a point-to-point message, it allocates the
next sequence number and broadcasts the message with the sequence number. Lost
messages can be detected by a gap in the sequence numbers. However, the
sequencer still could become a bottleneck in a large group.

Garcia-Molina et al. [Garcia-Molina and Spauster 1991] have proposed an approach
to solve the multiple overlapped group message-ordering problem. In their protocol,
a tree is superimposed on the set of processes in the system. To transmit a
broadcast, the message is forwarded to the least common ancestor of the destination
processes, which in turn uses a reliable FIFO protocol to handle the message
delivery (Figure 8.5). Other logical token ring algorithms were developed by [Amir
et al 1993] and [Rajagopalan and McKinley 1989], which involve token passing
explicitly from process to process in order to achieve fault-tolerance. Only the
process holding the token can broadcast or retransmit messages. The token needs to
be transmitted at least two rounds in a group in order to achieve fault tolerance
(Figure 8.6).

The advantages of the centralized approach are their simplicity and efficiency of
establishing the total order of messages. However, there are some drawbacks related
to this senario: concurrent multicast requests must be blocked until they are ordered.
To achieve a multicast resilience to a degree r, i.e., a multicast message will not be
lost even to r site failures, the token is required to rotate over r member sites where
r < n to ensure that at least one of the members will have the copy of the message
in case of r site failures simultaneously.
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Figure 8.5: Groups and
yield a tree and site orders the messages for groups and site orders the

messages in related and

Tolerating failure of the token holder requires some expensive election and
reformation algorithms. Moreover, the token holder failure during the token
message transmission may cause the token information to be lost, as a consequence,
no member in the group is able to recover the token information. For example,
consider that a token keeps a record of the acknowledgements from other sites and,
the record must be transmitted to the next member. Before the token transmission,
the token holder fails. Consequently, the record gets lost and is unrecoverable since
no member other than the token holder knows exactly how many
acknowledgements were collected by the failed token holder before its failure.
Furthermore, the token transmissions introduce extra packets into the network and
may incur considerable latency for delivering messages to the applications. In case
of a fixed token holder (a single token holder), the token holder could become a

Figure 8.6: A group of n members form a logical token ring. Member and
have multicast ordered messages and The token is transmitted to

transmits the token to the next site without multicasting any message.
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bottleneck when a burst of multicast requests are in a large group. Typically, the
approach must handle the issue of data and control flow of the message buffers.

8.4.2 Symmetrical Approach (Decentralized)

By symmetries we mean for a group of sites, there is no site playing a role of
“token” or “sequencer”. In contrast to the centralized algorithm, for a specific
multicast message, a member determines the message (delivery) order and its
atomicity only after gathering enough acknowledgements with the subsequent
multicast messages. The subsequent multicast messages form a partial order
[Melliar-Smith et al 1990] (or a context graph [Peterson et al 1989]), carrying the
positive or negative acks for the previous received messages. Based on the partial
order (context graph), a site sees a multicast followed by which, therefore, it is able
to determine a total order or atomic (stable) multicasts within the partial order.

This approach reduces synchronous overhead and enables more parallelism within a
system. However, it is complicated compared with its centralized counterpart.
Because a site has to maintain a partial order (graph) for a set of multicasts it
received, the overhead is high. In order to achieve enough information for ordering
and atomicity of a message, the site waiting subsequent multicasts may incur a
longer delay. In case of sparse message transmissions, an even longer time is
needed to gather enough acknowledgement information.

8.4.3 Two-phase Approach

The ISIS system developed by Birman et al. proposes a family of protocols and
implements them using the causal broadcast (CBCAST) primitive and atomic
broadcast (ABCAST) [Birman and Joseph 1987] primitive. CBCAST is used to
enforce a delivery ordering when desired with minimal synchronization. ABCAST
achieves total ordering of message and operates by the 2-phase approach (recent
versions have adopted a token-passing group). [Veríssimo et al 1989] also described
a 2-phase protocol AMP.

The two-phase approach works as follows. Independently, a site issuing a multicast
message controls the order and (atomic) delivery of the message. In the first phase,
a message is multicasted and all potential receivers send back a locally assigned
priority order [Birman and Joseph 1987] (or an acknowledgement [Veríssimo et al
1989]). In the second phase, if all receivers have returned their ordering (or
affirmative reply messages), the sender multicasts a final order (or a decision
message such as commit). This scheme is simple and can greatly shorten the time
needed for a multicast message delivery (order), however, many packets are
transmitted in the network and consume network bandwidth. Because the sender has
to wait for the acknowledgements, further delay is introduced if there is any
message lost or a receiver site failure before issuing an acknowledgement message.
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8.5   Multicast in Java

The java.net package provides a class called MulticastSocket, which enables
programmers to write multicast communication in Java. A MulticastSocket is a
DatagramSocket with additional capabilities for joining groups of other multicast
hosts on the Internet. The DatagramSocket class is used to create UDP socket
connections. It sends and receives data using packets, which are represented as
DatagramPacket objects. In order for two programs to talk to each other over a
UDP connection, they both have to have DatagramSocket connected to a port on
their machines. This can be done by creating a DatagramSocket object.

Data is sent over a DatagramSocket using DatagramPacket, and each
DatagramSocket contains a data buffer, the address of the remote host to send the
data to, and the port number the server is listening on. Thus, for a client to send a
buffer of data to a server listening on port 5555 on machine “purejava”, we would
write something like this:

The remote server can receive the data request from the client as follows:

Note that the DatagramPacket constructor used in the server’s code requires only
two arguments: a byte array that contains client-specific data and the length of the
byte array. However, when we are constructing a DatagramPacket to send over the
DatagramSocket as shown above, we have to provide the Internet address and port
number of the packet’s destination.

The MulticastSocket is used on the client side to listen for packets that the server
broadcasts to multiple clients. A multicast group is identified by a class D (those in
the range 224.0.0.1 to 239.255.255.254) IP address. Broadcasting packets to
multiple recipients is analogous to radio and television broadcasting. A practical use
of multicast IP is for broadcasting audio and video over the Internet.

A process that wants to listen on the multicast address creates a MulticastSocket and
then joins the multicast session by calling the joinGroup() method. For example, to
join a group and send the group a greeting, we would write something like the
following:
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Once the connection to the multicast session is established, a client can read data
being broadcasted on the channel as follows:

Once the broadcast is over, or when we want to stop listening, we can disconnect by
leaving the group using the leaveGroup()  method:

Example: The following two programs implement the multicast communication
between two sub-networks. The Courier.java program receives packets from a
sub-network and then forwards them to the Publisher.java program, which
will publish these packets to another sub-network. The two programs first establish
multicast communication between each other and then receive/send packets. The
Courier.java program is listed as follows:



The Courier constructor first gets the local and remote (the publisher)
machine addresses, then creates a DatagramSocket object as the sending socket and
a MulticastSocket object as the receiving socket. The sending socket will send
packets to the publisher while the receiving socket receives packets from a
multicast group, thus the receiving socket has to join the group. In order to avoid
packets being flooded onto other networks, Java multicast datagrams include a TTL
(Time To Live) field in the header to reduce packets unnecessarily circulating and
congesting networks. In Courier.java we invoke the MulticastSocket’s
setTTL() method to set TTL to 1, which means all the members on the same subnet
receive datagrams from a sender.

Thepublisher.java is listed as follows.

188
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The Publisher constructor first gets the local machine address, then creates a
DatagramSocket object as the receiving socket and a MulticastSocket object as the
sending socket. The receiving socket will receive packets from the Courier while
the sending socket sends packets to a multicast group. Similarly, in order to avoid
packets being flooded onto other networks, the Publisher sets TTL to 1, which
means all the members on the same subnet receive datagrams from a sender. The
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Publisher provides a multicastPackets() method to receive packets from the
courier, and then multicasts them to another subnet.

8.6 Total Ordered Multicast Protocol based on a Logical Ring

From the discussion above, we have found that the logical ring is a simple and
efficient approach for the design of a reliable multicast protocol: discrete broadcasts
of many distributed members are reduced to one token holder multicast at one time.
This method substantially simplifies the synchronous requirements of the
applications. This section discusses the design of Reliable Multicast Protocol (called
RMP) in the aspects of ordering, atomicity, membership, and fault-tolerance.

8.6.1 Achieving Total Ordering

Let a group comprising a set of sites be denoted as and is the size
of the group. The core idea of RMP protocol is to organize a group of sites into a
logical ring. During the ring construction, the protocol assigns each member a
unique index which is a one-to-one mapping of the site identity (sid) on which the
member resides. We assume a sid is unique and never changed or lost no matter
whether the site crashes or recovers. The members are arranged in an increasing
order of their indices so as to form a logic ring. At any given time there is only one
member on the ring serving as the token holder and multicasting a total ordered
message. After dispatching such a message, the token position implicitly circulates
to the next member on the ring. Each member maintains a local sequence number
which comes from the previous correct multicast message.

To predict the current token holder’s position, each member computes the token
holder’s index via its local sequence number plus 1 modulo the size of the ring
(group). All the members send their requests to or expect a multicast from the
current token holder. More precisely, after starting the protocol in a group, one
member will become the coordinator of the logical ring formation via competition.

Assume a ring (group) comprises members and each member
maintains a consistent logical ring which is a member
list corresponding to each member state. Given the consistent logical ring R, when
the protocol starts the normal operation, is the coordinator of the ring and
serves as the current token holder, transmitting the first multicast message, then

and so forth. Each member on the logical ring periodically takes its turn to serve
as the token holder and multicast an ordered message. Define
All members, upon reception of a correctly ordered message, assign the message
sequence number m.s as their sequence number s, compute the next token holder
(id) via the ring element and expect the next multicast message with total
order s+1 from member This guarantees that a receiver can order the
messages from the token holder correctly in case they arrive out of order (see Figure
8.7).
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Figure 8.7: Logical token ring structure and normal operations. Site multicasts a
message with order kn+ i+1 if all the messages m, have been received

by where k = {0, 1, 2,...} and

In order to ensure the proper normal operations of the protocol, all the members on
the logical ring are required to comply with the following rules:

Rule 1: A member S cannot send its multicast request to a site which is not assumed
as the next token holder by S, i.e., S sends its multicast request to  if and only if S
has received the ordered multicast messages sent by the member which is the
predecessor of  on the logical ring.

Rule 2: A member S cannot assume itself to be the current token holder without
receiving all the prior multicasts from the predecessor token holders in the ring.

Rule 3: A member S cannot deliver a multicast m to its applications if m.s is greater
than its local sequence number s, namely, S can deliver m (not necessarily) if

In the normal case, Rule 1 ensures that a sender will either send a request to the
correct token holder or detect and complete the lost messages. Rule 2 prevents a
member from multicasting a wrong order message. Rule 3 emphasises that all
multicast messages that can be delivered to the applications are totally ordered. A
non-token holder may wait a random time for sending a multicast request to the
current token holder to avoid request collisions. The use of m.s (order) is two fold:
if m is a point-to-point message, the source of m acknowledges all the previously
received messages by assigning its sequence number to m.s. A token holder
multicasts a total ordered m.s which implicitly acknowledges any previous multicast
and request messages. Consequently, no explicit acknowledgement messages are
required during the normal operations of the protocol and the lost message can be
effectively detected by the existence of the gap of a receiver sequence number s and
the incoming message order m.s. The token holder takes the other multicast requests
as acknowledgement messages because the requests carry on their sender sequence
numbers, however, it has a priority to multicast its own request if it has one.

This approach prevents message starvation in case of request collisions. If the token
does not receive any request during a specific time interval, it multicasts an ordered
NULL (heart-beat) message to keep the protocol alive and to facilitate the
commitment of the atomic messages without further delay. Every token holder is
obliged to multicast one message no matter whether there is a request or not. A site
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may not realize that it is the current token holder due to not receiving the previous
message(s). This can be detected by an incoming request or timeout.

There are two cases that need message retransmissions: multicast request collision
and messages missing. For example, assume and simultaneously send their
requests and to the current token holder and arrives first thus is ordered
and multicasted. Upon reception of modifies and retransmits to the
next token holder Since never receives it  buffers  and requests   for
the lost message On receiving the retransmission, is ordered and multicasted
as depicted in Figure 8.8.

Figure 8.8: Message retransmission example

8.6.2 Atomic Message Delivery

RMP provides consistent order and atomic deliveries. Consistent order delivery is
defined to mean that a message m is delivered by a process P on R in a consistent
order if it keeps total ordering of messages and ring version. For instance, if a
member receives two messages m and m’ with m.s < m’.s but m’.version <
m.version, even in this case, total order is preserved between m and m’, but the
consistent order is still violated. Atomic delivery means that if a correct process P
delivers m in the consistent order and knows that all operational processes on R
have received m it will deliver it. In addition to the total ordering delivery, RMP,
encompasses three mechanisms for achieving atomic message delivery:

Simple type

It requires no extra effort of the protocol. Once all the members receive a multicast
message m originating from the token holder S, they wait until the token transfers
through the entire ring R and back to S. At this moment, all members have seen the
token, thus implicitly acknowledging their receptions of m. Consequently, every
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member on R knows all other members have received m. This method is simple,
however, it requires up to n-1 multicast delay times before a message can be safely
committed.

Speed-up type

High level applications may specify an emergency message and require the protocol
to commit all received messages. RMP provides a speed-up delivery service for this
purpose. After a token holder has multicasted such a message m, on receiving m
from the current token holder, each non-faulty member (except the token holder)
immediately multicasts a short acknowledgement message. Thus, all members send
their ack messages almost simultaneously. This short ack message has nothing to do
with ordering. Any operational member on the ring, upon reception of the n-2 (for
the token holder, n-1) ack messages, delivers the uncommitted messages prior to
(including) m to their applications. This approach is fast but invokes too much load
on the network and also consumes extra bandwidth. The trade-off can be decided by
the high level applications.

Safe parameter approach

The safe parameter [JKN95, KT91] can be computed as the low water-marker of the
total order of messages received by all members known to the token holder. The
approach is simple: a site S maintains an array K, recording the total order sequence
numbers corresponding to all the members. Before a message m is multicasted by S
(it is the token holder), S computes a safe parameter as m.k = min(K[1], ..., K[n]),
which represents the “all-received-up-to” message sequence number. It indicates
that the messages with order number less than or equal to m.k had been received by
every member on the ring.

Note that the safety parameter can be piggybacked onto the normal multicast
message and the sequence number m.s is also taken as an ack of the message
originator about reception of previous multicast messages. A token holder is
interested in receiving such acknowledgments for establishing the safety parameter.
For any two successive multicasts m and m', if m.k < m'.k, the uncommitted (not
delivered) message m" with order number can be safely
committed. One of the important properties of a safety parameter is that every
member, on receiving a multicast message, can capture the current global view, i.e.,
the total order of messages received by every member in the group without
additional communication overhead. Although, the computation may increase the
token processing time, the advantage of the global view on the ring seen by each of
the members outweighs this computation cost.

Also note that the token process in a ring R will not block itself from waiting for the
ack message which may not come due to stop of a member process. In order to keep
the protocol alive, the token process still transfers an ordered message even though
the atomicity of previous multicast messages cannot be met at the moment. The
token transferring to the failed member will trigger the fault tolerant mechanism of
RMP and the atomicity of the messages will be finally achieved, exclusive of the
failed member, as illustrated in the next section.
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More on the system level, multicast protocols are used in fault-tolerant storage
services [BSS91]. A reliable storage service can be built by replicating data objects
on n processors each with its own disk. If an object needs to be updated, the service
either has to send the new object value to all processes or invalidate all other copies
of the updated object. It is obvious that multicast is more efficient and reliable than
a sequence of low-level point-to-point messages.

8.6.3 Membership

Group membership change is very important to the consistency of a group. There
are two issues related to the membership: membership construction and dynamic
membership.

8.6.3.1 Membership Construction

Membership construction involves constructing a logical ring (membership list).
Intuitively, any site S wishing to create a logical ring for a group of n sites opens a
ring list R and inserts its entity as the first element of R by R[0] = id(S). It also
proposes a ring version with 1 (denote R.version = 1) and broadcasts a reformation
message to invite the specific members to join the ring. A member S’ that agrees
with the invitation of S sends a positive acknowledgement message to it. The S, as
the coordinator, inserts id(S’) as R[i] = id(S') upon receiving such an ack, until the
completion of the ring R. Then S multicasts a message containing R to all members
in R. Upon reception of further acknowledgement from each member in R, a
consensus is achieved and S multicasts a resume message to start the normal
operations.

Receiving the resume message (including S itself) enables all the members to set the
final official R and commit R to the user applications. As a result, reaching the
consensus allows S to broadcast a message containing a Gid = {version, coord,
size(G)} to the overall network. This enables the members to be noticed by the
members outside the group that may request the group service or join the group later
on. Note that a group cannot be destroyed or deleted by a single message. When the
last member leaves the group, the group ceases to exist. Should S ever receive a
negative response, it terminates ring configuration and waits for another ring
invitation.

It is possible that multiple sites may claim the function of the ring coordinator. A
competition then occurs and every site stays in an initial state, voting itself as the
coordinator and attempting to form a logical ring. To avoid the competition to some
extent, our membership algorithm employs three criteria for the coordinator
candidate selection and authorization. Let sites and invite each other:

Criterion 1 (C1): If then is chosen as the candidate;

Criterion 2 (C2): If and (the total sequence
numbers) then votes as the candidate;
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Criterion 3 (C3): If and
(the site ids) then is considered as the candidate.

As the results of applying C1 through C3, answers a positive message to and
inversely, sends a negative response to Given the selection rules, when the
protocol starts initially, each site waits a random time interval for an invitation.
Through our experiments in applying the selection rules (C1) - (C3) on the
coordinator voting, we have found that one of the sites will prevail and be quickly
elected as the coordinator, thereby, reducing the reformation time and avoiding a
race. After the election, the coordinator constructs a token ring based on the positive
response members and delivers the ring across the group as described previously.

8.6.3.2 Dynamic Membership

Dynamic membership allows a site to join or leave a ring dynamically. A scheme is
devised to enable a newly started site (restart_ID = 0) to detect a current executing
operational ring, so as to join the ring. Let a site S be outside a ring R; it can detect
R by listening to a message from R actively. Once S receives a message m, it checks
m.version. If it is greater than its own version, S picks m.coord which is the id of
another member S’ as its own coordinator and sends a new member “join” request to
the coordinator. The ring coordinator responds to the “join” request with the current
ring status.

There are two ways for the coordinator to handle the new member join request: (1)
it starts a reformation phase immediately or (2) it waits until it is the token holder
and then starts the reformation. A problem arises when method (1) is deployed: if
the coordinator immediately broadcasts an invitation message and enters in a
reformation phase while some other sites are multicasting their normal ordered
messages, the messages will be interfered with by the normal operation of the
multicast, because some messages will have been received before the invitation and
some will be received after. Consequently, there is an inconsistent order of seeing
the membership change interleaved with the normal multicast messages.

To avoid such interference, we employ the second method: the coordinator keeps in
mind the “join” request and waits until the token goes to it. At this moment, there is
no other site transmitting normal messages and all members are expecting an
ordered message from the coordinator (which is the token holder too).
Subsequently, it starts a reformation procedure and includes applicants. This method
will have the applicants wait for up to n–1 multicast transmission time with non-
interference. An example is given in Figure 8.9. Notice that a new started site is too
impatient to wait for the reformation response of the coordinator and transmits its
own ring invitation message; upon receiving such an invitation, the existing ring
coordinator will respond with a negative point-to-point message to the site that
forces it to give up the invitation.

In case a member voluntarily leaves the group, it simply multicasts a quit message
then leaves the group without having permission from any other member. On
receiving the quit message, the current token holder leads the other members to
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form a new ring. In general, those join/leave algorithms will change the size of the
group.

Figure 8.9: Dynamic membership. Sites and apply to coordinator for a
membership. When is the current token holder, it starts a reformation phase to

integrate these applicants.

8.6.4 Fault Tolerance

Group communication requires resilience in the sense that even if any fault/failure
occurs to a message or a site, the group is able to proceed with its operation.
Identification of a fault is considered from two aspects:

Fault occurrence: in normal operation, a single member may fail at any time.
But RMP treats the logical failure time as that it happens when turns to serve
as the current token process, and no multicast message is ever received by any
of the members on R after expiring certain timer.

Fault detection: when timeout is reached, the remaining members are able to
detect a failure of Even if is a logical failure, during the ring reformation,
the remaining processes will see that P is still alive and it can be included in the
new ring.

This section considers fault tolerance of the protocol from three aspects: (1)
tolerating a single site fault; (2) recovering from multiple site faults and (3) dealing
with network partitions.

8.6.4.1 Single Member Failure

Each token holder is supposed to send at least one “heart-beat” message. Therefore,
it is relatively easy for a group member to detect a failure of the current token
holder when the token holder is not heard by the other receivers for a certain time
period. In the presence of a single site fault, most existing protocols deal with the
fault by electing a coordinator to form a new group. Normally, the reformation
overhead is very high. To authorize a reformation coordinator, several tests such as
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majority, sequence and resilience must be undertaken [CM84]. It may happen that if
a single member fails, repetitively, several members compete to be the coordinator,
try to form a new membership list and give up the reformation attempt when none
of them can reform a majority of members. Substantial delay is introduced.

To overcome the delay case, a more efficient algorithm for handling such a “single
fault” is proposed. The philosophy of the algorithm is to have the prior token holder
on the old ring as a pre-authorized coordinator, leading the surviving members to
form a new ring when the current token holder fails. Therefore, it will save the
efforts to elect and authorize a coordinator. More precisely, assume the failure of
token holder S is detected by some other members, those members will probe into S
and report the fault to piggybacking their state (sequence number etc.) while is
the predecessor of S on R. If does agree with the fault reports, it starts a
reformation algorithm to construct a new ring. There are several reasons to choose

as the coordinator: (1) has the highest probability of being alive since it just
transmitted a message; (2) If S fails before its transmission, is up-to-date (with
the highest sequence number and safe parameter); and (3) can be reached by the
other members with higher probability because they have just received a message
from it. Under the assumption of single failure of S, is the defaut choice to be,
without elections, the coordinator among the correct members.

Reformation procedure

The reformation procedure works as follows. First of all, collects the reports of
all other members about S (in fact, nearly all the surviving members send their
opinions about “S is down” to simultaneously, because every member is
monitoring S with the same time-out setting). If S does not stop, after learning such
probe message, should retransmit its multicast messages immediately, or if any
member had received a multicast message from S before, it also should help to
retransmit the multicast message originally from S. In either case, the algorithm
aborts. During the report collection, lost messages can be retransmitted.

Secondly, to reform a new ring, must have a consensus of the alive members.
Since we assumed only one site fault, will finally achieve such consensus to
ensure that every operational member in the group agrees with the failure and
receives the same set of messages (failure and message atomicity). Those messages
sent by the old ring should be committed despite ring reformation. constructs a
new ring containing the operational members, increments the ring version and
multicasts the new ring to the group with an up-to-date safe parameter m.k. On
receipt of the reformation message, all members on the new ring update their R,
commit the messages in the reception queue and acknowledge When receives
all acks, it multicasts a “resume” command, instructing all the members to resume
normal operation. As soon as the resume message is received, all members on the
new ring deliver the new ring to the application processes, informing users of the
change in the membership.
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However, any member may fail during the reformation phase. If a member, other
than the coordinator, fails, the coordinator just eliminates the failed member out of
the new ring. If the coordinator fails or is not reachable by the majority of members,
a complete recovery algorithm is invoked (see below).

8.6.4.2 Multiple Failures

A recovery algorithm has to be developed for multiple faults. Assume the network
does not partition. When multiple sites fail (or in case of the simultaneous failures
of the token holder and the pre-authorized coordinator holder), the single failure
algorithm is no longer applicable. The surviving members have to enter a complete
reformation mode to elect a coordinator for the ring reconfiguration. The complete
recovery algorithm follows the coordinator selection criteria C1-C3 as shown in the
previous subsection.

The recovery algorithm runs in two phases. In the first phase, the algorithm detects
which members are alive and chooses one member as the coordinator to handle the
second phase, e.g., a site S. Upon detecting such failures, S multicasts a message
attaching its sequence number, claiming to be the coordinator and inviting other
survived sites in the group to join a new ring. On receipt of such an invitation
message, a site wishing to join the new ring responds with its sequence number to
the inviter. Possible lost messages can be compensated. C1 - C3 are applied if a
member receives more than one invitation or if a coordinator invites another
coordinator. When a coordinator has finally invited the majority members of the
group and there is no additional join site by a certain timeout, it constructs a new
ring, increments the ring version and multicasts the ring attaching the up-to-date
safe parameter to the group (broadcasts new Gid to the network as well). A ring
without a majority of members must block until some new sites join or all its
members join another ring.

The second phase of the algorithm is similar to the single fault tolerance algorithm
above. Since we have assumed that a network does not partition, one of the
coordinators will finally form a ring with majority members and the protocol can
continue its normal operation.

8.6.4.3 Network Partitioning

When a network partitions, a group may be segmented into several small subgroups.
The following two cases must be considered:

Case 1. There is a subgroup with majority membership of the original group and it
will form a new ring. Any entering site can join the subgroup as long as the
subgroup is reachable, that is, the communication paths exist between the join site
and the operational subgroup. To cope with the reformation, a coordinator must be
chosen:

If the current token holder does not crash and can be reached by the majority
members, the token holder is the reformation coordinator;
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If the token holder crashes or is no longer reachable, the immediate prior token
holder is the coordinator;

Recall that the majority membership is a necessary condition for the group
reformation. When the above two cases do not apply, the surviving members
have to elect a coordinator to reconfigure a new ring in cooperation with the
majority members.

Those three algorithms are nearly the same as the reformation algorithms mentioned
before. Hence, we do not discuss them in detail.

Case 2. There is no subgroup with majority membership; all the members in the
subgroups are blocked. The coordinators in the subgroups periodically broadcast an
invitation message. Once the communication paths are reestablished and the small
rings can merge (by join) into a large ring containing the majority members of the
group, then the protocol can resume normal operation. The merging is similar to the
algorithm of the two coordinators inviting each other. Again, they are omitted here.

8.6.5 Efficiency

We have discussed the design of RMP in the above. The efficiency of such RMP
can be addressed in the following aspects:

Fast locating the token site and ordering multicasts. RMP has minimized the
control message overhead: for each ordered multicast message, normally, one
point-to-point message is needed to transmit the request from a source site to
the token holder. If the token holder transmits a message from its own
application process, this message can be directly multicasted without any extra
point-to-point delay. In case of multiple senders, one of the senders may have
to retransmit its requests up to n–1 times (until its turn to be the token holder)
but the request still can be taken as an acknowledgement message.

Efficient message validity checking. Attaching the sequence number of each
source site to every message transmission regardless of the message type (an
ordered multicast, a multicast request or a reformation message) makes the lost
message detection very efficient because a receiver is able to check the order of
an incoming message against its own sequence number. In addition, RMP has
provided an ordered message with a ring version, enabling a destination of the
message to decide if its communication party is on the same ring. Therefore
the receiver detects effectively between itself and the message sender that the
sender is a valid member of the ring.

Quick snapshot of the global state. With safe parameters, one round of token
rotation time is needed at most to reflect the maximum delay of the atomic
delivery. Before the token rotates the n-1 members, if every member has sent a
request or multicasted a message, the delay times can be further reduced.
Therefore, the safe delivery latency is less than n-1 multicast delay times.
However, n-1 multicast delay can be taken as the upper-bound delay of RMP.
Even so, to achieve the total ordering by piggybacking the safe parameter with
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each ordered multicast message, RMP entails the minimal overhead to capture
the (global) snapshot of the instantaneous state of the overall group.

Flexible change of membership. A site can join the logical ring at any point of
time and the membership mechanism reacts to a new member join request
quickly without interfering with the normal order message multicast. On the
other hand, the fault tolerance mechanism of the protocol is deterministic and
guarantees failure-notice atomicity. During a normal operation, every correct
member is waiting for some multicast messages from the current token holder.
Therefore, they are unanimously monitoring the activity of the token holder.
Suppose a site stops after it just transmitted an ordered multicast message; this
failure will be detected by up to n-1 subsequent ordered multicast messages.
Every alive member sees the failure at the same time, likewise, a coordinator
forms a new ring after reaching the consensus of the surviving members. All
the members will see the ring (membership) change simultaneously.

Scaling. As the group size becomes large, the group communication
performance is affected because more control messages and longer delay are
needed for committing safe (atomic) messages to applications. In terms of
control messages and delivery delay for an ordered, reliable multicast message,
most existing protocols do not scale well. RMP deals with the problem in two
ways: (1) with a small size group and lower frequency of messages (message
cycle time), each member on the ring waits until its turn to be the token holder,
then multicasts the messages generated from its applications. If there is no
application message, it transmits a NULL packet (heart-beat) as a live message
and acknowledges previous multicasts it received; (2) for a large size group, if
the cycle time is long, a member that wants to send a message rapidly sends the
message to the current token holder. The second method introduces only one
extra point-to-point control message, enabling a member to fast multicast its
message without waiting a longer time. But in terms of the atomic delivery,
RMP still entails some delay.

8.7 Implementation Issues

This section discusses the implementation of reliable multicast protocol (RMP)
based on a logical token ring. The logical token ring has been considered as a
simple and efficient approach in the design of multicast protocol because the
discrete multicast messages of many distributed processes are reduced to one
process holding the token and multicasting a totally-ordered message at one time.
RMP is implemented based on the UNIX 4.3 BSD operating system which provides
a rich set of distributed program facilities. These facilities could be easily used in
supporting resource sharing in a distributed environment. The initial implementation
intends to implement RMP using sockets on a local area network connected to a 10
M Ethernet.

Both connection and connectionless sockets have been used between client
processes and RMP processes. UNIX domain sockets are used for passing
connection byte streams whereas datagram sockets are used to transmit messages



201
across networks that model potentially unreliable, connectionless packet
communication. The datagram socket id of each endpoint of communication is
defined prior to transmission of any data, and is maintained at each process so that it
can be presented at any time.

8.7.1 System Structure and Communication Assumptions

Figure 8.10 illustrates the system structure which consists of a group of sites, i.e.,
self-contained computers including high level application software. The sites are
loosely coupled by a network and each RMP server process, process or member for
short, accepts multicast requests from its local application via a submittal queue
QSUB and delivers messages to the application via a delivery queue QCMT. Note
that a process interacts with its applications through TCP connection. Once QSUB is
full, the process ceases accepting messages and the applications are blocked. As
long as the process has made a room from QSUB, it is able to receive the message
request from its applications. The user application processes running on the upper
level of the system access common resources, e.g., files, shared objects and
database systems etc., and share the common information via resource managers.

Figure 8.10: System structure

The strongest assumption that can be made about inter-process communication is
that any message sent by an alive member to another (alive) member is always
received within a given delay - the so-called synchronous communication
assumption. The nice property of this assumption is that one member can reliably
detect whether another member is alive just by sending a query and waiting a
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bounded time period for a response. Unfortunately, in a system where members
must communicate over a shared network, such perfection is guaranteed only with
certain probability, by using multiple communication paths and/or message
retransmissions. It is even impossible to give a probabilistic guarantee, since the
actual load on the network is unpredictable.

The opposite approach is to consider that there is no predefined limit on the time it
takes for a message to reach its destination. Protocols designed without knowledge
of time limits could be easily ported from one environment to another, since they
would operate correctly whatever the performance of the network. With such
asynchronous communication, a member cannot decide whether another member
has crashed or whether its query or the expected response is still on its way going
through the network. In practice, it is essential to introduce some notion of time so
that members know how long to wait for an expected response before suspecting
that the originator of the response might have failed.

For the implementation of RMP, we have used the datagram communication in an
asynchronous network, which provides cheap means for any member to send a
message to any other members. The datagram message packet may be lost,
duplicated or out of order. The lost message must be retransmitted. There is an
arbitrary random delay between the emission of a datagram message by a source
process and the moment the message is received by the target process at a
destination. Since the delay can be variable, for the sake of practical system
implementation, we have to consider a fixed value of such that a datagram
message that travels more than time units is considered to be lost. Therefore, is
taken as the worst case or an approximate measurement for the point-to-point
message transmission over an asynchronous network. Similarly, among a group of
processes which receive a datagram message multicast from a source, there is also a
random delay Such a delay should be designated to prevent situations in which a
process waits forever for a message from another process that will never arrive due
to the failure of the process. Datagram delays are established by studying the
statistics about network behavior under various load patterns, so as to ensure that
point-to-point/broadcast datagram message transmission delays are smaller than

with very high probability.

8.7.2 State Machine Approach for Implementing RMP

Although this section presents an implementation of RMP, the techniques and
algorithms described can be applied to general fault-tolerant multicast protocol
design and implementation. State machine approach is applied for the modular
design and implementation of RMP. Therefore, RMP is taken as the modular
composition of sub-protocols that work cooperatively in achieving message
ordering, reliability and system fault-tolerance. This is similar to the microprotocol
approach in [HS91, RB93]. To better understand the structure of RMP, the modular
hierarchy is shown in Figure 8.11. RMP is a composition of total ordering,
atomicity, fault-tolerant and membership protocols which achieve services as
described in the previous sections. In RMP, the total order respects the causal order
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of Lamport. Message receive and delivery is distinguished. Message receive means
that a message is received by RMP process while message delivery means that a
message is committed to high level applications by the process.

The total ordering protocol guarantees the message multicast and delivery to
applications in the same relative order. If a message desires atomic delivery, the
atomic protocol is invoked. During the normal message multicast, by the timeout
mechanism, if any fault is suspected, the fault-tolerant protocol is invoked to
perform fault detection and fault location. Any membership change of the process
group due to fault recovery or dynamic group is conducted by the membership
protocol to handle the member join/leave, merge of two partitioning segments etc.
The membership protocol forming a new group must guarantee membership change
atomicity and have a consensus among the operational members. Since we have
presented the design of these protocols in the previous section, we only discuss
some issues about ordering protocol and membership protocol in this section.

Figure 8.11: RMP hierarchy structure

8.7.3 Message Packet and Control Information

To implement message packets, one must define their types. RMP classifies the
messages as up-stream and down-stream. A message received/delivered by a
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process from/to upper application is defined as an information data unit (IDU); and
a message sent/received by a process to/from network is defined as a packet data
unit (PDU). A process attaches a PDU header to an IDU and makes it a PDU for
network transmission. Likewise, a PDU can be stripped of its PDU header to
become an IDU for delivery. Their formats are further given below:

IDU. There are two types of IDUs. One is the data IDU and another the
membership IDU. The data IDU is used for data message passing between
applications and processes. Membership IDU is delivered by a process to notify the
applications of membership change. The format of the membership IDU is shown in
Figure 8.12(a) in which        is the id of a member process (or a member internet id)
in a group; variable vi is used to inform applications about whether a member is
new (vi = 0) or old (vi > 0) in G. RMP defines an IDU_HEADER for the use and
information of high level applications. It consists of sender _id, port, length, flag,
where

sender_id is the sender process id;

port is used for communication with RMP process;

length indicates the IDU in byte length;

flag is used by applications to inform RMP if the message is an urgent message.
For example, flag = 1 can be used as the indication that the IDU requires
atomicity. Actually, flag can be used to encode multiple types of IDU and this
is out of the scope of this book.

Figure 8.12: Packet for logical ring

PDU. In general, RMP control information is included in a PDU header with type
PDU_HEADER. Its instance is attached to an IDU before sending it to a network. It
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is denoted as header = (protocolID, version, sender, mid, s, k, code, len,
coordinator), where

There are three kinds of PDUs, namely control, data, and ring PDUs. A control
PDU only has a header; A data PDU is a pair of (header, *data) where *data is the
pointer to IDU; a ring PDU is structured as in Figure 8.12(b) in which is the
member sid and ls is the local message sequence number of

8.7.4 Ordering Protocol

The value of total order for a multicast message in R is recorded in a sequence
number S. There is a virtual token rotating in R. At one time, there is only one
member holding the token, multicasting a total ordered message, and incrementing
S by 1. The token implicitly circulates to the next process on R. Each member uses S
for checking the message total ordering it received. All members expect the totally-
ordered incoming message from the token holder. Each member predicts the id of
the token holder by value of S plus 1 modulo the size of R which is denoted as
A member wishing to multicast data messages can wait until it holds the token. If it
has an urgent message, it can send the message to the current token holder,
requesting the holder to multicast on behalf of it. If the token holder does not have
a data message to send, it has to multicast a NULL message to let the token go to the
next process on R, as shown in Figure 8.13.

* In general sender = mid.sid. In case that the PDU is a delegate message, the sender is
different from the packet originator, then sendernot= mid.sid.

protocolID is the id of  RMP which is currently running;

version is the version of R;

sender is sid of the PDU sender (or internet address);

mid = (sid, ls) is a unique message id in which sid is the originator sid of the
PDU1; ls is the local sequence number of the originator for this PDU;

s is a sequence number denoting a total order of PDU if it is a multicast
message; otherwise, it represents an acknowledgment of the sender about the
previous message received;

k is called a safe parameter, showing the sender’s view of maximum order of
the messages received by every member on the ring;

code denotes the type of m and it is interpreted by the RMP as external events;

len is the length of the PDU in bytes;

coordinator is sid of ring coordinator.
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Figure 8.13: Ordered multicast

In this figure, a group consists of 3 members. multicasts ring R to all the
processes and informs the membership and passes the token to then transmits
m.1 and piggybacks the token to implicitly. then multicasts m.2. Upon
receiving m.1, the receivers advance their S by S := S+1 and know that is the
second token holder, and so forth. If has multicasted the (n-1)th message, the
token transfers to again for the multicast of the nth message. If the token holder
has nothing to send, a NULL message is transmitted.

It may happen that different members have inconsistent values of S. This indicates
that the members with a lower value of S may lose some ordered multicast
messages. The member, upon reception of an ordered multicast message, can detect
the lost messages via the gap between its S and the incoming message order. As a
result, retransmission of the lost messages are immediately carried out without
further delay. In RMP, a receiver initiates the message retransmission. Assume that
P receives m and detects the missed messages via S < m.s, it sends a request to
m.sender, asking for the retransmission of messages with order between m.s - S. On
the other hand, if S > m.s, P retransmits the messages with order in S - m.s to
m.sender. Intuitively, using S to monitor the token holder seems to cause problems
because of inconsistent values of S. In fact, this scheme helps individual members to
monitor the expected incoming message efficiently.

Multicasting a message from a user application to a network until it is received by
group members requires message picketing and sending to the network. A user
application on top of process calls the RMP interface function rmp_multicast
(data), which generates an IDU header and inserts the IDU into the RMP port by
calling Unix system call write(rmp_port, IDU, idu_length). Figure 8.14 depicts the
steps taken for a data message IDU received by a RMP and multicasted to the
network. In the figure, the RMP uses Unix call recv to receive the IDU (step 1). The
IDU is converted into a PDU by adding a PDU header with order S and it is queued
in QSUB for multicast (step 2 and 3). On receiving, and therefore holding the token,

  multicasts the PDU to the network; if not, the flag of the IDU is checked to see if
it is fast or atomfast. In the latter case, the PDU is forwarded to the current token
holder anticipated by where



207

Reception of a multicast message m requires to save the sender information in the
corresponding membership, say R[j] where The information includes
the sender’s local sequence number. The m.s is checked to see if it is in the expected
message order, i.e., if If so, m is queued in QDAT for delivery.
Otherwise, m is queued in QSUS until it is in the total order in terms of and it is
linked to QDAT. In case that the flag of m requires atomic delivery, atomic protocol
is invoked as described in the next subsection.

8.7.5 Membership Protocol

Dynamic membership protocol allows a process to join or leave R dynamically even
when the process is not known in advance. Actually, RMP uses Ethernet broadcast
to implement multicast. The dynamic membership change algorithm has been
described in Section 8.6.3.2. Here we want to discuss some issues in the presence of
faults.

Failure during membership change

When a new process wants to join a group, there are two cases that must be
considered: (1) the “join” request is lost, and (2) the coordinator fails during the
process join. In the first case, the new process normally sets a special timer to
monitor the response of the coordinator. On expiration of the timer, the new process

Figure 8.14: Steps taken for RMP to multicast an ordered message
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can retransmit its requests. In the second case, if several timeouts are reached
without reception of a response from the coordinator, the new process will
broadcast an invitation message. As mentioned before, this invitation forces the
processes in the existing ring to respond. The new process is able to join the group
eventually along with the group reformation, as shown in the 2-phase algorithm
described below.

When a member wants to leave, one issue is that the “leave” message may be lost. If
the coordinator misses a “leave” message, when the token moves to the position of
the left process, the remaining operational members will detect its leave because
they are expecting an ordered message from the process. In this circumstance, the
process is treated as a stopped process and RMP invokes the fault-tolerant protocol.
Therefore, we assume the “leave” message has been received by the coordinator.
Membership change in response to the “leave” process is handled with the
following 2-phase algorithm, which is similar to that in tolerating single site failure.

Two-phase algorithm

Phase1: The coordinator sends a “reform” invitation message to all members and
collects their acks and orders, i.e., value of ack.s, for an agreement about the
reformation. In fact, nearly all the operational members send their acks to the
coordinator simultaneously. If the coordinator sees any inconsistency between ack.s
and its own S, it will do the retransmission of messages. Therefore, lost messages
can be retransmitted. If the coordinator receives the acks from all the operational
members or the majority of members, it goes into Phase2, otherwise, RMP loops in
this phase until the majority condition is met.

Phase2: The coordinator constructs a new logical token ring R’ in terms of the
members acknowledged. It forms a message, containing the new ring, multicasts the
message and piggybacks an up-to-date safety parameter to inform all the members
to replace R and increment their ring version. Note that the messages sent in R
should be committed despite the reformation. On receipt of R’, all members on R'
commit the messages in accordance with the safety parameter. The coordinator
multicasts a resume message to the members in R’. As soon as the resume message
is received, all members deliver R’ to their application processes, inform users of
the change of membership and resume normal operations.

Note that the consensus of membership change is achieved approximately among
the operational processes. A coordinator who fails to recruit the majority of
members must block all processes until some new processes join it or all members
join another ring. The blocked processes remain in the old ring in case several
partitions occur. RMP allows users to decide if a minority ring can continue to
operate. In practice, as long as the majority of members are alive, the coordinator
will finally form a ring with the majority of members and RMP can continue its
normal operations.

Failure during the reformation

Any member may fail during the reformation phase. Suppose a member, other than
the coordinator, fails before sending its ack. The coordinator can detect this failure
by time-out, i.e., the coordinator is expecting an ack message from the process. On
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expiration of the timer, the coordinator eliminates the failed process from the new
ring. If the process fails after it sent out the ack, the coordinator cannot detect the
failure. The failed process will be included in the new ring. But this causes no
trouble because normal execution of RMP in the new ring will circulate the virtual
token to the failed process eventually. The failure thus can be detected by the fault-
tolerant protocol described earlier.

If the coordinator fails or is not reachable by the majority of members, a new
coordinator must be elected according to rules (C1 – C3) described in Section
8.5.3.1. The rules are applied if a process receives more than one invitation or if a
candidate invites another candidate. As long as the coordinator is elected, the two-
phase reformation algorithm can be performed again.

8.8 Summary

Group communication is highly desirable for maintaining a consistent state in
distributed systems. Most underlying communication and distributed systems are
subject to a number of possible failures, such as site crashes and communication
failures. Currently, most practical systems use reliable multicast protocols to
achieve a consistent view among the operational processes. Group communication
is achieved through reliable multicast protocols. A reliable multicast protocol
(RMP) guarantees the properties such as ordering and atomicity. This chapter
discussed the design and implementation of an RMP based on a logical token ring
for the general distributed asynchronous systems. The RMP based on a logical
token ring has very simple structure. The novelty of the RMP is to rotate the token
position implicitly on the ring while multicasting an ordered message at the same
time. The protocol requires a minimum number of control messages and transfers
the token responsibility among the processes on a logical ring, placing total orders
on each multicast message and ensuring the messages are received by all correct
processes in the same order. The RMP has provided efficient algorithms for reliable
message delivery and for failure detection and recovery of ordering. In addition, it
offers flexibility of dynamic group membership changes, requiring the minimum
resources of the underlying communication networks. In respect to message
atomicity, the RMP has minimized control messages and communication costs
while incurring a short delay. It is superior to the existing token based protocols and
is competitive with the two-phase method in terms of safe delivery delay. The
significant contributions of the RMP lies in its global optimization of the modular
design and implementation for total message ordering, atomicity, dynamic group
configuration and fault-tolerance.

Exercises

8.1

8.2

8.3

What is unicast communication? What is multicast communication? 8.1

What features does group communication have? 8.2

What is quorom delivery? What is its other name? 8.2.1
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8.4 What is the difference between causal ordering and total ordering? 8.2.3

8.5 Given the following figure, specify which messages conform to FIFO and
Causal ordering. Does it meet total ordering? 8.2.3

8.6 What kind of failures may occur in the multicast communication system? 8.3.1

8.7 How does one understand using negative acknowledgment systems to reduce
the packet transmission and synchronization overheads? 8.3.2

8.8 How does one achieve a multicast resilience to the degree r in the centralized
multicast approach? 8.4.1

8.9 Design two programs to achieve: (1) a client sends packets to a multicast group;
(2) a group member receives the packets and displays the packet contents. 8.5

8.10 What is a logical ring? How is it formed? 8.6.1

8.11 How does one calculate a current token holder’s position? Give an example.
8.6.1

8.12 What is the safe parameter approach? 8.6.2

8.13 How is the coordinator selected during membership construction? 8.6.3.1

8.14 How is a member “join” request handled? 8.6.3.2

8.15 In the tolerating single site failure algorithm, why choose the prior token
holder as the coordinator? 8.6.4.1

8.16 In the same algorithm, what are the purposes of two phases for reformation?
8.6.4.1

8.17 What are results of network partitioning in terms of group communication?
8.6.4.2

8.18 Why can RMP minimize the control message overhead? 8.6.5

8.19 What is asynchronous communication? How does one deal with it? 8.7.1

8.20 How is RMP constructed? 8.7.2
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How are the lost messages in RMP transmitted? 8.7.5

Compare the differences between two 2-phase algorithms used in tolerating
single site failure and membership protocol. 8.7.8, 8.6.4.1

8.21

8.22
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CHAPTER 9 RELIABILITY AND
REPLICATION TECHNIQUES

A computer system, or a distributed system consists of many hardware/software
components that are likely to fail eventually. In many cases, such failures may have
disastrous results. With the ever increasing dependency being placed on distributed
systems, the number of users requiring fault tolerance is likely to increase. The
design and understanding of fault-tolerant distributed systems is a very difficult
task. We have to deal with not only all the complex problems of distributed systems
when all the components are well, but also the more complex problems when some
of the components fail. This chapter introduces the basic concepts and techniques
that relate to fault-tolerant computing.

9.1 Basic Concepts

Each component in a computer system is generally constructed from a collection of
other software and hardware components, some of which may fail from time to
time. There are two approaches to increasing system reliability: fault avoidance and
fault tolerance. The goal of fault avoidance is to reduce the likelihood of failures
(by using conservative design practices, high-reliability components, etc.) while the
goal of fault tolerance is to ensure correct operation even in the presence of faults.
In this section, we introduce the basic concepts about system reliability, such as
fault, failure, reliability, availability, and so on.

9.1.1 Fault Tolerance

Before we introduce the concept of system reliability, there are some other concepts
about fault tolerant computing that need to be classified.

System/specification. A system is defined as an identifiable mechanism that
maintains an observable behaviour at its interface with its environment. The
system’s behaviour is defined by a finite set of specifications that describes the
inputs to and responses from the system, and system’s states and state
transitions. Figure 9.1 shows a system decomposition.

Faults/errors/failures. A fault is a source that has the potential of generating
errors. An error is the manifestation of a fault within a program, a data
structure, a component, or a system; errors can occur some distance from the
fault location. A failure occurs when the delivered services deviate from the
specified services. Failures are caused by errors. Figure 9.2(a) depicts the
relationship of fault, error, and failure.
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Figure 9.1: A system

Permanent/intermittent/transient failures. Faults, errors, and failures can be
further classified as permanent (that is, continuous and stable; in hardware,
permanent failure reflects an irreversible physical change), intermittent (that is,
only occasionally present due to unstable hardware or varying hardware or
software state, such as a function of load or activity), and transient (that is,
resulting from temporary environmental conditions).

Figure 9.2: Fault, error, and failure
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Transient and intermittent faults are a major source of error in systems; 80-90%
of electronic failures in computers are transient and intermittent. Figure 9.2(b)
shows the source of errors.

Failure Rate. Failure Rate is defined as the expected number of failures of a
type of device or system per a given time period. For example, a 32K RAM
chip may have a failure rate of 7 failures per million hours.

Sometimes it is convenient to define the failure rate function as a function of
time. From the failure rate function we can calculate the failure rate (failures
per unit of time) in a given time. The commonly accepted relationship between
the failure rate function and time for electronic components is called the bath-
tub curve, as shown in Figure 9.3. Here is the failure rate and is normally
expressed in units of failures per hour (or per million hours).

Figure 9.3: The bathtub curve

Fault coverage. Fault coverage is a measure of a system’s ability to perform
fault tolerance. There are four primary types of fault coverage: fault detection,
fault location, fault containment, and fault recovery coverage, respectively.
They are measures of a system’s ability to detect, locate, contain, and recover
from faults. The fault recovery coverage is the most commonly considered, and
the general term “fault coverage” is often used to mean fault recovery coverage.
It is mathematically defined as the conditional probability that, given the
existence of a fault, the system recovers:
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9.1.2 Reliability and Availability

Reliability is a conditional probability that a system survives for the time interval [0,
t], given that it was operational at time t=0. That is, the reliability R of a system is a
function of time t:

Let be the number of components that are operating correctly at time t, be
the number of components that have failed at time t, and N be the number of
components that are in operation at time t:

Similarly, we can define the unreliability Q as:

Of course, at any time t, R(t) = 1.0 - Q(t).

If we assume that the system is in the useful-life stage where the failure rate
function has a constant value of then the reliability  function is well known to be
an exponential function of parameter (exponential  failure law):

Mean time to failure (MTTF): MTTF is the expected time that a system will
operate before the first failure occurs.

Dependability is the quality of the delivered services. High dependability means that
reliance can justifiably be placed on a system. Fault-tolerant computing is
concerned with the method of achieving computer system dependability.

Availability is the intuitive sense of reliability. A system is reliable if it is able to
perform its intended function at the moment the function is required. Formally, it is
the probability that the system is operational at the instance of time t. To understand
the availability, we have to classify the following concepts:
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where N is the number of identical systems measured, is the time that system i
operates before encountering the first failure, and the start time is t (=0). If the
reliability function obeys the exponential failure law, then

Mean time to repair (MTTR): MTTR is the average time required to repair a
system. If the of N faults requires a time to repair, the MTTR is estimated
as:

The MTTR is normally specified in terms of a repair rate which is the
average number of repairs that occur per time period (hour):

Mean time between failure (MTBF): MTBF is the average time between
failures of a system. For example, if there are N systems and each of them is
operated for some time T and the number of failures encountered by the
system is recorded as The average number of failures is computed as

If we assume that all repairs to a system make the system perfect once again just as
it was when it was new, the relationship between the MTTF and MTBF is: MTBF =
MTTF + MTTR, as illustrated in Figure 9.4.

9.1.3 Failure Classification

[Cristian 1991] gives the following classification of failures that might happen in
the distributed systems with respect to services provided by servers.

Finally, the MTBF is
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Figure 9.4: Relationships between MTBF, MTTF, and MTTR.

Omission failure: a failure occurs when a server omits to respond to an input.
This kind of failure could be due to lost requests from clients.

Timing  failure: a failure occurs when a server’s response is functionally correct
but untimely. Timing failures can be either early or late. The cause of this kind
of failure might be that the server is busy with a high priority job, the heavy
traffic of network, queuing problem, and so on.

Response failure: a failure occurs when a server responds incorrectly. This
failure could be caused by design errors incurred in implementing the server, or
the protocol used to communicate between clients and the server.

Crash failure: a crash failure occurs when a server stops running. This failure
could be a hardware failure, the machine being switched off deliberately, or a
detected error, possibly non-recoverable, that brings the system to a fail-stop.

9.2 Techniques to Achieve Reliability

There are a number of techniques used to build reliable distributed network systems:
redundancy, fault avoidance techniques, fault detection techniques, and fault
tolerance techniques.

9.2.1 Redundancy

Redundancy is the basic requirement in any technique to achieve reliability.
Redundant elements are those system components that can be removed without
affecting the performance of a system (assuming that the remaining system is fault
free). Redundancy provides information about the state of the system and the
components that are needed for recovery from failures.

In terms of using resources, there are space and time redundancies respectively:
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Space redundancy:

Hardware redundancy: uses extra gates, memory cells, bus lines, functional
modules, and other hardware to supply recovery information.

Software redundancy: uses alternate or independent versions of algorithms
to provide recovery information.

Time redundancy: uses extra computing or execution by the same or different
methods to retry the failed operation and provide a basis for subsequent action.

Redundancies can also be classified as:

Static redundancy: employs redundant components to mask the effects of
hardware or software failures within a given module. The output of the module
remains unaffected, i.e., error free, as long as the protection due to redundancy
is effective. This module assumes that failures of redundant elements are
independent, not related.

Dynamic redundancy: allows errors to appear at the output of modules. When a
fault is detected, a recovery action eliminates or corrects the resulting error.
Dynamic redundancy implies a requirement for fault detection, fault location
and recovery processes.

In response to a failure, a redundant system may take the following steps:

Fault confinement: limiting the spread of fault effects to one area of the system,
thereby preventing contamination of other areas.

Fault detection: detecting faults, e.g., checking parity, consistency, protocol
violation, etc. But they cannot be perfect and fault latency (the delay from the
manifestation of the fault to the detection of the fault) exists.

Fault masking or static redundancy: using techniques to hide the effects of
failures. Majority voting is an example of fault masking.

Retry: in many cases a second attempt of an operation may be successful. This
is particularly true with a transient fault that causes no physical damage.

Diagnosis: obtaining information about a failure’s location and/or properties.

Reconfiguration: replacing the failed component or isolating it from the rest of
the system, or “graceful degradation”.

Recovery: after the elimination of errors, the system operation is normally
backed up (rolled back) to some point in its processing that proceeded the fault
detection, usually using backup files, checkpointing, etc.

Restart: when recovery is impossible or if the system is not designed for
recovery.

“Hot” restart: resumption of all operations from the point of fault detection.

“Warm” restart: only some of the processes can be resumed without loss.
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“Cold” restart: complete reload of the system, with no processes surviving.

Repair: repairing the faulty component diagnosed.

Reintegration: reintegrating the repaired module into the system.

9.2.2 Fault Avoidance Techniques

Fault avoidance techniques are used to reduce the probability of failure and are
intended to decrease the possibility of transient faults by manipulating factors that
affect the failure rates. Environmental changes, quality changes, and complexity
changes due to component integration level are three fault avoidance techniques
whose goal is to obtain a lower system failure rate.

Environmental changes: e.g., the use of a cooling system to control the
(junction) temperature.

Quality changes: e.g., testing, debugging, verification, and in-house screening
to eliminate weak hardware/software components.

Complexity changes: e.g., higher integration/abstraction/modelling levels
permit designs with fewer chips, fewer solder joints, less board space, fewer
functions/procedures, fewer modules, fewer interactions, and thus reduce
failure rates.

9.2.3 Fault Detection Techniques

The first step in tolerating faults is to detect faults. Therefore, fault detection
techniques are an integrated part of fault tolerant techniques. Fault detection
techniques recognise the inevitability of eventual failure, no matter how well the
system is designed. The key to fault detection is redundancy. Fault detection
techniques include the following:

Duplication: applicable to all areas and levels of computer design. Two
identical copies are employed. When a failure occurs in one copy, the two
copies are no longer identical and a simple comparison detects the fault.

Duplication can detect all non-overlapping, single faults except faults in the
comparison unit. Identical faults from identical modules are not detectable
because both copies are in agreement.

Error-Detection Code: e.g., Parity, Checksums, or Cyclic Codes (Cyclic
Redundancy Check, CRC). They are the systematic application of redundancy
to information.

Self-Checking and Fail-Safe (Fail-Stop): a self-checking system checks its own
behaviour against some pre-specified specifications to ensure that it is doing the
right thing. A fail-stop system stops functioning (no more input to and output
from the system) as long as a fault occurs.
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Watchdog Timers and Timeouts: watchdog timers provide a simple and
inexpensive way to keep track of proper process functioning. A timer is
maintained as a process separated from the process it checks. If the timer is not
reset before it times out, it is indicative that the corresponding process failed in
some way. It is assumed that any failure in the checked process will cause it to
miss, resetting its watchdog timer. Coverage is limited, however, because data
and results are not checked, and because the process may fail partially yet still
be able to reset its timer. This technique can be used in both hardware and
software designs.

Timeouts are different from the watchdog timers in that they provide a finer
check of control flow. They are based on the principle that certain operations
should complete within a prespecified maximum time.

Consistency and Capability Checking: consistency checking is performed by
verifying that intermediate or final results are within a reasonable range either
on an absolute basis or as a function of the inputs.

Capability checking is usually part of the operating system, but it can also be
implemented in hardware. This technique guarantees that access to objects is
limited to users with proper authorisation.

9.2.4 Fault Tolerance Techniques

Fault tolerance techniques can be categorised into static redundancy and dynamic
redundancy, according to their use of redundant components.

Static redundancy techniques

Static redundancy uses redundancy to provide fault tolerance by either isolating or
correcting faults before the faulty results reach module outputs. Once the redundant
copies of an element are connected in the circuit or embedded into the program,
they remain fixed. The errors resulting from faulty components are “masked” by the
presence of other copies of those components. No fault detection is provided (but
can be added in). The static redundancy technique has the following methods:

Voting: one common technique of static redundancy is the N-modular
redundancy with voting (NMR): eg., Triple Modular Redundancy (TMR). By
using majority voting (two out of three), a failure in any one of these three
copies can be masked.

This concept can be extended to include “N” copies with majority voting at the
outputs (NMR). Normally N is an odd number. The cost of NMR is N times the
basic hardware / software cost, plus the cost of the voter.

In digital systems, majority voting is normally performed on a bit-by-bit basis.
Voting can be applied at any level in the system: gate level, module level, bus
level, software level (N-version programming).

Error-Correcting Codes: this is the most commonly used means of static
redundancy. Many use Hamming single-error-correcting (SEC) codes. These
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codes are inexpensive in terms of both cost and performance overheads (with
10-40% redundancy and very small decoding and encoding delays). These
codes are widely used in RAM designs (RAMs contribute 60-70% of system
failure rates).

Dynamic redundancy techniques

Dynamic redundancy techniques involve the reconfiguration of system components
in response to failures. The reconfiguration prevents failures from contributing their
effects to the system operation. If static redundancy is used as part of the dynamic
redundancy scheme, the removal of failed components may be postponed until
enough failures have accumulated to threaten an impending unmaskable failure. The
dynamic redundancy techniques include the following:

Reconfigurable duplication: two units (A and B) run simultaneously, and their
outputs are always compared. However, the output of only one unit goes to the
external hardware. The other unit (standby unit) functions in parallel with the
active unit, but it is not connected to the outputs. When a comparison detects a
failure, diagnosis will determine which of the units is bad and the good unit will
be switched on-line so that its outputs supply the external components. The
other unit will be switched off-line. Figure 9.5 shows the architecture of a
reconfigurable duplication system.

