

Java Precisely
Peter Sestoft
The MIT Press

Cambridge, , Massachusetts London, England

Copyright © 2002 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in

writing from the publisher.
This book was set in Times by the author using .

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data
Sestoft, Peter.

Java precisely/Peter Sestoft.
p. cm.

Includes bibliographic references and index.
ISBN 0-262-69276-7 (pbk. : alk. paper)

1. Java (Computer program language) I. Title.

QA76.73.J38 S435 2002
005.13'3—dc21 2002016516

Table of Contents

 Preface .. 4

 Notational Conventions .. 5

 Chapter 1 - Running Java: Compilation, Loading, and Execution ... 6

 Chapter 2 - Names and Reserved Names 7

 Chapter 3 - Java Naming Conventions 8

 Chapter 4 - Comments and Program Layout 9

 Chapter 5 - Types .. 11

 Chapter 6 - Variables, Parameters, Fields, and Scope 13

 Chapter 7 - Strings . 1 6

 Chapter 8 - Arrays ... 19

 Chapter 9 - Classes . 2 3

 Chapter 10 - Classes and Objects in the Computer 35

 Chapter 11 - Expressions .. 37

 Chapter 12 - Statements ... 51

 Chapter 13 - Interfaces . 6 1

 Chapter 14 - Exceptions, Checked and Unchecked 63

 Chapter 15 - Threads, Concurrent Execution, and Synchronization .. 66

 Chapter 16 - Compilation, Source Files, Class Names, and Class Files . 73

 Chapter 17 - Packages and Jar Files ... 74

 Chapter 18 - Mathematical Functions .. 76

 Chapter 19 - String Buffers . 7 9

 Chapter 20 - Collections and Maps .. 81

 Chapter 21 - Input and Output ... 95

 References .. 119

 4

Preface
This book gives a concise description of the Java 2 programming language, versions 1.3 and 1.4. It is a
quick reference for the reader who has already learned (or is learning) Java from a standard textbook
and who wants to know the language in more detail. The book presents the entire Java programming
language and essential parts of the class libraries: the collection classes and the input-output classes.
General rules are shown on left-hand pages mostly, and corresponding examples are shown on right-
hand pages only. All examples are fragments of legal Java programs. The complete ready-to-run
example programs are available from the book Web site
<http://www.dina.kvl.dk/~sestoft/javaprecisely/>.

The book does not cover garbage collection, finalization and weak references, reflection, details of
IEEE754 floating-point numbers, or Javadoc.
Acknowledgments Thanks to Rasmus Lund, Niels Hallenberg, Hans Henrik Løvengreen, Christian
Gram, Jan Clausen, Anders Peter Ravn, Bruce Conrad, Brendan Humphreys, Hans Rischel and Ken
Friis Larsen for their useful comments, suggestions, and corrections. Special thanks to Rasmus Lund
for letting me adapt his collections diagram for this book. Thanks also to the Royal Veterinary and
Agricultural University and the IT University of Copenhagen, Denmark, for their support.

 5

Notational Conventions
Symbol Meaning
v Value of any type
x Variable or parameter or field or array element
e Expression
t Type (primitive type or reference type)
s Expression of type String
m Method
f Field
C Class
E Exception type
I Interface
a Expression or value of array type
i Expression or value of integer type
o Expression or value of object type
sig Signature of method or constructor
p Package
u Expression or value of thread type

 6

Chapter 1: Running Java: Compilation, Loading, and
Execution
Before a Java program can be executed, it must be compiled and loaded. The compiler checks that the
Java program is legal: that the program conforms to the Java syntax (grammar), that operators (such as
+) are applied operands (such as 5 and x) of the correct type, and so on. If so, the compiler generates
so-called class files. Execution then starts by loading the needed class files.
Thus running a Java program involves three stages: compilation (checks that the program is well-
formed), loading (loads and initializes classes), and execution (runs the program code).

 7

Chapter 2: Names and Reserved Names
A legal name (of a variable, method, field, parameter, class, interface or package) starts with a letter or
dollar sign ($) or underscore (_), and continues with zero or more letters or dollar signs or underscores
or digits (0–9). Avoid dollar signs in class names. Uppercase letters and lowercase letters are
considered distinct. A legal name cannot be one of the following reserved names:
abstract char else goto long public
assert class extends if native return
boolean const false implements new short
break continue final import null static
byte default finally instanceof package strictfp
case do float int private super
catch double for interface protected switch

 8

Chapter 3: Java Naming Conventions
The following naming conventions are often followed, although not enforced by Java:
 If a name is composed of several words, then each word (except possibly the first one)

begins with an uppercase letter. Examples: setLayout, addLayoutComponent.
 Names of variables, fields, and methods begin with a lowercase letter. Examples: vehicle,

myVehicle.
 Names of classes and interfaces begin with an uppercase letter. Examples: Cube,

ColorCube.
 Named constants (that is, final variables and fields) are written entirely in uppercase, and

the parts of composite names are separated by underscores (_). Examples: CENTER,
MAX_VALUE.

 Package names are sequences of dot-separated lowercase names. Example:
java.awt.event. For uniqueness, they are often prefixed with reverse domain names, as in
com. sun.xml.util.

 9

Chapter 4: Comments and Program Layout
Comments have no effect on the execution of the program but may be inserted anywhere to help
humans understand the program. There are two forms: one-line comments and delimited comments.
Program layout has no effect on the computer's execution of the program but is used to help humans
understand the structure of the program.

Example 1: Comments

class Comment {

 // This is a one-line comment; it extends to the end of the line.

 /* This is a delimited comment,

 extending over several lines.

 */

 int /* This delimited comment extends over part of a line */ x = 117;

}

Example 2: Recommended Program Layout Style

For reasons of space this layout style is not always followed in this book.

class Layout { // Class declaration

 int a;

 Layout(int a) {

 this.a = a; // One-line body

 }

 int sum(int b) { // Multi-line body
 if (a > 0) { // If statement
 return a + b; // Single statement
 } else if (a < 0) { // Nested if-else, block statement
 int res = -a + b;
 return res * 117;
 } else { // a == 0 // Terminal else, block statement
 int sum = 0;
 for (int i=0; i<10; i++) { // For loop
 sum += (b - i) * (b - i) ;
 }
 return sum;
 }
 }

 static boolean checkdate(int mth, int day) {
 int length;
 switch (mth) { // Switch statement
 case 2: // Single case
 length = 28; break;

 10

 case 4: case 6: case 9: case 11: // Multiple case
 length = 30; break;
 case 1: case 3: case 5: case 7: case 8: case 10: case 12:
 length = 31; break;
 default:
 return false;
 }
 return (day >= 1) && (day <= length);
 }
}

 11

Chapter 5: Types
A type is a set of values and operations on them. A type is either a primitive type or a reference type.
5.1 Primitive Types
A primitive type is either boolean or one of the numeric types char, byte, short, int, long, float,
and double. The primitive types, example literals (that is, constants), size in bits (where 8 bits equals 1
byte), and value range, are shown in the following table:

Type Kind Example
Literals

Size Range

boolean logical false,
true

1

char integer ' ',
'0',
'A',...

16 \u0000 ...
\uFFFF (unsigned)

byte integer 0, 1, -1,
117,...

8 max = 127

short integer 0, 1, -1,
117,...

16 max = 32767

int integer 0, 1, -1,
117,...

32 max = 2147483647

long integer 0L,1L, -
1L,
117L, ...

64 max =
9223372036854775
807

float floating-
point

-1. 0f,
0.499f,
3E8f,..
.

32 ±10-38...±1038,
sigdig 6–7

double floating-
point

-1.0,
0.499,
3E8,...

64 ±10-308...±10308,
sigdig 15–16

The integer types are exact within their range. They use signed 2's complement representation (except
for char), so when the most positive number in a type is max, then the most negative number is -max-
1. The floating-point types are inexact and follow IEEE754, with the number of significant digits
indicated by "sigdig." For character escape sequences such as \u0000, see page 8.
Integer literals (of type byte, char, short, int, or long) may be written in three different bases:

Notation Base Distinction Example
Integer Literals

Decimal 10 No leading
0

1234567890,
127, -127

Octal 8 Leading 0 01234567,
0177, -0177

Hexadecimal 16 Leading 0x 0xABCDEF0123,
0x7F, -0x7F

For all primitive types there are corresponding wrapper classes (reference types), namely Boolean and
Character as well as Byte, Short, Integer, Long, Float, and Double, where the last six have the common
superclass Number. To use a primitive value, such as 17, where an object is expected, use an object of
its wrapper class, such as new Integer(17).

5.2 Reference Types
A reference type is either a class type defined by a class declaration (section 9.1), or an interface type
defined by an interface declaration (section 13.1), or an array type (section 5.3).
A value of reference type is either null or a reference to an object or array. The special value null
denotes "no object." The literal null, denoting the null value, can have any reference type.

 12

5.3 Array Types
An array type has the form t[], where t is any type. An array type t[] is a reference type. Hence a
value of array type t[] is either null, or is a reference to an array whose element type is precisely t
(when t is a primitive type), or is a subtype of t (when t is a reference type).

5.4 Subtypes and Compatibility
A type t1 may be a subtype of a type t2, in which case t2 is a supertype of t1. Intuitively this means
that any value v1 of type t1 can be used where a value of type t2 is expected. When t1 and t2 are
reference types, t1 must provide at least the functionality (methods and fields) provided by t2. In
particular, any value v1 of type t1 may be bound to a variable or field or parameter x2 of type t2, e.g.,
by the assignment x2 = v1 or by parameter passing. We also say that types t1 and t2 are
compatible. The following rules determine when a type t1 is a subtype of a type t2:

 Every type is a subtype of itself.
 If t1 is a subtype of t2, and t2 is a subtype of t3, then t1 is a subtype of t3.
 char is a subtype of int, long, float, and double.
 byte is a subtype of short, int, long, float, and double.
 short is a subtype of int, long, float, and double.
 int is a subtype of long, float, and double.
 long is a subtype of float and double.
 float is a subtype of double.
 If t1 and t2 are classes, then t1 is a subtype of t2 if t1 is a subclass of t2.
 If t1 and t2 are interfaces, then t1 is a subtype of t2 if t1 is a subinterface of t2.
 If t1 is a class and t2 is an interface, then t1 is a subtype of t2 provided that t1 (is a

subclass of a class that) implements t2 or implements a subinterface of t2.
 Array type t1 [] is a subtype of array type t2 [] if reference type t1 is a subtype of

reference type t2.
 Any reference type t, including any array type, is also a subtype of predefined class Object.

No primitive type is a subtype of a reference type. No reference type is a subtype of a primitive type.

5.5 Signatures and Subsumption
A signature has form m(t1,..., tn), where m is a method or constructor name, and (t1,..., tn) is a list of
types (example 25). When the method is declared in class T, and not inherited from a superclass, then
its extended signature is m(T, t1,..., tn); this is used in method calls (section 11.11).
We say that a signature sig1 = m(t1,..., tn) subsumes signature sig2 = m(u1,..., un) if each ui is a subtype
of ti. We also say that sig2 is more specific than sig1. Note that the method name m and the number n of
types must be the same in the two signatures. Since every type ti is a subtype of itself, every signature
subsumes itself. In a collection of signatures there may be one that is subsumed by all others; such a
signature is called the most specific signature. Examples:

 m (double, double) subsumes itself and m(double, int) and m(int, double) and
m (int, int).

 m (double, int) subsumes itself and m(int, int).
 m(int, double) subsumes itself and m(int, int).
 m (double, int) does not subsume m (int, double), nor the other way round.
 The collection m(double, int), m(int, int) has the most specific signature m(int,

int).
 The collection m(double, int), m(int, double) has no most specific signature.

 13

Chapter 6: Variables, Parameters, Fields, and Scope
Overview
A variable is declared inside a method, constructor, initializer block, or block statement (section 12.2).
The variable can be used only in that block statement (or method or constructor or initializer block), and
only after its declaration.
A parameter is a special kind of variable: it is declared in the parameter list of a method or constructor,
and is given a value when the method or constructor is called. The parameter can be used only in that
method or constructor, and only after its declaration.
A field is declared inside a class, but not inside a method or constructor or initializer block of the class. It
can be used anywhere in the class, also textually before its declaration.

6.1 Values Bound to Variables, Parameters, or Fields
A variable, parameter, or field of primitive type holds a value of that type, such as the boolean false,
the integer 117, or the floating-point number 1. 7. A variable, parameter, or field of reference type t
either has the special value null or holds a reference to an object or array. If it is an object, then the
class of that object must be t or a subclass of t.

6.2 Variable Declarations
The purpose of a variable is to hold a value during the execution of a block statement (or method or
constructor or initializer block). A variable-declaration has one of the forms
 variable-modifier type varname1, varname2, ... ;
 variable-modifier type varname1 = initializer1, ... ;
A variable-modifier may be final or absent. If a variable is declared final, then it must be initialized
or assigned at most once at run-time (exactly once if it is ever used): it is a named constant. However, if
the variable has reference type, then the object or array pointed to by the variable may still be modified.
A variable initializer may be an expression or an array initializer (section 8.2).

Execution of the variable declaration will reserve space for the variable, then evaluate the initializer, if
any, and store the resulting value in the variable. Unlike a field, a variable is not given a default value
when declared, but the compiler checks that it has been given a value before it is used.

6.3 Scope of Variables, Parameters, and Fields
The scope of a name is that part of the program in which the name is visible. The scope of a variable
extends from just after its declaration to the end of the innermost enclosing block statement. The scope
of a method or constructor parameter is the entire method or constructor body. For a control variable x
declared in a for statement
 for (int x = ...; ...; ...) body
the scope is the entire for statement, including the header and the body.
Within the scope of a variable or parameter x, one cannot redeclare x. However, one may declare a
variable x within the scope of a field x, thus shadowing the field. Hence the scope of a field x is the
entire class, except where shadowed by a variable or parameter of the same name, and except for
initializers preceding the field's declaration (section 9.1).

Example 3: Variable Declarations

public static void main(String[] args) {

 int a, b, c;

 int x = 1, y = 2, z = 3;

 int ratio = z/x;

 final double PI = 3.141592653589;

 boolean found = false;

 final int maxyz;

 14

 if (z > y) maxyz = z; else maxyz = y;
}

Example 4: Scope of Fields, Parameters, and Variables
This program declares five variables or fields, all called x, and shows where each one is in scope (visible).
The variables and fields are labeled #1, ..., #5 for reference.

class Scope {

 ... //

 void ml(int x) { // Declaration of parameter x (#1)

 ... // x #1 in scope

 } //

 ... //

 void m2(int v2) { //

 ... // x #5 in scope

 } //

 ... //

 void m3 (int v3) { //

 ... // x #5 in scope

 int x; // Declaration of variable x (#2)

 ... // x #2 in scope

 } //

 ... //

 void m4 (int v4) { //

 ... // x #5 in scope

 { //

 int x; // Declaration of variable x (#3)

 ... // x #3 in scope

 } //

 ... // x #5 in scope

 { //

 int x; // Declaration of variable x (#4)

 ... // x #4 in scope

 } //

 15

 ... // x #5 in scope

 } //

 ... //

 int x; // Declaration of field x (#5)

 ... // x #5 in scope

}

 16

Chapter 7: Strings
A string is an object of the predefined class String. A string literal is a sequence of characters within
double quotes: "New York", "A38", "", and so on. Internally, a character is stored as a number using
the Unicode character encoding, whose character codes 0–127 coincide with the old ASCII character
encoding. String literals and character literals may use character escape sequences:

Escape Code Meaning
\b backspace
\t horizontal tab
\n newline
\f form feed (page break)
\r carriage return
\" the double quote character
\' the single quote character
\\ the backslash character
\ddd the character whose character code is the three-

digit octal number ddd
\udddd the character whose character code is the four-digit

hexadecimal number dddd
A character escape sequence represents a single character. Since the letter A has code 65 (decimal),
which is written 101 in octal and 0041 in hexadecimal, the string literal "A\101\u0041" is the same as
"AAA". If s1 and s2 are expressions of type String and v is an expression of any type, then

 s1.length () of type int is the length of s1, that is, the number of characters in s1.
 s1.equals (s2) of type boolean is true if s1 and s2 contain the same sequence of

characters, and false otherwise; equalsIgnoreCase is similar but does not distinguish
lowercase and uppercase.

 s1.charAt (i) of type char is the character at position i in s1, counting from 0. If the
index i is less than 0, or greater than or equal to s1.length (), then
StringIndexOutOfBoundsException is thrown.

 s1.toString () of type String is the same object as s1.
 String.valueOf (v) returns the string representation of v, which can have any primitive

type (section 5.1) or reference type. When v has reference type and is not null, then it is
converted using v.toString(); if it is null, then it is converted to the string "null". Any
class C inherits from Object a default toString method that produces strings of the form
C@2a5734, where 2a5734 is some memory address, but toString may be overridden to
produce more useful strings.

 s1 + s2 has the same meaning as s1.concat (s2): it constructs the concatenation of s1
and s2, a new String consisting of the characters of s1 followed by the characters of s2.

 s1 + v and v + s1 are evaluated by converting v to a string with String.valueOf (v),
thus using v.toString () when v has reference type, and then concatenating the
resulting strings.

 s1.compareTo(s2) returns a negative integer, zero, or a positive integer, according as s1
precedes, equals, or follows s2 in the usual lexicographical ordering based on the Unicode
character encoding. If s1 or s2 is null, then the exception NullPointerException is thrown.
Method compareToIgnoreCase is similar but does not distinguish lowercase and
uppercase.

 More String methods are described in the Java class library documentation [3].
Example 5: Equality of Strings, and the Subtlety of the (+) Operator

String s1 = "abc";

String s2 = s1 + ""; // New object, but contains same text as s1

String s3 = s1; // Same object as s1

 17

String s4 = s1.toString(); // Same object as s1

// The following statements print false, true, true, true, true:

System.out.println("s1 and s2 identical objects: " + (s1 == s2));

System.out.println("s1 and s3 identical objects: " + (s1 == s3));

System.out.println("s1 and s4 identical objects: " + (s1 == s4));

System.out.println("s1 and s2 contain same text: " + (s1.equals(s2)));

System.out.println("s1 and s3 contain same text: " + (s1.equals(s3)));

// These two statements print 35A and A1025 because (+) is left-associative:

System.out.println(10 + 25 + "A"); // Same as (10 + 25) + "A"

System.out.println("A" + 10 + 25); // Same as ("A" + 10) + 25

Example 6: Concatenating All Command Line Arguments
When concatenating many strings, use a string buffer instead (chapter 19 and example 84).

public static void main(String[] args) {

 String res = "";
 for (int i=0; i<args.length; i++)
 res += args [i] ;
 System.out.println(res);
}

Example 7: Counting the Number of e's in a String

static int ecount(String s)

 int ecount = 0;
 for (int i=0; i<s.length(); i++)
 if (s.charAt(i) == 'e')
 ecount++;
 return ecount;
}

Example 8: Determining Whether Strings Occur in Lexicographically Increasing Order

static boolean sorted(String[] a)
 for (int i=1; i<a.length; i++)
 if (a[i-1].compareTo(a[i]) > 0)
 return false;
 return true;
}

Example 9: Using a Class That Declares a toString Method
The class Point (example 16) declares a toString method that returns a string of the point coordinates.
The operator (+) calls the toString method implicitly to format the Point objects.

Point p1 = new Point(10, 20), Point p2 = new Point(30, 40);

 18

System.out.println("p1 is " + pl); // Prints: p1 is (10, 20)

System.out.println("p2 is " + p2); // Prints: p2 is (30, 40)

p2.move(7, 7);

System.out.println("p2 is " + p2); // Prints: p2 is (37, 47)

 19

Chapter 8: Arrays
An array is an indexed collection of variables, called elements. An array has a given length ℓ ≥ 0 and a
given element type t. The elements are indexed by the integers 0, 1,...,ℓ - 1. The value of an
expression of array type u[] is either null or a reference to an array whose element type t is a
subtype of u. If u is a primitive type, then t must equal u.
8.1 Array Creation and Access
A new array of length ℓ with element type t is created (allocated) using an array creation expression:

 new t[ℓ]
where ℓ is an expression of type int. If type t is a primitive type, all elements of the new array are
initialized to 0 (when t is byte, char, short, int, or long) or 0.0 (when t is float or double) or
false (when t is boolean). If t is a reference type, all elements are initialized to null.
If ℓ is negative, then the exception NegativeArraySizeException is thrown.
Let a be a reference of array type u[], to an array with length ℓ and element type t. Then

 a.length of type int is the length ℓ of a, that is, the number of elements in a.
 The array access expression a[i] denotes element number i of a, counting from 0; this

expression has type u. The integer expression i is called the array index. If the value of i
is less than 0 or greater than or equal to a.length, then exception
ArrayIndexOutOfBoundsException is thrown.

 When t is a reference type, every array element assignment a[i] = e checks that the
value of e is null or a reference to an object whose class C is a subtype of the element
type t. If this is not the case, then the exception ArrayStoreException is thrown. This
check is made before every array element assignment at run-time, but only for reference
types.

8.2 Array Initializers
A variable or field of array type may be initialized at declaration, using an existing array or an array
initializer for the initial value. An array initializer is a comma-separated list of zero or more expressions
enclosed in braces { ... }:

 t[] x = { expression, ..., expression }
The type of each expression must be a subtype of t. Evaluation of the initializer causes a distinct new
array, whose length equals the number of expressions, to be allocated. Then the expressions are
evaluated from left to right and their values are stored in the array, and finally the array is bound to x.
Hence x cannot occur in the expressions: it has not been initialized when they are evaluated.

Array initializers may also be used in connection with array creation expressions:
 new t[] { expression, ..., expression }
Multidimensional arrays can have nested initializers (example 14). Note that there are no array
constants: a new distinct array is created every time an array initializer is evaluated.

Example 10: Creating and Using One-Dimensional Arrays

The first half of this example rolls a die one thousand times, then prints the frequencies of the outcomes.
The second half creates and initializes an array of String objects.

int[] freq = new int[6]; // All initialized to 0
for (int i=0; i<1000; i++) { // Roll dice, count frequencies
 int die = (int) (1 + 6 * Math.random());
 freq[die-1] += 1;
}
for (int c=1; c<=6; c++)
 System.out.println(c + " came up " + freq[c-1] + " times");

String[] number = new String[20]; // Create array of null elements
for (int i=0; i<number.length; i++) // Fill with strings "A0", ..., "A19"
 number[i] "A" + i;
for (int i=0; i<number.length; i++) // Print strings

 20

 System.out.println(number[i]);

Example 11: Array Element Assignment Type Check at Run-Time
This program compiles, but at run-time a[2] =d throws ArrayStoreException, since the class of the object
bound to d (that is, Double) is not a subtype of a's element type (that is, Integer).

Number[] a = new Integer[10]; // Length 10, element type Integer

Double d = new Double(3.14); // Type Double, class Double

Integer i = new Integer(117); // Type Integer, class Integer

Number n = i; // Type Number, class Integer

a[0] = i; // OK, Integer is subtype of Integer

a[1] = n; // OK, Integer is subtype of Integer

a[2] = d; // No, Double not subtype of Integer

Example 12: Using an Initialized Array
Method checkdate here behaves the same as checkdate in example 2. The array should be declared
outside the method, otherwise a distinct new array is created for every call to the method.

static int[] days = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

static boolean checkdate(int mth, int day)
{ return (mth >= 1) && (mth <= 12) && (day >= 1) && (day <= days[mth-1]); }

Example 13: Creating a String from a Character Array
When replacing character cl by character c2 in a string, the result can be built in a character array
because its length is known. This is 50 percent faster than example 85 which uses a string buffer.

static String replaceCharChar(String s, char cl, char c2) {

 char[] res = new char[s.length()];
 for (int i=0; i<s.length(); i++)
 if (s.charAt(i) == cl)
 res [i] = c2;
 else
 res[i] = s.charAt(i);
 return new String(res); // A string containing the characters of res
}

8.3 Multidimensional Arrays
The types of multidimensional arrays are written t[] [], t[] [] [], and so on. A rectangular n-
dimensional array of size ℓ1 × ℓ2 × ... × ℓn is created (allocated) using the array creation expression

 new t[ℓ1] [ℓ2] ... [ℓn]
A multidimensional array a of type t[] [] is in fact a one-dimensional array of arrays; its component
arrays have type t[]. Hence a multidimensional array need not be rectangular, and one need not
create all the dimensions at once. To create only the first k dimensions of size ℓ1 × ℓ2 × ... × ℓk of an n-
dimensional array, leave the (n – k) last brackets empty:

 new t[ℓ1] [ℓ2] ... [ℓk] [] ... []
To access an element of an n-dimensional array a, use n index expressions: a[i1] [i2] ... [in].

 21

8.4 The Utility Class Arrays
Class Arrays from package java.util provides static utility methods to compare, fill, sort, and search
arrays, and to create a collection (chapter 20) from an array. The binarySearch, equals, fill, and
sort methods are overloaded also on arrays of type byte, char, short, int, long, float, double,
Object; and equals and fill also on type boolean. The Object versions of binarySearch and
sort use the compareTo method of the array elements, unless an explicit Comparator object (section
20.8) is given.

 static List asList (Object[] a) returns a java.util.List view of the elements
of a, in index order. The resulting list implements RandomAccess (section 20.2 and
example 94).

 static int binarySearch (byte[] a, byte k) returns an index i>=0 for which
a[i] ==k, if any; otherwise returns i<0 such that (-i-1) would be the proper position
for k. The array a must be sorted, as by sort(a), or else the result is undefined.

 static int binarySearch(Object[] a, Object k) works like the preceding
method, but compares array elements using their compareTo method (section 20.8 and
example 94).

 static int binarySearch (Object[] a, Object k, Comparator cmp) works
like the preceding method, but compares array elements using the method cmp.compare
(section 20.8).

 static boolean equals (byte[] a1, byte[] a2) returns true if a1 and a2 have
the same length and contain the same elements, in the same order.

 static boolean equals (Object[] a1, Object[] a2) works like the preceding
method, but compares array elements using their equals method (section 20.8).

 static void fill (byte[] a, byte v) sets all elements of a to v.
 static void fill (byte[] a, int from, int to, byte v) sets

a[from..(to-1)] to v.
 static void sort (byte[] a) sorts the array a using quicksort.
 static void sort (Object[] a) sorts the array a using mergesort, comparing array

elements using their compareTo method (section 20.8).
 static void sort (Object[] a, Comparator cmp) works like the preceding

method, but compares array elements using the method cmp.compare (section 20.8).
 static void sort (byte[] a, int from, int to) sorts a[from..(to-1)].

Example 14: Creating Multidimensional Arrays

Consider this rectangular 3-by-2 array and this two-dimensional "jagged" (lower triangular) array:

0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0
The following program shows two ways (r1, r2) to create the rectangular array, and three ways (t1, t2,
t3) to create the "jagged" array:

double[][] r1 = new double [3] [2];

double[][] r2 = new double [3] [];
for (int i=0; i<3; i++)
 r2[i] = new double[2];

double[][] t1 = new double [3][];
for (int i=0; i<3; i++)
 t1[i] = new double[i+1];
double[][] t2 = { { 0.0 }, { 0.0, 0.0 }, { 0.0, 0.0, 0.0 } };
double[][] t3 = new double[][] { { 0.0 }, { 0.0, 0.0 }, { 0.0, 0.0, 0.0 } };

Example 15: Using Multidimensional Arrays
The genetic material of living organisms is held in DNA, conceptually a string AGCTTTTCA of nucleotides
A, C, G, and T. A triple of nucleotides, such as AGC, is called a codon; a codon may code for an amino

 22

acid. This program counts the frequencies of the 4∙4∙4 = 64 possible codons, using a three-dimensional
array freq. The auxiliary array fromNuc translates from the nucleotide letters (A,C,G,T) to the indexes
(0,1,2,3) used in freq. The array toNuc translates from indexes to nucleotide letters when printing the
frequencies.

static void codonfreq(String s) {

 int[] fromNuc = new int[128];
 for (int i=0; i<fromNuc.length; i++)
 fromNuc[i] = -1;
 fromNuc['a'] = fromNuc['A'] = 0; fromNuc['c'] = fromNuc['C'] = 1;
 fromNuc['g'] = fromNuc['G'] = 2; fromNuc['t'] = fromNuc['T'] = 3;
 int[][][] freq = new int [4][4][4];
 for (int i=0; i+2<s.length(); i+=3) {
 int nuc1 = fromNuc[s.charAt(i)];
 int nuc2 = fromNuc[s.charAt(i+1)];
 int nuc3 = fromNuc[s.charAt(i+2)];
 freq[nuc1][nuc2][nuc3] += 1;
 }
 final char[] toNuc = { 'A', 'C', 'G', 'T' };
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++) {
 for (int k=0; k<4; k++)
 System.out.print(" "+toNuc[i]+toNuc[j]+toNuc[k]+": " + freq[i][j][k]);
 System.out.println();
 }
}

 23

Chapter 9: Classes
9.1 Class Declarations and Class Bodies
A class-declaration of class C has the form

 class-modifiers class C extends-clause implements-clause
 class-body
A declaration of class C introduces a new reference type C. The class-body may contain declarations of
fields, constructors, methods, nested classes, nested interfaces, and initializer blocks. The declarations
in a class may appear in any order:
 {
 field-declarations
 constructor-declarations
 method-declarations
 class-declarations
 interface-declarations
 initializer-blocks
 }
A field, method, nested class, or nested interface is called a member of the class. A member may be
declared static. A nonstatic member is also called an instance member.

The scope of a member is the entire class body, except where shadowed by a variable or parameter or
by a member of a nested class or interface. The scope of a (static) field does not include (static)
initializers preceding its declaration, but the scope of a static field does include all nonstatic initializers.
There can be no two nested classes or interfaces with the same name, and no two fields with the same
name, but a field, a method and a class (or interface) may have the same name.
By static code we mean expressions and statements in static field initializers, static initializer blocks,
and static methods. By nonstatic code we mean expressions and statements in constructors, nonstatic
field initializers, nonstatic initializer blocks, and nonstatic methods. Nonstatic code is executed inside a
current object, which can be referred to as this (section 11.10). Static code cannot refer to nonstatic
members or to this, only to static members.

9.2 Top-Level Classes, Nested Classes, Member Classes, and Local
Classes
A top-level class is a class declared outside any other class or interface declaration. A nested class is a
class declared inside another class or interface. There are two kinds of nested classes: a local class is
declared inside a method or constructor or initializer block; a member class is not. A nonstatic member
class, or a local class in a nonstatic member, is called an inner class, because an object of the inner
class will contain a reference to an object of the enclosing class. See also section 9.11.

9.3 Class Modifiers
For a top-level class, the class-modifiers may be a list of public and at most one of abstract and
final. For a member class, the class-modifiers may be a list of static, and at most one of
abstract and final, and at most one of private, protected, and public. For a local class, the
class-modifiers may be at most one of abstract and final.

Example 16: Class Declaration
The Point class is declared to have two nonstatic fields x and y, one constructor, and two nonstatic
methods. It is used in example 41.

class Point {

 int x, y;

 Point(int x, int y) { this.x = x; this.y = y; }

 24

 void move(int dx, int dy) { x += dx; y += dy; }

 public String toString() { return "(" + x + ", " + y + ")"; }

}

Example 17: Class with Static and Nonstatic Members
The SPoint class declares a static field allpoints and two nonstatic fields x and y. Thus each SPoint
object has its own x and y fields, but all objects share the same allpoints field in the SPoint class.
The constructor inserts the new object (this) into the ArrayList object allpoints (section 20.2). The
nonstatic method getIndex returns the point's index in the array list. The static method getSize returns
the number of SPoints created so far. The static method getPoint returns the i'th SPoint in the array
list. Class SPoint is used in example 48.

class SPoint {

 static ArrayList allpoints = new ArrayList();

 int x, y;

 SPoint(int x, int y) { allpoints.add(this); this.x = x; this.y = y; }

 void move(int dx, int dy) { x += dx; y += dy; }

 public String toString() { return "(" + x + ","+ y + ")"; }

 int getIndex() { return allpoints.indexOf(this); }

 static int getSize() { { return allpoints.size(); }

 static SPoint getPoint(int i) { return (SPoint)allpoints.get(i); }

}

Example 18: Top-Level, Member, and Local Classes
See also examples 31 and 36.

class TLC { // Top-level class TLC

 static class SMC { ... } // Static member class

 class NMC { ... } // Nonstatic member (inner) class

 void nm() { // Nonstatic method in TLC

 class NLC { ... } // Local (inner) class in method

 }

 25

 static void sm() { // Static method in TLC

 class SLC { ... } // Local class in method

 }

}

9.4 The Class Modifiers public, final, abstract
If a top-level class C is declared public, then it is accessible outside its package (chapter 17).
If a class C is declared final, one cannot declare subclasses of C and hence cannot override any
methods declared in C. This is useful for preventing rogue subclasses from violating data representation
invariants.
If a class C is declared abstract, then it cannot be instantiated, but nonabstract subclasses of C can
be instantiated. An abstract class may declare constructors and have initializers, to be executed when
instantiating nonabstract subclasses. An abstract class may declare abstract and nonabstract methods;
a nonabstract class cannot declare abstract methods. A class cannot be both abstract and final,
because no objects could be created of that class.

9.5 Subclasses, Superclasses, Class Hierarchy, Inheritance, and
Overriding
A class C may be declared as a subclass of class B by an extends-clause of the form
 class C extends B { ... }
In this case, C is a subclass and hence a subtype (section 5.4) of B and its supertypes. Class C inherits
all methods and fields (even private ones, although they are not accessible in class C), but not the
constructors, from B.
Class B is called the immediate superclass of C. A class can have at most one immediate superclass.
The predefined class Object is a superclass of all other classes; class Object has no superclass. Hence
the classes form a class hierarchy in which every class is a descendant of its immediate superclass,
except Object, which is at the top.
To perform some initialization, a constructor in subclass C may, as its very first action, explicitly call a
constructor in the immediate superclass B, using this syntax:

 super(actual-list);
A superclass constructor call super(...) may appear only at the very beginning of a constructor.
If a constructor C(...) in subclass C does not explicitly call super(...) as its first action, then it
implicitly calls the argumentless default constructor B() in superclass B as its first action, as if by
super(). In this case, B must have a nonprivate argumentless constructor B(). Conversely, if there is
no argumentless constructor B() in B, then C(...) in C must use super(...) to explicitly call some
other constructor in B.
The declaration of C may override (redeclare) any nonfinal method m inherited from B by declaring a
new method m with the exact same signature. An overridden B-method m can be referred to as super.m
inside C's constructors, nonstatic methods, and nonstatic initializers.
The overriding method m in C

 must be at least as accessible (section 9.7) as the overridden method in B;
 must have the same signature and return type as the overridden method in B;
 must be static if and only if the overridden method in B is static;
 either has no throws-clause, or has a throws-clause that covers no more exception classes

than the throws-clause (if any) of the overridden method in B.
However, the declaration of a class C cannot redeclare a field f inherited from B, but only declare an
additional field of the same name (section 9.6). The overridden B-field can be referred to as super.f
inside C's constructors, nonstatic methods, and nonstatic initializers.

Example 19: Abstract Classes, Subclasses, and Overriding
The abstract class Vessel models the notion of a vessel (for holding liquids): it has a field contents
representing its actual contents, an abstract method capacity for computing its maximal capacity, and a
method for filling in more, but only up to its capacity (the excess will be lost). The abstract class has

 26

subclasses Tank (a rectangular vessel), Cube (a cubic vessel, subclass of Tank), and Barrel (a cylindrical
vessel).
The subclasses implement the capacity method, they inherit the contents field and the fill method
from the superclass, and they override the toString method (inherited from class Object) to print each
vessel object appropriately.

abstract class Vessel {

 double contents;

 abstract double capacity();

 void fill(double amount) { contents = Math.min(contents + amount, capacity()); }

}

class Tank extends Vessel {

 double length, width, height;

 Tank(double length, double width, double height)

 { this.length = length; this.width = width; this.height = height; }

 double capacity() { return length * width * height; }

 public String toString()

 { return "tank (" + length + ", " + width + ", " + height + ")"; }

}

class Cube extends Tank {

 Cube(double side) { super(side, side, side);

 public String toString() { return "cube (" + length + ")"; }

}

class Barrel extends Vessel {

 double radius, height;

 Barrel(double radius, double height) { this.radius = radius; this.height = height;

 double capacity() { return height * Math.PI * radius * radius; }

 public String toString() { return "barrel (" + radius + ", " + height + ")"; }

}

Example 20: Using the Vessel Hierarchy from Example 19
The call vs[i].capacity() is legal only because the method capacity, although abstract, is declared
in class Vessel (example 19):

public static void main(String[] args) {

 Vessel vl = new Barrel(3, 10);

 27

 Vessel v2 = new Tank(10, 20, 12);

 Vessel v3 = new Cube(4);

 Vessel[] vs = { vl, v2, v3 };

 v1.fill(90); v1.fill(10); v2.fill(100); v3.fill(80);

 double sum = 0;
 for (int i=0; i<vs.length; i++)
 sum += vs [i] .capacity();
 System.out.println("Total capacity is " + sum);
 for (int i=0; i<vs.length; i++)
 System.out.println("vessel number " + i + ": " + vs[i]);
}

9.6 Field Declarations in Classes
The purpose of a field is to hold a value inside an object (if nonstatic) or a class (if static). A field must
be declared in a class declaration. A field-declaration has one of the forms
 field-modifiers type fieldnamel, fieldname2,...;
 field-modifiers type fieldnamel = initializer1,...;
The field-modifiers may be a list of the modifiers static, final, transient (section 21.11) and
volatile and at most one of the access modifiers private, protected, and public (section 9.7).
If a field f in class C is declared static, then f is associated with the class C and can be referred to
independently of any objects of class C. The field can be referred to as C.f or o.f, where o is an
expression of type C, or, in the declaration of C, as f. If a field f in class C is not declared static, then
f is associated with an object (also called instance) of class C, and every instance has its own instance
of the field. The field can be referred to as o.f, where o is an expression of type C, or, in nonstatic code
in the declaration of C, as f.
If a field f in class C is declared final, the field cannot be modified after initialization. If f has
reference type and points to an object or array, the object's fields or the array's elements may still be
modified. The initialization must happen either in the declaration or in an initializer block (section 9.10),
or (if the field is nonstatic) precisely once in every constructor in class C.
A field initializer may be an expression or an array initializer (section 8.2). A static field initializer can
refer only to static members of C and can throw no checked exceptions (chapter 14).
A field is given a default initial value depending on its type t. If t is a primitive type, the field is initialized
to 0 (when t is byte, char, short, int, or long) or 0.0 (when t is float or double) or false
(when t is boolean). If t is a reference type, the field is initialized to null.
Static fields are initialized when the class is loaded. First all static fields are given their default initial
values, then the static initializer blocks (section 9.10) and static field initializers are executed, in order of
appearance in the class declaration.
Nonstatic fields are initialized when a constructor is called, at which time all static fields have been
initialized already (section 9.9).
If a class C declares a nonstatic field f, and C is a subclass of a class B that has a nonstatic field f, then
every object of class C has two fields, both called f: one is the B-field f declared in the superclass B,
and one is the C-field f declared in C itself. What field is referred to by a field access o.f is determined
by the type of o (section 11.9).

9.7 The Member Access Modifiers private, protected, public
A member (field or method or nested class or interface) is always accessible in the class in which it is
declared, except where shadowed by a variable or parameter or field (of a nested class). The access
modifiers private, protected, and public determine where else the member is accessible.
If a member is declared private in top-level class C or a nested class within C, it is accessible in C and
its nested classes, but not in their subclasses outside C nor in other classes. If a member in class C is
declared protected, it is accessible in all classes in the same package (chapter 17) as C and in
subclasses of C, but not in non-subclasses in other packages. If a member in class C is not declared
private, protected, or public, it has package access, or default access, and is accessible only in
classes within the same package as C, not in classes in other packages. If a member in class C is

 28

declared public, it is accessible in all classes, including classes in other packages. Thus, in order of
increasing accessibility, we have private access, package (or default) access, protected access,
and public access.

Example 21: Field Declarations
The SPoint class (example 17) declares a static field allpoints and two nonstatic fields x and y.
Example 30 declares a static field ps of array type double[]. Its field initializer allocates a six-element
array and binds it to ps, and then the initializer block (section 9.10) stores some numbers into the array.
The Barrel class in example 80 declares two nonstatic fields radius and height. The fields are final and
therefore must be initialized (which is done in the constructor).

Example 22: Several Fields with the Same Name
An object of class C here has two nonstatic fields called vf, one declared in the superclass B and one
declared in C itself. Similarly, an object of class D has three nonstatic fields called vf. Class B and class C
each have a static field called sf. Class D does not declare a static field sf, so in class D the name sf
refers to the static field sf in the superclass C. Examples 35 and 45 use these classes.

class B // One nonstatic field vf, one static sf

{ int vf; static int sf; B(int i) { vf = i; sf = i+1; } }

class C extends B // Two nonstatic fields vf, one static sf

{ int vf; static int sf; C(int i) { super(i+20); vf = i; sf = i+2; } }

class D extends C // Three nonstatic fields vf

{ int vf; D(int i) { super(i+40); vf = i; sf = i+4; } }

Example 23: Member Access Modifiers
The vessel hierarchy in example 19 is unsatisfactory because everybody can read and modify the fields of
a vessel object. Example 80 presents an improved version of the hierarchy in which (1) the contents
field in Vessel is made private to prevent modification, (2) a new public method getContents permits
reading the field, and (3) the fields of Tank and Barrel are declared protected to permit access from
subclasses declared in other packages.
Since the field contents in Vessel is private, it is not accessible in the subclasses (Tank, Barrel, ...), but
the subclasses still inherit the field. Thus every vessel subclass object has room for storing the field but
can change and access it only by using the methods fill and getContents inherited from the abstract
superclass.

Example 24: Private Member Accessibility

A private member is accessible everywhere inside the enclosing top-level class (and only there).

class Access {

 private static int x;

 static class SI {

 private static int y = x; // Access private x from enclosing class

 }

 static void m() {

 29

 int z = SI.y; // Access private y from nested class

 }

}

9.8 Method Declarations
A method must be declared inside a class. A method-declaration declaring method m has the form

 method-modifiers return-type m (formal-list) throws-clause
 method-body
The formal-list is a comma-separated list of zero or more formal parameter declarations, of form
 parameter-modifier type parameter-name
The parameter-modifier may be final, meaning that the parameter cannot be modified inside the
method, or absent. The type is any type. The parameter-name is any name, but the parameter names
must be distinct. A formal parameter is an initialized variable; its scope is the method-body.
The method name m together with the list t1,..., tn of declared parameter types in the formal-list
determine the method signature m(t1,..., tn). The return-type is not part of the method signature.
A class may declare more than one method with the same method-name, provided they have different
method signatures. This is called overloading of the method-name.
The method-body is a block-statement (section 12.2) and thus may contain statements as well as
declarations of variables and local classes. In particular, the method-body may contain return
statements. If the return-type is void, the method does not return a value, and no return statement in
the method-body can have an expression argument. If the return-type is not void but a type, the
method must return a value: it must not be possible for execution to reach the end of method-body
without executing a return statement. Moreover, every return statement must have an expression
argument whose type is a subtype of the return-type.
The method-modifiers may be abstract or a list of static, final, synchronized (section 15.2),
and at most one of the access modifiers private, protected, and public (section 9.7).
If a method m in class C is declared static, then m is associated with the class C; it can be referred to
without any object. The method may be called as C.m(...) or as o.m(...), where o is an expression
whose type is a subtype of C, or, inside methods, constructors, field initializers, and initializer blocks in
C, simply as m(...). A static method can refer only to static fields and methods of the class.
If a method m in class C is not declared static, then m is associated with an object (instance) of class
C. Outside the class, the method must be called as o.m(...), where o is an object of class C or a
subclass, or, inside nonstatic methods, nonstatic field initializers, and nonstatic initializer blocks in C,
simply as m(...). A nonstatic method can refer to all fields and methods of class C, whether they are
static or not.
If a method m in class C is declared final, it cannot be overridden (redefined) in subclasses.
If a method m in class C is declared abstract, class C must itself be abstract (and so cannot be
instantiated). An abstract method cannot be static, final, or synchronized, and its declaration
has this form, without a method body:
 abstract method-modifiers return-type m(formal-list) throws-clause;
The throws-clause of a method or constructor has the form
 throws E1, E2, ...
where El, E2,... are the names of exception types covering all the checked exceptions that the method
or constructor may throw. If execution may throw exception e, then e is either an unchecked exception
(chapter 14) or a checked exception whose class is a subtype of one of El, E2,....

Example 25: Method Name Overloading and Signatures
This class declares four overloaded methods m whose signatures (section 5.5) are m(int) and
m(boolean) and m(int, double) and m(double, double). Some of the overloaded methods are
static, others nonstatic. The overloaded methods may have different return types, as shown here.
Example 50 explains the method calls.
It would be legal to declare an additional method with signature m(double, int), but then the method
call m(10, 20) would become ambiguous and illegal. Namely, there is no way to determine whether to
call m(int, double) or m(double, int).

class Overloading {

 30

 double m(int i) { return i; }

 boolean m(boolean b) { return !b; }

 static double m(int x, double y) { return x + y + 1; }

 static double m(double x, double y) { return x + y + 3; }

 public static void main(String[] args) {

 System.out.println(m(10, 20)); // Prints: 31.0

 System.out.println(m(10, 20.0)); // Prints: 31.0

 System.out.println(m(10.0, 20)); // Prints: 33.0

 System.out.println(m(10.0, 20.0)); // Prints: 33.0

 }

}

Example 26: Method Overriding
In the vessel hierarchy (example 19), the classes Tank and Barrel override the method toString
inherited from the universal superclass Object, and class Cube overrides toString inherited from class
Tank.