Figure 9.5: Reconfigurable duplication architecture
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Following is a list of some possible diagnostic methods that can be used in the
Compare and Output Switching Unit of Figure 9.5.

Run a diagnostic program.

Include self-checking capabilities in each module.

Use a watchdog timer.

Use an outside arbiter.

Reconfigurable N-module-redundancy (NMR): one of the drawbacks of NMR
with voting is that the fault-masking ability deteriorates as more copies fail.
The faulty modules eventually out-vote the good modules. However, an NMR
can still function if the known bad modules could be disconnected in the vote.

Hybrid redundancy: combine NMR with voting and backup sparing techniques.
A core of N identical modules is in use at any one time, with their outputs voted
upon to produce the system output. When a disagreement is detected, the
module (or modules) in the minority are considered to have failed and are
replaced by an equivalent number of spare modules. Hybrid system reliability
is greatly dependent on the switch complexity.

Adaptive voting: to modify the voting process dynamically as the system
deteriorates. For example, in an NMR/simplex system, the initial configuration
is conventional NMR. When one module fails, it and one other module are
removed from the system, leaving an (N-2) modular redundancy system. The
removal of two modules preserves the property that all votes are unambiguous:
no tie is possible. Eventually, the system deteriorates into a simplex system.

Graceful degradation: graceful-degradation techniques use the redundant
components as part of the system’s normal resources at all times.

Recovery: recovery techniques can restore enough of the system state to allow
process execution to recommence, without a complete restart and with little or
no loss of acquired information. Recovery techniques are usually implemented
in software, but may have some hardware bases as well.

Backward Error Recovery Techniques: process execution is restarted at
(rolled back to) some point before the occurrence of the error.

Retry techniques: are the fastest and conceptually the simplest.

Checkpoint techniques: back up the process to an earlier point in its
execution. Checkpointing is often implemented in software and requires
little or no hardware, but it requires extra time.

Journaling: a technique in which a copy of the initial data is stored as a process
begins. As the process executes, it makes a record of all transactions that affect
the data. Thus, if the process fails, its effect can be recreated by running a copy
of the backup data through the transactions a second time, after any failures
have been repaired.
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Forward Error Recovery Techniques: attempt to continue operation with the
system state at hand, even though it may be faulty. These techniques are usually
highly application dependent.

Masking: is a commonly used fault-tolerant method. Hierarchical failure
masking and group failure masking are two end points of a continuum of failure
masking techniques. With hierarchical failure masking, servers at the higher
level of abstraction will mask the failure of the lower-level servers. With group
failure masking, by employing a group of redundant servers, if some of these
fail, the rest of the servers will provide the services.

A key issue in designing multi-layered fault-tolerant systems is how to balance the
amounts of failure detection, recovery, and masking redundancy used at various
abstraction levels of a system, in order to obtain the best possible overall
cost/performance results. Thus, a small investment at a lower level of abstraction for
ensuring that lower-level servers have a stronger failure semantics can often
contribute to substantial cost savings and speed improvements at higher levels of
abstraction and can result in a lower overall cost.

9.3 Software Fault Tolerance

Why do we require fault tolerance in software? Software does not degrade
physically as a function of time or environmental stresses. A program that has once
performed a given task as specified will continue to do so provided that none of the
following change: the input, the computing environment, or user requirements.

However, the above factors do change. So, past and current failure-free operation
cannot be taken as a dependable indication that there will be no failures in the
future. Failure experience in current software has shown that existing software
products exhibit a fairly constant failure frequency. Fault density has been defined
as the number of faults per 1000 lines of code. It ranges 10-50 for “good” software
and 1-5 after intensive testing.

Software failures usually differ in their impact on the operations of an organisation.
Therefore, we need to classify them by severity and come up with the failure
intensity or reliability for each classification. At least three classification criteria are
in common use: cost impact, human impact, and service impact.

Difficulties in software test and verification:

Difficulties in testing: testing can be used to show the presence of bugs, but
never show their absence. Complete testing of any practical programs is
impossible because of the vast number of possible input combinations.

Difficulties in verification: formal verification has been applied on an
experimental basis and usually to small programs (too formal, difficult to use,
expensive in handling large programs, difficult in real-time program
verification, and difficult in translating a natural language specification into a
formal specification).
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9.3.1 Techniques for Software Fault-tolerance

Design techniques for software fault tolerance include N-version programming and
recovery blocks.

N-version programming. The independent generation of N (>=2) functionally
equivalent programs, called versions, from the same initial specification.

When N=2, N-version programming can be expected to provide good coverage for
error detection but may be found wanting in assuring continued operation of the
software. Upon disagreement among the versions, three alternatives are available:

Retry or restart (in this case fault containment rather than fault tolerance is
provided);

Retransmission to a “safe state,” possibly followed by later retries;

Reliance on one of the versions, either designed in advance as more reliable or
selected by a diagnostic program.

1.

2.

3.

For N >= 3, a majority voting logic can be implemented. N=3 is the most com-
monly used method. A 3-version programming requires:

Three independent programs, each furnishing identical output formats.

An acceptance program that evaluates the output of requirement 1.

A driver (or executive segment) that invokes requirements 1 and 2 and
furnishes the results to other programs.

Recovery block. A recovery block consists of three software elements:

A primary routine, which executes critical software functions;

An acceptance test, which tests the output of the primary routine after each
execution;

An alternate routine, which performs the same function as the primary routine
(but may be less capable or slower), and is invoked by the acceptance test upon
detection of a failure.

A recovery block is a block in the normal programming language sense, except that,
at the entrance to the block, it is an automatic recovery point and at the exit it is an
acceptance test. The acceptance test is used to test if the system is in an acceptable
state after the first execution of the block, or primary module as it is often called.
The failure of the acceptance test results in the program being restored to the
recovery point at the beginning of the block and the second alternative module
being executed. If the second module also fails the acceptance test, then the
program is restored to the recovery point and yet another alternative module is
executed. If all the alternatives are exhausted, the system fails. Therefore, the
recovery must take place at a higher level. The recovery block is used for safely
accessing critical data. It also detects errors through the acceptance test after
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running each alternative. It could be designed to detect further errors by
thoughtfully designing alternatives.

The structure of a recovery block can be described as follows:

where T is the acceptance test condition that is expected to be met by successful
execution of either the primary routine P or alternate routine Q. The structure is
easily expanded to accommodate several alternates

Error Recover. Error recovery is a mechanism which brings a system to an error-
free state. There are two approaches to recovery: backward recovery and forward
recovery. The backward recovery restores the system to a prior state, which is
referred to as a recovery point. The forward recovery attempts to continue from an
erroneous state by making selective corrections to the system state. The act of
establishing the recovery point is the checkpointing which is a process of checking
and saving the current system state for recovery. Rollback is one of the backward
recovery mechanisms. Rollback is often employed by database systems to return
the system state from the unfinished transaction to the previous consistent state by
undoing all the steps that have been done since the transaction was started.

To be able to recover, it is necessary to store the system’s state at the recovery point
to a stable storage, such as a hard disk, so recovery needs space. Also recovery
takes time, and the whole process has to stop from proceeding by executing a
recovery algorithm instead. In a real-time system, because of the tight time
constraint to reach a certain state, recovery mechanisms might not be a possible
solution to the detected errors.

Domino effect. If two concurrent processes are interacting with each other, one
process that rolls back to its recovery point might cause the other one to roll back to
its recovery point as well. This procedure could go on until the whole system
returns to its original state. This phenomenon is called the domino effect. The cause
of this phenomenon is that each process is designed to have its own recovery point
which does not consider others’ recovery points. By carefully designing a consistent
recovery point among all processes that are interacting with each other during the
execution, this problem can be avoided.

Logging. Logging (or audit trail) is a way used to keep track of modifications or
operations since last checkpointing, so the system can be able to roll back to the
latest consistent state. There are various logging mechanisms designed to suit a
variety of applications. Logs are saved to permanent storage (disk files) to survive
any crashes.
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9.4 Reliability Modelling

We have introduced the basic concepts of reliability and fault-tolerance above. In
this section we discuss how to build a model to properly describe system reliability.

9.4.1 Combinatorial Models

Series systems

Our discussion of reliability modelling starts from a series system. A series system
is one in which each element is required to operate correctly for the system to
operate correctly (no redundancy). Figure 9.6 depicts a series system.

Figure 9.6: Reliability block diagram of a series system

Let represent the event that component is working properly at time t,
is the reliability of component at time t, and is the reliability of the series
system. The reliability at any time t is the probability that all N components are
working properly:

Assume that the events are independent, then

Suppose each component satisfies the exponential failure law such that the

reliability of each component is Then

where and corresponds to the failure rate of the system.

Example: Figure 9.7 shows a simple aircraft control system. Each element of the
system is required if the system is to perform correctly. There is no redundancy.



228

Figure 9.7: The example reliability block diagram

Assume that all six sensors have the same reliability each of the three
actuators has the reliability and each computer has the reliability Also
let the computer interconnection bus have the reliability and the primary
control bus have the reliability then

and

Parallel systems

A parallel system is one in which only one of several elements must be operational
for the system to perform its functions correctly, as depicted in Figure 9.8.

Figure 9.8: Reliability block diagram of the parallel system

The unreliability of a parallel system can be computed as the probability that all the
N elements fail. Let represent the event that element i has failed at time t,

So the reliability of the parallel system is:

be the unreliability of the parallel system, and be the unreliability of
the element. Then
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The above equations assume that the failures of the individual elements that make
up the parallel system are independent.

Example: Figure 9.9 depicts a simple aerospace control system. The system has
two identical units of devices, and it requires that at least one of the units work
properly for the system to perform its function. Once a unit has failed, it is assumed
that another unit automatically resumes the functions of the failed unit.

Figure 9.9: Example reliability block diagram

A parallel organisation can be reduced to a series element with the same reliability.
So the reduced reliability diagram for the system is

Figure 9.10: Reduced reliability block diagram

where is the reliability of one computer, is the reliability of one interface
unit, is the reliability of one display unit, and is the reliability of one bus.
So

The reliability of the system after one hour given will
be
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9.4.2 Markov Models

Example: The analysis of the Triple-Modular Redundancy (TMR) model. Three
identical modules are used to execute a task. Their results are compared through a
majority voting (two out of three). Thus a failure in any of these modules can be
masked.

Let states be where if module i is fault free and if
module i is faulty. The TMR has eight states:

000, 001, 010, 011, 100, 101, 110, 111

as depicted in Figure 9.11. This figure represents the Markov model in which each
state transition (the change of state that occurs within a system; as time passes, the
system goes from one state to another) is associated with a transition probability
that describes the probability of that state transition occurring within a specified
period of time.

Figure 9.11: State diagram of a TRM system

The states 000, 001, 010, 100 in Figure 9.11 represent states in which the system
has ceased to function correctly. Assume that the system does not contain repair and
that only one failure will occur at a time. The above states can be partitioned into
three categories: the perfect state (111); the one-failed states (110), (101), and
(011), the system failed states (100), (001), (101), and (000). They can be used to
reduce the Markov model.

Reduced Markov Model: Let state 3 correspond to the state in which all three
modules are functioning correctly; state 2 is the state in which two modules are
working correctly; state 1 is the failed state in which two or more modules have
failed. Figure 9.12 shows the reduced Markov model. In this model,
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Figure 9.12: Reduced state diagram of a TMR system

9.4.3 Fault Coverage and Its Impact on Reliability

Consider a simple parallel system consisting of two identical modules shown in
Figure 9.13.

Figure 9.13: Reliability block diagram of a simple parallel system

Assume that module 1 is the primary and module 2 is switched in if module 1 fails.
But this depends on the ability to detect and handle the faults. So,

where is the fault coverage of module 1, is the reliability of module
i. If the reliabilities and fault coverage factors of the two modules are the same, then

This is a linear function between the system reliability R and the fault coverage C,
as depicted in Figure 9.14. It is observed that with the increase of C, the system is
more and more reliable. From Figure 9.14, we can see:

If C = 1.0 (perfect parallel system), then

If C = 0.0, the reliability expression reduces to the reliability of one module.
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Figure 9.14: Impact of the fault coverage

9.4.4 M-of-N Systems

M-of-N systems is the generalisation of the ideal parallel system, where M of the
total N identical modules are required to function for the system to function. TMR
(triple module redundancy) is a 2-of-3 system.

Suppose that we have a TMR system. If we ignore the reliability of the voter, then

where is the reliability of the module. If then

Comparison of the reliabilities of TMR and a single module is shown in Figure
9.15.

It is easy to find the crossover point: which implies the
quadratic equation

The two solutions of this function are 0.5 and 1.0.

This example also shows that a system can be tolerant of faults and still have a low
reliability. We can also calculate the reliability of a general M-of-N system:
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Figure 9.15: Reliability comparison of TMR and a single module

where

For example, the TMR system reliability can be derived from the above formula:

9.5 Fault Tolerant Distributed Algorithms

9.5.1 Distributed Mutual Exclusion

The problem of mutual exclusion frequently arises in distributed systems whenever
concurrent access to shared resources by several sites/processes is involved. For
correctness, it is necessary to ensure that the shared resource be accessed by a single
site/process at a time. This requires that concurrent access to a shared resource by
several uncoordinated user-requests be serialised to secure the integrity of the
shared resource. It requires that the action performed by a user on a shared resource
must be atomic. That is, if several users concurrently access a shared resource, then
the actions performed by a user, as far as the other users are concerned, must be
instantaneous and indivisible. Hence the net effects on the shared resource is the
same as if the actions were executed serially, as opposed to an interleaved manner.
Mutual exclusion is a fundamental issue in the design of distributed systems and
provides an efficient and robust technique for their viable design.
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Mutual exclusion algorithms

Distributed mutual exclusion can be formalized in the following system model. At
any instant, a site/process may have several requests for the critical section (CS).
The site/process queues up these requests and serves them one at a time. A
site/process can be in one of the following three states: requesting CS, executing CS,
or idle (neither requesting nor executing CS). In the requesting CS state, the
site/process is blocked and cannot make further requests for CS. In the idle state, the
site/process is executing outside its CS. In the token-based algorithms, a site/process
can also be in the idle token state. That is, the site/process holds the token and is
executing outside the CS.

The primary objective of a mutual exclusion algorithm is to guarantee that only one
request accesses the CS at a time. In addition, the following characteristics are
considered important in a mutual exclusion algorithm:

Freedom from deadlocks. Two or more sites/processes should not endlessly
wait for messages that will never arrive.

Freedom from starvation. A site/process should not be forced to wait
indefinitely to execute CS while other sites/processes are repeatedly executing
CS. That is, in a finite time, all requesting sites/processes should have an
opportunity to execute the CS.

Fairness. Fairness implies freedom from starvation (but not vice-versa). It
requires that requests are executed in a certain order (e.g., the order in which
they arrive at the CS, or in which they were issued).

Fault tolerance. A mutual exclusion algorithm is fault-tolerant if in the wake of
a failure, it can reorganise itself so that it continues to function without any
(prolonged) disruptions.

In a simple solution to distributed mutual exclusion, a site/process, called the
control site/process, is assigned the task of granting permission for the CS
execution. To request the CS, a site/process sends a REQUEST message to the
control site/process. The control site/process queues up the requests for the CS and
grants them permission one by one.

This naive, centralised solution has several drawbacks. First, there is a single point
of failure in the control site/process. Second, the control site/process and the
communication links to it are likely to become bottlenecks. Third, the performance
of the algorithm is poor because of the synchronisation delays imposed by the
control site/process.

Token-based and non-token-based algorithms

During the 1980s and 1990s, the problem of mutual exclusion received considerable
attention and several algorithms to achieve mutual exclusion in distributed systems
were proposed. They tend to differ in their network topology (e.g., bus, tree, ring,
etc.) and in the amount of information maintained by each site/process about other
sites/processes. These algorithms can be classified into the following two groups:
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Token-based: a unique token (also known as the PRIVILEGE message) is
shared among the sites/processes. A site/process is allowed to enter CS if it
possesses the token and it continues to hold the token until the execution of the
CS is over. These algorithms essentially differ in the way a site/process carries
out the search for the token.

Non-token-based (time ordering): they require two or more rounds of message
exchanges among the sites/processes. These algorithms are assertion based
because a site/process can enter its CS when an assertion defined on its local
variable becomes true. Mutual exclusion is enforced because the assertion
becomes true only at one site/process at any given time.

Depending upon the way a site/process carries out its search for the token, there are
numerous token-based algorithms. The simplest token-based algorithm is the
generic token ring algorithm presented in most text books. In this algorithm all
sites/processes are ordered in a unidirectional ring. Each site/process awaits the
arrival of the token from its predecessor, enters the CS (if it wants to) when the
token arrives, and then passes the token to its successor. Two problems must be
solved here. The first is the loss of the token, and the second is the broken ring (as
the result of a failed site/process, for example). Two algorithms are proposed to deal
with these problems.

Other token-based algorithms do not order the sites/processes. For example, in the
Suzuki and Kasami algorithm, if a site/process (say, A ) attempting to enter the CS
does not have the token, it broadcasts a REQUEST message for the token to all the
other sites/processes. A site/process (say, B) that possesses the token sends the
token to A upon receiving the REQUEST message if B is not using the CS.
Otherwise the token is sent to A after B exits from the CS. The main design issues of
this algorithm are to distinguish outdated REQUEST messages from current
REQUEST messages and to determine which site/process has an outstanding
request for the CS.

Many token-based algorithms use sequence numbers to order requests for the CS
and to resolve conflicts between simultaneous requests for the CS. Every request for
the token contains a sequence number and the sequence numbers of sites/processes
advance independently. A site/process increments its sequence number counter
every time it makes a request for the token. A primary function of the sequence
number is to distinguish between old and current requests.

In non-token-based mutual exclusion algorithms, a site/process communicates with
a set of other sites/processes to arbitrate who should execute the CS next. For a
site/process requesting set contains IDs of all those sites/processes from which
site/process must acquire permission before entering the CS.

Non-token-based algorithms use timestamps to order requests for the CS and to
resolve conflicts between simultaneous requests for the CS. Logical clocks, instead
of physical clocks, are used. Each request for the CS gets a timestamp, and smaller
timestamp requests have priority over larger timestamp requests.
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9.5.2 Election Algorithms

An election algorithm carries out a procedure to choose a site/process from a group,
for example, to take over the role of a failed site/process. The main requirement is
that a unique site/process is elected, even if several sites/processes call elections
concurrently.

Basically, there are two types of election algorithms: one is the ring-based election
algorithms and the other is the broadcast election algorithms. The ring-based
election algorithms assume that an order (a physical or logical ring) exists among all
the sites/processes and the election messages flow along the ring. A site/process
(say, i) wanting to be elected sends a message of (REQ, i) along the ring. Another
site/process (say, j) forwards the request to its successor if i > j (or equivalently, i <
j). Otherwise, the message (REQ, j) is sent instead. At the end of the message
circulation, the site/process with the highest (lowest) number will be elected and the
message of ( ELECTED, k) (k is the highest (lowest) number among all
sites/processes) is sent to all sites/processes.

The broadcast election algorithms assume that a site/ process knows the identifiers
and addresses of all other sites/processes. A site/process (say A ) begins an election
by sending an election message to those sites/processes that have a higher identifier.
If none of the sites/processes return an answer message within a certain time, A
considers itself as elected. A then sends a coordinator message to all sites/processes
with a lower identifier and these sites/processes will treat A as elected. If a
site/process (say, B) receives an election message from A (that means A has a lower
identifier than B), B sends back an answer message to A and then B starts another
round of election.

9.5.3 Deadlock Detection and Prevention

In a distributed system, a process can request and release local or remote resources
in any order and a process can request some resources while holding others. If the
sequence of the allocation of resources to processes is not controlled in such
environments, deadlock can occur.

A set of processes is deadlocked if each process in the set is waiting for an event
that only another process in the set can cause. Because all the processes are waiting,
none of them will ever cause any events that could wake up any of the other
members of the set, and all the processes continue to wait forever.

A resource allocation graph (a directed graph) can be used to model deadlocks. In
such a graph:

Circles represent processes.

Squares represent resources.

An arc from a resource node to a process node means that the resource
previously has been requested by, granted to, and is currently held by that
process.
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An arc from a resource node to a process node means that the resource
previously has been requested by, granted to, and is currently held by that
process.

An arc from a process node to a resource node means that the process is
currently blocked or waiting for that resource.

Figure 9.16 shows a deadlock using a resource allocation graph, where process A
holds resource and is requesting resource At the same time, process B holds
resource and is requesting resource

Figure 9.16: Deadlock

9.5.3.1 Distributed Deadlock Detection

Centralised algorithm. A central coordinator maintains the resource graph for the
whole system (the union of all the individual graphs on each site). Whenever there
is a change in a local graph, the coordinator must know this by some message-
passing facility. When the coordinator detects a cycle, it kills off one process to
break the deadlock.

Because of the message delays, false deadlock may occur. Figure 9.17 shows a false
deadlock example. At a particular time, the resource allocation graphs on Sites 1, 2,
and 3 are shown in Figure 9.17 (a), (b) and (c), respectively. Now assume that two
messages are sent by Site 1 and Site 2 to the coordinator:

Site 1 sends a message to the coordinator announcing the release of by
B;

Site 2 sends a message to the coordinator announcing that B is waiting
for resource

A false deadlock occurs if arrives first. Figure 9.17 (d) shows the false
deadlock.

Distributed algorithm. Suppose that processes are allowed to request multiple
resources simultaneously. The Chandy-Misra-Haas algorithm works as follows:

1. When a process has to wait for some resources held by other process(es), a
probe message is generated and sent to the process(es) holding the needed
resources. The message consists of three numbers: the process that is just
blocked, the process sending the message, and the process to whom it is being
sent.
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Figure 9.17: False deadlock

When the message arrives, the recipient checks to see if it itself is waiting for
any processes. If so, the message is updated, keeping the first field but
replacing the second field by its own process number and the third one by the
number of the process it is waiting for. The message is sent to the process on
which it is blocked. If it is blocked on multiple processes, all of them are sent
messages.

If a message goes all the way around and comes back to the original sender,
that is, the process listed in the first field, a cycle exists and the system is
deadlocked.

2.

3.

Example: Figure 9.18 shows an example of the deadlock detection algorithm.

Figure 9.18. Distributed deadlock detection



239
Probe messages:

1st msg: process 0 to process 1: (0, 0,1)
process 1 to process 2: (0, 1,2)
process 2 to process 3: (0,2, 3), cross sites
process 3 to process 4: (0, 3,4)
process 3 to process 5: (0,3, 5)
process 4 to process 6: (0,4, 6), cross sites
process 5 to process 7: (0, 5,7), cross sites
process 6 to process 8: (0,6, 8)
process 8 to process 0: (0, 8, 0), cross sites
DEADLOCK!

Break a deadlock:

Let the process that initiated the probe commit suicide. Problem: if several
processes simultaneously invoke the algorithm, overkill may happen.

Let each process add its identity to the end of the probe message, so that
when it returns to the initial sender, the complete cycle will be listed. The
sender can then see which process has the highest number, and kill that
one, or send it a message asking it to kill itself.

1.

2.

9.5.3.2 Distributed Deadlock Prevention

To prevent the deadlock, a system is carefully designed so that deadlocks are
structurally impossible. Some possible techniques are:

A process can only hold one resource at a time.

All processes must request all their resources initially.

Processes must release all resources when asking for a new one.

All resources are ordered and processes acquire them in strictly increasing
order. So a process can never hold a high resource and ask for a low one, thus
making cycles impossible.

With global time and atomic transactions, two other practical algorithms are
possible. Both are based on the idea of assigning each transaction a global
timestamp at the moment it starts (two transactions are not assigned the same
timestamps).

When one process is about to block waiting for a resource that another process is
using, a check is made to see which one has a larger timestamp (younger). We can
then allow the wait only if the waiting process has a lower timestamp (older) than
the process waited for. So, following any chain of waiting processes, the timestamps
only increase, so cycles are impossible. Alternatively, we can use higher timestamps
(older).
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9.6 Replication and Reliability

High-speed networks make it possible to run distributed software on multiple
machines efficiently. With the ever-growing dependency being placed on
distributed computing systems, the requirement for their reliability has is increased
enormously. A number of techniques have been proposed for the construction of
reliable and fault-tolerant systems. One of these techniques is to replicate critical
system service on multiple machines connected by networks so that if one copy
(replica) fails, other replicas can still provide the continuing service.

When failures occur in hardware/software, the system may generate incorrect
results or may simply stop before finishing the intended computation. Therefore,
failures in distributed systems can have different semantics, and in turn, they require
individual treatments [Cristian 1991]. Distributed systems are typically subject to
two kinds of failures: site failure and communication link failure, which can result
in the following failure semantics:

Fail-stop failure [Schlichting and Schneider 1983]. Fail-stop failure is used to
describe a process/processor which either works correctly, or simply stops
working without taking any incorrect action. The fail-stop process/processor
has the property of informing others by a notification service upon the failure
or remaining in a state that the failure is detectable to others. There is also
another term Fail-silent failure [Power 1994] used in the literature. Fail-silent
failure exhibits the same halt-on-failure semantics as the fail-stop failure. But
the failed process/processor may not have the capability of notifying others, nor
is able to be detectable to others.

Network link failure [Tanenbaum 1996]. This refers to the breakdown of a
communication link between sites. The link failure makes it impossible to send
or receive messages over the failed links. Also messages in transmission can be
lost.

Network partition failure [Birman 1996]. Network link failures can lead to
partition failure, where a group of sites involved in a distributed system is
partitioned into a set of subgroups, of which members of the same subgroup
can communicate but not with members of different subgroups.

Timing failure [Johnson 1989]. This refers to a violation of assumed temporal
property of the system, such as clock drift bound between machines, or a
message transmission delay between sites linked by networks.

Byzantine failure [Lamport et al 1982]. This refers to any violation of the
system behavior. In particular, it is used to refer to corrupted messages, such as
malicious messages, that give wrong instructions, and as a result, may bring
down the system.

To be able to detect the failure of a process/processor, failure-detecting techniques
are needed. Traditionally, a technique often used is that the detecting process sends
a message asking “Are you alive?” to the remote process/processor to check
whether the remote process/processor is operating or not. If the remote



241
process/processor responds within a predetermined time period, it indicates the
aliveness of the remote process/processor; otherwise, the detecting process will time
out and assume that the remote process/processor is dead. This method is based on
a pre-assumption that the system is a synchronous distributed system. A
synchronous distributed system has an upper-bound for message transmission delay
[Mullender 1993]. Therefore, the time-out can be set statically to a value larger than
the upper-bound.

On the contrary, an asynchronous distributed system does not have such an upper-
bound. Thus, the time-out can not be used as a criterion for detecting the failure of a
process/processor. The asynchronous distributed environment is close to reality
where a message transmission can be delayed indefinitely. However, such a system
is hard to implement because of the uncertainty of message transmission delay. An
implementation that works for an asynchronous distributed system should work for
a synchronous system [Cristian 1991, 1996].

Most techniques for achieving fault-tolerance rely on introducing extra redundant
components to the system in order to detect and recover from component failures.
Employing redundant components is a common concept in real life. An aircraft has
four engines so that if any of the engines shuts down, the remaining engines can still
keep the craft in the air and land safely. Computer hardware systems often employ
duplicated parts (i.e., dual processors) to survive partial failures as well.

The client/server distributed computing model cannot be regarded as a reliable
model, as the server is the single processing point. In the face of a site failure or a
communication link failure, the server becomes inaccessible. Distributed replication
is then a technique to solve this problem. With a large number of powerful
machines available on the network, it becomes possible to duplicate a critical server
on multiple machines so that if one server fails, the failure can be masked by its
replicas. In turn, the service is continued. Distributed replication systems make three
major contributions: increasing the availability, achieving fault-tolerance, and
improving the performance.

Increasing the availability. Availability refers to the accessibility of a system
service. For a non-replicated server system, if the server breaks down, the
service becomes unavailable. With a replicated server system, high availability
can be achieved by software and/or data being available on multiple sites. Thus,
if one server is down, the remaining replicas can still provide the service.

Fault tolerance. The ability to recover from component failures to a system
consistent state without performing incorrect actions is said to be fault-
tolerance. In a distributed replication system, the failure of one replica due to a
process/processor crashing can be tolerated (masked) by its replicated
counterparts. However, some synchronisation among the remaining replicas has
to be performed to reach a consistent system state in the event of a crash. Then
an illusion of continuous service can be presented as if nothing has happened.
Availability and fault tolerance are very closely related issues. Availability
requires service being available, whereas fault tolerance imposes failures being
tolerable.
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Enhanced performance. Replication is also a key to providing better
performance. As now the service is running at multiple sites, clients do not
have to line up at one site, instead, they can line up at different sites. If the
replicated service is shared by a large community of clients, the response time
can be dramatically improved.

9.7 Replication Schemes

There are two major styles of replication schemes presented in the literature, namely
the primary-backup replication scheme [Budhiraja et al 1993], and the active
replication scheme [Guerraoui and Schiper 1997] [Schneider 1990]. Their
characteristics, advantages and drawbacks are different. The two schemes can also
be combined in an integrated replication scheme that can accommodate the active
replication scheme, as well as the primary-backup scheme in a unified form. The
integrated scheme is based on the active replication, but is configurable to the
primary-backup scheme.

Before starting detailed discussions, some terminology used hereafter needs to be
clarified so that ambiguity can be avoided. A list of terms we like to differentiate in
the distributed system context are: service/application, server, client,
replica/member and replica/server group.

Service/application. A service in a distributed system provides a set of well-
defined operations exported to clients. The set of operations is often defined by
an abstract service interface. The service is also referred to as an application in
this book, as the service represents the application-level functions.

Server. A server is a software entity running on an autonomous machine. The
server implements the set of operations exported to clients. The implementation
details of the service can be hidden from clients, and clients only see the
abstract service interface that defines the set of operations.

Client. A client is the user of a service. It typically invokes the operations
provided by the server. Often, the client and the server are running on different
machines, in turn their communications have to go through the underlying
networks.

Stateful versus stateless server [Birman 1996] [Zhou and Goscinski 1997]. If a
server maintains some form of data on behalf of clients, we refer to it as a
stateful server. A notorious example of this stateful server is the database
server. On the contrary, if no client requests have any effect on the state of a
server, whether the server does or does not maintain any data, this kind of
server is referred to as a stateless server. A good example of the stateless server
is the WWW (World Wide Web) server, where the server manages WWW
pages, but WWW clients (browsers) cannot change the content of WWW pages
(browsers can only retrieve the pages).

Replica/member and replica/server group. A replica is a software entity
representing the replicated server. The functionality of a replica is two-fold:
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providing the service and implementing the underlying replication control
protocol. A collection of replicas forms a replica group, and replicas are
assumed to be identical copies in this book. We also call a replica in a replica
group a member, and call a replica group a server group as well.

Query versus update operation. Operations exported by a server can be
categorised as either query or update operations. A query operation does not
change the state of the data maintained by the server, but an update operation
does. An operation invoked by a request contains the name of the operation and
a list of actual parameters.

Next we introduce several replication schemes mentioned before.

9.7.1 Case Study 1: The Primary-Backup Scheme

The primary-backup scheme has been researched extensively by many researchers
[Borg et al 1989] [Budhiraja et al 1992, 1993] [Powell 1994] [Jalote 1994] [Mehra
et al 1997]. Figure 9.19 depicts the general architecture of this scheme. In essence, it
is a simple scheme especially used in tolerating a process/processor failure by
crashing. However, the primary-backup scheme can become complicated when
employing multiple backups. The complexity derives from keeping the consistency
among backups: (1) When the primary propagates its state to backups, the atomicity
property, i.e., either all of backups receive a propagation or none of them receives it,
should be guaranteed. (2) When the primary crashes, the backups have to elect a
new primary. The election algorithm has to run a consensus protocol to guarantee
that only one candidate satisfies as the primary.

Figure 9.19: The Primary-Backup Replication Scheme

Replicas in a primary-backup scheme are distinguished as either the primary or a
backup. At any time, there is only one replica acting as the primary. In other words,
there is not a time when two replicas are the primary. Clients send requests to the
primary only, backups do not receive any request directly from clients. The data-
consistency between the primary and backups is preserved by the primary
propagating state changes (or updates directly) to backups. The scheme exhibits a
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fail-over time that is a time period between the primary crashing and the new
primary taking over the process. During the fail-over time period, no replica is
operating.

According to how often state changes are propagated to backups, the primary-
backup scheme is further divided into the hot (every state change is sent to the
backup/backups right away), the warm (a collection of state changes is sent out at a
time interval), and the cold (no state change is sent to backups while the primary is
operating) strategies [Wellings 1996]. Obviously, different strategies affect the fail-
over time. In general, the more frequently the propagation is performed, the shorter
the fail-over time incurs.

Also the choice of propagation strategies can be affected by the environment within
which a primary-backup system is running. For example, in an environment where
all replicas can access the same file system, the primary can save the update
requests to a log file to allow the backups access instead of sending requests directly
to backups, thus the cold strategy is enough. In fact, the cold strategy is most
suitable to a server providing only read-like service, in other words, no state
changes. Cold strategy is considered to be the simplest propagation strategy of all.

The hot strategy is most applicable to a system that requires a real-time fail-over
period so that when the primary crashes, the switch-over time (the fail-over time) is
minimum. But the hot strategy can affect the response time depending on how the
hot propagation is implemented. Figure 9.20 describes three different
implementations. In the implementation (a), the response time for an update request
is the worst compared with implementation (b) and (c). The implementation (b)
gives the best response time as it executes the request and sends a reply to the client
before the propagation. The performance of implementation (c) is in the middle.

Figure 9.20. Hot replication implementations -- P represents the primary; B
represents the backup; and C represents the client. In (a), 1, 2, 3 and 4 denote

requests, propagations, acknowledgements and replies respectively; In (b), 1, 2, 3
and 4 denote requests, replies, propagations and acknowledgements respectively;In

(c), 1, 2, 3 and 4 denote requests, propagations, replies and acknowledgements
respectively.
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The warm strategy follows the implementation of Figure 9.20 (b), but the
propagation is not sent out per update. This strategy is often applicable to business-
oriented servers, such as database servers where fast responses have a higher
priority. The propagation frequency is determined by the semantics of the business
application domain.

In summary, choosing a right propagation strategy (hot/warm/cold) depends on the
requirement of the fail-over time and the environment in which a replication system
is running.

The primary-backup scheme has been described as the passive replication in the
literature [Budhiraja et al 1992, 1993] for the reason that backups sit back and
passively react to state changes without being involved in any interaction with
clients. The scheme is also labelled as easily implementable, less redundant
processing, thus, less costly and more prevalent in practice.

However, the major drawback of the scheme is that the primary becomes the
communication bottleneck due to the fact that all requests are sent to the primary.
Other downsides of this scheme are: (1) In the event of the primary’s failure, there
exists a fail-over time during which there is no server available. (2) There can be
request losses when the primary fails, e.g., the requests received by the primary but
not yet being propagated are lost. The request loss problem is solvable, however, it
needs to introduce some extra handling at the client side (see next chapter about the
discussion of how a client switches to a new replica).

9.7.2 Case Study 2: The Active Replication Scheme

The active replication scheme is proposed to give rise to system performance by
letting different replicas execute client requests concurrently. The performance can
be improved enormously when most requests are queries. The scheme is based on
an architecture in which each replica receives and processes requests. In contrast to
the primary-backup scheme, this scheme is named active for the reason that all
replicas are actively involved with clients, process requests and send replies. Figure
9.21 depicts this architecture.

Figure 9.21. The active replication scheme --   represent an active replica
group, whereas represent a set of clients. A client can send its requests to
any replica or some replicas. Replicas that receive the request will send the reply

back to the client.
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The active scheme mainly has the advantage of masking server failures
automatically over the primary-backup scheme. Active replication can be used to
mask the server crashing automatically, provided that a request is sent to multiple
replicas by a client. As long as one reply comes back, the client will not notice the
failure of other replicas. The client often takes the earliest reply, and drops late
ones. If an update request is not sent to full membership of a replica group, then the
replicas receiving the update have to propagate the update to other members. Often
this is done by competing, where multiple replicas propagate the request at the same
time.

A common method proposed in [Powell 1994] to reduce unnecessary message
transmissions is that, if a replica is about to send a reply to a client, it checks if there
is any propagation of the request being received from other competitor replicas; if
there is, it stops sending such a propagation; otherwise this replica sends the reply
together with the original request to the client and all replicas, which will in turn
stop their competitors sending their replies and propagations. Competing
propagation and redundant replies can generate tremendous network traffic, and
congest the network eventually, if the percentage of the update operations issued by
clients is high. Another proposed approach is to let the client be responsible for
sending an update to the full membership so that replicas are free from propagating
requests. However, this can be a problem when the client fails during the procedure.
The failure can leave the group in an inconsistent state whereby some replicas
receive the request, some do not.

Another advantage of the active scheme over the primary-backup scheme is no fail-
over time. As long as one replica is operating, the service remains available.

Ordering Constraints

The active scheme seems to solve the bottleneck problem very well. But, it
introduces a subtle problem known as request ordering [Birman 1993]. Since clients
send requests concurrently, the order of requests arriving at each replica may be
different due to the network bandwidth/traffic and different speeds of sites. Figure
9.22 depicts this scenario. Therefore, executing the same set of operations in
different orders at replicas may result in divergent states of replicas.

According to the data semantics of a service application, arriving request orders can
be constrained. In other words, an ordering constraint can be specified, such as first-
in-first-out (FIFO) order, causal order (came from the happened-before relationship
defined by [Lamport 1978]), total order, and total+causal order [Birman 1993].

On the contrary, the primary-backup scheme handles the ordering very well. In fact,
ordering is done intrinsically simply because all requests go to the primary. Backups.
merely get the same set of ordered updates from the primary.
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Figure 9.22. The scenario of requests arriving in different orders --         and
represent replicas; and represent clients; and and represent messages.
Two clients,     and      send requests to all replicas;     sends and and sends

But arrives at and in the orders of,
and respectively.

Deterministic Processes

If data consistency is based on the propagation strategy among replicas, then all
replicas have to be assumed to be deterministic processes. A deterministic process
is one that, when starting from the same initial state and executing the same
sequence of operations, it ends up with the same state and generates the same
sequence of outputs. Therefore replica consistency can be easily preserved by
executing the same set of ordered operations. This scheme is also described as the
state machine approach [Schneider 1990], which provides a framework for
understanding and designing replication control protocols. Many software systems
involve replication techniques derived from the state machine approach. In essence,
a state machine is used to model each replica as a deterministic process. Thus, the
consistency issue turns out to be how to deliver the same set of operations in a
relative order to each replica in a concurrent (replicas receive requests concurrently)
and failure-prone (the failures of senders and receivers) environment.

Compared to the active scheme, the primary-backup scheme does not require
determinism as a pre-assumption since the non-deterministic factor can be decided
by the primary and passed on to backups.

9.7.3 Case Study 3: Two Particular Replication Schemes

The preceding sections presented general structures for the primary-backup and the
active replication schemes, their key characteristics, advantages and drawbacks.
This section takes a look at two particular replication schemes that have appeared in
the literature. They are based on either the primary-backup or the active scheme.
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The coordinator-cohort scheme was developed by the ISIS project, and the leader-
follower scheme was developed by the Esprit Delta-4 project [Powell 1994].

The Coordinator-Cohort Scheme

The coordinator-cohort scheme is used in ISIS as an example of testing group
communication services to support building reliable distributed systems. This
scheme is relatively close to the active replication scheme. The basic idea is, for
each request, a team of one coordinator and a subset of replicas (being cohorts) out
of the whole replica group is formed to process the request. The coordinator is
responsible for processing the request and sending the reply, whereas cohorts
monitor the coordinator. One of the cohorts takes over when the coordinator fails.
When sending the reply back to the client, the coordinator also sends the reply to the
cohorts as well so that cohorts are informed of the completion of the request. If the
cohots have not received the expected reply from the coordinator after a time-out,
they conclude that the coordinator has failed and then take a corresponding action
by selecting a new coordinator who takes over the process. ISIS uses its atomic
multicast primitive for this purpose, and the destinations of the multicast include all
cohorts and the caller.

This scheme seems to be able to perform requests concurrently between replicas,
however, when a member is involved in a coordinator-cohort group, it can not
accept another request nor be in another coordinator-cohort group. The performance
of the coordinator-cohort scheme is very questionable due to this reason. Also, since
the coordinator-cohort group has to be formed up-front before executing each
request, the response time can be considerably long.

The Leader-Follower Scheme

The leader-follower scheme developed in the project Esprit Delta-4 [Powell 1994]
is rather closer to the primary-backup scheme than the active one. The general idea
is that in a replica group, one replica is assigned as the leader and others as
followers. All replicas receive requests and execute requests autonomously, but only
the leader generates replies.

This scheme is designed with treating group non-determinism in mind. In the
situation of a non-deterministic event arising, the leader makes a decision and
informs followers about it so that all members can reach the same state even if they
execute requests autonomously. Non-deterministic factors considered are process
preemption and time-related operations. The request ordering issue is included as a
non-deterministic factor by the scheme.

Request ordering. The request order is decided by the leader which sends
notification messages to indicate to followers in what order requests are to be
executed. This order is the same as the leader’s.

Process preemption. Process preemption may cause inconsistency between
replicas even when requests are ordered. To solve this problem, a set of
preemption points has to be defined within the server. When the leader process
is preempted during an execution of a request, the leader rolls back to the last
preemption point and instructs followers to roll back to the same preemption
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point. Solving process preemption is not an easy task. It is doubtful this method
will work in general, as a preemption point may not be easily definable.

Time-related operations. If a request involves an operation reading the local
clock time in the calculation, then the leader needs to pass the reading as an
extra parameter to followers so that the same request will result in the same
state between the leader and the followers.

The leader-follower scheme does not solve the communication bottleneck problem,
as requests are queued up at the leader for results. This scheme is basically a
primary-backup scheme. The only saving is that no request propagations between
the leader and followers, instead, notification messages are sent from the leader to
followers. The saving is based on the assumption that notification messages are
smaller than propagation messages. However, sending a request to all replicas is
then shifted to the client side where the client is responsible for sending requests to
the full membership of the replica group.

9.8 The Primary-Peer Replication Scheme

Although the primary-backup is relatively easy to implement, its bottleneck
problem prevents it from being an advanced replication approach. The active
scheme improves the performance but it brings great complexity which has to be
restrained. For the two particular schemes, the coordinator-cohort has the problem
of forming a group upon each request and may result in a long response time. The
leader-follower scheme is very close to the primary-backup scheme that requests are
lined up at the leader site, i.e., no concurrency at all. Therefore, to overcome these
drawbacks, we propose a new scheme called primary-peer replication scheme
(PPRS), based on the above schemes.

9.8.1 Description of the Scheme

A solution is to integrate the two schemes together [Wang and Zhou 1998a]. The
scheme is called a primary-peer replication scheme (PPRS). It is based on the idea
of an active architecture by restraining some design options in order to simplify
communications among clients and replicas. Furthermore, it has the flexibility of
being configurable to the primary-backup scheme. This is done simply by letting all
updates go to the primary of a group and leaving other members (now backups)
only receiving propagations. Figure 9.23 depicts the architecture of the PPRS.

Here we outline its design ideas and features:

The PPRS allows each replica to take requests so that concurrent execution can
be performed. This will give rise to a better system throughput as we have
discussed.

A client is connected with one replica at a time. The client sends all its requests
to the connecting replica only. Upon the failure of the connecting replica, the
client shifts to another replica. It can also switch to a different replica when the
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currently connecting replica becomes very slow. Clients are no longer involved
in sending requests to multiple replicas. Thus, clients become lightweight
software entities. Designing a lightweight client has become the trend of
client/server systems nowadays [Linthicum 1997].

Figure 9.23. The Primary-Peer Replication Scheme — represent a 4-
replica system,whereas represent seven clients connected to the replica

system.

The PPRS retains the idea of designating a replica as the primary. The primary
is depicted in Figure 9.23 by the blank-filled circle. In addition to being a
general member, the designated primary is responsible for making decisions on
behalf of the group in certain situations, such as initiating relevant replication
control protocols due to external events (group membership changes),
coordinating the execution of the protocols, and informing other members
about the decision. Also non-deterministic factors can be resolved if any.

For each update request, only one replica will involve propagations. This
removes the possibility of competitive propagations between multiple replicas,
which happens in the active scheme. Propagations now only happen between
replicas without involving clients. This reduces the design complexity and
simplifies the implementation.

However, the imperfection of the PPRS is that clients will observe the replica
failure, and the fail-over time is not avoidable. The fail-over happens when a replica
fails so that clients connected to the failed replica have to switch to other replicas
and may need to re-send their last requests. But this fail-over time should not be
very significant as requests sent to the new replica can be processed right away.
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9.8.2 Replication Transparency

To be able to connect to a replica in the group, a client needs to know who are in the
group, i.e., the references of all replicas. If replicas reside at permanent sites, clients
can be hard wired to the references of the replicas. However, replicas may crash and
leave voluntarily, a new replica may join the group to re-balance the load, or due to
some administration reasons, a replica has to be moved to a new site, then the
references that clients kept become stale.

There are generally two methods to solve this problem. First, every replica keeps a
copy of the current membership. When a replica is added to the group, each replica
updates its membership to reflect the change. Then the replica piggybacks the new
membership to its connecting clients. By doing so, the clients can track the
membership changes. However, the drawbacks of this design are: (1) The replica
has to keep records of all connecting clients so that the membership changes can be
passed to them. (2) The replica group is not transparent to clients, i.e., clients see the
internal structure of the group.

The second method uses a group naming service (GNS) to set up separately on a
stable site to manage membership changes. A replica group is registered to the GNS
under a unique group name, and any membership change is sent to the GNS by the
primary member of the replica group. Clients only need to contact with the GNS to
get the reference to a replica.

This approach provides a set of methods to create a group, add, delete or remove
replica members from a group. When a group of replicas is created, the primary of
the group registers to the GNS (invoking createGroup( )). The primary is also
responsible for updating the GNS with any membership changes (invoking
addMember( ) or deleteMember( )). When a replica crashes, the primary invokes
deleteMember(group, backup) to remove the crashed replica. When a new
replica joins the group, the primary invokes addMember(group, backup) to
add the new replica. Whereas bind(group_name) is invoked by clients to get a
reference to an operating replica. For an active scheme, all replicas form a ring.
Upon receiving a binding request, the GNS will return the next operating replica in
the ring to the client so that each replica is connected with a roughly even number of
clients, thus, loads are split over replicas. For a primary-backup group, the GNS
always returns the reference to the primary.

9.9 Replication Consistency

Distributed replication provides high availability, fault-tolerance and enhanced
performance. But these features come at a price: replication adds great complexity
to the system development. Most important of all, replication jeopardises data
consistency. In turn mechanisms have to be employed to enforce data consistency.
Maintaining data consistency is very expensive, a common practice is then to relax
the data consistency level as low as possible to give rise to better system
performance.
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Data replication in the transactional model has been researched extensively. Data
replication mechanisms developed for the transactional model are very strict since
one-copy serialisability [Attiya and Welch 1994] is often required in order to
maintain the ACID (Atomicity, Consistency, Isolation and Durability) property.
Basically, a write operation (i.e., an update) has to be performed on most replicas
synchronously before the result is returned to the client. Therefore, a long response
time may incur and a low system throughput rate is achieved.

Not all replication systems require such a strong transactional semantics [Zhou and
Goscinski 1999]. Update ordering is an alternative data consistency model which
has weaker semantics than that of the one-copy serialisability. The basic idea of the
update-ordering model is to let replicas execute the same set of update requests in a
sensible order. This order meets the requirements of both the clients and the data
semantics of a replicated service application. Compared to the data replication in the
transactional context, the update ordering model generally gives a better response
time and a high system throughput rate because it allows updates to be executed
concurrently at different replicas. Update ordering is adopted as the general data
consistency model for maintaining the data consistency in a replication system built
upon the PPRS structure.

A PPRS replica group can be configured in two major styles: either a primary-
backup group or a primary-peer group. For a primary-backup group, ordering is not
an issue of concern, as we have discussed before that requests are ordered at the
primary intrinsically. Therefore, the update-ordering data consistency model applies
to the primary-peer group only.

The update ordering data consistency model requires placing ordering constraints on
update operations so that updates arriving at replicas are ordered. Generally, if
solely from the replica group point of view, as long as updates are executed at all
replicas in the same order, the data consistency is guaranteed among replicas.
However, from the client point of view, it may require updates sent from the same
client to be executed in the sending order at all replicas, or updates having a
happened-before [Lamport 1978] relation to be executed at all replicas by keeping
that happened-before relation.

Formally, update ordering is categorised in terms of FIFO, causal, total, and
total+causal to reflect data consistency requirements from both clients and the
replica group. Ordering constraints have different levels of strength. FIFO is the
weakest one and total+casual is the strictest. The system performance, especially the
system throughput, is largely affected by the strength level of the ordering
constraint being placed on a replica group.

Adopting a strict data consistency model is very expensive, and it may not be
needed for a service application. Depending on the data semantics of the application
domain, the strength level of the data consistency model should be relaxed as much
as possible to give rise to the system efficiency.
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9.10 Summary

A computer system, or a distributed system consists of many hardware/software
components that are likely to fail eventually. In this chapter we introduced the basic
concepts and techniques that relate to fault-tolerant computing. First, we presented
the concepts of the reliability of a distributed system and techniques for achieving it.
We classify the basic techniques used to build reliable distributed network systems:
redundancy, fault avoidance techniques, fault detection techniques, and fault
tolerance techniques. Also we described several system models to build the
reliability functions properly so that we can get the reliabilities of several typical
systems. Then we discussed the distributed mutual exclusion, which frequently
arises in distributed systems whenever concurrent access to shared resources by
several sites/processes is involved. Mutual exclusion is a fundamental issue in the
design of distributed systems and an efficient and robust technique for the viable
design of distributed systems.

The client/server distributed computing model can not be regarded as a reliable
model, as the server is the single processing point. In the face of a site failure or a
communication link failure, the server becomes inaccessible. Distributed replication
is then a technique to solve this problem. Distributed replication systems make three
major contributions: increasing the availability, achieving fault-tolerance, and
improving performance. There are two major styles of replication schemes
presented in the literature, namely the primary-backup replication scheme, and the
active replication scheme. In the chapter we addressed these two schemes as well as
two other schemes: the coordinator-cohort scheme developed by the ISIS project
and the leader-follower scheme developed by the Esprit Delta-4 project. Though
these schemes are extremely useful, they all have drawbacks. To overcome these,
we propose a new scheme called primary-peer replication scheme (PPRS), based on
integration of the above schemes.
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CHAPTER 10 SECURITY

There is a pervasive need for measures to guarantee the privacy, integrity and
availability of resources in distributed network systems. Designers of secure
distributed systems must cope with exposed service interfaces and insecure
networks in an environment where attackers are likely to have knowledge of the
algorithms used and how to deploy computing resources. In this chapter we talk
about security issues of distributed network systems, such as integrity mechanisms
and encryption techniques.

10.1 Secure Networks

10.1.1 What is a Secure Network?

A work on any type of networking is not complete without a discussion of network
security. Networks cannot be simply classified as secure or not secure since the term
“secure” is not absolute: each group of users may define the level of security
differently. For example, some organizations may regard the stored data as valuable
and require that only authenticated users gain access to these data. Some
organizations allow outside users to browse their data, but prevent the data from
being altered by outside users. Some organizations may regard communication of
the data as the most important issue in network security and require that messages
be kept private and that senders and recipients be authenticated. Yet many other
organizations need some combination of the above requirements. Therefore, the first
step for an organization in building a secure network is to define its security policy.
The security policy specifies clearly and unambiguously the items that are to be
protected.

A number of issues need to be considered in defining a security policy. They
include an assessment of the value of information within an organization and an
assessment of the costs and benefits of various security policies. Generally
speaking, the following three aspects of security can be considered:

Data integrity refers to the correctness of data and protection from changes.

Data availability refers to protection against disruption of services.

Data confidentiality and privacy refer to protection against snooping or
wiretapping.
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10.1.2 Integrity Mechanisms and Access Control

The techniques used to ensure the integrity of data against accidental damage are
the checksums and cyclic redundancy checks (CRC). To use such techniques, a
sender computes a small, integer value as a function of the data in a packet. The
receiver re-computes the function from the data that arrives, and compares the result
to the value that the sender computed.

However, the checksums or the CRC cannot absolutely guarantee data integrity. For
example, a planned attacker can alter the data and then can create a valid checksum
for the altered data.

The password mechanism is used in most computer systems to control access to
resources. This method works well in a conventional computer system but may be
vulnerable in a networked environment. If a user at one location sends a password
across a network to a computer at another location, anyone who wiretaps the
network can obtain a copy of the password. Wiretapping is easy when packets travel
across a LAN because many LAN technologies permit an attached station to capture
a copy of all traffic. In such a situation, additional steps must be taken to prevent
passwords from being reused.

10.2 Data Encryption

10.2.1 Encryption Principles

Encryption is a method that transforms information in a way that it cannot be
understood by anyone except the intended recipient who possesses a secret method
to decrypt the message. Figure 10.1 depicts the encryption process, in which the
sender uses an encryption function c =f(k, p) to encrypt the plain text p with a key k
and produces a cyphered text c. The cyphered text c is then transmitted over the
network. When c is received, the receiver uses a decypher function to
obtain the plain text file via the same key k and the received cyphered text c. The
encryption process should guaranttee that, without the key and the correct function,
it is very difficult to obtain the original plain text from the cyphered text.

Figure 10.1. Single (private) key encryption
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The fundamental theory of data encryption is cryptographics, which is to provide a
mechanism for two people to communicate without any other person being able to
read messages. The word cryptography is derived from the Greek words which
means hidden, or secret, writing.

Private key schemes

The encryption process can use either a public key or a private key. With a private
key scheme, the key is known only to the two communicating parties. This key can
be fixed or can be passed from the two parties over a secure communication link
(perhaps over the postal network or a leased line). The two most popular private key
techniques are DES (Data Encryption Standard) and IDEA (International Data
Encryption Algorithm).

DES is a block cipher scheme which operates on 64-bit block sizes. The private key
has only 56 useful bits as eight of its bits are used for parity. This gives or
possible keys. DES uses a complex series of permutations and substitutions; the
result of these operations is computed in exclusive-OR (XOR) with the input. This
is then repeated 16 times using a different order of the key bits each time. DES is a
very strong code and has never been broken, although several high-powered
computers are now available and could crack the code using brute force. A possible
solution is 3DES (or triple DES) which uses DES three times in a row. First to
encrypt, next to decrypt and finally to encrypt. This system allows a key-length of
more than 128 bits.

IDEA is similar to DES. It operates on 64-bit blocks of plain text and uses a 128-bit
key. IDEA operates over 17 rounds with a complicated mangler function. During
decryption this function does not have to be reversed and can simply be applied in
the same way as during encryption (this also occurs with DES). IDEA uses a
different key expansion for encryption and decryption, but every other part of the
process is identical. The same keys are used in DES decryption but in the reverse
order. The key is devised in eight 16-bit blocks: the first six are used in the first
round of encryption and the last two are used in the second run. It is free for use in a
non-commercial version and appears to be a strong cipher.

The problem with the private key schemes is the secured exchange of the key k:
how can we be sure the key is known only by both authorized parties (the postal
network and the leased line are not safe)? A key distribution server sometimes is
used to supply secret keys to clients. Figure 10.2 illustrates an example of a key
distribution server. Here user A needs to communicate with user B. A key is needed
for both parties.

Public key encryption

A well-known encryption method is the public key encryption. It uses two different
keys (encryption key and decryption key is known to the sender and
the recipient. can be made known publicly for use by anyone who wants to
communicate, while is kept secret. The RSA (after its inventors Rivest, Shamir,
and Adleman) technique is one of the most popular public key encryption
techniques and is based on the difficulty of factoring large numbers. It is secure for
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key-length of over 728 bits. Compared with DES it is relatively slow but it has the
advantage that users can choose their own code whenever they need one.

Figure 10.2. Key distribution server

Here is an example: A (the receiver) requires some secret information from B (the
sender). A generates a pair of keys and is kept secret and is sent to B. B
uses to encrypt the message and sends c to A. A then decrypts the
message c using p = D(Kd, c) . Figure 10.3 depicts this process.

Figure 10.3. Public key encryption

The following steps can be used to generate the public and private keys used in the
above encryption:

1. Select two large prime numbers, a and b (each will be roughly 256 bits long).
The factors a and b remain secret and n is the result of multiplying them
together. Each of the prime numbers is of the order of
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2. Choose the public key. To do this a number e is chosen so that e and (a-1) ´(b-1)

are relatively prime. Two numbers are relatively prime if they have no common
factor greater than 1. The public-key is then <e, n> and is 512 bits long.

Choose the private key. Next the private key for decryption, d, is computed so
that

3.

This then gives a private key of <d, n>.The values p and q can then be
discarded (but should never be disclosed to anyone).

The encryption process of message, m, to ciphertext, c, is then defined by

The message, m, is then decrypted with

It should be noticed that the message block m must be less than n. When n is 512
bits then a message which is longer than 512 bits can be broken up into blocks of
512 bits.

10.2.2 Basic Encryption Techniques

Basic encryption techniques include code shifting, code mapping, key application,
and bit shifting.

10.2.2.1 Code Shifting

Code shifting is a simple encryption technique in which encrypted letters are used to
replace the letters of the plain text with a shifted equivalent alphabet. For example
moving the letters four places from the right to the left gives:

Thus a message:

LET US MEET AT THE ROYAL PLAZA

would become:

HAP QO IAAP WP PDA NKUWH LHWVW

This code has the problem of being reasonably easy to decode, as there are only 26
different code combinations. The first documented use of this type of code was by
Julius Caesar who used a 3-letter shift.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
WXYZABCDEFGHIJKLMNOPQRSTUV
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10.2.2.2 Code Mappings

Another simple encryption technique is the code mapping, which uses a codebook
to represent the characters, often known as a monoalphabetic code. Code mappings
have no underlying mathematical relationship. An example could be:

The number of different character maps can be determined as follows:

Take the letter ‘A’ then this can be mapped to 26 different letters.

If ‘A’ is mapped to a certain letter then ‘B’ can only map to 25 letters.

If ‘B’ is mapped to a certain letter then ‘C’ can be mapped to 24 letters.

Continue until the alphabet is exhausted.

Thus the code has 26! different character mappings (approximately It
suffers from the fact that the probabilities of the mapped characters will be similar
to those in normal text. Thus if there is a large amount of text, then the character
having the highest probablity will be either an ‘e’ or a ‘t’. The character with the
lowest probability will tend to be a ‘z’ or a ‘q’ (which is also likely followed by the
character map for a ‘u’).