Example 27: Method Overriding and Overloading
The class C1 declares the overloaded method ml with signatures ml(double) and ml(int), and the
method m2 with signature m2(int). The subclass C2 hides C1's method ml(double) and overloads m2
by declaring an additional variant. Calls to these methods are shown in example 51.

class Cl {

 static void ml(double d) { System.out.println("lld"); }

 void ml(int i) { System.out.println("lli"); }

 void m2(int i) { System.out.println("12i"); }

}

class C2 extends C1 {

 static void ml(double d) { System.out.println("21d"); }

 void ml(int i) { System.out.println("21i"); }

 void m2(double d) { System.out.println("22d"); }

}

 31

9.9 Constructor Declarations
The purpose of a constructor in class C is to initialize new objects (instances) of the class. A
constructor-declaration in class C has the form

 constructor-modifiers C(formal-list) throws-clause
 constructor-body
The constructor-modifiers may be a list of at most one of private, protected, and public (section
9.7); a constructor cannot be abstract, final, or static. A constructor has no return type.
Constructors may be overloaded in the same way as methods: the constructor signature (a list of the
parameter types in formal-list) is used to distinguish constructors in the same class. A constructor may
call another overloaded constructor in the same class using the syntax:
 this(actual-list)
but a constructor may not call itself, directly or indirectly. A call this(...) to another constructor, if
present, must be the very first action of a constructor, preceding any declaration or statement.
The constructor-body is a block-statement (section 12.2) and so may contain statements as well as
declarations of variables and local classes. The constructor-body may contain return statements, but
no return statement can take an expression argument.
A class that does not explicitly declare a constructor implicitly declares a public, argumentless default
constructor whose only (implicit) action is to call the superclass constructor (section 9.5):
 public C() { super(); }
The throws-clause of the constructor specifies the checked exceptions that may be thrown by the
constructor, in the same manner as for methods (section 9.8).
When new creates a new object in memory (section 11.7), the object's nonstatic fields are given default
initial values according to their type. Then a constructor is called to further initialize the object, and the
following happens: First, some superclass constructor is called (explicitly or implicitly, see examples 29
and 52) exactly once, then the nonstatic field initializers and nonstatic initializer blocks are executed
once in order of appearance in the class declaration, and finally the constructor body (except the explicit
superclass constructor call, if any) is executed. The call to a superclass constructor will cause a call to a
constructor in its superclass, and so on, until reaching Object().

9.10 Initializer Blocks, Field Initializers, and Initializers
In addition to field initializers (section 9.6), a class may contain initializer-blocks. Initializer blocks may
be used when field initializers or constructors do not suffice. We use the term initializer to mean field
initializers as well as initializer blocks. A static initializer block has the form
 static block-statement
The static initializer blocks and field initializers of static fields are executed, in order of appearance in
the class declaration, when the class is loaded. A nonstatic initializer block is simply a free-standing
block-statement. Nonstatic initializer blocks are executed after the constructor when an object is created
(section 9.9).
An initializer is not allowed to throw a checked exception (chapter 14). If execution of a static initializer
throws an (unchecked) exception during class loading, that exception is discarded and the exception
ExceptionInInitializerError is thrown instead.

Example 28: Constructor Overloading; Calling Another Constructor
We add a new constructor to the Point class (example 16), thus overloading its constructors. The old
constructor has signature Point(int, int) and the new one Point(Point). The new constructor
makes a copy of the point p by calling the old constructor using the syntax this(p.x, p.y).

class Point {

 int x, y;

 Point(int x, int y) // Overloaded constructor

 { this.x = x; this.y = y; }

 32

 Point(Point p) // Overloaded constructor

 { this(p.x, p.y); } // Calls the first constructor

 void move(int dx, int dy)

 { x += dx; y += dy; }

 public String toString()

 { return "(" + x + ", " + y + ")"; }

}

Example 29: Calling a Superclass Constructor
The constructor in the ColoredPoint subclass (example 71) calls its superclass constructor using the
syntax super(x, y).

Example 30: Field Initializers and Initializer Blocks
Here the static field initializer allocates an array and binds it to field ps. The static initializer block fills the
array with an increasing sequence of pseudo-random numbers, then scales them so that the last number
is 1.0 (this is useful for generating rolls of a random loaded die). This cannot be done using the field
initializer alone.
One could delete the two occurrences of static to obtain another example, with a nonstatic field ps, a
nonstatic field initializer, and a nonstatic initializer block. However, it is more common for nonstatic fields to
be initialized by a constructor.

class InitializerExample {

 static double[] ps = new double[6] ;

 static { // Static initializer block

 double sum = 0;
 for (int i=0; i<ps.length; i++) // Fill with increasing random numbers
 ps[i] = sum += Math.random();
 for (int i=0; i<ps.length; i++) // Scale so last ps element is 1.0
 ps[i] /= sum;
 }
 ...
}

 33

9.11 Nested Classes, Member Classes, Local Classes, and Inner
Classes
A nonstatic nested class, that is, a nonstatic member class NMC or a local class NLC in a nonstatic
member, is called an inner class. An object of an inner class alway-s contains a reference to an object
of the enclosing class C, called the enclosing object. That object can be referred to as C.this (example
36), so a nonstatic member x of the enclosing object can be referred to as C.this.x.

An inner class or local class cannot have static members. More precisely, all static fields must also be
final, and methods and nested classes in an inner class or local class must be nonstatic.
A static nested class, that is, a static member class SMC or a local class in a static member, has no
enclosing object and cannot refer to nonstatic members of the enclosing class C. This is the standard
restriction on static members of a class (section 9.1). A static member class may itself have static as
well as nonstatic members.

If a local class refers to variables or formal parameters in the enclosing method or constructor or
initializer, those variables or parameters must be final.

9.12 Anonymous Classes
An anonymous class is a special kind of local class; hence it must be declared inside a method or
constructor or initializer. An anonymous class can be declared, and exactly one instance created, using
the special expression syntax
 new C(actual-list)
 class-body
where C is a class name. This creates an anonymous subclass of class C, with the given class-body
(section 9.1). Moreover, it creates an object of that anonymous subclass and calls the appropriate C
constructor with the arguments in actual-list, as if by super(actual-list). An anonymous class cannot
declare its own constructors.

When I is an interface name, the similar expression syntax
 new I()
 class-body
creates an anonymous local class, with the given class-body (section 9.1), that must implement the
interface I, and also creates an object of that anonymous class. Note that the parameter list after I
must be empty.

Example 31: Member Classes and Local Classes

class TLC { // Top-level class

 static int sf;

 int nf;

 static class SMC { // Static member class

 static int ssf = sf + TLC.sf; // can have static members

 int snf = sf + TLC.sf; // cannot use nonstatic TLC members

 }

 class NMC { // Nonstatic member (inner) class

 int nnf1 = sf + nf; // can use nonstatic TLC members

 int nnf2 = TLC.sf + TLC.this.nf; // cannot have static members

 }

 34

 void nm() { // Nonstatic method in TLC

 class NLC { // Local (inner) class in method

 int m(int p) { return sf+nf+p; } // can use nonstatic TLC members

} } }

Example 32: An Iterator as a Local Class
Method suffixes returns an object of the local class SuffixIterator, which implements the Iterator
interface (section 20.7) to enumerate the nonempty suffixes of the string s:

class LocalInnerClassExample {

 public static void main(String[] args) {

 Iterator seq = suffixes(args[0]);

 while (seq.hasNext())

 System.out.println(seq.next());

 }

 static Iterator suffixes(final String s) {

 class SuffixIterator implements Iterator {

 int startindex=0;
 public boolean hasNext() { return startindex < s.length (); }
 public Object next() { return s.substring(startindex++); }
 public void remove() { throw new UnsupportedOperationException(); }
 }
 return new SuffixIterator();
 }
}

Example 33: An Iterator as an Anonymous Local Class
Alternatively, we may use an anonymous local class in method suffixes:

static Iterator suffixes (final String s) {

 return

 new Iterator () {

 int startindex=0;
 public boolean hasNext() { return startindex < s.length (); }
 public Object next() { return s.substring (startindex+ +); }
 public void remove() { throw new UnsupportedOperationException(); }
 };
}

 35

Chapter 10: Classes and Objects in the Computer
10.1 What Is a Class?
Conceptually, a class represents a concept, a template for creating instances (objects). In the computer,
a class is a chunk of memory, set aside once, when the class is loaded at run-time. A class has the
following parts:

 The name of the class.
 Room for all the static members of the class.

A class can be drawn as a box. The header class SPoint gives the class name, and the box itself
contains the static members of the class:

10.2 What Is an Object?
Conceptually, an object is an instance of a concept (a class). In the computer, an object is a chunk of
memory, set aside by an object creation expression new C(...); see section 11.7. Every evaluation of
an object creation expression new C(...) creates a distinct object, with its own chunk of computer
memory. An object has the following parts:

 A reference to the class C of the object; this is the class C used when creating the object.
 Room for all the nonstatic members of the object.

An object can be drawn as a box. The header : SPoint gives the object's class (underlined), and the
remainder of the box contains the nonstatic members of the object:

10.3 Inner Objects
When NIC is an inner class (a nonstatic member class, or a local class in nonstatic code) in a class C,
then an object of class NIC is an inner object. In addition to the object's class and the nonstatic fields,
an inner object will always contain a reference to an enclosing object, which is an object of the
innermost enclosing class C. The enclosing object reference can be written C.this in Java programs.

An object of a static nested class, on the other hand, contains no reference to an enclosing object.
Example 34: Objects and Classes
This is the computer memory at the end of the main method in example 48, using the SPoint class from
example 17. The variables p and s refer to the same object, variable q is null, and variable r refers to
the rightmost object. No variable refers to the middle object; it will be removed by the garbage collector.

Example 35: Objects With Multiple Fields of the Same Name
This is the computer memory at the end of the main method in example 45, using the classes from
example 22. The classes B and C each have a single static field sf; class D has none. The two objects of

 36

class C each have two nonstatic fields vf (called B/vf and C/vf below), and the class D object has three
nonstatic fields vf.

Example 36: Inner Objects
Example 31 declares a class TLC with nonstatic member (inner) class NMC and static member class SMC.
If we create a TLC-object, two NMC-objects, and an SMC object,

TLC oo = new TLC();

TLC.NMC iolio1 = oo.new NMC(), io2 = oo.new NMC();

TLC.SMC sio = new TLC.SMC();

then the computer memory will contain these objects (the classes are not shown)

 37

Chapter 11: Expressions
Overview
An expression is evaluated to obtain a value (such as 117). In addition, evaluation of an expression
may change the computer's state: the values of variables, fields, and array elements, the contents of
files, and so on. More precisely, evaluation of an expression

 terminates normally, producing a value; or
 terminates abruptly by throwing an exception; or
 does not terminate at all (for instance, because it calls a method that does not terminate).

Expressions are built from literals (anonymous constants), variables, fields, operators, method calls,
array accesses, conditional expressions, the new operator, and so on; see the table of expression forms
on the facing page.
One must distinguish the compile-time type of an expression from the run-time class of an object. An
expression has a type (chapter 5) inferred by the compiler. When this is a reference type t, and the
value of the expression is an object o, then the class of object o will be a subtype of t but not
necessarily equal to t. For instance, the expression (Number) (new Integer (2)) has type
Number, but its value is an object whose class is Integer, a subclass of Number.

11.1 Table of Expression Forms
The table of expression forms shows the form, meaning, associativity, argument (operand) types, and
result types for expressions. The expressions are grouped according to precedence, as indicated by the
horizontal rules, from high precedence to low precedence. Higher-precedence forms are evaluated
before lower-precedence forms. Parentheses may be used to emphasize or force a particular order of
evaluation.
When an operator (such as +) is left-associative, a sequence el + e2 + e3 of operators is evaluated
as if parenthesized (el + e2) + e3. When an operator (such as =) is right-associative, a sequence
el = e2 = e3 of operators is evaluated as if parenthesized el = (e2 = e3).
In the argument type and result type columns of the table, integer stands for any of char, byte, short,
int, or long; and numeric stands for integer or float or double.
For an operator with one integer or numeric operand, the promotion type is double if the operand has
type double; it is float if the operand has type float; it is long if the operand has type long;
otherwise it is int (that is, if the operand has type byte, char, short, or int).
For an operator with two integer or numeric operands (except the shift operators; section 11.4), the
promotion type is double if any operand has type double; otherwise, it is float if any operand has
type float; otherwise, it is long if any operand has type long; otherwise it is int.
Before the operation is performed, the operands are promoted, that is, converted to the promotion type
by a widening type conversion (section 11.12.1).
If the result type is given as numeric also, it equals the promotion type. For example, 10 / 3 has type
int, whereas 10 / 3.0 has type double, and c + (byte)1 has type int when c has type char.
Table of Expression Forms

Expression Meaning Associativity Argument
types

Result
type

a[...] array access
(section 8.1)

 t[],
integer

t

o.f field access
(section 11.9)

 object type of f

o.m(...) method call
(section 11.11)

 object

x++ postincrement numeric numeric
x-- postdecrement numeric numeric
++x preincrement numeric numeric
--x predecrement numeric numeric

 38

Table of Expression Forms

Expression Meaning Associativity Argument
types

Result
type

-x negation
(minus sign)

right numeric numeric

~e bitwise
complement

right integer int/long

!e logical
negation

right boolean boolean

new
t[...]

array creation
(section 8.1)

 type t[]

new C
(...)

object creation
(section 11.7)

 class C

(t) e type cast
(section 11.12)

 type, any t

e1 * e2 multiplication left numeric numeric
e1 / e2 division left numeric numeric
e1 % e2 remainder left numeric numeric
e1 + e2 addition left numeric numeric
e1 + e2 string

concatenation
left String, any String

e1 + e2 string
concatenation

left any, String String

e1 - e2 subtraction left numeric numeric

e1 << e2 left shift
(section 11.4) left integer int/long

e1 >> e2 signed right
shift

left integer int/long

e1 >>>
e2

unsigned right
shift

left integer int/long

e1 < e2 less than none numeric boolean

e1 <= e2 less than or
equal to

none numeric boolean

e1 >= e2 greater than or
equal to

none numeric boolean

el > e2 greater than none numeric boolean
e
instanceo
f t

instance test
(section 11.8) none any,

reference
type

boolean

e1 == e2 equal left compatible boolean
e1 != e2 not equal left compatible boolean

e1 & e2 bitwise and left integer int/long

e1 & e2 logical strict
and

left boolean boolean

e1 ^ e2 bitwise
exclusive-or

left integer int/long

 39

Table of Expression Forms

Expression Meaning Associativity Argument
types

Result
type

el ^ e2 logical strict
exclusive-or

left boolean boolean

e1 | e2 bitwise or left integer int/long

e1 | e2 logical strict or left boolean boolean

e1 && e2 logical and
(section 11.3) left boolean boolean

e1 || e2 logical or
(section 11.3) left boolean boolean

e1 ? e2 :
e3

conditional
(section 11.6) right boolean,

any, any
any

x = e assignment
(section 11.5) right e subtype

of x
type of x

x += e Compound
assignment

right compatible type of x

11.2 Arithmetic Operators
The value of the postincrement expression x++ is that of x, and its effect is to increment x by 1; and
similarly for postdecrement x--. The value of the preincrement expression ++x is that of x+1, and its
effect is to increment x by 1; and similarly for predecrement --x.
Integer division el/e2 truncates, that is, rounds toward zero, so 10/3 is 3, and (-10)/3 is -3. The
integer remainder x%y equals x-(x/y)*y when y is nonzero; it has the same sign as x. Integer
division or remainder by zero throws the exception ArithmeticException. Integer overflow does not throw
an exception but wraps around. Thus, in the int type, the expression 2147483647+1 evaluates to -
2147483648, and the expression -2147483648-1 evaluates to 2147483647.
The floating-point remainder x%y roughly equals x- (((int) (x/y))*y when y is nonzero. Floating-
point division by zero and floating-point overflow do not throw exceptions but produce special IEEE754
values (of type float or double) such as Infinity or NaN ("not a number").

11.3 Logical Operators
The operators == and ! = require the operand types to be compatible: one must be a subtype of the
other. Two values of primitive type are equal (by = =) if they represent the same value after conversion
to their common supertype. For instance, 10 and 10.0 are equal. Two values of reference type are equal
(by ==) if both are null, or both are references to the same object or array, created by the same
execution of the new-operator. Hence do not use == or ! = to compare strings: two strings s1 and s2
may contain the same sequence of characters and therefore be equal by s1.equals (s2), yet be
distinct objects and therefore unequal by s1==s2 (example 5).
The logical operators && and || perform shortcut evaluation: if e1 evaluates to true in el&&e2, then
e2 is evaluated to obtain the value of the expression; otherwise e2 is ignored and the value of the
expression is false. Conversely, if e1 evaluates to false in e1 || e2, then e2 is evaluated to obtain
the value of the expression; otherwise e2 is ignored and the value of the expression is true. By
contrast, the operators & (logical strict and) and ^ (logical strict exclusive-or) and | (logical strict or)
always evaluate both operands, regardless of the value of the left-hand operand. Usually the shortcut
operators && and || are preferable.

 40

11.4 Bitwise Operators and Shift Operators
The operators ~ (bitwise complement) and & (bitwise and) and ^ (bitwise exclusive-or) and | (bitwise
or) may be used on operands of integer type. The operators work in parallel on all bits of the 2's
complement representation of the operands. Thus ~n equals (-n) -1 and also equals (-1) ^n.
The shift operators << and >> and >>> shift the bits of the 2's complement representation of the first
argument. The two operands are promoted (section 11.1) separately, and the result type is the
promotion type (int or long) of the first argument. Thus the shift operation is always performed on a
32-bit (int) or a 64-bit (long) value. In the former case, the length of the shift is between 0 and 31 as
determined by the five least significant bits of the second argument; in the latter case, it is between 0
and 63 as determined by the six least significant bits of the second argument.
The left shift n<<s equals n*2*2* ... *2 where there are s multiplications. The signed right shift
n>>s of a non-negative n equals n/2/2/.../2 where there are s divisions; the signed right shift of a
negative n equals ~((~n)>>s). The unsigned right shift n>>>s of a non-negative n equals n>>s;
the signed right shift of a negative n equals (n>>s) + (2<<~s) if n has type int, and (n>>s) +
(2L<<~s) if it has type long, where 2L is the long constant with value 2. See example 68 for clever
and intricate use of bitwise operators—good style on a tiny embedded processor, but not in general.

Example 37: Arithmetic Operators

public static void main(String[] args) {

 int max = 2147483647;

 int min = -2147483648;

 println(max+1) // Prints: -2147483648

 println(min-1) // Prints: 2147483647

 println(-min); // Prints: -2147483648

 print(10/3); println(10/(-3)); // Prints: 3 -3

 print((-10)/3); println((-10)/(-3)) ; // Prints: -3 3

 print(10%3); println(10%(-3)); // Prints: 1 1

 print((-10)%3); println((-10)%(-3)) ; // Prints: -1 -1

}

static void print(int i) { System.out.print(i + " "); }

static void println(int i) { System.out.println(i + " "); }

Example 38: Logical Operators
Because of shortcut evaluation of &&, this expression from example 12 does not evaluate the array
access days[mth-1] unless 1 ≤ mth ≤ 12, so the index is never out of bounds:
(mth >= 1) && (mth <= 12) && (day >= 1) && (day <= days[mth-1])
This method returns true if y is a leap year, namely, if y is a multiple of 4 but not of 100, or is a multiple
of 400:

static boolean leapyear(int y)
{ return y % 4 == 0 && y % 100 != 0 || y % 400 ==0; }

Example 39: Bitwise Operators and Shift Operators

 41

class Bitwise {

 public static void main(String[] args) throws Exception {

 int a = 0x3; // Bit pattern 0011

 int b = 0x5; // Bit pattern 0101

 println4(a); // Prints: 0011

 println4(b); // Prints: 0101

 println4(~a); // Prints: 1100

 println4(~b); // Prints: 1010
 println4(a & b); // Prints: 0001
 println4(a ^ b); // Prints: 0110
 println4(a | b); // Prints: 0111
 }
 static void println4(int n) {
 for (int i=3; i>=0; i--)
 System.out.print(n >> i & 1);
 System.out.println();
 }
}

11.5 Assignment Expressions
In the assignment expression x = e, the type of e must be a subtype of the type of x. The type of the
expression is the same as the type of x. The assignment is executed by evaluating expression x and
then e, and storing e's value in variable x, after a widening conversion (section 11.12) if necessary.
When e is a compile-time constant of type byte, char, short, or int, and x has type byte, char, or
short, a narrowing conversion is done automatically, provided the value of e is within the range
representable in x (section 5.1). The value of the expression x = e is that of x after the assignment.
The assignment operator is right-associative, so the multiple assignment x = y = e has the same
meaning as x = (y = e), that is, evaluate the expression e, assign its value to y, and then to x.
When e has reference type (object type or array type), only a reference to the object or array is stored in
x. Thus the assignment x = e does not copy the object or array (example 41).
When x and e have the same type, the compound assignment x += e is equivalent to x = x + e;
however, x is evaluated only once, so in a[i++] += e the variable i is incremented only once. When
the type of x is t, different from the type of e, then x += e is equivalent to x = (t) (x + e), in
which the intermediate result (x + e) is converted to type t (section 11.12); again x is evaluated only
once. The other compound assignment operators -=, *=, and so on, are similar.
Since assignment associates to the right, and the value of sum += e is that of sum after the
assignment, one can write ps[i] = sum += e to first increment sum by e and then store the result in
ps[i] (example 30).

11.6 Conditional Expressions
The conditional expression e1 ? e2 : e3 is legal if e1 has type boolean, and e2 and e3 both have
numeric types, or both have type boolean, or both have compatible reference types. The conditional
expression is evaluated by first evaluating el. If e1 evaluates to true, then e2 is evaluated (and not
e3); otherwise e3 is evaluated. The resulting value is the value of the conditional expression.

 42

11.7 Object Creation Expressions
The object creation expression
 new C(actual-list)
creates a new object of class C and then calls that constructor in class C whose signature matches the
arguments in actual-list. The actual-list is evaluated from left to right to obtain a list of argument values.
These argument values are bound to the constructor's parameters, an object of the class is created in
the memory, the nonstatic fields are given default initial values according to their type, a superclass
constructor is called explicitly or implicitly (examples 29 and 52), all nonstatic field initializers and
initializer blocks are executed in order of appearance, and finally the constructor body is executed to
initialize the object. The value of the constructor call expression is the newly created object, whose
class is C.
When C is an inner class in class D, and o evaluates to an object of class D, then one may create a C-
object inside o using the syntax o.new C (actual-list); see example 36.

11.8 Instance Test Expressions
The instance test e instanceof t is evaluated by evaluating e to a value v. If v is not null and is a
reference to an object of class C, where C is a subtype of t, the result is true; otherwise false.

Example 40: Widening, Narrowing, and Truncation in Assignments
The assignment d = 12 performs a widening of 12 from int to double. The assignments b = 123 and
b2 = 123+1 perform an implicit narrowing from int to byte, because the right-hand sides are compile-
time constants. The assignment b2 = b1+1 would be illegal because b1+1 is not a compile-time
constant. The assignment b2 = 123+5 would be illegal because, although 123+5 is a compile-time
constant, its value is not representable as a byte (whose range is —128..127).

double d;

d = 12; // Widening conversion from int to double

byte b1 = 123; // Narrowing conversion from int to byte

byte b2;

b2 = 123 + 1; // Legal: 123+1 is a compile-time constant

b2 = (byte)(b1 + 1); // Legal: (byte)(b1 + 1) has type byte

int x = 0;

x += 1.5; // Equivalent to: x = (int) (x + 1.5); thus adds 1 to x

Example 41: Assignment Does Not Copy Objects
This example uses the Point class from example 16. Assignment (and parameter passing) copies only the
reference, not the object:

Point p1 = new Point(10, 20);

System.out.println("p1 is " + p1); // Prints: p1 is (10, 20)

Point p2 = p1; // p1 and p2 refer to same object

p2.move (8, 8);

System.out.println("p2 is " + p2); // Prints: p2 is (18, 28)

System.out.println("p1 is " + p1); // Prints: p1 is (18, 28)

 43

Example 42: Compound Assignment Operators
Compute the product of all elements of array xs:

static double multiply(double[] xs) {

 double prod = 1.0;
 for (int i=0; i<xs.length; i++)
 prod *= xs[i]; // Equivalent to: prod = prod * xs[i]
 return prod;
}

Example 43: Conditional Expression
Return the absolute value of x (always non-negative):

static double absolute(double x)
{ return (x >= 0 ? x : -x); }

Example 44: Object Creation and Instance Test

Number n1 = new Integer(17);

Number n2 = new Double(3.14);

// The following statements print: false, true, false, true.