A code mapping encryption scheme is easy to implement but unfortunately, once it
has been “cracked”, it is easy to decrypt the encrypted data. Normally this type of
code is implemented with an extra parameter which changes its mapping, such as
changing the code mapping over time depending on the time of day and/or date.
Only parties that are allowed to decrypt the message know the mappings of the code
to time and/or date. For example each day of the week may have a different code
mapping.

10.2.2.3 Key Application

To make it easy to decrypt, a key is normally applied to the text. This makes it easy
to decrypt the message if the key is known but difficult to decrypt the message if the
key is not known. An example of a key operation is to take each of the characters in
a text message and then exclusive-OR (XOR) the character with a key value. For
example the ASCII character ‘A’ has the bit pattern:

100 0001

and if the key had a value of 5 then ‘A’ exclusive-OR’ed with 5 would give:

Thus, in general, the number of combinations will be:
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The bit pattern 100 0100 would be encrypted as character ‘D’.

10.2.2.4 Bit Shifting

A typical method used to encrypt text is to shift the bits within each character. For
example ASCII characters only use the lower seven bits of an 8-bit character. Thus,
shifting the bit positions one place to the left will encrypt the data to a different
character. For a left shift a 0 or a 1 can be shifted into the least significant bit; for a
right shift the least significant bit can be shifted into the position of the most
significant bit. When shifting more than one position a rotate left or rotate right can
be used. Note that most of the characters produced by shifting may not be printable,
thus a text editor (or viewer) cannot view them. For example, in C the characters
would be processed with:

which shifts the bits of ch one place to the left, and decrypted by:

which shifts the bits of ch one place to the right.

10.3 Cracking the Code

10.3.1 Cracking Organizations

Many institutions and individuals read data that is not intended for them. They
include:

Government agencies. Traditionally governments around the world have
reserved the rights to tap into any communication they think may be against the
national interests.

Spies who tap into communication for government and industry information.

Individuals who like to read other people’s messages.

Individuals who hack into systems and read sensitive information.

Criminals who intercept information in order to use it for crime, such as
intercepting PIN numbers on bank accounts.

For example, the US government has proposed to beat encryption by trying to learn
everyone’s encryption key with the Clipper chip. The US government keeps a
record of all the series numbers and encryption keys for each Clipper chip
manufactured.
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No matter how difficult an encryption is, every code is crackable and the measure of
the security of a code is the amount of time it takes persons (not addressed in the
code) to break the code. Normally to break a code, a computer tries all the possible
keys until it finds the match. Thus a 1-bit code only has two keys. A 2-bit code
would have 4 keys, and so on. For a 64-bit code it has 18,400,000,000,000,000,000
different keys. If one key is tested every then it would take
(or 5,834,602 years).

However, as the improvement of computer power and techniques in parallel
processing, the time used to crack a code may decrease dramatically. For example,
if we think 1 million years would be safe for a code and we assume an increase of
computer power of a factor of 2 every year, then it would take only 500,000 years
by the next year. The same code would then be cracked in 1 year after 20 years. If
we use parallel processing techniques, then the code would be cracked much sooner.

10.3.2 Cracking Methods

A cryptosystem converts plaintext into ciphertext using a key. There are several
methods that a hacker can use to crack a code, including:

Known plaintext attack. Where the hacker knows part of the ciphertext and the
corresponding plaintext. The known ciphertext and plaintext can then be used
to decrypt the rest of the ciphertext.

Chosen ciphertext. Where the hacker sends a message to the target, this is then
encrypted by the target’s private-key and the hacker then analyses the
encrypted message. For example, a hacker may send an email to the encryption
file server and the hacker spies on the delivered message.

Exhaustive search. Where the hacker uses brute force to decrypt the ciphertext
and tries every possible key.

Active attack. Where the hacker inserts or modifies messages.

Man in the middle. Where the hacker is hidden between two parties and
impersonates each of them to the other.

The replay system. Where the hacker takes a legitimate message and sends it
into the network at some future time.

Cut and paste. Where the hacker mixes parts of two different encrypted
messages and, sometimes, is able to create a new message. This message is
likely to make no sense, but may trick the receiver into doing something that
helps the hacker.

Time resetting. Some encryption schemes use the time of the computer to
create the key. Resetting this time or determining the time that the message was
created can give some useful information to the hacker.

Another way to crack a code is to exploit a weakness in the generation of the
encryption key. The hacker can then guess which keys are more likely to occur.

seconds
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This is known as a statistical attack. Many programming languages use a random
number generator based on the current system time (such as rand( )). This method is
not good in data encryption as the hacker can simply determine the time when the
message was encrypted and the algorithm was used.

An improved source of randomness is the time between two keystrokes (as used in
PGP – pretty good privacy). However this system has been criticized as a hacker
can spy on a user over a network and determine the time between keystrokes. Other
sources of true randomness have also been investigated, including noise from an
electronic device and noise from an audio source.

10.4 Security Mechanisms on the Internet

10.4.1 Digital Signatures

Digital signatures are widely used on the Internet to authenticate the sender of a
message. To sign a message, the sender encrypts the message using a key known
only to the sender. The recipient uses the inverse function to decrypt the message.
The receiver knows who sent the message because only the sender has the key
needed to encrypt the message. A public key technique can be used in such a
situation.

A sender uses a private key to encrypt the message. To verify the signature, the
recipient looks up the user (sender)’s public key and uses it to decrypt the message.
Because only the user knows the private key, only the user can encrypt a message
that can be decoded with the public key.

Interestingly, two levels of encryption can be used to guarantee that a message is
both authentic and private. First, the message is signed by using the sender’s private
key to encrypt it. Second, the encrypted message is encrypted again using the
recipient’s public key. Here is the expression:

where M denotes a message to be sent, X denotes the string results from the two-
level encryption, private-sen denotes the sender’s private key, and public-rec
denotes the recipient’s public key.

At the recipient’s side, the decryption process is the reverse of the encryption
process. First, the recipient uses the private key to decrypt the message, resulting in
a digitally signed message. Then, the recipient uses the public key of the sender to
decrypt the message again. The process can be expressed as follows:

where X is the encrypted message received by the recipient, M is the original
message, private-rec denotes the recipient’s private key, and public-sen denotes the
sender’s public key.

If a meaningful message results from the double decryption, it must be true that the
message was confidential and authentic.
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10.4.2 Packet Filtering

To prevent each computer on a network from accessing arbitrary computers or
services, many sites use a technique known as packet filtering. A packet filter is a
program that operates in a router. The filter consists of software that can prevent
packets from passing through the router on a path from one network to another. A
manager must configure the packet filter to specify which packets are permitted and
which should be blocked. Figure 10.4 illustrates such a filter.

Figure 10.4. Packet filter in a router

A packet filter is configured to examine the packet header of each packet in order to
decide which packets are allowed to pass through from one network to another. For
example, the source and destination fields of a packet are examined to determine if
the packet is to be blocked or not. The filter can also examine the protocol of each
packet or high-level service to block the access of a particular protocol or service.
For example, a packet filter can be configured to block all WWW access but allow
for email packets.

10.4.3 Internet Firewall

A packet filter can be used as a firewall for an organization to protect its computers
from unwanted Internet traffic, as illustrated in Figure 10.5.

Figure 10.5. Internet firewall

Like a conventional firewall, an Internet firewall is designed to keep problems on
the Internet from spreading into an organization’s computer network. Without a
firewall, an organization has to make all its computers secure to prevent unwanted
Internet traffic. With a firewall, however, the organization can save money simply
by installing the firewall and configuring it to meet the requirements.
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10.5 Distributed Denial of Service Attacks

According to [Pfleeger 2003], Denial-of-Service (DoS) attack is an availability
attack, since a DoS attack is characterized by an explicit attempt from an attacker to
prevent legitimate users of a service from using the desired resource [CERT 2001b]
[Householder et al. 2001] [Lau et al. 2000]. The attackers are not going to thieve,
modify or remove the information exchanged on networks, but they attempt to
impair a network service, thus to block legitimate users from accessing the service.
The Distributed Denial-of-Service (DDoS) attacks are network flooding attacks
from multiple machines, simultaneously. In order to launch a DDoS attack, the
attacker first scans millions of machines for vulnerable service and other weakness,
then gains access and compromises these zombie (or slave) machines. These
infected machines can recruit more zombies. When the assault starts, the real
attacker hides his identity and sends orders to zombies to perform the attacks [Xiang
et al. 2004].

The attacks, together with the growing awareness of cyber-terrorism [Blane 2003],
make researchers think of possible defense approach against them. However, there
is still “a long way to go” to reach an appropriate balance between system safety
and threats [Ware 1998]. Nowadays DDoS attacks become more sophisticated and
more difficult to defeat. Most of current defense systems are passive, which means
the defense actions are taken only after the DDoS attacks are launched. Thus, more
or less, the target host or network is harmed before the attack source(s) can be found
and controlled.

In order to suppress the attack as early as possible, we need an active DDoS defense
system. Defenders must use new tactics and launch active countermeasures to fight
against aggressors [Strassman 2003].

10.5.1 Launching a DDoS Attack

Figure 10.6 shows a hierarchical model of a DDoS attack. The most common
attacks involve sending a large number of packets to a destination, thus causing
excessive amounts of endpoint, and possibly transit, network bandwidth to be
consumed [Householder et al. 2001]. The attack usually starts from multiple sources
to aim at a single target. Multiple target attacks are less common; however, there is
the possibility for attackers to launch such a type of attack.

To launch a DDoS attack, the attacker first scans millions of machines for
vulnerable service and other weakness that permits penetrations, then controls and
compromises these machines so called handlers, and zombies. After being installed
the malicious scripts, such as scanning tools, attack tools, root kits, sniffers, handler
and zombie program, and lists of vulnerable and previously compromised hosts,
etc., these infected machines can recruit more machines. This propagation phase is
quite like the spreading phase of computer viruses.



Figure 10.6. A hierarchical model of a DDoS attack

Then the communication channels between the attacker and the handlers, and
between the handlers and zombies are established. These control channels are
designed to be secret to public, in order to conceal the activity of attacker. TCP,
UDP, ICMP, or a combination of these protocols is used to perform the
communication. Recently, some attack tools exploit the existing infrastructure of
Internet Relay Chat (IRC) networks, which are not as easily discovered as earlier
versions, because they do not present a new open port that could be found by a scan
or audit scheme [Houle and Weaver 2001].

Staying behind the scenes of attack, the real attacker sends a command to the
handlers to initiate a coordinated attack. When the handlers receive the command,
they transfer it to the zombies under their control. Upon receiving attack commands,
the zombies begin the attack on the victim [Lau et al. 2000]. The real attacker is
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trying to hide himself from detection, for example, by providing spoofed IP
addresses. It makes difficult to trace the real source of attacker and filter malicious
packets from the legitimate traffic.

The Internet has grown without an overall architectural design [Neumann 2000].
This architecture paradigm is beneficial to the rapid growth of the Internet.
However, such architecture opens several security issues that provide opportunities
for the attackers. The fundamental characteristic of the Internet that allures DDoS
attack is that the Internet security is highly interdependent [Houle and Weaver
2001]. DDoS attacks are commonly launched from systems that are subverted by an
intruder via a security-related compromise rather than from the intruder’s own
system or systems. Thus no matter how well secured the victim system may be, its
susceptibility depends on the state of security of the rest global environment. It is
easy for attackers to hide their identities from tracing back in different networks.

Another characteristic of the Internet comprising of limited and consumable
resources is also an inherent reason attracts attacks. Bandwidth, processing power,
and storage capacities are all targets of attacks. Each host or network has limited
resources that can be exhausted by a sufficient number of users.

Moreover, the Internet provides a target rich environment [Zaroo 2002]. There are
millions of hosts and networks in the Internet with vulnerabilities that can be
exploited to launch an attack. With the well developed DDoS tools, even an
unexperienced user can start an attack easily.

10.5.2 Evolution of DDoS Attacks

In February 1996, CERT Coordination Centre issued an advisory on UDP port
Denial of Service attack [CERT 1996a]. At the same year, advisories on TCP SYN
flooding attacks and DoS attack via ping were also reported [CERT 1996b] [CERT
1996c]. Two DoS attack tools, ‘Teardrop’ and ‘Land’, are reported in 1997. These
tools are being used to exploit two vulnerabilities in the TCP/IP protocol and they
enable a remote user to cause a Denial of Service [CERT 1997]. A smurf IP DoS
attacks is reported in 1998 [CERT 1998]. In the next year, two distributed tools
‘Trinoo’ (or Trin00) and ‘Tribe Flood Network’ (TFN) are firstly reported in CERT
advisory and incident note [CERT 1999a] [CERT 1999b]. DDoS tools began to be
deployed in this year, such as, Trinoo, TFN, and Stacheldraht. Stacheldraht
combined features of Trinoo and TFN and added encrypted communications
between attacker and handlers. However, unfortunately, the public were not ready to
defense these vicious attacks.

Then in February 2000, Yahoo becomes the first website hit by a series of high-
profile attacks in a three-day period. During the next hours, Amazon.com, eBuy,
CNN.com, Buy.com, ZDNet, E*Trade, Excite.com were all subject to total or
regional outages by DDoS attacks. In some cases, the servers were flooded by even
1 gigabit per second of incoming data, which caused them to go offline for several
hours [Garber 2000]. Actually, the first reported large-scale DDoS attack via the
public Internet occurred in August 1999 at the University of Minnesota [ANML
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2001]. But only in February 2000 accidents make people be aware of the danger of
DDoS. Some defense mechanisms are researched in this year, such as filtering
[Ferguson and Senie 2000] [Park and Lee 2000], overlay defense network [Stone
2000], link testing traceback [Stone 2000] [Burch and Cheswick 2000], messaging
traceback [Bellovin 2000] and so on. However, attack tools were becoming even
harder to defeat. Packet amplification using name servers [CERT 2000e], ‘mstream’
featured TCP packets with randomized source information and randomized
destination port [CERT 2000f], attacks to Kerberos and ISC BIND software [CERT
2000b] [CERT 2000c], were rapidly developed in the year. In [Dietrich et al. 2001],
a well developed tool ‘Shaft’ is analysed in detail. It is shown that this tool has
some capability to resist the counter measures to DDoS attacks. ‘Carko’ tool is
reported in 2001 [CERT 2001a]. Other intruder tool such as worm were improved in
this year, for instance, ‘ramen’, ‘erkms’, ‘li0n’, ‘Code Red’ and so on [Houle and
Weaver 2001].

In order to avoid being tracked, DDoS attackers structure their attack traffic to use
reflectors [Paxson 2001]. It is a modification to the conventional attack mode,
where the zombies use reflectors to amplify the attack traffics enormously. Since
there is a very large number of reflectors, it is very difficult to locate all the
zombies, say nothing of tracing back and controlling the real attacker.

In another area, there is possibility that the DDoS attacks invade the wireless
Internet including the Wireless Extended Internet, the Wireless Portal Network, and
the Wireless Ad Hoc network [Geng et al. 2002]. Both mobile phone virus [Dennis
2000] and SMS flooder [Sherriff 2000] show that wireless world is the future DDoS
targets. Today the widespread deployment of IEEE 802.11-based wireless network
is highly susceptible to DDoS attacks targeting its management and media access
protocols [Bellardo and Savage 2003].

Nowadays there is a trend toward non-disclosure within the intruder communities.
So new attack tools are often kept private to the outside world. Thus, when public
awareness of a DDoS rises, the method or tool is already in some degree of widely
spread use [Houle and Weaver 2001]. The evolvement and development towards
sophisticate, automated, intelligent, highly distributed features of DDoS tools are
still going on. The DDoS tools today include a self-upgrade mechanism [Levy
2003b] and have tremendous spread capability [Moore et al. 2003].

10.5.3 Classification of DDoS Attacks

According to [CERT 2001b], modes of attack include consumption of resources,
destruction or alteration of configuration information, and physical destruction or
alteration of network components. In [Mirkovic et al. 2002a], the attacks are
classified by degree of automation, exploited vulnerability, attack rate dynamics,
and impact. Here from the technical point of view we classify the attacks by
attacking methods as below. The resources consumed by attacks include network
bandwidth, disk space, CPU time, data structures, even printers, tape devices,
network connections, etc.
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SYN flood – Any system providing TCP-based network services is potentially
subject to this attack. The attackers use half-open connections to cause the server
exhaust its resource to keep the information describing all pending connections. The
result would be system crash or system inoperative [CERT 1996b].

TCP reset – TCP reset also exploit the characteristics of TCP protocol. By listening
the TCP connections to the victim, the attacker sends a fake TCP RESET packet to
the victim. Then it causes the victim to inadvertently terminate its TCP connection
[Mohiuddin 2002].

ICMP attack – Smurf attack sends forged ICMP echo request packets to IP
broadcast addresses. These attacks lead large amounts of ICMP echo reply packets
being sent from an intermediary site to a victim, accordingly cause network
congestion or outages [CERT 1998]. ICMP datagram can also be used to start an
attack via ping. Attackers use the ‘ping’ command to construct oversized ICMP
datagram to launch the attack [CERT 1996c].

UDP storm – This kind of attack can not only impair the hosts’ services, but also
congest or slow down the intervening network. When a connection is established
between two UDP services, each of which produces a very high number of packets,
thus cause an attack.

DNS request – In this attack scenario, the attack sends a large number of UDP-
based DNS requests to a name server using a spoofed source IP address. Then the
name server, acting as an intermediate party in the attack, responds by sending back
to the spoofed IP address as the victim destination. Because of the amplification
effect of DNS response, it can cause serious bandwidth attack [CERT 2000e].

CGI request – By simply sending multiple CGI request to the target server, the
attacker consumes the CPU resource of the victim. Then the server is forced to
terminate its services.

Mail bomb – A mail bomb is the sending of a massive amount of e-mail to a
specific person or system. A huge amount of mail may simply fill up the recipient’s
disk space on the server or, in some cases, may be too much for a server to handle
and may cause the server to stop functioning. This attack is also a kind of flood
attack [SearchSecurity 2003].

ARP storm – During a DDoS attack, the ARP request volume can become very
massive, and then the victim system can be negatively affected.

Algorithmic Complexity Attacks – It’s a class of low-bandwidth DoS attacks that
exploit algorithmic deficiencies in the worst case performance of algorithms used in
many mainstream applications. For example, both binary trees and hash tables with
carefully chosen input can be the attack targets to consume system resources greatly
[Crosby and Wallach 2003].
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10.5.4 Some Key Technical Methods of DDoS Tools

Although so many protocols and system vulnerabilities are exploited by DDoS
attacks as it is shown above, the attack tools need some key technical methods to
launch an attack successfully, such as scanning, propagation, and communication,
as it is illustrated in figure 10.7. These measures are utilized before the real attack
starts. Therefore, they are also the key issues in active defense mechanism against
DDoS attacks. It is beneficial to understand these issues clearly to build an active
defense system.

Figure 10.7. Key methods used before making an effective DDoS attack

Scanning is the first step to intrude other systems. Only after the vulnerabilities of
other systems are found can the malicious scripts be installed to recruit more
handlers or zombies and start an attack. Some attacks use random scanning strategy.
By using different seeds, the comprised host probes random IP address to find the
potential targets. Some virus attacks, such as Code Red, use this strategy and
sometimes cause network congestion for the high traffic volume. Upon that this
deployment phase becomes the attack phase. Other scanning strategies such as hit
list scanning, topological scanning, permutation scanning, and local subnet scanning
are also popular or potential in deployment of DDoS attacks [Weaver 2002]
[Mirkovic et al. 2002a]. It is noticeable that the hit list scanning produces a great
propagation speed due to exponential spread and no collisions during the scanning
phase. If we could find and control the malicious scanning actions of attackers, we
could guard our systems on the first step.

Today the propagation mechanism of DDoS tools is quite automated. Without
manual intervention by an intruder, the malicious code can propagate at a very high
speed. Central source propagation model, back-chaining model and autonomous
model are three main models of propagation [Houle and Weaver 2001]. In central
source model, the attack code is stored in a central server or set of servers. After an
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agent machine is compromised, the code is downloaded from the central source. In
back-chaining propagation model, the infected machine is the source for next
propagation approach. While more efficient, the autonomous model just injects
attack instructions directly into the target host during the exploitation. The
propagation methods are developed well; even the offline infrastructure world could
be affected seriously by propagation of online ‘pests’ [Levy 2003a].

Although some attacks do not need human to issue commands to start the onset, or
the handlers can autonomously control the zombie army, the communication
channel is important to the attack scheme. Early DDoS tools open service port to
communicate with each other. Some tools employ encryption technology to conceal
the control channels, such as the Stacheldraht tool. As it is mentioned before,
Internet Relay Chat (IRC) networks is widely used by the attackers. Both public and
private IRC servers are used to serve as the communications backbone for DDoS
networks. Because they do not present a new open port that could be found by a
scan or audit, it is more difficult to identify the DDoS networks.

10.6 Passive Defense against DDoS Attacks

10.6.1 Passive Defense Cycle

Passive defense actions are taken only after the DDoS attacks are launched. Hence,
the target host or network is harmed to some certain extents before the attack
source(s) can be located and handled. Traditional passive defense mechanism
includes a protect-detect-react cycle [Householder et al. 2001]. That is after attack
actions are detected, then some reacting steps are taken, such as traffic limiting,
blocking, and filtering. This method has advantages over the poor “lesson learned”
experience, which responses only after the accident is over. However, it is far from
enough. We need an active defense system with a surveillance-trace-control cycle,
which will be present in detail in the later part of this chapter.

By deploying the passive defense system, an attack is usually detected by
monitoring of inbound traffic volumes and other performance metrics. But
ironically, the first signal of attack often comes from the external customer’s report
that shows the service is no longer reachable, instead of the alarm of detection
system. Then apparently it is too late to protect the victim from the attack.

10.6.2 Current Passive Defense Mechanisms

Passive defense mechanisms can be classified into two categories, one is detecting
mechanism, and the other is reacting mechanism. The common detection method
includes monitoring traffic volumes and source IP addresses, and resource
accounting. However, usually simply monitoring of the traffic volume can’t tell
accurately the real attack, because some time Internet flash crowds also cause
network congestion [Jung et al. 2002]. So this method can’t differentiate legitimate
requests or malicious requests. According to the characteristic of IP spoofing
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techniques of DDoS attack, monitoring of source IP addresses is a feasible measure
to discover the attack. Detecting mechanisms of passive defense systems are
introduced later.

After detecting the malicious actions of DDoS attacks, the passive defense system
turns into reacting stage. Filtering out the attack traffic stream is one of the simple
and straightforward methods to counter DDoS attacks. But it relies on an ingenious
and sensitive detection system, otherwise it will drop the legitimate packets as well,
and in that case it also falls in a denial of service. Reconfiguration [Mirkovic et al.
2002a] is another measure to defeat attacks. It changes the topology of the victim or
the intermediate network to either add more resource to the victim, or to isolate the
attack machines.

An apparent symptom of the DDoS attacks is network congestion. Network traffic
congestion control is a popular measure to alleviate the harm of DDoS attacks.
Congestion control is a mechanism for a router to identify and restrict flows that are
using a disproportionate share of bandwidth in times of congestion.

Another DDoS defense mechanism is IP traceback. With the ability to trace IP
packets to their origins, it provides the defense system to identify the true source of
the packets causing a DDoS, in order to stop the attacks. Later in this chapter we
will introduce current research on filtering, congestion control, and passive IP
traceback.
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The main features, advantages and disadvantages of current passive defense
mechanisms are listed in table 10.1. In the later part of this chapter, each mechanism
will be discussed in detail.

Because of the popular occurrence of SYN flood attacks in the Internet, the
mechanism of it and its countermeasure are studied for a long time. So as a special
issue, we will introduce passive defense against SYN DDoS attacks in section
10.6.5.

10.6.3 Detecting Mechanisms

Detecting mechanisms for the defense against DDoS attacks include: Traffic
Volume Monitoring, Source IP Address Monitoring, and Monitoring Other
Features.

Traffic Volume Monitoring

DDoS attacks usually cause a high volume of network traffic, so one of the DDoS
attack signals is the sudden growth of traffic volume. The Internet traffic patterns
and characteristics are studied by Thompson [Thompson 1997] in terms of packet
sizes, flow duration, volume, and percentage composition by protocol and
application. Traffic volume is the main feature used by the early network intrusion
detection systems (IDS) to detection abnormal network actions.
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Bro [Paxson 1999] is a general-purpose network intrusion detection system (IDS)
that passively monitors a network link over which the intruder’s traffic transits. Bro
is divided into an “event engine” that reduces a kernel-filtered network traffic
stream into a series of higher-level events, and a “policy script interpreter” that
interprets event handlers written in a specialized language used to express a site’s
security policy. In some situations, it becomes the attack target and is suffered from
the DDoS attacks [Crosby and Wallach 2003].

In flow granularity, some traffic flows in the Internet are looked as large and
malicious flows. Cristian Estan proposed two algorithms for identifying the large
flows, one is sample and hold, the other is multistage filters [Estan and Varghese
2001]. Some methods of traffic measurement, for example, Cisco’s NetFlow [Cisco
2003], are usually slow by using of DRAM and inaccurate by random sampling. It
is impossible to keep the state for every flow because of the scaling problem.
Compared with NetFlow, sample and hold method needs less flow memory. If M is
the available amount of memory, the errors of this method can be represented as an

variable proportional to (where NetFlow’s error is proportional to
so it introduces less errors compared with NetFlow. Multistage filters method is to
hash a packet of a certain flow by using hash function into a stage table, and hash
other packets in the same way. Each table entry contains a counter that is
incremented by the packet size. If all the hashed counters are above the threshold,
this flow is passed to the flow memory for individual observation. Their solution
may be a practical way to identify the heavy hitters.

A MUti-Level Tree for Online Packet Statistics (MULTOPS) is proposed in [Gil
and Poletto 2001], which relies on the assumption that the packet rate of traffic
going in one direction is proportional to the packet rate of traffic going in the
opposite direction. This assumption makes this method unsuitable for asymmetric
routers; especially in some real video stream network, the monitored traffic from
server to client is much higher than from client to server, thus it introduces detection
error. MULTOPS is a tree structure to detect ongoing bandwidth attacks. However,
when the attack is launched from distributed sources, it fails to detect it. Besides, IP
spoofing also affects the capability of MULTOPS.

Traffic volumes monitoring is a simple way to detect the attack, however, some
time in the Internet flash crowds also cause a high volume of traffic. So by just
merely monitoring the traffic volume usually can’t tell exactly the real malicious
traffics. And some attacks don’t have the feature of high traffic volume, which is
classified as low-bandwidth attacks. So volume monitoring also can’t differentiate
legitimate packets or malicious packets.

In order to evade punishment, many attacks have the characteristic of IP spoofing
techniques, so monitoring of source IP addresses is a feasible measure to mitigate
the attack.

Source IP Address Monitoring

In order to determine the attack, one of the passive approaches is to monitor the
number of new coming source IP address, rather than the traffic volume. In [Jung et
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al. 2002], it is found that during some DDoS attacks, most source IP addresses are
new to the victim.

In [Peng et al. 2003b] and [Peng et al. 2004], Source IP address Monitoring (SIM) is
used to detect DDoS attacks. The advantage of IP address monitoring is it can
effectively differentiate the traffics by flash crowd or DDoS attack; because in a
flash crowd situation, the source IP addresses usually appeared to the victim before,
while in DDoS attacks, IP addresses are new to the victim. By the reason of that the
attack traffic from distributed sources may be small compared to normal
background traffic, an accumulated traffic monitoring is used to identify attacks. To
some degree, it could detect the attack pattern of DDoS using reflectors [Paxson
2001], which employs reflectors to make attacks.

In [Peng et al. 2003a], machine learning is also used to find the attack patterns.
Sharing the distributed beliefs method let distributed defense agents communicate
with each other to detect attacks. As the experiment data, the traffic data from
University of Auckland is used to evaluate the performance. However, they only use
two agents to evaluate performance, which is not enough to simulate the real
situation; another problem of it is that the communication cost between agents may
be huge if the number of agents increases.

Monitoring Other Features

Besides volume and IP address monitoring, there are also other features of DDoS
attacks could be detected, such as IP header content, ramp up behaviour for multi-
source attacks, and spectral content [Hussain et al. 2003]. The application of this
technique is COSSACK, which is to suppress the distributed and coordinated
attacks [Papadopoulos et al. 2003]. It is a distributed architecture combines
multicast communications, traditional IDS systems and novel blind detection
techniques. However, this approach’s effectiveness still need further study, because
spectral analysis is a coarse granularity analysis.

The goal of SOS [Keromytis et al. 2002] infrastructure is to distinguish between
authorized and unauthorized traffic. The drawback of SOS is it precludes casual
access to a web server by anonymous, yet benign users. As an extension of SOS,
WebSOS [Morein et al. 2003] uses a combination of Graphic Turing tests and
cryptographic protocols for data origin authentication, thus defeats automated attack
zombies. To some degree, it could only protect web servers. And because it
implements authentication in application layer, it will loss efficiency or itself will
become the attack target.

10.6.4 Reacting Mechanisms

Reacting mechanisms for the defense against DDoS attacks include: Filtering,
Congestion Control, Passive Traceback, and Replication.

Filtering

One of the simple and straightforward methods to counter DDoS attacks is to filter
out the attack stream completely. Filtering is to drop the unwanted packets in certain
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routers. Although some DDoS attacks use packets that request legitimate services
from the victim, which is called non-filterable attacks [Mirkovic et al. 2002a],
filtering helps the victim to defend the spoofed IP packets attacks.

From the point of view of deployment, filtering can be classified as ingress filtering
and egress filtering. Ingress filtering is deployed on the external interface of a
network and drops all spoofed incoming packets, for instance, the IP addresses that
belong to its internal network, which is the obvious case. On the other hand, egress
filtering is applied on the internal interface of a network to deal with the packets
going out. In the same way, egress filtering drops all the packets that do not have
their local network addresses. It would be an efficient defense scheme against
DDoS attacks if these filtering mechanisms are widely accepted and deployed,
because it could perfectly stop all spoofed packets travelling through the Internet.
Furthermore, it helps to traceback any packet’s original source, since it forces users
to send true IP addresses. Traceback is another measure to defeat DDoS attack,
which will be introduced in the later section. However, these mechanisms are not
widely deployed by the ISPs or even resisted because of the liability problems.

Ingress filtering is initially proposed in RFC2267, which is replaced by a newer
version RFC2827 [Ferguson and Senie 2000]. In order to achieve better result in
countering distributed attacks, Park and Lee [2000] [2001b] propose a router-based
Distributed Packet Filtering (DPF). However, in current Internet environment, it is
infeasible to cover the whole network by such a defense system, although in a
theoretically perfect situation, it can prevent all the forged IP addresses. Another
way of filtering is proposed in [Kargl et al. 2001] by using Class-Based Queuing on
a web load-balancer to identify misbehaving IP packets and put them to lower
priority queues. But if the attacks use spoofed IP addresses from time to time, it is
difficult to classify the packets.

The requirement of global deployment is also essential to the Source Address
Validity Enforcement Protocol (SAVE) [Li et al. 2002]. In a distributed fashion, the
SAVE protocol maintains an incoming table at each participating router, which
indicates the router’s proper incoming interface for packets from all sources. Each
router sends SAVE updates to all destinations in its forwarding table, sending a new
update when routing to a destination is changed. Then all routers have sent such
updates to their destinations, each router will have a complete set of legitimate
sources of each incoming interface. How it works well with the existed network
protocols is still an open question. Furthermore, the authentication and
computational overhead also need further study.

Similarly, Roshan Thomas proposed a legitimacy-based DDoS filtering scheme,
NetBouncer [Thomas et al. 2003]. It maintains a legitimacy list to differentiate
malicious packets and legitimate packets. If the packets are not in the list, it will
proceed to administer a variety of legitimacy tests to challenge the client to prove its
legitimacy. However, it is not tested in real network environment.

Another filtering mechanism is proposed as Hop-Count Filtering [Jin et al. 2003].
The idea is that although the attacker can forge any field in IP header, the number of
hops an IP packet takes to reach its destination can’t be falsified. So Hop-Count
Filtering (HCF) could be mainly applied to filter the spoofed IP packets. It extracts
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the TTL information from the IP head to compute the hop-count, then by comparing
the computed hop-count with the stored hop-count, the likely spoofed packets are
identified. Because this method still has some certain false positive rate, it takes no
action to defend attacks until in the action state. Steven J. Templeton also found that
the final TTL values from an IP address are generally clustered around a single
value [Templeton and Levitt 2003], but no solution provided.

In the Internet there may be a single IP address that has multiple valid hop-counts at
the same time, so the result of this method becomes less creditable. If the
computation burden of the system is well solved, it may be a feasible filtering
solution against DDoS attacks, and more realistic deployments are needed to proof
the effectiveness.

Congestion Control

From the view of traffic flow (instead of packet), congestion control regulates the
behaviours of flows in the Internet. Routers deployed on the Internet nowadays have
a best-effort manner, which introduces potentially negative impacts. Sally Floyd
argues that router mechanisms are needed to identify and restrict the flows that are
using a disproportionate share of the bandwidth in times of congestion [Floyd and
Fall 1999]. Random Early Detection (RED) and the RED-related techniques are one
of the main streams of congestion control.

Random Early Detection (RED) [Floyd and Jacobson 1993] helps to avoid the
congestion in packet-switched networks. By computing the average queue size, the
RED gateway can detect incipient congestion. The gateway could notify
connections of congestion either by dropping packets arriving at the gateway or by
setting a bit in packet headers. When the average queue size exceeds a preset
threshold, the gateway drops or marks each arriving packet with a certain
probability, where the exact probability is a function of the average queue size. It
randomly chooses packets to be marked during congestion, to identify which
connections belong to misbehaving users.

In order to reduce the unfairness effects of RED, Flow Random Early Drop (FRED)
is proposed in [Lin and Morris 1997], which provides selective dropping based on
per-active-flow buffer counts. It discards packets to protect flows that are using less
than their fare share and prevent aggressive flows from monopolizing buffer space
and bandwidth. It introduces parameters of the minimum and maximum number of
packets each flow should be allowed to buffer. It needs collect or analyse the state
information for every individual flow. When DDoS attacks come from different
sources, and traffic from these sources are small, then this method is of no effect.

Stabilized Random Early Drop (SRED) [Ott et al. 1999] pre-emptively discards
packets with a load-dependent probability when a buffer in a router seems
congested. The idea is to compare the packet arrives at some buffer with the
randomly chosen packet that proceeded before. If the two packets are of the same
flow, it is said ‘hit’. The sequence of hits is used to find candidates for misbehaving
flow, because hits are more likely to occur in this kind of flow. If there is a hit with
a high count and a high total occurrence, the flow then has a high probability of
being a misbehaving flow. This method can only detect the continuous and durative
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misbehaving traffic flow from a same source, which has the same problem as
FRED.

Ratul Mahajan, et al. proposed a mechanism named RED with Preferential
Dropping (RED-PD) [Mahajan et al. 2001], which keeps partial flow state for the
high-bandwidth flows. It uses the packet drop history at the router to detect high-
bandwidth flows in times of congestion and preferentially drops packets from these
flows. By restricting high-bandwidth flows, it improves the performance of low-
bandwidth flows. However, if the attacks are low-rate TCP-targeted DDoS attacks,
both RED and RED-PD become less effective to detect the attacks [Kuzmanovic
and Knightly 2003]. Compared with high-rate DDoS attacks, Low-rate attacks are
more difficult to detect. It exploits TCP’s retransmission time-out mechanism and
then throttle TCP flows to a small fraction of their ideal rate while eluding
detection.

Today there are other approaches on solving the congestion problem of a network,
such as Explicit Congestion Notification (ECN) [Floyd 1994], Core-Stateless Fair
Queuing (CSFQ) [Stoica et al. 1998], Datagram Congestion Control Protocol
(DCCP) [Kohler et al. 2004], Max-min fairness control [Yau et al. 2002], and
Aggregate-based Congestion Control (ACC) [Mahajan et al. 2002]. Some network
congestion is caused by DDoS attacks, but not all the congestions are triggered by
DDoS attacks. Here we only introduce some congestion control methods related to
DDoS attacks.

Aggregate-based Congestion Control (ACC) [Mahajan et al. 2002] is to minimize
the immediate damage done by high-bandwidth aggregates. It includes a detecting
mechanism, aggregate controlling mechanism, and a cooperative pushback
mechanism in which a router can ask upstream routers to control an aggregate.
However, in fact it doesn’t aim to block the attack traffics, or to find the sources of
attacks.

To some degree, both filtering-based and congestion control techniques will
alleviate the anguished symptom of DDoS attacks, but they may inevitably block
some legitimate traffic, the more effective methods still need further research.

Passive Traceback

IP traceback is the ability to trace IP packets to their origins [Aljifri 2003]; it
provides the defense system with the ability to identify true source of the packets
causing a DDoS, thus possibly to stop the attacks. The aim of traceback is to
construct the path of each router traversed by the attack packet on its journey from
source to the victim [Snoeren et al. 2002]. Under a real DDoS attack scenario, the
source addresses of attack packets usually are counterfeited and looked like having
nothing to do with the attackers themselves. With IP spoofing techniques, header of
source address is manipulated and falsified. Therefore, these addresses are of no use
to identify the attackers. We must trace its real source by other measures through
the network.

We classify current traceback approaches into two categories, one is passive and the
other is active. Passive measures start the traceback process in response to an attack.
It depends on the active attack; because when the attack stops, it can’t effectively
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follow up the clue of attack. Active traceback helps the defense system actively
finding the attack source, not only the attack zombies and handlers, but also the real
attacker who issues commands. Currently traceback methods fall into the following
categories [Aljifri 2003]: link testing [Stone 2000] [Burch and Cheswick 2000],
messaging [Bellovin 2000] [Mankin et al. 2001] [Wang and Schulzrinne 2003],
logging [Duffield and Grossglauser 2000] [Snoeren et al. 2001] [Baba and Matsuda
2002], and packet marking [Savage et al. 2000] [Savage et al. 2001] [Park and Lee
2001a] [Song and Perrig 2001] [Dean et al. 2001] [Adler 2002] [Waldvogel 2002]
[Yaar et al. 2003]. Most of them are currently applied in traditional passive defense
scheme, while the later two can be used in active defense systems.

Link testing

Link testing methods include input debugging [Stone 2000] and controlled flooding
methods [Burch and Cheswick 2000]. The main idea of it is to start from the victim
to find the attack from upstream links, and then determine which one carries the
attack traffic. CenterTrack [Stone 2000] is an example of hop-by-hop tracking
through an overlay network. By capturing the attack signature in some routers, the
system tries to find which previous hop the attack is coming from or through. It uses
IP tunnels to reroute interesting datagram directly from edge routers to special
tracking routers. The tracking routers then determine the ingress edge router by
observing tunnels.

By the assumption that in the Internet most routes are largely symmetric, Hal Burch
[Burch and Cheswick 2000] introduced another link testing method of controlled
flooding. It applies a brief bust of load to every link attached to the victim, by using
UDP chargen service. If the loaded link is perturbed by the controlled flood, then it
is probably the path from the source end to the victim end. However, paradoxically,
itself may be a kind of DoS attack, because it will introduce network congestion to
the legitimate users.

Although link testing has some advantages such as compatibility with existing
protocols, routers and network infrastructure, it also has some significant
limitations. First, it consumes a great deal of time to establish the attack path that
may include multiple branch points, however, the attack doesn’t often last for an
enough long time for traceback. Second, if the attack comes from within the
backbone itself, or, a backbone router is a victim, it is not suitable for this method to
reconstruct the attack path. Third, if the attack is a large scale of DDoS attack, it is
less effective. Moreover, if some attack only needs a single packet, instead of flows
of packets, this method can not handle the attacks at all.

Messaging

Another traceback technique is messaging. Bellovin proposed an ICMP message to
find the source of forged IP packets [Bellovin 2000]. In this scheme, routers send
ICMP messages to the destinations, for every 20000 packets passing through. For a
high volume flow, the victim will eventually receive ICMPs from all the routers
along the path back to the source, revealing its location. However, if each zombie of
the attack contributes only a small amount of the total attack traffic, it’s difficult for
this method to rebuild the real path. Moreover, ICMP packets are often treated or
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filtered by routers with a low priority, in order to reduce the additional traffic. Thus
it also makes this method less effective. Allison Mankin modified this method by
proposing an intension-driven ICMP traceback [Mankin et al. 2001]. It introduces
an extra bit in the routing and forwarding process, to help the ICMP traceback more
useful. ICMP scheme is vulnerable to attackers with falsified ICMP messages. So to
alleviate the problem, iCaddie, with the authentication feature, is proposed in [Wang
and Schulzrinne 2003]. A caddie message is an extra ICMP message generated by a
router or an application, attached with the entire packet routing history of one
randomly selected packet, which is called ball packet. This method avoids the
forging problem, however, in general, messaging schemes introduce additional
network traffic, and can’t handle the highly distributed attacks, although it is simple
to deploy in the existed network infrastructure.

Replication

Replication is to use redundant resources of the same nature to cope with sudden
surge of demand. This idea is also applied in defending against DDoS attacks. Some
researchers propose the replication scheme to defeat DDoS attacks. The
XenoService [Yan et al. 2000] is a distributed network of web hosts that respond to
an attack on any one web site by replicating it rapidly and widely. So the server can
absorb a packet flood and continue trading. However, some attack traffic volume
reaches several gigabytes, and then this method may not absorb such huge attack
traffic well. Moreover, replication itself consumes many resources, which is also
vulnerable to the attacks.

10.6.5 SYN Attacks and Its Countermeasures

SYN flooding attacks are among the most commonly used attacks [CERT 1996b].
The passive approaches to defeat SYN flooding attacks usually include deployment
of defense mechanism at the firewall for victim or inside the victim host. The first
step to defend is to detect the SYN attack. There are lots of features of SYN attack
for detect. A simple method is to detect the number of received SYN segments per
second by a given TCP port [Mutaf 1999]. When the number exceeds the acceptable
critical value, it decides there is an attack and acts accordingly. This method is
simple but with less accuracy. Without reside in the victim machine, the method of
Wang et al. [2002] doesn’t monitor the victim server, but detect SYN flooding
attacks at leaf routers that connect end hosts to the Internet. It applies non-
parametric Cumulative Sum (CUSUM) method [Pollak 1986], which is an instance
of Sequential Change Point Detection method, to detect the abrupt change of SYN
segments. First it identifies different packets of TCP SYNs, FINs and RSTs, then by
detecting the abruptly increasing discrepancy between the numbers of SYNs and
FINs, it finds the SYN flooding. But if the attacker sends flooding packets of a
mixture of SYNs and FINs (RSTs), then itself is unprotected to attacks.

Other practical defense measures include SYN cache and SYN cookie, although
both have flaws such as causing infinite queue and consuming host resources
[Lemon 2002]. In [Schnackenberg et al. 1997], a software tool named Synkill to
defeat SYN flooding attacks is proposed. It monitors the packets and classifies them
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into different categories as follows, never seen (null), correctly behaving (good),
potentially spoofed (new), most certainly spoofed (bad), administratively good
(perfect) and administratively bad (evil). When it finds bad or evil packets, it just
sends RST packets to the connection, or helps to complete the three-way handshake.
The key part lies in the classification process that may introduce false positive and
false negative. Attackers may “teach” Synkill what are good addresses that are in
fact spoofed. So it becomes less effective. It is also vulnerable to attacks because in
order to finish the process it consumes a great lot of resources of victim machine.

Another way to defeat SYN flood is for a server always to accept a new connection
request and put the pending requests to a cache [Ricciulli et al. 1999], with a
random drop scheme to get space for new coming requests. This solution allows
flexible trade-off defense effectiveness with resource requirements, but it only
guarantees service in a probabilistic manner. Thus, an attacker may still
occasionally affect connections requested by legitimate clients.

Current Linux kernels include a facility called TCP SYN cookies to counter the
SYN flooding attacks. The rationale is to keep the connection state in the SYN
cookie, but outside its memory. Zuquete [2002] proposed an improved method of
SYN cookies. The key idea is to exploit a kind of TCP connection called
simultaneous connection initiation in order to lead client hosts to send together TCP
options and SYN cookies to a server being attacked. However, it causes some
problems in Windows client systems or firewall protected client systems.

10.6.6 Limitation of Passive Defense

As we mentioned before, passive defense mechanism includes a protect-detect-react
cycle [Householder et al. 2001]. The passive defense system just waits for the
possible attacks, then after the attack actions are detected, the reacting steps such as
traffic limiting, blocking, filtering and traceback are taken. For more effective
defense, today’s passive defense architectures evolve toward distributed and
coordinated.

However, most of the current passive systems are not automated and often with high
detection false positive. In industry area, Cisco routers have some features to defend
DDoS attacks, such as access lists, access list logging, debug logging and IP
accounting [Cisco 1999]. However, it mainly describes how to detect the attack
manually when the router is the ultimate target of Smurf attacks and SYN floods, or
used as a Smurf reflector. So the main limitation of passive defense system is that it
can only detect and react after attack is launched. Other limitations of passive
defense are listed as follows.

Response is always lagging behind the attack, thus it is not a potent defense

method inherently.

It is hard to deploy an automated and intelligent passive system, because most

of the methods rely on manual configuration and other defense action.

1.

2.
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It can’t effectively avoid network congestion, since the flood has already

arrived, congestion control can only be the rescue after the event.

If attackers continue their attack for a limited time, being traced by the passive

system becomes impossible.

The “ultimate” source may in fact be a compromised computer, but not the real

attacker, so passive traceback becomes less effective, because the huge number

of sources could overwhelm the trace system.

3.

From the discussion above we can see that new approaches, such as the active
defense, are critically needed to strike down DDoS attacks.

10.7 Active Defense against DDoS Attacks

10.7.1 Active Defense Cycle

In section 10.5 we outline some key methods used before making an effective
DDoS attack, for example, scanning, propagation and communication. If we can
block these basic actions of scanning, propagation and communication on the early
stage of attacks, then we are able to minimize the damage as much as possible. Here
we introduce the original idea of active defense cycle, a surveillance-trace-control
cycle, as shown in Figure 10.8 [Xiang et al. 2004].

Figure 10.8. Active defense cycle

4.

5.
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In this active defense cycle, surveillance is one of the important chains. It is
different from the passive monitoring actions, which is just waiting for the attack
signals. Surveillance is to deploy distributed sensors through out the protected
network, which proactively surveys the possible attack signatures. Here attack
signatures not only include some patterns which can be used to help distinguish
malicious packets from normal traffic [Stone 2000], but also the scanning
signatures, propagation patterns and communication patterns of the masters,
handlers, and zombies.

Traceback may be an effective method to find the real attacker. Passive traceback
usually can’t locate the real attacker, but it detects thousands of attack zombies,
which exhausts the capability of a defense system. The aim of active traceback is
not just find the zombies, but to dig out the wire-puller behind curtain. Current
traceback techniques such as logging and packet marking can be applied in active
DDoS defense systems.

Control stage of the active defense cycle is to block attack packets not only near the
victim side, but also close to the attack source end. Pushback [Ioannidis and
Bellovin 2002] is a promising way to control and punish the attack. It is a
cooperative mechanism in which routers can ask adjacent routers to clog an
aggregate upstream, in order to penalize the source attacker.

Compared with the passive defense cycle, which is a protect-detect-react cycle, the
active defense cycle covers all the DDoS attack stages. It has its features such as
surveying in advance, active traceback and source end control. We also
acknowledge that active defense cycle may not always suitable and effective for all
kinds of DDoS attacks. In some situation, we should still need passive react, to
assist the active system, or even degrade or shut down services, although this is the
worst case.

10.7.2 Objectives of Active Defense

The aim of the active defense system is to control the attack as soon as possible, and
reduce the damage to the minimum degree. Only a global deployment will protect
against DDoS attacks [Geng and Whinston 2000]. Listed below are four design
objectives of the active defense system.

Finding malicious actions during the DDoS deployment period.

Sharing attacking information such as communication signatures between

coordinated systems.

Recording the clues of malicious actions for later analysing, learning and

forensic purposes.

A scalable architecture to protect the network resources, for future deploying

distributed security infrastructure.

1.

2.

3.

4.
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To realize the above objectives, some current techniques can be applied to build the
active defense system. Jelena Mirkovic proposed the idea of source-end DDoS
defense [Mirkovic et al. 2002b] [Mirkovic et al. 2003], which is also trying to
depress the attack as soon as possible. Active traceback and protocol-based defense
mechanisms may be other methods to control the attack forcefully. We will
introduce these techniques in the following sections, as well as some theoretical
methods to support them.

10.7.3 Current Techniques Applicable in Active Defense

Current active defense mechanisms include source end defense, active traceback
which is classified into logging traceback and packet marking traceback, and
protocol-based defense. In Table 10.2, the main features, advantages and
disadvantages of each method are analysed. Then in the later sections, each method
will be discussed in detail.
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Source End Defense

DDoS attacks consume resources such as host computing capability, storage, and
network bandwidth at the victim end. The direct assault prevention measure is
victim end defense. However, some attacks should be controlled as close to the
attack source as possible, because it may save the response time to defend against
the attack, thus performs an active defense. Source end defense has lots of
advantages over victim end defense [Mirkovic et al. 2002b] [Mirkovic et al. 2003].
For example, source end defense could avoid network congestion by restraining
streams near the source and let the spare network free from congestion. And
because there are fewer hops from the detection point to the attack source, it is
easier to traceback. Moreover, since routers near the source are likely have less
traffic burden therefore can dedicate more of their resources to deploy more
complex detection strategies.

D-WARD [Mirkovic et al. 2002b] [Mirkovic et al. 2003] is a DDoS defense system
deployed at source end network, which autonomously detects and defeats attacks
originating from these networks. It includes observation and throttling components,
which can be a part of source router, or be a separate unit to interact with the source
router to obtain traffic statistics and install rate limiting rules. The observation
component monitors two-way traffic at a flow granularity to detect the attack. Flow
classification, connection classification, TCP normal traffic model, ICMP normal
traffic model, UDP normal traffic model are used to differentiate the malicious flow
and the legitimate flow. Once the attack flow is found, the misbehaviour flow is
under the control of rate limiting rules.

D-WARD can detect some attacks at the source edge network and it attempts to
determine outgoing attack traffic. But since there is no any coordination among
instances of agents, the detection may be error prone. Moreover, the detection of
UDP attacks and asymmetric routes still need further study, because it can’t work
well with such conditions.

Source end defense is a promising scheme that can be applied in the active defense
system. However, it faces lots challenges such as detection sensitivity, agent
coordination, and liability. When the defense system is deployed in the source end,
there are fewer strong signals to indicate the attack than at victim end, at which
there are usually apparent signals such as high volume of network traffic. So a high
sensitivity is essential for source end defending.

To protect more networks, every system should have good scalability. When the
system is deployed through out a large scale of networks, how to coordinate the
defense agents is an open research problem. If the agents are compromised by
attackers, the defense system will become less effective or even cause more damage
to the victim network. They must avoid being attack targets.

Just like egress filtering, source end defense also has the problem of liability.
Because direct benefit of the system is usually felt by the victim, but not by the
deploying network, there should be a common security understanding over the
Internet society.

Active Traceback
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Passive traceback spends a large amount of resources to traceback and identify
individual zombies and handlers, which is ineffective in stopping the real attacker.
To defend in advance, active traceback may be one of the main directions of active
DDoS defense methods. Current traceback techniques, such as logging and packet
marking, can be utilized in active defense. Sally Floyd, Steven Bellovin and John
Ioannidis proposed a concept of pushback, traceback working together with
congestion control [Floyd et al. 2001] [Ioannidis and Bellovin 2002]. Pushback
[Bellovin 2001] is a cooperative mechanism in which routers can ask adjacent
routers to block an aggregate upstream. In a network environment, upstream routers
are notified to drop malicious packets on the request of downstream routers.

Logging

Logging may be the most direct detection method for analysing the traffic pattern.
Although to store all the data in the network is impossible, probabilistic sampling or
storing transformed information is still feasible. For example, Duffield and
Grossglauser [2000] used trajectory sampling to measure the network traffic, and
Alex C. Snoreren [Snoeren et al. 2001] proposed a hash-based traceback method.

The key idea of trajectory sampling measurement is to base the sampling decision
on a deterministic hash function over the packet’s content. This method can be
applied to trace the real attack source because trajectories provide the actual path
that packets are taking to reach the victim despite the false source address
information. This method critically relies on a statistically representative sampling
hash function to be selected. Therefore, it may be suitable for some network traffic
observation, but not for all. It can only collect trajectory samples and construct the
paths within the measurement domain, but if DDoS attacks come from different
sources, it’s difficult to deploy such measurement system in a large scale.

Source Path Isolation Engine (SPIE) [Snoeren et al. 2001] records sets of hashes of
packets traversing a given router, which is digest input. Then a victim can find the
path of a given packet by querying routers within a domain for the set of hashes
corresponding to the packet. The main advantage of this method is that it can even
find the source of a single packet with relative low storage requirement. In [Sanchez
et al. 2001], hardware support for SPIE in high speed routers (OC-48 and faster) is
discussed.

Baba and Matsuda [2002] proposed another logging approach. The tracing agents
(tracers) are deployed in the network to log the attack packets, and are coordinated
by the managing agents. Different fields in an IP packet are used in these logging
schemes. In [Baba and Matsuda 2002] the IP data is stored from the first byte up to
20 bytes, in order to save storage resources.

Although it needs excessive processing and storage requirements, logging traceback
may be a promising choice in active defense system. When the DDoS attack
signature or deployment signature is detected, we can require the logging traceback
to find the real source of attacker, because it provides relatively precise detection
and doesn’t need a large amount attack packets. Then it is possible to protect the
victim before the suffering occurs.
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Packet marking

The idea of packet marking is to insert traceback data into the IP packet for marking
the packet on its way through the various routers from the attack source to the
destination. Then markings in individual packets can be used to deduce the path of
the traffic.

Probabilistic Packet Marking (PPM) [Savage et al. 2000] [Savage et al. 2001] is the
main method of packet marking. The assumption of PPM is that the attacking
packets are much more frequent than the normal packets. It lets routers mark the
packets with path information probabilistically and let the victim reconstruct the
attack path using the marked packets. The PPM encodes the information in rarely
used field within the IP header. In order to save storage in IP header field,
compressed edge fragment sampling method is used. It requires less traffic volume
than ICMP traceback, but it encounters computational difficulties as the numbers of
attack sources increases. Because the number of packets needed to reconstruct the
attack path depends on the number of packets which are marked by the further
router in the attack path. In order to reduce the number of packets needed to
reconstruct the attack path, [Peng et al. 2002a] [Peng et al. 2002b] proposed an
adjusted PPM. To some degree it solved the problem of vulnerabilities of PPM
[Park and Lee 2001a], which is easy to be affected by spoofed marking field. In
[Adler 2002], the effectiveness and the tradeoffs of PPM are investigated. And an
alternative packet marking with less packet header bits requirement is proposed.
However, to perform a successful traceback, enough packets must be collected to
reconstruct each edge of the attack path and then the full attack graph. Moreover,
PPM is vulnerable to some attack of adding falsified information to the packets, for
example, Groups Of Strongly Similar Birthdays (GOSSIB) [Waldvogel 2002].

Dean et al. [Dean et al. 2001] proposed an alternative marking scheme using
polynomial reconstruction to build the path. An algebraic approach is used to
encode the path information into the fragment identification field of an IP packet.
The number of packets needed to rebuild the path is quadratic to the number of
attack sources. Thus when there are multiple attackers this method becomes less
effective.

By storing a hash of each IP address instead of the address itself, Song and Perrig
[2001] proposed an advanced and authenticated marking scheme for IP traceback. It
is supposedly more efficient and accurate than others for the path reconstruction
under DDoS attacks. And it prevents a compromised router from forging other
uncompromised routers markings by authentication scheme. Yaar et al. [2003]
proposed Path Identifier (Pi), with an ability of filtering any incoming packets that
match known attacker markings, which is a per-packet deterministic mechanism.
Each router in the packet traverse path uses the TTL value to index into the IP
identification field to insert its marking.

Packet marking may be suitable for active defense against distributed attacks.
However, the system must collect a minimum number of packets, and it could
produce a high false positive rate. Currently there is no single effective traceback
technique to trace the attack source in real time and precisely. Both existed network
protocols and hardware should be improved for security concerns.
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Protocol-based Defense

Today many protocols are designed to remove ambiguities and provide better
security features. Many of the protocols are related to the Internet Protocol Version
6 (IPv6). It is designed to be a simple, forward-compatible upgrade to the existing
IPv4, which is intended to resolve all the weakness that IPv4 is currently
manifesting [Sportack 1999], such as security. The new security suite protocols
include IP Security (IPSec) [Kent and Atkinson 1998a] [IPSec 2004], which works
with Authentication Header (AH) [Kent 1998b], Encapsulating Security Payload
(ESP) [Kent 1998c], Internet Key Exchange (IKE) [Harkins and Carrel 1998],
[Kerberos 2004], and others. From the view of active defense, protocol-based
defense scheme can efficiently prevent DDoS attacks. As we know, it is the
protocols’ limitations that permit DDoS attacks, so if this problem is fixed, the
DDoS problem can also be cleared up. However, it largely depends on the wide
acceptance and deployment of new protocols.

Today some protocols are proposed to protect networks or hosts from DDoS
attacks. The early protocols are to solve the resource allocation DoS attacks, mainly
rely on authentication techniques. The idea is to allocate resources of targets only
after the requests have been authenticated [Leiwo 1997] [Leiwo et al. 2000] [Aura
et al. 2000] [Eronen 2000]. In [Aura et al. 2000], client puzzles are used to
authenticate the legitimate users. When server receives request from a new client
side, it creates a puzzle for client. Then client commits its resources into solving the
puzzle and feed back the solution. After server verifies the solution, it commits
resources to expensive parts of the authentication.

From the analysis above we can see that these approaches are high level prevention,
so only suitable to defend some kinds of attacks such as SYN flood. Moreover, it
needs high computation capability if the server receives a heavy load, then the
authentication process may also be the attack target, thus causing DoS.

Before secured data can be exchanged, a security agreement between two computers
must be established. To build this agreement between the two computers, the IETF
has established a standard method of security association and key exchange
resolution named Internet Key Exchange (IKE). Because IKE is computationally
expensive, which is vulnerable to DoS attacks, attacks can abuse the resources of
servers. In order to protect IKE, Kanta Matsuura [2000a] gives an estimation of
servers’ performance that depends on the number of on-going processes. It uses a
protection strategy called Falling-Together (FT) mechanism, which can improve
IKE. In [Matsuura and Imai 2000b], the author also provides a modification version
to improve the IKE protocol. In [Aiello et al. 2002], Just Fast Keying (JFK) is
another protocol proposed to protect IKE from DoS attacks. In [Kaufman et al
2003], a UDP-based protocol to defend DoS attacks is proposed. All these
approaches aim at keeping IKE from DoS attacks.

Because today’s Internet has the best-effort characteristic and can introduce forged
IP packets, it’s difficult to perfectly achieve the goal of prohibiting malicious
actions in the Internet. In the next generation protocols, DDoS should be an
important issue to be addressed.
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Theoretical Detection Methods

An example to detect and forecast possible attacks by analysing certain variables is
the MIB analysis. In [Cabrera et al. 2001], Management Information Base (MIB)
traffic variables are collected to detect attacks. The Network Management System
(NMS) collected 91 MIB variables for analysing purpose. Once the key variables at
the target are determined, the correlations between the key variables and others are
also determined. Following the detection of correlations, the precursors to attacks
can be found by the jumps of statistical absolute values of the variables. Currently
Statistical and other mathematical methods, neural network, and data mining may
be applied to detect such abnormal characteristics.

Statistical methods

By observing the normal network traffic pattern and comparing it with the ongoing
traffic is a simple and fast method. Ming Li et al proposed a decision making
mechanism based on a statistical model [Li et al. 2003]. The assumption of this
method is the traffic variables obey Normal Distribution. Therefore they introduce
detection probability Pd, false alarm probability Pf, and missing probability Pm as
follows.

Where V is the threshold of distance variable which means the distance

between the experimental value and the mean value. And is the mean of and

is the standard deviation of

Statistical method is faster than other methods because it consumes less
computational resource. However, it is not flexible and adaptable to all the patterns,
so the detection criteria should be amended from time to time.

Change point methods

The DDoS attacks usually cause some sudden change of variables of the network,
so the change point detection methods are currently widely used in finding the
attacks. The non-parametric Cumulative Sum (CUSUM) method [Basseville and
Nikiforov 1993] and the Shiryaev-Pollak [Pollak 1986] methods are two major
sequential change-point detection algorithms.

The CUSUM is applied in [Wang et al. 2002] [Peng et al. 2004], for SYN segments
monitoring and source IP address monitoring. It detects changes based on the
cumulative effect of the changes made in the random sequence instead of using a
single threshold to check every variable. The basic idea of CUSUM is to compare
the cumulative sum and an adaptive threshold.



290
Rudolf B. Blazek et al. [2001] develops adaptive sequential and batch-sequential
methods for an early detection of DDoS attacks. It is also based on the change point
detection theory, and it is to detect a change in statistical models as soon as
possible. It gathers statistical analysis data from multiple layers of the network
protocol for detection of very subtle traffic changes, which are typical for the
attacks. But in this paper it doesn’t propose a defense model, only the algorithm is
shown.

Neural network

The function of the neural network is to receive input patterns and produce a pattern
on its output which is correct for that class [Picton 2000]. In a large number of cases
it is possible to reduce a problem to pattern classification. So it may be achievable
to apply neural network techniques to find patterns of DDoS attacks or their
prophase signals.

The two significant features of neural network is the ability to learn and generalize.
After leaning and training, the system could get the capability to recognise certain
patterns and give the correct output response to them. And it also is able to
generalize from the examples shown during training.

Compared with the statistical method, this method may be less rigid and suitable for
more DDoS attack patterns. After training and adjustment, the error could be
reduced to adapt some certain patterns. In our future work, we will apply this
method to test if it could generate satisfactory detection results.

Data mining

When the detection data is huge, for instance, traffic logging is used to analyse the
possible DDoS attack signatures, data mining may be a feasible method to process
the decision making work. Data mining is defined as the automatic or semi-
automatic process of discovering patterns in data [Witten and Frank 2000].
According to Roiger and Geatz [2003], data mining is to employ one or more
computer learning techniques to automatically analyse and extract knowledge from
data. The purpose of a data mining session is to identify trends and patterns in data.

So data mining may help detect the possible attack patterns, not only the existed
attack patterns, but also the new patterns. Before training, we should establish a
database for data mining. It could be all raw traffic logging data, or the extracted
signature data of attacks and normal traffics. This method may be a practical way to
judge the attack action, but the possible false positive rate should be an important
issue we concern.

10.7.4 Comparison between Passive and Active Defense

According to the discussion above, both active mechanism and passive mechanism
offer advantages and disadvantages to DDoS defense. In table 10.3, the comparison
between passive and active defense is listed. From this table, we find active DDoS
defense approach has lots of advantages over the traditional passive system,
although it faces lots of challenges.
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First, this system monitors the crime signatures of DDoS attacks by intrusion
surveillance system. Therefore by the greatest extent it controls the possibility of
malicious scanning, and propagation of zombies. Unfortunately, passive defense
system totally omits this mechanism.

Second, intrusion surveillance system also monitors the communication between the
attacker and the compromised machines. Although some communications are
encrypted, this system still can find some characteristics of attacks, by learning the
communication patterns or data mining techniques. Except in some attacks,
intruders use private IRC channels to communicate, which are secret from public
and hard to be found.

Since an active system can detect the attack before the real damage occurs by the
surveillance system and attack control system, it can control the attack sources as
early as possible, thus avoids overall network congestion and provides more
resources available for legitimate users. Besides, it is beneficial to trace back to
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attack source and prevents large scale and highly distributed DDoS attacks,
especially it is deployed near the attack sources.

10.7.5 Major Challenges of Active Defense

Active approach offers several advantages to the defense. However, some key
issues in active defense are still unresolved. According to the surveillance-trace-
control defense cycle, intrusion signature detection, active traceback, and
coordinated active defense system are three major challenges of active defense
against DDoS attacks.

First, today the DDoS attack tools become more sophisticated and difficult to detect.
So how to detect the minus intrusion signature becomes a key challenge in active
defense approach. For example, some attacks just compromise a huge number of
hosts and use their legitimate IP address to start a well organized assault. So there is
no signal of deluge of forged IP addresses during the attack. We must find other
mechanisms to detect the possible intrusion signature. Many network Intrusion
Detection System (IDS) use byte sequences as signatures to detect malicious
network traffics. To improve the preciseness, Sommer and Paxson [2003] propose a
method to detect signatures with context detection. It provides both regular
expressions context matching and Bro’s [Paxson 1999] protocol context matching.
Context analysis may be a feasible method to detect the early signature of malicious
scanning, propagation of attack tools, and communication between the attacker,
handlers and zombies.

Second, how to trace back the real attacking source and punish the attacker is
another main challenge in active defense. Current research proves active traceback
is an effective countermeasure against DDoS attacks. However, the prevalent
traceback methods can only probabilistically trace every attack host, in another
word, the zombie, but not the real attacker. So if there are thousands of zombies
launch a single attack, the traceback will become totally ineffective. Therefore, at
present traceback is not panacea to DDoS attack. It needs further research to provide
a solution to traceback the real attacker.

Finally, coordinated active defense is another main challenge of active defense.
Because the active defense system should be deployed through out the protected
network, at both victim end and source end, the defense sensors, coordinators, and
controllers should have a secure channel to communicate with each other, and avoid
possible DoS attacks. Moreover, the communication and computation load of the
system should be controlled in a modest scale; otherwise it will cause new DoS to
the rest of the network.

10.8 Summary

A work on any type of networking is not complete without a discussion of network
security. The first step for building a secure network is to define its security policy.
The security policy specifies clearly and unambiguously the items that are to be
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protected. In many cases these items are data integrity, data availability, and data
confidentiality and privacy. To protect these, data encryption is necessary.
Cryptography provides the basis for the authentication of messages as well as their
secrecy and integrity; carefully designed security protocols are required to exploit it.
Public key cryptography makes it easy to distribute cryptography keys but its
performance is inadequate for the encryption of bulk data. Secret key cryptography
is more suitable for bulk encryption tasks. Hybrid protocols such as SSL (Secure
Sockets Layer) establish a secure channel using public key cryptography and then
use it to exchange secret keys for use in subsequent data exchanges. Digital
information can be signed, producing digital certificates. Certificates enable trust to
be established among users and organizations. DDoS is a serious availability attack
in the Internet and wireless network or other infrastructure as well. Currently the
defense mechanisms are mainly passive, in that the target host or network is
impaired before the attack source(s) can be found and controlled. The concept of
active defense against DDoS attacks is a new direction of mitigating the infamous
DDoS attacks in the Internet. As we have seen, it has lots of advantages over
conventional passive defense mechanisms. We discuss the objectives of active
defense, key issues in this area, current techniques that can be applied in this
defense scheme, and the main challenges of it. However, this is only the first step
toward realizing the secure Internet paradigm.

Exercises

What is the first step in building a secure network? What security issues have
to be addressed? 10.1.1.

What is data encryption? Give an example to describe the encryption process.
10.2.1.

Understand the DES technique. Use your own words to describe it. 10.2.1.

How many keys are used in public key encryption? 10.2.1.

Use the code shifting technique by moving the letters of the alphabet five
places from right to left to encrypt the message “This is my Java”. 10.2.2.

Use XOR to encrypt the same message in 10.5 (key value is 5). 10.2.2.

What is the statistical attack used by a hacker to crack a code? 10.3.2.

How can one achieve digital signatures on the Internet, i.e., how does one
encrypt and decrypt a message on the Internet? 10.4.1.

What is DDoS attack? 10.5.1

Why DDoS attacks are relatively easy to launch but difficult to defeat?
10.5.2

What are the key technical methods used in DDoS attacks? 10.5.4

What are the major passive defense mechanisms against DDoS attacks? 10.6

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.12
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10.13

10.14

10.15

10.16

10.17

Briefly describe the passive defense cycle. 10.6

What are the major active defense mechanisms against DDoS attacks? 10.7

Briefly describe the active defense cycle. 10.7

What are the limitations of passive defense against DDoS attacks? 10.6.6

What are the major challenges of active defense against DDoS attacks?
10.7.



CHAPTER 11 A REACTIVE SYSTEM
ARCHITECTURE FOR FAULT-

TOLERANT COMPUTING

Most fault-tolerant application programs cannot cope with constant changes in their
environments and user requirements because they embed fault-tolerant computing
policies and mechanisms together so that if policies or mechanisms are changed the
whole programs have to be changed. This chapter presents a reactive system
approach to overcoming this limitation. The reactive system concepts are an
attractive paradigm for system design, development and maintenance because it
separates policies from mechanisms. In the chapter we propose a generic reactive
system architecture and use group communication primitives to model it. We then
implement it as a generic package which can be applied in any distributed
applications. The system performance shows that it can be used in a distributed
environment effectively.

11.1 Introduction

As mentioned previously, it is essential to build distributed network systems that
can tolerate component failures. However, the development of distributed and fault-
tolerant computing systems is a very difficult task. One of the reasons is that, in
normal practice, most fault-tolerant computing policies and mechanisms are deeply
embedded into application programs. If one of the policies and mechanisms is to be
changed the whole programs have to be changed as well, therefore these
applications cannot cope with changes in environments, policies and mechanisms
[Zhou 1999]. To build better fault-tolerant distributed applications that can adapt to
constant changes in environments and user requirements, it is necessary to separate
fault-tolerant computing policies and mechanisms from application programs.

In this chapter we propose a novel approach – the reactive system approach to
achieving this goal. The reactive system concepts are an attractive paradigm for
system design, development and maintenance because they can separate policies
from mechanisms [Chen and Zhou 2000a]. Reactive systems were defined by Harel
and Pnueli as systems that maintain ongoing interactions with their environments,
rather than producing some final results on terminations [Caspi et al 1994][Harel
and Pnueli 1985]. Such systems are often concurrent and distributed. Much research
has been done on the development of reactive systems since the 1990s (partly see
[Boasson 1998][Bounabat et al 1999] [Boussinot 1991][Harel and Shtul-Trauring
1990][Quintero 1996][Systa 1996]), but most of them are concentrated on process
control (such as controlling a robot) and also lack of modularity. They mainly stress
system controllers’ behaviors and have no emphasis on the mechanisms for
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obtaining information or responding to outside events. If the control algorithms for
a system are changed, the whole system has to be changed. Thus, these methods can
not provide a flexible system architecture to tolerate component failures.

We propose that a reactive system consists of three layers: policies, mechanisms
and applications. The system managements implement the policies and
sensors/actuators are used to implement the mechanisms. Objects in the
environment implement the applications. This reactive architecture model can
separate fault-tolerant computing policies and mechanisms when applied in fault-
tolerant computing. We will use the Agent [Bounabat et al 1999] [Bussmann and
Demazeau 1994] and Actor [Agha 1986] [Hewitt 1977] concepts to build the
reactive modules. The model is constructed with group communication mechanisms
and implemented as a generic package with the Java language. We also evaluate the
system performance to demonstrate its effectiveness and potential benefits when
used in a distributed environment.

11.2 The Reactive System Model

11.2.1 The Generic Reactive System Architecture

A reactive system is composed of a number of components, such as controllers,
sensors, actuators, and physical objects in its environment, which may run in
parallel [Boasson 1996]. Sensors are used to acquaint the environment information,
which will be sent to its controllers. The controllers make certain decisions based on
predefined policies and the information received from sensors. To maintain the
interaction with its environment, the system uses actuators to react to its
environment by changing the states of application objects according to decisions
received from the controllers. Therefore, we can say that a reactive system uses
sensors and actuators to implement the mechanisms that interact with its
environment or applications; its controllers, we call them decision-making managers
(DMMs), are used to implement the policies regarding control of the applications
[Boasson 1993]. Hence we obtain a generic reactive system architecture, as depicted
in Figure 11.1,

Figure 11.1: The generic reactive system architecture
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where DMMs represent decision-making managers; sensors and actuators connect
with the DMMs and application objects by receiving inputs or sending outputs of
the system.

In this model, sensors can be attached to applications to obtain their states (or
equivalently, to monitor events about the applications). These events are sent to
DMMs which will make certain decisions and react to them by using actuators to
change the states of the applications. This model represents a generic reactive
system and consists of three levels: policies, mechanisms and applications:

Policies: The policy level deals with the system policies regarding to the
control of application objects. For example, in fault-tolerant computing, it may
determine what strategies are used in detecting component failures, what
information is to be collected from the application programs, and what
techniques are used in masking and/or tolerating component failures. These
policies are implemented through DMMs.

Mechanisms: The mechanism level deals with all mechanisms for
implementing policies such as fault-tolerant computing strategies. For example,
it deals with mechanisms used in detecting and reporting component failures,
and mechanisms used in masking and recovering from component failures.
These mechanisms are implemented through sensors and actuators.

Applications: The application level deals with issues about fault-tolerant
computing application objects, such as database servers, replicas, network
routers, etc.

The major advantage of this model is the separation of policies and mechanisms,
i.e., if a policy is changed it may have no impact on related mechanisms and vice
versa. For example, if a decision making condition based on two sensors was
“AND” and now is changed to “OR”, the sensors can still be used without any
changes required, i.e., the mechanism level can remain unchanged. This advantage
will lead to a better software architecture and has great significance in developing
fault-tolerant and distributed computing applications since it can separate fault-
tolerant computing policies and mechanisms from applications [Chen and Zhou
2000a][Zhou 1999].

11.2.2 Reactive Modules

The reactive system model we proposed above mainly consists of DMMs, sensors,
actuators and application objects. Since these components are all active (they form
the nature of the reactive system), we introduce the Actor concept, which was
originally proposed by Hewitt [Hewitt 1977], and later developed by Agha [Agha
1986], to model them. An actor is the basic concept in the Real-time Object-
Oriented Modelling (ROOM) and it can be used to model reactive components
[Selic et al 1994]. In general, an actor represents an active object that has a clearly
defined purpose. It may have its own execution thread and can, therefore, operate
concurrently with other active objects in its domain.
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However, a DMM in a reactive system is more like an agent. It has knowledge-
based abilities to make decisions and change the state of the system, thus DMMs
can be considered as decisional agents. Therefore, in this paper we model a reactive
system as a distributed computing system consisting of DMM agents and
sensor/actuator actors.

11.2.2.1 DMM Agents

The purpose of a DMM agent is to make decisions according to the predefined
policies and the collected information from sensors and then send the decisions to
actuators. The model of DMM agents is built on the decisional model [Bussmann
and Demazeau 1994] allowing the representation of objects according to their
behavioral aspects and their degree of intelligence.

Definition 1. A DMM agent is a 5-tuple <E, S, D, P, dec>, where

E: set of external states received from sensors. Each one represents at any given
time an object state from the environment.

S: set of signaling received by the agent. Each signaling reflects at any given
time the state of the controlled tools or objects used to achieve a specific goal.

D: set of decisions generated by the agent. Each decision is a solution
concerning process behavior in the future.

P: agent’s control policies. Each decision is made according to the predefined
policies.

The sets above indicate the received events (E, S), the emitted (output) events (D),
and the internal events (P). The decisional function dec is described as follows.

Decisional function. dec is a decisional function that defines the behavior of a
DMM agent.

where stands for “leads to” and means “simultaneous” (same as the
following). This means that depending on a predefined policy p, and as soon as the
receipt of an external object state e and a signaling s, a corresponding decision d is
instantaneously produced by the function dec, as shown in Figure 11.2.

Figure 11.2: A DMM agent
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11.2.2.2 Sensor Actors

We can model sensors/actuators as actors. Each actor has a clearly defined purpose,
which is an abstraction, or distillation, of its various functional capabilities. This is
both implied and enforced by the encapsulation shell of the actor. This shell
suggests that the contained functionality is to be viewed as a conceptual unit.

The purpose of a sensor is to capture the state information of application objects and
then report them to its subscribers. For instance, it may either report to its
subscribers immediately once an event occurs (called event sensor), or periodically
check the state of an application and then report to the subscribers (called polling
sensor). A generic sensor actor has a main function: sen

where

A: set of actions exerted on the system and captured by the sensor. Each action
is undergone by an outside object.

E: set of external states delivered by the sensor. Each one represents at any
given time an object state from the environment.

This means that depending on an outside action a, a corresponding state e (of
external objects) is instantaneously produced by the function sen.

11.2.2.3 Actuator Actors

The purpose of an actuator is to perform actions according to decisions received
from DMMs. For instance, it may perform the task of setting a value, or activating a
buddy server, or switching a light, etc. A generic actuator actor can be described by
a function: act

where

D: set of decisions received from DMM agents. Each decision is a solution
concerning process behavior in the future.

A: set of actions emitted by the actuator. Each action will be carried out to
change the states of the controlled tools or objects.

This means that depending on a decision d made by a DMM, corresponding action a
is instantaneously produced by the function act.

11.2.2.4 Communication Protocols

Each agent or actor provides one or more openings or interface components, which
we call ports, to communicate with other entities in its environment. The message
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exchange between these ports complies with access protocols. We give the
protocols on the DMM’s ports in the following. Sensors and actuators’ protocols are
similar to these.

A DMM agent has a set of ports to communicate with other objects. The access
protocols on the input and output ports are defined as follows:

protocol class Input

in: {{signal, Message}, {error, ErrorCode}}
out: {{enable, Command}, {disable, Command}}

protocol class Output

in: {done, Message}
out: {{decision, Policy}, {exstate, Message}, {error, ErrorCode}}

where “Input” and “Output” are protocol class names, and the pairs {signal, data-
type} specify individual message data. The first parameter represents the content of
the appropriate data object, and the last one represents the name of the appropriate
data type.

11.2.3 Simple and Composite Entities

Sensors and actuators can be simple or composite. A simple sensor (actuator) can
only be directly attached to one application. Figure 11.3 (a) shows a simple
sensor/actuator architecture. Here the simple sensor S is attached to the application
AP1 and reports some state changes of AP1 to the DMM. The DMM receives
reports from S, makes certain decisions according to some predefined policy, and
uses the simple actuator A to change the state of the application AP1 when
necessary. A composite sensor (actuator) can consist of multiple sensors (actuators)
from multiple applications. For example, Figure 11.3 (b) shows that the DMM uses
a composite Sc to monitor state changes of two applications AP1 and AP2, and uses
a composite actuator Ac to change some state of AP1 and AP2 when necessary. The
composite sensor Sc consists of two simple sensors S1 and S2 that monitor the state
changes of AP1, and another simple sensor S3 that monitors the state changes of
AP2. Similarly, the composite actuator Ac consists of three simple actuators A1, A2,
and A3.

A composite sensor (actuator) can be decomposed into multiple independent simple
sensors (actuators). For example, the composite sensor Sc in Figure 11.3 (b) is
composed of three independent simple sensors S1, S2 and S3. S1 and S2 are attached
to the same application AP1, while S3 is attached to application AP2. They all report
to the DMM, and they can be seen as independent simple sensors (actuators). For
simplicity, we discuss only the simple sensor and actuator. Also, a simple
sensor/actuator can be implemented as an embedded entity or a stand-alone entity.
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3: Sensors and actuators

11.3 Group Communication Services

In the reactive system model, a DMM may subscribe to multiple sensors and
actuators, and a (simple) sensor/actuator may report to (or receive from) multiple
DMMs as well (but attached to one application only). Therefore, the communication
between these reactive modules is very complicated. The different arrival ordering
of messages from sensors to DMMs (or from DMMs to actuators) may cause the
system to generate different results, for instance, in a traffic light control system,
different orders of vehicle arrival in an intersection will have different effects on the
decision making. Component failure is another issue that has to be addressed to
make fault-tolerance possible in a reactive system itself. The correctness of the
reactive system model is, therefore, subject to component failures and different
ordering of message delivery.

To solve these problems we can use group communication services such as message
ordering and multicast service, which provide a useful infrastructure for fault
tolerance in distributed applications [Birman and Renesse 1994]. A reactive system
is a proper candidate for using group communication primitives, since reports
originated from sensors need to be multicasted to a group of DMMs, and so do
decisions from DMMs to a group of actuators.

11.3.1 Ordering Constraints

Without a mechanism to ensure ordered delivery of messages, when two originators
multicast to a group at about the same time, their messages may not arrive in the
same relative order at members of the group. For instance, this may happen if one of
the messages is dropped by one of the recipients and has to be retransmitted. This is
the result of different network latencies on communication links between the
members and different speeds of machines on which the group members are
running.
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As discussed in Chapter 9, ordering constraints can be categorised into four types:
FIFO, causal, total and total+causal [Birman 1993] to reflect different semantical
requirements of message delivery. Among these ordering constraints, FIFO is the
least and total ordering is the strictest and also most expensive. In the reactive
system model, FIFO ordering means that reports sent by the same sensor are to be
processed in DMMs in the order they are sent, and so are decisions sent by the same
DMM in actuators. Causal ordering means that, if two messages have the nature of a
cause-effect (happened-before) relation, this relation should be kept at all members.
Cause-effect relation is understood in the reactive system as the relation between
decisions and related reports based on which these decisions were made. Since
decisions (sent to actuators) and reports (sent to DMMs) never reach the same
component, we do not consider this ordering in the reactive system model. Total
ordering in the model means that all messages from different sensors are delivered
to every DMM in the same order, or all decisions from different DMMs are
delivered to every actuator in the same order.

To ensure the correct semantics of the reactive system, a sensible arrival order of
message delivery has to be assigned and enforced over the reactive components
group, in other words, message delivery among DMMs, sensors and actuators
should have ordering constraints. At least (constraint) the FIFO ordering should be
the default constraint among them. This is to guarantee that all DMMs get the
correct information, and applications get the correct responses to their inputs. Since
the order of messages from different sensors may be a fatal factor affecting DMMs
to make decisions and since the order of decisions is crucial to actuators as well, it
is necessary to apply the total ordering in the reactive system model.

A reactive system mainly has two communication groups for multicasting, one is a
sensor-to-DMM group for sensors multicasting reports to the groups of DMMs, and
the other is a DMM-to-actuator group for DMMs multicasting decisions to the
groups of actuators. We apply these two groups with the total ordering constraint,
i.e., all messages from different sensors are delivered to every DMM in the same
order, or all decisions from different DMMs are delivered to every actuator in the
same order. This constraint will be achieved by implementing the corresponding
ordering protocol addressed in Section 11.4.

11.3.2 Fault Tolerance in the Reactive System

The objective of our reactive system model is to develop fault-tolerant computing
applications. We have to make the reactive system model itself fault-tolerant, i.e.,
the system must continue to work and maintain correctness even in the presence of
component failures. We give the following resolutions in the case of DMM, sensor
or actuator failures:

A DMM crash. A DMM is most likely attached to a server replica or runs
independently on a host. Since most reactive systems are distributed systems
and the replication technology is widely used in such systems, we can assume
that there are at least two DMMs (including a replica) running in a reactive
system. If a DMM crashes, its function will be replaced by another DMM
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attached to a replica until it recovers. In the actuator group it is assigned to,
certain protocol has to be invoked to ensure all the actuators receive the
complete decisions.

A sensor/actuator crash. A sensor/actuator is either running independently with
an application object or directly embedded into the application. If it is
embedded into the application, the sensor/actuator fails only when the
application crashes. In this case, the system has a predefined policy for dealing
with application object failures. If the sensor/actuator is a stand-alone entity, we
have the following policy to deal with its failure. We choose a DMM as a
coordinator in the system and attach an embedded sensor/actuator which has
the same function with the stand-alone sensor/actuator to each application
object. These embedded sensors/actuators are subscribed by the coordinator
only, i.e., they report to the coordinator DMM only (the coordinator performs
its normal functions). Therefore, once a stand-alone sensor/actuator fails, its
subscribers will notify the coordinator and then it will activate the embedded
sensor/actuator attached to the application. Then the DMMs subscribing to the
failed sensor/actuator will communicate with the embedded sensor/actuator via
the coordinator until the failed sensor/actuator recovers. Of course, certain
protocol has to be invoked to ensure the subscribers receive the complete
information from the failed sensor.

By using these strategies we can assure that the system continues to work even in
the case of a DMM, a sensor or an actuator failure. To maintain the system
consistency, we have to ensure complete communication between the failed
component and the all other components in all cases.

11.3.3 Atomic Multicast Service

A component failure may lead to incomplete communication in the system, for
example, if a sensor fails during the transmission of its report, some DMMs may
receive its report whereas some may not. This may lead to a conflict situation if
those DMMs receiving the report are making decisions whereas other DMMs are
not. Similar situations happen when a DMM fails while sending its decisions to
actuators. Therefore, complete communication must be guaranteed in the case of
component failures. We define the completeness requirement as follows: if a DMM
receives a report from a sensor, all other DMMs that subscribe to this sensor should
receive it as well; Similarly, all actuators that are appointed by a DMM should
receive a decision from the DMM if any one of them receives it.

This property is to guarantee that all DMMs receive the same set of reports from a
sensor so that they all can have this information to make decisions, and all actuators
can receive the same decision from their DMM, even in the case of component
failures. This property is achieved through the atomic multicast service.

The current TCP communication channels guarantee messages transmitted in the
right ordering, no message duplication or loss. However, sending a message down
to multiple channels is still error-prone, as the sending component may fail in the
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middle of the sending process, as a result, some components will receive the
message, some will not. Therefore it is crucial to ensure a multicast primitive that
either sends messages to all receivers or none of them, i.e., a property known as
multicasting atomicity or atomic multicast [Birman et al 1991].

An atomic multicasting protocol has to guarantee all-or-none semantics. It is a
protocol that tolerates the sender’s failure in the middle of multicasting. The
protocol should guarantee two properties: (1) in the absence of sender’s failure, a
multicast is received by all operational members; (2) in the presence of sender’s
failure, a multicast is either received by all operational members or by none of them.
Note that we use the term operational members instead of members to ensure that
the multicasting will proceed despite any receiver’s failure during the transmission.
We will implement the multicasting atomicity protocol in the reactive system model
to guarantee the complete communication in Section 4.

11.3.4 Membership Management

Both reliable and ordered multicast services are implemented through the group
membership management. Membership is the information about a group that shows
who are currently in the group, in other words, who are apparently operational. It
can be changed by members leaving or joining, especially by crash leaving. When
the membership changes, the system may suffer from incorrect scenarios. For
example, a sensor crash failure leads to a membership change and causes its
subscribers to receive incomplete reports and the system to generate errors.
Therefore, it is necessary to develop relevant protocols to maintain the system
consistency when the membership changes. The group membership management is
a mechanism to make the system consistent and fault-tolerant.

Group construction is very cumbersome in a reactive system. In many cases, each
sensor is subscribed by all DMMs and each DMM appoints to all actuators thus
there are only two groups in the system, one is the sensor-to-DMM group and the
other is the DMM-to-actuator group. However, in the case that different sensors are
subscribed by different DMMs, or different DMMs appoint different actuators, we
have to build a number of groups based on each sensor and its subscribers, or each
DMM and its actuators. Sensors subscribed by same DMMs will form a sensor-to-
DMM group, and DMMs appointing to same actuators will form a DMM-to-
actuator group. In each of these groups, the group members are not equally
weighted, i.e., only some of the group members are senders multicasting messages
to the rest of the members which are only receivers. It is, therefore, essential to
differentiate the group members when membership changes.

We use an object view to represent the membership. The view is initialised to
contain a set of initial members and is encapsulated with two basic
operations, leaveGroup() and  joinGroup(), to remove or add a member from (or to)
the view, respectively. View change events are delivered in total order at all
members. Members start from the same initial view: The i-th view is  i
= 0, 1, 2, ...; and are different only by an addition or a deletion of one
member. A view update event (join/leave) is sent to the group coordinator first,
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from where the event is multicasted to other members by the coordinator with

replacing i.e. changing to This will ensure the same set
of view change operations to be delivered in total order at all members. [Wang
1999] presents the detailed protocols for membership changes by a join/leave event
including a crash leaving.

11.4 Implementation Issues

The implementation of the reactive system model includes implementing three
reactive modules: DMM, sensor and actuator, respectively. Their design given
above is very generic so we can implement them as generic classes using the Java
language. Java virtual machines, which are rapidly becoming available on every
computing platform, provide a virtual, homogeneous platform for distributed and
parallel computing on a global scale [Arnold and Gosling 1996] [Gosling 1997].

The implementation of the reactive classes involves the reactive control protocols
and the network application programming interfaces (API). The network API often
includes the primitives to both reliable and unreliable point-to-point network
communications. Java provides these two communication primitives: multicast
data-gram and stream-based  communications, therefore we will implement the
generic DMM, sensor and actuator classes with these two communication patterns.

The reactive control protocols include all protocols used to implement group
communication services discussed in Section 3. They are implemented as objects
based on the network API primitives, and embedded in the generic classes. The
generic Java classes also include a number of utility objects which are at the lowest
layer and manage basic resources such as group views, communication channels
and threads etc. Thus the Java reactive classes can be understood as composite
objects consisting of multi-layered objects.

11.4.1 Multicast Datagram Communication

The multicast datagram method is a communication mechanism used in the UDP
protocol and the group communication. It uses multicast datagrams to implement
communication between entities within a single thread entity. Using the single
thread of control, a datagram can be sent out onto a subnet, where a group of entities
are located and receiving, with an address reserved for multicasting, whenever a
specific event occurs. Other entities can connect to the subnet simply by creating a
multicast socket and join in the group.

In order to avoid packets being flooded onto other networks, Java multicast
datagrams include a TTL (Time To Live) field in the header to reduce packets
unnecessarily circulating and congesting networks. The programmer can increase
the TTL allowing the packet to travel further, for example, the TTL could be:

0: all subscribers on the same host machine receive datagrams from a sensor.

1: all subscribers on the same subnet receive datagrams from a sensor.
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32: all subscribers located on any of the subnets to receive packets from sensors
also located on any of the subnets (not necessarily on the same subnet).

However, many routers provide only limited support for multicasting. Packets are
allowed to be multicasted within a subnet, but not to pass through the router into
other subnets. This may become a problem in the case that a DMM subscribes to
multiple sensors or a sensor reports to multiple DMMs, where multiple entities are
located on different subnets. To overcome this, a tunnelling approach has been
invoked, as shown in Figure 11.4. The tunnelling approach builds a tunnel between
two subnets and establishes two software entities, one located on a subnet, and
another on a remote subnet. On the first subnet, a courier joins the multicast group,
and retransmits the locally multicasting packets using either datagrams or sockets to
another remote subnet. At the other end of the tunnel, a publisher receives these
packets and multicasts them onto the remote subnet using the same address/port as
the class.

Figure 11.4: Tunnelling multicast packets between subnets

Two variations of tunnelling have been implemented, one using datagrams and the
other using stream-based communication. As the packets are being transmitted
through several networks in some cases, the stream-based method has the advantage
of providing reliable communication. However, it does suffer from an additional
overhead of converting datagrams into stream and vice versa at the other end.

11.4.2 Stream-based Communication

The stream-based communication can provide reliable communication between
entities. Current TCP protocol used in Internet adopts this communication method;
Since each stream-based communication is dedicated to one connection between
two entities, a stream-based class must be implemented as a multi-threaded entity to
handle multiple connections with a group of entities. Using the Java multiple
threads, a message is sent out to each receiver using dedicated connections
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established between a sender and receivers. Each connection is handled by its own
thread of execution. Other entities can subscribe to this sender by simply requesting
a connection to it, which will be handled by a new thread.

It is required that a sensor (or DMM) class sends its reports (or decisions) to its
multiple subscribers (or actuators) simultaneously. In order to achieve this in the
stream-based sensor or DMM class, we invoke the ThreadGroup method from Java.
This method uses a ThreadGroup object to place and control a number of threads in
a class, i.e., each DMM or sensor creates a ThreadGroup object, into which each
new thread created to handle a connection is placed so that it can control the
processing of these threads. Using this method, the sensor (or DMM) can invoke
each thread in the group to send reports (or decisions) to its subscribers (or
actuators) at the same time, rather than the threads having to send to them
individually and asynchronously. Figure 11.5 depicts the architecture of a stream-
based sensor class.

Figure 11.5: The generic sensor architecture

11.4.3 Total Ordering Protocol

There are generally two algorithms used to implement total ordering. One is to
generate a unique sequence number (USN) for each message delivery [Birman and
Renesse 1994]. Thus, messages can be processed in a unique sequential order group
wide. The other one is the token-ring algorithm. The USN algorithm has two
approaches as well: centralised approach and distributed approach. We adopt the
simple approach: the centralised sequencer for implementing the total ordering of
message delivery.

Centralised sequencer is a straightforward technique that allows one member to be
the USN generator (named sequencer). When a message is originated from a
component, the component sends a USN request to the sequencer. The sequencer
simply keeps a USN counter that increases by 1 each time a USN request is
received. The value of the USN counter is then returned to the component. Then the
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component attaches the USN to the message which is sent to other components later
on.

We use a supervisory DMM as the sequencer. To be able to decide that a total-
ordering operation is deliverable, each member keeps a variable of USN major in its
local space to record the maximum USN executed so far. If a received total-ordering
operation holds the next USN, then this operation is ready to be executed.
Otherwise the operation is deferred until lower USN operations are performed. Here
we give the full algorithm for the centralised sequencer method:

Listing 1. Assigning the USN Protocol

Rule 1: Acquiring a USN from the sequencer. At each member site:

Rule 2: Assigning the USN to a member’s request. At the sequencer site:

Rule 3: Checking if a totally-ordered message is executable. At each member site:

11.4.4 Multicasting Atomicity Protocol

The atomic multicast protocol is used to ensure complete communication between
group members even in the case of member crashes. It is implemented by letting a
sender multicast sequentially, i.e., one multicast after another. The sender ensures
that before starting a new multicast, the previous one is confirmed to have reached
all operational members. We refer to a multicast that may not be received by all
receivers as an unstable multicast, and a stable multicast means that the multicast is
received by all operational members. The implementation is based on the
assumption that a reliable FIFO communication can be established between group
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members. This is achievable by creating a TCP/IP reliable channel between any two
members.

The basic idea of achieving multicasting atomicity is to let operational receivers
exchange their latest multicast received from the crashed member. The atomic
multicast protocol only deals with sender’s failures. We first choose a DMM as a
coordinator in a group (sensor-to-DMM or DMM-to-actuator). Let
(n>2) be the membership of the group. At the member i = 1, ..., n, it keeps a
vector of the latest multicast from every sender: where
is the latest multicast message from k = 1, ,.., m; m < n. If is a sender, its
vector is null. Upon the reception of a message from site at

When a member first detects the failure of a sender (not receiving any message
from it within a maximum time frame), it sends an message indicating the
failure of to the coordinator. Upon receiving this message, the coordinator
initiates the multicasting atomicity protocol by multicasting this message to the
group. Each group member that receives messages from will reply to the
coordinator by attaching its latest message received from after receiving the

from the coordinator. The coordinator then collects these messages that
each member received from Since multicasts are sent in a sequential order, the
collected messages will be either the or the Based on this information,
the coordinator is able to conclude that the is the unstable message, and
finally multicast it to all of these operational members. Then these operational
members receive the latest multicast from the failed member We give the full
multicasting atomicity protocol as follows. The protocol starts when the first
member detects the crash of and then sends an message to the
coordinator.

Listing 2. Atomic Multicasting Protocol

Step 1: The coordinator initializes the protocol by multicasting the to all
group members.

Step 2: Upon receiving the from the coordinator, each non-coordinator
member that has a communication channel with and receives messages from
it, replies with an message to the coordinator. is
the latest multicast received from and kept at

Step 3: Upon receiving messages of from all non-
coordinator members, the coordinator concludes that the unstable multicast is the

from the crashed member, and multicasts an message to
the group.

Step 4: Upon receiving the from the coordinator, each non-
coordinator member that received messages from adds the to its message
buffer.
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The advantage of this protocol is that, in the absence of failure, no extra message is
needed for preventing the sender failure, except an n-vector is used at each member
to store the latest multicasts received from other group members.

11.4.5 DMM Classes

The generic DMM class implements the following functions: first, it subscribes to
sensors by establishing connections with the sensors and then waits for reports from
them; Upon receiving reports from sensors, it will process them and make decisions
according to the predefined policy. The decisions will then be sent to the related
actuators to change the relevant applications’ states. The generic DMM class leaves
reports processing and decision making empty, that will be implemented by specific
DMMs.

Both the multicast DMM and stream-based DMM classes are implemented. The
multicast DMM uses one major thread of control to achieve the above functions
while the stream-based DMM class will be implemented as a multi-threaded entity
consisting of multiple objects each of which handles a specific task. Utility objects
in the DMM include the following:

Communication handler. This object sets up the connections between this
DMM and the sensors/actuators in the groups it subscribes to. Multicasting
primitives are methods encapsulated in this object.

Group manager. A group object managing the local views of an operational
component. It basically provides two methods, leaveGroup() and joinGroup(),
to remove a group member when it leaves and to add a member when a new
one joins respectively.

USN and USNAssignor. USNAssignor assigns the USN to each decision sent
to different actuators. The USN checks the deliverability of each report
received from sensors. These two objects implement the USN protocol
described by Listing 4.1.

The DMM class also has some mini-protocol objects which are based on utility
objects to implement relatively smaller protocols, such as multicast atomicity
protocol, member joining and leaving protocols for membership management, etc.

StateTransfer implements the state transfer protocol. The protocol guarantees a
new member joining the group in a consistent way.

CrashAtomicity performs the crash atomicity protocol (Listing 4.2) that
guarantees the atomic multicasting property when a member crashes. It also
updates each member’s local view to remove the crashed component.

VoluntaryLeave performs the voluntary leave protocol and updates each
member’s local view to remove the voluntarily leaving member.

The root DMM object is constructed by aggregating and initializing the necessary
lower layer objects which are instantiated from their classes, and linking the main
service of DMM such as information processing and decision making etc.
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The generic Java sensor class implements the functions of monitoring events and
reporting to DMMs. It can be subscribed by many other entities and is capable of
reporting to them simultaneously. The Java sensor first builds connections with its
subscribers and then monitors for events and reports to its subscribers once events
occur. The generic sensor class will leave information capturing empty that will be
implemented by specific sensors.

The generic Java actuator class implements the functions of receiving decisions
from DMMs and then performing actions to change the states of applications. It can
be subscribed by multiple DMMs and is able to receive decisions from them and
execute them one by one. In the actuator class, there is no need to deal with the
synchronization problem.

Both multicast and stream-based sensor/actuator classes are implemented. They are
similar to the DMMs, i.e., they have the same objects as it does and only the
contents of these objects are different.

11.4.7 Discussion

We have conducted a series tests to evaluate the performance of the reactive system
implemented above, and obtained the following results. Multicast datagram
communication is a common unreliable communication service which does not
guarantee any reliability. Messages sent by using such a service may get lost,
duplicated or delivered out of order. When the message delivery is applied with the
ordering constraint, a big overhead occurrs on the system. Therefore, multicast
datagrams may have limited applications in distributed systems covering multiple
subnets. However, from our test results we found that within a local subnet,
multicasting communication is the fastest way to respond to events. On a local
machine or covering multiple remote subnets, multicasting communication is faster
than stream-based communication to respond to events when the number of DMMs
increases to a certain number.

Stream-based communication is more reliable and may be more suited to distributed
systems than multicast datagrams. When message delivery in such a communication
is applied with an ordering constraint, there is only a slight increase of the time
occurred for the system. The stream-based DMMs and sensors/actuators running in
a distributed environment are more effective than those running in a centralized
system. They do not have tunneling overhead when covering multiple subnets. Thus
we recommend stream-based communication as the implementation method for a
distributed computing system covering multiple subnets.

11.5 A Fault-Tolerant Application

In a distributed computing environment, two types of failure may occur: a
process/processor at a given site may fail (referred to as a site failure), and
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communication between two sites may fail (referred to as a link failure) [Cristian
1991] [Jalote 1994]. A site failure results in fail-silent or crash failure semantics,
i.e., a process/processor either works correctly or simply stops working without
taking any incorrect action [Schlichting and Schneider 1983]. A link failure may
result in network partitioning, which is a major threat to the reliability of distributed
systems and to the availability of replicated data [Tanenbaum 1996]. When these
failures occur the system may generate incorrect results or may simply stop before
finishing the intended computation so that the system cannot provide intended
services. Therefore, it is essential to build distributed systems that can tolerate these
failures. In this section we apply the reactive approach proposed above in a
replicated database system to deal with two types of failure: crash failure and
network partitioning failure, for the purpose of demonstrating the potential benefits
of the reactive system model.

11.5.1 The Replicated Database System

In order to tolerate various failures, most fault-tolerant techniques rely on
introducing extra redundant components to a system. Replication is such a
technology making fault-tolerance possible in a distributed database system.
Replication is the maintenance of on-line copies of data and other resources by
using replicas. It is a key to the effectiveness of distributed systems, in that it can
provide enhanced performance, high availability and fault-tolerance [Helal et al
1996].

Figure 11.6: A distributed replication system

A distributed replication system within a wide area network (WAN) is composed of
several subnets located several or thousands of miles away and connected by
gateways [Davidson 1984]. Replication produces replicas of database servers. At
each subnet, there is one or more database server groups, which are comprised of
replicas running on each workstation, as depicted in Figure 11.6. For simplicity, we
only include two subnets connected by one gateway in the network configuration.
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Figure 11.7: Replication manager and database server

In Figure 11.6, each workstation has a database server and a replication manager
running respectively. All database servers (or replicas) store identical information
initially and each of them can accept client requests that read or update stored
information independently. A replication manager can access the local database
server and other replicas through JDBC. A client connects to a replication manager
and issues transaction requests through it to obtain database services. Figure 11.7
shows two workstations located on two subnets, where RP stands for a replication
manager; DB represents a database server.

The task of the replicated system is to maintain data consistency among all the
replicas throughout the whole network, even in the case of site or link failures. If a
client requires a read-only operation, this request can be served by the local
replication manager reading from the local database server. If a client wants to
perform an update operation, the operation has to be performed in all database
servers. This can be done if all the replicas are running well without faults.
However, site or link failures may occur in the system, and it would be a problem to
perform an update operation on the replica(s) located on a fault site or a partitioned
subnet. In these cases, some strategies have to be invoked to maintain the data
consistency. We discuss the failure scenarios next.

11.5.2 Failure Scenario

11.5.2.1 Crash Failure

Crash failures in a replicated database system include a database server failure, a
replication manager failure, or a computer (workstation) failure. They may cause
the data to be inconsistent and the system to provide incorrect services. The fault-
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tolerant requirement is that the system should continue to work even in the case of
failures. We have the following strategies to deal with crash failures in the system
depicted in Figure 11.7:

A database server fails. For example, assume DB1 on Computer 1 fails. In this
case, RP1 on Computer 1 has to re-direct all requests to DB2 on Computer 2. If
such a request is an update request, then RP1 has to store such an update in a
stable storage (e.g., disk) and has to perform it on the failed database DB1
when it recovers. Similarly, when a client issues an update operation through
RP2, RP2 has to store that operation in a stable storage and perform it on DB1
when it recovers.

A replication manager fails. For example, assume RP1 on Computer 1 fails. In
that case, all requests have to be submitted through RP2 on Computer 2.

A computer fails. For example, assume that Computer 1 fails. In this case, all
servers running on Computer 1 fail. All requests have to be submitted to RP2
on Computer 2. If there is an update operation, it has to be recorded in the
stable storage and has to be performed on DB1 when Computer 1 recovers (and
DB1 recovers as well).

In cases 2 and 3, it is easy for a client to know whether a replication manager is
alive or not through the program interface. If the local replication manager fails, a
client can submit his (her) requests to another replication manager. Hence it is
simple to deal with a replication manager failure. In cases 1 and 3, it is essential for
a replication manager to know if a database server is alive or not. How to detect and
deal with a database server failure remains a problem. If the failure detecting
mechanism and the failure processing policy are all embedded into the replication
manager, once the detecting mechanism is changed the replication manager has to
be changed as well. Thus this strategy lacks flexibility and cannot adapt to constant
changes.

11.5.2.2 The Network Partitioning Failure

Network partitioning occurs when link failures fragment the network into isolated
sub-networks called partitions, such that sites or processes within a given partition
are able to communicate with one another but not with sites or processes in other
partitions. If processes continue to operate in the disconnected partitions, they might
perform incompatible operations and make the application data inconsistent
[Davidson 1985].

In the replicated database system we talked about above, network partitioning
failure happens when the gateway between two subnets fails. This leads to a
situation where replication managers and server group members distributed in
different subnets cannot communicate with one another and may stop processing a
client transaction request, for instance, an update operation cannot be performed on
another partitioned subnet. Therefore, it is essential for the replication managers
within each subnet to know whether a partitioning happens so that they can take
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certain measures to process clients’ requests in the case of this failure [Birman
1996].

A number of diverse solutions have been proposed to solve the network partitioning
problem [Davidson 1984]. But most strategies on network partitioning require that
the failure initially be recognized. They assume that the partitioning failure
detection has already been done, thus they may have some restrictions due to
different failure detection strategies. We attempt here to use the reactive system
approach to solve this problem and provide a solution for failure detection, analysis
and resolution.

11.5.3 Fault Detection

We can use the Java reactive system modules introduced above to deal with crash
failures and network partitioning failures that occur in the replicated database
system. We use sensors to detect the possible failures of various system objects and
DMMs to implement various fault-tolerant policies.

11.5.3.1

As discussed earlier, a replication manager crash or a computer crash is simple to
deal with. We only discuss a database server failure here. When a database server
crashes, it is essential for replication managers to know it so that they can take
certain measures to further process client requests. To achieve this, we run a Java
DMM, a Java sensor and a Java actuator on each computer respectively. Each
DMM will subscribe to all sensors and actuators running on all computers. Due to
different types of reactive module we can have several choices:

Using stand-alone DMMs: Stand-alone DMMs can run independently on each
host and operate concurrently with other objects. Actuators are embedded into
replication managers for transmitting decisions from DMMs to the replication
managers. To detect a database server failure, we also have two options of
using sensors: polling sensors and event sensors.

Using polling sensors. A polling sensor can be run on each computer
independently to check the status (liveliness) of the database server
periodically and then report to the DMMs subscribing to it, as depicted in
Figure 11.8, where we only include two workstations located on two
subnets. Once a database server fails, the polling sensor monitoring it will
report to both DMMs. In this case, DMMs and polling sensors are running
independently on Computer 1 and 2, while actuators are embedded into
RPs.

Using event sensors. We may want to know the failures of database servers
immediately once they occur. In this case we can use event sensors instead
of polling sensors running on each computer. The DMMs and actuators are
the same as above, but two event sensors are attached to RP1 and RP2
respectively to report the failure of the connection between RP1 and DB1

1.

2.

Crash Failure
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or between RP2 and DB2, as depicted in Figure 11.9. If a database server
fails the connection between this replica and the relevant replication
manager fails as well. Thus the corresponding event sensor will catch this
event and report to both DMMs immediately.

Figure 11.8: Using polling sensors – PS stands for a polling sensor; Act is an
actuator.

Figure 11.9: Using event sensors – ES stands for an event sensor; Act is an
actuator.

Using embedded DMMs: We can also use embedded DMMs to implement the
above functions. In this case, a DMM is embedded into the replication manager
on each computer, thus we do not need actuators since the DMMs can instruct
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the replication managers directly, as depicted in Figure 11.10. Sensors in this
case are polling sensors which run independently on each computer. Once a
database server fails, the polling sensor monitoring it will report to both
DMMs.

Figure 11.10: Using embedded DMMs

In all cases above, both DMMs will receive the reports from the sensors about the
failures of database servers if they occur. Then they will make certain decisions (as
described earlier) and use the actuators to instruct RP1 and RP2 to process clients’
requests promptly.

Detecting strategy

Let S be a sensor. We use to denote the sensor report about the state of a replica r
that S monitors, or the connection state between a replica r and a replication
manager. For a polling sensor, if  is true, that means the replica r is alive; whereas
for an event sensor, if  is true, that means a connection failure between the replica
r and the related replication manager occurs. We use “¬” to denote that no event
occurs. Hence we have

The time interval for evaluating “¬” in (1) is set to be greater than the polling time
interval of S. Formulas (1) and (2) are the strategies used by DMMs to detect the
fault existence.

11.5.3.2 Network Partitioning Failure

To detect and analyze partitioning failures, we add a dedicated decision making
manager (DMM) as a server group component in each subnet for failure handling
and help in transaction processing. Each of these DMMs will subscribe to multiple
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sensors/actuators attached to each server member on different subnets to detect the
partition existence. The idea of detecting a partitioning failure is described as
follows. A DMM in one subnet regularly receives reports from sensors attached to
all server members, some of which may not be reachable if a partitioning occurs. If
the DMM does not receive the reports from some sensors within a maximum time
frame, the DMM decides that the gateway might be down by noticing that those
unreachable members are all located in the same subnet. To confirm that the
partitioning happened, the DMM sends a message to the other DMMs in that subnet
to see if they are reachable. If it does not receive the replied message within a
maximum time from another DMM, the gateway between the two DMMs is
assumed down, which leads to the two subnets being partitioned from each other.

Similarly, we can have several choices in terms of using different sensors/actuators,
or different DMMs to do that. Here we give two options, one using polling sensors
and the other using timer sensors, to demonstrate our method.

Using polling sensors. We run a polling sensor on each host across the whole
network to periodically report the connection state of the host it monitors to the
DMMs subscribing to it, as depicted in Figure 11.11. Each polling sensor runs
on a host independently and is subscribed by all DMMs located on different
subnets. Actuators are embedded into each replication manager on a host and
used to instruct them to process clients’ requests according to decisions made
by the DMMs.

Using timer sensors. We can also use timer sensors to report each host’s state.
In this case, a timer sensor is attached to a host by being embedded into the
replication manager to monitor the connection state of this host to the network,
as depicted in Figure 11.12, where the DMMs and actuators are the same as
above. Once a connection failure occurs the timer sensor will report it to the
DMMs subscribing to it.

Figure 11.11: Using polling sensors for network partitioning
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Figure 11.12: Using event sensors for partition-tolerant applications

In both cases, the DMMs will decide whether a partition happens according to the
reports received from the sensors and then make decisions to instruct the RPs how
to process clients’ transactions using the actuators. In this solution, the RPs deal
with transaction processing while the DMMs deal with failure handling.

Partition detecting and notifying

Assume that there are m subnets in the network environment and the maximum
number of replicas on each subnet is n. We use  to
denote the sensor attached to the replica in the subnet;
denotes the DMM in the subnet. will report to all periodically about the
connection state (or liveliness) of the replica it is attached to. Hence, if

then the replica in the subnet is faulty to i.e., faulty to the
subnet. Therefore we have,

To confirm that the partitioning happened, two DMMs located in the partitioned
subnets send a message to each other to see if they are reachable, i.e.,

For i, k in (3)

The time interval for “¬” is set to be greater than the longer time interval of
polling S and timer S. Formula (3) and (4) are the strategies for each DMM located
in a subnet to detect a partition existence. Once a network partitioning has been
detected, one of the DMMs from two subnets will use actuators to notify all the
server groups about the partition situation to save unnecessary network
communication overheads caused by some server members trying to contact the
other partitioned subnet. The DMM is also responsible to notify all parties once the
crashed gateway is up and the partition no longer exists.

for all j  ( = 1 , 2, ..., n)
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11.5.4 Fault Tolerance

Once a database server crash failure has been detected, the fault tolerance is simple.
The policy for a replication manager to process a client’s requests in the case of the
failure has been described in Section 5.1. We mainly discuss partitioning tolerance
in the following.

In this section we use a relatively centralized method with the Primary/Non-Primary
replication control protocol [Paris 1992] to deal with the network partitioning
problem. The method is described as follows. A client transaction request can
consist of different sub-transactions each of which is to be served by a group of
servers or replicas. Replication managers which receive the requests from clients
divide the transactions into sub-transactions and pass them onto the different
replicas. Among one group of replicas, a Primary Replica leads other Non-primary
Replicas. The transaction processing policy for the system is to treat the Primary
Replica for every sub-transaction, or service, as the checkpoint for a fully commit
mode. Any replica can execute a service freely but a partial commit mode is
returned if it is a Non-primary Replica. Only those transactions checked by Primary
Replicas will be finalized by either being upgraded to a fully commit mode or
downgraded to an abort if conflict exists. Coordination among replica groups is
carried out by replication managers to finalize transactions after collecting results
from different service executions [Chen and Zhou 2000b].

During network partitioning, the main problem is that a client could issue a
transaction request which involves server members in different partitioned subnets
so that the continued transaction processing could result in inconsistent data in
different replicas. To solve this problem, we assume that all the Primary sites for
one such transaction are located in the same subnet, which is the common case for
most transactions. Hence, network partitioning could happen in two cases:

One is when a P site sends a transaction to an NP site in the partitioned subnet.

The other is when an NP site sends a transaction to a P site in the partitioned
subnet for checking and finalising it from a partial commit mode.

Our solution is that, in either case, a DMM is running on each subnet respectively
and each DMM will decide whether a partitioning happens according to formulas
(3) and (4). If a transaction is sent to the partitioned subnet, the replication manager
on the P/NP site will send it to the relevant DMM located on the same subnet for
recording and further processing. When a DMM receives a transaction record
during the partitioning, it identifies its type, whether initialized by the P or NP site,
and then stores it in different object lists. After the partitioning is repaired, these
DMMs exchange their knowledge of transactions and then send their transaction
lists to the relevant replication managers on the same subnet. A DMM will then use
actuators to instruct the replication managers to perform these transactions.

For the transactions from P sites for compulsory execution, the replication managers
execute them and then check the result to ensure whether it conflicts with the
present state. If the conflict exists, the replication managers notify the DMM to
invoke certain conflict resolving programs such as a backout strategy. For the
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transactions from NP sites for checking and finalising, the replication managers
check them to see whether they can be executed. If they can, the replication
managers will check the result to see if it conflicts with the present state. If the
conflict does exist, a notification should be made to the DMM and it will abort these
transactions and notify the original NP sites to roll back. If no conflicts are detected,
the DMM will contact the original NP to finalise the transactions. This is the
primary first policy which guarantees the primary site interest.

We give the full algorithms used by DMMs and replication managers for partition
detection and transaction execution in Listing 3 and 4 respectively.

Listing 3: Algorithm used by DMMs for partition detection
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Listing 4: Algorithm used by RPs for transaction execution

In the case where network partitioning results in different P sites involved in one
transaction being located in different partitions, the replication managers in the P
sites cannot fully execute the whole transaction. We propose two options: one is to
let the client abort the transaction and the other is to store the transaction and re-
execute it after the network partitioning is recovered. The detailed implementation
of this application can be referred to [Chen and Zhou 2000b].

11.5.5 Remarks

We have used the reactive modules to resolve the database server failure and the
network partitioning failure above. The crash failure is simple, while the network
partitioning problem is dealt with by the Primary/Non-Primary replica model.
Compared with other fault-tolerant strategies, our method has a flexible system
architecture which can adapt to constant changes in user requirements. In the
resolution we used different DMMs and sensors to implement the fault-tolerant
policies and the failure detection mechanisms, for example, we used the same
DMMs but different sensors, i.e., polling sensors, event sensors and timer sensors
respectively, while the system performs the same functions. It shows that the
sensors are changed while the DMMs remain unchanged and vice versa. This is the
advantage of separation of policies and mechanisms.
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However, one may argue that a relatively centralized DMM used in each subnet for
the network partitioning problem is fault prone. This situation could be made very
rare by placing DMMs in stable sites. While the possibility does exist, transactions
recorded by DMMs should be backed up in non-lost devices when they are sent by
other P/NP sites.

11.6 Summary

This chapter has presented the design, implementation and evaluation of the reactive
system model for building better fault-tolerant distributed applications. The main
advantage of reactive system concepts is the separation of mechanisms and policies
in software development. To build and design this model, we introduced group
communication mechanisms which provide fault-tolerance in the reactive system.
The implementation of the model is based on multicast datagram communication
and stream-based communication, respectively, provided by Java. Three reactive
modules: DMM, sensor and actuator are implemented as generic Java classes which
can be applied in distributed applications. The performance evaluation shows that
the model with stream-based communication is more reliable and effective when
running in a distributed environment.

The reactive system model we designed in this chapter is flexible, reliable and fault-
tolerant. The separation of policies and mechanisms makes the model very flexible
and can be used to develop better fault-tolerant distributed applications. The model
is also fault-tolerant, since its group communication services guarantee correctness
and complete communication even in the case of component failures. The
application of the reactive system model in the replicated database system provides
a fault-tolerance solution to deal with crash failures and network partitioning
failures. The main advantage of the reactive system concepts is the separation of
mechanisms and policies in software development. In the solution, we separate the
DMMs and the sensors/actuators, i.e., we separate the fault-tolerant policies and the
mechanisms. The DMMs stay the same no matter what sensors and actuators are or
what changes they have, and vice versa. Their main task is to make decisions
according to the reports from the sensors they subscribed, and the main task of
sensors is to monitor state events. This separation makes the system maintenance
easier, and provides a flexible system architecture which can cope with constant
changes in environments and user requirements.
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CHAPTER 12 WEB-BASED
DATABASES

World Wide Web has changed the way we do business and research. It also brings a
lot of challenges, such as infinite contents, resource diversity, and maintenance and
update of contents. Web-based database (WBDB) is one of the answers to these
challenges. In this chapter, we classify WBDB architectures into three types [Lan et
al. 2001]: two-tier architecture, three-tier architecture, and hybrid architectures,
according to WBDB access methods. Then the existing technologies used in WBDB
are introduced as various generations, i.e., the traditional Web (generation 1), fast
and more interactive Web (generation 2), Java-based Web (generation 3), and a new
generation combining the techniques of XML and mobile agents. Based on the
introduction, we provide the challenges and some solutions for current WBDB.
Finally we outline a future framework of WBDB.

12.1 Introduction

Internet Computing

The Web is a collection of resources including Gopher, FTP, HTTP, Telnet, Usenet,
WAIS, and others, which can be accessed via a Web browser. It consists of a lot of
Web pages, which are interactive pages of text, graphics and other forms of data and
multimedia such as sounds and movies that Internet users can access at any time
[Wodaski 1997].