System.out.println("n1 is a Double: " + (n1 instanceof Double));

System.out.println("n2 is a Double: " + (n2 instanceof Double));

System.out.println("null is a Double: " + (null instanceof Double));

System.out.println("n2 is a Number: " + (n2 instanceof Number));

11.9 Field Access Expressions
A field access must have one of these three forms:
 f
 C.f
 o.f
where C is a class and o an expression of reference type.
A class may have several fields of the same name f (section 9.6, example 22, and example 45).

Example 45: Field Access
Here we illustrate static and nonstatic field access in the classes B, C, and D from example 22. Note that
the field referred to by an expression of form o.vf or o.sf is determined by the type of expression o, not
the class of the object to which o evaluates.

public static void main (String[] args) {

 C c1 = new C(100); // c1 has type C; object has class C

 B b1 = c1; // b1 has type B; object has class C

 print(C.sf, B.sf); // Prints: 102 121

 print(c1.sf, b1.sf); // Prints: 102 121

 print(c1.vf, b1.vf); // Prints: 100 120

 44

 C c2 = new C(200); // c2 has type C; object has class C

 B b2 = c2; // b2 has type B; object has class C

 print(c2.sf, b2.sf); // Prints: 202 221

 print(c2.vf, b2.vf); // Prints: 200 220

 print(c1.sf, b1.sf); // Prints: 202 221

 print(c1.vf, b1.vf); // Prints: 100 120

 D d3 = new D(300); // d3 has type D; object has class D

 C c3 = d3; // c3 has type C; object has class D

 B b3 = d3; // b3 has type B; object has class D

 print(D.sf, C.sf, B.sf); // Prints: 304 304 361

 print(d3.sf, c3.sf, b3.sf); // Prints: 304 304 361

 print(d3.vf, c3.vf, b3.vf); // Prints: 300 340 360

}

static void print(int x, int y) { System.out.println(x+" "+y); }

static void print(int x, int y, int z) { System.out.println(x+" "+y+" "+z) ; }

A field access f must refer to a static or nonstatic field declared in or inherited by a class whose
declaration encloses the field access expression (when f has not been shadowed by a field in a nested
enclosing class, or by a variable or parameter of the same name). The class declaring the field is the
target class TC.
A field access C.f must refer to a static field in class C or a superclass of C. That class is the target
class TC.
A field access o.f, where expression o has type C, must refer to a static or nonstatic field in class C or
a superclass of C. That class is the target class TC. To evaluate the field access, the expression o is
evaluated to obtain an object. If the field is static, the object is ignored and the value of o.f is the TC-
field f. If the field is nonstatic, the value of o must be non-null and the value of o.f is found as the
value of the TC-field f in object o.
It is informative to contrast a nonstatic field access and a nonstatic method call (section 11.11):

 In a nonstatic field access o.f, the field referred to is determined by the (compile-time) type
of the object expression o.

 In a nonstatic call to a nonprivate method o.m(...), the method called is determined by the
(run-time) class of the target object: the object to which o evaluates.

11.10 The Current Object Reference this
The name this may be used in nonstatic code to refer to the current object (section 9.1). When
nonstatic code in a given object is executed, the object reference this refers to the object as a whole.
Hence, when f is a field and m is a method (declared in the innermost enclosing class), then this.f
means the same as f (when f has not been shadowed by a variable or parameter of the same name),
and this.m(...) means the same as m(...).
When C is an inner class in an enclosing class D, then inside C the notation D.this refers to the D
object enclosing the inner C object. See example 31 where TLC.this.nf refers to field nf of the
enclosing class TLC.

Example 46: Using this When Referring to Shadowed Fields

 45

A common use of this is to refer to fields (this.x and this.y) that have been shadowed by
parameters (x and y), especially in constructors; see the Point class (example 16):

class Point {

 int x, y;

 Point(int x, int y) { this.x = x; this.y = y; }

... }

Example 47: Using this to Pass the Current Object to a Method
In the SPoint class (example 17), the current object reference this is used in the constructor to add the
newly created object to the array list allpoints, and it is used in the method getIndex to look up the
current object in the array list:

class SPoint {

 static ArrayList allpoints = new ArrayList();

 int x, y;

 SPoint(int x, int y) { allpoints.add(this); this.x = x; this.y = y; }

 int getIndex() { return allpoints.indexOf(this); }

... }

11.11 Method Call Expressions
A method call expression, or method invocation, must have one of these five forms:
 m(actual-list)

 super.m(actual-list)

 C.m(actual-list)

 C.super.m (actual-list)

 o.m(actual-list)
where m is a method name, C is a class name, and o is an expression of reference type. The actual-list
is a possibly empty comma-separated list of expressions, called the arguments or actual parameters.
The call signature is csig = m(t1,..., tn), where (t1,..., tn) is the list of types of the n arguments in the
actual-list.

Determining what method is actually called by a method call is complicated because (1) method names
may be overloaded, each version of the method having a distinct signature; (2) methods may be
overridden, that is, reimplemented in subclasses; (3) methods that are both nonstatic and nonprivate
are called by dynamic dispatch, given a target object; and (4) a method call in a nested class may call a
method declared in some enclosing class.
Section 11.11.1 describes argument evaluation and parameter passing, assuming the simple case
where it is clear which method m is being called. Section 11.11.2 describes how to determine which
method is being called in the general case.

11.11.1 Method Call: Parameter Passing
This section considers the evaluation of a method call m (actual-list) when it is clear which method m is
called, and focuses on the parameter passing mechanism.
The call is evaluated by evaluating the expressions in the actual-list from left to right to obtain the
argument values. These argument values are then bound to the corresponding parameters in the
method's formal-list, in order of appearance. A widening conversion (section 11.12) occurs if the type of
an argument expression is a subtype of the method's corresponding parameter type.

 46

Java uses call-by-value to bind argument values to formal parameters, so the formal parameter holds a
copy of the argument value. Thus if the method changes the value of a formal parameter, this change
does not affect the argument. For an argument of reference type, the parameter holds a copy of the
object reference or array reference, and hence the parameter refers to the same object or array as the
actual argument expression. Thus if the method changes that object or array, the changes will be visible
after the method returns (example 49).
A nonstatic method must be called with a target object, for example as o.m (actual-list), where the
target object is the value of o, or as m(actual-list), where the target object is the current object reference
this. In either case, during execution of the method body, this will be bound to the target object.
A static method is not called with a target object, and it is illegal to use the identifier this inside the
body of a static method.
When the argument values have been bound to the formal parameters, the method body is executed.
The value of the method call expression is the value returned by the method if its return type is non-
void; otherwise the method call expression has no value. When the method returns, all parameters
and local variables in the method are discarded.

Example 48: Calling Nonoverloaded, Nonoverridden Methods
This program uses the SPoint class from example 17. The static methods getSize and getPoint may
be called by prefixing them with the class name SPoint or an expression of type SPoint, such as q. They
may be called before any objects have been created. The nonstatic method getIndex must be called
with an object, as in r.getIndex(); then the method is executed with the current object reference this
bound to r.

System.out.println("Number of points created: " + SPoint.getSize ());

SPoint p = new SPoint(12, 123);

SPoint q = new SPoint(200, 10);

SPoint r = new SPoint(99, 12);

SPoint s = p;

q = null;

System.out.println("Number of points created: " + SPoint.getSize());

System.out.println("Number of points created: " + q.getSize ());

System.out.println("r is point number " + r.getIndex());
for (int i=0; i<SPoint.getSize(); i++)
 System.out.println("SPoint number " + i + " is " + SPoint.getPoint(i));

Example 49: Parameter Passing Copies References, Not Objects and Arrays
In the method call m(p, d, a) shown here, the object reference held in p is copied to parameter pp of m, so
p and pp refer to the same object, the integer held in d is copied to dd, and the array reference held in a is
copied to aa. At the end of method m, the state of the computer memory is this:

When method m returns, its parameters pp, dd, and aa are discarded. The variables p, d, and a are
unmodified, but the object and the array pointed to by p and a have been modified.

public static void main(String[] args) {

 Point p = new Point(10, 20);

 int[] a = new int [5];

 47

 int d = 8;

 System.out.println("p is " + p); // Prints: p is (10, 20)

 System.out.println("a[3] is " + a[3]); // Prints: a[3] is 0

 m (p, d, a) ;

 System.out.println("p is " + p); // Prints: p is (18, 28)

 System.out.println("d is " + d); // Prints: d is 8

 System.out.println("a[3] is " + a[3]) ; // Prints: a[3] is 22

}

static void m(Point pp, int dd, int[] aa) {

 pp.move(dd, dd);

 dd = 117;

 aa[3] = 22;

}

11.11.2 Method Call: Determining Which Method Is Called

In general, methods may be overloaded as well as overridden. The overloading is resolved at compile-
time by finding the most specific applicable and accessible method signature for the call. Overriding (for
nonstatic methods) is handled at run-time by searching the class hierarchy upwards starting with the
class of the object on which the method is called.

At Compile-Time: Determine the Target Type and Signature
Find the target type TC. If the method call has the form m(actual-list), the target type TC is the innermost
enclosing class containing a method called m that is visible (not shadowed by a method m, regardless of
signature, in an intervening class). If the method call has the form super.m(actual-list), the target type
TC is the superclass of the innermost enclosing class. If the method call has the form
C.super.m(actual-list), the target type TC is the superclass of the enclosing class C. If the method call
has the form C.m(actual-list), then TC is C. If the method call has the form o.m(actual-list), then TC is the
type of the expression o.
Find the target signature tsig. A method in class TC is applicable if its signature subsumes the call
signature csig (section 5.5). Whether a method is accessible is determined by its access modifiers
(section 9.7). Consider the collection of methods in TC that are both applicable and accessible. The call
is illegal (method unknown) if there is no such method. The call is illegal (ambiguous) if there is more
than one method whose extended signature m(T, u1,..., un) is most specific, that is, one whose extended
signature is subsumed by all the others. Thus if the call is legal, there is exactly one most specific
extended signature; from that we obtain the target signature tsig = m(u1,..., un).
Determine whether the called method is static. If the method call has the form C.m(actual-list), the
called method must be static. If the method call has the form m(actual-list) or o.m(actual-list) or
super.m(actual-list) or C.super.m(actual-list), we use the target type TC and the signature tsig to
determine whether the called method is static or nonstatic.

At Run-Time: Determine the Target Object (If Nonstatic) and Execute
the Method
If the method is static, no target object is needed: the method to call is the method with signature tsig in
class TC. However, when m is static in a method call o.m(actual-list), the expression o must be
evaluated anyway, but its value is ignored.

 48

If the method is nonstatic, determine the target object; it will be bound to the object reference this
during execution of the method. In the case of m(actual-list), the target object is this (if TC is the
innermost class enclosing the method call), or TC.this (if TC is an outer class containing the method
call). In the case of super.m(actual-list), the target object is this. In the case of C.super.m(actual-
list), the target object is C.this. In the case o.m(actual-list), the expression o must evaluate to an
object reference. If non-null, that object is the target object; otherwise the exception
NullPointerException is thrown. If the method is nonprivate, the class hierarchy is searched to determine
which method to call, starting with the class RTC of the target object. If a method with signature tsig is
not found in class RTC, then the immediate superclass of RTC is searched, and so on. This search
procedure is called dynamic dispatch. If the method is private, it must be in the target class TC and no
search is needed.
When the method has been determined, arguments are evaluated and bound as described in section
11.11.1.

Example 50: Calling Overloaded Methods
Here we call the overloaded methods m declared in example 25. The call m(10, 20) has call signature
m(int, int) and thus calls the method with signature m(int, double), which is the most specific
applicable one. Hence the first two lines call the method with signature m(int, double), and the last
two call the method with signature m(double, double).

System.out.println(m(10, 20)); // Prints: 31.0

System.out.println(m(10, 20.0)); // Prints: 31.0

System.out.println(m(10.0, 20)); // Prints: 33.0

System.out.println(m(10.0, 20.0)); // Prints: 33.0

Example 51: Calling Overridden and Overloaded Methods
Here we use the classes C1 and C2 from example 27. The target type of c1.m1(i) is class C1, which has
a nonstatic method with signature m1(int), so the call is to a nonstatic method; the target object has
class C2, so the called method is m1(int) in C2; and quite similarly for c2.m1(i). The target type for
c1.m1(d) is the class C1, which has a static method with signature m1(double), so the call is to a static
method, and the object bound to c1 does not matter. Similarly for c2.m1(d), whose target type is C2, so
it calls m1(double) in C2, which overrides m1(double) in C1.
The call c1.m2(i) has target type C1 and calls m2(int). However, a call c2.m2(i), whose target class
is C2, would be ambiguous and illegal: the applicable extended signatures are m2(C1, int) and
m2(C2, double), none of which is more specific than the other.

int i = 17;

double d = 17.0;

C2 c2 = new C2(); // Type C2, object class C2

C1 c1 = c2; // Type C1, object class C1

c1.m1(i); c2.m1(i); c1.m1(d); c2.m1(d); // Prints: 21i 21i 11d 21d

c1.m2(i); // Prints: 12i

Example 52: Calling Overridden Methods from a Constructor
If d2 is an object of class D2, then calling d2.m2() will call the method m2 inherited from superclass D1.
The call m1() in m2 is equivalent to this.m1(), where this equals d2, so the method m1 declared in
class D2 is called. Hence the call d2.m2() will print D1.m2 and then D2.m1:7. It prints 7 because field f
is initialized to 7 in constructor D2().
Perhaps more surprisingly, the creation d2 = new D2() of an object of class D2 will print D1.m2 and
then D2.m1:0. Why does it print 0, not 7? The very first action of constructor D2() is to make an implicit
call to the superclass constructor D1(), even before executing the assignment f = 7. Hence f will still

 49

have its default value 0 when method m1 in D2 is called from method m2 in D1, which in turn is called from
constructor D1().

class D1 {

 D1() { m2(); }

 void ml () { System.out.println("D1.m1 "); }

 void m2 () { System.out.print("D1.m2 "); m1 () ; }

}

class D2 extends D1 {

 int f;

 D2() { f = 7; }

 void m1() { System.out.println("D2.m1:" + f); }

}

11.12 Type Cast Expressions and Type Conversion
A type conversion converts a value from one type to another. A widening conversion converts from a
type to a supertype. A narrowing conversion converts from a type to another type. This requires an
explicit type cast (except in an assignment x = e or initialization where e is a compile-time integer
constant; see section 11.5).

11.12.1 Type Cast Between Primitive Types
When e is an expression of primitive type and t is a primitive type, then a type cast of e to t is done
using the expression
 (t)e
This expression, when legal, has type t. The legal type casts between primitive types are shown in the
following table, where C marks a narrowing conversion that requires a type cast (t)e, W marks a
widening conversion that preserves the value, and L marks a widening conversion that may cause a
loss of precision.

To Type

Fro
m
Typ
e

c
h
a
r

b
y
t
e

sh
or
t

i
n
t

l
o
n
g

f
l
o
a
t

double

cha
r W C C W W W W

byt
e C W W W W W W

sho
rt C C W W W W W

int C C C W W L W
lon
g C C C C W L L

 50

To Type

Fro
m
Typ
e

c
h
a
r

b
y
t
e

sh
or
t

i
n
t

l
o
n
g

f
l
o
a
t

double

flo
at C C C C C W W

dou
ble C C C C C C W

A narrowing integer conversion discards those (most significant) bits that cannot be represented in the
smaller integer type. Conversion from an integer type to a floating-point type (float or double)
produces a floatingpoint approximation of the integer value. Conversion from a floating-point type to an
integer type discards the fractional part of the number; that is, it rounds toward zero. When converting a
too-large floating-point number to a long or int, the result is the best approximation (that is, the type's
largest positive or the largest negative representable number); conversion to byte or short or char is
done by converting to int and then to the requested type. The primitive type boolean cannot be cast
to any other type. A type cast between primitive types never fails at run-time.

11.12.2 Type Cast Between Reference Types
When e is an expression of reference type and t is a reference type (class or interface or array type), a
type cast of e to t is done using the expression
 (t)e
This expression has type t. It is evaluated by evaluating e to a value v. If v is null or is a reference to
an object or array whose class is a subtype of t, then the type cast succeeds with result v; otherwise
the exception ClassCastException is thrown. The type cast is illegal when it cannot possibly succeed at
run-time, for instance, when e has type Double and t is Boolean: none of these classes is a subtype of
the other.

 51

Chapter 12: Statements
Overview
A statement may change the computer's state: the value of variables, fields, array elements, the
contents of files, and so on. More precisely, execution of a statement

 terminates normally (meaning execution will continue with the next statement, if any); or
 terminates abruptly by throwing an exception; or
 exits by executing a return statement (if inside a method or constructor); or
 exits a switch or loop by executing a break statement (if inside a switch or loop); or
 exits the current iteration of a loop and starts a new iteration by executing a continue

statement (if inside a loop); or
 does not terminate at all, for instance, by executing while (true) {}.

12.1 Expression Statements
An expression statement is an expression followed by a semicolon:
 expression ;
It is executed by evaluating the expression and ignoring its value. The only forms of expression that
may be legally used in this way are assignment expressions (section 11.5), increment and decrement
expressions (section 11.2), method call expressions (section 11.11), and object creation expressions
(section 11.7).
For example, an assignment statement x=e; is an assignment expression x=e followed by a semicolon.

Similarly, a method call statement is a method call expression followed by semicolon. The value
returned by the method, if any, is discarded; the method is executed only for its side effect.

12.2 Block Statements
A block-statement is a sequence of zero or more statements or variable-declarations or class-
declarations, in any order, enclosed in braces:
 {
 statements
 class-declarations
 variable-declarations
 }

12.2 Block Statements
A block-statement is a sequence of zero or more statements or variable-declarations or class-
declarations, in any order, enclosed in braces:
 {
 statements
 class-declarations
 variable-declarations
 }

12.4 Choice Statements

12.4.1 The if Statement
An if statement has the form

 if (condition)
 truebranch

 52

The condition must have type boolean, and truebranch is a statement. If condition evaluates to true,
then truebranch is executed, otherwise not.

12.4.2 The if-else Statement
An if-else statement has the form:

 if (condition)
 truebranch
 else
 falsebranch
The condition must have type boolean, and truebranch and falsebranch are statements. If condition
evaluates to true, then truebranch is executed; otherwise falsebranch is executed.

12.4.3 The switch Statement
A switch statement has the form

 switch (expression) {

 case constant1: branch1

 case constant2: branch2
 ...

 default: branchn
 }
The expression must have type int, short, char, or byte. Each constant must be a compile-time
constant expression, consisting only of literals, final variables, final fields declared with explicit field
initializers, and operators. No two constants may have the same value. The type of each constant must
be a subtype of the type of expression.
Each branch is preceded by one or more case clauses and is a possibly empty sequence of
statements, usually terminated by break or return (if inside a method or constructor) or continue
(inside a loop). The default clause may be left out.
The switch statement is executed as follows: The expression is evaluated to obtain a value v. If v
equals one of the constants, then the corresponding branch is executed. If v does not equal any of the
constants, then the branch following default is executed; if there is no default clause, nothing is
executed. If a branch is not exited by break or return or continue, then execution continues with
the next branch in the switch regardless of the case clauses, until a branch exits or the switch ends.

Example 53: Block Statements
All method bodies and constructor bodies are block statements. In method sum from example 2, the
truebranch of the second if statement is a block statement. Method m4 in example 4 contains two block
statements, each of which contains a (local) declaration of variable x.

Example 54: Single if-else Statement
This method behaves the same as absolute in example 43:

static double absolute(double x) {
 if (x >= 0)
 return x;
 else
 return -x;
}

Example 55: Sequence of if-else Statements
We cannot use a switch here, because a switch can work only on integer types (including char):

static int wdaynol(String wday) {

 if (wday.equals("Monday")) return 1;

 53

 else if (wday.equals("Tuesday")) return 2;

 else if (wday.equals("Wednesday")) return 3;

 else if (wday.equals("Thursday")) return 4;

 else if (wday.equals("Friday")) return 5;

 else if (wday.equals("Saturday")) return 6;

 else if (wday.equals("Sunday")) return 7;

 else return -1; // Here used to mean 'not found'

}

Example 56: A switch Statement
Here we could have used a sequence of if-else statements, but a switch is both faster and clearer:

static String findCountry(int prefix) {

 switch (prefix) {

 case 1: return "North America";

 case 44: return "Great Britain";

 case 45: return "Denmark";

 case 299: return "Greenland";

 case 46: return "Sweden";

 case 7: return "Russia";

 case 972: return "Israel";

 default: return "Unknown";

 }

}

12.5 Loop Statements

12.5.1 The for Statement
A for statement has the form

 for (initialization; condition; step)
 body
where initialization is a variable-declaration (section 6.2) or an expression, condition is an expression of
type boolean, step is an expression, and body is a statement. More generally, the initialization and
step may also be comma-separated lists of expressions; the expressions in such a list are evaluated
from left to right when the list is evaluated. The initialization, condition, and step may be empty. An
empty condition is equivalent to true. Thus for (;;) body means "forever execute body." The for
statement is executed as follows:

1. The initialization is executed.
2. The condition is evaluated. If it is false, the loop terminates.
3. If it is true, then

 54

a. The body is executed.
b. The step is executed.
c. Execution continues at (2).

12.5.2 The whi1e Statement
A while statement has the form

 while (condition)
 body
where condition is an expression of type boolean, and body is a statement. It is executed as follows:

1. The condition is evaluated. If it is false, the loop terminates.
2. If it is true, then

a. The body is executed.
b. Execution continues at (1).

12.5.3 The do-while Statement
A do-while statement has the form
 do
 body
 while (condition);
where condition is an expression of type boolean, and body is a statement. The body is executed at
least once, because the do-while statement is executed as follows:

1. The body is executed.
2. The condition is evaluated. If it is false, the loop terminates.
3. If it is true, then execution continues at (1).

Example 57: Nested for Loops
This program prints a four-line triangle of asterisks (*):
for (int i=1; i<=4; i++) {
 for (int j=1; j<=i; j++)
 System.out.print("*");
 System.out.println();
}

Example 58: Array Search Using a while Loop
This method behaves the same as wdayno1 in example 55:

static int wdayno2(String wday) {

 int i=0;
 while (i < wdays.length && ! wday.equals(wdays[i]))
 i++;
 // Now i >= wdays.length or wday equal to wdays[i]
 if (i < wdays.length)
 return i+1;
 else
 return -1; // Here used to mean 'not found'
}

static final String[] wdays =
{ "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday" };

Example 59: Infinite Loop Because of Misplaced Semicolon
Here a misplaced semicolon (;) creates an empty loop body statement, where the increment i++ is not
part of the loop. Hence it will not terminate but will loop forever.

int i=0;

 55

while (i<10);
 i++;

Example 60: Using do-while
Roll a die and compute sum until 5 or 6 comes up. Here we can use do-while but while is usually safer
because it tests the loop condition before executing the loop body.

static int waitsum() {

 int sum = 0, eyes;

 do {

 eyes = (int) (1 + 6 * Math.random());

 sum += eyes;
 } while (eyes < 5);
 return sum;
}

12.6 Returns, Labeled Statements, Exits, and Exceptions

12.6.1 The return Statement
The simplest form of a return statement, without an expression argument, is
 return;
That form of return statement must occur inside the body of a method whose return type is void, or
inside the body of a constructor. Execution of the return statement exits the method or constructor
and continues execution at the place from which the method or constructor was called.
Alternatively, a return statement may have an expression argument:

 return expression;
That form of return statement must occur inside the body of a method (not constructor) whose return
type is a supertype of the type of the expression. The return statement is executed as follows: First
the expression is evaluated to some value v. Then it exits the method and continues execution at the
method call expression that called the method; the value of that expression will be v.