There are a lot of challenges for the current Web. The Web is almost infinite at the
current time and contains every aspect of society. On the Web today, content is
king. Any site that successfully attracts repeated visitors has to have fresh and
constantly updated content. Moreover, users feel comfortable only if they can get
the valuable, fresh information rapidly. The problem is how can we satisfy the
demands from users.

An effective web site is big and constantly changing, such as many product pages
and a lot of updates each month. So as a web site grows one may run into two
problems: the web site has so much information that visitors cannot quickly find
what they want. Also it is desirable that the visitors be able to enter data and make
the site interactive. The problem is that the people providing the content for a site
are not the same people handling its design. Oftentimes, the content provider
doesn’t even know HTML.

Maintenance of a content-driven site can be a real pain, too. Many sites are locked
into a dry, outdated design because rewriting those hundreds of HTML files to
reflect a new design would take forever. Server-side can help ease the burden a
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little, but one still ends up with hundreds of files that need to be maintained should
one wish to make a fundamental change to the site.

Finally, the Web today consists of various information resources, such as texts,
pictures, and other forms of multimedia [Cruickshank 1998]. How can the Web
query the contents and publish them on the Web pages? How can the Web realize
dynamic data publishing?

One solution to these challenges is database-driven site design [Zhou 2000]
[Ioannidis 2000]. By achieving complete separation between the design of a site
and the content the site presents, one can work with each without disturbing the
other. Instead of writing an HTML file for every page of a site, one only needs to
write a page for each kind of information one wants to be able to present. Instead of
endlessly pasting new content into the tired page layouts, it would be more efficient
to create a simple content management system that allows the writers to post new
content themselves without a lick of HTML [Ashenfelter 1999].

The World Wide Web is just about the best way ever to distribute information – it is
fast, nearly ubiquitous, and depends on no particular computer platform. And
databases are just about the best way to store and access information - they are
structured and searchable. A database is a structured format for organizing and
maintaining information that can be easily retrieved. The database management
system is a closed system in the sense that all operations on the data managed by the
DBMS will be stored back to the database. Obviously in this context we are limiting
ourselves to the digital world where possible formats span the range from plain text
files to complex object-oriented databases. Therefore, we can combine these two
technologies, both for Web publishers who need to post up-to-the-minute pages and
for web users who want to obtain valuable updated information quickly. A Web-
based database is a key component of many applications, such as applications in
electronic commerce, information retrieval, and multimedia.

Web-Based Database

After Web and databases are incorporated together, a new term “Web-based
database” (WBDB) arises. Generally speaking, a web-based database is a database
that resides entirely on an Internet server. Access to the database is through a web
browser and usually utilizes a password system that allows for restricted access to
users depending on the privileges they have been given.

Web-based databases can be used for a range of functions, some examples are

Creation of product catalogues.

A back end for e-commerce allowing for instant update of prices, product
details etc.

Frequently updateable newsletters, company activities, minutes of meetings etc.

Maintenance of client or user details for email, reference etc.

Web-based databases possess a number of advantages [Winslett 1997]:
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Maintenance and updating. A Web-based database separates content (database)
from presentation (an HTML page). It means that the owner of a site is able to
update the content of the site without constantly having to go through its
webmaster or designer. Creating a Web template once and merging it with new
content (database) is a more reliable way than publishing information with a
consistent layout.

Reusability and modularity. By designing additional templates, one can easily
reuse content on another Web site or modify it to fit a new design. For users,
databases make site searches more accurate: they can be limited to certain
fields, returning better-quality hits than full-text searches.

Distribution of data update. With the right interface, even a novice user can go
into the database to update information; the Web publishing system can then
send out the changes immediately.

Security. Databases help ensure that contents are accessed by authorized users.

Wide ranges of features are available for most Web-based databases. Some of the
more common ones include:

Password access and privilege-based restrictions.

Ability to download database files as text or tab delimited files that can be read
by a database or spreadsheet program on the local computer.

Ability to include images, email links and hyperlinks to other web pages in the
database output.

In addition, some new functions can be developed using the combined features from
Web-based databases, such as [Ramakrishman 2000]:

Keeping track of the origin and modification history of each article by the use
of a DBMS;

Obtaining valuable new data by tracking and logging user activity and user
contribution in the process of interaction;

Dynamically personalizing (or at least fine-tuning) the downloaded Web pages
according to the information about the current page and user’s experience.

So Web-based database is JUST in time, and already works in many fields. The
researchers’ tasks are to make it evolve rapidly and satisfy the user’s requirement by
developing new methods, languages, and frameworks.

A Web-based database system is considered to be a large distributed database
system and at the same time, it is different from a distributed database system in the
following:

Number of users: For traditional database a limited number of users is served
where as in Web-based database system the number of users is very large.
Therefore, a Web-based database system should be able to support large
number of transactions with reasonable response time. Large number of users
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in a Web-based database affects the overall performance of the system. For
example, in an online reservation system the database servers should be
scalable to handle large volume of database requests. This becomes more
critical when there are more write requests like booking of a passenger seat or
updating customer details. Recovery of the lost transactions in these systems,
therefore, is an important task for reliable performance.

Transaction processing: Another aspect where traditional DBMS is different
from Web-based database system is transaction processing. In traditional
DBMS locking mechanism is used to provide concurrency control. Locking
mechanism provides lock on data items for write transaction. The other write
transactions has to wait until the transaction holding lock on data items is
complete (commit) or abort. One major characteristics of debit-credit type
transaction is that it will not hold lock for a long time. For web-based
databases, even a simple transaction may hold lock for a period of time that is
long enough to degrade the performance of the system due to communication
failure. For example, in the online reservation system a client cannot hold lock
on data items for long time while making the reservation. Therefore, a modified
model of transaction processing for Web-based database system is required.

Delivery of query results: Two important cases should be considered. A
complex query and query with large result size. In the first case, long execution
time is needed and in the latter case long result retrieval time is needed. In
traditional DBMSs, result is delivered after the query execution is complete. In
a Web-based database system, however, long waiting time cannot be tolerated.
In such a system, when the first page of result is available it is sent to the user
immediately. The database server continues to process the original query
concurrently while the server transmits the available data over the internet. The
problem arises when database server fails during the transmission of result to
the user. Recovery techniques should be available to recover the lost result
pages after the availability of server.

12.2 Architectures of WBDB

Architecture is a subject of design and implementation and reflects the spatial
arrangement of application data and the spatial-temporal distribution of
computation. There are different WBDB frameworks according to various
technologies and requirements. Generally speaking, WBDB can be considered as a
single huge database as well as multiple data sources. There are a lot of
technologies that can be used for WBDB. Languages for web applications and web
servers are Java, PHP, Perl, HTML, DHTML, XML, SQL and so forth. Access
technologies include CGI, JavaScript, Servlet, JDBC, and ODBC. Common
enterprise databases include Oracle, Sysbase, Informix, DB2, m-SQL, mySQL,
SQL-Server, and Butler-SQL [Gould 1998] [Dragan 1997]. We generally classify
WBDB architectures into the following types: two-tier architecture, three-tier
architecture, and hybrid architectures.
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12.2.1 Two-tier Architecture of WBDB

The minimal spatial configuration of a WBDB is the two-tier architecture. The basic
framework is shown in Figure 12.1.

Figure 12.1. Two-tier architecture of WBDB

It closely resembles the traditional client-server paradigm. But there are still some
differences between them. The two-tier architecture includes client (we called it
and server (we called it here and are used to represent the different parts in
WBDB. The two-tier solution clients are thin, and are lightweight applications
responsible only for rendering the presentation. Application logic and data reside on
the server side [Fraternali 1999]. Technologies involved in a two-tier architecture
are JDBC, XML, and SQL.

12.2.2 Three-tier Architecture of WBDB

The three-tier architecture is a popular model, which contains generally client (we
called it application server (we called it and data server (we called it see
Figure 12.2. A full-fledged WBDB requires these three essential components
although they can represent various types of technologies. In the following, we
discuss some current three-tier architectures of WBDB.

In the three-tier model of a database gateway, the three components are client API
library, server API library, and glue [Rennhackkamp 1997]. The component is the
client API library, which consists of client-side APIs. They determine the format
and meaning of the requests that the client applications may issue. Glue is the
component, which owns translation and mapping mechanisms. It transforms the
client API to the DBMS (Database Management System) server’s API, and vice
versa for the data returned to the clients. The server API library on the database
server-side is the component. It manages the database service available to the
clients. The services change in terms of authentication from the DBMS.
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Figure 12.2. Three-tier architecture of WBDB

The TP (transaction-processing) monitor model is also a kind of three-tier
architecture. In this context, client application component) consists of the user-
interface functions, such as screen logic, screen handling, input handling, and some
validation functions. Application server component) provides all of the details of
application services. Resource managers component) can provide all of the
lower-level services, such as communication between the database and the
application services.

The extended client/server model is a typical three-tier architecture. In such a
model, the client Web browser component) sends requests to the Web server
component). The Web server transfers the requests to a database server
component). After the database server processes the requests, the results are
retrieved to the client Web browser by the reverse pathway. In the transition, the
web server can handle the results from the database [Hightower 1997].

In the multi-distributed databases (MDBS) scenario, the Web server requests the
MDBS to retrieve the required data [Ramakrishman 00]. The server does this
by issuing a global-level SQL query to the MDBS. The MDBS then decomposes the
whole query and generates the local queries according to various features of
engaging database servers. Then these local queries can be issued to corresponding
database servers that may be managed by the DBMS servers. But these DBMS
servers can be accessed through all sorts of database access technologies. The
MDBS integrates the local results it receives from all the database servers and
finally presents a global result to the web server. In this case, the MDBS handles all
the operations including data locating, interrelating, and integrating. The web server
just sends the requests from clients, which is different from the typical client/server
model.

All the technologies can be used in the three-tier architecture according to different
user requirements. The three-tier or even n-tier models are essential models to
structure a WBDB. We discuss them in Section 3 in more detail.
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12.2.3 Hybrid Architecture of WBDB

There are several ways of combining various technologies into the Web or a
database to enhance the performance of WBDB. A general architecture is to apply
agent-based computing concepts in building WBDBs [Bouchaib et al 1999], see
Figure 12.3. Restrictedly speaking, however, it also is the three-tier architecture.

In an agent-based scenario, a client sends either data or data and programs over
the Web server that activates the agent The agent then processes the requested
data using its own programs or using the received programs. After the completion of
the preliminary processing, the agent will send the data/program/medium result to
the application server for further processing. Then the Web server
communicates with the database, and the database server finishes the
manipulation to the database and transfers the results to the Web server. The Web
server will return the results back to the client directly or via the agent.

Figure 12.3. Hybrid architecture of WBDB ( agent-based)

12.3 Web Based Database Access Technologies

Building WBDBs involves many technologies, such as database, Web server, Web
browser, application server, SQL, CGI, JAVA and so on [Wreden 1997]. Some
technologies work for the interface; others may deal with the database access, or
glue everything together, or just applications. The questions are: how do they work
in a real scenario? What are the advantages and drawbacks of different
technologies? In order to give a satisfactory answer, we present an implementation
framework and then analyze them respectively.

We borrow the term “Generation” from [Kutz and Ramakrishnan 1999] with which
the author classified the different stages in the development of web-based database
application technologies. Here “Generation” means a change in technology that “re-
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writes” web application design guidelines by overcoming significant limitations of
the previous generation. The existing technologies used in WBDB can be classified
as technologies for the traditional Web (generation 1), fast and more interactive
Web (generation 2), and Java-based Web (generation 3) [Kutz and Ramakrishnan
1999]. The properties of three generations will be described next. We then propose
a novel generation, although it is not a full-fledged one.

12.3.1 Generic SQL

In the following discussion, almost all technologies use SQL or other query
languages based on SQL to manipulate all types of databases. Virtually all
commercial (relational) database products understand SQL, though most also have
their own special dialects. This means that for most DB technologies, database
queries developed for use with a particular database are portable from one product
or tool to another. This means that developers rarely have to spend time learning
proprietary languages for use with Web databases. It also means that SQL code
developed by a programmer using a desktop database (such as Microsoft Access)
can be used on a common enterprise database system (such as Oracle) with virtually
no changes. Of course, SQL still needs a protocol that can take standard syntax and
translate it into the native procedure calls to actually perform the query, while it
provides a common syntax for query building. For example, the Open Database
Connectivity (ODBC) standard effectively hides the differences and peculiarities of
each specific database by providing an abstraction layer between the application
interface and the database.

12.3.2 Generation 1 (Traditional Web): HTML, HTTP, CGI

WDBDs in Generation 1 use traditional web technologies such as HTML, HTTP,
and CGI. HTML (HyperText Markup Language) is the lingua franca for publishing
hypertext on the World Wide Web. It is a non-proprietary format based upon SGML
[W3C 2001]. HTML has a fixed set of element types and uses a form of tagging
called structural markup. It can be published on the Web by the Web browser.
HTTP is a set of standards used by computers to transfer hypertext files (web
pages), which are generally written in HTML, across the Internet.

CGI is a standard interface between Web servers and outside applications. It is one
of the early techniques for integrating databases into a Web environment. Running a
CGI script from a Web browser lets developers create Web pages that return data
based on user input, calling a compiled program such as C or VB or Perl script to
access databases.

Generally speaking, the CGI-based framework of WBDB can be viewed as a three-
tier architecture. According to Section 12.2 in this chapter, we regard it as a hybrid
architecture metaphor to an agent model. This can help us compare the performance
of the technology with other technologies. The basic process steps are shown in
Figure 12.4. A user opens a Web page and fills in a form containing CGI
parameters. The form request is wrapped in an HTTP request to the Web server.
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After the client connects to the Web server, the Web server finds the CGI request
and initiates a CGI process to handle the form request. Then the CGI program can
access the database by ODBC (Open Database Connectivity) or native drivers from
special databases such as Oracle [Linthicum 1997]. The CGI program receives the
data from the database and generates HTML documents. These documents are
transferred to the Web browser by the Web server and published on the Web pages.

Figure 12.4. Generation 1 framework (CGI-based) of WBDB

The main advantages of the CGI-based framework are its simplicity, language
independence, Web server independence, and its wide acceptance. It is flexible for
the Web server to work without relying on the CGI program. CGI’s easy
programming features make it a widely used technology in building WBDBs.

Despite these advantages, the CGI approach has some problems. The main problem
is that the Web server has to generate a new process for each CGI script. For a large
popular website that can have thousands of access users simultaneously, this
procedure will result in serious resource waste and make the communication
between clients and servers very slow. The second problem is that the
communication through a Web server can possibly cause a bottleneck [Zhou and
Zhang 2000]. For every request that is exchanged, the Web server has to convert
data from or to an HTML document. This necessary conversion process adds
significant overhead when processing a database query. The third problem is that
every query submitted to the CGI is regarded as a new encounter. As a result, the
database server has to perform the same logon and logout procedure, even if the
same user submits multiple queries.

Due to its easy usability and the popularity of Generation 1 WBDBs, CGI is widely
adopted by many developers, especially in developing small-size WBDB.
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12.3.3 Generation 2 (Faster and More interactive Web): JavaScript,
Server-side API

Netscape’s Server API (NSAPI) and Microsoft’s Internet Server API (ISAPI) are
two alternatives to CGI. So is JavaScript. We can view Generation 2 as:

Server-side APIs offer much less resource-intensive access to external services.
Replacing CGI with server-side JavaScript and adding client-side JavaScript and
frames (user interface functionality) significantly alters the application design
domain.

JavaScript is a scripting language embedded in an HTML page. It can respond to
user events such as mouse clicks, form input, page navigation, and validation and
alerts. Client-side JavaScript can popup windows. In the windows, some functions,
such as calculations, swapping image and controlling the GUI components can be
executed. Database searching can also be simulated in the client-side JavaScript.
JavaScript that runs in the Web Server processes some functions of the Web
Browser. Unlike client-side JavaScript, server-side JavaScript has access to host
resources, external programs and databases. The client and server-side JavaScript
framework of WBDB is shown in Figure 12.5.

Figure 12.5. Generation 2 framework (Client and Server-side JavaScript) of WBDB

Compared with the CGI-based framework, the JavaScript/API approach works more
efficiently. The transportation speed is fast. Its shorter server-side response time
allows for designs of novel Web user interface that programmers would never even
consider with CGI. The same language on client and server made communication
and programming easier.

There are also some shortcomings for Generation 2. Due to the limitation of GUI
features, user interface of Generation 2 is still HTML. It must run inside a browser.
It requires the use of frames in order to maintain a persistent visual user interface
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context while updating another GUI control using values from a database. It cannot
send the user interface an unsolicited message from the server.

12.3.4 Generation 3 (Java-based Web): Java, JDBC

Technologies of Generation 3 are popular in current applications. These
technologies include Java, JDBC, Servlet and so forth.

12.3.4.1 JAVA and JDBC

The JDBC-based framework of WBDB is shown in Figure 12.6.

Figure 12.6. Generation 3 (JDBC-based) framework of WBDB

Java is an object-oriented, secure, architectural neutral, portable language. The
unique feature of Java lies in the fact that it combines both compiled and interpreted
codes [Yang et al 1998]. The Java executable code (called bytecode) is generated by
platform-dependent compilers and runs on any platform as long as its operating
system is running the Java Interpreter (JVM) or any Java enabled Web browser. The
Java bytecode represents the instructions for a virtual microprocessor (JVM)
[Papastavtou 1998]. Another key characteristic of Java is the small size of its
compiled code, which enables Java compiled class to travel efficiently through the
Web. A typical example is a Java applet. A Java applet can run within the context of
a Java enabled Web browser [Bouguettaya et al 1999]. The other features of Java
are Exception handling, Automatic garbage collection, GUI components, and
Application interactivity, Bypass HTTP interaction.

Based on the above features, a Java program can run almost everywhere once it is
written. It can be used by both client-side and server-side programs. Its GUI
interface makes the interactivity more effective. By building the new user interface
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classes or components, the communication is more interactive. The applet can run
entirely in its own window even if delivered via an HTML page.

The Java database connectivity (JDBC) is the Java standard specification for
accessing and manipulating databases. The JDBC consists of two layers: the JDBC
API and the JDBC driver API [Papastavtou 1998]. The JDBC API provides a
standard interface to allow applet programmers to access and manipulate
information in databases, regardless of which DBMS is being used. The JDBC
driver API is a set of pure Java classes that provide access to data of many different
types. This lets programmers create a standard applet that would allow anyone,
regardless of the location or the computer they are using, to see the data they want.
A client that employs the JDBC API must first download a JDBC driver to its
environment before accessing a particular database. For a high-level Java edition,
sometimes a JDBC driver is required from the database vendor or one must use
JDBC/ODBC.

A JDBC-to-ODBC bridge is available, should a JDBC class be unavailable for the
database, but this has its limitations. It requires that ODBC be installed on the client
machine or the Web server, introduces a processing overhead and does not allow
platform independence.

There are some disadvantages with utilizing JDBC. It requires a JVM on the client
side like Java and more resources on the client site than Generation 1 and 2
applications do. Existing approaches require to some extent downloading and
initiating the JDBC driver on a client machine. Furthermore, by utilizing the JDBC
API classes at the client machine, the client tends to be transferred from a
lightweight client to a complete conventional, data-aware, LAN client with full
functionality.

12.3.4.2 Servlet

Servlets are small pieces of Java code that serve HTTP requests and dynamically
generate HTML documents. They combine Java strengths (mentioned above) on the
server side with the accessibility of HTML clients to deliver database applications
[Pour 1998]. The Framework for accessing the database through servlets is shown
in Figure 12.7.

Servlets act on the server side like applets on the client side. Using servlets has the
following advantages. Servlets can interact with a back-end database via JDBC for
storing and accessing user accounts. Servlets can keep data persistent between
requests. A pool of database connections can be shared by multiple requests and
frequently requested information can be cached [Bergsten 1998]. Unlike CGI scripts
to create a new process for each request, all servlet requests are handled in the same
process by separate threads. Servlets deliver the same functionality as CGI scripts
but they are faster, cleaner, easier to use. Additionally, servlets provide a Java-based
solution that addresses the problems associated with server-side programming.

The tradeoff of servlets exists in its middleware characteristic in the client/server
architecture. Programmers must create their own command formats in order to
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marshal and de-marshal the parameters [Pour 1998]. It also does not support a
scalable server-side component infrastructure. Implemented as CORBA or RMI
objects, servlets involved in an interaction must take place through a generic API.

Figure 12.7. Servlet-based framework of WBDB

12.3.5 A New Generation: XML, Client/Mobile Agents/Server

12.3.5.1 XML-based WBDB

There is a trend to use XML to map with database at present [Petrou et al. 1998]. Its
simplest form is a two-tier architecture as shown in Figure 12.8. Concurrently, some
systems only utilize XML’s strengths to make original architecture more scalable.

Figure 12.8. XML–based two-tier framework of WBDB

XML is currently in the process of replacing HTML as a standard document markup
language for the Web. For database researchers, XML improves over HTML along
two main directions of interest of our research community, i.e., providing data
semantics and data independence [Cheung et al. 2000] [Bouguettaya 2000].
Generally speaking, XML has the following advantages: (1) XML can define its
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own tags using DTD (Document Type Definition); (2) XML document structures
can be nested to any level of complexity; (3) Any XML documents can contain an
optional description of its grammar for the use of application that is required to
perform structural validation; (4) XML documents can map with databases such as
those in Table 12.1.

Further XML data can be stored in a database in various ways. Oracle 8I provides
such ways as large objects storage and objected-relational storage. Additionally, the
XML documents can be stored as structured, unstructured or hybrid formats
according to different data types [Banerjee et al 1998] [Zaniolo et al 2000].

To achieve XML for current needs a new query language XQL has been proposed
and widely accepted [Prescod 1997]. XQL supports the notions of hierarchy,
sequence, and position. Elements and attributes can be searched, based on their
context and content. XQL also provides means to compose and combine XML
documents on the fly. XQL delivers XML as a result of all queries. There are
already some applications of XML such as Tamino (an Internet Database System)
[Sipe 2000].

For various aims, XSL (Extensible Stylesheet Language) also has been developed to
transform structured XML documents into formatted, scrollable, searchable
documents with tables of contents, indexes, footnotes, and other navigational tools
[Rennhackkamp 1997].

12.3.5.2 Mobile Agent Involved Architecture

Mobile agents are processes dispatched from a source computer to accomplish a
specific task [Bouchaib et al 1999]. After its submission, a mobile agent proceeds
autonomously and independently of the sending client. When it reaches a server, it
is delivered to an agent execution environment. Then if the agent possesses
necessary authentication credentials, its executable parts are started. To accomplish
its task, the mobile agent can transport itself to another server, spawn new agents,
and interact with other agents [Hara et al. 2000]. Upon completion, the mobile agent
delivers the results to the sending clients or another server.
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There are obvious interests in mobile agents applied in Internet applications. Some
of them are:

Bandwidth savings because they can move computation to the data;

Flexibility because they do not require the remote availability of specific code;

Suitability and reliability for mobile computing because they do not require
continuous network connections [Cabri et al 2000].

The infrastructure involved with mobile agents can work as in Figure 12.9. It can
utilize the advantages of mobile agents and eliminate the overhead between the
client and the database. The strength of mobile agents is that they do not rely on
certain Web/database servers and can move autonomously to new destinations,
compared with servlets. Another strong point of mobile agents is that they can be
delivered many times to achieve various goals. The key problems are the mobile
agents’ coordination and security.

Figure 12.9. Mobile agent involved framework of WBDB

12.3.6 Other Useful Techniques

Due to the enormous market for WBDBs, there are all sorts of technologies
developed to satisfy the actual requirements. Here CORBA and RMI are two useful
ones as the middleware for WBDB.

12.3.6.1 CORBA

CORBA is an extremely large and complex collection of specifications and
protocols. The CORBA’s infrastructure provides mechanisms to deal with platform
heterogeneity, transparent location and implementation of objects, interoperability
and communication between software components of a distributed object
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environment [Bouguettaya et al 1999]. The interface language for CORBA
programs is the Interface Definition Language (IDL). CORBA is language neutral
in the sense that clients and servers may be implemented in any of the supported
languages, including C, C++, Smalltalk, Ada, Cobol, and Java.

The object manager for CORBA is the Object Request Broker (ORB). The ORB
enables objects to send and receives message from objects without regard to
whether they are local or remote. CORBA has both static and dynamic means for a
server to provide remote objects. The static method involves client “stub” and
server “stub” (also server “skeleton”). A stub links an object to the ORB on its
machine and is typically generated from IDL. The static use of stubs needs to create
and compile the remote objects before it is implemented. To avoid this problem, a
Dynamic Invocation Interface (DII) is provided. CORBA also has the ability to
communicate with ORBs on different LANs using the Internet Inter-Orb Protocol
(IIOP), which extends TCP/IP.

Generally, CORBA is probably the best choice for implementing middleware to
serve the database’s information to distributed clients if legacy databases are
involved [Buss and Jackson 1998].

12.3.6.2 RMI

RMI is contained in Java Development Kit (JDK) devoted to identifying a remote
object (via a “marker” interface) and throwing remote exceptions, registering
remote objects, serving remote objects, and performing remote garbage collection.
RMI is an object-oriented type of Remote Procedure Call (RPC). RMI is designed
to minimize the disparities between using ordinary (local) and remote objects.

RMI is Java-centric, and shares Java’s specifications, involving platform
independence, JVM run-time environment. The RMI approach also implements
remote objects in the same manner as CORBA including the client-side stub and the
server-side skeleton. An important aspect of RMI is the security manager that is
used to implement a security policy. The tradeoff of RMI being Java-based
technology is that it is not cross-language. Interoperability to non-Java must be done
via JNI. On the other hand, Java’s inherent cross-platform capabilities substantially
increase the number of platforms on which the distributed application may be run.
In addition, several technologies such as JavaBeans and JDBC provide object and
database access services. These functions enforce the implementations based on
RMI in the context of WBDB.

For situations in which much of the implementation is new or Java interfaces and
future application, RMI is the superior choice due to its tighter relationship with the
implementing language and the superiority of Java as an Object-Oriented language.

12.4 Challenges

With the growing popularity of the Internet and the Web, there is a fast growing
demand for access to database management systems from the Web. World Wide
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Web is a gigantic database with enormous potential applications in business,
science, engineering, and education. As a consequence, the number of potential
users of Web-based databases is very large.

As we discussed above, a complete WBDB consists of user interfaces generally
displayed on the Web browser, Web application server, and database server
responsible for data manipulation. In this section, we will discuss the challenges
based on WBDB in these three aspects.

12.4.1 User Interfaces

Current problems about user interfaces are shown in various aspects [Nielsen 1999],
such as:

How to decide the writing style to make the content more obvious. Users
universally despise gratuitous animation and scrolling text field because they
distract from the content, and the worst is, slow down the use of the Web.
These factors usually make users give up surfing on the Web since they cannot
get the most interesting contents. After all, only the contents are what users
want ultimately. On the other hand, the UI should balance the trade-off between
pictures and contents since a small picture may carry many more messages than
a ten-page text.

How to make user interfaces simple. Intuitive and simple query interfaces are
needed to provide access for users with a wide variety of needs and usually
with limited database skills.

How to deal with the device diversity on the Web. The recommended way is to
separate presentation and content and encode the presentation-specific
instructions in style sheets that can be optimised for each platform.

In order to make navigation or browsing more easily understood, some useful
methods can be used [Nielsen 1999] [Zhang and Xu 2000]:

Aggregation. Aggregation is a process by which the properties of a collection
are described in terms of the sums of the properties of the units contained in
that collection. The most elementary aggregative procedure is counting and a
frequency obtained by counting represents the properties of a set by numbers
rather than the list of elements it contains. Aggregation in the same site is easy
to achieve due to the consistency of the data, whereas how to realize
aggregation across sites is not a well-solved problem regards of data diversity.

Summarization. Summarization is the process of condensing a source text into a
shorter version while preserving its information content. The strong points of
this method exist in enriching search results, and getting a fast overview of
document collections.

Filtering (eliminating the stuff the user doesn’t care about). Collaborative
filtering and quality-based filters should work well. The key problem is to find
ways to focus on the most valuable information instead of a complete set of
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relevant documents. For example, show only contents that other people have
found to be valuable or that are published within a short time period. One
interesting approach to guiding users to good documents is the PHOAKS
project at AT&T Research [Nielsen 1999]. This system is based on a
collaborative filtering system that recognizes and reuses recommendations
other than ratings-based systems that are built on the assumption of role
uniformity.

12.4.2 Application Server

An application server is mainly responsible for providing access services for
WBDB. The WBDB access services include connection and resource management,
connected and disconnected sessions, local cache, connectionless updatability,
navigation (scrolling, filtering and ordering), binding from programming language,
and distributed queries, distributed transactions [Blakeley and Deshpande 2000].
The main problems are:

Access diversity. How can users use one program intelligently to access
distributed diverse databases when they search/query data?

Cache management. How to identify the valuable information to cache? When
a connection is broken, the server should cache results from databases and
return it to users after the connection is available again [Park et al. 2000] [Lin
and Ye 2000] [Francis and Sato 1997].

Agent process. Some specific agents should reside on the server, which can be
triggered by users. The functions consist of access databases, re-constructed
contents to adapt to client display equipment, filtering and ordering, and
distributed transactions. These agents sometimes can receive from users as
mobile agents.

Server programming. A programmer should take a lot of aspects into account
when he selects a programming language for server services. A programmer, in
order to assure effectiveness, must consider independence of the operating
system, consistency with the UI, easy operation, scalability, and component-
based reusability.

Security. WBDB server-side security is based on name services. If a hostile
party gains control of the name service, any security depending solely on
correlating names and network addresses will be for naught [Rubin and Geer
1998].

12.4.3 Database Server

Databases are often called the back-end of a client-server application. They provide
the invisible, but essential, core functionality of data storage and manipulation.
After a database is merged with the Web, the main challenges exist in the following:
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Integration with information retrieval. A database server deals with precise
queries on structured information, but information retrieval mostly deals with
unstructured textual information and imprecise queries. How can we add more
power to text processing considering that text databases have become more
popular recently?

Handling diversity (ease of publishing and querying on the Web). A database
server can help the trade-off between ease of publishing and ease of querying
on the Web if we can find more effective and general ways to handle diversity.
The traditional problems are how to deal with different processors, different
operating systems, and different language pales, in comparison to the data
diversity.

Integrating and extending the query mechanism. The most pressing database
problem on the Web is how to integrate different query mechanisms. A demand
is how to make search facilities attached with searching results so that we can
search further in present contents. Another problem is how we can provide
query mechanisms that can simultaneously handle several types of data such as
numeric, textual, and spatial information?

Collecting data and doing research on the Web. How can we comprehensively
collect diverse information from many resources? How can we utilize the
resources on the Web to do research?

Consistency. Some of the research questions are how to define consistency
problems on the Web, how to detect them, and how to integrate systems of
different levels of consistency requirements.

Interaction with users. Supporting the paradigm of customer-centric e-business,
we not only have to track what users visit a Web site, but also to enable them to
offer opinions and contribute to the content of the Web site in various ways. In
order to personalize a user’s experience, a site must dynamically construct (or
at least fine-tune) each page as it is delivered, taking into account information
about the current page. In a word, as web-based databases go beyond a passive
collection of pages to be browsed and seek to present users with a personalized,
interactive experience, the role of the database management system becomes
central. Supporting feedback, hand holding, customizing on the fly, adapting to
user preferences and history, and visualizing progress are some of the issues
that will need to be addressed. After that, the website even can provide useful
searching & feedback results from other users according to certain relationships
among the demands or keywords

12.4.4 Other Challenges

In addition to these problems or limitations, there are other general challenges for
WBDB.

Security. One research effort attempts to extend the capabilities of current
authorization models of relational DBMSs to WBDBs so that a wide variety of
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application authorization policies can be directly supported, and to extend the
relational model to incorporate mandatory access controls. The other direction
concerns the development of adequate authorization models for advanced
DBMSs, like object-oriented DBMSs or active DBMSs. With regard to
WBDB, the protection of information is difficult because of the peculiarity of
the hypertext paradigm and the distribution at different sites. There are several
issues related to access control in WBDB, such as formulation of an
authorization model for a hypertext system, model extension to take
distribution aspects into consideration, and investigation of different policies
for the administration of authorizations.

Reliability. It is essential to manipulate WBDB successfully. This will involve
the classical approaches such as fault avoidance and fault tolerance. In a WWW
environment, realizing the reliability is more complicated due to unpredictable
factors. New models and techniques are required when taking transactions
through the Web into account.

Transaction. Transaction management deals with the problems of always
keeping the database in a consistent state even when concurrent access and
failure occur. There are lock-based and timestamp-based concurrency control
algorithms and deadlock management. Again, a lot of research into this aspect
of WBDB is required.

12.5 A Layered Framework for WBDBs

A WBDB should own the functions and avoid/reduce the problems described in
Section 12.4. Considering the whole scenario, a WBDB can have a framework as
shown in Figure 12.10.

12.5.1 Description of Layers

This layer should contain several agents to resolve the client-side issues. A main
agent (e.g., user agent) is the intelligent interactive interface (IAFace). It assists a
user in formulating queries and displaying the results of queries in a manner
sensitive to the user’s context [Bayardo et al 1997]. It can trigger specific agents to
process individual specifications in terms of the user’s profile. The functions of this
layer include outlining the good contents, generating optimal designs for different
devices to avoid animation, and scrolling text fielding, filtering useless materials for
certain domains in favor of the most valuable information.

In some cases some sub-agents are required. For instance, to realize optimal
designs, the XML parser agent is necessary. The content will need to be encoded
with much-enhanced structure and meta-information beyond current HTML. XML-
based databases should be a suitable option for this goal since XML documents may
comply with a document type definition (DTD), a specification that is given
separately from the document, or a sort of document schema.
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Figure 12.10. Intelligent interactive framework of WBDB

is the most important layer in the whole framework. Agentlets -
programs from servers or clients to complete certain functions - are main
components that can perform the meditative functions. On the one hand, the broker
agent accepts queries and sends them to semantic agents in terms of the domain-
independent rules. After semantic queries are generated, the broker agent diverts the
tasks to semantic corresponsive agents. The special execution agents communicate
with the databases by calling the suitable access database gateways. They also
process or analyze the generated results to satisfy the user requirements, such as
performing or pre-processing aggregation and summarization from selected
information. The results will be fed back to the user interface through further
analysis by the ubiquitous filtering agent.

On the other hand, IAFace can also get the relative URLs or links of execution
agents from the broker agent (effectively, a cache of metadata). Some server work
was done on the client-side programs (client-side agents) which can trigger the
server Agentlets to communicate with databases directly.

Distributed managers, interfaces between data sources and agents from both the
server layer and the layer, are the main components of the

which can also manage mobile agents from clients or servers. They also
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support agents to extend functions. For example, agents can record data rating
according to an independent domain, and provide recommendations for similar
users. Furthermore, the recommendations are also recorded as specifications for
later queries. In addition, database managers can call an agent to record a user’s
personal experiences for presenting more valuable contents and later return the
experience results to the user for forming the user’s preference document. Another
function of agents controlled by database managers is to do sub-queries on the basis
of concrete database or information resources.

12.5.2 Framework Workflow

Once a user sends requests to Web servers, the Web servers send back an IAFace to
the user so as to realize interactive activities with each other. Generally, the user
provides his whole requests through IAFace. IAFace can send the requests to the
Web servers, which trigger an Agentlet to analyze requests and to distract sub-
queries or semantic queries to different databases managers. The managers integrate
information from the databases and other diverse databases preliminarily. The raw
results arrive the corresponsive Agentlets to do mid-process for specific
requirements. If the current connection is broken, the Web servers cach the results
by judging their necessity. The user interface displays the valuable information for
him by running different agents such as ones filtering to eliminate the extra
contents.

Some useless or valueless information can also be thrown away by the Web servers
or database managers according to the user’s established demands. Meanwhile, the
Web servers or client browsers, depending on the capacity of the clients’ equipment,
can process the requirements for a diverse display. Of course, a user can adjust his
requirements through the interactive interface. The proposed architecture uses a
number of current technologies, such as XML, Java Servlet, Enterprise JavaBean,
JDBC, Java and so forth.

12.6 Developing Web-Based Databases

Java network programming opens the possibility of building Web-based distributed
databases. A Web-based distributed database is a key component of many Internet-
related applications, such as applications in electronic commerce, information
retrieval, and multimedia.

The current wisdom on databases is that information stored in databases is owned
by the database management systems (DBMS) that manage the databases. The
DBMS is a closed system in the sense that all operations on the data managed by the
DBMS will be stored back to the database. A further development on distributed
databases and heterogeneous databases allows information to be stored in different
databases using various formats and to be shared among participating databases.
However, a distributed heterogeneous database system is still a closed system that is
managed by a distributed database management system (DDBMS).
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The Web-based database approach represents a deviation from this traditional mode
of thinking. It allows data to be represented in objects (consisting of data and
methods that manipulate the data) and the access of these objects is open to anyone
with the correct access rights. Information stored in a Web-based database is
independent of any particular software (such as the DBMSs in the traditional
database approach). Access to the Web-based database can be easily integrated into
any user interface, such as a conventional WWW browser or a particular application
program. Web-based databases have a great potential in electronic commerce,
information retrieval and multimedia applications.

12.6.1 The Java Database Connectivity (JDBC) Package

The JDBC package is a set of Java classes that can be used by applications to make
database calls. It specifies the interfaces between Java and databases (based on
SQL2). All implementation of JDBC drivers is done by third party companies with
special expertise. A change of a driver will not change the program. The major
advantages of using JDBC are the cross-platform independence and the possibility
of delivering database functionality using Java applets through the Internet.

JDBC’s classes are contained in the java.sql package. It includes the following
major classes:

DriverManger: the DriverManager object is used to facilitate the use of
multiple database drivers in a single application. Each JDBC driver can be used
to connect to a different data source.

Connection: after a JDBC driver has been registered with the DriverManager, a
data source, user ID, password, or other pertinent information can be specified
to create a connection to a database. This Connection object is used in later
calls to specify to which databases the calls should be placed. JDBC supports
having multiple Connection objects open at any given time.

Statement: the Statement object mimics the SQL statement that the application
wants to apply against a database.

ResultSet: after a call is made by a Statement object, the results of the query are
put into a ResultSet object. This object can then be traversed to retrieve
multiple rows as well as multiple columns.

ResultSetMetaData: the ResultSetMetaData object can be used to inquire about
the contents of a ResultSet object.

DatabaseMetaData: the DatabaseMetaData object can be used to query the
support options for a given database.

SQLException: this exception is used to capture most problems that are
returned from database systems. In addition, the JDBC offers an SQLWarning
class that returns information which is not as severe as the SQLException class
does.
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A JDBC program initially invokes the DriverManager class’s getConnection( )
method to establish a connection to the database. Once the connection is
established, the program calls either the createStatement( ), prepareStatement( ), or
prepareCall( ) method of the Connection object and prepares for executing the SQL
statements. SQL statements can be executed by invoking the Statement object, or
via the PreparedStatement object or the CallableStatement object.

Next, the program either calls the executeQuery( ), executeUpdate( ), or execute( )
method of the Statement, PreparedStatement, or CallableStatement object. The
executeQuery( ) method is used when only one ResultSet is needed, and the
execute( ) method is used when more than one ResultSet is returned. The
executeUpdate( ) method is used if no ResultSet is needed and the SQL statement
contains an UPDATE, INSERT, or DELETE. The next( ) method of the ResultSet
object can be used to process multiple rows of data.

12.6.2 Steps for Developing Web-based Databases

12.6.2.1 Preparing the Database

The first step in developing a web-based database using JDBC is to prepare the
database for JDBC connection. We use an Access database as an example. First, a
blank database, named dbtest.mdb, is created. Second, the following steps are
used to prepare the database for JDBC access:

From the Start menu select the Settings;

Click the Control Panel, then the ODBC Data Source (32bit);

Click System DSN, then Add;

Select Microsoft Database Driver (*.mdb);

Type in data source name and use “Select” to find the database
“dbtest.mdb”; Use “Options” to set the username and password.

12.6.2.2 Creating the Database Tables

Assume that the database contains three tables: CUSTOMER, PRODUCT, and
TRANSACTIONS.

The following Java program “CreateCustomer.java” creates the customer
table with four columns (C_NAME, C_ID, C_ADDR, and C_PHONE):
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Now, you can compile the program and run it. After that, check the database to see
if the table is created.

The creation of the PRODUCT table (with five columns of P_NAME, P_DESC,
P_CODE, P_UNIT, and P_STOCK) is similar. The Java program
“CreateProduct.java” is listed below:
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You can also compile the program, run it, and check the database to see if the table
is created.

The creation of the TRANSACTION table (with column of T_ID, C_ID,
P_CODE, T_NUM, T_TOTAL_PRICE, and T_DAATE) is also similar. The
following Java program “CreateTransaction.java” completes such a task:

You should also compile the program, run it, and check the database to see if the
table is created.

12.6.2.3 Populating the Tables

We populate the three tables using the following programs, named
InsertCustomer.java, InsertProduct.java, and InsertTran-
saction.java, respectively:
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You can compile the programs, run them, and check the database to see if the tables
are populated.

12.6.2.4 Printing the Columns of Tables

The following Java program “PrintColumns.Java” prints all contents of the
CUSTOMER table:
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The program uses a Java class called PrintColumnTypes, to identify the types used
in the database and JDBC. The program (called PrintColumnTypes.Java) is
shown below:

You should compile the program, run it, and check if the table is printed properly.

To print the columns of the PRODUCT and the TRANSACTION tables, only one line
of the above program needs to be changed:

Just change CUSTOMER into PRODUCT or TRANSACTION, then it will print the
contents of these tables, respetively.

12.6.2.5 Select Statements (one table)

The following Java program “SelectStatement.java” executes the following
SQL statement:

You can execute other SQL statements by simply changing the corresponding
statement in the program.



You should compile the program, run it, and check the database to see if the result is
selected properly.

12.6.3 Developing A JDBC Application

In this section we use an example to show how to develop a JDBC application. This
example has a database that stores data, a server that manages the access of the
database, and a client that interfaces with users. The client uses a Java applet to
access the server and the server uses JDBC to access the database.

Prepare the Access database and the HTML file

We use the Access database, “dbtest.mdb”, created in the previous section. It
includes three tables: CUSTOMER, PRODUCT, and TRANSACTION.
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The first step is to prepare the following HTML file, named Applet.html, to use
the applet:

Prepare the Java applet programs

Create the main applet program, “ClientApplet.java”. This program
implements the user interface. You should change the IP address in the program to a
proper IP address.
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Create the Java program that implements the ClientComm class used in the applet:
ClientComm.java. This program deals with the major communication work
between the applet and the server.
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Create the Java program that implements the ClientCommExit class used in the
applet: ClientCommExit.java. This program deals with the special applet
command of “Server Exit”.
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Create the Java program that implements the ClientCommSQL class used in the
applet: ClientCommSQL.java. This program deals with the special applet
commands for SQL statements.
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Prepare the main server program

Create the main server program, SDB.java. This program accepts applet
connections and user commands and then dispatches the commands to individual
processing programs accordingly.
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Prepare the database access programs

Create the Java program,DispCus.java, to display the customer table.
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Create the Java program, DispPro.java, to display the product table.
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Create the Java program, DispTra.java, to display the transaction table.

Create the Java program, ExeSQL.java, to execute an SQL statement.
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Compile and test the programs

The following steps are used to compile and execute the example:

Compile all the Java programs.

Execute the server program SDB class first.

Execute the applet via the applet.html using the appletviewer browser.

Note that the server’s host IP address is hard-coded into the Client–
Applet.java program. It can be changed to any host address that the server is
running. Of course, the applet program has to be re-compiled. This address can be
easily entered as a parameter of the program.

12.7 Summary

In this chapter, we introduced the Web-based database (WBDB) concepts and
classified the WBDB architecture into two-tier architecture, three-tier architecture,
and hybrid architecture according to the database access methods. Then the existing
tecnologies used in WBDB were introduced as different generations, i.e.,
technologies for the traditional Web (Generation 1), the fast and more interactive
Web (Generation 2), the Java-based Web (Generation 3), and a new generation.
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Based on these introductions, we discussed the challenges and provided some
solutions for current WBDB. We also pictured a future framework of WBDB,
which serves interaction and valuable data retrieval, and presented function
descriptions of three layers. Through describing the services of three layers in the
later framework, we proposed that the intelligent or semantic queries will be the
new trend on the basis of a semantic Web. Besides, agent-based services occupy
more and more important roles in the WBDB areas of scalability and extensibility.
Finally, we addressed how to develop WBDB applications using JDBC. The JDBC
package is a set of Java classes that can be used by applications to make database
calls on the Internet. Examples presented in the chapter show that the development
of WBDB using JDBC is quite interesting and convenient.

Exercises

What challenges are faced by the Web? 12.1.1

What functions does the WBDB achieve? 12.1.2

What components compose the three-tier architecture of WBDB? Describe
their functions. 12.2.2

12.1

12.2

12.3

Describe the advantages and disadvantages of the CGI approach. 12.3.212.4

12.5

What is JDBC? How does it work? 12.3.4.1

What is XQL? What is it for? 12.3.5.1

Why can we use mobile agents in Internet applications? 12.3.5.2

12.6

12.7

12.8

12.9

What challenges are faced by WBDB access services? 12.4.2

What are Agentlets? What can they do? 12.5.1

What components are included in the JDBC package? 12.6.1

12.10

12.11

12.12

12.13

Use the updated database to rewrite the JDBC application in 12.6.312.14

What is the Generation 2 technology for WBDB? Describe its process step.
12.3.3

Why does the author say that CORBA is probably the best choice for
implementing middleware in the WBDB applications? 12.3.6.1

Re-write the program in 12.6.2 to create the database ‘dbtest.db’ again by
adding a MANUFACTURER table and a column of P_MANUFACTURER in the
table PRODUCT. The columns of MANUFACTURER table are M_NAME,
M_ADDR, M_PRODUCTS and M_NUMBER.
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CHAPTER 13 MOBILE COMPUTING

Mobile computing requires wireless communication, mobility and portability. In the
past few years, we have seen an explosion of mobile devices over the world such as
notebooks, multimedia PDA and mobile phones. The rapidly expanding markets for
cellular voice and limited data service have created a great demand for mobile
communication and computing. Mobile communications applications include
mobile computing and wireless communications. Many of the advances in
communications involve the use of Internet Protocol (IP), Asynchronous Transfer
Mode (ATM), and ad hoc network protocols. Recently much focus has been
directed at advancing communication technology in the area of mobile wireless
networks especially on the IP based wireless networks. This chapter focuses on two
major issues: Mobile IP and mobile multicast and anycast applications.

13.1 Introduction

It is known that IP nodes - hosts and routers - use their routing table to make packet
forwarding decisions based on the packet header network prefix of the IP
destination address. This implies that all nodes with interfaces on a given link must
have identical network-prefix portions of their IP addresses on those interfaces.

To see the problem with this scenario, let us examine what happens if a host whose
network-prefix has been assigned to one link, disconnects from that link and then
connects to a new link, which has been assigned a different network-connection as
shown in Figure 13.1 below:

Figure 13.1. Example of Mobile Applications
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Now suppose mobile node C has been moved from LAN 130.0.0 to 140.0.0. At this
moment, host A initiates a packet to mobile node C. Following the IP routing
procedure, the following steps are taken:

A sends a packet destined to router 1 with network-prefix = 120.0.0 (i.e.,
destination address 120.0.0.4) and IP source address (110.0.0.1).

Router 1 finds an entry of the destination with network-prefix 120.0.0. in the
row of its routing table, which specifies a next-hop of Router 2 (130.0.0) via
interface “i3”.

Router 2 has a direct route in its routing table for the destination with network
prefix equal to 120.0.0, so Router 2 transmits the packet via interface i2 to LAN
2. However, the packet cannot be delivered based upon the network prefix as
mobile node C has been disconnected from the LAN 2. Router 2 will then send
an ICMP Host Unreachable error message back to the source of the packets -
Host A.

1.

2.

3.

Methods to solve the problem

By host-specific routes: Solving this problem by changing all routers’ specific
routes. This may require all routers on the routes for a mobile host to change their
routing tables. The solution is not scalable and thus not feasible as the changing
routes cost too much. If there are many mobile hosts roaming on the Internet, each
of the mobile nodes needs a specific route, then there are thousands of such
modifications for each router. Besides the cost, the change of the routes is not
secure and not robust.

Just changethe the mobile node’s IP address: This approach does not solve the
problem. Once a mobile node moves from one lihk to another, the “foreign link”
must assign a new address to the mobile node with the network prefix identical to
the local network prefix. But there are several problems associated: how does a
host, once it wants to transmit a message to a mobile node, know the new IP address
of the node. When the mobile node keeps changing, the problem gets even more
serious.

Only need nomadicity: Like mobile phones, if all the communications are initiated
by users, the users do not mind restarting the applications. Then in this case, the
nomadicity is indeed sufficient and mobility is not absolutely necessary. However,
there are many applications that must not be re-started when a mobile node changes
links. Many of them involve the virtues of using a fixed IP address:

Many applications have configuration databases, which depend on IP
addresses, as opposed to hostnames. In the presence of rapidly changing IP,
addresses, those applications would break down.

There is sufficient reason to believe that servers, not just clients, would need to
become mobile (such as military, remote medicine and remote mine detection
and disaster relief etc). Apparently, those servers cannot be allowed to stop
service during mobility.
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Some application vendors provide network-licensing systems, which restrict
access to only those nodes possessing specific ranges of IP addresses. Without
mobile IP, a nomadic node, which changes link and IP addresses, will no longer
be able to obtain a license over the network to use these applications.

Some security mechanisms provide access-privileges to nodes based upon their
IP address. Mobile nodes employing Mobile IP allow such mechanisms to work
in the presence of node mobility.

Maintaining a pool of addresses for assignment to nomadic nodes can be
difficult, and in some cases no assignment mechanism might be available
[Soloman 1998].

Mobile IP

Mobile IP provides an efficient, scalable mechanism for node mobility within the
Internet. Using Mobile IP, nodes may change their point-of-attachment to the
Internet without changing their IP address. This allows them to maintain transport
and higher-layer connections while moving. Node mobility is realized without the
need to propagate host-specific routes throughout the Internet routing fabric. The
protocol is documented in Proposed Standard IETF Working Group RFC
documents [Perkins 1996b]. The physical constraints of mobile communications
typically include low bandwidth of link layer connection, high error rates, and
temporary disconnection.

This section discusses the applicability Mobile IP to provide host mobility on the
Internet. In particular, the key features of Mobile IP based on [Solomon 1996] is
described. Mobile IP allows transparent routing of IP packets to mobile nodes on
the Internet. Each mobile node is always identified by its home address, regardless
of its current point of attachment to the Internet. While situated away from its home,
a mobile node is also associated with a care-of address (to be discuss later), which
provides information about its current point of attachment to the Internet. The
protocol provides for registering the care-of address with a home agent. The home
agent sends datagrams destined for the mobile node through a tunnel to the care-of
address. After arriving at the end of the tunnel, each datagram packet (we use packet
and datagram interchangeably in this chapter) is then delivered to the mobile node
[Perkins 1996b].

13.2 Overview of Mobile IP

Mobile IP executes the function of the network layer, Layer 3 of the Open Systems
Interconnection (OSI) Model. The network layer is responsible for dynamically
selecting a path from the original source of a packet to its ultimate destination. On
the Internet, the network layer protocol is named Internet Protocol (IP), which relies
on typical routing protocols to move the packet from one place to another.
Examples of routing protocols include Open Shortest Path First (OSPF), the
Routing Information Protocol (RIP), and the Border Gateway Protocol (BGP). As a
network layer protocol, Mobile IP is completely independent of the media over
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which it runs. Thus a mobile node using Mobile IP can move from one type of
medium to another without losing connectivity.

The requirements of Mobile IP are as follows:

A mobile node must be able to communicate with other nodes after changing its
link-layer point-of-attachment to the Internet.

A mobile node must be able to communicate using only its home (permanent)
IP address, regardless of its current link-layer point-of-attachment to the
Internet.

A mobile node must be able to communicate with other computers that do not
implement the Mobile IP mobility functions.

A mobile node must not be exposed to any new security threats over and above
those to which a fixed node on the Internet is exposed.

1.

2.

3.

In brief, Mobile IP routing works as follows. Packets destined to a mobile node are
routed first to its home network—a network identified by the network prefix of the
mobile node’s (permanent) home address. At the home network, the mobile node’s
home agent intercepts such packets and tunnels them to the mobile node’s most
recently reported care-of address. At the endpoint of the tunnel, the inner packets
are decapsulated and delivered to the mobile node. In the reverse direction, packets
sourced by mobile nodes are routed to their destination using standard IP routing
mechanisms [Soloman 1998].

Thus, Mobile IP relies on protocol tunneling to deliver packets to mobile nodes that
are away from their home network. The mobile node’s home address is hidden from
routers along the path from the home agent to the mobile node due to the presence
of the tunnel. The encapsulating packet is destined to the mobile node’s care-of
address, a topologically significant address, to which standard IP routing
mechanisms can deliver packets.

The Mobile IP protocol defines the following: an authenticated registration
procedure by which a mobile node informs its home agent(s) of its care-of
address(es); an extension to ICMP Router Discovery [Deering 1991] which allows
mobile nodes to discover prospective home agents and foreign agents; and the rules
for routing packets to and from mobile nodes, including the specification of one
mandatory tunneling mechanism [Perkins 1996a] and several optional tunneling
mechanisms [Perkins 1994] [Hanks etal 1994].

Tunneling: A tunnel is the path followed by a first packet while it is encapsulated
within the pay load portion of the second packet, as shown in Figure 13.2.

The Mobile IP protocol places no additional constraints on the assignment of IP
addresses. That is, a mobile node can be assigned an IP address by the organization
that owns the machine. This protocol assumes that mobile nodes will not change
their point of attachment to the Internet more frequently than once per second. This
protocol assumes that IP unicast datagrams are routed based on the destination
address in the datagram header (for example, by source address) [Perkins 1996b].

4.
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Figure 13.2. IP Tunneling

Mobile IP is intended to enable nodes to move from one IP subnet to another. It is
just as suitable for mobility across homogeneous media as for mobility across
heterogeneous media. Mobile IP introduces the following new functional entities:

Mobile Node: A host or router that changes its point of attachment from one
network or sub-network to another. A mobile node may change its location
without changing its IP address; it may continue to communicate with other
Internet nodes at any location using its (constant) IP address, assuming link-
layer connectivity to a point of attachment is available.

Home Agent: A router on a mobile node’s home network, which tunnels
datagrams for delivery to the mobile node when it is away from home, and
maintains current location information for the mobile node.

Foreign Agent: A router on a mobile node’s visited network, which provides
routing services to the mobile node while registered. The foreign agent de-
tunnels and delivers datagrams to the mobile node that were tunneled by the
mobile node’s home agent. For datagrams sent by a mobile node, the foreign
agent may serve as a default router for registered mobile nodes.

A mobile node is given with a long-term IP address on a home network. This home
address is administered in the same way as a “permanent” IP address provided to a
stationary host. When away from its home network, the mobile node is associated
with a “care-of address” which reflects the mobile node’s current point of
attachment. The mobile node uses its home address as the source address of all IP
datagrams that it sends.

To understand mobile IP well, we classify the following concepts:

Agent Advertisement: An advertisement message constructed by attaching a
special Extension to a router advertisement [Deering 1991] message.

Authentication: The process of verifying (using cryptographic techniques, for
all applications in this specification) the identity of the originator of a message.
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Care-of Address: The termination point of a tunnel toward a mobile node, for
datagrams forwarded to the mobile node while it is away from home. The
protocol can use two different types of care-of address: a “foreign agent care-
of address” is an address of a foreign agent with which the mobile node is
registered, and a “co-located care-of address” is an externally obtained local
address which the mobile node has associated with one of its own network
interfaces.

Correspondent Node: A peer with which a mobile node is communicating. A
correspondent node may be either mobile or stationary.

Foreign Network: Any network other than the mobile node’s Home Network.

Home Address: An IP address that is assigned for an extended period of time to
a mobile node. It remains unchanged regardless of where the node is attached
to the Internet.

Home Network: A network, possibly virtual, having a network prefix matching
that of a mobile node’s home address. Note that standard IP routing
mechanisms will deliver datagrams destined to a mobile node’s Home Address
to the mobile node’s Home Network.

Link: A facility or medium over which nodes can communicate at the link
layer. A link underlies the network layer.

Link-Layer Address: The address used to identify an endpoint of some
communication over a physical link. Typically, the Link-Layer address is an
interface’s Media Access Control (MAC) address.

Mobility Agent: Either a home agent or a foreign agent.

Mobility Binding: The association of a home address with a care-of address,
along with the remaining lifetime of that association.

Mobility Security Association: A collection of security contexts, between a pair
of nodes, which may be applied to Mobile IP protocol messages exchanged
between them. Each context indicates an authentication algorithm and mode, a
secret (a shared key, or appropriate public/private key pair), and a style of
replay protection in use. Security Parameter Index (SPI): An index identifying a
security context between a pair of nodes among the contexts available in the
Mobility Security Association. SPI values 0 through 255 are reserved and must
not be used in any Mobility Security Association. Nonce: A randomly chosen
value, different from previous choices, inserted in a message to protect against
replays. Security issues will not be discussed in this chapter. Readers are
referred to [Perkins 1998] for details.

Node: A host or a router.

Tunnel: The path followed by a datagram while it is encapsulated. The model
is that, while it is encapsulated, a datagram is routed to a knowledgeable
decapsulating agent, which decapsulates the datagram and then correctly
delivers it to its ultimate destination.
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Virtual Network: A network with no physical instantiation beyond a router
(with a physical network interface on another network). The router (e.g., a
home agent) generally advertises reachability to the virtual network using
conventional routing protocols.

Visited Network: A network other than a mobile node’s Home Network, to
which the mobile node is currently connected.

Visitor List: The list of mobile nodes visiting a foreign agent.

Mobile IP, in essence, is a way of doing three relatively separate functions [Perkins
1998]:

1.

2.

3.

Agent discovery: Home agent and foreign agents may advertise their
availability on each link for which they provide service. Thus a mobile node
has to determine if it is currently connected to its home link or foreign link. A
newly arrived mobile node must solicit an agent if one is present to provide
connection service.

Registration: When a mobile node is away from its home network or it detects
that it has changed its link of attachment from one network to another.
Depending on its method of attachment, the mobile node will register either
directly with its home agent or through a foreign agent, which will forward the
registration to the home agent.

Routing (tunneling): The specific mechanisms by which packets are routed to
and from a mobile node. In order for datagrams to be delivered to the mobile
node when it is away from home, the home agent has to tunnel the datagrams to
the care-of address.

The following steps provide a rough outline of operation of the Mobile IP protocol:

1.

2.

3.

4.

5.

Mobility agents (i.e., foreign agents and home agents) advertise their presence
via Agent Advertisement messages. A mobile node may optionally solicit an
Agent Advertisement message from any locally attached mobility agents
through an Agent Solicitation message.

A mobile node receives these Agent Advertisements and determines whether it
is on its home network or a foreign network.

When the mobile node detects that it is located on its home network, it operates
without mobility services. If returning to its home network from being
registered elsewhere, the mobile node deregisters with its home agent, through
exchange of a Registration Request and Registration Reply message with it.

When a mobile node detects that it has moved to a foreign network, it obtains a
care-of address on the foreign network. The care-of address can either be
determined from a foreign agent’s advertisements (a foreign agent care-of
address), or by some external assignment mechanism such as DHCP [Droms
1997] (a co-located care-of address).

The mobile node operating away from home then registers its new care-of
address with its home agent through exchange of a Registration Request and
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6.

7.

8.

Registration Reply message with it, (possibly) via a foreign agent ([Perkins
1996b]).

Datagrams sent to the mobile node’s home address are intercepted by its home
agent, tunneled by the home agent to the mobile node’s care-of address,
received at the tunnel endpoint (either at a foreign agent or at the mobile node
itself), and finally delivered to the mobile node.

In the reverse direction, datagrams sent by the mobile node are generally
delivered to their destination using standard IP routing mechanisms, not
necessarily passing through the home agent.

When away from home, Mobile IP uses protocol tunneling to hide a mobile
node’s home address from intervening routers between its home network and its
current location. The tunnel terminates at the mobile node’s care-of address.
The care-of address must be an address to which datagrams can be delivered
via conventional IP routing. At the care-of address, the original datagram is
removed from the tunnel and delivered to the mobile node.

Mobile IP provides two alternative modes for the acquisition of a care-of address:

A “foreign agent care-of address” is a care-of address provided by a foreign
agent through its Agent Advertisement messages. In this case, the care-of
address is an IP address of the foreign agent. In this mode, the foreign agent is
the endpoint of the tunnel and, upon receiving tunneled datagrams,
decapsulates them and delivers the inner datagram to the mobile node. This
mode of acquisition is preferred because it allows many mobile nodes to share
the same care-of address and therefore does not place unnecessary demands on
the already limited IPv4 address space.

A “co-located care-of address” is a care-of address acquired by the mobile node
as a local IP address through some external means, which the mobile node then
associates with one of its own network interfaces. The address may be
dynamically acquired as a temporary address by the mobile node such as
through DHCP [Droms 1997], or may be owned by the mobile node as a long-
term address for its use only while visiting some foreign network. When using
a co-located care-of address, the mobile node serves as the endpoint of the
tunnel and itself performs decapsulation of the datagrams tunneled to it.

The mode of using a co-located care-of address has the advantage that it allows a
mobile node to function without a foreign agent, for example, in networks that have
not yet deployed a foreign agent. It does, however, place additional burden on the
IPv4 address space because it requires a pool of addresses within the foreign
network to be made available to visiting mobile nodes. It is difficult to efficiently
maintain pools of addresses for each subnet that may permit mobile nodes to visit. It
is important to understand the distinction between the care-of address and the
foreign agent functions. The care-of address is simply the endpoint of the tunnel. It
might indeed be an address of a foreign agent (a foreign agent care-of address), but
it might instead be an address temporarily acquired by the mobile node (a co-
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located care-of address). A foreign agent, on the other hand, is a mobility agent that
provides services to mobile nodes.

For example, Figure 13.3 illustrates the routing of packets to and from a mobile
node away from home, once the mobile node has registered with its home agent. In
Figure 13.4, the mobile node is using a foreign agent care-of address, not a co-
located care-of address.

Figure 13.3. Operation of Mobile Node under Mobile IP

Figure 13.4. Operation of Mobile IP on care-of address

Similarly, a mobile node and a prospective or current foreign agent are able to
exchange datagrams without relying on standard IP routing mechanisms; that is,
those mechanisms that make forwarding decisions based upon the network-prefix of
the destination address in the IP header. This requirement can be satisfied if the
foreign agent and the visiting mobile node have an interface on the same link. In
this case, the mobile node and foreign agent simply bypass their normal IP routing
mechanism when sending datagrams to each other, addressing the underlying link-
layer packets to their respective link-layer addresses. Other placements of the
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foreign agent relative to the mobile node are also possible using other mechanisms
to exchange datagrams between these nodes.

If a mobile node is using a co-located care-of address (as described in (2) above),
the mobile node must be located on the link identified by the network prefix of this
care-of address. Otherwise, datagrams destined to the care-of address would be
undeliverable. As shown in the below figure:

Figure 13.5. Operation of Mobile IP on collocated care-of address

13.3 Agent Advertisement and Solicitation

Agent Discovery consists of two simple messages. The first is Agent
Advertisement, which is used by either home or foreign agents to announce their
ability to make the connection to mobile nodes. In other words, the Agent
Advertisements are used by the mobility agents (either home or foreign) to
announce their presences. The second type of message of Agent Discovery is Agent
Solicitation which is sent by mobile nodes that want to connect to an agent and have
no paitence to wait for the next periodic advertisement to come. Agent Discovery is
a method by which a mobile node determines whether it is currently connected to its
home network or to a foreign network, and detects when it has moved from one
network to another. When a mobile node is connected to a foreign network, the
methods specified in this section also allow the mobile node to determine the
foreign agent care-of address offered by each foreign agent on that network
[Soloman 1998] [Perkins 1998].

Mobile IP extends ICMP Router Discovery [Deering 1991] as its primary
mechanism for Agent Discovery. An Agent Advertisement is formed by including a
Mobility Agent Advertisement Extension in an ICMP Router Advertisement
message. An Agent Solicitation message is identical to an ICMP Router
Solicitation, except that its IP TTL (time-to-live field) must be set to 1. This section
describes the message formats and procedures by which mobile nodes, foreign
agents, and home agents cooperate to realize the Agent Advertisement and
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Solicitation may not be necessary for link layers that already provide this
functionality.

Figure 13.6. ICMP Router Advertisement and Mobility Agent Advertisement
Extension Message [Deering 1991] [Perkins 1996b]

Figure 13.7. ICMP Router Solicitation Message [Deering 1991]

Agent Advertisements are transmitted by a mobility agent to advertise its services on
a link. Mobile nodes use these advertisements to determine their current point of
attachment to the Internet. An Agent Advertisement is an ICMP Router
Advertisement that has been extended to also carry a Mobility Agent Advertisement
Extension and, optionally, a Prefix-Lengths Extension, One-byte Padding
Extension, or other Extensions that are defined in [Perkins 1996b]. Figure 13.6
depicts such a message and Figure 13.7 depicts a solicitation message.

In these messages, there are two types of fields listed as follows:
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IP Fields:

Source Address: An IP address belonging to the interface from which this
message is sent.

Destination Address: The configured Advertisement Address or the IP address
of a neighboring host.

Time-to-Live = 1 if the Destination Address is an IP multicast address; at least
1 otherwise.

ICMP Fields:

Code = 0;

Checksum: The 16-bit checksum is the complement sum of the ICMP message,
starting with the ICMP Type. For computing the checksum, the Checksum field
is set to 0.

Addrs: The number of router addresses advertised in this message.

Addr Entry Size: The number of 32-bit words of information per each router
address (2, in the version of the protocol described here).

Lifetime: The maximum number of seconds that the router addresses may be
considered valid.

The ICMP Router Advertisement portion of the Agent Advertisement may contain
one or more router addresses. An agent only puts its own addresses, if any, in the
advertisement. Whether or not its own address appears in the Router Addresses, a
foreign agent must route datagrams it receives from registered mobile nodes.

The Mobility Agent Advertisement Extension follows the ICMP Router
Advertisement fields. It is used to indicate that an ICMP Router Advertisement
message is also an Agent Advertisement being sent by a mobility agent. The
Mobility Agent Advertisement Extension is defined as follows:

Length = (6 + 4*N), where 6 accounts for the number of bytes in the Sequence
Number, Registration Lifetime, flags, and reserved fields, and N is the number
of care-of addresses advertised.

Sequence Number: The count of Agent Advertisement messages sent since the
agent was initialized [Perkins 1996b].

Registration Lifetime: The longest lifetime (measured in seconds) that this
agent is willing to accept in any Registration Request. A value of 0xffff
indicates infinity. This field has no relation to the “Lifetime” field within the
ICMP Router Advertisement portion of the Agent Advertisement.

R: Registration required. Registration with this foreign agent (or another
foreign agent on this link) is required even when using a co-located care-of
address.
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B: Busy. The foreign agent will not accept registrations from additional mobile
nodes.

H: Home agent. This agent offers service as a home agent on the link on which
this Agent Advertisement message is sent.

F: Foreign agent. This agent offers service as a foreign agent on the link on
which this Agent Advertisement message is sent.

M: Minimal encapsulation. This agent implements receiving tunneled
datagrams that use minimal encapsulation [Perkins 1994].

G: GRE encapsulation. This agent implements receiving tunneled datagrams
that use GRE encapsulation [Hanks et al 1994].

r : Sent as zero; ignored on reception. Not allocated for any other uses.

T: Foreign agent supports reverse tunneling.

Reserved: Sent as zero; ignored on reception.

Care-of Address(es): The advertised foreign agent care-of address(es) provided
by this foreign agent. An Agent Advertisement must include at least one care-of
address if the ‘F’ bit is set. The number of care-of addresses presented is
determined by the Length field in the Extension.

13.3.1 Foreign Agent and Home Agent

Any mobility agent, which cannot be discovered by a link-layer protocol, must send
Agent Advertisements. An agent, which can be discovered by a link-layer protocol,
should also implement Agent Advertisements. However, the Advertisements need
not be sent, except when the site policy requires registration with the agent (i.e.,
when the ‘R’ bit is set), or as a response to a specific Agent Solicitation. All mobility
agents must process packets that they receive addressed to the Mobile-Agents
multicast group, at address 224.0.0.11. A mobile node may send an Agent
Solicitation to 224.0.0.11. All mobility agents should respond to Agent
Solicitations.

The same procedures, defaults, and constants are used in Agent Advertisement
messages and Agent Solicitation messages as specified for ICMP Router Discovery
[Deering 1991]. The following exception must be considered:

A mobility agent must limit the rate at which it sends broadcast or multicast
Agent Advertisements; the maximum rate should be chosen so that the
Advertisements do not consume a significant amount of network bandwidth.

A mobility agent that receives a Router Solicitation must not require that the IP
Source Address be the address of a neighbor (i.e., an address that matches one
of the router’s own addresses on the arrival interface, under the subnet mask
associated with that address of the router).
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A mobility agent may be configured to send Agent Advertisements only in
response to an Agent Solicitation message.

If the home network is a virtual network, the home network has no physical
realization external to the home agent itself. In this case, there is no physical
network link on which to send Agent Advertisement messages advertising the home
agent. Mobile nodes for which this is the home network are always treated as being
away from home.

Home agents and foreign agents must support tunneling datagrams using IP in IP
encapsulation [Perkins 1996a]. Any mobile node that uses a co-located care-of
address must support receiving datagrams tunneled using IP in IP encapsulation.
Minimal encapsulation [Perkins 1994] and GRE encapsulation [Hanks et al 1994]
are alternate encapsulation methods, which may optionally be supported by mobility
agents and mobile nodes. The use of these alternative forms of encapsulation, when
requested by the mobile node, is otherwise at the discretion of the home agent.

13.3.2 Mobile Node Considerations

Every mobile node must implement Agent Solicitation. Solicitations are sent in the
absence of Agent Advertisements and when a care-of address has not been
determined through a link-layer protocol or other means. The mobile node uses the
same procedures, defaults, and constants for Agent Solicitation as specified for
ICMP Router Solicitation messages [Deering 1991], except that the mobile node
may solicit more often than once every three seconds, and that a mobile node that is
currently not connected to any foreign agent may solicit more times than
MAX_SOLICITATIONS.

The rate at which a mobile node sends Solicitations must be limited by the mobile
node. The mobile node may send three initial Solicitations at a maximum rate of
one per second while searching for an agent. After this, the rate at which
Solicitations are sent is reduced so as to limit the overhead on the local link.
Subsequent Solicitations must be sent using a binary exponential backoff
mechanism, i.e., doubling the interval between consecutive Solicitations, up to a
maximum interval. The maximum interval should be chosen appropriately based
upon the characteristics of the media over which the mobile node is soliciting. This
maximum interval should be at least one minute between Solicitations.

While still searching for an agent, the mobile node must not increase the rate at
which it sends Solicitations unless it has received a positive indication that it has
moved to a new link. After successfully registering with an agent, the mobile node
should also increase the rate at which it will send Solicitations when it next begins
searching for a new agent with which to register. The increased solicitation rate
may revert to the maximum rate, but then must be limited in the manner described
above. In all cases, the recommended solicitation intervals are nominal values.
Mobile nodes must randomize their solicitation times around these nominal values
as specified for ICMP Router Discovery [Deering 1991].
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Mobile nodes have to process received Agent Advertisements. A mobile node can
distinguish an Agent Advertisement message from other uses of the ICMP Router
Advertisement message by examining the number of advertised addresses and the
IP Total Length field. When the IP total length indicates that the ICMP message is
longer than needed for the number of advertised addresses, the remaining data is
interpreted as one or more Extensions. The presence of a Mobility Agent
Advertisement Extension identifies the advertisement as an Agent Advertisement.

If there is more than one advertised address, the mobile node should pick the first
address for its initial registration attempt. If the registration attempt fails with a
status Code indicating rejection by the foreign agent, the mobile node may retry the
attempt with each subsequent advertised address in turn.

Note that the mobile node receives an Agent Advertisement with the ‘R’ bit set; the
mobile node should register through the foreign agent, even when the mobile node
might be able to acquire its own co-located care-of address. This feature is intended
to allow sites to enforce visiting policies (such as accounting), which require
exchanges of authorization.

If formerly reserved bits require some kind of monitoring/enforcement at the
foreign link, foreign agents implementing the new specification for the formerly
reserved bits can set the ‘R’ bit. This has the effect of forcing the mobile node to
register through the foreign agent, so the foreign agent could then monitor/enforce
the policy.

13.3.3 Move Detection

Two primary mechanisms are provided for mobile nodes to detect when they have
moved from one subnet to another. Other mechanisms may also be used. When the
mobile node detects that it has moved, it should register (next subsection) with a
suitable care-of address on the new foreign network. However, the mobile node
must not register more frequently than once per second on average. The following
algorithm is presented for the move detection:

The first method of move detection is based upon the Lifetime field within
the main body of the ICMP Router Advertisement portion of the Agent
Advertisement. A mobile node should record the Lifetime received in any
Agent Advertisements, until that Lifetime expires. If the mobile node fails
to receive another advertisement from the same agent within the specified
Lifetime, it should assume that it has lost contact with that agent. If the
mobile node has previously received an Agent Advertisement from another
agent for which the Lifetime field has not yet expired, the mobile node
may immediately attempt registration with that other agent. Otherwise, the
mobile node should attempt to discover a new agent with which to register.
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13.3.4 Returning Home

A mobile node can detect that it has returned to its home network when it receives
an Agent Advertisement from its own home agent. If so, it should deregister with its
home agent. Before attempting to deregister, the mobile node should configure its
routing table appropriately for its home network.

13.4 Registration

Mobile IP registration provides a flexible mechanism for mobile nodes to
communicate their current reachability information to their home agent. A mobile
node registers whenever it detects that its point-of-attachment to the network has
changed from one link to another. Registration is a process by which a mobile node

Requests datagram routing service from a foreign agent of a foreign link;

Informs its home agent of its care-of address for the specified Lifetime;

Renews a registration which is due to expire; and

Deregisters when it returns to its home network.

Furthermore registration creates or modifies a mobility binding at the home agent,
associating the mobile node. Several other (optional) capabilities are available
through the registration procedure, which enables a mobile node to:

Discover its home address, if the mobile node is not configured with this
information;

Maintain multiple simultaneous registrations, so that a copy of each datagram
will be tunneled to each active care-of address;

Deregister specific care-of addresses while retaining other mobility bindings,
and

Discover the address of a home agent if the mobile node is not configured with
this information.

13.4.1 Registration Overview

Mobile IP defines two different registration procedures, one via a foreign agent that
relays the registration to the mobile node’s home agent, and one directly with the
mobile node’s home agent. The following rules determine which of these two
registration procedures to use in any particular circumstance:

If a mobile node is registering a foreign agent care-of address, the mobile node
must register via that foreign agent.

If a mobile node is using a co-located care-of address, and receives an Agent
Advertisement from a foreign agent on the link on which it is using this care-of
address, the mobile node should register via that foreign agent (or via another
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foreign agent on this link) if the ‘R’ bit is set in the received Agent
Advertisement message.

If a mobile node is otherwise using a co-located care-of address, the mobile
node must register directly with its home agent.

If a mobile node has returned to its home network and is (de)registering with its
home agent, the mobile node must register directly with its home agent.

Both registration procedures involve the exchange of Registration Request and
Registration Reply messages. When registering via a foreign agent, the registration
procedure requires four messages as shown below as well as in Figure 13.8.

1.

2.

3.

4.

The mobile node sends a Registration Request to the prospective foreign agent
to begin the registration process.

The foreign agent processes the Registration Request and then relays it to the
home agent.

The home agent sends a Registration Reply to the foreign agent to grant or
deny the Request.

The foreign agent processes the Registration Reply and then relays it to the
mobile node to inform it of the disposition of its Request.

Figure 13.8. The mobility agents (either home or foreign) multicast Agent
Advertisement. 1 means that mobile node sends Registration Request to home agent
via foreign agent; 2 represents that the foreign agent passes the request to the home
agent; 3 is that home agent send back Registration Reply via foreign agent; 4 is that

the final reply is sent to the mobile node about success or denial of the request.

When the mobile node registers directly with its home agent, the registration
procedure requires only the following two messages:

1.

2.

The mobile node sends a Registration Request to the home agent.

The home agent sends a Registration Reply to the mobile node, granting or
denying the Request.
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13.4.2 Responses to Registration Request and Authentication

Foreign Agent

In Figure 13.8, it is assumed that the mobile node is registering through a foreign
agent; otherwise, it just registers directly through the home agent. The foreign
agent, upon reception of the request, will perform validity checks on the request
(like UDP packet check, see [Perkins 1998]). The foreign agent can also reject the
request by sending Registration Reply directly to the mobile node with a Code field
indicating the cause of the rejection. The reasons and the Codes are listed in Table
13.1.

Home Agent

Upon receipt of a Registration Request, a home agent performs a set of validity
checks. Mostly, the authentication checks may invalidate the Registration Request if
the authentication fails. In this case, the home agent also responds to the request by
sending back a Registration Reply with appropriate code as listed in Table 13.1.

If the Registration Request (RR) is valid, the home agent updates the mobile node’s
binding entry(s) according to specified Care-of Address, Mobile Node’s Home
Address, Lifetime and S fields (Figure 13.9) depending on the request. The action of
the home agent is illustrated below (as Table 5-2 of [Soloman 1998]):

1.

2.

3.

4.

5.

6.

7.

If RR-filed Care-of Address home address then

If Lifetime > 0 then

If S-bit = 0 then Replace all of the mobile node’s existing bindings (if any)
with the specific care-of address;

else Create a binding for the specified care-of address, leaving any other
existing binding for the mobile node unmodified.

else (Lifetime = 0) If S-bit = 1 then delete the mobile node’s binding for the
specified care-of address, leaving any other existing binding unmodified.

else (RR-filed Care-of Address = home address)

Delete all of the mobile node’s bindings.

Authentication

Each mobile node, foreign agent, and home agent must be able to support a mobility
security association for mobile entities, indexed by their SPI and IP address. In the
case of the mobile node, this must be its Home Address. Registration messages
between a mobile node and its home agent must be authenticated with an
authorization-enabling extension, e.g. the Mobile-Home Authentication Extension
(see [Perkins 1996b]).
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13.4.3 Registration Related Message Format

There are mainly two types of message related to registration: registration request
and registration reply.

13.4.3.1 Registration Request

A mobile node registers with its home agent using a Registration Request message
so that its home agent can create or modify a mobility binding for that mobile node
(e.g., with a new lifetime). The Request may be relayed to the home agent by the
foreign agent through which the mobile node is registering, or it may be sent
directly to the home agent in the case in which the mobile node is registering a co-
located care-of address. Source Port can be any variable and Destination Port = 434.
The UDP header is followed by the Mobile IP fields shown below:

Figure 13.9. The message format of Registration Request and Mobile-Foreign
Authentication Extension. This Extension may be included in Registration Requests

and Replies in cases in which a mobility security association exists between the
mobile node and the foreign agent.
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Illustration of the message fields:

S: Simultaneous bindings. If the ‘S’ bit is set, the mobile node is requesting that
the home agent retain its prior mobility bindings, as described before.

B: Broadcast datagrams. If the ‘B’ bit is set, the mobile node requests that the
home agent tunnel to it any broadcast datagrams that it receives on the home
network.

D: Decapsulation by mobile node. If the ‘D’ bit is set, the mobile node will itself
decapsulate datagrams which are sent to the care-of address. That is, the mobile
node is using a co-located care-of address.

M: Minimal encapsulation. If the ‘M’ bit is set, the mobile node requests that its
home agent use minimal encapsulation [Perkins 1994] for datagrams tunneled
to the mobile node.

G: GRE encapsulation. If the ‘G’ bit is set, the mobile node requests that its
home agent use GRE encapsulation [Hanks et al 1994] for datagrams tunneled
to the mobile node.

r: Sent as zero; ignored on reception, should not be allocated for any other uses.

T: Reverse Tunneling requested; see [RFC3024].

x: Sent as zero; ignored on reception.

Lifetime: The number of seconds remaining before the registration is
considered expired. A value of zero indicates a request for deregistration. A
value of 0xffff indicates infinity.

Home Address: The IP address of the mobile node.

Home Agent: The IP address of the mobile node’s home agent.

Care-of Address: The IP address for the end of the tunnel.

Identification: A 64-bit number, constructed by the mobile node, used for
matching Registration Requests with Registration Replies, and for protecting
against replay attacks of registration messages.

Extensions: The fixed portion of the Registration Request is followed by one or
more of the Extensions. An authorization-enabling extension must be included
in all Registration Requests. See [Perkins 1996b] for further information on the
relative order in which different extensions appear.

13.4.3.2 Registration Reply

A mobility agent returns a Registration Reply message to a mobile node, which has
sent a Registration Request message. If the mobile node is requesting service from a
foreign agent, that foreign agent will receive the Reply from the home agent and
subsequently relay it to the mobile node. The Reply message contains the necessary
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codes to inform the mobile node about the status of its Request, along with the
lifetime granted by the home agent, which may be smaller than the original Request.
The foreign agent must not increase the Lifetime selected by the mobile node in the
Registration Request, since the Lifetime is covered by an authentication extension
which enables authorization by the home agent. Such an extension contains
authentication data which cannot be correctly (re)computed by the foreign agent.
The home agent must not increase the Lifetime selected by the mobile node in the
Registration Request, since doing so could increase it beyond the maximum
Registration Lifetime allowed by the foreign agent. If the Lifetime received in the
Registration Reply is greater than that in the Registration Request, the Lifetime in
the Request must be used. When the Lifetime received in the Registration Reply is
less than that in the Registration Request, the Lifetime in the Reply must be used.
The UDP header is followed by the Mobile IP fields shown below:

Figure 13.10. The message format of Registration Reply

Illustration of the message:

Code: A value indicating the result of the Registration Request. See Table 13.1
for a list of currently defined code values.

Lifetime: If the Code field indicates that the registration was accepted, the
Lifetime field is set to the number of seconds remaining before the registration
is considered expired. A value of zero indicates that the mobile node has been
deregistered. A value of 0xffff indicates infinity. If the Code field indicates that
the registration was denied, the contents of the Lifetime field are unspecified
and must be ignored on reception.

Home Address: The IP address of the mobile node.

Home Agent: The IP address of the mobile node’s home agent.

Identification: A 64-bit number used for matching Registration Requests with
Registration Replies, and for protecting against replay attacks of registration
messages. The value is based on the Identification field from the Registration
Request message from the mobile node, and on the style of replay protection
used in the security context between the mobile node and its home agent
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(defined by the mobility security association between them, and SPI value in
the authorization-enabling extension).

Extensions: The fixed portion of the Registration Reply is followed by one or
more of the Extensions listed [RFC3220].

The following table defines usage within the Code field.

13.5 Mobile Routing (Tunnelling)

The previous two subsections discussed the two important issues: (1) How a mobile
node to know to which agent it can attach (Agent Discovery) and (2) How the
mobile node informs its home agent of its current location using the registration
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procedure described in the Registration section. This section describes how mobile
nodes, home agents, and (possibly) foreign agents cooperate to route datagrams
to/from mobile nodes that are connected to a foreign network.

13.5.1 Packet Routing when Mobile Node is at Home

This case is simple, when connected to its home network, a mobile node operates
without the support of mobility services. The packets are routed to the mobile
node’s home link just like the normal IP routing to the network prefix. Thus no
special routing procedure is required in order to deliver the datagram packets to the
mobile node when it is at home.

Some mobile node routing implementations store a copy of the mobile node’s
“home routing table entries” in the routing table but it must be noted when the
network topology changes, the routing table may not be able to quickly respond to
the change of default router for the mobile nodes. That is, it operates in the same
way as any other (fixed) host or router does.

13.5.2 Packet Routing when Mobile Node is on a Foreign Link

13.5.2.1 Unicast Datagram Routing

This method is used when the mobile node is away from home and using a care-of
address or co-located care-of address. The procedure of routing a packet to the
mobile node that is connected to the foreign link is summarized as follows:

1.

2.

3.

4.

A router on the home link, possibly the home agent, sends Agent
Advertisement, advertising reachability to the network-prefix, which equals the
mobile node’s home address.

Packets destined to the mobile node’s home address are routed to its home link,
specifically to its home agent.

The home agent intercepts packets destined to the mobile node, assuming the
mobile node has registered one or more care-of addresses, and tunnels a copy to
each such care-of address.

At each care-of address, i.e., an address of a foreign agent or an address
collocated within the mobile node itself, the original packet is extracted from
the tunnel and delivered to the mobile node.

When registered on a foreign network, the mobile node chooses a default router.
There are two cases: mobile node on the foreign link with care-of address and
collocated care-of address:

1. If the mobile node is registered using a foreign agent care-of address, it may
use its foreign agent as a first-hop router. The foreign agent’s address can be
learned from Agent Advertisement. Otherwise, the mobile node must choose its
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2.

default router from among the Router Addresses advertised in the ICMP Router
Advertisement portion of that Agent Advertisement message.

If the mobile node is registered directly with its home agent using a co-located
care-of address, then the mobile node should choose its default router from
among those advertised in any ICMP Router Advertisement message that it
receives for which its externally obtained care-of address and the Router
Address match under the network prefix. If the mobile node’s externally
obtained care-of address matches the IP source address of the Agent
Advertisement under the network prefix, the mobile node may also consider
that IP source address as another possible choice for the IP address of a default
router.

Home Agent Routing

Both cases require the home agent to tunnel/de-tunnel the packet to/from the mobile
node. Whenever the home agent receives a packet destined to the mobile node, it
encapsulates an outer header (as shown in Figure13.2) destined with the (collocated)
care-of address learnt from the registration of the mobile node and tunnels the
packet to the default router of the mobile node. More specifically, when a home
agent receives a datagram packet, intercepted for one of its mobile nodes registered
away from home, the home agent examines the datagram to check if it is already
encapsulated. If so, special rules apply in the forwarding of that datagram to the
mobile node:

If the inner (encapsulated) Destination Address is the same as the outer
Destination Address (the mobile node), then the home agent also examines the
outer Source Address of the encapsulated packet (the source address of the
tunnel). If this outer Source Address is the same as the mobile node’s current
care-of address, the home agent has to discard that packet in order to prevent a
likely routing loop. If, instead, the outer Source Address is not the same as the
mobile node’s current care-of address, then the home agent will forward the
packet to the mobile node. In order to forward the packet in this case, the home
agent may simply alter the outer Destination Address to the care-of address,
rather than re-encapsulating the packet.

Otherwise (the inner Destination Address is not the same as the outer
Destination Address), the home agent should encapsulate the packet again
(nested encapsulation), with the new outer Destination Address set equal to the
mobile node’s care-of address. That is, the home agent forwards the entire
packet to the mobile node in the same way as any other packet (encapsulated
already or not).

Foreign Agent Routing

Upon receipt of an encapsulated packet sent to its advertised care-of address, a
foreign agent compares the inner destination address to those entries in its visitor
list (whenever a mobile node registers successfully, the home address of the mobile
node is bounded in the list). When the destination does not match the address of any
mobile node currently in the visitor list, the foreign agent does not forward the
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packet without modifications to the original IP header (because otherwise a routing
loop is likely to result). The packet is discarded. Otherwise, the foreign agent
forwards the decapsulated packet to the mobile node.

Each foreign agent also supports the mandatory features for reverse tunneling
[RFC3024] to home network. In this case, the home agent must assume the mobile
node is at home and simply forwards the packet directly onto the home network. For
multi-homed home agents, the source address in the outer IP header of the
encapsulated packet must be the address sent to the mobile node in the home agent
field of the registration reply. That is, the home agent cannot use the address of
some other network interface as the source address. Nodes implementing tunneling
also implement the “tunnel soft state” mechanism [RFC2003], which allows ICMP
error messages returned from the tunnel to correctly be reflected back to the original
senders of the tunneled packets.

If the Lifetime for a given mobility binding expires before the home agent has
received another valid Registration Request for that mobile node, then that binding
is deleted from the mobility binding list. The home agent does not send any
Registration Reply message simply because the mobile node’s binding has expired.
The entry in the visitor list of the mobile node’s current foreign agent will expire
naturally, probably at the same time as the binding expired at the home agent. When
a mobility binding’s lifetime expires, the home agent must delete the binding, but it
must retain any other (non-expired) simultaneous mobility bindings that it holds for
the mobile node.

Broadcast Datagram Packets

When a home agent receives a broadcast packet, it must not forward the packet to
any mobile nodes in its mobility binding list other than those that have requested
forwarding of broadcast packets. A mobile node may request forwarding of
broadcast packets by setting the ‘B’ bit in its Registration Request message (Figure
13.9). For each such registered mobile node, the home agent should forward
received broadcast packets to the mobile node, although it is a matter of
configuration at the home agent as to which specific categories of broadcast packets
will be forwarded to such mobile nodes.

If the ‘D’ bit was set in the mobile node’s Registration Request message, indicating
that the mobile node is using a co-located care-of address, the home agent simply
tunnels appropriate broadcast IP packets to the mobile node’s care-of address.
Otherwise (the ‘D’ bit was not set), the home agent first encapsulates the broadcast
packet in a unicast packet addressed to the mobile node’s home address, and then
tunnels this encapsulated packet to the foreign agent. This extra level of
encapsulation is required so that the foreign agent can determine which mobile node
should receive the packet after it is decapsulated. When received by the foreign
agent, the unicast encapsulated packet is detunneled and delivered to the mobile
node in the same way as any other datagram. In either case, the mobile node
decapsulates the packet it receives in order to recover the original broadcast packet.
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13.5.2.2 Multicast Datagram Packets Routing

As mentioned previously, a mobile node that is connected to its home network
functions in the same way as any other (fixed) host or router. Thus, when it is at
home, a mobile node functions identically to other multicast senders and receivers.
This section therefore describes the behavior of a mobile node that is visiting a
foreign network.

In order to receive multicasts, a mobile node must join the multicast group in one of
two ways. First, a mobile node may join the group via a (local) multicast router on
the visited subnet. This option assumes that there is a multicast router present on the
visited subnet. If the mobile node is using a co-located care-of address, it should use
this address as the source IP address of its IGMP [Deering 1989] messages.
Otherwise, it may use its home address.

Alternatively, a mobile node which wishes to receive multicasts may join groups via
a bi-directional tunnel to its home agent, assuming that its home agent is a multicast
router. The mobile node tunnels IGMP messages to its home agent and the home
agent forwards multicast packets down the tunnel to the mobile node. For packets
tunneled to the home agent, the source address in the IP header should be the mobile
node’s home address. The rules for multicast packet delivery to mobile nodes in this
case are identical to those for broadcast packets. If the mobile node is using a co-
located care-of address (the ‘D’ bit was set in the mobile node’s Registration
Request), then the home agent tunnels the packet to this care-of address; otherwise,
the home agent first encapsulates the packet in a unicast packet addressed to the
mobile node’s home address and then must tunnel the resulting packet (nested
tunneling) to the mobile node’s care-of address. For this reason, the mobile node
must be capable of decapsulating packets sent to its home address in order to
receive multicast packets.

A mobile node that wishes to send packets to a multicast group also has two
options: (1) send directly on the visited network; or (2) send via a tunnel to its home
agent. Because multicast routing in general depends upon the IP source address, a
mobile node which sends multicast packets directly on the visited network must use
a co-located care-of address as the IP source address. Similarly, a mobile node
which tunnels a multicast packet to its home agent uses its home address as the IP
source address of both the (inner) multicast packet and the (outer) encapsulating
packet. This second option assumes that the home agent is a multicast router.

13.5.3 Mobile Routers and Networks

A mobile node can be a router that is responsible for the mobility of one or more
entire networks moving together, perhaps on an airplane, a ship, a train, an
automobile, a bicycle, or a kayak. The nodes connected to a network served by the
mobile router may themselves be fixed nodes or mobile nodes or routers. In this
document, such networks are called “mobile networks”.
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A mobile router may act as a foreign agent and provide a foreign agent care-of
address to mobile nodes connected to the mobile network. Typical routing to a
mobile node via a mobile router in this case is illustrated by the following example:

1)

2)

3)

4)

5)

6)

7)

A laptop computer is disconnected from its home network and later attached to
a network port in the seat back of an aircraft. The laptop computer uses Mobile
IP to register on this foreign network, using a foreign agent care-of address
discovered through an Agent Advertisement from the aircraft’s foreign agent.

The aircraft network is itself mobile. Suppose the node serving as the foreign
agent on the aircraft also serves as the default router that connects the aircraft
network to the rest of the Internet. When the aircraft is at home, this router is
attached to some fixed network at the airline’s headquarters, which is the
router’s home network. While the aircraft is in flight, this router registers from
time to time over its radio link with a series of foreign agents below it on the
ground. This router’s home agent is a node on the fixed network at the airline’s
headquarters.

Some correspondent node sends a packet to the laptop computer, addressing the
packet to the laptop’s home address. This packet is initially routed to the
laptop’s home network.

The laptop’s home agent intercepts the packet on the home network and tunnels
it to the laptop’s care-of address, which in this example is an address of the
node serving as router and foreign agent on the aircraft. Normal IP routing will
route the packet to the fixed network at the airline’s headquarters.

The aircraft router and foreign agent’s home agent there intercepts the packet
and tunnels it to its current care-of address, which in this example is some
foreign agent on the ground below the aircraft. The original packet from the
correspondent node has now been encapsulated twice: once by the laptop’s
home agent and again by the aircraft’s home agent.

The foreign agent on the ground decapsulates the packet, yielding a packet still
encapsulated by the laptop’s home agent, with a destination address of the
laptop’s care-of address. The ground foreign agent sends the resulting packet
over its radio link to the aircraft.

The foreign agent on the aircraft decapsulates the packet, yielding the original
packet from the correspondent node, with a destination address of the laptop’s
home address. The aircraft foreign agent delivers the packet over the aircraft
network to the laptop’s link-layer address.

This example illustrates the case in which a mobile node is attached to a mobile
network. That is, the mobile node is mobile with respect to the network, which
itself is also mobile (here with respect to the ground). If, instead, the node is fixed
with respect to the mobile network (the mobile network is the fixed node’s home
network), then either of two methods may be used to cause packets from
correspondent nodes to be routed to the fixed node.
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A home agent may be configured to have a permanent registration for the fixed
node that indicates the mobile router’s address as the fixed host’s care-of address.
The mobile router’s home agent will usually be used for this purpose. The home
agent is then responsible for advertising connectivity using normal routing protocols
to the fixed node. Any packets sent to the fixed node will thus use nested tunneling
as described above.

Alternatively, the mobile router may advertise connectivity to the entire mobile
network using normal IP routing protocols through a bi-directional tunnel to its own
home agent. This method avoids the need for nested tunneling of packets.

13.6 Case Study: Mobile Multicast using Anycasting

This section presents a novel and efficient multicast algorithm that aims at reducing
delay and communication cost for the registration between mobile nodes and
mobility agents and solicitation for foreign agent services based on Mobile IP. The
protocol applies anycast group technology to support multicast transmissions for
both mobile nodes and home/foreign agents. Mobile hosts use anycast tunneling to
connect to the nearest available home/foreign agent where an agent is able to
forward the multicast messages by selecting anycast route to a multicast router so as
to reduce the end-to-end delay. The performance analysis and experiments
demonstrated that our algorithm is able to enhance the performance over existing
remote subscription and bi-directional tunneling approaches regardless of the
locations of mobile nodes/hosts.

IP multicast [Deering 1989] provides unreliable multicast delivery for wired
networks. In mobile multicast communications, two issues are primary important:
One is for mobile nodes and mobility agents to discover each other’s presence and
another is the datagram routing efficiency. Traditional multicast research considered
reliability of message delivery in the multicast group in guaranteeing the properties
such as total ordering, atomicity, dynamic group membership and fault-tolerance etc
[Jia et al 1996].

There have been some well-known wireless multicast systems developed.
Forwarding pointers and location independent addressing to support mobility has
been discussed in [Patridge et al 1993], but the multicast service is unreliable.
However, it does not allow dynamic group membership. Multicast tunneling is
proposed to forward multicast packets from one foreign network to another when
the mobility agent receives packets addressed to mobile nodes that are nomadic.

13.6.1 Problems with Mobile IP

Mobile IP defined three approaches to support mobile connection and multicast: (1)
Agent discovery: Home agents and foreign agents (HA and FA) may advertise their
availability on each link for which they provide service. A newly arrived mobile
node can send a solicitation on the link to learn if any prospective agents are
present. (2) remote subscription: When a mobile node is away from home, it
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registers its care-of address (an IP address at the mobile node’s current point of
attachment to the Internet when it is not attached to the home network) with its
home agent. Depending on its method of attachment, the mobile node will register
either directly with its home agent or through a foreign agent, which forwards the
registration to the home agent. (3) bi-directional tunneling multicast: Unicast
tunnels are used to encapsulate and to send multicast packets over the Internet when
the intermediate routers cannot handle multicast packets. In order for multicast
datagrams to be delivered to the mobile node when it is away from home, the home
agent has to tunnel the datagrams to the care-of address. A mobile node is addressed
on its home network that is called home address. Agent discovery may require more
advertisements solicitations messages. Remote subscription is inefficient for
dynamic membership and location change of mobile nodes. Bi-directional tunneling
multicast may cause tunnel convergence problems with packet duplication (Figure
13.11).

Figure 13.11. Bi-directional Tunneled Multicast Method

Motivation of MMP

Anycast address and service have been defined for Internet Protocol version 6
(IPv6) [Deering and Hinden 1995]. It is a communication for a single sender
sending to the “nearest” member in a group of receivers, preferably only one of the
servers that supports the anycast address [Johnson and Deering 1999]. It uses
unicast address and the router can register the anycast address for its interface.
Anycast is useful when a host requests a service from a server in a group but does
not care which server is used. Anycast can simplify the task of finding an
appropriate server. For example, users can use the anycast address to choose the
mirrored FTP sites and to connect to the nearest (available) server.

To improve the efficiency in terms of Mobile IP on multicast communication,
particularly in terms of the three issues mentioned above, we propose a novel
efficient mobile multicast protocol (MMP), taking advantage of anycast routing
technology. MMP targets two purposes: (1) mobility agents (MAs: both
home/foreign agents) anycast group to facilitate flexible connections for mobile
nodes. Using a well-known anycast address, the home agents need not
multicast/broadcast router advertisements and the mobile nodes may register
directly through the well-known anycast address of the anycast agent groups so as
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to reduce the connection cost for the mobile nodes. (2) An anycast address is
configured by a group of multicast routers on the subnet that are designed to support
a specific multicast group. Using anycast can dynamically select the paths to the
multicast router to reduce the end-to-end multicast delay.

13.6.2 Mobile Multicast Protocol (MMP)

Before proceeding with the description of the protocol, the following assumptions
are made (see Figure 13.12 for an example of MMP topology):

Figure 13.12. MMP topology and Mobile Connections

A set of hosts and mobile nodes forms a multicast group G. Each individual
mobile node has knowledge of the multicast group id to which it is interested in
transmission and reception of multicast messages.

Both home agent and foreign agent (denoted as Mobility Agent-MA) are
special routers that provide service for the attachment of mobile nodes.

There is at least one MA in each subnet.

Multicast routers can configure its interface to route both multicast and anycast
packets (see [Jia et al 2000]). Each MA maintains four lists for the dynamic
memberships of mobile nodes in multicast group G: (1) Membership list: ML(G)
contains the ids of members in group G; (2) Visitor-list: VL(G) records the ids of
foreign mobile nodes that belong to G that visit this MA; (3) Away-list: AL(G)
keeps a record of the ids of mobile nodes in G that went away (or disconnected)
from this MA; (4) Tunneling list: TL(G) records the ids of foreign agents that are
interested in transmission/reception of multicast packets for G. MMP was designed
in three major phases that work interactively:
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Initialization phase: Configurations of multicast and anycast group for routers,
mobility agents and mobile nodes.

Registration and membership phase: Registrations and reformation for the
dynamic membership of mobile nodes.

Multicast transmission phase: Multicast packet transmissions and deliveries for
the group of members including station hosts and mobile nodes.

The three phases are detailed below:

Phase1: Initialization

1.

2.

3.

4.

Membership Initialization for a given group of G: An individual MA sets
ML(G) = VL(G) = AL(G) = TL(G) = {}.

Multicast Tree Formation: Core-based Tree (CBT) technique is used to build a
multicast propagation tree for the routers (called a CBT tree). One router is
selected as the core (or root) of the tree. To establish such a tree, Mobility
Agents that provide multicast service for G must join the CBT tree by linking
itself to the core (see [Ballardie 1997] for details). All routers including MAs in
the tree are called ontree routers.

Mobility Agent Anycast Group Configuration: The mobility agents that offer
attachment for mobile nodes in G form an anycast group [Jia et al 2000]. All
the mobility agents that provide connections for G can register through the
groups well-known reserved anycast address GA [Johnson and Deering 1999]
and configure one of its interfaces to accept the registration for home/foreign
mobile nodes. Our protocol mandates that the agents in the same anycast group
GA will share the same authentication for mobile node registrations, i.e.,

and imply that both MA1 and MA2 agree to delegate
each other on connection authentication and multicast packet delivery for the
mobile nodes that previously attached to another party.

Ontree Router Anycast Group Configuration: For the group G, virtual anycast
address TA is assigned to and configured by all routers in the shared tree for
group G [Jia et al 1999]. The router configurations are classified as ontree and
offtree:

Ontree Router Configuration: For a multicast group G, when the shared
multicast tree is built, all ontree routers (including the core) are selected to
join an anycast group with anycast address TA which is advertised to the
network (broadcast by the core). TA may be considered as some
“temporary” anycast address as long as the CBT tree exists. For any ontree
router, there is a Forwarding Information Base (FIB) used as its multicast
routing table [Jia et al 2000]. An entry of the FIB has the form of

Off tree Router Configuration: Upon reception of address TA broadcast
from the core in the shared tree, the off-tree routers, including those
foreign agents, that are interested in transmitting multicast packets to G
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will assign TA as an interface entry by configuring with <TA, G>
mappings in the routing table. The anycast routing table enables the router
to dynamically select a “better” path to reach the CBT tree among multiple
paths even in the presence of link/hop failure.

Phase 2: Dynamic Member Registration and Connection

With the proposed anycast group, a mobile node may learn the existing agents by
caching the anycast address through DHCP or SLP services [Droms 1993]
[Veizades et al 1997]. In the register message of mobile node, normally the D-bit is
set to enable the mobile node to receive/de-capsulate incoming multicast packets.
MMP allows membership changes to be made to a multicast group G. A mobile
node is allowed to join or leave a multicast group at will. To join a multicast group
G in the home network, a mobile node must register through the home agent. In
current Mobile IP, a mobility agent must also broadcast advertisement messages
periodically (similar to ICMP advertisement messages) and the mobile node has to
send a solicitation message to contact the agent when it hears no advertisement for a
certain period of time. This phase is designed to reduce the cost of advertisement
using anycast group by the following steps:

1.

2.

Mobile Node Home Registration: A mobile node MN must register through its
home agent and join G for multicast message transmission. The registration can
be accomplished through anycast connection by using GA to connect to the
“nearest” MA in its home network. Upon establishment of the connection
between MA and Mn, two cases must be considered:

Case 1: The MA is an ontree router of G: Similar to Mobile IP, the MA
performs the corresponding authentication and mobility binding such as
care-of address (CA) assignment to Mn (denoted as CA(Mn)) and calls
Insert(CA(Mn), ML(G)) to insert CA of Mn into membership list ML(G).

Case 2: The MA is an offtree router. Similar to Case 1, the MA must first
check authentication of MN, then calls Insert(CA(Mn), ML(G)). The
following sub-cases must be considered:

Sub-case 1: The MA is a multicast router and uses GA to join the CBT
tree for G by sending join-request to the “nearest” on-tree router in
TA.

Sub-case 2: The MA is not a multicast router. It builds an anycast
tunnel to the “nearest” on-tree router so that a single “tree trunk” is
grafted on the CBT tree (see [Jia et al 1999] for detail).

Mobile Node-Visit a Foreign Network: A mobile node MN originally
registered in in Subnet 1 and moves to foreign network Subnet 2 to
connect with MA2. Two cases must be considered:

Case 1: since both MA1 and MA2 are in GA, they are in the
same authentication group. Mn may use address GA to contact MA2 for
registration. Upon checking authentication and acceptance for Mn, MA2
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executes Insert(CA(Mn), VL(G)). On the other hand, MA1 calls
Move(CA(Mn), ML(G), AL(G)) to move CA of Mn from membership list
ML(G) to away-list AL(G).

Case 2: MA2 does not provide service for multicast group G.
Thus, MA2 applies a bi-directional tunneling approach similar to Mobile
IP. Upon acceptance of the visiting MN, MA2 calls Insert(CA(Mn),
VL(G)). Since MA2 is not an ontree router, it sets a tunnel to MA1 and
then calls Insert(id(MA2), TL(G)) to record the tunneling information for
MA2.

4. Mobile Node Leaves: When a mobile node leaves its home network, it should
notify its home agent MA by sending a de-registration message. The latter calls
Move(CA(Mn), ML(G), AL(G)). In case ML(G) = VL(G) = TL(G)={}, i.e., the
MA does not have any mobile node attached to G nor any tunnel for visitor
members in G, then the MA uses an IGMP message to notify its up-link node
until the core is reached from the shared tree [Fenner 1997].

5. Foreign Mobile Node/Agent Leaves: An MA may set up a specific timeout for
the foreign mobile nodes in list VL(G). When the timer expires, the MA just
deletes the node id from its VL(G). A similar approach can be applied for the
management of list TL(G).

Phase 3: Multicast Transmission Phase

1. Multicast transmission: A mobile node may generate a multicast message m,
intending to send to G. Message m is thus transmitted to home agent MA.
When MA receives m, it first encapsulates m with a multicast header and then
imbeds m with an anycast address TA into an anycast packet mA. The packet is
then routed to the address TA using dynamic anycast routing algorithms (refer
to [Jia et al 2000] for details). When a router in TA receives the anycast packet,
it strips m from mA, i.e., strips off the anycast header of mA, and propagates it
across group G. For a visited mobile node Mn, if it wants to send the multicast
packet, the packets can be forwarded through the foreign agents. Like Mobile
IP, a co-located care-of address on the foreign network is required and used as
the source address for multicast packets to group G.

2. Multicast packet reception-delivery: When an MA receives an encapsulated
multicast packet m from a router on the CBT tree, it strips-off the multicast
header from the packet and makes the packet delivery to the ids in ML(G) and
VL(G). The packet is also tunneled and retransmitted to the agents in TL(G)
when TL(G) is not empty.

Note that if the mobile node is using a colocated care-of address, it should use this
address as the source IP address of its IGMP [Fenner 1997] (membership)
messages; otherwise, it is required to use its home address for multicast
transmissions.
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13.6.3   Performance

This section presents the performance analysis for the MMP protocol and
demonstrates experimental results to show availability of the protocol by simulation
results. In particular, we compare the complexity of MMP with remote subscription
(RS) and bi-directional (BD) approaches in terms of number of broadcast/multicast
packets and end-to-end delay of multicast.

13.6.3.1 Analysis

To analyze the performances of the MMP protocol, we use the following metrics for
the comparison of MMP with methods proposed in Mobile IP:

According to Mobile IP, the agent discovery requires the MA to send broadcasts for
agent advertisement. Mobile nodes use these advertisements to determine their
current point of attachment to the Internet. The advertisement is sent at max rate of
once every second (so the delay). Therefore, for a mobile node, it has to wait for the
advertisement and then it learns of the presence of a mobile agent. With MMP, in
the presence of anycast address GA, mobile nodes already have knowledge of the
presence of MA. Thus no agent advertisement is required.

For registration of a mobile node, we differentiate the registration on the home
agent (HA) from that on the foreign agent (FA). If the registration is on the HA, in
terms of message number, MMP is the same as the protocols based on mobile IP.
But delay is shorter as MMP does not wait for the advertisements of HA. Only the
transmission delay of two messages is taken into account.

Number of Messages (m/bcasts): the number of messages (including multicast
and broadcast) required for the corresponding operation.

Delay: total delays in seconds to accomplish the operation and D is used to
measure a single multicast/broadcast (minimum) transmission delay.
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Mobile IP makes use of bi-directional tunneling for a mobile node to register to a
foreign network under the assumption that its home agent is a multicast router. The
mobile node tunnels IGMP messages to its home agent and the home agent
forwards multicast datagrams down the tunnel to the mobile nodes. It is known that
four messages are required: one is the request from a mobile node to FA, then FA
relays the request to HA. HA, in turn, sends back a message of acceptance or denial
to FA and then FA relays the final status to the mobile node. While in MMP, if the
FA is in the same anycast group as that of HA, only two messages are required: the
registration through FA is the same as through HA. For the delay analysis, the
reason is similar to the above argument.

13.6.3.2 Simulation Model

In the simulation, we consider 16 local area networks with a maximum of 90 mobile
nodes and each LAN has two mobility agents (i.e., one home and one foreign
agent). All mobile nodes are allowed to roam in the network at random. The
residency time for each mobile node to stay at a network (home or foreign) is drawn
from an exponential distribution with a mean of r time-units. The travel time for
going between subnets is exponentially distributed with a mean of (r/0.9)*0.1 time-
units. Thus, mobile nodes spend 10 percent of their time in transition, and 90
percent of their time connected to an LAN. In addition, each mobile node has a
probability p of losing the connection with a local mobility agent.

We assume that each multicast group has only one source for generating multicast
messages in ratio of 1 time-units. The delivery of each multicast message to the
group recipients is done by scheduling from the source to a mobility agent, and then
to the mobile nodes. To simplify the simulation, the topology of LANs is located on
an x-y coordinate as shown in Figure 13.13. The network topology between the
LANs is not drawn, for simplicity.

Figure 13.13. Network Topology of the Simulation

The simulation experiments were conducted using a multi-factor experimental
design. The warm-up period used for the simulations was 20 percent of the
simulation time t, which is an input parameter. After the warm-up period, the
simulator collects simulation statistics relating to mobile multicast until the end of
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the simulation. We execute 10 simulations for each set of workload parameters and
achieve the mean value.

13.6.3.3 Simulation Results

The experiment compares the effectiveness of multicast delivery of MMP to bi-
directional tunneling in terms of message delivery delay and number of delivered
messages. The simulation considers one multicast group with up to 90 (mobile)
nodes across 9 LANs, and 8,500 multicast messages are generated within 2500
seconds.

Figure 13.14 shows that our protocol can provide a better multicast service to
mobile nodes as the message delivery delay is lower than that of bi-directional
tunneling. The high delay demonstrates the transmission overhead in the tunnel
from home network to foreign network of bi-directional tunneling. Figure 13.15
shows that about 90 percent of the generated messages were delivered to the mobile
nodes by MMP and about 50 percent of the generated message were delivered by
bi-directional tunneling protocol. For MMP, two situations may affect the delivery
of multicast messages to the mobile nodes: (1) the node may be in transit state and
(2) the node may be attached to a network with poor link connection due to the
noise environments. The unsuccessful deliveries in bi-directional tunneling may be
caused by inconsistent information in a home network about the location of its
mobile nodes.

Figure 13.14. Message delivery delays.
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Figure 13.15. Number of delivered messages.

13.7 Summary

MMP extends the Mobile IP with anycast address group technology for agent
discovery, registration of mobile nodes and delivery of multicast packets. The
utilization of anycast addresses for the mobility agent group can reduce the cost and
delay when the mobile nodes register with mobility agents between subnets, without
impacting its performance. In contrast to bi-directional tunneling and remote
subscriptions, MMP is more efficient in terms of delivery delay and throughput of
multicast packets. The cost of the employing anycast address/group is that the
multicast routers involved in the group have to manage the anycast addresses. This
management may be taken as setup cost and will not compromise the (runtime)
dynamic performance of MMP. In this sense, MMP provides a performance
extension for Mobile IP, especially when multicast services are desired.

Exercises

13.1 Give the routing table for Router 1 in Figure 13.1. 13.1

13.2 What are the differences between care-of address and collocated care-of
address? 13.2.

13.3 What are the three major functions that Mobile IP must facilitate? 13.2.

13.4 Give the packet header structure of Agent Advertisement, Agent Solicitation
and Agent Reply. 13.3.

13.5 Illustrate the importance of tunneling in the role of datagram routing. 13.3.1
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13.6 Describe the routing action for home, and foreign agents in cases of unicast,
multicast and broadcast. 13.5

13.7 Design a protocol to solve the problem when a mobile node MN is attached to
a foreign link F1 where another host in F1 (which is local to F1) wishes to send a
packet to MN using MN’s home address (so called Triangle Routing). 13.5.

13.8 Evaluate the performance overhead for a home agent to deliver multicast
datagram to a mobile node MN which is a member of a multicast group but has
been moved to a foreign link. 13.5

13.9 Investigate the RFC documents and list the concepts used in the chapter and
their relationship. 13.3-4.

13.10 Consider a group of mobile routers residing in a team of ships or airplanes.
Design a protocol (approach) by which they can maintain communication in case
not every router is able to connect to the base (home) agent. 13.5-6.



CHAPTER 14 DISTRIBUTED NETWORK
SYSTEMS: CASE STUDIES

In the previous chapters we have discussed various aspects of distributed network
systems. Distributed network systems are now used everywhere, especially on the
Internet. In this chapter we study several well-known distributed network systems,
as examples of our discussion.

14.1 Distributed File Systems

The client-server model has changed the image of computing and has allowed the
establishment of distributed computing. in particular, the client-server model has
been used to develop distributed software, including network and distributed
operating systems as well as applications. The first step in this direction was made
when inexpensive diskless personal computers connected by inexpensive and
simple local networks were forced to share a file service or a printer service.

In this section we present one of the most important achievements of the 1980s,
which is still in use now, a network file system based on the client-server model. It
is Sun Microsystems’ Network File System, known as NFS [Sandberg et al. 1985].
NFS is an example of a distributed file system.

14.1.1 What is a Distributed File System

A distributed file system is a key component of any distributed computing system.
The main function of a distributed file system is to create a common file system that
can be shared by all clients running on autonomous computers in a distributed
computing system. The common file system should store programs and data and
make them available as needed. Since files can be stored anywhere in a distributed
computing system, this means that a distributed file system should provide location
transparency. This means, users, regardless of their physical location, can access
files without knowing their location.

To achieve such a goal a distributed file system usually follows the client-server
model. A distributed file system typically provides two types of services: the file
service and the directory service, which are implemented by the file server and the
directory server distributed over the network, respectively. These two servers can
also be implemented as a single server. The file server provides operations on the
contents of files such as read, write, and append. The directory server provides
operations, such as directory and file creation and deletion, for manipulating
directories and file names. The client application program interface (client API,
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usually in the form of a process or a group of processes) runs on each client
computer and provides a uniform user-level interface for accessing file servers.
Figure 14.1 shows the structure of a distributed file system based on the client-
server model.

Figure 14.1. A distributed file system structure

14.1.2 A Distributed File System Example -- NFS

Sun Microsystems’ Network File System is a typical example of the application of
the client-server model in the development of a distributed file system. The rest of
this section describes briefly the architecture and implementation of NFS.

NFS was developed by Sun Microsystems and introduced in late 1984 [Sandberg et
al. 1985]. Since then it has been widely used in both industry and academia. NFS
was originally developed for use on Unix workstations. Currently, many
manufacturers support it for other operating systems (e.g., Microsoft Windows
operating systems). Here, NFS is introduced based on the Unix system.

To understand the architecture of NFS, we need to define the following terms used
in NFS:

INODE. This is a data structure that represents either an open file or directory
within the Unix file system. It is used to identify and locate a file or directory
within the local Unix file system;

RNODE (the remote file node). This is a data structure that represents either an
open file or directory within a remote file system (a file system that is not
located on the local computer);

VNODE (the virtual file node). This is a data structure that represents either an
open file or directory within the virtual file system (VFS);

VFS (the virtual file system). This is a data structure (linked lists of VNODEs)
that contains all necessary information on a real file system that is managed by
the NFS. Each VNODE associated with a given file system is included in a
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linked list attached to the VFS for that file system. For example, if the real file
system managed by the NFS is a Unix file system, then an open file in this file
system is represented by a VNODE containing a pointer (called the private data
pointer) that points to an INODE data structure. If the real file system is a
remote file system, the private data pointer of the VNODE points to an RNODE
data structure.

The NFS server integrates functions of both a file server and a directory server and
the NFS clients use a uniform interface, the VFS/VNODE interface, to access the
NFS server. The VFS/ VNODE interface abstraction makes it possible to achieve
the goal of supporting multiple file system types in a generic fashion. The VFS and
VNODE data structures provide the linkage between the abstract uniform file
system interface and the real file system (such as a Unix file system or an MS
Windows file system) that accesses the data. Further, the VFS/VNODE interface
abstraction allows NFS to make remote files and local files appear identical to a
client program.

The NFS clients and servers communicate using the remote procedure call (RPC)
technique. An external data representation (XDR) specification is used to describe
RPC protocols in a machine and system independent way. This design strategy has
helped NFS to be ported from the original Unix platform to various non-Unix
platforms. Figure 14.2 illustrates the NFS structure.

Figure 14.2. NFS structure

14.1.3 Processing User Calls

NFS provides transparent access to files of a distributed computing system for client
processes. In NFS, a client process accesses files through the normal operating
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system interface. All operating system calls that manipulate files or file systems are
modified to perform operations on VFSs/VNODEs. The VFS/VNODE interface
hides the heterogeneity of underlying file systems and the location of these file
systems. Based on Figure 14.2, the steps of processing a user-level file system call
can be described as follows:

From the perspective of the user-level client process, there is no difference between
accessing a file stored on a local disk and accessing a file stored on a remote
computer.