12.6.2 Labeled Statements

A labeled statement has the form
 label : statement
where label is a name. The scope of label is statement, where it can be used in break (section 12.6.3)
and continue (section 12.6.4). The label cannot be reused inside statement, except inside a local
class.

12.6.3 The break Statement
A break statement is legal only inside a switch or loop and has one of the forms
 break;

 break label;
Executing break exits the innermost enclosing switch or loop and continues execution after that switch
or loop. Executing break label exits the enclosing statement that has label label, and continues
execution after that statement. Such a statement must exist in the innermost enclosing method,
constructor, or initializer block.

12.6.4 The continue Statement
A continue statement is legal only inside a loop and has one of the forms
 continue;

 56

 continue label;
Executing continue terminates the current iteration of the innermost enclosing loop and continues the
execution at the step in for loops (section 12.5.1) or the condition in while and do-while loops
(sections 12.5.2 and 12.5.3). Executing continue label terminates the current iteration of the enclosing
loop that has label label, and continues the execution at the step or the condition. There must be such a
loop in the innermost enclosing method or constructor or initializer block.

Example 61: Using return to Terminate a Loop Early
This method behaves the same as wdayno2 in example 58:

static int wdayno3(String wday) {
 for (int i=0; i < wdays.length; i++)
 if (wday.equals(wdays[i]))
 return i+1;
 return -1; // Here used to mean 'not found'
}

Example 62: Using break to Terminate a Loop Early

double prod = 1.0;
for (int i=0; i<xs.length; i++) {
 prod *= xs[i];
 if (prod == 0.0)
 break;
}

Example 63: Using continue to Start a New Iteration
This method decides whether query is a substring of target. When a mismatch between the strings is
found, continue starts the next iteration of the outer for loop, thus incrementing j:

static boolean substring1(String query, String target) {

 nextposition:
 for (int j=0; j<=target.length()-query.length(); j++) {
 for (int k=0; k<query.length(); k++)
 if (target.charAt(j+k) != query.charAt(k))
 continue nextposition;
 return true;
 }
 return false;
}

Example 64: Using break to Exit a Labeled Statement Block
This method behaves as substring1 from example 63. It uses break to exit the entire statement block
labeled thisposition, thus skipping the first return statement and starting a new iteration of the outer
for loop:

static boolean substring2(String query, String target) {
 for (int j=0; j<=target.length()-query.length(); j++)
 thisposition: {
 for (int k=0; k<query.length(); k++)
 if (target.charAt(j+k) != query.charAt(k))
 break thisposition;
 return true;
 }
 return false;
}

 57

12.6.5 The throw Statement
A throw statement has the form

 throw expression;
where the type of the expression must be a subtype of class Throwable (chapter 14). The throw
statement is executed as follows: The expression is evaluated to obtain an exception object v. If it is
null, then a NullPointerException is thrown; otherwise the exception object v is thrown. Thus a thrown
exception is never null. In any case, the enclosing block statement terminates abruptly (chapter 14).
The thrown exception may be caught in a dynamically enclosing try-catch statement (section
12.6.6). If the exception is not caught, then the entire program execution will be aborted, and
information from the exception will be printed on the console (for example, at the command prompt, or
in the Java Console inside a Web browser).

12.6.6 The try-catch-finally Statement
A try-catch statement is used to catch (particular) exceptions thrown by the execution of a block of
code. It has the following form:
 try
 body
 catch (El x1) catchbody1

 catch (E2 x2) catchbody2
 ...

 finally finallybody
where E1, E2, ... are names of exception types, x1, x2, ... are variable names, and body,
catchbodyi, and finallybody are block-statements (section 12.2). There can be zero or more catch
clauses, and the finally clause may be absent, but at least one catch or finally clause must be
present.
We say that Ei matches exception type E if E is a subtype of Ei (possibly equal to Ei).
The try-catch-finally statement is executed by executing the body. If the execution of the body
terminates normally, or exits by return or break or continue (when inside a method or constructor
or switch or loop), then the catch clauses are ignored. If the body terminates abruptly by throwing
exception e of class E, then the first matching Ei (if any) is located, variable xi is bound to e, and the
corresponding catchbodyi is executed. The catchbodyi may terminate normally, or loop, or exit by
executing return or break or continue, or throw an exception (possibly xi); if there is no finally
clause, this determines how the entire try-catch statement terminates. A thrown exception e is never
null (section 12.6.5), so xi is guaranteed not to be null either. If there is no matching Ei, then the
entire try-catch statement terminates abruptly with exception e.
If there is a finally clause, then finallybody will be executed regardless of whether the execution of
body terminated normally, regardless of whether body exited by executing return or break or
continue (when inside a method or constructor or switch or loop), regardless of whether any
exception thrown by body was caught by a catch clause, and regardless of whether the catch clause
exited by executing return or break or continue or by throwing an exception. If execution of
finallybody terminates normally, then the entire try-catch-finally terminates as determined by
body (or catchbodyi, if one was executed and terminated abruptly or exited). If execution of finallybody
terminates abruptly, then that determines how the entire try-catch-finally terminates (example
74).

Example 65: Throwing an Exception to Indicate Failure
Instead of returning the bogus error value -1 as in method wdayno3 (example 61), throw a
WeekdayException (example 73). Note the throws clause (section 9.8) in the method header.

static int wdayno4(String wday) throws WeekdayException {
 for (int i=0; i < wdays.length; i++)
 if (wday.equals(wdays[i]))
 return i+1;
 throw new WeekdayException(wday);
}

 58

Example 66: A try-catch Statement
This example calls the method wdayno4 (example 65) inside a try-catch statement that catches
exceptions of class WeekdayException (example 73) and its superclass Exception. The second catch
clause will be executed (for example) if the array access args [0] fails because there is no command
line argument (since ArrayIndexOutOfBoundsException is a subclass of Exception). If an exception is
caught, it is bound to the variable x and printed by an implicit call (chapter 7) to the exception's
toString-method.

public static void main(String[] args) {

 try {

 System.out.println(args[0] + " is weekday number " + wdayno4(args[0]));

 } catch (WeekdayException x) {

 System.out.println("Weekday problem: " + x);

 } catch (Exception x) {

 System.out.println("Other problem: " + x);

 }

}

Example 67: A try-finally Statement
This method attempts to read three lines from a text file (section 21.4), each containing a single
floatingpoint number. Regardless of whether anything goes wrong during reading (premature end-of-file,
ill-formed number), the finally clause will close the readers before the method returns. It would do so
even if the return statement were inside the try block.

static double[] readRecord(String filename) throws IOException {

 Reader freader = new FileReader(filename);

 BufferedReader breader = new BufferedReader(freader);

 double[] res = new double[3];

 try {

 res[0] = new Double(breader.readLine()).doubleValue();

 res[1] = new Double(breader.readLine()).doubleValue();

 res[2] = new Double(breader.readLine()).doubleValue();

 } finally {

 breader.close();

 }

 return res;

}

 59

12.7 The assert Statement
The assert statement has one of the following forms:

 assert boolean-expression ;

 assert boolean-expression : expression ;
The boolean-expression must have type boolean. The expression must have type boolean, char,
double, float, int, long, or Object.
Under ordinary execution of a program, an assert statement has no effect at all. However, assertions
may be enabled at run-time by specifying the option -ea or -enableassertions when executing a
program C (chapter 16):

 java -enableassertions C
When assertions are enabled at run-time, every execution of the assert statement will evaluate the
boolean-expression. If the result is true, program execution continues normally. If the result is false,
the assertion fails and an AssertionError will be thrown; moreover, in the second form of the assert
statement, the expression will be evaluated and its value will be passed to the appropriate
AssertionError constructor. Thus the value of the expression will be reported along with the exception in
case of assertion failure. This simplifies troubleshooting in a malfunctioning program.
An AssertionError signals the failure of a fundamental assumption in the program and should not be
caught by a try-catch statement in the program; it should be allowed to propagate to the toplevel.
An assert statement can serve two purposes: to document the programmer's assumption about the
state at a certain point in the program, and to check (at run-time) that that assumption holds (provided
the program is executed using the enableassertions option).
One may put an assert statement after a particularly complicated piece of code, to check that it has
achieved what it was supposed to (example 68).

Example 68: Using assert to Specify and Check the Result of an Algorithm
The integer square root of x ≥ 0 is an integer y such that y2 ≤ x and (y + 1)2 > x. The precondition x ≥ 0 is
always checked, using an if statement. The postcondition on y is specified by an assert statement, and
checked if assertions are enabled at run-time — which is reassuring, given that the correctness is none
too obvious. The assertion uses casts to long to avoid arithmetic overflow.

static int sqrt(int x) { // Algorithm by Borgerding, Hsieh, Ulery
 if (x < 0)
 throw new IllegalArgumentException("sqrt: negative argument");
 int temp, y = 0, b = 0x8000, bshft = 15, v = x;;
 do {
 if (v >= (temp = (y<<1)+b << bshft--)) {
 y += b; v -= temp;
 }
 } while ((b >>= 1) > 0);
 assert (long)y * y <= x && (long)(y+1)*(y+1) > x;
 return y;
}

In a class that has a data representation invariant, one may assert the invariant at the end of every
method in the class (example 69).

Example 69: Using assert to Specify and Check Invariants
A word list is a sequence of words to be formatted as a line of text. Its length is the minimum number of
characters needed to format the words and the interword spaces, that is, the lengths of the words plus the
number of words minus 1. Those methods that change the word list use assert statements to specify the
invariant on length and check it if assertions are enabled at run-time.

class WordList {

 private LinkedList strings = new LinkedList();

 private int length = -1; // Invariant: equals word lengths plus interword spaces

 60

 public int length() { return length; }

 public void addLast(String s) {

 strings.addLast(s);

 length += 1 + s.length();

 assert length == computeLength() + strings.size() - 1;

 }

 public String removeFirst() {

 String res = (String)strings.removeFirst();

 length -= 1 + res.length();

 assert length == computeLength() + strings.size() - 1;

 return res;

 }

 private int computeLength() { ... } // For checking the invariant only

}

One should not use assert statements to check the validity of user input or the arguments of public
methods or constructors, because the check would be performed only if assertions are enabled at run-
time. Instead, use ordinary if statements and throw an exception in case of error.
The assert statement was introduced in Java 2, version 1.4, and cannot be used in Java compilers
prior to that. A program using the assert statement must be compiled (section 16) with option -
source 1.4, as follows:
 javac -source 1.4 myprog.java
An algorithm for formatting a sequence of words into a text with a straight right-hand margin should
produce lines res of a specified length lineWidth, unless there is only one word on the line or the line
is the last one. This requirement can be expressed and checked using an assert statement (see the
example file for details of the formatting algorithm itself):
assert res.length()==lineWidth || wordCount==1 || !wordIter.hasNext();

 61

Chapter 13: Interfaces
13.1 Interface Declarations
An interface describes fields and methods but does not implement them. An interface-declaration may
contain field descriptions, method descriptions, class declarations, and interface declarations, in any
order.
 interface-modifiers interface I extends-clause {
 field-descriptions
 method-descriptions
 class-declarations
 interface-declarations
 }
An interface may be declared at toplevel or inside a class or interface but not inside a method or
constructor or initializer. At toplevel, the interface-modifiers may be public or absent. A public
interface is accessible also outside its package. Inside a class or interface, the interface-modifiers may
be static (always implicitly understood) and at most one of public, protected, or private.
The extends-clause may be absent or have the form
 extends I1, I2, ...
where I1, I2, ... is a nonempty list of interface names. If the extends-clause is present, then interface I
describes all those members described by I1, I2,..., and interface I is a subinterface (and hence
subtype) of I1, I2,.... Interface I can describe additional fields and methods but cannot override
inherited members.
A field-description in an interface declares a named constant and must have the form
 field-desc-modifiers type f = initializer;
where field-desc-modifiers is a list o f static, final, and public, none of which needs to be given
explicitly, as all are implicitly understood. The field initializer must be an expression involving only
literals and operators, and static members of classes and interfaces.
A method-description for method m must have the form

 method-desc-modifiers return-type m (formal-list) throws-clause;
where method-desc-modifiers is a list of abstract and public, both of which are understood and
need not be given explicitly.
A class-declaration inside an interface is always implicitly static and public.

13.2 Classes Implementing Interfaces
A class C may be declared to implement one or more interfaces by an implements-clause:
 class C implements I1, I2, ...
 class-body
In this case, C is a subtype (section 5.4) of I1, I2, and so on, and C must declare all the methods
described by I1, I2,... with exactly the prescribed signatures and return types. A class may implement
any number of interfaces. Fields, classes, and interfaces declared in I1, I2,... can be used in class C.

Example 70: Three Interface Declarations
The Colored interface describes method getColor, interface Drawable describes method draw, and
Colored-Drawable describes both. The methods are implicitly public.

import java.awt.*;

interface Colored { Color getColor(); }

interface Drawable { void draw(Graphics g); }

interface ColoredDrawable extends Colored, Drawable {}

Example 71: Classes Implementing Interfaces
The methods getColor and draw must be public as in the interface declarations (example 70).

 62

class ColoredPoint extends Point implements Colored {

 Color c;

 ColoredPoint(int x, int y, Color c) { super(x, y); this.c = c; }

 public Color getColor() { return c; }

}

class ColoredDrawablePoint extends ColoredPoint implements ColoredDrawable {

 Color c;

 ColoredDrawablePoint(int x, int y, Color c) { super(x, y, c); }

 public void draw(Graphics g) { g.fillRect(x, y, 1, 1); }

}

class ColoredRectangle implements ColoredDrawable {

 int x1, x2, y1, y2; // (x1, y1) upper left, (x2, y2) lower right corner

 Color c;

 ColoredRectangle(int x1, int y1, int x2, int y2, Color c)

 { this.x1 = x1; this.y1 = y1; this.x2 = x2; this.y2 = y2; this.c = c; }

 public Color getColor() { return c; }

 public void draw(Graphics g) { g.drawRect(x1, y1, x2-x1, y2-y1; }

}

Example 72: Using Interfaces as Types
A Colored value has a getColor method; a ColoredDrawable value has a getColor method and a
draw method:

static void printcolors(Colored[] cs) {
 for (int i=0; i<cs.length; i++)
 System.out.println(cs[i].getColor().toString());
}

static void draw(Graphics g, ColoredDrawable[] cs) {
 for (int i=0; i<cs.length; i++) {
 g.setColor(cs[i] getColor());
 cs[i].draw(g);
 }
}

 63

Chapter 14: Exceptions, Checked and Unchecked
An exception is an object of an exception type: a subclass of class Throwable. It is used to signal and
describe an abnormal situation during program execution. The evaluation of an expression or the
execution of a statement may terminate abruptly by throwing an exception, either by executing a throw
statement (section 12.6.5) or by executing a primitive operation, such as assignment to an array
element, that may throw an exception.
A thrown exception may be caught in a dynamically enclosing try-catch statement (section 12.6.6). If
the exception is not caught, then the entire program execution will be aborted, and information from the
exception will be printed on the console. What is printed is determined by the exception's toString
method.
There are two kinds of exception types: checked (those that must be declared in the throws-clause of a
method or constructor; see section 9.8) and unchecked (those that need not be). If the execution of a
method or constructor body can throw a checked exception of class E, then class E or a supertype of E
must be declared in the throws-clause of the method or constructor.

The following table shows part of the exception class hierarchy.

Class Status Package

Throwable checked java.lang
 Error unchecked java.lang
 AssertionError unchecked java.lang
 ExceptionlnInitializerError unchecked java.lang
 OutOfMemoryError unchecked java.lang
 StackOverflowError unchecked java.lang
 Exception checked java.lang
 ClassNotFoundException checked java.lang
 InterruptedException checked java.lang
 IOException checked java.io
 CharConversionException checked java.io
 EOFException checked java.io
 FileNotFoundException checked java.io
 InterruptedlOException checked java.io
 ObjectStrearnException checked java.io
 InvalidClassException checked java.io
 NotSerializableException checked java.io
 SyncFailedException checked java.io
 UnsupportedEncodingException checked java.io
 UTFDataFormatException checked java.io
 RuntimeException unchecked java.lang
 ArithmeticException unchecked java.lang
 ArrayStoreException unchecked java.lang
 ClassCastException unchecked java.lang

 64

Class Status Package
 ConcurrentModificationException unchecked java.util
 IllegalArgumentException unchecked java.lang
 IllegalMonitorStateException unchecked java.lang
 IllegalStateException unchecked java.lang
 IndexOutOfBoundsException unchecked java.lang
 ArrayIndexOutOfBoundsException unchecked java.lang
 StringIndexOutOfBoundsException unchecked java.lang
 NegativeArraySizeException unchecked java.util
 NoSuchElementException unchecked java.util
 NullPointerException unchecked java.lang
 UnsupportedOperationException unchecked java.lang

Example 73: Declaring a Checked Exception Class
This is the class of exceptions thrown by method wdayno4 (example 65). Passing a string to the
constructor of the superclass (that is, class Exception) causes method toString to append that string to
the name of the exception.

class WeekdayException extends Exception {

 public WeekdayException(String wday) {

 super("Illegal weekday: " + wday);

 }

}

Example 74: All Paths Through a try-catch-finally Statement
To exercise all 18 paths through the try-catch-finally statement (section 12.6.6) in method m in the
following program, run it with each of these command line arguments: 101 102 103 201 202 203 301 302
303 411 412 413 421 422 423 431 432 433. The try clause terminates normally on arguments 1yz, exits
by return on 2yz, and throws an exception on 3yz and 4yz. The catch clause ignores exceptions
thrown on 3yz but catches those thrown on 4yz; the catch clause terminates normally on 41z, exits by
return on 42z, and throws an exception on 43z. The finally clause terminates normally on xy1, exits
by return on xy2, and throws an exception on xy3.
Exits by break and continue statements are handled similarly to return; a more involved example
could be constructed to illustrate their interaction.

class TryCatchFinally {

 public static void main(String[] args) throws Exception

 { System.out.println(m(Integer.parseInt(args[0]))); }

 static String m(int a) throws Exception {

 try {

 System.out.print("try ... ");

 65

 if (a/100 == 2) return "returned from try";

 if (a/100 == 3) throw new Exception("thrown by try");

 if (a/100 == 4) throw new RuntimeException("thrown by try");

 } catch (RuntimeException x) {

 System.out.print("catch ... ");

 if (a/10%10 == 2) return "returned from catch";

 if (a/10%10 == 3) throw new Exception("thrown by catch");

 } finally {

 System.out.println("finally");

 if (a%10 == 2) return "returned from finally";

 if (a%10 == 3) throw new Exception("thrown by finally");

 }

 return "terminated normally with " + a;

 }

}

 66

Chapter 15: Threads, Concurrent Execution, and
Synchronization
15.1 Threads and Concurrent Execution
The preceding chapters described sequential program execution, in which expressions are evaluated
and statements are executed one after the other: they considered only a single thread of execution,
where a thread is an independent sequential activity. A Java program may execute several threads
concurrently, that is, potentially overlapping in time. For instance, one part of a program may continue
computing while another part is blocked waiting for input (example 75).

Example 75: Multiple Threads
The main program creates a new thread, binds it to u, and starts it. Now two threads are executing
concurrently: one executes main, and another executes run. While the main method is blocked waiting
for keyboard input, the new thread keeps incrementing i. The new thread executes yield() to make
sure that the other thread is allowed to run (when not blocked).

class Incrementer extends Thread {

 public int i;

 public void run() {

 for (;;) { // Forever

 i++; // increment i

 yield();

 }

} }

class ThreadDemo {

 public static void main(String[] args) throws IOException {

 Incrementer u = new Incrementer();

 u.start();

 System.out.println("Repeatedly press Enter to get the current value of i:");

 for (;;) {

 System.in.read(); // Wait for keyboard input

 System.out.println(u.i);

} } }

A thread is created and controlled using an object of the Thread class found in the package
java.lang. A thread executes the method public void run () in an object of a class
implementing the Runnable interface, also found in package java.lang. To every thread (independent
sequential activity) there is a unique controlling Thread object, so the two are often thought of as being
identical.
One way to create and run a thread is to declare a class U as a subclass of Thread, overwriting its
(trivial) run method. Then create an object u of class U and call u.start(). This will enable the thread
to execute u.run() concurrently with other threads (example 75).

 67

Alternatively, declare a class C that implements Runnable, create an object o of that class, create a
thread object u = new Thread(o) from o, and execute u.start (). This will enable the thread to
execute o.run() concurrently with other threads (example 79).
Threads can communicate with each other via shared state, namely, by using and assigning static
fields, nonstatic fields, array elements, and pipes (section 21.15). By the design of Java, threads cannot
use local variables and method parameters for communication.

States and State Transitions of a Thread
A thread is alive if it has been started and has not died. A thread dies by exiting its run() method,
either by returning or by throwing an exception. A live thread is in one of the states Enabled (ready to
run), Running (actually executing), Sleeping (waiting for a timeout), Joining (waiting for another thread
to die), Locking (trying to obtain the lock on object o), or Waiting (for notification on object o). The
thread state transitions are shown in the following table and the figure on the facing page:

From State To State Reason for Transition

Enabled Running System schedules thread for execution

Running Enabled
Enabled
Waiting
Locking
Sleeping
Joining
Dead

System preempts thread and schedules another
one
Thread executes yield ()
Thread executes o. wait(), releasing lock on o
Thread attempts to execute synchronized (o)
{... }
Thread executes sleep ()
Thread executes u.join()
Thread exited run() by returning or by throwing
an exception

Sleeping Enabled
Enabled

Sleeping period expired
Thread was interrupted; throws
InterruptedException when run

Joining Enabled
Enabled

Thread u being joined died, or join timed out
Thread was interrupted; throws
InterruptedException when run

Waiting Locking
Locking
Locking

Another thread executed o.notify() or
o.notifyAll()
Wait for lock on o timed out
Thread was interrupted; throws
InterruptedException when run

Locking Enabled Lock on o became available and was given to this
thread

States and state transitions of a thread. A thread's transition from one state to another may be
caused by a method call performed by the thread itself (shown in the monospace font), by a method
call possibly performed by another thread (shown in the slanted monospace font); and by timeouts
and other actions.