14.1.4 Exporting Files

A common practice of configuring a large NFS installation is to use some
computers as dedicated NFS servers and others as workstations running NFS
clients. However, in theory (at least in the case of Unix) every computer has NFS
client and server modules installed in its system kernel and therefore the client-
server relationship is symmetric. A computer becomes a server by exporting some
of its files and it becomes a client by accessing files exported by other computers
[Stern 1991].

Exporting is the process by which a local computer notifies other computers on the
network of the availability of specific file systems (directories) for sharing. In this
case, the local computer becomes the NFS server that manages the exported file
systems, and other computers become NFS clients that access the specific file
systems.

In the case of Unix, a system file (called dfstab) is used to store the names of
directories (as well as some access rights) that the server is willing to share with
other computers. An NFS client accesses files on the NFS server by mounting the

Step 1. The user-level client process makes the file system call through the
normal operating system interface;

Step 2. The request is redirected to the VFS/VNODE interface. A VNODE is
used to describe the file or directory accessed by the client process;

Step 3. If the request is for accessing a file stored in the local Unix file system,
the INODE pointed by the VNODE is used. The Unix INODE interface is used
and the request is served by the Unix file system interface;

Step 4. If the request is for accessing a file stored locally in other types of file
systems (such as an MS Windows file system), a proper interface of the
particular file system is used to serve the request;

Step 5. If the request is for accessing a file stored remotely, the RNODE
pointed by the VNODE is used and the request is passed to the NFS client.
Some messages following RPC to the remote NFS server that stores the
requested file are sent;

Step 6. The NFS server processes the request by using the VFS/VNODE
interface to find the appropriate local file system to serve the request.
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server’s exported directories. During the mounting process, a client requests the
appropriate remote server or servers to provide access to the directories that the
client has specified in another system file (called vfstab). The server receives the
request and determines if the requested file system is available to the client, by
checking its dfstab file. If it is, the file system can then be mounted. In that case, the
client creates a VFS data structure and a mounted-on VNODE data structure. The
VNODE also contains a pointer to an RNODE. The RNODE is also created by the
client and it contains the information about the remote file system.

14.1.5 The Role of RPC

The communication between NFS clients and servers is implemented as a set of
RPC procedures that use XDR for the purpose of passing parameters between NFS
clients and servers. These operations are performed on RNODEs only. NFS
daemons (server processes), called nfsd daemons, run on NFS servers and accept
RPCs from clients. Another NFS server daemon, called mountd daemon, handles
file system mount requests and some pathname translation. On an NFS client, the
biod daemon is usually run to improve NFS performance, but it is not required.

NFS servers are designed to be stateless, meaning that there is no need to maintain
information (such as whether a file is open, the position of the file pointer, etc.)
about past requests. The client keeps track of all information required to send
requests to the server. Therefore NFS RPC requests are designed to completely
describe the operation to be performed. Also, most NFS RPC requests are
idempotent, meaning that an NFS client may send the same request one or more
times without any harmful side effects. The net result of these duplicate requests is
the same. NFS RPC requests are transported using the unreliable User Datagram
Protocol (UDP). NFS servers notify clients when an RPC completes by sending the
client an acknowledgment, also using UDP.

The stateless protocol minimises the burden of crash recovery. A stateless server
does not need to restore its previous main memory image or any other information
regarding which clients it was interacting with before crashing. It simply restarts to
recover after crashing.

An NFS client process sends its RPC requests to an NFS server one at a time.
Although a client computer may have several NFS RPC requests in progress at any
time, each of these requests must come from a different client process. When a
client makes an RPC request, it sets a timeout period during which the server must
service and acknowledge it. If the server does not acknowledge during the timeout
period, the client retransmits the request. This may happen if the request is lost
along the way, or if the server is too slow because of overloading. Since the RPC
requests are idempotent, there is no harm if the server executes the same request
twice. If the client gets a second acknowledgment from the request, the client
simply discards it.
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14.1.6 Remarks

In this section we describe a system, the Sun’s Network File System that applies the
client-server model in its implementation. NFS lets users in various locations access
files stored in the network transparently. The NFS server manages files stored in the
network, whereas NSF clients request file services from the server using RPCs. NFS
is the most widely used file system in local area networks nowadays.

14.2 Network Operating Systems: Unix/Linux

UNIX describes a family of computer operating systems developed at Bell
Laboratories. The UNIX system includes both the operating system and its
associated commands. The operating system manages the resources of the
computing environment by providing a hierarchical file system, process
management and other functions. The commands provided include basic file and
data management, editors, assemblers, compilers and text formatters.

Linux is a UNIX type of operating system, originally created by Linus Torvalds in
1991, that has been enhanced by developers around the world. Linux is an
independent POSIX (Portable Operating System Interface) implementation and is
compliant with X/Open and POSIX standards. Linux features include true
multitasking, multiuser support, virtual memory, shared libraries, demand loading,
proper memory management, TCP/IP networking, shell, file structure, utilities, and
applications that are common in many UNIX implementations. In this section, we
briefly introduce the main features of UNIX and Linux.

14.2.1 UNIX System Concepts

14.2.1.1 The File System

A file system in UNIX allows users to store information by name. Protection from
hardware failures can be provided and security from unauthorized access is also
available. The UNIX file system is simple; there are no control blocks, devices are
hidden, and there is a uniform interface for all input-output. Within the file system
three types of files are distinguished:

An ordinary file contains characters of a document or program. Executable
programs (binary files) are also stored as ordinary files. No record structure is
imposed on files; a file consists of a sequence of characters. A newline
character may delimit records as required by applications.

A directory holds the names of other files or directories. A user may create sub-
directories to group files related to a project. Consequently, the file system is a
hierarchy. A directory can be read, but not written, as if it were an ordinary file.
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Special files correspond to input or output devices. The same interface as
ordinary files is available; however, information is not kept in the file system, it
is provided directly by the device. The same access protection is available for
special and ordinary files.

The file system provides a hierarchical naming structure. Each directory contains
the names of files or further directories. There is no formatting of the file contents;
each file consists simply of a sequence of characters. It is convenient to establish
conventions for formatting files but this is left to individual programs. The UNIX
system knows about the file format used by executable programs (a.out files).

14.2.1.2 Process Management

All user work in the UNIX system is carried out by processes. A process is a single
sequence of events and consists of some computer memory and files being
accessed. A process is created by a copy of the process being made. The two
processes are only distinguished by the parent being able to wait for the child to
finish. A process may replace itself by another program to be executed. This
mechanism is both elegant and effective.

A UNIX kernel uses processes to manage the execution of applications. The process
construct allows the kernel to control the use of system resources so that

All currently active applications have reasonable access to system resources.

Applications cannot inadvertently or deliberately interfere with one another’s
access to the resources.

The more detailed process management will be discussed in the next section.

14.2.1.3 The Shell

The UNIX system is simple and elegant and provides an attractive programming
environment. The facilities and tools in UNIX are made available to users via a
command language that provides the interface between users and the UNIX
operating system. This program is called the shell and programs written in this
language are sometimes referred to as shell scripts.

The shell provides notation for directing input and output from commands and
control flow mechanisms. The shell executes commands that are read either from a
terminal or a file. Files containing commands may be created, allowing users to
build their own commands. These newly defined commands have the same status as
system commands. In this way, a new environment can be established reflecting the
requirements or style of an individual or a group.
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Pipes allow processes to be linked together so that the output from one process is
the input to the next. The shell provides a notation enabling pipes to be used with a
minimum of effort.

14.2.2 The UNIX Processes

14.2.2.1 Process Address Spaces

When a program is compiled, the compiler creates the program’s executable files,
also referred to as the executable image. The kernel uses this file to create a logical
address space that contains the following sections of data:

The program’s text section, which contains the executable instructions.

The program’s initialized data. This data is global data, which will be
accessible to the program’s main routine and all of the subroutines defined in
the program and in any libraries that the program references.

The program’s uninitialized data. The compiler allocates storage for this data,
but the data is not initialized until runtime. This data is also global data.

The executable file also includes a header, which specifies the location and size of
each of the data sections. When the program is being prepared for execution, the
system’s program loader uses the header information to set up the process’s virtual
address space.

When the process’s address space is set up, it contains a text section, and an
initialized data section, an uninitialized data section, and two additional sections:
the process’s heap, and the process’s user stack. The heap contains memory that the
process explicitly acquires during its execution. Typically, a process uses heap
memory to store dynamically required data structures. When a new data structure is
required, the process executes a call to malloc() to allocate the memory. When the
data structure is no longer needed, the process can execute a call to free() to free the
memory. Like the initialized and uninitialized data, the heap data is global.

In contrast to the data contained in the heap, the data contained on the stack is local
data, which is accessible only to the process’s currently active routine. A process’s
user stack grows and shrinks dynamically as needed.

14.2.2.2 Process Management System Calls

The UNIX kernel provides a set of process management system calls that allow
processes to create other processes, to manage the execution of related processes,
and to terminate themselves or the processes they control. These include fork(),
exec(), wait(), and exit().
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Processes use the fork() and exec() system calls to create processes and execute new
programs, respectively. The fork() system call creates a new process by duplicating
the address space of the calling process. The calling process is referred to as the
parent process and the new process is referred to as the child process. Upon
successful completion of fork(), the parent and child have duplicate address spaces
and are executing the same program.

The exec() system call allows a process to execute a new program by loading the
program into the process’s address space. Generally, a child process that is to
execute a new program issues a call to exec() after the call to fork(). A parent
process may choose to wait for its child to complete execution before resuming
execution itself. For example, the shell does this when executing commands in the
foreground. The user enters a command to the shell, the shell uses fork() to create a
new process, the new process calls exec() to load the command’s program, and the
shell waits for the program to complete execution.

A process that needs to wait in this fashion does so using the wait() system call.
This system call suspends the calling process’s execution until the child process
either terminates or suspends itself. It is called with a status argument that the
system uses to inform the waiting process about the exit or suspend status of the
child process. When the child exits or suspends itself, the system copies its status to
the status variable and allows the parent process to resume execution. The parent
can examine the status variable to determine what happended to the child.

When a process wants to explicitly terminate its execution, it does so using the
exit() system call. This system call releases all of the process’s system resources and
may send a signal to the process’s parent process to indicate that the child has
exited.

14.2.2.3 Process Context and Context-Switching

A CPU always executes instructions within the context of the current process. In
general, a process’s context is specified by its memory map and by its
computational state. A process’s computational state is specified by the contents of
the CPU’s registers as the CPU executes the process. The detailed characteristics of
a CPU’s registers are hardware-specific, but in general, CPUs include the following
types of registers:

Program counter: this register is the means by which the CPU finds the next
instruction to execute. A CPU’s behavior with respect to this register is
hardware-dependent, but many CPUs increment this register at the time they
are loading the current instruction so that when the current instruction has been
executed, the CPU can find and load the next instruction.

Stack management registers: the CPU uses these registers to locate and
manipulate the process’s stacks. In UNIX systems, a user process has two
stacks: a user stack and a kernel stack. When a process executes in user mode,
variables are stored on the user stack. When the process executes a system call,



416
the system call’s variables are stored on the kernel stack. Stack management is
highly machine-dependent. The CPU must be able to determine which stack is
currently active, and it must be able to locate variables on the stacks.

General registers: these registers are used to store variables that the CPU needs
to access quickly. Usually, the general registers hold operands that are being
manipulated by the process’s current state of execution. For example, if a
process is executing a for loop that increments and tests a variable before
looping, that variable is probably being stored in a general register.

A process’s computational state is highly dynamic. The program counter changes
with each instruction, and the stack management registers change each time the
process executes a system call or subroutine.

Any of a number of events can interrupt a process’s execution. When an
interruption occurs, the kernel must save the process’s computational state so that
when the process resumes execution, it executes from the point of interruption.
When the kernel schedules a new process for execution, it switches the CPU’s
context from the previous process to the new process. The kernel saves the first
process’s register state in memory, purges the CPU’s registers and MMU, and then
loads the new process’s register state into the CPU.

14.2.3 Linux as a UNIX Platform

Like other UNIX systems, Linux is a multiuser, multitasking operating system,
which means that Linux allows multiple users to log in and run more than one
program at the same time.

Linux is designed to comply with IEEE Std 1003.1-1990 (POSIX). This standard
defines the functions that applications written in the C programming language use to
access the services of the operating system, for tasks ranging from opening a file to
allocating memory. In 1996, Linux version 1.2.13, packaged by Open Linux Ltd.,
was validated conforming to the POSIX standard. Along with POSIX conformance,
Linux includes many features of other UNIX standards, such as the System V
Interface Document (SVID) and the Berkeley Software Distribution (BSD) version
of UNIX. Linux takes an electic approach, picking the most-needed features of
several standard flavors of UNIX.

The main features of Linux can be summarized as follows:

Virtual memory. It is possible to add up to 16 swapping areas during runtime,
each of which can hold 128 MB and can be used for a total of 2 GB swap
space.

Development languages. Linux supports most common languages including C,
C++, Java, Ada95, Pascal, FORTRAN, etc.
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UNIX commands and tools. It supports most UNIX commands such as Is, tr,
sed, awk, etc. and tools such as gcc, gdb, make, bison, flex, perl, rcs, cvs, and
prof.

UNIX source/binary compatibility. Linux is compatible with most POSIX,
System V, and BSD at the source level. Through iBCS2-compliant emulation,
it is compatible with many SCO, SVR3, and SVR4 at the binary level.

Graphical environments. It provides X11R5 and X11R6 techniques for
graphical uses. Motif is available separately.

Shells. It supports all three common shells. The default Linux shell is called
Bash, which stands for Bourne-Again Shell – a reference to the Bourne shell,
which has been the standard UNIX shell since its early days.

LAN support. It supports Appletalk server and NetWare client and server.

Internet communications. It supports TCP/IP networking including FTP,
Telnet, etc.

File systems. Linux file system supports file systems of up to 4 TB and names
up to 255 characters long. Also it supports NFS and System V. Transparent
access to MS-DOS FAT partition via a separate file system. Partition looks like
a normal UNIX file system.

14.2.4 Linux Networking

14.2.4.1 TCP/IP

Linux supports the TCP/IP protocol suite and includes all common network
applications, such as telnet, ftp, and rlogin. At the physical network level, Linux
includes drivers for many Ethernet cards. Token-ring is also an integral part of the
Linux kernel source; all you have to do is to rebuild the kernel and enable support
for token-ring.

Linux also includes the Berkeley Sockets (so named because the socket interface
was introduced in Berkeley UNIX around 1982) – a popular interface for network
programming in TCP/IP networks. For those with C programming experience, the
Sockets interface consists of several C header files and several C functions that you
call to set up connections and to send and receive data.

You can use the Berkeley Sockets programming interface to develop Internet tools
such as WWW browsers. Because most TCP/IP programs (including those that are
available for free at various Internet sites) use the Sockets programming interface, it
is easy to get these programs up and running on Linux, because Linux includes the
Sockets interface.
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14.2.4.2 PPP and SLIP

When you access the Internet through a server over a phone line and a modem, the
server runs either of two protocols:

Serial Line Internet Protocol (SLIP)

Point-to-Point Protocol (PPP)

Both protocols support TCP/IP over a dial-up line. SLIP is a simpler and older
protocol than PPP, which has more features for establishing a connection. However,
nearly everyone uses PPP nowadays. To establish a connection, your system must
run the same protocol as the ISP’s system.

Linux supports both SLIP and PPP for dial-up Internet connections. You can also
turn your Linux system into a SLIP or PPP server so that other computers can dial
into your computer and establish a TCP/IP connection over the phone line.

14.2.4.3 File Sharing with NFS

In DOS and Windows, users see the file server’s disk as being just another drive,
with its own drive letter (such as U). In PC networks, file sharing typically is
implemented with Novell NetWare or Microsoft Windows networking protocols.
The concept of file sharing exists in UNIX as well. The Network File System (NFS)
provides a standard way for a system to access another system’s files over the
network. To the user, the remote system’s files appear to be in a directory on the
local system.

NFS is available in Linux; you can share your Linux system’s directories with other
systems that support NFS. The other systems that access your Linux system’s files
via NFS do not necessarily have to run UNIX; in fact, NFS is available for DOS and
Windows as well. Therefore, you can use a Linux PC as the file server for a small
workgroup of PCs that run DOS and Windows.

14.2.4.4 UUCP

An old but important data-exchange protocol is UUCP (UNIX-to-UNIX Copy). For
some systems, this protocol continues to be a means of exchanging electronic mail
and news. Usenet news – the bulletin-board system (BBS) of the Internet –
originated with UUCP. Computers that were connected to one another over phone
lines and modems used UUCP to exchange mail messages, news items, and files.
Essentially, the messages and news were relayed from one computer to another.
That system was a low-cost way to deliver news and mail. Although today much of
the e-mail and news travels over permanent network connections of the Internet,
UUCP still allows many distant systems to be part of the Internet community, as far
as Usenet news and e-mail go.

Linux includes UUCP. If your Linux system has a modem, and if you want to
exchange files with another system via a dial-up connection, you can use UUCP.
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However, with the proliferation of Internet service providers, chances are good that
you will probably connect your Linux PC to the Internet through an ISP.

14.2.5 Software Development in Linux

Of all the potential uses of Linux, software development fits Linux perfectly.
Software-development tools such as the compiler and the libraries are included in
Linux because they are needed to rebuild the Linux kernel. As far as the
development environment goes, you have the same basic tools (such as an editor, a
compiler, and a debugger) that you might use on other UNIX workstations, such as
those from Hewlett-Packard (HP), Sun Microsystems, and IBM. Therefore, if you
work by day on one of the mainstream UNIX workstations, you can use a Linux PC
at home to duplicate that development environment at a fraction of the cost. Then
you can either complete work projects at home or devote your time to software that
you write for fun and then share on the Internet.

14.3 CORBA

14.3.1 What is CORBA?

Common Object Request Broker Architecture (CORBA) is a middleware design
that allows application programs to communicate with one another irrespective of
their programming languages, their hardware and software platforms, the networks
they communicate over and their implementors. In other words, CORBA is a
specification of architecture and interface that allows an application to make
requests of objects (servers) in a transparent, independent manner, regardless of
language, platform, operating system or locale considerations. The CORBA
programming paradigm combines distributed client-server programming and object-
oriented programming methodologies.

Applications are built from CORBA objects, which implement interfaces defined in
CORBA’s interface definition language, IDL. Clients access the methods in the IDL
interfaces of CORBA objects by means of RMI. The middleware component that
supports RMI is called the Object Request Broker or ORB. ORB is the message bus
that facilitates object communications across distributed heterogeneous computing
environment.

The specification of CORBA has been sponsored by members of the Object
Management Group (OMG). Many different ORBs have been implemented from
the specification, supporting a variety of programming languages. ORB is also a
component of the Object Management Architecture (OMA). The OMA provides
fundamental models on which CORBA and other standard interfaces are based.

The Object Management Architecture (OMA) has the following key features:

The Core Object Model: defines concepts that allow distributed application
development to be facilitated by an Object Request Broker (ORB). The
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concepts include: objects, operations, non-object types, interfaces and
substitutability.

The Reference Architecture: provides standardised interfaces for supporting
application development. They include: the ORB, object services, domain
interfaces, common facilities, application interfaces.

Figue 14.3 illustrates the OMA Reference Architecture.

Figure 14.3. OMA Reference Architecture

14.3.2 The CORBA Architecture

As mentioned above, CORBA supports client-server programming. It has the
following concepts:

Client: makes requests to other components in a distributed application.

Server: provides an implementation of a component that a client uses. A server
can also act as a client to other servers.

Interface definition: describes the functionality of a CORBA object. Clients of
CORBA objects rely only on the interfaces.

CORBA servers: they are programs that provide the implementation of one or
more CORBA objects.

Figure 14.4 illustrates the client-server interaction in CORBA. CORBA provides
location transparency and programming language transparency via the use of
OMG’s Interface Definition Language (IDL). Figure 14.4 involves the following
objects:
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Figure 14.4. CORBA client and server

IDL compiler generated codes:

Stub code: linked into a CORBA object.

Skeleton code: linked into a CORBA object implementation.

An ORB agent/daemon process.

Library code.

Interfaces among ORB components.

The CORBA architecture is designed to support the role of an object request broker
that enables clients to invoke methods in remote objects, where both clients and
servers can be implemented in a variety of programming languages. The main
components of the CORBA architecture are illustrated in Figure 14.5.

CORBA makes the distinction between static and dynamic invocations. Static
invocations are used when the remote interface of the CORBA object is known at
compile time, enabling client stubs and server skeletons to be used. If the remote
interface is not known at compile time, dynamic invocation must be used. Most
programmers prefer to use static invocation because it provides a more natural
programming model. We now discuss the components of the architecture.
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Figure 14.5. CORBA architecture

ORB core. The role of the ORB core is similar to that of the communication
module of RMI. In addition, an ORB core provides an interface that includes the
following:

Operations enabling it to be started and stopped;

Operations to convert between remote object references and strings;

Operations to provide argument lists for requests using dynamic invocation.

Object adapter. The role of an object adapter is to bridge the gap between CORBA
objects with IDL interfaces and the programming language interfaces of the
corresponding servant classes. This role also includes that of the remote reference
and despatcher modules in RMI. An object adapter has the following tasks:

It creates remote object references for CORBA objects;

It dispatches each RMI via a skeleton to the appropriate servant;

It activates objects.

An object adapter gives each CORBA object a unique name, which forms part of its
remote object reference. The same name is used each time an object is activated.
The object name may be specified by the application program or generated by the
object adapter. Each CORBA object is registered with its object adapter, which may
keep a remote object table that maps the names of CORBA objects to their servants.

IDL skeletons. Skeleton classes are generated in the language of the server by an
IDL compiler. As before, remote method invocations are dispatched via the
appropriate skeleton to a particular servant, and the skeleton unmarshals the
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arguments in request messages and marshals exceptions and results in reply
messages.

IDL stubs. These are in the client language. The class of a proxy (for object-
oriented languages) or a set of stub procedures (for procedural languages) is
generated from an IDL interface by an IDL compiler for the client langauge. As
before, the client stubs/proxies marshal the arguments in invocation requests and
unmarshal exceptions and results in replies.

Implementation repository. An implementation repository is responsible for
activating registered servers on demand and for locating servers that are currently
running. The object adapter name is used to refer to servers when registering and
activating them.

An implementation repository stores a mapping from the names of object adapters
to the pathnames of files containing object implementations. Object
implementations and object adapter names are generally registered with the
implementation repository when server programs are installed. When object
implementations are activated in servers, the hostname and port number of the
server are added to the mapping.

Interface repository. The role of the interface repository is to provide information
about registered IDL interfaces to clients and servers that require it. For an interface
of a given type it can supply the names of the methods and for each method, the
names and types of the arguments and exceptions. Thus, the interface repository
adds a facility for relection to CORBA. Suppose that a client program receives a
remote reference to a new CORBA object. Also suppose that the client has no proxy
for it; then it can ask the interface repository about the methods of the object and the
types of parameter they require.

Those applications that use static invocation with client stubs and IDL skeletons do
not require an interface repository. Not all ORBs provide an interface repository.

Dynamic invocation interface. In some applications, a client with the appropriate
proxy class may need to invoke a method in a remote object. For example, a
browser might need to display information about all the CORBA objects available
in the various servers in a distributed system. It is not feasible that such a program
should have to link in proxies for all of these objects, particularly as new objects
may be added to the system as time passes. CORBA does not allow classes for
proxies to be downloaded at run time as in Java RMI. The dynamic invocation
interface is CORBA’s alternative.

It allows clients to make dynamic invocations on remote CORBA objects. It is used
when it is not practical to employ proxies. The client can obtain from the interface
repository the necessary information about the methods available for a given
CORBA object, The client may use this information to construct an invocation with
suitable arguments and send it to the server.

Dynamic skeleton interface. This allows a CORBA object to accept invocations on
an interface for which it has no skeleton because the type of its interface was not
known at compile time. When a dynamic skeleton receives an invocation, it inspects
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the contents of the request to discover its target object, the method to be invoked
and the arguments. It then invokes the target.

14.3.3 Interface Definition Language (IDL)

The CORBA Interface Definition Language, IDL, provides facilities for defining
modules, interfaces, types, attributes, and method signatures. IDL has the same
lexical rules as C++ but has additional keywords to support distribution, for
example, interface, any, attribute, etc. It also allows standard C++ pre-processing
facilities. The grammar of IDL is a subset of ANSI C++ with additional constructs
to support method signatures.

The CORBA IDL is designed to specify the functionalities of objects. Programming
language code is generated from the IDL definition to perform the tedious, error
prone, and repetitive tasks of establishing network connections, marshalling,
locating object implementations, and invoking the right code to perform an
operation. The IDL mainly has the following types of definitions:

Modules. The module construct allows interfaces and other IDL type
definitions to be grouped in logical units. A module defines a naming scope,
which prevents names defined within a module clashing with names defined
outside it.

Interfaces. An IDL interface describes the methods that are available in
CORBA objects that implement that interface. Clients of a CORBA object may
be developed just from the knowledge of its IDL interface. An interface defines
a set of operations and attributes and generally depends on a set of types
defined with it.

Methods. An IDL method defines a function of an IDL object and can be
invoked by clients. The method definition has many constructs indicating what
type of data the method returns.

Data types. IDL supports fifteen primitive types, which includes basic types,
structure, array, sequence, exception, etc. Constants of most of the primitive
types and constant strings may be declared, using the const keyword. IDL
provides a special type called Object, whose values are remote object
references. If a parameter or result is of type Object, then the corresponding
argument may refer to any CORBA object.

Attributes. IDL interfaces can have attributes as well as methods. Attributes are
like public class fields in Java. The attributes are private to CORBA objects,
but for each attribute declared, a pair of accessor methods is generated
automatically by the IDL compiler, one to retrieve the value of the attribute and
the other to set it.

Inheritance. IDL can extend the functionality of an existing interface by
defining its inheritance. CORBA inheritance is independent of implementation
inheritance, as shown in Figure 14.6.
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Figure 14.6. Interface inheritance and implementation inheritance

14.3.4 An Example of CORBA for Java

One commonly used CORBA for Java is the Orbix Web developed by IONA
Technologies Ltd. The general syntax of CORBA IDL is as follows:

Below is an example of an IDL definition for a grid application:
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The interface provides two attributes, height and width, which define the size of
a grid. Since they are labeled read-only, they cannot be directly modified by a
client. There are also two operations: the set() operation allows an element of grid to
be set, and the get() operation returns an element. Parameters here are labeled as in,
which means they are passed from the client to the server. Other labels can be out or
inout.

The following command compiles the IDL file:

After the compilation, the following files are generated and stored in a local
directory java_output:

_GridRef.java. A Java interface; the methods of this interface define the Java
client view of the IDL interface.

Grid.java. A Java class which implements the methods defined in the interface
_GridRef. This class provides functionality which allows client method
invocations to be forwarded to a server.

_GridHolder.java. A Java class which defines a Holder type for class Grid.
This is required for passing Grid objects as inout or out parameters to and from
IDL operations.

_GridOperations.java. A Java interface which maps the attributes and
operations of the IDL definition to Java methods. These methods must be
implemented by a class in the server.

boaimpl_Grid.java. An abstract Java class which allows server-side developers
to implement the Grid interface using one of two techniques available on
OrbixWeb; this technique is called the BOAImpl approach to interface
implementation.

tieGrid.java. A Java class which allows server-side developers to implement
the Grid interface using one of two techniques available on OrbixWeb; this
technique is called the TIE approach to interface implementation.

dispatcher_Grid.java. A Java class that is used internally by OrbixWeb to
dispatch incoming server requests to implementation objects. Application
developers do not require an understanding of this class.

After the implementation of the _GridOperations.java program and a client
program, the program can be compiled. Then the server should be registered to the
registry by using the putit command. The client can now access the server from any
machine since it knows the machine name, the server name and object names.
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14.4 DCOM

Distributed Component Object Model (DCOM) is a viable distributed objects
technology to develop distributed computing systems. Distributed COM is nothing
more than a wire protocol and a set of services that allow COM components in a
distributed environment to intercommunicate. In this section we briefly review this
technology.

14.4.1 COM and DCOM

As its name implies, the Component Object Model (COM) is a model that you can
utilize to build software components. A component is a package or a module, more
often referred to as an executable (EXE) or a dynamic linked library (DLL). Being a
model, COM is fully specified in a formal document called “The Component Object
Model Specification.” The COM specification encompasses several previously
successful technologies: object-oriented model, client/server model, and dynamic
linking technologies. Object-oriented programming is a successful technology
because it supports encapsulation, inheritance, and polymorphism. COM not only
accepts and praises these concepts, but it firmly enforces and improves them. The
client/server model has been discussed frequently in the previous chapters. It has
many benefits, but one notable benefit is systems robustness. In the client/server
model, a server can support numerous clients simultaneously. If a single client
crashes, it will not bring down the server and all the other clients. Likewise, if the
server crashes, it will not bring down its clients, assuming those clients gracefully
handle the disconnection. Robustness is the main reason why COM embraces the
client/server model. Dynamic linked libraries (DLLs) have been successful, for the
most part, because they save space, support upgrades, and allow a runtime selection
of functions needed by a client program.

COM supports interoperability within the confines of a single machine, but
distributed COM (DCOM) extends COM to support distributed objects. This
extension adds support for location transparency, remote activation, connection
management, concurrency management, and security. In fact, many presenters and
writers speak of DCOM as “COM with a longer wire”. As shown in Figure 14.7, the
DCOM wire protocol is built on top of Microsoft RPC, Microsoft’s implementation
of DCE RPC. This upper layer is termed ORPC, since it is a protocol that supports
object-oriented remote procedure calls (ORPC).

Simply put, DCOM allows developers to concentrate their efforts on developing the
functionality of their applications, without the worries of data marshaling and
network protocol management. DCOM provides this support for easy distribution of
objects in the global cyberspace. Its accessibility is superb, because it is an
integrated part of Windows NT, Windows 95/98/2000, and future Windows
platforms. Soon it will be supported on a variety of UNIX platforms; check out
Software AG’s “EntireX DCOM” product line at http://www.sagus.com.
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Figure 14.7. Distributed COM is built on top of DCE RPC

14.4.2 DCOM Facilities and Services

DCOM provides many facilities and services. Here we only introduce some of them
which represent the main features of DCOM.

14.4.2.1 Location Transparency

When a client invokes a method using DCOM, it thinks that the method is executed
locally. But in fact, the method can be anywhere in cyberspace. It could live in the
same process as the client, a different process on the same machine, or a process on
a machine two hundred miles away. From the client’s perspective, there’s no
difference. This is the idea behind location transparency.

Location transparency depends upon marshaling. To support marshaling, DCOM
uses a previous, proven technology known as DCE RPC. DCE RPC supports
location transparency in the functional world. DCOM, which is built on top of RPC,
supports location transparency in the object-oriented world. Like RPC, DCOM uses
an interface to define a set of related functions, which are used for client and server
communications. Given an interface, we can use a tool, called the Microsoft
Interface Definition Language (MIDL) compiler, to fully generate corresponding
marshaling code. This marshaling code is also referred to as proxy/stub code. In
DCOM, each interface has an interface proxy and an interface stub. When a remote
method invocation is made, possibly because the target object is two hundred miles
away, these interface proxies and stubs will come to the rescue.

Location transparency conveys a number of benefits. It permits you to write the
code that talks to a target object without worrying about where the object actually
exists. The fact that objects can be located anywhere allows for greater flexibility
and distribution. Location transparency also allows greater scalability and fault-
tolerance.
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14.4.2.2 Dynamic and Remote Object Activation

In an RPC environment, a server must be started manually or during computer start
up. It must also listen for requests on a specific port. With DCOM, servers don’t
have to be started manually, because the DCOM infrastructure supports dynamic
object activation. In other words, DCOM will dynamically activate servers upon
client requests. With DCOM, a server doesn’t have to listen for client requests the
way legacy servers do in a client/server environment. DCOM handles this
transparently. The object worries only about the services it provides, and this is a
clear separation of responsibility.

The DCOM Service Control Manager (SCM), which is not the same as the NT
SCM, supports remote activation. It lives on every machine that supports DCOM.
One of its missions is to locate and activate distributed objects dynamically upon
client requests. It works in conjunction with the system registry, since information
regarding distributed objects is recorded in the registry. In Windows 2000, this
information is maintained by the DCOM catalog, which works with the system
registry and the active directory to locate components.

If an object lives in a DLL on the same machine, DCOM will dynamically load the
DLL for the client process that uses the object. If an object lives in a separate EXE
on the same machine, DCOM requests its local SCM to activate the EXE, so that
the client process can use the object. If an object lives in a remote machine, there
needs to be some coordination. In this case, the local SCM on the client machine
contacts the remote SCM. The remote SCM is responsible for activating the remote
EXE or DLL. For a remote EXE, the remote SCM simply spawns it. For a remote
DLL, the remote SCM activates a registered surrogate process to dynamically load
the DLL.

14.4.2.3 Security

One of the most important attributes of a distributed system is security. DCOM
supports launch, access, and call-level security. Launch security, which is also
called activation security, determines who can launch or activate the server
component, and thus protects the server machine. With this support, the server
component can be launched only by users or groups that are given the rights to do
so. Remember that any client anywhere in cyberspace can potentially activate
DCOM servers, so it would be disastrous if DCOM lacked support for launch
security.

At this point, assume that a client has launch permissions and has successfully
launched a remote server. But does the client have access to the component in
question? Controlling access to a component, called access controls or access
security, is the answer to this question, because it raises authorization to another
level. Access controls allow the server component to limit user access to its objects,
thereby protecting its objects from offenders.
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Figure 14.8. DCOM security

Now assume that a client has met both the launch and access security requirements.
In other words, you have successfully established a connection and conversation
with your remote object. What do you do about sniffers in the wild cyberspace who
are tailgating, analyzing, and possibly modifying your packets? Call-level security
shown in Figure 14.8 goes a step further to put these offenders to rest. For each
method call, you can adjust the degree of data protection by changing the
authentication level of the method invocation. There are several authentication
levels supported by DCOM, such as data integrity and data privacy.

14.4.2.4 Interfaces

It is best to separate the software interface from its implementation because this
allows easier integration among different components. For instance, if we use a
service that other people provide, all we want to do is simply use the service via
published interfaces. We do not care what they do underneath those interfaces,
because we don’t care about their implementation, so long as we get the services we
need. The same idea applies to DCOM. The DCOM interface can be considered as a
contract signed with the world regarding a provided service that will never be
changed. Each interface is unique in time and space, because it is assigned an
interface identifier (IID), a 128-bit globally unique identifier (GUID). This also
means that version support is practically automatic, because each interface contains
an identifier that is universally unique.

Interfaces are defined using MIDL, which is based on DCE IDL. MIDL is critical to
DCOM because it defines the classes the DCOM library supports, the interfaces
these classes support, and the methods offered by these interfaces. Typically, a
DCOM object includes a number of well-defined and unalterable interfaces.

In DCOM, all interfaces must derived from a special interface called IUnknown.
This interface is required to support the fundamentals of a robust and changing
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component, and it includes three extremely important methods: QueryInterface,
AddRef, and Release. Clients call QueryInterface to dynamically discover other
interfaces supported by an object, while AddRef and Release are used for
management of an object’s life cycle.

14.4.2.5 Binary Interoperability

Binary interoperability is an important aspect of software reuse. In the old days,
when you deployed a development library, you had to ship header and library files.
The customers had to link your library into their system in order for the system to
work. With the advent of component technology, you need to ship only your binary.
The customers no longer see header files or need to link with your libraries. Not
only does binary interoperability make software integration easier, it allows the
development and integration of plug-in components.

In DCOM, binary interoperability is achieved, believe it or not, by the use of
interfaces. Each interface has a binary signature, via the use of a vtbl (table of
function pointers) and vptr (pointer to a vtbl), as shown in Figure 14.9. To use
an object, we must first acquire an interface pointer. The interface pointer points to
the vptr, which points to the vtbl. Each instantiated object has a vptr, but there
is a single vtbl per class. Once we get to the vtbl, we can find the resulting
function. This vptr/vtbl technique is commonly used by C++ compilers to
provide support for dynamic binding or polymorphism, and it is used here for binary
interoperability.

Figure 14.9. DCOM binary specification

The extra level of indirection has a powerful benefit for flexibility in languages.
Any language or tool with a facility to support a notion of a pointer/reference can
interoperate with DCOM objects.
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14.4.3 Applying DCOM

This section lists only the services that are important for a distributed system. The
developers’ job is to apply and extend DCOM, by adding new interfaces, which are
essentially immutable contracts. Make the contracts public, and the whole world can
share them. In a sense, these interfaces are immortal. Everyone can communicate
with them, like universal languages.

Let us quickly run through a few of the important standard interfaces that Microsoft
has provided. Dynamic invocation is supported by the IDispatch interface, and
event notification is supported by the IConnectionPoint family of interfaces. If you
look further, there is the IPersist family of interfaces, which supports distributed
object persistence. There is also the IMoniker family of interfaces that supports a
smart aliasing, that allow a client to dynamically connect to the object to which the
moniker refers. For uniform data transfer, use the IDataObject interface. And if you
are looking for transaction support, check out Microsoft Transaction Server (MTS).

An interface is just a specification, because there is no implementation attached to
it. Any DCOM object can implement these published interfaces to actually provide
the corresponding services.

14.5 Summary

In this chapter we investigated several distributed network systems, i.e., distributed
file systems, the UNIX/Linux operating system, CORBA, and DCOM systems.
Common to these systems, they all follow the client-server model and provide
location and network transparency. This means, users, regardless of their physical
location, can obtain their services without knowing their network location. A
distributed file system is a key component of any distributed computing system. Sun
Microsystems’ Network File System (NFS) is an example of a distributed file
system. NFS is the most widely used file system in local area networks nowadays.
UNIX describes a family of computer operating systems developed at Bell
Laboratories. Linux is a UNIX type of operating system, originally created by Linus
Torvalds in 1991. Linux is an independent POSIX (Portable Operating System
Interface) implementation and is compliant with X/Open and POSIX standards. The
Common Object Request Broker Architecture (CORBA) programming paradigm
combines distributed client-server programming and object-oriented programming
methodologies. Distributed Component Object Model (DCOM) is a viable
distributed objects technology to develop distributed computing systems. It allows
developers to concentrate their efforts on developing the functionality of their
applications, without the worries of data marshalling and network protocol
management.

Exercises

What is the purpose of a distributed file system? What services can it
provide? 14.1.1
14.1
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In the NFS, how do clients communicate with servers? 14.1.2

How are files exported? 14.1.4

Why are NFS servers designed to be stateless? 14.1.5

What is the purpose of the UNIX file system? What kind of files does it store?

14.2

14.3

14.4

14.5
14.2.1

What is the UNIX shell? 14.2.1

How does a UNIX process execute a new program? 14.2.2

Why is Linux a UNIX platform? 14.2.3

How does Linux support TCP/IP protocol suite? 14.2.4

How do clients interact with servers in CORBA? 14.3.2

14.6

14.7

14.8

14.9

14.10

What is an object adapter? 14.3.2

How is a client stub generated? 14.3.2

What is the CORBA IDL? 14.3.3

What is DCOM? 14.4.1

How does DCOM achieve location transparency? 14.4.2.1

What is call-level security? 14.4.2.3

14.11

14.12

14.13

14.14

14.15

14.16
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CHAPTER 15 DISTRIBUTED NETWORK
SYSTEMS: CURRENT DEVELOPMENT

In this Chapter we outline the most recent developments in distributed network
systems, through exploration of a range of topics that are currently “hot”, such as
Cluster computing, Computing Grid, Peer-to-peer computing, and Pervasive
computing. It is a chapter to broaden readers’ knowledge.

15.1 Cluster Computing

Clusters are now an attractive architecture for executing high performance
applications and providing data storing and managing services, given their high
scalability, availability and low cost to performance ratio. A cluster can be defined
as a parallel or distributed system that consists of a collection of interconnected
whole computers, that is utilized as a single, unified computing resource.

This rising interest in clusters has led to the formation of an IEEE Computer Society
Task Force on Cluster Computing (TFCC1) in early 1999. An objective of the
TFCC is to act both as a magnet and a focal point for all cluster computing related
activities.

However, cluster programming and use are difficult as clusters suffer from a lack of
dedicated operating system providing a Single System Image (SSI). Furthermore,
given that cluster are composed of a collection of independent computers used by
multiple users, the reliability of clusters are somewhat lacking. The loss of a
computer in a cluster or of a single process can cause the failure of a parallel
application and a huge computation loss. Hence, fault tolerance functionality is
necessary. High availability requirements in clusters vary from general methods for
fast application fail-over, to system support of shared data integrity and consistency.
Currently, the main methods of preserving data consistency are various logging
techniques. This approach can lead a major drawback in large clusters due to the
extended fail-over time and the complexity of the recovery protocol, particularly
when several nodes or the network fail.

Building cluster services has never been an easy task. One of the most challenging
problems is data management. The data store must be scalable, efficient, easy to use
and fault tolerant. Distributed replication provides high availability, fault-tolerance
and enhanced performance. But these features come at a price: replication adds
great complexity to the system development. Most of all, replication jeopardises
data consistency. In turn, mechanisms have to be employed to enforce data
consistency. Maintaining data consistency is very expensive. Performance and
reliability of cluster computing could also be improved by replicating some
services, either partially or fully, and distributed across several sites on the cluster.
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Replicated services offer fault-tolerance and can improve performance by
dispatching service requests to servers near to their users or to a lightly loaded
server.

15.1.1 Cluster Operating Systems

Cluster operating systems should provide the following “desireable” features
[Buyya 1998]:

Sharing. The goal of a cluster is to make it possible to share a computing load
over several systems without either the users or system administrators needing
to know that more than one system is involved

Manageability: An absolute necessity is remote and intuitive system
administration; this is often associated with a Single System Image which can
be realized on different levels, ranging from a high-level set of special scripts,
down to real state-sharing on the operating system level.

Stability: The most important characteristics are robustness against crashing
processes, failure recovery by dynamic reconfiguration, and usability under
heavy load.

Performance: The performance critical parts of the operating system, such as
memory management, process and thread scheduler, file I/O and
communication protocols should work as efficiently as possible. The user and
programmer should be able to transparently modify the relevant parameters to
fine-tune the operating system for his or her specific demands.

Scalability: If more processing power is needed the user simply “plugs in a new
component”, and the performance of the system as a whole improves. The
scalability of a cluster is mainly influenced by the properties of the contained
nodes, which is dominated by the performance characteristics of the
interconnect. This includes the support of the operating system to be able to use
the potential performance of the interconnect by enabling low-overhead calls to
access the interconnect (inter-node scalability).

Support: Many intelligent and technically superior approaches in computing
failed due to the lack of support in its various aspects: which tools, hardware
drivers and middleware environments are available. This support depends
mainly on the number of users of a certain system, which in the context of
clusters is mainly influenced by the hardware costs (because usually dozens of
nodes are to be installed). Additionally, supports for interconnect hardware;
availability of open interfaces or even open source; support or at least demand
by the industry to fund and motivate research and development are important.
All this leads to a user community that employs required middleware,
environments and tools to, at least, enable cluster applications.

Heterogeneity: Clusters provide a dynamic and evolving environment in that
they can be extended or updated with standard hardware just as the user needs
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to or can afford. Therefore, a cluster environment does not necessarily consist
of homogenous hardware requiring the same operating system; it should run
across multiple architectures or at least support a set of standardized APIs to
simplify the development of middleware layers enabling heterogeneous use.

High Availability: If any component in the system, hardware or software fails
the user may see degraded performance, but will not lose access to the service

It should be noted that experience shows that these goals may be mutually
exclusive. For example, supplying an SSI at the operating system level, while a
positive move in terms of manageability, drastically affects scalability. Another
example is the availability of the source code in conjunction with the possibility to
extend (and thus modify) the operating system on this base. This property has a
negative influence on the stability and manageability of the system: over time, many
variants of the operating system will develop, and the different extensions may
conflict when there is no single supplier.

To provide a single system image – a cluster operating system - on top of a cluster,
global management of resourses, such as memory, processor and disk should be
performed. A lot of work has already been done in global resource management.

Regarding SSI, at least two variants of it should be distinguished: SSI for system
administration or job scheduling purposes and SSI on a system-call level. The first
is usually achieved by middleware, running daemons or services on each node
delivering the required information to the administration tool or job scheduler. The
latter would have to offer features like transparent use of devices located on remote
nodes or using distributed storage facilities as one single standard file system. These
features require extensions to current single-node operating systems.

An operating-system-level SSI implies detailed state sharing across all nodes of the
cluster, and to this point, operating system (OS) researchers and practitioners have
been unable to scale this to clusters of significant size (more than a hundred nodes)
using commodity interconnects. That does not mean that an OS-level SSI is a bad
thing; for the vast majority of clusters, which have less than 32 nodes, an operating-
system-level single-system image may be quite workable.

By far the most common solution for cluster operating systems is to run a
conventional operating system, with little or no special modification. This operating
system is usually a Unix derivative, although NT clusters are becoming more
common. The single most popular cluster operating system is Linux. Because it is
free, and it is an open source operating system, meaning that one is free to
customize the kernel to one’s liking.

Sun Microsystems has developed a multi-computer version of Solaris; aptly named
Solaris MC [Solaris MC] Solaris MC consists of a small set of kernel extensions
and a middleware library. It incorporates some of the research advances from Sun’s
Spring operating system, including an object-oriented methodology and the use of
CORBA IDL in the kernel. Solaris MC provides an SSI to the level of the device,
i.e. processes running on one node can access remote devices as if they were local.
The SSI also extends to a global file system and a global process space.
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Solaris MC includes three key features for controlling and managing the processes
running on a cluster:

It supplies a global view of all the processes and users in the system and allows
them to be controlled from a single point. This provides ease of administration
and management of the cluster.

It exports this global view and control of processes through the Solaris
Application Binary Interface (ABI) so existing applications can see a global
view of the system without modification. For example, we can view everything
running on the cluster with the same UNIX command used on a single
machine; thus the entire cluster can be managed from a single point, with the
same command used in existing systems.

It harnesses the power of the cluster through features that execute processes in
multiple nodes in parallel. Solaris MC provides global control of processes,
compatibility with existing software, and ability to use parallelism.

The Puma operating system [Puma], from Sandia National Labs and the University
of New Mexico, represents the ideological opposite of Solaris MC. Puma takes a
true minimalist approach. That is, there is no sharing between nodes, and there is
not even a file system or demand paged virtual memory. This is because Puma runs
on the “compute partition” of the Intel Paragon and Tflops/s machines, while a full-
featured OS (e.g. Intel’s TflopsOS or Linux) runs on the Service and I/O partitions.
The compute partition is focused on high-speed computation, and Puma supplies
low-latency, high-bandwidth communication through its Portals mechanism.

MOSIX [MOSIX] is a set of kernel extensions for Linux that provides support for
seamless process migration. Under MOSIX, a user can launch jobs on their home
node, and the system will automatically load balance and migrate the jobs to lightly
loaded nodes. MOSIX maintains a single process space, so the user can still track
the status of their migrated jobs. MOSIX is a mature system, growing out of the
MOS project and having been implemented for seven different operating
systems/architectures. MOSIX is free and is distributed under the GNU Public
License.

The ChorusOS operating system [ChorusOS] is a highly scalable and reliable
embedded operating system that has established itself among top telecom suppliers.
The ChorusOS operating system is used in public switches and PBXs, as well as
within access networks, cross-connect switches, voice-mail systems, cellular base
stations, Webphones and cellular telephones. It is also used in a wide variety of
other embedded applications, ranging from printing devices to factory automation.
Its main features include:

Component-based architecture for high configurability – Uses a highly-flexible,
component-based architecture that allows different services to be configured
into the run-time instance of the operating system

Exceptional scalability – Component based design allows a very high degree of
scalability; based on only the micro core executive, typically requires only
about 10 Kilobytes of memory to run
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Multiple OS personalities and APIs – Can be run simultaneously on a common
hardware platform using the ChorusOS operating system in such a way that
diverse applications can communicate transparently.

Inter-Process Communication – Allows applications to be distributed across
multiple machines; the IPC feature identifies the location of a process (local or
remote), and then identifies the shortest path and quickest execution time that
can be used to reach it, managing the communication in a way that makes the
process location entirely transparent to the application.

Cluster operating systems are similar in many ways to conventional workstation
operating systems. How different one chooses to make the operating system
depends on one’s view of clustering. For some people, each node that runs a cluster
operating system must be a full-featured operating system themselves. For others, a
small kernal on each node is all it requires, then other common features required by
each node will be provided by middleware.

15.1.2 Reliable Server Clusters

A key indicator of today’s global business systems is the reliability and uptime
[Grimshaw et al. 1999]. This concern is crucial for e-commerce sites and mission-
critical business applications. Expensive and powerful servers that are designed as
stand-alone systems can be very reliable, but even an hour of downtime per month
can be deadly to online-only businesses.

Server clusters are increasingly used in business and academia to combat the
problems of reliability since they are relatively inexpensive and easy to build
[Buyya 1999], [TBR 1998]. By having multiple network servers working together
in a cluster and using redundant components such as more than one power supply
and RAID hard drive subsystems, the overall system uptime in theory can approach
100 percent. However, server clusters are only a part of a chain that links business
applications together. For example, to access an HTML page of a business web site,
a user issues a request that travels from the user’s client machine, through a number
of routers and firewalls and other network devices to reach the web site. The web
site then processes the request and returns the requested HTML page via the same
or another chain of routers, firewalls and network devices. The strength of this
chain, in terms of reliability and performance, will determine the success or failure
of the business, and a chain is only as strong as its weakest link, and the longer the
chain, the weaker it is overall.

One way to make such a chain stronger is the use of redundancy (replication) and
concurrency (parallelism) techniques. With replication, if one component fails,
another replica is ready and able to take its place. If the second component fails,
there must be a third one, and so on. With concurrency, multiple requests can be
processed simultaneously and the performance can be improved. Redundancy and
concurrency also have the potential to shorten the length of the chain since tasks can
be allocated to multiple devices in parallel instead of to individual devices in a
sequential order.
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Another way to make the chain stronger is to increase the reliability of the weakest
link of the chain. Nowadays, most web-based applications use the client-server
model [Goscinski and Zhou 99]. In such applications, servers are the most likely
performance bottleneck and point of failures, and the majority of server failures are
software related [Guerraoui and Schiper 1997], [SUN 1997]. Therefore a key issue
in building reliable and high-performance applications is to develop software
systems for server clusters that are actually able to achieve extremely long uptimes
and at the same time, to improve the system performance.

Although building reliable software is of paramount importance in many modern
applications, fault-tolerant computing has long been regarded as a luxury in
applications mainly due to its complexity and lack of tools to deal with this
complexity. To build a reliable and high-performance software system, the
developer must not only deal with the complex problems of distributed and parallel
processing systems when all the components are well, but also the more complex
problems when some of the components fail. The challenge here is to develop tools
that enable developers to concentrate on their own application domain by freeing
them from the difficulties of dealing with fault-tolerant and high-performance
issues.

15.2 Grid Computing

15.2.1 What is Grid Computing?

Increasingly, organisations and academic institutions are using distributed clustering
systems to support large-scale, resource intensive applications for scientific and
industrial research. These systems are usually geographically isolated, and use a
diverse range of clustering platforms to manage the sharing of computer resources
on a local scale.

The emerging grid computing paradigm, aims to aggregate these islands of
computer resources so they can be used as a single vast computing resource. In a
manner analogous to public utilities such as the electric power grid, water and gas
services, grid technologies aim to provide dependable, consistent, pervasive and
inexpensive on demand access to computer resources [Foster and Kesselman 1998].

Grid computing focuses on large-scale, multi-institutional, resource sharing to
deliver high performance. This wide-area sharing of resources can be used to
facilitate virtual organisations, which according to [Foster et al. 2001] is the real
problem grid computing aims to solve. Grid computing, and virtual organisations,
allow multi-disciplinary, multi-institutional collaborations. This requires, co-
ordinated, flexible and dynamic resource sharing models to enable a range of
collaborative problem-solving and resource brokering strategies. Therefore, the
participants in a virtual organisation can share their resources to accomplish a
common goal.

Grid computing can be divided broadly into two categories: computational grids and
data grids. Computational grids provide access to pools of distributed processing
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power, whereas data grids access distributed data resources. Computational grid
systems exploit the aggregate computing capacity of heterogeneous computer
resources. These may include dedicated computer clusters, super computers, or the
idle processor time of a department’s workstations. In comparison, data grids focus
on the efficient management, distribution and replication of large amounts of data
[Stockinger 2001].

This data is typically distributed geographically and as with computational grids can
be stored on workstations or dedicated clusters and supercomputers. The
information aggregated in a data grid can be stored in distributed database systems
or on file servers as a series of flat files. Once the data within a data grid system has
been placed appropriately it can be processed computationally.

The difference between cluster and grid can be summarized as following:

A Cluster requires a “Single System Image (SSI)” while a Grid does not require
a single system view (although is could have SSI).

A Cluster emphasises on performance of parallel processing while a Grid
emphasises on resource sharing.

Geographically a Cluster is located in a central location while a Grid is
distributed in many places.

Normally computers in a cluster are homogenous, while a grid involves
heterogeneous computers and other resources.

Basic functions needed for a grid application include resource discovery and
brokering, metering and accounting, data sharing, resource management, security,
reliability and availability, virtual organizations, monitoring, and policy
implementation and enforcement.

At the moment grid technologies are still developing, and open standardised grid
architectures have not yet fully materialised. This section outlines the current
direction of grid computing, highlighting the implications and short comings of
current strategies and examining some of the possible future work [Casey and Zhou
2004].

15.2.2 Background to the Grid

Here we provide an overview of current grid technologies, and examine how they
have developed from existing distributed and parallel systems. The applications of
grid infrastructures are reviewed, followed by a discussion of virtual organisations
and trust. Finally, the different classes of grid application are categorised in terms
of their different application requirements, performance metrics, and levels of
collaboration.

In part, the evolution and development of the emerging grid computing paradigm
can be attributed to the major technology trends of the last 10 years. Over the past
decade, distributed and parallel systems composed of cheap commodity computer
resources have increasingly been used to support large-scale applications. In many
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institutions these systems have largely taken over the processing and storage roles
super computers once had. Typically, these distributed resources use local-area
networks as their communications channel and are geographically isolated from one
another. However, these islands of resources can now be linked together using
wide-area networks to exploit an enormous aggregate computer capacity. These
fast wide-area networks have developed at a national scale in many countries, to
provide Internet access for major cities, and high speed communications links
between partner organisations [Foster and Kesselman 1998].

Clearly, distributed systems research is a critical area that has had a major influence
on the development and evolution of grid computing systems. However, there are
many differences in the systems and architectures that have been developed for the
tightly coupled distributed systems and those created for the loosely coupled, high
latency grid environment. High-performance distributed systems usually run within
a local environment where the entire system can be tuned and controlled for
maximum reliability and performance. These environments are typically, highly
coupled, low latency, and have been designed for a single application domain
[Casanova 2002].

In contrast, grid environments provide flexible application service environments
that can be re-configured to support multiple application domains. These
environments, work at a national or global scale, and cross multiple organisational
and administrative boundaries. This allows grid applications to utilise the resources
of multiple sites in an on-demand, and flexible manner. Grid systems operate as
independent, decentralised, scaleable, dynamic services in which no single location
has complete control over the entire grid system. Typically, these systems comprise
loosely coupled, heterogeneous, resources that are bound by high latency
communication systems. Consequently, these environments have multiple points of
failure and require complex administration and security arrangements [Foster and
Kesselman 1997].

The individual members of a grid system retain autonomy over their local systems
and are able to clearly define which resources are to be shared, who is allowed to
share, and the conditions under which sharing occurs. The sharing of a grid’s
resources is restricted, and the producers and consumers of resources must come to
an agreement on the service level for a particular resource [Czajkowski et al.
2002]. This creates problems in controlling the reliability and performance of the
grid, as no single location can has complete control over the entire system.
Therefore, the resources of a grid system are more likely to be dynamic rather than
static as grid resources can become available or unavailable for processing at any
time.

According to [Iivonen 2004] an important step in the building of teams is the
development of trust. In the context of virtual organisations the development of
productive and efficient teams, is a critical issue. However, the development of
group synergy, trust and identity follows a different path in virtual organisations,
where often, team members hardly know each other and are unlikely to meet face to
face [Lacono and Weisband 1997].
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Traditionally, trust relationships develop over time as team members learn the
advantages and disadvantages of trusting behaviour. Team members learn who to
trust and how predictable people are in their trusting behaviour. Finally, the
demonstration of trust allows a team or group to form a shared set of beliefs and
values that defines the group’s collective identity [Suzanne and Suzann 1997].

In contrast, the formation of virtual organisations is often on a temporary basis and
can occur dynamically. Therefore, in the situation of a virtual organisation the
gradual and incremental development of trust cannot occur. Typically, the goals of
teams in temporary collaboration are efficient and speedy completion of project
goals. In these circumstances, Meyerson, Weick and Kramer [Meyerson et al.
1996] suggest that group members concentrate on the completion of project tasks in
absence of complete trust. Consequently, the aligned goals of group members help
propel the temporary groups towards their collective goals. This concept is termed
“swift trust” [Meyerson et al. 1996] and overcomes the need for traditional trust
building exercises, allowing group members to move ahead quickly as if trust was
already in place. The issue of trust is critical to collaborations in virtual
environments, and can mean the difference between the success and failure of a
project.

Virtual organizations facilitate the coordination of disparate and geographically
isolated resources, in a flexible, collaborative and scaleable manner. Through the
use of grid technologies virtual organizations facilitate the efficient use of computer
resources, so that collaborative efforts do not generate redundant sets of data or
perform duplicate processing. The mechanisms that grid infrastructures use to
coordinate these resources are discussed in the next section.

Foster and Kesselman summarise the application of grid technologies into a
number of categories, including distributed supercomputing, high throughput, on
demand, data intensive, and collaboration.

Distributed supercomputing applications require vast amounts of processing time
and storage space to solve complex simulation and analysis problems. In
comparison, high throughput applications utilise the idle processor time of
workstations connected to the grid to schedule loosely coupled or independent tasks
across available hosts. On demand grid applications integrate the local resources of
a company with those of the grid to meet the short term resource requirements for
projects where it is inconvenient or economically unfeasible to use local resources.
Data intensive applications concentrate on the creation of information from
geographically distributed resources. This process can be demanding in terms of
computational and communication performance. Collaborative computing
applications facilitate person to person communication between different
organisations. This communication supports the sharing of different resources and
equipment and allows virtual organisations to be formed [Foster and Kesselman
1998].
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15.2.3 Grid Architectures and Infrastructures

Here we first examine the components and services that make up a grid, then in the
following sections, we highlight and review a selection of grid systems that are
currently being developed. The systems reviewed include Globus, a layered system,
which is one of the most widely deployed middleware systems; Legion, an object
oriented virtual machine, and Condor, a cycle scavenging and opportunistic
scheduling system. Finally, the technologies that comprise data grid systems are
examined and reviewed.