 68

15.2 Locks and the synchronized Statement
Concurrent threads are executed independently. Therefore, when multiple concurrent threads access
the same fields or array elements, there is considerable risk of creating an inconsistent state (example
77). To avoid this, threads may synchronize the access to shared state, such as objects and arrays. A
single lock is associated with every object, array, and class. A lock can be held by at most one thread at
a time. A thread may explicitly request the lock on an object or array by executing a synchronized
statement, which has this form:
 synchronized (expression)

 block-statement
The expression must have reference type. The expression must evaluate to a non-null reference o;
otherwise a NullPointerException is thrown. After the evaluation of the expression, the thread becomes
Locking on object o; see the figure on the previous page. When the thread obtains the lock on object o
(if ever), the thread becomes Enabled, and may become Running so the block-statement is executed.
When the block-statement terminates or is exited by return or break or continue or by throwing an
exception, then the lock on o is released.
A synchronized nonstatic method declaration (section 9.8) is shorthand for a method whose body
has the form
 synchronized (this)

 method-body

That is, the thread will execute the method body only when it has obtained the lock on the current
object. It will release the lock when it leaves the method body.
A synchronized static method declaration (section 9.8) in class C is shorthand for a method whose
body has the form
 synchronized (C.class)

 method-body
That is, the thread will execute the method body only when it has obtained the lock on the object
C.class, which is the unique object of class Class associated with the class C. It will hold the lock until
it leaves the method body, and release it at that time.

Constructors and initializers cannot be synchronized.
Mutual exclusion is ensured only if all threads accessing a shared object lock it before use. For
instance, if we add an unsynchronized method roguetransfer to a bank object (example 77), we can
no longer be sure that a thread calling the synchronized method transfer has exclusive access to the
bank object: any number of threads could be executing roguetransfer at the same time.

 69

A monitor is an object whose fields are private and are manipulated only by synchronized methods of
the object, so that all field access is subject to synchronization (example 78).
If a thread u needs to wait for some condition to become true, or for a resource to become available, it
may temporarily release its lock on object o by calling o.wait(). The thread must hold the lock on
object o, otherwise exception IllegalMonitorStateException is thrown. The thread u will be added to the
wait set of o, that is, the set of threads waiting for notification on object o. This notification must come
from another thread that has obtained the lock on o and that executes o.notify() or
o.notifyAll(). The notifying thread does not release its lock on o. After being notified, u must obtain
the lock on o again before it can proceed. Thus when the call to wait returns, thread u will hold the lock
on o just as before the call (example 78).
For detailed rules governing the behavior of unsynchronized Java threads, see chapter 17 of the Java
Language Specification [1].

Example 76: Mutual Exclusion
A Printer thread forever prints a (-) followed by a (/). If we create and run two concurrent printer
threads using new Printer().start() and new Printer().start(), then only one of the threads
can hold the lock on object mutex at a time, so no other symbols can be printed between (-) and (/) in
one iteration of the for loop. Thus the program must print -/-/-/-/-/-/-/ and so on. However, if the
synchronization is removed, it may print --//--/-/-//--// and so on. The call Util.pause(n)
pauses the thread for 200 ms, whereas Util.pause (100, 300) pauses it between 100 and 300 ms.
This is done only to make the inherent nondeterminacy of unsynchronized concurrency more easily
observable.

class Printer extends Thread {

 static Object mutex = new Object();

 public void run() {

 for (;;) {

 synchronized (mutex) {

 System.out.print("-");

 Util.pause(100, 300);

 System.out.print("/");

 }

 Util.pause(200);

} } }

Example 77: Synchronized Methods in an Object

The Bank object here has two accounts. Money is repeatedly being transferred from one account to the
other by clerks. Clearly the total amount of money should remain constant (at 30 euro). This holds true
when the transfer method is declared synchronized, because only one clerk can access the accounts at
any one time. If the synchronized declaration is removed, the sum will differ from 30 most of the time,
because one clerk is likely to overwrite the other's deposits and withdrawals.

class Bank {

 private int account1 = 10, account2 = 20;

 synchronized public void transfer(int amount) {

 int new1 = account1 - amount;

 70

 Util.pause(10);

 account1 = new1; account2 = account2 + amount;

 System.out.println("Sum is " + (account1+account2));

} }

class Clerk extends Thread {

 private Bank bank;

 public Clerk(Bank bank) { this.bank = bank; }

 public void run() {

 for (;;) { // Forever

 bank.transfer(Util.random(-10, 10)); // transfer money

 Util.pause(200, 300); // then take a break

} } }

... Bank bank = new Bank();

... new Clerk(bank).start(); new Clerk(bank).start();

15.3 Operations on Threads
The current thread, whose state is Running, may call these methods among others. Further Thread
methods are described in the Java class library documentation [3].

 Thread.yield() changes the state of the current thread from Running to Enabled, and
thereby allows the system to schedule another Enabled thread, if any.

 Thread.sleep(n) sleeps for n milliseconds: the current thread becomes Sleeping and
after n milliseconds becomes Enabled. May throw InterruptedException if the thread is
interrupted while sleeping.

 Thread.currentThread() returns the current thread object.
 Thread.interrupted() returns and clears the interrupted status of the current thread:

true if there has been no call to Thread.interrupted() and no InterruptedException
thrown since the last interrupt; otherwise false.

Let u be a thread (an object of a subclass of Thread). Then
 u.start() changes the state of u to Enabled so that its run method will be called when a

processor becomes available.
 u.interrupt() interrupts the thread u: if u is Running or Enabled or Locking, then its

interrupted status is set to true. If u is Sleeping or Joining, it will become Enabled, and if
it is Waiting, it will become Locking; in these cases u will throw InterruptedException when
and if it becomes Running (and the interrupted status is set to false).

 u.isInterrupted() returns the interrupted status of u (and does not clear it).
 u.join() waits for thread u to die; may throw InterruptedException if the current thread is

interrupted while waiting.
 u.join(n) works as u. join() but times out and returns after at most n milliseconds.

There is no indication whether the call returned because of a timeout or because u died.

 71

Operations on Locked Objects
A thread that holds the lock on an object o may call the following methods, inherited by o from class
Object.

 o.wait() releases the lock on o, changes its own state to Waiting, and adds itself to
the set of threads waiting for notification on o. When notified (if ever), the thread must
obtain the lock on o, so when the call to wait returns, it again holds the lock on o. May
throw InterruptedException if the thread is interrupted while waiting.

 o.wait(n) works like o.wait() except that the thread will change state to Locking
after n milliseconds regardless of whether there has been a notification on o. There is
no indication whether the state change was caused by a timeout or because of a
notification.

 o.notify () chooses an arbitrary thread among the threads waiting for notification on
o (if any) and changes its state to Locking. The chosen thread cannot actually obtain the
lock on o until the current thread has released it.

 o.notifyAll() works like o.notify(), except that it changes the state to Locking
for all threads waiting for notification on o.

Example 78: Producers and Consumers Communicating via a Monitor
A Buffer has room for one integer, and has a method put for storing into the buffer (if empty) and a
method get for reading from the buffer (if nonempty); it is a monitor (section 15.2). A thread calling get
must obtain the lock on the buffer. If it finds that the buffer is empty, it calls wait to (release the lock and)
wait until something has been put into the buffer. If another thread calls put and thus notify, then the
getting thread will start competing for the buffer lock again, and if it gets it, will continue executing. Here
we have used a synchronized statement in the method body (instead of making the method
synchronized, as is normal for a monitor) to emphasize that synchronization, wait, and notify all
work on the same buffer object this.

class Buffer

 private int contents;

 private boolean empty = true;

 public int get() {

 synchronized (this) {

 while (empty)

 try { this.wait(); } catch (InterruptedException x) {};

 empty = true;

 this.notify();

 return contents;

 } }

 public void put(int v) {

 synchronized (this) {

 while (!empty)

 try { this.wait(); } catch (InterruptedException x) {};

 empty = false;

 contents = v;

 72

 this.notify();

 } }

}

Example 79: Graphic Animation Using the Runnable Interface
Class AnimatedCanvas here is a subclass of Canvas and so cannot be a subclass of Thread also. Instead
it declares a run method and implements the Runnable interface. The constructor creates a Thread object
u from the AnimatedCanvas object this and then starts the thread. The new thread executes the run
method, which repeatedly sleeps and repaints, thus creating an animation.

class AnimatedCanvas extends Canvas implements Runnable {

 AnimatedCanvas() { Thread u = new Thread(this); u.start(); }

 public void run() { // From interface Runnable

 for (;;) { // Forever sleep and repaint

 try { Thread.sleep(100); } catch (InterruptedException e) { }

 ...

 repaint();

 }

 }

 public void paint(Graphics g) { ... } // From class Canvas

 ...

}

 73

Chapter 16: Compilation, Source Files, Class Names,
and Class Files
A Java program consists of one or more source files (with file name suffix .java). A source file may
contain one or more class or interface declarations. A source file can contain at most one declaration of
a top-level public class or interface, which must then have the same name as the file (minus the file
name suffix). A source file myprog.java is compiled to Java class files (with file name suffix .class)
by a Java compiler:
 javac myprog.java
This creates one class file for each class or interface declared in the source file myprog.java. A class
or interface C declared in a top-level declaration produces a class file called C.class. A nested class
or interface D declared inside class C produces a class file called C$D.class. A local class D declared
inside a method in class C produces a class file called C1D.class or similar.
A Java class C that declares the method public static void main(String[] args) can be
executed using the Java run-time system java by typing a command line of the form

 java C arg1 arg2 ...
This will execute the body of method main with the command line arguments arg1, arg2, ... bound to
the array elements args[0], args[1],... inside the method main (examples 6 and 84).

 74

Chapter 17: Packages and Jar Files
Java source files may be organized in packages. Every source file in package p must begin with the
declaration
 package p;
and must be stored in a subdirectory called p. A class declared in a source file with no package
declaration belongs to the anonymous default package. A source file not belonging to package p may
refer to class C from package p by using the qualified name p. C, in which the class name C is prefixed
by the package name. To avoid using the package name prefix, the source file may begin with an
import declaration (possibly following a package declaration) of one of these forms:
 import p.C;
 import p.*;
The former allows C to be used unqualified, without the package name, and the latter allows all
accessible classes and interfaces in package p to be used unqualified. The Java class library package
java. lang is implicitly imported into all source files, as if by import java. lang.*, so all java.
lang classes can be used un-qualified in Java source files. Note that java. lang is a composite
package name, so class java. lang. String is declared in file java/lang/String. java.
The files in p and its subdirectories can be put into a jar file called p. jar using the program jar:
 jar vcf p.jar p
The packages in a jar file can be made available to other Java programs by moving the file to the
directory /usr/java/j2sdk1.4.0/jre/lib/ext or similar under Unix, or to the directory
c:\jdk1.4\jre\lib\ext or similar under MS Windows. The jar file may contain more than one
package; it need only contain class files (not source files); and its name is not significant.

Example 80: The Vessel Hierarchy as a Package
The package vessel here contains part of the vessel hierarchy (example 19). The fields in classes Tank
and Barrel are final, so they cannot be modified after object creation. They are protected, so they are
accessible in subclasses declared outside the vessel package, as shown in file Usevessels.java,
which is in the anonymous default package, not in the vessel package.
The file vessel/Vessel.java

package vessel;

public abstract class Vessel {

 private double contents;

 public abstract double capacity();

 public final void fill(double amount)

 { contents = Math.min(contents + amount, capacity()); }

 public final double getContents() { return contents; }

}
The file vessel/Tank.java

package vessel;

public class Tank extends Vessel {

 protected final double length, width, height;

 public Tank(double l, double w, double h) { length = 1; width = w; height = h; }

 public double capacity() { return length * width * height; }

 public String toString()

 75

 { return "tank (l,w,h) = (" + length + ", " + width + ", " + height + ")"; }

}
The file vessel/Barrel.java

package vessel;

public class Barrel extends Vessel {

 protected final double radius, height;

 public Barrel(double r, double h) { radius = r; height = h; }

 public double capacity() { return height * Math.PI * radius * radius; }

 public String toString() { return "barrel (r, h) = (" + radius + ", " + height + ")"; }

}
The file Usevessels.java
Subclass Cube of class Tank may access the field length because that field is declared protected in
Tank above. The main method is unmodified from example 20.

import vessel.*;

class Cube extends Tank {

 public Cube(double side) { super(side, side, side); }

 public String toString() { return "cube (s) = (" + length + ")"; }

}

class Usevessels {

 public static void main(String[] args) { ... }

}

 76

Chapter 18: Mathematical Functions
Class Math provides static methods to compute standard mathematical functions. Floating-point
numbers (double and float) include positive and negative infinities as well as nonnumbers
(NaN), following the IEEE754 standard [6]. There is also a distinction between positive zero and
negative zero, ignored here.
The Math methods return nonnumbers (NaN) when applied to illegal arguments, and return
infinities in case of overflow; they do not throw exceptions. Also, the methods return NaN when
applied to NaN arguments, except where noted, and behave sensibly when applied to positive or
negative infinities.

Angles are given and returned in radians, not degrees. Methods that round to nearest integer will
round to the nearest even integer in case of a tie.
The methods abs, min, and max are overloaded on float, int, and long arguments also.
 static double E is the constant e ≈ 2.71828, the base of the natural logarithm.
 static double PI is the constant π ≈ 3.14159, the circumference of a circle with

diameter 1.
 static double abs(double x) is the absolute value: x if x>=0, and -x if x<0.
 static double acos(double x) is the arc cosine of x, in the range [0,π], for -

1<=x<=1.
 static double asin(double x) is the arc sine of x, in the range [—π/2,π/2], for -

1<=x<=1.
 static double atan(double x) is the arc tangent of x, in the range [—π/2,π/2].
 static double atan2(double y, double x) is the arc tangent of y/x in the

quadrant of the point (x, y), in the range] — π,π]. When x is 0, the result is π/2 with the
same sign as y.

 static double ceil(double x) is the smallest integral double value >=x.
 static double cos(double x) is the cosine of x, in the range [—1,1].
 static double exp(double x) is the exponential of x, that is, e to the power x.
 static double floor(double x) is the largest integral double value <=x.
 static double IEEEremainder(double x, double y) is the remainder of x/y,

that is, x-y*n, where n is the mathematical integer closest to x/y.
 static double log(double x) is the natural logarithm (to base e) of x, for x>=0.
 static double max(double x, double y) is the greatest of x and y.
 static double min(double x, double y) is the smallest of x and y.
 static double pow(double x, double y) is x to the power y, that is, xy. If y is 0,

then the result is 1.0. If y is 1, then the result is x. If x<0 and y is not integral, then the
result is NaN.

 static double random() returns a uniformly distributed pseudo-random number in
[0,1[.

 static double rint(double x) is the integral double value that is closest to x.
 static long round(double x) is the long value that is closest to x.
 static int round(float x) is the int value that is closest to x.
 static double sin(double x) is the sine of x radians.
 static double sqrt(double x) is the positive square root of x, for x>=0.
 static double tan(double x) is the tangent of x radians.
 static double toDegrees(double r) is the number of degrees corresponding to r

radians.
 static double toRadians(double d) is the number of radians corresponding to d

degrees.
Example 81: Floating-Point Factorial
This method computes the factorial function n! = 1∙2∙3∙∙∙(n—1)∙n using logarithms.
static double fact(int n) {

 double res = 0.0;
 for (int i=1; i<=n; i++)

 77

 res += Math.log(i);
 return Math.exp(res);
}

Example 82: Generating Gaussian Pseudo-Random Numbers
This example uses the Box-Muller transformation to generate N Gaussian, or normally distributed,
pseudorandom numbers with mean 0 and standard deviation 1.
for (int i=0; i<N; i+=2) {
 double x1 = Math.random(), x2 = Math.random();
 print(Math.sqrt(-2 * Math.log (x1)) * Math.cos(2 * Math.PI * x2));
 print(Math.sqrt (-2 * Math.log(x1)) * Math.sin(2 * Math.PI * x2));
}

Example 83: Mathematical Functions: Infinities, NaNs, and Special Cases
print("Illegal arguments, NaN results:");

print(Math.sqrt(-1)); // NaN

print(Math.log(-1)); // NaN

print(Math.pow(-1, 2.5)); // NaN

print(Math.acos(1.1)); // NaN

print("Infinite results:");

print(Math.log(0)); // -Infinity

print(Math.pow(0, -1)); // Infinity

print(Math.exp(1000.0)); // Infinity (overflow)

print("Infinite arguments:");

double infinity = Double.POSITIVE_INFINITY;

print(Math.sqrt(infinity)); // Infinity

print(Math.log(infinity)); // Infinity

print(Math.exp(-infinity)); // 0.0

print("NaN arguments and special cases:");

double nan = Math.log(-1);

print(Math.sqrt(nan)); // NaN

print(Math.pow(nan, 0)); // 1.0 (special case)

print(Math.pow(0, 0)); // 1.0 (special case)

print(Math.round(nan)); // 0 (special case)

print(Math.round(1E50)); // 9223372036854775807 (Long.MAX_VALUE)

// For all (x, y) except (0.0, 0.0):
// sign(cos(atan2(y, x))) == sign(x) && sign(sin(atan2(y, x))) == sign(y)
for (double x=-100; x<=100; x+=0.125) {

 78

 for (double y=-100; y<=100; y+=0.125) {
 double r = Math.atan2(y, x);
 if (!(sign(Math.cos(r))==sign(x) && sign(Math.sin(r))==sign(y)))
 print("x = " + x + "; y = " + y);
 }
}

 79

Chapter 19: String Buffers
A String object s1, once created, cannot be modified. Using s1 + s2 one can append another
string s2 to s1, but that creates a new string object, copying all the characters from s1 and s2;
there is no way to extend s1 itself by appending more characters to it. Thus to concatenate n
strings each of length k by repeated string concatenation (+), we copy k+2k+3k+∙∙∙∙∙+nk = kn(n+
1)/2 characters, and the time required to do this is proportional to kn2, which grows rapidly as n
grows.
String buffers, which are objects of the predefined class StringBuffer, provide extensible and
modifiable strings. Characters can be appended to a string buffer without copying those characters
already in the string buffer; the string buffer is automatically and efficiently extended as needed. To
concatenate n strings each of length k using a string buffer requires only time proportional to kn,
considerably faster than kn2 for large n. Thus to gradually build a string, use a string buffer. This is
needed only for repeated concatenation in a loop, as in example 6. The expression s1 + ∙∙∙ +
sn is efficient; it actually means new StringBuffer() .append(s1) ∙∙∙ append (sn)
.toString().
Let sb be a StringBuffer, s a String, and v an expression of any type. Then
 new StringBuffer() creates a new empty string buffer.
 sb.append(v) appends the string representation of the value v to the string buffer,

converting v by String.valueOf(v), see chapter 7. Extends sb as needed. Returns
sb.

 sb.charAt(int i) returns character number i (counting from zero) in the string buffer.
Throws String-IndexOutOfBoundsException if i<0 or i>=sb.length().

 sb.delete(from, to) deletes the characters with index from.. (to-1) from the
string buffer, reducing its length by to-from characters. Throws
StringlndexOutOfBoundsException if from<0 or from>to or to>sb.length().
Returns sb.

 sb.insert(from, v) inserts the string representation of v obtained by
String.valueOf(v) into the string buffer, starting at position from, extending sb as
needed. Returns sb. Throws StringlndexOutOf-BoundsException if from<0 or
from>sb.length().

 sb.length() of type int is the length of sb, that is, the number of characters currently
in sb.

 sb.replace(from, to, s) replaces the characters with index from.. (to-1) in the
string buffer by the string s, extending sb if needed. Throws
StringlndexOutOfBoundsException if from<0 or from>to or from>sb.length().
Returns sb.

 sb.reverse() reverses the character sequence in the string buffer. Returns sb.
 sb.setCharAt(i, c) sets the character at index i to c. Throws

StringlndexOutOfBoundsException if i<0 or i>=sb.length().
 sb.toString() of type String is a new string containing the characters currently in sb.
 Method append is fast, but delete, insert, and replace may be slow when they need

to move large parts of the string buffer — when from and to are much smaller than
length().

 Operations on a StringBuffer object are thread-safe: several concurrent threads (chapter
15) can modify the same string buffer without making its internal state inconsistent.

 More StringBuffer methods are described in the Java class library documentation [3].
Example 84: Efficiently Concatenating All Command Line Arguments
When there are many (more than 50) command line arguments, this is much faster than example
6.
public static void main(String[] args) {

 StringBuffer res = new StringBuffer();
 for (int i=0; i<args.length; i++)
 res.append(args[i]);
 System.out.println(res.toString());
}

 80

Example 85: Replacing Occurrences of a Character by a String
To replace occurrences of character c1 with the string s2 in string s, it is best to use a string buffer
for the result, since the size of the resulting string is not known in advance. This works well also
when replacing a character cl with another character c2, but in that case the length of the result is
known in advance (it equals the length of s) and one can use a character array instead (example
13). Solving this problem by repeated string concatenation (using res += s2) would be very slow.
static String replaceCharString(String s, char c1, String s2) {

 StringBuffer res = new StringBuffer();
 for (int i=0; i<s.length(); i++)
 if (s.charAt(i) == cl)
 res.append(s2);
 else
 res.append(s.charAt(i));
 return res.toString();
}

Example 86: Inefficiently Replacing Occurrences of a Character by a String
The problem from example 85 can also be solved by destructively modifying a string buffer with
replace. However, repeatedly using replace is inefficient: for a string of 200,000 random
characters this method is approximately 100 times slower than the one in example 85.
static void replaceCharString(StringBuffer sb, char cl, String s2) {

 int i = 0; // Inefficient
 while (i < sb.length()) { // Inefficient
 if (sb.charAt(i) == cl) { // Inefficient
 sb.replace(i, i+1, s2); // Inefficient
 i += s2.length(); // Inefficient
 } else // Inefficient
 i += 1; // Inefficient
} } // Inefficient

Example 87: Padding a String to a Given Width
A string s may be padded with spaces to make sure that it has a certain minimum size width. This
is useful for aligning numbers into columns when using a fixed-pitch font (example 103).
static String padLeft(String s, int width) {

 StringBuffer res = new StringBuffer();
 for (int i=width-s.length(); i>0; i--)
 res.append(' ');
 return res.append(s).toString();
}

 81

Chapter 20: Collections and Maps
Overview
The Java class library package java.util provides collection classes and map classes:

 A collection, described by interface Collection (section 20.1), is used to group and handle
many distinct elements as a whole.

 A list, described by interface List (section 20.2), is a collection whose elements can be
traversed in insertion order. Implemented by the classes LinkedList (for linked lists,
double-ended queues, and stacks) and ArrayList (for dynamically extensible arrays and
stacks).

 A set, described by interface Set (section 20.3), is a collection that cannot contain duplicate
elements. Implemented by the classes HashSet and LinkedHashSet.

A sorted set, described by interface SortedSet (section 20.4), is a set whose elements are
ordered: either the elements implement method compareTo specified by interface
Comparable, or the set's ordering is given explicitly by an object of type Comparator (section
20.8). Implemented by class TreeSet.

 A map, described by interface Map (section 20.5), represents a mapping from a key to at
most one value for each key. Implemented by the classes HashMap, IdentityHashMap,
and LinkedHashMap.

A sorted map, described by interface SortedMap (section 20.6), is a map whose keys are
ordered, as for SortedSet. Implemented by class TreeMap.

The relations between the standard interfaces and concrete implementation classes, and the
intermediate abstract classes, are shown in the following figure. User-defined implementation classes
can be conveniently defined as subclasses of the abstract classes, see the Java class library
documentation on package java.util [3]. Solid arrows denote the subinterface and subclass
relations, and dashed arrows indicate the "implements" relation between a class and an interface.

Example 88: Using the Concrete Collection and Map Classes
Here we create instances of five concrete collection classes and add some String elements to them. For
each collection, we call method traverse in example 91 to print its elements.
We also create instances of three concrete map classes and add some entries to them. For each map, we
call traverse separately on the set of keys and the collection of values of that map.
Note that TreeSet, which implements SortedSet, guarantees that the elements will be traversed in the
order specified by the compareTo method (section 20.8) of the elements, and LinkedHashSet guarantees
that the elements will be traversed in insertion order, whereas HashSet provides no such guarantee.
Similarly, a TreeMap guarantees traversal in key order, and LinkedHashMap guarantees traversal in key
insertion order, whereas HashMap does not guarantee any particular order.

import java.util.*;

class CollectionAll {

 public static void main(String[] args) {

 List /* of String */ list1 = new LinkedList();

 82

 list1.add("list"); list1.add("dup"); list1.add("x"); list1.add("dup");

 traverse(list1); // Must print: list dup x dup

 List /* of String */ list2 = new ArrayList();

 list2.add("list"); list2.add("dup"); list2.add("x"); list2.add("dup");

 traverse(list2); // Must print: list dup x dup

 Set /* of String */ set1 = new HashSet();

 set1.add("set"); set1.add("dup"); set1.add("x"); set1.add("dup");

 traverse(set1); // May print: x dup set

 SortedSet /* of String */ set2 = new TreeSet();

 set2.add("set"); set2.add("dup"); set2.add("x"); set2.add("dup");

 traverse(set2); // Must print: dup set x

 LinkedHashSet /* of String */ set3 = new LinkedHashSet();

 set3.add("set"); set3.add("dup"); set3.add("x"); set3.add("dup");

 traverse(set3); // Must print: set dup x

 Map /* from String to String */ ml = new HashMap();

 m1.put("map", "J"); ml.put("dup", "K"); m1.put("x", "M"); m1.put("dup", "L");

 traverse(m1.keySet()); // May print: x dup map

 traverse(m1.values()); // May print: M L J

 SortedMap /* from String to String */ m2 = new TreeMap();

 m2.put("map", "J"); m2.put("dup", "K"); m2.put("x", "M"); m2.put("dup", "L");

 traverse(m2.keySet()); // Must print: dup map x

 traverse(m2.values()); // Must print: L J M

 LinkedHashMap /* from String to String */ m3 = new LinkedHashMap();

 m3.put("map", "J"); m3.put("dup", "K"); m3.put("x", "M"); m3.put("dup", "L");

 traverse(m3.keySet()); // Must print: map dup x

 traverse(m3.values()); // Must print: J L M

 }

 static void traverse(Collection coll) { ... }

}

 83

20.1 The Collection Interface
The Collection interface describes the following methods:

 boolean add(Object o) adds element o to the collection; returns true if the element
was added, false if the collection disallows duplicates and contains an element equal to
o already.

 boolean addAll(Collection coll) adds all elements of coll to the collection; returns
true if any element was added.

 void clear() removes all elements from the collection.
 boolean contains(Object o) returns true if any element of the collection equals o.
 boolean containsAll(Collection coll) returns true if the collection contains all

elements of coll.
 boolean isEmpty() returns true if the collection has no elements.
 Iterator iterator() returns an iterator (section 20.7) over the elements of the

collection.
 boolean remove(Object o) removes a single instance of element o from the collection;

returns true if the collection contained such an element.
 boolean removeAll(Collection coll) removes all those elements that are also in

coll; returns true if any element was removed. No element of the resulting collection
equals an element of coll.

 boolean retainAll(Collection coll) retains only those elements that are also in
coll; returns true if any element was removed.

 int size() returns the number of elements in the collection.
 Object[] toArray() returns an array of all the elements of the collection.
 Object[] toArray(Object[] a) works like the preceding, but the array's element type

is that of a.
The elements of a collection, and the keys and values of a map, must be objects or arrays. For
elements of primitive type, such as int, use a wrapper class such as Integer (section 5.1).
When inserting an element of class C into a collection, it is cast to type Object, and when extracting it
again, it is (usually) cast back to type C. These casts are checked only at run-time, not by the compiler,
so programs that use collections are essentially dynamically typed: the Java compiler will not prevent
you from adding a String to a set of Integer objects. For this reason it is recommended to document
the intended collection element types by program comments, and to use explicit casts (section 11.12)
whenever an element is extracted from a collection or map.
A view of a collection co1 is a another collection co2 that refers to the same underlying data structure.
As a consequence, modifications to co1 affect co2, and modifications to co2 affect co1.
An unmodifiable collection does not admit modification: the operations add, clear, remove, set, and
so on throw UnsupportedOperationException. The utility class Collections (section 20.9) provides static
methods to create an unmodifiable view of a given collection.
A synchronized collection is thread-safe: several concurrent threads can safely access and modify it.
For efficiency, the standard collection classes are not synchronized, so concurrent modification of a
collection may make its internal state inconsistent. The utility class Collections (section 20.9) provides
static methods to create a synchronized view of a given collection. All concurrent access to a collection
should go through its synchronized view. An iterator (section 20.7) obtained from a synchronized
collection coll does not automatically provide synchronized iteration; one must use synchronized
(coll) { ... } to explicitly ensure exclusive access to the collection during the execution of the
block { ... } that performs the iteration.

20.2 The List Interface and the LinkedList and ArrayList
Implementations
The List interface extends the Collection interface with operations for position-based access using
indexes 0,1,2,... and gives more precise specifications of some methods:

 void add(int i, Object o) adds element o at position i, increasing the index of any
element to the right by 1. Throws IndexOutOfBoundsException if i<0 or i>size ().

 boolean addAll(int i, Collection coll) adds all elements of coll to the list,
starting at position i; returns true if any element was added. Throws
IndexOutOfBoundsException if i<0 or i>size().

 84

 boolean equals(Object o) returns true if o is a List with equal elements in the same
order.

 Object get(int i) returns the element at position i; throws
IndexOutOfBoundsException if i<0 or i>=size().

 int hashCode() returns the hash code of the list, which is a function of the hash codes of
the elements and their order in the list.

 int indexOf(Object o) returns the least index i for which the element at position i
equals o; returns —1 if the list does not contain such an element.

 int lastIndexOf(Object o) returns the greatest index i for which the element at
position i equals o; returns —1 if the list does not contain such an element.

 ListIterator listIterator() returns a list iterator, which is a bidirectional iterator.
 Object remove(int i) removes the element at position i and returns it; throws

IndexOutOfBoundsException if i<0 or i>=size().
 Object set(int i, Object o) sets the element at position i to o and returns the

element previously at position i; throws IndexOutOfBoundsException if i<0 or i>=size
().

 List subList(int from, int to) returns a list of the elements at positions
from..(to-1), as a view of the underlying list. Throws IndexOutOfBoundsException if
from<0 or from>to or to>size().

The LinkedList class implements all the operations described by the List interface and has the following
constructors. The implementation is a doubly linked list, so elements can be accessed, added, and
removed efficiently at either end of the list. It therefore provides additional methods for position-based
get, add, and remove called addFirst, addLast, getFirst, getLast, removeFirst, and
removeLast. The latter four throw NoSuchElementException if the list is empty.

 LinkedList() creates a new empty LinkedList.
 LinkedList(Collection coll) creates anew LinkedList of the elements provided by

coll's iterator.

The ArrayList class implements all the operations described by the List interface and has the following
constructors. The implementation uses an underlying array (expanded as needed to hold the elements),
which permits efficient position-based access anywhere in the list. Class ArrayList implements the
RandomAccess interface just to indicate that element access by index is guaranteed to be fast, in
contrast to LinkedList. The ArrayList class provides all the functionality originally provided by the Vector
class (which is a subclass of AbstractList and implements List and RandomAccess).

 ArrayList() creates a new empty list.
 ArrayList(Collection coll) creates a new ArrayList of the elements provided by

coll's iterator.

20.3 The Set Interface and the HashSet and LinkedHashSet
Implementations
The Set interface describes the same methods as the Collection interface. The methods add and
addAll must make sure that a set contains no duplicates: no two equal elements and at most one
null element. Also, the methods equals and hashCode have more precise specifications for Set
objects:

 boolean equals(Object o) returns true if o is a Set with the same number of
elements, and every element of o is also in this set.

 int hashCode() returns the hash code of the set: the sum of the hash codes of its non-
null elements.

For Set arguments, addAll computes set union, containsAll computes set inclusion, removeAll
computes set difference, and retainAll computes set intersection (example 97).
The HashSet class implements the Set interface and has the following constructors. Operations on a
Hash-Set rely on the equals and hashCode methods of the element objects.

 HashSet() creates an empty set.
 HashSet(Collection coll) creates a set containing the elements of coll, without

duplicates.

 85

The LinkedHashSet class is a subclass of HashSet and works the same way but additionally
guarantees that its iterator traverses the elements in insertion order (rather than the unpredictable order
provided by HashSet). It was introduced in Java 2, version 1.4.

20.4 The SortedSet Interface and the TreeSet Implementation
The SortedSet interface extends the Set interface. Operations on a SortedSet rely on the natural
ordering of the elements defined by their compareTo method, or on an explicit Comparator object
provided when the set was created (section 20.8), as for TreeSet below.

 Comparator comparator() returns the Comparator associated with this sorted set, or
null if it uses the natural ordering (section 20.8) of the elements.

 Object first() returns the least element; throws NoSuchElementException if set is
empty.

 SortedSet headSet(Object to) returns the set of all elements strictly less than to. The
resulting set is a view of the underlying set.

 Object last() returns the greatest element; throws NoSuchElementException if set is
empty.

 SortedSet subSet(Object from, Object to) returns the set of all elements greater
than or equal to from and strictly less than to. The resulting set is a view of the
underlying set.

 SortedSet tailSet(Object from) returns the set of all elements greater than or equal
to from. The resulting set is a view of the underlying set.

The TreeSet class implements the SortedSet interface and has the following constructors. The
implementation uses balanced binary trees, so all operations are guaranteed to be efficient.

 TreeSet() creates an empty set, ordering elements using their compareTo method.
 TreeSet(Collection coll) creates a set containing the elements of coll, without

duplicates, ordering elements using their compareTo method.
 TreeSet(Comparator cmp) creates an empty set, ordering elements using cmp.
 TreeSet(SortedSet s) creates a set containing the elements of s, ordering elements as

in s.

20.5 The Map Interface and the HashMap Implementation
The Map interface describes the following methods. A map can be considered a collection of entries,
where an entry is a pair (k, v) of a key k and a value v, both of which must be objects or arrays. Thus
to use values of primitive type, such as int, as keys or values, one must use the corresponding
wrapper class, such as Integer(section 5.1). A map can contain no two entries with the same key.

 void clear() removes all entries from this map.
 boolean containsKey(Object k) returns true if the map has an entry with key k.
 boolean containsValue(Object v) returns true if the map has an entry with value v.
 Set entrySet() returns a set view of the map's entries; each entry has type Map.Entry

(see below).
 boolean equals(Object o) returns true if o is a Map with the same entry set.
 Object get(Object k) returns the value v in the entry (k, v) with key k, if any;

otherwise null.
 int hashCode() returns the hash code for the map, computed as the sum of the hash

codes of the entries returned by entrySet().
 boolean isEmpty() returns true if this map contains no entries, that is, size() is zero.
 Set keySet() returns a set view of the keys in the map.
 Object put(Object k, Object v) modifies the map so that it contains the entry (k,

v); returns the value previously associated with key k, if any; else returns null.
 void putAll(Map map) copies all entries from map to this map.
 Object remove(Object k) removes the entry for key k from the map, if any; returns the

value previously associated with k, if any; else returns null.
 int size() returns the number of entries, which equals the number of keys, in the map.
 Collection values() returns a collection view of the values in the map.

The Map.Entry interface (example 92) describes operations on map entries:
 Object getKey() returns the key in this entry.

 86

 Object getValue() returns the value in this entry.
The HashMap class implements the Map interface and has the following constructors. Operations on a
HashMap rely on the equals and hashCode methods of the key objects.

 HashMap() creates an empty HashMap.
 HashMap(Map map) creates a HashMap containing the entries map.

The LinkedHashMap class is a subclass of HashMap and works the same way but additionally
guarantees that its iterator traverses the entries in key insertion order (rather than the unpredictable
order provided by HashMap). It was introduced in Java 2, version 1.4.
The IdentityHashMap class implements the Map interface but compares keys using reference equality
(==) instead of the equals method. It was introduced in Java 2, version 1.4.

20.6 The SortedMap Interface and the TreeMap Implementation
The SortedMap interface extends the Map interface. Operations on a SortedMap rely on the natural
ordering of the keys defined by their compareTo method or on an explicit Comparator object provided
when the map was created (section 20.8), as for TreeMap below.

 Comparator comparator() returns the Comparator associated with this sorted map, or
null if it uses the natural ordering (section 20.8) of the keys.

 Object firstKey() returns the least key in this sorted map; throws
NoSuchElementException if the map is empty.

 SortedMap headMap(Obj ect to) returns the sorted map of all entries whose keys are
strictly less than to. The resulting map is a view of the underlying map.

 Object lastKey() returns the greatest key in this sorted map; throws
NoSuchElementException if the map is empty.

 SortedMap subMap(Object from, Object to) returns the sorted map of all entries
whose keys are greater than or equal to from and strictly less than to. The resulting map
is a view of the underlying map.

 SortedMap tailMap(Object from) returns the sorted map of all entries whose keys are
greater than or equal to from. The resulting map is a view of the underlying map.

The TreeMap class implements the SortedMap interface and has the following constructors. The
implementation uses balanced ordered binary trees, so all operations are guaranteed to be efficient.

 TreeMap() creates an empty map, ordering entries using the compareTo method of the
keys.

 TreeMap(Map map) creates a map containing the entries of map, ordering entries using the
compareTo method of the keys.

 TreeMap(Comparator cmp) creates an empty map, ordering entries using cmp on the
keys.

 TreeMap(SortedMap s) creates a map containing the entries of s, ordering entries as in
s.

Example 89: Building a Concordance
This method reads words (alphanumeric tokens) from a text file and creates a concordance, which shows
for each word the line numbers of its occurrences. The resulting concordance indexis a SortedMap from
String to SortedSet of Integer.

static SortedMap buildIndex(String filename) throws IOException {

 Reader r = new BufferedReader(new FileReader(filename));

 StreamTokenizer stok = new StreamTokenizer(r);

 stok.quoteChar('"'); stok.ordinaryChars('!', '/');

 stok.nextToken();

 SortedMap index = new TreeMap(); // Map from String to Set of Integer

 while (stok.ttype != StreamTokenizer.TT_EOF) {

 87

 if (stok.ttype == StreamTokenizer.TT_WORD) {

 SortedSet ts;

 if (index.containsKey(stok.sval)) // If word has a set, get it

 ts = (SortedSet)index.get(stok.sval);

 else {

 ts = new TreeSet(); // Otherwise create one

 index.put(stok.sval, ts);

 }

 ts.add(new Integer(stok.lineno()));

 }

 stok.nextToken();

 }

 return index;

}

Example 90: Storing the Result of a Database Query
This method executes a database query, using classes from the java.sql package. It returns the result
of the query as an ArrayList with one element for each row in the result. Each row is stored as a HashMap,
mapping a result field name to an object (e.g., an Integer or String) holding the value of that field in that
row. This is a simple and useful way to separate the database query from the processing of the query
result (but it may be too inefficient if the query result is very large).

static ArrayList getRows(Connection conn, String query)

 throws SQLException {

 Statement stmt = conn.createStatement();

 ResultSet rset = stmt.executeQuery(query);

 ResultSetMetaData rsmd = rset.getMetaData();

 int columncount = rsmd.getColumnCount();

 ArrayList queryResult = new ArrayList(); // List of Map from String to Object

 while (rset.next()) {

 Map row = new HashMap();
 for (int i=1; i<=columncount; i++)
 row.put(rsmd.getColumnName(i), rset.getObject(i));
 queryResult.add(row);
 }
 return queryResult;
}

 88

20.7 Going Through a Collection: Iterator
The Iterator interface provides a standardized way to go through the elements of collections. An Iterator
is typically created and used as shown in example 91. The body of the while loop should not modify
the iterator or the underlying collection; if it does, the result is unpredictable. In fact, the concrete
classes ArrayList, LinkedList, HashMap, HashSet, TreeMap, and TreeSet produce fail-fast iterators: if
the underlying collection is structurally modified (except by the iterator's remove method) after an
iterator has been obtained, then a ConcurrentModificationException is thrown. The Iterator interface
describes the following methods:

Example 91: Iteration over a Collection
This method prints the elements of the given collection coll; it is called in example 88. This is the
prototypical way to iterate over a collection. The declaration of elem and the type cast immediately inside
the while loop shows that we expect the collection's elements to have class String.

static void traverse(Collection coll) {

 Iterator iter = coll.iterator();

 while (iter.hasNext()) {

 String elem = (String)iter.next();

 System.out.print(elem + " ");

 }

 System.out.println();

}

 boolean hasNext() returns true if a call to next() will return a new element.
 Object next() returns the next element and advances past that element, if any; throws

NoSuchElementException if there is no next element.
 void remove() removes the last element returned by the iterator; throws

IllegalStateException if no element has been returned by the iterator yet, or if the element
has been removed already. Throws UnsupportedOperationException if remove is not
supported.

An iterator obtained from a List will traverse the elements in the order of the list. An iterator obtained
from SortedSet, or from the keys or values of a SortedMap, will traverse the elements in the order of the
set elements or the map keys. An iterator obtained from a HashSet will traverse the elements in some
unpredictable order. An Iterator provides all the functionality originally provided by the Enumeration
interface but has different (shorter) method names.

20.8 Equality, Comparison, and Hash Codes
The elements of a collection must have the equals method. If the elements have a hashCode method,
they can be used as HashSet elements or HashMap keys. If they have the compareTo method
described by the java.lang.Comparable interface, they can be used as TreeSet elements or
TreeMap keys. The primitive type wrapper classes (section 5.1) and the String class all have equals,
hashCode, and compareTo methods.

 boolean equals(Object o) determines the equality of two objects. It is used by
ArrayList, LinkedList, HashSet, and HashMap. It should satisfy o.equals(o); if
o1.equals(o2), then also o2.equals(o1); and if o1.equals(o2) and
o2.equals(o3), then also o1.equals(o3) for non-null o1, o2, and o3.

 int hashCode() returns the hash code of an object. It is used by HashSet and HashMap.
It should satisfy that if o1.equals(o2), then o1.hashCode () ==o2.hashCode().

 int compareTo(Object o), described by the interface Comparable, performs a three-
way comparison of two objects: o1.compareTo(o2) is negative if o1 is less than o2,
zero if o1 and o2 are equal, and positive if o1 is greater than o2. It is called the natural

 89

ordering of elements and is used for instance by TreeSet and TreeMap unless a
Comparator was given when the set or map was created. It should satisfy that
o01.compareTo(o2) ==0 whenever o1.equals(o2).

 int compare(Object o1, Object o2), described by the interface Comparator,
performs a three-way comparison of two objects: it is negative if o1 is less than o2, zero if
o1 and o2 are equal, and positive if o1 is greater than o2. It can be used to define
nonstandard element orderings when creating TreeSets and TreeMaps (example 95). It
should satisfy that compare(o1, o2) ==0 whenever o1.equals(o2).

Example 92: Printing a Concordance
The Map index is assumed to be a concordance as created in example 89. The method prints an
alphabetical list of the words, and for each word, its line numbers. One iterator is created to go through the
words, and for each word, a separate iterator is created to go through the line numbers.

static void printIndex(SortedMap index) {

 Iterator wordIter = index.entrySet().iterator();

 while (wordIter.hasNext()) {

 Map.Entry entry = (Map.Entry)wordIter.next();

 System.out.print((String)entry.getKey() + ": ");

 SortedSet lineNoSet = (SortedSet)entry.getValue();

 Iterator lineNoIter = lineNoSet.iterator();

 while (lineNoIter.hasNext())

 System.out.print((Integer)lineNoIter.next() + " ");

 System.out.println();

} }

Example 93: A Class Implementing Comparable
A Time object represents the time of day 00:00–23:59. The method call t1.compareTo(t2) returns a
negative number if t1 is before t2, a positive number if t1 is after t2, and zero if they are the same time.
The methods compareTo, equals, and hashCode satisfy the requirements in section 20.8.

class Time implements Comparable {

 private int hh, mm; // 24-hour clock

 public Time(int hh, int mm) { this.hh = hh; this.mm = mm; }

 public int compareTo(Object o) {

 Time t = (Time)o;

 return hh != t.hh ? hh - t.hh : mm - t.mm;

 }

 public boolean equals(Object o) {

 90

 Time t = (Time)o;
 return hh == t.hh && mm == t.mm;
 }

 public int hashCode() { return 60 * hh + mm; }
}

20.9 The Utility Class Collections
Class Collections provides static utility methods. The methods binarySearch, max, min, and sort
also have versions that take an extra Comparator argument and use it to compare elements.
There are static methods similar to synchronizedList and unmodifiableList for creating a
synchronized or unmodifiable view (section 20.1) of a Collection, Set, SortedSet, Map, or SortedMap.

 static int binarySearch(List lst, Object k) returns an index i>=0 for which
lst.get(i) is equal to k, if any; otherwise returns i<0 such that (-i-1) would be the
proper position for k. This is fast for ArrayList but slow for LinkedList. The list lst must be
sorted, as by sort (lst).

 static void copy(List dst, List src) adds all elements from src to dst, in
order.

 static Enumeration enumeration (Collection coll) returns an enumeration
over coll.

 static void fill(List lst, Object o) sets all elements of lst to o.
 static Object max(Collection coll) returns the greatest element of coll. Throws

NoSuchElementException if coll is empty.
 static Object min(Collection coll) returns the least element of coll. Throws

NoSuchElementException if coll is empty.
 static List nCopies(int n, Object o) returns an unmodifiable list with n copies of

o.
 static void reverse(List lst) reverses the order of the elements in lst.
 static Comparator reverseOrder() returns a comparator that is the reverse of the

natural ordering implemented by the compareTo method of elements or keys.
 static void shuffle(List lst) randomly permutes the elements of lst.
 static boolean replaceAl(List lst, Object o1, Object o2) replaces all

elements equal to o1 by o2 in lst; returns true if an element was replaced.
 static void rotate(List lst, int d) rotates lst right by d positions, so -1

rotates left by one position. Rotates a sublist if applied to a sublist view (section 20.2).
 static void shuffle(List lst, Random rnd) randomly permutes the elements of

lst using rnd to generate random numbers.
 static Set singleton(Object o) returns an unmodifiable set containing only o.
 static List singletonList(Object o) returns an unmodifiable list containing only o.
 static Map singletonMap(Object k, Object v) returns an unmodifiable map

containing only the entry (k, v).
 static List synchronizedList(List lst) returns a synchronized view of lst.
 static void sort(List lst) sorts lst using mergesort and the natural element

ordering. This is fast on all Lists.
 static void swap(List lst, int i, int j) exchanges the list elements at

positions i and j. It throws IndexOutOfBoundsException unless 0 <= i, j and i, j
< lst.size().

 static List unmodifiableList(List lst) returns an unmodifiable view of lst.
Example 94: Set Membership Test Using HashSet or Binary Search
Imagine that we want to exclude Java reserved names (chapter 2) from the concordance built in example
89, so we need a fast way to recognize such names. Method isKeyword1 uses a HashSet built from a
52-element array of Java keywords, whereas method isKeyword2 uses binary search in the sorted array.
The HashSet is two to five times faster in this case.

class SetMembership {

 final static String[] keywordarray =

 91

 { "abstract", "assert", "boolean", "break", "byte", ..., "while" };

 final static Set keywords = new HashSet(Arrays.asList(keywordarray));

 static boolean isKeyword1(String id)

 { return keywords.contains(id); }

 static boolean isKeyword2(String id)
 { return Arrays.binarySearch(keywordarray, id) >= 0; }
}

Example 95: An Explicit String Comparator
The concordance produced in example 89 uses the built-in compareTo method of String, which orders all
upper case letters before all lowercase letters. Thus it would put the string "Create" before "add"
before "create". The Comparator class declared here is better because it orders strings so that they
appear next to each other if they differ only in case: it would put "add" before "Create" before
"create". To use it in example 89, new TreeMap() in that example should be replaced by new
TreeMap(new IgnoreCaseComparator()).

class IgnoreCaseComparator implements Comparator {

 public int compare(Object o1, Object o2) {

 String sl = (String)o1, s2 = (String)o2;

 int res = s1.compareToIgnoreCase(s2);

 if (res != 0)

 return res;

 else

 return s1.compareTo(s2);

} }

Example 96: Obtaining a Submap
A date book is a sorted map whose keys are Time objects (example 93). We can extract that part of the
date book that concerns times on or after 12:00:

SortedMap datebook = new TreeMap(); // Map from Time to String

datebook.put(new Time(12, 30), "Lunch");

datebook.put(new Time(15, 30), "Afternoon coffee break");

datebook.put(new Time(9, 0), "Lecture");

datebook.put(new Time(13, 15), "Board meeting");

SortedMap pm = datebook.tailMap(new Time(12, 0));

Iterator iter = pm.entrySet().iterator();

 92

while (iter.hasNext()) {

 Map.Entry entry = (Map.Entry)iter.next();

 System.out.println((Time)entry.getKey() + " " + (String)entry.getValue());

}

20.10 Choosing the Right Collection Class or Map Class
The proper choice of a collection or map class depends on the operations you need to perform on it,
and how frequent those operations are. There is no universal best choice.