15.2.3.1 Grid Architectures

Grid architectures build upon a large base of prior work and integrate a wide range
of technologies to facilitate the development and use of virtual organisations and
grid applications. These prior works encompass a range of computer technologies
such as distributed systems, load balancing, security, fault tolerance, mobile agents,
and wide-area networking. The services provided by these systems form the core
components of grid architecture and middleware systems and allow grid users and
applications to coordinate and use remote resources.

Currently, grid architectures and middleware services are un-standardised and there
are many competing grid service models. Two of the most successful system
architectures that have been deployed in grid systems are the layered protocol and
the virtual machine environment. In the layered protocol architecture, successive
system layers build upon the functionality of the lower levels. The layering of the
system facilitates grid resource and application independence, as heterogeneous grid
components can interact using the interfaces defined by the protocol.

Similarly, virtual machine architectures abstract the heterogeneity of grid resources.
However, the abstraction of the virtual machine architecture is at a much higher
level and grid components and resources are integrated into a single computing
entity which is globally addressable. In comparison, layered systems abstract a
grid’s application domain and underlying resources to provide a common interface
that is independent of the various hardware and software components contained in a
grid.

15.2.3.2 Grid Components

Overall, the virtual machine and layered grid architectures support the same basic
functionalities, such as resource allocation, process management, cycle scavenging,
grid information services, security, communication, replication, data management
and access, fault tolerance, as well as quality of service parameters. These system
mechanisms are not particular to grid systems and have been modified to address
the requirements of grid systems from the parallel and distributed systems research
area.
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Here we provide a brief introduction to a selection of core grid components
highlighting the issues that are particular to grid systems. The remaining grid
components and systems are discussed later in further detail in the relevant sections.

Resource Allocation and Scheduling Systems: Resource allocation and process
management systems schedule, match service requirements and migrate grid
transactions, across the multiple, distributed, heterogeneous resources of a grid.
These systems are complimented with load balancing and grid wide
coordinating mechanisms, which are used to maximise the utilisation of a grids’
resources. Allocation schemes primarily use two mechanisms to schedule
transactions in a distributed environment. These are the state and model based
allocation schemes, and these can be pre-emptive, or non-pre-emptive.
Typically, grid systems employ decentralised grid resource allocation systems
as their centralised counterparts do not scale well to the size and scope of grid
environments.

Pre-emptive systems allow jobs to be migrated to idle systems whilst programs
are running, whereas jobs in a non-pre-emptive system remain on the same
node. State based allocation systems, query the resources of a distributed
environment to assemble an accurate picture of the systems’ state. This allows
jobs to be re-allocated or migrated to idle systems within a distributed
environment. Unfortunately, this process is very expensive as every node in a
distributed system or grid has to be queried about its state. In comparison,
model based allocation schemes define system models that reflect the way
resources are used in distributed systems. This allows the state of a distributed
system to be predicted, and is efficient as the state of the system does not have
to be retrieved. However, this may not be accurate, and depends on the system
model used.

Cycle scavenging systems utilise the idle processor time of workstations, and
use their own allocation schemes and brokering systems to allocate and migrate
jobs to idle hosts. Once a host has resumed foreground processing and is no
longer idle, jobs are moved and re-allocated to idle systems. The systems that
provide by cycle scavenging mechanisms are reviewed in further detail later.

Grid Information and Directory Service Systems: Grid information and
directory service components provide information relating to the state of a grid
infrastructure. State information may relate to an individual node or the global
state of an entire system and the supporting information services maybe
centralised or decentralised. These information components are central to the
function of a grid and publish information relating to the structure, system load,
system failures, and hardware and software of a node. Grid information and
directory service components provide functionality, in the allocation and
scheduling of grid transactions.

In the Globus system, information service components are distributed and
report information relating to the status of individual nodes rather than the
entire system [Czajkowski et al. 2001].
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Similarly, Condor uses decentralised information system and uses a publishing
mechanism to announce information relating a hosts’ system load, and
operating environment to other systems [Raman et al. 1998]. In comparison,
Legion uses a combination of global and local information resources, which are
both centralised and decentralised. Legion’s global information database or
collection object stores information relating to the state of resources in a single
administrative domain. This collective database can be joined with those of
other Legion domains to gain a global view of a Legion system [Chapin et al.
1999].

Security: Authentication and Encryption: As with other networked systems that
utilise public networks, such as the Internet, security in terms of authentication
and encryption is an essential component. Grid authentication systems verify
the identity credentials of users, grid transactions, grid resources and processes
operating within grid environments. Similarly, encryption systems are used to
encode and decode the messages of grid transactions to authenticate the
messages and protect their contents.

The Globus toolkit provides basic interfaces to support various authentication
and encryption systems and does not specify a particular system. Binding
mechanisms have been created for plain text messages, the Kerberos
authentication system, the X.509 certificate system, and SSL a public key
cryptography scheme [Foster et al. 1998]. In comparison, the Legion system
defines its security policies at the object level by over riding a class’s default
methods. These specify what an object is, and what it can do. The policies
defined by these methods are then enforced by Legions’ Magistrate objects,
which can authenticate and specify the type of object that can run in a particular
Legion jurisdiction [Lewis and Grimshaw 1995].

Communication Links. The computer networks and protocols that service grid
environments and other wide-area systems form a communications backbone
that acts as a conduit for information flowing through a grid environment.
Therefore, the choice of communication system, architecture and protocol can
have a significant affect on the performance, availability and reliability of a
grid environment. Currently, all the major grid systems Globus, Legion, and
Condor use standard TCP/IP streams as their basic communication protocol.
Grid specific protocols are then layered on top of TCP/IP to deliver grid
messages, transactions, and to coordinate and manage grid components.

Typically, grid infrastructures use peer-to-peer network architectures to support
the decentralised structure of grid environments. In some cases, vestiges and
variations of the client-to-server architectures can be seen. For example, the
Condor system utilises a central manager to schedule and allocate resources
within the local environment, whilst also exploiting the resources of remote
systems by linking multiple off-site central managers using a process known as
flocking [Thain et al. 2003].

Grid communities are linked primarily with high speed, wide-area links and are
generally on a performance scale similar to Internet 2 based systems. These
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underlying network links maybe composed of a range of wide-area network
technologies such as microwave ATM links, satellite connections, and fibre
optic cables. Consequently, the network systems that link grid environments
are just as heterogeneous as the computer systems they integrate. Therefore,
network latency and bandwidth are highly variable.

Currently, there are many projects underway to create multi Gbps wide-area
links between the major universities and research centres of various countries
and regions around the world. For example, the Internet 2 system being
developed in the United States currently links a number of high performance
computer centres in various universities and national laboratories at speeds upto
10 Gbps using fibre optic cables. Similar, projects are underway through out
the world to link the capital cities of different countries and regions with high
speed wide-area communication links.

15.2.4 Layered Grid Architecture: The Globus Architecture

The Globus infrastructure uses a layered service model that is analogous to other
layered services such as the OSI network protocol. The components of each layer
share common characteristics, and build upon the capabilities and behaviours
provided by the lower layers [Foster et al. 2001]. The Globus project defines a set
of standard grid protocols that specify how grid resources are managed and
coordinated across wide-area networks. The Globus toolkit and middleware
services and protocols are used in many grid projects such as GriPhyN [Avery and
Foster 2001], Nimrod-G [Buyya et al. 2000], and Condor-G [Frey et al. 2001] to
name a few. The Globus toolkit has been developed in collaboration with Argonne
National Laboratory, the University of Chicago, the University of Southern
California Information Sciences Institute, and the High Performance Computing
Laboratory at the Northern Illinois University.

The Globus architecture has five layers: Application, Collective, Resources,
Connectivity, and Fabric. The Globus architecture supports the sharing of compute
resources as well as data resources [Foster et al. 2001].

The fabric layer provides a transparent interface for high level grid components to
coordinate, access, and share grid resources such as storage systems, catalogues,
network and computational capacity, as well as scientific equipment and sensors.
Fabric layer components can access distributed resources as an aggregate logical
entity or as a distributed computer pool. In the case of a distributed resource pool
the fabric layer can interact with the resources using their own protocols’ and APIs’
encapsulating the resource from the higher level components.

The different resources accessible by the fabric layer use implementation, resource
specific fabric components to expose their functionality to the higher layer grid
components. For example, the fabric components handling computational resources
provide interfaces for starting, monitoring and controlling the execution of
processes. In comparison, storage resource components provide mechanisms to
send and receive files, manage quota systems, file replication schemes and striped
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file transfers. Therefore, the different functionality of the lower level resources can
easily be mapped into the fabric layer transparently for use by higher level
components.

The connectivity layer functions as a communications conduit between different
fabric layer components, and defines a suite of core communications and
authentication protocols for efficient and secure grid access. These protocols build
on existing network and security protocols such as TCP/IP and public key
infrastructure systems, respectively.

The resource layer builds upon the core transport and security protocols of the
connectivity layer, supplementing them with job management and control functions
as well as resource inquiry protocols. These resource level protocols provide an
interface to individual grid resources, acting as common interface to heterogeneous
resources.

This abstraction of a resources interface, allows the higher level collective and
application layers to coordinate a grid’s resources in a uniform manner, without
having to consider the operation and idiosyncrasies of individual grid resources.

The job management and control protocols initiate, control and secure grid resource
operations, specifying quality of service parameters as well as payment functions.
In comparison, the resource inquiry protocols are used to inspect the state and
configuration of a particular resource, and to provide monitoring and accounting
functions on sharing operations.

At the resource level, the Globus toolkit defines several protocols to control,
manage, and inspect the state of individual grid resources. These protocols are the
HTTP based GRAM (Grid Resource Access and Management); GRIP (Grid
Resource Information Protocol); GRRP (Grid Resource Registration Protocol); and
GridFTP a grid enabled extension of the FTP protocol. The details of these
protocols will be later in this section.

In comparison to the resource layer which controls access to individual resources,
the collective layer coordinates access to the combined resources of a grid.
Therefore, the protocols, services, API’s and SDK’s of the collective layer provide a
broad range of sharing mechanisms that consider the interactions of multiple
resources combined within a grid. These mechanisms support multiple sharing
behaviours through the abstractions of the resource layers interface. As a result,
extra functionality does not need to be added to individual resources to support
various modes of sharing.

A number of applications are used to coordinate access to grid resources at the
collective layer. These collective services typically extend the protocols of the
resource layer so that the resources of an entire grid can be controlled and managed.
Typical, applications include directory services, scheduling, monitoring and
diagnostics as well as a number of programming interfaces.

The top level application layer provides a consistent interface to a grid’s resources,
allowing grid and virtual organisation applications to transparently access the
distributed resources of a grid infrastructure. Grid applications may access any of
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the layered components of a grid. However, typically they customise the general
services and program interfaces of the collective layer to form a specific
application.

15.2.5 Virtual Machine Environment: The Legion Architecture

In contrast, the Legion system architecture specifies a globally addressable, object
oriented, virtual machine environment that simplifies the integration and function of
grid components. Legion transparently, integrates system components into a single
grid architecture, which has a single address space and file system as well as global
functions for process management, input-output, inter-process communication, and
security [Natrajan et al. 2001]. Similar, distributed, object orientated, virtual
machine architectures are used in Harness [Migliardi and Sunderam 1999], SUMA
[Hernandez et al 2000], and Globe [Steen et al. 1997].

The Legion architecture provides the user with a single coherent system view, in
which objects represent hardware and software components. These objects are
active processes, and can communicate with each other through method invocations.
Every object in Legion has its own address space, class, name and set of capabilities
[Grimshaw et al. 1994].

The Legion system is developed at the University of Virginia and has evolved from
their earlier work Mentat [Grimshaw 1993] an object-oriented parallel processing
system. Mentat has heavily influenced the development of Legion, and a modified
version of mentat with added capability for heterogeneous resources was originally
used as a prototype of the Legion architecture [Grimshaw and Wulf 1997].

Extensibility and flexibility are the main philosophy of the Legion system, and this
allows developers to either use the pre-defined Legion system classes or to develop
their own specialised classes. This is in keeping with the viewpoint that different
applications have different requirements and allows developers to make their own
choices about system functionality and performance.

The Legion system comprises a runtime library [Ferrari, et al. 1996] as well as a set
of core class components [Lewis and Grimshaw 1995] that support the basic
system level functions required by a grid architecture. These system classes support
a rich set of functionalities such as data access, object management, persistence, as
well as inheritance, and object binding functions. Every class in the Legion
universe derives from these system classes, inheriting their methods and data
structures.

The core classes of the Legion system are the LegionObject from which every class
is derived, the LegionClass which provides methods for managing objects,
inheritance, and object binding. The LegionVault class handles object persistence
and the LegionBindingAgent class binds an object to a particular address [Lewis
and Grimshaw 1995].

In Legion class instances can be either active or inert. When in an active state an
object has its own address space and thread of execution and can receive messages.
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Conversely, inert objects are stored on disk, and are not running. Therefore, they
cannot receive or process messages. Legion’s object management system
transparently activates and deactivates objects on demand at runtime, deactivating
unused objects, and re-activating objects that are awaiting processing [Grimshaw et
al. 1994].

When deactivating objects, the Legion system supports the persistence of an objects
state to disk. Using this process, the state of a deactivated object can be reloaded
when an object is re-started. State persistence is optional, and is defined by the
class of an object. Stateless objects can be thought of as pure functions [Lewis and
Grimshaw 1995].

In a Legion system site control is decentralized through the use jurisdictions and
magistrate objects. Jurisdictions are a logical extension of an organizations control,
and the resources of a grid system are partitioned into separate domains of control.
The sphere of influence a jurisdiction has may overlap with other jurisdictions.

The core functionality of Legion is prescribed using several abstract classes and
these are described below [Lewis and Grimshaw 1995]:

LegionObject: The LegionObject class acts as an abstract base class providing
essential access and persistence methods. Every class and object in the Legion
system is derived from the LegionObject class. Therefore, each class in the
Legion system is an object.

LegionClass: The LegionClass is derived from the LegionObject class and
defines interfaces for several mandatory class functions, such as object
creation, deletion, inheritance, and binding information. Every class in the
Legion system is derived from the LegionClass.

LegionHost: The LegionHost class defines an abstract interface to represent a
host environment. Subclasses of the LegionHost override the abstract class’s
methods to suit different environments. LegionHost objects, control resources,
create and execute objects and define the policies that control which objects can
execute on a particular host.

LegionVault: Vault objects provide interfaces to persistent storage devices and
are able to store and retrieve the state of an object, onto a particular storage
device. Vault objects, exist on every host of a Legion system, and they are
used in the migration of objects from one node to another. Therefore, when
objects and their state are transferred or replicated to new sites, they are
initially persisted into a vault object, and then transferred to a remote node.
Finally, the inert object is re-activated on the new node.

LegionMagistrate: Magistrate objects form the basis of Legion’s trust
management system and are used to control access to the different jurisdictions
of a Legion grid system. For each jurisdiction, magistrate objects control
which Legion objects are able to access a particular resource, and the
operations they can perform on that resource. Therefore, sub classes of the
magistrate class can be used to define the access rights, and system policies of
an organisation participating in a Legion environment.
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Legion Object Identifiers (LOID): Every object in a Legion system is identified
by a unique system wide, Legion Object Identifier. Object identifiers contain
three sections, and these are a class identifier, a class specific section and a
public key section. The class identifier section is used by LegionClass to
define a unique identifier for a new derived class. The class specific section is
set to zero for class definitions, and can be used by class instances as a method
for ensuring unique system identifiers for each class instance. The public key
section is used security and authentication. However, the location of an object
is not specified and this is handled by a Legion Binding agent discussed below.

Legion Binding Agent: In Legion binding agents bind the address of an object
to its object identifier (LOID). The LegionBindingAgent class is an abstract
class that provides the necessary interface, to query an objects address based
upon an object identifier (LOID), and to add and remove object bindings.

In comparison to the static layering of the Globus architecture, Legion defines an
extensible layering system that can be re-configured to use extra service layers that
support additional functionality. The Legion runtime library uses event handling
mechanisms to control the order in which the layers of the protocol stack are called.
For example, when an event is announced it is typically handled by the default
service, except in cases where the default handler has been overridden (it has a
higher priority). In these cases the new handler intercepts the event, performs the
required functionality and passes the event onto the original default service. In this
way, the service layers of the Legion protocol stack can be reconfigured [Ferrari, et
al. 1996]. Legion objects are autonomous, and communicate with each other using
non-blocking unordered function calls. The interface of Legion objects is described
using an interface description language (IDL), which specifies the methods of a
particular object. To support site autonomy, the Legion environment is partitioned
into a set of independent jurisdictions. These jurisdictions are controlled and
managed by magistrate objects that reflect the policies of a particular jurisdiction.

The main advantage of the Legion system is that every component is defined as an
object. This simplifies the development of complex distributed environments, and
facilitates software re-use, modularization, and component interoperability.
However, the object oriented paradigm can cause problems as legacy software and
grid resources have to be wrapped in objects. Therefore, the underlying systems of
a node in the Legion environment have to be masked within an object wrapper so as
to be integrated into the environment. This adds another layer of complexity to the
system.

The Legion system has since been transformed into a commercial product, through
a spin off company, Avaki Corporation. The Avaki system is essentially the same as
the original Legion environment. However, the configuration and installation of the
Legion/Avaki grid system has been improved dramatically to ease the creation of a
grid environment using Legion/Avaki software [Grimshaw et al. 2003].
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15.2.6 Cycle Scavenging Schemes: The Condor System

Cycle scavenging systems utilize the computational resources of idle desktop
workstations. These systems use opportunistic scheduling mechanisms, to allocate
and migrate processes and grid transactions to idle systems, without impacting the
performance of a system owner’s applications.

Condor [Thain et al. 2003] and Entropia [Entropia 2003] are two popular systems
that utilise cycle harvesting mechanisms to exploit the idle resources of networked
computer systems. These systems essentially use a similar function to allocate,
schedule and migrate jobs across the idle resources of workstation class computers.
However, there are some differences, Entropia for instance can only utilise the
resources of Microsoft Windows 2000 based machines.

Whereas, Condor can make use of both UNIX and Windows based workstations as
well as aggregating the computer capacity of dedicated systems such as clusters.

Other systems include SETI@Home, Distributed.net, DAS (Distributed ASCI
Supercomputer), GUSTO Popular Power, Mojo Nation, United Devices, and
Parabon. In this section the architecture of Condor is examined in detail.

Condor is a batch scheduling system that utilizes cycle scavenging mechanisms to
exploit both opportunistic and dedicated compute resources and has been developed
at the University of Wisconsin since 1988. Condor facilitates the integration of
computer resources through out an organization, allowing the scheduling and
allocation of jobs to both dedicated systems such as clusters and idle workstations
[Thain et al. 2003].

Dedicated distributed systems including clusters are typically composed of many,
cheap commodity computers that are linked using standard Ethernet communication
links, and housed in their own controlled environment. These systems make use of
dedicated scheduling algorithms, which assume a constant, controlled, error free
environment.

However, Miron Levny and the Condor development [Wright 2001] team contend
this assumption, and argue that dedicated systems as with other systems cannot be
expected to be completely available over the long term due to uncontrollable
hardware and software failures as well as maintenance tasks. Therefore, Condor’s
opportunistic scheduling mechanisms assume that resources will not be available for
the complete duration of a job. Consequently, the design of Condor’s dedicated
allocation system leverages the checkpointing mechanisms exploited by Condor’s
opportunistic scheduling algorithms.

Condor’s job check pointing system, transparently and periodically records the state
of jobs being processed in a Condor system. This allows Condor to subsequently
resume jobs and continue job execution, from where they left off by reading a
processes state from a checkpoint file. Therefore, Condor’s check pointing system
affords a level of fault tolerance by allowing interrupted jobs to be resumed in the
face of failures and random system availability. Consequently, Condor’s check
pointing system is able to maintain the cumulative time spent executing a job.
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Additionally, Condor’s check pointing mechanisms also facilitate job migration
from one system to another. This allows Condor to re-allocate jobs to idle systems
once a system is no longer idle [Wright 2001].

The Condor system architecture has developed incrementally over the years, as new
technologies and extra requirements have been integrated into the project.
Originally, the Condor system could only be used at a single location using LAN
technology. Since then, faster wide are networks have developed so Condor has
been extended to integrate the resources of multiple sites using a mechanism known
as flocking. Several components comprise the Condor system and these
components manage and provide services such as “resource management, job
management, matchmaking and so on” [Wright 2001].

Condor pools are controlled using a central manager, which runs two daemon
services the Collector and Negotiator respectively.

Collector: The Collector service, acts a directory and information service
component, storing and relating information pertaining to the state of each
resource within a Condor resource pool. Periodically the machines that make
up a Condor pool send updated information, describing their system state and
availability. This information is related using a mechanism known as a
ClassAd, which is a simple data structure containing information, describing
the various conditions a system resource can be under.

Negotiator: Once jobs have been submitted to the Condor pool, they’re
resource requirements are advertised to the central manager’s Negotiator
daemon, also using the ClassAd mechanism.

The Negotiator service, performs a matchmaking operation, and attempts to find
compatible requirements between resource requests, and resource offers. After
resource request is satisfied, “both parties are notified and are responsible for acting
on that match” [Wright 2001].

15.2.7 Data Grids

The architecture of grid environments can be further broken into two broad
application domains, computationally intensive grids and data intensive grids.
Computational grids pool, and aggregate the processing capabilities of
geographically isolated and administratively independent machines into an
integrated grid system. Similarly, data grids focus on the distribution and
replication of large amounts of raw data at geographically disparate computing sites.
Therefore, despite the differences in application domain, the core low level services
of computational grids and data grids are essentially the same. Consequently, there
is a significant overlap in the functionality of these systems. Nevertheless, the
components of the resource and collective layers in computational grids and data
grids necessarily support different functionalities to support the sharing of compute
and data resources respectively.
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Data grid technologies deal primarily with the efficient management, placement and
replication of large amounts of data [Stockinger 2001].

Here we examine these issues in detail, and reviews the data grid tools and
mechanisms of the Kangaroo, Legion, Globus and Storage Resource Broker (SRB)
projects. The Globus toolkit provides core infrastructure capabilities such as
resource management, information services, security, fault tolerance and transport
services that are common to grid systems. In comparison, SRB provides basic
storage functions such as data and metadata access for distributed, heterogeneous
environments such as databases, file systems, and archival storage systems [Baru et
al. 1998]. Together, these systems form the basis for a number of developing data
grid applications and projects such as GriPhyn [Avery and Foster 2001], PPDG
(Particle Physics Data Grid) [PPDG], IPG (Nasa Information Power Grid) [NIPG],
NEESgrid (Network for Earthquake Engineering Simulation ) as well as many
others.

15.2.7.1 Kangaroo

Kangaroo [Thain et al. 2001] is a data management system for grid environments
uses an opportunistic process to cache and schedule grid input/output transactions in
a similar manner to its parent project Condor the high-throughput computing
project. Kangaroo temporarily uses a workstation’s storage resources to buffer data
resources across chains of workstations. This process works transparently and
facilitates the replication of file and object resources across multiple workstation
resources. Therefore, Kangaroo can offer high availability and high reliability data
access mechanisms to resources, as system failures and errors can be overcome by
the access of alternate file and object replicas. Kangaroo processes input and output
operations uses a background service, allowing foreground applications to share a
workstations processor time concurrently. This promotes a higher aggregate system
performance as there are more resources available to handle parallel and striped data
transfers.

15.2.7.2 Legion

The Legion grid environment facilitates data grid functionalities [White et al. 2001]
such as wide-area replication, and data transport using the Legion File System
(LegionFS) and its BasicFileObject class. The BasicFileObject instances provide
fundamental read(), write() and seek() method calls that allow file data to be stored
within an object. ContextObject instances manage the Legion namespace, and
provide a directory system abstraction. The BasicFileObject instances are linked
directly to underlying filesystems using ProxyMultiObject instances which
aggregate multiple file objects and write and read their contents to and from disk.
Files and object instances can be replicated within Legion by classes which map
object identifiers (LOIDS) to multiple physical objects.
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15.2.7.3 Storage Resource Broker

The Storage Request Broker (SRB) has been developed to provide seamless access
to a variety of distributed storage systems using a common interface. The SRB
middleware supports get and put functions on remote storage devices, query and
update operations in conjunction with the metadata catalogue, as well as transport
operations for the sending and retrieval of remote files and information. The
heterogeneous resources that SRB links are wrapped in driver programs, which are
able to map a resources interface into SRB’s uniform interface. Additionally, SRB
also provides authentication and encryption mechanisms as required [Baru et al.
1998].

Information written into an SRB is organized using a hierarchical structure, similar
in nature to traditional directory structures in local file systems. The structure is
logical and defines collections and sub-collections to map the relationships between
various files and objects. These files, objects and collections maybe distributed
across numerous heterogeneous resources. Collections are defined by grouping
various physical storage resources (PSRs) into logical storage resources (LSR’s),
which can optimize file access using replication. Consequently, the logical
structure of a collection has no mapping to the physical location of a resource [Baru
et al. 1998].

MCAT a standalone system is the metadata system SRB uses and is able to define
hierarchical access control, the physical location of a file, object or data item and its
logical name. Currently, the systems schema is hard coded but systems are being
developed to create an extensible metadata schema.

In a manner similar to Condor, SRB uses a client-to-server architecture to manage
the physical storage resources (PSRs) of local-area network sites. These servers are
later combined into a larger federation, whereby individual SRB servers are
connected in a fashion akin to Condor’s flocking mechanism.

15.2.7.4 Globus Data Grid Tools

Conversely, the Globus data grid system leverages a number of existing data access
systems and core grid infrastructure services, such as storage resource services
provided by SRB, MCAT and the resource discovery, management and directory
service components of the Globus toolkit. Together, these low level components
are combined to form the core data access and management components of the
Globus data grid. As with the other components of the fabric layer, system
components independent of Globus are integrated into the system using a uniform
interface. This allows the functionality of various storage and resource systems to
be mapped into the Globus system transparently, for use by higher level service
components, which manage and coordinate a grid’s data access functions.

Globus uses a number of high level components to perform functions such as data
management, transport, replication and replica selection. Data management and
transport functions, allow remote access and control of data that is distributed
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through out a grid system. Whereas, the replication systems copy or cache
distributed files and objects to local systems to optimise file access time and file
availability.

The Globus data transport system gridFTP [Allcock et al. 2002] leverages a number
of established technologies such as the long standing FTP (file transfer protocol),
the Kerberos authentication system and the Globus GSI (Grid Security
Infrastructure) to provide a fast, secure and robust data transfer service. To these
systems Globus adds a number of key features such as parallel TCP/IP data streams,
striped and partial data transfers, third party control, and fault recovery [Allcock et
al. 2002].

Parallel data streams utilize the aggregate bandwidth of multiple TCP/IP streams to
improve the overall data transfer performance. Similarly, striped data transfers
further enhance the bandwidth available to data transfers by interleaving data
transfers across multiple hosts. The partial file transfer function facilitates the
transfer of arbitrary sections or regions of files to support file fragmentation
schemes. The third party control mechanism allows authenticated applications or
users to initiate, monitor and control data transfer operations between source and
destination nodes. GridFTP’s fault recovery system ensures the reliable transfer of
data between nodes, and uses a number of operations to detect and restart failed
transfers. These maybe the result of problems such as as transient network
communications and server outages.

The Globus replica management system is responsible for creating and deleting file
and object replicas at multiple storage sites as well as registering and de-registering
replica information within the system replica catalogue. The Globus replica
management system acts as file and object caching system and copies objects and
data files to local systems for improved access performance. However, Globus does
not enforce consistency when accessing replicas and dispenses with complicated
locking schemes and atomic transactions as used in some distributed databases.
Therefore, for the majority of cases Globus replicas are used in a read only manner.
The replica catalogue maps logical filenames to physical storage resources
recording site addresses and filenames of replica instances.

The Globus replica selection system is the process that ensures the efficient
selection of file replicas distributed throughout a grid system. As with other
resource allocation schemes, a matchmaking process is used to select a particular
resource. The Globus system borrows the classAd matchmaking system developed
by Condor to match resources based upon advertised storage capabilities and
storage resource requirements. These storage classAds publish information such as
hostname, storage space, bandwidth, latency, reliability, system policies, and
volume name. The attribute value pairs of these advertisements are then matched
using a decentralized storage brokering system. This system searches for replicas
matches based upon capability and requirements, and initializes access to these
resources using gridFTP [Vazhkudai et al. 2001].



457
15.2.8 Research Issues and Challenges for Grids

Grid Computing aims to couple geographically distributed resources and offer
transparent, powerful, and inexpensive services irrespective of the physical location
of resources or access points [Foster et al. 2002a]. To achieve such a vision,
however, it is still a challenge to develop tools and middleware that can seamlessly
integrate computing devices, clusters, data storage, and networks; can provide a
available and reliable source of computing power; can automatically allocate
resources according to user preferences and computational demand; can provide
sophisticated analysis, debugging and visualisation services, and can facilitate and
enable information and knowledge sharing.

The nature and application of Grid architectures and technologies is currently
solidifying as large scale scientific, medical and engineering research programs
increasingly adopt grid technologies. This has led to the development of industry
and research based standards such as the Open Grid Services Architecture (OGSA)
which define the functionality and application of a number of core service
components. However, there are still many hurdles to overcome before Grid
applications become as pervasive as web applications and the Internet are today.
This section examines a number of research issues providing reference to related
work as well as outlining some possible solutions.

15.2.8.1 Software Engineering Problems

As with other distributed systems there are a number of significant challenges in
regard to the development and analysis of grid applications. Currently,
programmers are exposed directly to the raw complexities of grid environments and
are faced with systems that require them to coordinate several independent system
components. Until application level system libraries, which hide the Grid’s
underlying complexities become widely available the development of grid
applications will be hampered. At the moment several application programming
interfaces (API) are being developed to simplify access to a grid’s resources. These
systems integrate various grid service components into a single coherent interface.
Systems which use this approach include MPICH-G2 [Karonis et al. 2003], Cactus
[Allen et al. 2001] and the Grid Application Development Software (GrADS)
[Berman et al. 2002].

System errors and faults as with other sequential and distributed systems is an
inevitable component of an applications life cycle. Typically, programmers employ
sophisticated debugging and monitoring toolkits to trace system failures, break on
specific conditions and step through erroneous code blocks. This allows
programmers to isolate, diagnose and correct system errors. However, in distributed
environments such as computational and data grids, applications can use thousands
of heterogeneous systems. Therefore, in these environments system maintenance
operations such as debugging and process monitoring can become very
complicated. Some of the major issues associated with parallel and distributed
debugging systems are examined here briefly:
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Difficulty obtaining a global snapshot of a grid system

Multiple independent program components execute concurrently

Cannot re-create execution sequences exactly, due to variance in system load

Large-scale heterogeneous grid systems

Increased network latency in wide-area environments.

Currently, a number of parallel and distributed process debuggers are available and
these are actively being scaled up to work with grid systems. These include p2d2 a
portable parallel/distributed debugger [Hood and Jost 2000] which is currently
being modified for use with Globus and NetLogger a dynamic grid monitoring and
debugging service [Gunter et al. 2003].

Finally, performance evaluation is another application of critical importance to the
development of grid environments. System performance is a measurement of the
efficiency with which different grid components complete their tasks under different
conditions. Unfortunately, at the moment it is nearly impossible to create
controllable reproducible test results using current grid environments, due to
changing conditions such as network latency, congestion, system load, and various
system failures. Therefore, results taken from grid environments can really only
provide a rough indication of a particular algorithms efficiency. This has lead to the
development of simulation environments such as GridSim [Buyya and Murshed
2002] and Bricks [Takefusa et al. 1999] which use discrete event simulation to
model interactions between the components of a grid and record performance
results. These systems provide a controlled and reproducible environment in which
to generate test results.

15.2.8.2 Load Balancing and Scheduling

As with other distributed systems, request allocation, job scheduling and load
balancing is an important issue that has a direct effect on system throughput and job
turn around time. Scheduling systems typically analyse or predict a systems state to
determine the best node to allocate a job to. Current, grid systems primarily use
predictive models which allocate jobs to idle systems based upon an approximation
of a system’s state. These models are more efficient as the global state of a system
does not have to be queried.

At the moment, there is a trend for grid systems to use market and economic based
models. These models partition grid resources into a computational economy where
resources are traded as if they were physical currency. Users can then specify a
budget and job deadline, allowing the scheduling system to allocate computer
resources to meet the deadline and budget requirements. Several scheduling systems
facilitate computational economies and these include Nimrod-G [Abramson et al.
2002], GRaDS [Berman et al. 2002] and Condor-G [Frey et al. 2001].

Other models allocate resources based upon predicted performance, and allocate
jobs to machines based upon how fast a job is predicted to finish on a particular
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system. Unfortunately, these performance model systems are often greedy and do
not consider other jobs entering a system, which can lead to lacklustre performance.
Systems which use these models include AppLeS [Berman et al. 2003] and
Matchmaker [Raman et al. 1998]. Finally, many job scheduling systems attempt to
rebalance system resources dynamically and migrate jobs from busy to idle systems.
This technique can improve performance and facilitates improved resource
utilisation.

15.2.8.3 Autonomic Computing

Autonomic computing systems combine sensors, reactive computing and data
mining techniques to automatically manage, detect and respond to system events.
This means autonomic systems will be able to configure, and optimise themselves
as well mitigate system failures and malicious attacks and intrusions.

In a manner analogous to immune systems autonomic agents use sensors to monitor
system events and components, and to respond and adapt to them [Kephart and
Chess 2003]. These concepts include:

Self-configuration. Automated configuration of components and systems
follows high-level policies. Rest of the system adjusts automatically and
seamlessly.

Self-optimization. Components and systems continually seek opportunities to
improve their own performance and efficiency.

Self-healing, System automatically detects, diagnoses, and repairs localized
software and hardware problems.

Self-protection. System automatically defends against malicious attacks or
cascading failures. It uses early warning systems to anticipate and prevent
system-wide failures.

Therefore, in the future it is envisaged that successful grid systems will to some
extent include some form of autonomic functionality. Consequently, grid platforms
will eventually have to integrate agent technology, and data mining and machine
learning processes.

Autonomic computing is an emerging technology, which provides many exciting
opportunities and possibilities in the areas of configuration-management, system
optimization, and protection in large-scale grid environments.

15.2.8.4 Replication

File and object replication is an important optimisation strategy used in data grids to
copy or cache data on local systems to improve the reliability and performance of
data access. Therefore, the schemes data grid applications use to create, place,
update and select replicas can have a significant impact on the performance,
reliability and scalability of data grid applications.
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Replica placement strategies must decide, where, when and by whom replicas are
propagated through out a distributed system. Primarily, there are two distinct
methods used to propagate replica data. These are the server initiated “push” and
client initiated “pull” strategies. Server based push strategies actively enhance
performance by replicating data items close to client/server systems, where high
demand exists for particular file and object data sets. Therefore, deciding or
predicting which files and data sets are likely to be in high demand and determining
a feasible threshold for replication is a key issue [Tanenbaum and Steen 2002]

In comparison, client based pull strategies passively store copies of files they have
previously requested and downloaded. Therefore, clients manage their own cache
system and can access previously requested files and data directly from local file
systems. This process can significantly improve performance by reducing latency
and bandwidth requirements. A key issue for client based replication systems is the
size of the cache and when to update or remove old or stale replicas.

For subscription based publication systems such as the World Wide Web and Grid,
file and data sets are often published with minimal changes or update operations
[Opyrchal et al. 2000], [Casanova 2002]. Therefore, it can be assumed that the
majority of file operations are read functions. Consequently, replication and
caching systems that function in these environments can implement weaker cache
coherency and consistency controls because there are fewer updates. In these
circumstances, prediction based push mechanisms can be used to broadcast replica
data to peer groups that are interested in the same or similar topic. As a result
performance is improved because data and documents are sent to local systems
before they are required. However, for Grid environments the situation may not be
so simple because data grid publishing mechanisms may not conform to the
assumption that data is usually only published once and rarely modified. Current,
virtual organisation and grid systems follow this assumption but there is no reason
to expect this trend to continue as data grid applications develop.

Another interesting assumption that can be used to improve performance in routing
replica data, is regionalism as discussed in [Opyrchal et al. 2000] a web caching
paper. This paper utilises IP multicast to broadcast replica data to geographically
neighbouring systems. In this way the under utilised links of edge systems and
local area networks can be put to better use to broadcast replica data directly to
topologically grouped systems. As with the previous assumption this is only useful
if a high level of regionalism exists between the data sets of grid applications.
According to Cassanova’s work [Casanova 2002] this may not hold true over the
long term as multidisciplinary grid applications emerge.

In general, depending on different circumstances and application scenarios, data
grid applications should exhibit some form of access pattern in the reading and
writing of replica data. Therefore, conclusions can be drawn to give a rough guide
to the location, time frame and type of data that needs to be replicated.

Additionally, once the different classes of data grid transaction have been identified,
data access models could be developed to approximate the behaviour of file access
requests. This could allow replica placement schemes to predict where replicas are
required using data access models to minimise costly state inquiry operations.
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Unfortunately, the accuracy of such models is not always so good. Therefore,
model based placement strategies may generate a large proportion of cache misses.

However, data grid applications are still developing and the way they access file and
object replicas is changing. Therefore, accurate conclusions cannot really be drawn
about the type of access pattern for every single class of data grid application. As a
result, replica placement schemes will have to adapt automatically to work with
different usage scenarios. Once these patterns have been established the replication
scheme can simply choose an optimal strategy for a particular class of application
and system environment.

15.3 Peer-to-Peer (P2P) Computing

15.3.1 What is Peer-to-Peer Computing?

“Peer” is defined in the Webster Dictionary as “one that is of equal standing with
another”. So Peer-to-peer (P2P) computing can be viewed as the computing
between equals. It has been estimated that the Internet connects 10 billions of
megaherz CPUs with 10000 terabytes of storage. The problem is that most of these
resources is unused.

A P2P system can be unstructured or unstructured [Kent and Tewari 2002].
Unstructured P2P architectures include Napster, Gnutella, Freenet, in which no
“logically” deterministic structures to organize the participating peers. Structured
P2P architectures include CAN, Chord, Pastry, Tapestry, Tornado and they use a
“logically” deterministic structure to manage peers.

When designing P2P applications, it is important to assume that peers are untrusted
and are mostly connected and communicate with each other [Senior and Deters
2002]. However, these peers can dynamically join and departure the P2P application
and there will be failures in peers or communication links. Peers can also shutdown
or terminate at any time. With these assumptions in mind, it makes the development
of P2P applications a very challenge task. In particular, the issues must be
considered when developing commercial P2P applications include security,
scalability, gigh object availability, load distribution, self-configuration, self-
healing, performance, and legal implications.

The difference between the client-server model and the P2P computing can be
outlined below:

In the client-server paradigm, the client is basically a dumb device; the server
performs the computation, keeps the data and handle the control. This
centralized fashion is simple, but it introduces some problems including
performance bottlenecks and the single point of failures.

In the P2P paradigm, each peer in P2P can be a client, a server, or as an
intermediate entity where it relays requests and responses for other peers. Also,
P2P is fully decentralized.
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The P2P simulteneous client-server method creates a situation where servers are not
the most important infrastructure for resource sharing. P2P systems support a
variety of services without relying on an expensive central server. In particular, P2P
systems offer high availability without the significant cost of a highly redundant and
thus failure proof, central entity.

P2P technology can be applied to many applications, although most consumer-
targeted P2P systems available is primarily focused in file sharing. These systems
allow files to be shared and propagated through the Internet quickly without
powerful servers to host those files.

15.3.2 Possible Application Areas for P2P Systems

Possible business applications include collaboration, distributed computing, file
serving, edge services and intelligent agents.

Financial Services. One market expected to reap great potential is financial
services. Such companies processing extremely number-intensive calculations
require a great deal of computing power. Under a P2P model, instead of having
to buy high-end computers, the financial firms would be able to use computers
they have already got at different offices around the world.

Military Applications of P2P. Modern, military P2P networks require
something where there will be no central server - routing and indexing tasks
must be distributed equally across all P2P members.

Health. P2P computing can give companies the ability to use the collective
power and storage of their computing systems to actively share corporate
information without the need for a central repository, and without overloading
the network.

Neuroscience. Many problems in computational neuroscience require
sophisticated software systems that are beyond the development scope of a
single individual or research group. Projects where huge calculation is required
or data storage is high, P2P can be used for better performance instead of
buying big mainframe Computers.

Education System. P2P software can be used for distance-learning, research
and thesis classes, so that far-flung students can collaborate.

Corporations or research companies. Corporations or research companies
require large amounts of computer capacity for tasks like Genom-Analysis or
climate research. the P2P technology offers an enormous cost saving potential
especially for less-heeled companies. In fact the retrievable CPU-performance
is enormous.

15.3.3 Some Existing P2P Projects

Here we list a number of well known P2P projects from academia and industry.
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IBM Advances P2P Messaging. IBM has launched ICT, IBM Community
Tools, P2P widgetry - apparently a dynamic messaging client - that’s supposed
to let users interact with various communities using instant and broadcast
messaging.

NetBatch. One of the most well-known pure P2P business applications is Intel’s
NetBatch. Instead of buying a massively powerful super-computer to do
complex modelling for semiconductor design, Intel created a technology that
allowed its employees to take advantage of the company’s existing PCs.

SETI@Home project. Another example is the SETI@Home project, run by the
University of California at Berkeley, which allows amateur searchers of
extraterrestrial Intelligence to scour radio telescope data and share findings.
Launched in May 1999, the project aimed to hook up the spare computer time
of 150,000 users. At present, it has more than 1.6 million users, with more than
500,000 active at any time.

VXNET. Virtual X:/net Technology (VXNET) is a secure, distributed
networking application and a platform for rapid development of P2P
applications. VXNET users are able to set up “Persistent Communities”, private
networks where P2P file sharing and communications with trusted individuals
may be enabled over broadband, wireless or dial-up connections. VXNET is
free of spyware and advertising, and includes Instant Messaging (IM) and 128-
bit file encryption.

Mnemosyne: P2P steganographic storage. Mnemosyne provides a high level of
privacy and plausible deniability by using a large amount of shared distributed
storage to hide data. Blocks are dispersed by secure hashing, and loss codes
used for resiliency. It takes advantages of the widespread availability and low
cost of network bandwidth and disk space.

ConChord: Cooperative SDSI Certificate Storage and Name Resolution.
ConChord, a large scale certificate distribution system built on peer-to-peer
distributed hash table. ConChord provides load-balanced storage while
eliminating many of the administrative difficulties of traditional, hierarchical
server architectures. ConChord is specifically designed to support SDSI, a
fully-decentralized public key infrastructure that allows principals to define
local names and link their namespaces to delegate trust.

PeerDB. PeerDB is a P2P distributed data sharing system. It distinguishes itself
from existing P2P systems in several ways. First, it is a full-fledge data
management system that supports fine-grain content-based searching. Second,
it combines the power of mobile agents into P2P systems to perform operations
at peers’ sites. Third, PeerDB network is self-configurable, i.e., a node can
dynamically optimize the set of peers that it can communicate directly with
based on some optimization criterion. By keeping peers that provide most
information or services in close proximity (i.e., direct communication), the
network bandwidth can be better utilized and system performance can be
optimized. Fourth, to the end-user, it provides a keyword-based frontend for
searching data without knowing the database schema.
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15.3.4 P2P File Sharing and its Legal implications

P2P file sharing is a product of the P2P file networking technology. Unlike Client-
Server technology, P2P communication involves two systems sharing services or
files amongst themselves. This eliminates the need of an intermediate server to
channel the data via itself. This makes the data transfer faster if the two clients are
geographically close to each other; moreover P2P file sharing allow users to share
whatever work they had created with a big user group over the Internet.

The problems come quite expectedly when the technology is commercialised. The
legal implications of sharing music files over the Internet by millions of users
without any care for copyright infringement laws and similar regulations is a
problem need to be addressed.

15.3.4.1 P2P File Sharing Systems

P2P file sharing systems fall under two main categories: hybrid P2P and pure P2P
[Kant, Iyer and Tewari, 2002].

In a hybrid P2P system all files are indexed at a central directory server. The
central server maintains a ‘master list’ of all connected computers and the types of
files stored on each connected peer. The actual file transfer occurs between the
requester and owner nodes. A classic example of this kind of P2P system is Napster.

The pre-lawsuit Napster software had a file sharing capacity that could allow users
to look at the index of a music database that was provided by Napster and
downloads the preferred music from an online user. Even though the songs were
downloaded from the remote Napster’s client, the indexed database that provided
the search results for the user was located on a centralised server in the Napster
Company.

When Napster started actively advertising the ability to download the music from
their database of thousands of music files, they got the attention of music copyright
protection agencies like the Recording Industry Association of America (RIAA).
The problem with Napster’s architecture was the presence of a centralised Napster
server that had a collection of all the songs provided by their clients. This part of the
technology was highlighted in the following law suits saying that Napster used these
databases to distribute non-copyrighted music to the general public and that the
music companies were suffering heavy losses due to this free propagation of music
sharing. This was due to the fact that the Napster server collected all the list of
songs available at its clients for downloading. Hence the Napster server served as a
central location to store the database that would provide searches with the name of
the music files and the user from whom to download.

In a pure P2P system there is no central server or router. The routing structure either
is a distributed catalogue which uses indexes as parameters or direct messaging
where the message is sent to a peer group until the inquiry is found. All nodes
within a pure P2P system are peers, meaning that each peer can operate as a router,
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client or server depending on the query. A popular example of this type P2P system
is Gnutella.

The situation where Napster failed was in involving a server into their file searches.
Gnutella managed to get over this problem by allowing the individual clients to
search other computers connected to P2P networks to obtain search results. This left
Gnutella, out of the picture in file sharing.

The closest thing that Gnutella or for that matter Kazaa comes to a server is the
presence of supernodes in the P2P networks. A supernode is a powerful system in
the network that allows different users to come together and share online files. This
is no way connected to any of the servers of Gnutella and hence avoids any legal
implications. The only link the softwares have with the mother company is the
regular updating by the producers of the software and to get an up-to-date location
of the supernodes. Even the supernode updating option can be turned off by the
client providing completely autonomous and provides true P2P file sharing without
the involvement of an intermediate server. Staying clear from personally hosting
any type of information that may aid in infringing the copyright infringement and
other sorts of legal implications has allowed the Gnutella and similar networks to
thrive in a legally hostile environment.

Napster and Gnutella are both popular file sharing systems. The main difference
between Napster and Gnutella P2P file sharing is that Napster requires a centralised
server to manage the database management of the system. Gnutella on the other
hand, does not rely on centralised servers, but rather provides direct P2P
communication between peers without server intervention.

15.3.4.2 Legal implications for P2P File Sharing

The controversial popularity of file sharing among users of P2P file sharing
applications such as Napster and Gnutella has created a complicated web of legal
implications.

According to the U.S Copyright Law, practically all shapes of expression that can
be of use in any tangible form are protected by copyright law [Lohman, 2003]. This
includes such forms as books, artwork, digital works and the like. U.S Copyright
Law, states that Copyright protection commences from the instant that the
expression (in any median form) is fixed (meaning complete), and carries on for the
lifetime of the author, and an additional 70 years.

Throughout this stage, copyright law set asides certain rights entirely to the owner
of the work, such as the right to distribute (make available), reproduce (make
copies) and publicly display (make freely available) the work and so on. The nature
of digital file-sharing technology within a P2P environment unavoidably alludes to
copyright law. First, every digital file stored on a user’s machine can be a potential
risk of copyrighted work. Secondly, the sharing of a file to another results in a
reproduction and distribution which turn, infringes copyright law.
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15.3.5 Some Challenges for P2P Computing

P2P is still developing and lots of research work is going on for the P2P technology.
As suggested earlier in this section there can be many possible other P2P
applications. P2P will have a big impact on B2B and B2C, but it will take a long
time because there are many issues that need to be worked out to prepare the way
for this technology. Application authors must design robust applications that can
function in the complex Internet environment, and network designers must build in
capabilities to handle new peer-to-peer applications. In the near future P2P will be
adopted in most large/distributed companies as a cheaper means of storing and
sharing files internally. Though P2P has some issues to be resolved but it also
provides lot of advantages which cannot be neglected. Some of the most challenge
issues include:

Standardization: it is going to be a big issue, as it is necessary that all the
flavors of P2P would talk to each other.

Search is slow and sometimes unreliable.

For enterprise wide P2P networking, further research is required to address
security, authentication, authorisation and trust issues..

Legal implications.

15.4 Pervasive Computing

Pervasive computing has been identified as the future of computing, that is,
computing that is seamlessly integrated into every aspect of our day-to-day lives
[Saba and Mukheriee 2003]. With the fast development of computing hardware,
network technology, distributed computing, and more importantly, mobile
computing, the realisation of the vision of pervasive computing is getting more
realistic.

Mobile computing has been one of the major driving forces for pervasive computing
[Beresford and Stajano 2003]. When mobile devices become “invisible”, the idea of
pervasive computing becomes reality. However, pervasive computing is more than
just mobile computing [Fano and Gershman 2002]. Apart from the invisibility, there
are other key issues for pervasive computing, such as integration with the
environment, scalability, intelligence, and the impacts to our business operations,
social lives and legal systems.

15.4.1 Pervasive Computing Characteristics

Pervasive computing finds its roots in ubiquitous computing [Satyanarayanan,
2001] where it aims to provide availability and invisibility of its application to the
user. It can be defined as availability of software applications and information
anywhere and anytime. Pervasive computing also means that computers are hidden
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in numerous so-called information appliances which we use in our day-to-day life
[Birnbaum, 1997].

From a more general point of view, pervasive computing applications are often
characterised as interaction transparent, context aware, and experience capture and
reuse capable [Abowd, 1999[. Interaction transparency means that the human user is
not aware that there is a computer embedded in the tool or device that he or she is
using. Context awareness means that the application knows, for instance, the current
geographical location. An experience capture and reuse capable application can
remember when, where, and why something was done and can use that information
as input to solve new tasks.

The following points provide further detail for each of the aforementioned
characteristics. Though it is stated as the main characteristics of pervasive
computing, this list was compiled from characteristics put forward by [Abowd
1999] in presenting software issues for ubiquitous computing..

Interaction Transparency. An example of interaction transparency is the
electronic white-board project called Classroom 2000. An electronic white-
board has been designed that looks and feels like a white-board rather than a
computer. With ideal transparency of interaction, the writer would just pick up
a marker and start writing with no configuration. This transparency contrasts
with the actual non-transparency of current interactions with computers. Input-
output devices such as mouses, keyboards, and monitors are pure artefacts of
computing. So are manipulations such as launching a browser, selecting
elements in a Web page, setting up an audio or video encoding mechanism, and
entering authentication information.

Context Awareness. A pervasive computing system that strives to be minimally
intrusive has to be context-aware and modify its behaviour based on this
information. A user’s context can consist of attributes such as physical location,
physical condition, emotional state, personal history and daily behavioural
patterns to name a few. A context-aware application can sense the environment
and interpret the events that occur within it.

The project Cyberguide [Abowd, 1997] is a pervasive computing application
that exploits awareness of the current physical location. It mimics on a PDA the
services provided by a human tour guide when visiting a new location. The
Cyberguide project was an attempt to replicate the human tour guide through
the use of mobile and hand held technology and ubiquitous positioning and
communication services such as the Global Positioning System (GPS).

Automated Capture of Experiences. Capture and storage of past experiences
can be used to solve new problems in the future. Experiences are made of
events and computers have the ability to record them automatically. Human
users only have to recall that information from the computer when it is needed.
For example, a context-aware electronic wallet could capture and store
locations, times, and descriptions of payments made by a traveller. Back home,
the traveller could use the recorded events to generate an expense report.
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A general challenge in ubiquitous computing is to provide automated tools to
support the capture, integration and access of this multimedia record [Barbeau,
2002]. The purpose is allow people to carry on with their task without having to
worry on the details for capturing and recording the session for later use. In
Classroom2000 [Abowd, 19999], the system showed the capacity to capture all
the events associated with the teaching session, and made it possible for
students to come back to it at a later time and see it in detail with all its
activities. Every stroke of the pen, movement and web page visited where
captured by the system and presented in the same sequence to the user,
allowing for the students to concentrate on the material presented rather than
manually capturing what the lecturer had to say.

15.4.2 Elite Care: An Application Using Pervasive Computing

Founders Bill Reed and Lydia Lundberg established Elite Care to improve housing
and health care for the elderly. Elite Care developed all aspects of the technology,
including construction, care giving, and pervasive computing, without venture
funding and on a limited budget. Design goals included low-cost integration of
technologies, unobtrusiveness, and an elderly friendly software interface.

By building pervasive computing into the environment, Elite Care’s Oatfield Estates
gave residents as much autonomy and even responsibility for themselves and their
environment as possible [Stanford, 2002]. Focus was on creating a personalised
environment that avoided the traditional institutional care model used in nursing
homes for the elderly.

The system consists of the following components:

Locator badges. Residents each carry a dual-channel infrared radio frequency
locator tag that acts as their apartment key and emits periodic IR pulses to the
sensors in each room and in the common areas. The pulses are unique to
individual badges and support real-time updating of personal location
databases.

Status bits let residents summon immediate assistance by pressing the proper
button and automatically alert the staff when the battery charge gets low. The
RF component enables location tracking to about a 90-foot radius when a badge
is out of sight of an IR sensor, such as when the person wanders.

Elopement alarms alert staff if a resident prone to disorientation starts to leave
the campus. Motion sensors in the rooms enable energy management or
convenience functions such as turning on the lights when people enter a space
The locator badge can be worn in a wristwatch form factor for those who might
be prone to misplacing their badges.

Embedded weight sensors. Each apartment bed has a built-in weight sensor. As
with locator badges, the pervasive computing infrastructure makes many uses
of the signatures obtained from these sensors. For example, a daily weight
measurement is taken, but transients during sleep periods can also indicate
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tossing and turning, which might imply wakefulness, perhaps due to pain or
stress caused by illness.

Frequent trips to the bathroom might indicate a urinary tract infection, alerting
staff to arrange for a check-up. Doctors receive notification of any sudden
weight loss, but because some residents might be sensitive about their weight,
they can opt out of this measurement.

In-apartment computers. Each apartment has a networked computer with a
touch screen interface that provides access to a standard suite of applications
residents use to communicate with families and friends. Tools include email,
word processing, audio for speech recognition, and video conferencing using
web cams. The applications suite defaults to large fonts for easier viewing.

Residents can also communicate with their neighbours and summon staff
assistance. Staff can use the consoles in their apartments to monitor the status
of residents in their care as well as for personal use. These systems connect to
the wired network infrastructure extending across the cluster.

Personalized databases. The database server for the system is implemented with
SQL Server. Elite Care maintains individualized resident databases that
enhance care delivery, like documenting vital signs such as weight and blood
pressure changes over time and activity logs. The caregivers use this data to
call for qualified medical attention when needed. Medicine delivery databases
let staff know if the residents are current on their prescription medications.

Managers use the databases to monitor staff performance in timely delivery of
services and communicate with the residents’ adult children. Residents also use
the personal histories in the databases to foster social relationships with others
who have common points of history, such as having attended the same college
or high school.

With the advancements made with distributed and mobile computing, the Elite Care
facility was able to provide an effective and unobtrusive pervasive computing
environment that took into consideration the privacy of the residents. Providing a
seamless interaction with the needs of the aged, the application showed how
beneficial and useful it can be in making the day to day task of caring for the
residents easier for the employees.

15.4.3 The Challenges for Pervasive Computing

As devices and users move from one location to another, applications must adapt
themselves to new environments. Applications must be able to discover services
offered by distributed components in new environments and dynamically
reconfigure themselves to use these new service providers [Barbeau 2002]. This
characteristic of pervasiveness, that is to weave into the fabric of everyday life, was
referred to by Mark Weiser [Weiser 1991] in his vision for ubiquitous computing.

During that period of Weiser’s vision, the technology to implement pervasive
computing was not available as it is now. Viable commercial products such as,
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handheld and wearable computers, wireless LANs and devices to sense and control
appliances are readily available in our modern era. This allows us to be better
positioned to take full advantage of this vision.

Pervasive computing will be a fertile source of challenging research problems in
computer systems for many years to come. Solving these problems will require us to
broaden our discourse on some topics, and to revisit long-standing design
assumptions in others [Satyanarayanan, 2001]. When describing his vision, Weiser
was fully aware that attaining it would require tremendous creativity and effort by
many people, sustained over many years.

Current research in pervasive computing focuses on building infrastructures for
managing active spaces, connecting new devices, or building useful applications to
improve functionality. Security and privacy issues in such environments, however,
have not been explored in depth. Indeed, a number of researchers and practitioners
have admitted that security and privacy in this new computing paradigm are real
problems. The reasons that make pervasive computing environments convenient and
powerful also make it vulnerable to new security and privacy threats. In many cases,
it is inproper to use traditional security mechanisms to deal with new exposures and
vulnerabilities.

15.5 Summary

In this chapter we have presented some of the most recent development in
distributed network systems; surveyed some key techniques used in advanced
distributed network systems; and investigated how the these techniques can be used
in the design and implementation of future distributed network systems. In
particular, we studied the topics related to cluster computing, grid computing, peer-
to-peer computing, and pervasive computing. After the reading of this chapter, we
hope readers will have gained a broad knowledge about cutting edge topics in
distributed network systems, particularly those relating to industry and potential
development.

Exercises

15.1 What is a cluster and why does it attract attentions from both academia and
industry? 15.1

15.2 Why Single System Image (SSI) is so important in Cluster computing? 15.1.1

15.3 Image that you were a CTO of a large company (say, with 100 architects
located in three cities designing high rise buildings). Currently your company
uses a very powerful parallel computer to run various CAD pakages and
architects use normal PCs to run the user interface of these CAD pakages.
Outline a few reasons to convince your CEO and the company board that
moving to a cluster computing platform would greatly improve your company’s
compatitivity. 15.1
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15.4 How do you differentiate cluster and grid? 15.2.1

15.5 Describe the ways that Grid computing can facilitate the coordination of
disparate and geographically isolated resources in a virtual organization. 15.2.2

15.6 Describe the core grid components and their basic functions. 15.2.3

15.7 What are the major challenges of grip computing and why? 15.2.8

15.8 Why P2P applications can be scalable and what are the measures to make a
P2P application scale? 15.3.1

15.9 Try to suggest some new “killer” applications for P2P computing. 15.3.2,
15.3.3

15.10 Summarise the current methodologies for service discovery in P2P file
sharing environments. Discuss their pros and cons in various situations.
Propose new ways / ideas to improve the functionality of service discovery in
P2P environments. 15.3.4

15.11 What are the possible legal implications for file sharing in a P2P
environment? 15.3.4

15.12 What is the vision of pervasive computing and the major challenges to
achieve such a vision? 15.4

15.13 Suggest a number of new “killer” applications for pervasive computing that
may greatly impact on our lives. 15.4

15.14 Discuss the possible impact of pervasive computing to entertainment industry.
15.4

15.15 Discuss the possible legal impact of pervasive computing. 15.4

15.16 If pervasive computing becomes a reality, discuss its impact to a university
(in particular, the impact to students, staff, and teaching and learning). 15.4
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