 LinkedList (section 20.2) or ArrayList (section 20.2 and example 90) should be used for
collecting elements for sequential iteration in index order, allowing duplicates.

 HashSet (section 20.3 and example 94) and HashMap (section 20.5 and example 90) are
good default choices when random access by element or key is needed, and sequential
access in element or key order is not needed. LinkedHashSet and LinkedHashMap
additionally guarantee sequential access (using their iterators) in element or key insertion
order.

 TreeSet (section 20.4 and example 89) or TreeMap (section 20.6 and example 89) should be
used for random access by element or key as well as for iteration in element or key order.

 LinkedList, not ArrayList, should be used for worklist algorithms (example 97), queues,
double-ended queues, and stacks.

Example 97: A Worklist Algorithm
Some algorithms use a so-called worklist, containing subproblems still to be solved. For
instance, given a set SS of sets of Integers, compute its intersection closure, that is, the least
set TT such that SS is a subset of TT and such that for any two sets T1 and T2 in TT, their
intersection T1 ⋂ T2 is also in TT. For instance, if SS is {{2,3},{1,3},{1,2}}, then TT is
{{2,3},{1,3},{1,2},{3},{2},{1},{}}.
The set TT may be computed by putting all elements of SS in a worklist, then repeatedly
selecting an element S from the worklist, adding it to TT, and for every set T already in TT,
adding the intersection of S and T to the worklist if not already in TT. When the worklist is
empty, TT is intersection-closed.
The epsilon closure of a state of a nondeterministic finite automaton (NFA) may be computed
using the same approach; see the full program text underlying example 98.

static Set intersectionClose(Set SS) {

 LinkedList worklist = new LinkedList(SS);

 Set TT = new Hashset();

 while (!worklist.isEmpty()) {

 Set S = (Set)worklist.removeLast();

 Iterator TTIter = TT.iterator();

 while (TTIter.hasNext()) {

 Set TS = new TreeSet((Set)TTIter.next());

 TS.retainAll(S); // Intersection of T and S

 if (!TT.contains(TS))

 worklist.add(TS);

 }

 TT.add(S);

 93

 }

 return TT;

}

 ArrayList, not LinkedList, should be used for random access get(i) or set(i, o) by

index.
 HashSet or HashMap should be used for sets or maps whose elements or keys are

collections, because the collection classes implement useful hashCode methods
(example 98).

Example 98: Using Sets as Keys in a HashMap
The standard algorithm for turning a nondeterministic finite automaton (NFA) into a
deterministic finite automaton (DFA) creates composite automaton states that are sets of
integers. It is preferable to replace such composite states by simple integers. This method
takes as argument a collection of composite states and returns a renamer, which is a map from
composite state names (Sets of Integers) to simple state names (Integers).

static Map mkRenamer(Collection states) {

 Map renamer = new HashMap();

 Iterator iter = states.iterator();

 while (iter.hasNext()) {

 Set k = (Set)iter.next();

 renamer.put(k, new Integer(renamer.size()));

 }

 return renamer;

}

 For maps whose keys are small nonnegative integers, use ordinary arrays (chapter 8).

The running time or time complexity of an operation on a collection is usually given in O notation, as a
function of the size n of the collection. Thus O(1) means constant time, O(logn) means logarithmic time
(time proportional to the logarithm of n), and O(n) means linear time (time proportional to n). For
accessing, adding, or removing an element, these roughly correspond to very fast, fast, and slow.
In the following table, n is the number of elements in the collection, i is an integer index, and d is the
distance from an index i to the nearest end of a list, that is, min(i,n-i). Thus adding or removing an
element of a LinkedList is fast near both ends of the list, where d is small, but for an ArrayList it is fast
only near the back end, where n-i is small. The subscript a indicates amortized complexity: over a long
sequence of operations, the average time per operation is O(1), although any single operation could
take time O(n).

 94

Operati
on

LinkedLi
st

Arr
ayL
ist

Hash
Set
Linke
dHas
hSet

Tr
ee
Se
t

HashM
ap
Linked
HashM
ap

Tre
eM
ap

add(o)
(last)

O(1) O(1)
a

O(l)a O(l
og
n)

add(i,
o)

O(d) O(n-
i)a

addFir
st(o)

O(1)

put(k,
v)

 O(1)a O(lo
gn)

remove
(o)

O(n) O(n) O(1) O(l
og
n)

O(1) O(lo
gn)

remove
(i)

O(d) O(n-
i)

remove
First(
)

O(1)

contai
ns(o)

O(n) O(n) O(1) O(l
og
n)

contai
nsKey(
o)

 O(1) O(lo
gn)

contai
nsValu
e(o)

 O(n) O(n
)

indexO
f(o)

O(n) O(n)

get(i) O(d) O(1)
set(i,
o)

O(d) O(1)

get(o) O(1) O(lo
gn)

 95

Chapter 21: Input and Output
Overview
Sequential input and output uses objects called streams. There are two kinds of streams: character
streams and byte streams, also called text streams and binary streams. Character streams are used for
input from text files and human-readable output to text files, printers, and so on, using 16-bit Unicode
characters. Byte streams are used for compact and efficient input and output of primitive data (int,
double, ...) as well as objects and arrays, in machine-readable form.
There are separate classes for handling character streams and byte streams. The classes for character
input and output are called Readers and Writers. The classes for byte input and output are called
InputStreams and OutputStreams. This chapter describes input and output using the java.io
package. Java 2, version 1.4, provides additional facilities in package java.nio, not described here.

One can create subclasses of the stream classes, overriding inherited methods to obtain specialized
stream classes. We shall not further discuss how to do that here.
The four stream class hierarchies are shown in the following table, with related input and output classes
shown on the same line. The table shows, for instance, that BufferedReader and FilterReader are
subclasses of Reader, and that LineNumberReader is a subclass of BufferedReader. Abstract classes
are shown in italics.

Input Streams Output Streams

Character
Streams

Reader
 BufferedReader
o LineNumber

Reader
 FilterReader
o PushBackR

eader
 InputStreamReader
o FileReader

 PipedReader
 CharArrayReader
 StringReader

Writer
 BufferedWriter
 FilterWriter

OutputStreamWriter
o FileWr

iter
 PipedWriter
 PrintWriter
 CharArrayWriter
 StringWriter

Byte Streams InputStream
 ByteArraylnputStream
 FilelnputStream
 FilterlnputStream
o Bufferedlnp

utStream
o DataInputSt

ream
o PushBackln

putStream
 ObjectlnputStream
 PipedlnputStream
 SequenceInputStream

OutputStream
 ByteArrayOutputStr

eam
 FileOutputStream
 FilterOutputStream
o Buffer

edOutputStr
eam

o DataO
utputStream

o PrintS
tream

 ObjectOutputStrea
m

 PipedOutputStrea
m

 RandomAccessFile

 96

The classes DataInputStream, ObjectInputStream, and RandomAccessFile implement the interface
Datalnput, and the classes DataOutputStream, ObjectOutputStream and RandomAccessFile implement
the interface DataOutput (section 21.10).
The class ObjectInputStream implements interface ObjectInput, and class ObjectOutputStream
implements interface ObjectOutput (section 21.11).

21.1 Creating Streams from Other Streams
A stream may either be created outright (e.g., a FileInputStream may be created and associated with a
named file on disk, for reading from that file) or it may be created from an existing stream to provide
additional features (e.g., a BufferedInputStream may be created in terms of a FileInputStream, for more
efficient input). In any case, an input stream or reader has an underlying source of data to read from,
and an output stream or writer has an underlying sink of data to write to. The following figure shows how
streams may be defined in terms of existing streams, or in terms of other data.
The stream classes are divided along two lines: character streams (top) versus byte streams (bottom),
and input streams (left) versus output streams (right). The arrows show what streams can be created
from other streams. For instance, the arrow from InputStream to InputStreamReader shows that one
can create an InputStreamReader from an InputStream. The arrow from Reader to BufferedReader
shows that one can create a BufferedReader from a Reader. Since an InputStreamReader is a Reader,
one can create a BufferedReader from an existing InputStream (such as System.in) in two steps, as
shown in example 99. On the other hand, there is no way to create a PipedOutputStream from a File or
a file name; a PipedOutputStream must be created outright, or from an existing PipedInputStream, and
similarly for other pipes (section 21.15).

Example 99: A Complete Input-Output Example

import java.io.*;

class BasicIOExample {

 public static void main(String[] args) throws IOException {

 BufferedReader r = new BufferedReader(new InputStreamReader(System.in));

 int count = 0;

 String s = r.readLine();
 while (s != null && !s.equals ("")) {
 count++;
 s = r.readLine();
 }
 System.out.println("You entered " + count + " nonempty lines");
} }

 97

21.2 Kinds of Input and Output Methods
The following table summarizes the naming conventions for methods of the input and output classes as
well as their main characteristics, such as their end-of-stream behavior.

Method Name Effect
read Inputs characters from a Reader (section 21.4) or inputs bytes from an

InputStream (section 21.8). It blocks, that is, does not return, until some
input is available; returns —1 on end-of-stream.

write Outputs characters to a Writer (section 21.5) or outputs bytes to an
OutputStream (section 21.9).

print Converts a value (int, double,..., object) to textual representation and
outputs it to a PrintWriter or PrintStream (section 21.6).

println Same as print but outputs a newline after printing.
readt Inputs a value of primitive type t from a DataInput stream (section 21.10).

Blocks until some input is available; throws EOFException on end-of-
stream.

writet Outputs a primitive value of primitive type t to a DataOutput stream
(section 21.10).

readObject Deserializes objects from an ObjectInput stream (section 21.11). Blocks
until some input is available; throws ObjectStreamException on end-of-
stream.

writeObject Serializes objects to an ObjectOutput stream (section 21.11).
skip(n) Skips at most n bytes (from InputStreams) or n characters (from

Readers). If n>0, blocks until some input is available; if n<0, throws
IllegalArgumentException; returns 0 on end-of-stream.

flush Writes any buffered data to the underlying stream, then flushes that
stream. The effect is to make sure that all data have actually been written
to the file system or the network.

close Flushes and closes the stream, then flushes and closes all underlying
streams. Further operations on the stream, except close, will throw
IOException. Buffered writers and output streams should be explicitly
closed or flushed to make sure that all data have been written; otherwise
output may be lost, even in case of normal program termination.

 98

21.3 Imports, Exceptions, Thread Safety
A program using the input and output classes must contain the import declaration
 import java.io.*;
Most input and output operations can throw an exception of class IOException or one of its subclasses,
all of which are checked exceptions (chapter 14). Hence a method doing input or output must either do
so in a try-catch block (section 12.6.6) or must contain the declaration throws IOException
(section 9.8).
The standard implementation of input-output is thread-safe: multiple concurrent threads (chapter 15)
can safely read from or write to the same stream without corrupting it. However, the Java class library
documentation is not explicit on this point, so probably one should avoid using the same stream from
multiple threads, or explicitly synchronize on the stream.

Example 100: Input-Output: Twelve Examples in One

This example illustrates input and output with human-readable text files; input and output of primitive
values with binary files; input and output of arrays and objects with binary files; input and output of
primitive values with random access binary files; input and output using strings and string buffers; output
to standard output and standard error; and input from standard input.
Although these brief examples do not use buffering, input and output from files, sockets, and so on, should
use buffering for efficiency (section 21.12).

// Write numbers and words on file "f.txt" in human-readable form:

PrintWriter pwr = new PrintWriter(new FileWriter("f.txt"));

pwr.print(4711); pwr.print(' '); pwr.print("cool"); pwr.close();

// Read numbers and words from human-readable text file "f.txt":

StreamTokenizer stok = new StreamTokenizer(new FileReader("f.txt"));

int tok = stok.nextToken();

while (tok != StreamTokenizer.TT_EOF)

 { System.out.println(stok.sval); tok = stok.nextToken (); }

// Write primitive values to a binary file "p.dat":

DataOutputStream dos = new DataOutputStream(new FileOutputStream("p.dat"));

dos.writeInt(4711); dos.writeChar(' '); dos.writeUTF("cool"); dos.close();

// Read primitive values from binary file "p.dat":

DataInputStream dis = new DataInputStream(new FileInputStream("p.dat"));

System.out.println(dis.readInt()+"|"+dis.readChar()+"|"+ dis.readUTF());

// Write an object or array to binary file "o.dat":

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("o.dat"));

oos.writeObject(new int[] { 2, 3, 5, 7, 11 }); oos.close();

// Read objects or arrays from binary file "o.dat":

ObjectInputStream ois = new ObjectInputStream(new FileInputStream("o.dat"));

int[] ia = (int[])(ois.readObject());

 99

System.out.println(ia[0]+","+ia[1]+","+ia[2]+","+ia[3]+","+ia[4]);

// Read and write parts of file "raf.dat" in arbitrary order:

RandomAccessFile raf = new RandomAccessFile("raf.dat", "rw");

raf.writeDouble(3.1415); raf.writeInt(42);

raf.seek(0); System.out.println(raf.readDouble() + " " + raf.readInt());

// Read from a String s as if it were a text file:

Reader r = new StringReader("abc");

System.out.println("abc: " + (char)r.read() + (char)r.read() + (char)r.read());

// Write to a StringBuffer as if it were a text file:

Writer sw = new StringWriter();

sw.write('d'); sw.write('e'); sw.write('f');

System.out.println(sw.toString());

// Write characters to standard output and standard error:

System.out.println("std output"); System.err.println("std error");

// Read characters from standard input (the keyboard):

System.out.print("Type some characters and press Enter: ");

BufferedReader bisr = new BufferedReader(new InputStreamReader(System.in));

String response = bisr.readLine();

System.out.println("You typed: '" + response + "'");

// Read a byte from standard input (the keyboard):

System.out.print("Type one character and press Enter: ");

byte b = (byte)System.in.read();

System.out.println("First byte of your input is: " + b);

21.4 Sequential Character Input: Readers
The abstract class Reader and its subclasses (all having names ending in Reader) are used for
character-oriented sequential input. In addition to the classes shown here, see BufferedReader (section
21.12) and LineNumber-Reader (example 105). The Reader class has the following methods:

 void close() flushes and closes the stream and any underlying stream. Any subsequent
operation, except close, will throw IOException.

 void mark(int limt) marks the current input position, permitting at least limt
characters to be read before calling reset.

 boolean markSupported() is true if the reader supports setting of marks and resetting
to latest mark.

 int read() reads one character (with code 0... 65535) and returns it. Blocks until input is
available, or end-of-stream is reached (and then returns -1), or an error occurs (and then
throws IOException).

 100

 int read(char[] b) reads at most b.length characters into b and returns the number
of characters read. Returns immediately if b.length is 0, else blocks until at least one
character is available; returns -1 on end-of-stream.

 int read(char[] b, int i, int n) works like the preceding, but reads into
buf[i..(i+n-1)]. Throws IndexOutOfBoundsException if i<0 or n<0 or
i+n>b.length.

 boolean ready() returns true if the next read or skip will not block.
 void reset() resets the stream to the position of the latest call to mark.
 int skip (int n) skips at most n characters and returns the number of characters

skipped; returns 0 on end-of-stream.

21.4.1 Reading Characters from a Byte Stream: InputStreamReader
An InputStreamReader is a reader (a character input stream) that reads from a byte input stream,
assembling bytes into characters using a character encoding. It performs buffered input from the
underlying stream. An InputStreamReader has the same methods as a Reader (section 21.4), and also
this constructor and method:

 InputStreamReader(InputStream is) creates a character input stream (a
reader) from byte input stream is, using the platform's standard character encoding.

 String getEncoding() returns the canonical name of the character encoding used
by this InputStreamReader, for instance, "IS08859_1" or "Cp1252".

21.4.2 Sequential Character Input from a File: FileReader

A FileReader is a buffered character input stream associated with a (sequential) file, and equivalent to
an InputStreamReader created from a FileInputStream. It has the same methods as
InputStreamReader, and these constructors:

 FileReader (String name) creates a character input stream associated with the
named file on the file system. Throws FileNotFoundException if the named file does not
exist, is a directory, or cannot be opened for some other reason.

 FileReader (File file) creates a character input stream from the given file in the
file system.

 FileReader (FileDescriptor fd) creates a character input stream from the file
descriptor.

21.5 Sequential Character Output: Writers
The abstract class Writer and its subclasses (all having names ending in Writer) are used for character-
oriented sequential output. They have the following methods:

 void close() flushes and closes the stream.
 void flush() actually writes data to the underlying stream or file, and then flushes that.
 void write (char[] b) writes the contents of character array b.
 void write (char[] b, int i, int n) writes n characters from b starting at position

i; throws IndexOutOfBoundsException if i<0 or n<0 or i+n>b.length.
 void write (int c) writes a single character, namely, the two low-order bytes of c.
 void write (String s) writes string s.
 void write (String s, int i, int n) writes n characters from s starting at position

i; throws StringIndexOutOfBoundsException if i<0 or n<0 or i+n>s.length.

21.5.1 Writing Characters to a Byte Stream: OutputStreamWriter
An OutputStreamWriter is a writer (character output stream) that writes to a byte output stream,
converting characters to bytes using a character encoding. It performs buffered output to the underlying
stream. An OutputStreamWriter has the same methods as a Writer (section 21.5), and in addition these
constructors and method:

 OutputStreamWriter (OutputStream os) creates an OutputStream Writer that
writes to stream os using the platform's default character encoding.

 OutputStreamWriter (OutputStream os, String enc) creates an
OutputStreamWriter that writes to stream os using the character encoding specified by
enc.

 101

 String getEncoding() returns the canonical name of the character encoding used
by this OutputStreamWriter, for instance, "IS08859_1" or "Cp1252".

21.5.2 Sequential Character Output to a File: FileWriter

A FileWriter is a buffered character output stream associated with a (sequential) file, equivalent to an
OutputStreamWriter created from a FileOutputStream. It has the same methods as OutputStreamWriter,
and these constructors:

 FileWriter (String name) creates a character output stream and associates it
with the named file in the file system. If the file exists, then it truncates the file; otherwise
it tries to create a new empty file. Throws FileNotFoundException if the named file is a
directory or cannot be opened or created for some other reason.

 FileWriter (String file, boolean append) works like the previous method,
but if append is true, it does not truncate the file: instead output will be appended to
the existing file contents.

 FileWriter (File file) works like the previous method, but creates the writer
from file.

 FileWriter (FileDescriptor fd) works like the previous method, but creates
the writer from fd.

21.6 Printing Primitive Data to a Character Stream: PrintWriter
The class PrintWriter is used to output primitive data to text files in human-readable form. Unlike the
methods of other Writers, those of PrintWriter never throw IOException but set the error status. The
PrintWriter class has all the methods of Writer, and in addition these constructors and methods:

 PrintWriter(OutputStream os) creates a PrintWriter that prints to stream os, without
autoflush.

 PrintWriter(OutputStream os, boolean flush) creates a PrintWriter that prints to
output stream os; if flush is true, then it flushes the writer after every call to println.

 PrintWriter(Writer wr) creates a PrintWriter that prints to the writer wr, without
autoflush.

 PrintWriter(Writer wr, boolean flush) creates a PrintWriter that prints to the
writer wr; if flush is true, then it flushes the writer after every call to println.

 boolean checkError() flushes the stream, then returns true if an error has ever
occurred.

 void print (boolean b) prints the boolean b, that is, true or false.
 void print (char c) prints the character c.
 void print (char[] s) prints the characters in s.
 void print (double d) prints the double d.
 void print (float f) prints the float f.
 void print (int i) prints the integer i.
 void print (long l) prints the long integer l.
 void print (Object obj) prints the object using obj.toString().
 void print (String s) prints the string s.
 void println() prints a single newline.
 void println(e) works like print (e) followed by println ().

21.6.1 Standard Output: System.out and System.err Are PrintStreams
The standard output stream System.out and standard error stream System.err are PrintStreams.
PrintStream is a subclass of OutputStream but in addition has methods print and println for
character-based output, just as PrintWriter. These methods convert characters to bytes using the
default encoding; to use another encoding enc, write instead to a PrintWriter created by new
PrintWriter(new OutputStreamWriter(System.out), enc). The methods of a PrintStream
never throw IOException, but set the error status; use checkError() to test the error status.

 102

21.6.2 Formatting Numbers for Character Output: DecimalFormat
Proper layout of text printed with PrintWriter requires detailed formatting control. The formatting of
numbers can be controlled using the class DecimalFormat from the java.text package. The table on
the facing page shows some DecimalFormat patterns and their effects.
There are many other facilities for formatting text output in the package java.text. Unlike languages
such as C, C#, Fortran, and Pascal, Java has no standard mechanism for aligning numbers and words
in columns. Such mechanisms produce the desired result only with fixed-pitch fonts. A simple method
for padding a string on the left (for right alignment) is shown in example 103.

Example 101: Printing Numbers to a Text File
Simulate 1,000 rolls of a die and print the outcome to the text file dice.txt, 20 numbers to a line:

PrintWriter pw = new PrintWriter(new FileWriter("dice.txt"));
for (int i=1; i<=1000; i++) {
 int die = (int)(1 + 6 * Math.random());
 pw.print(die); pw.print(' ');
 if (i % 20 == 0) pw.println();
}
pw.println();
pw.close(); // Without this, the output file may be empty

Example 102: Printing an HTML Table
This example generates a temperature conversion table in HTML. The Fahrenheit temperature f
corresponds to the Celsius temperature c = 5•(f - 32)/9. The number of fractional digits is controlled by a
DecimalFormat object. The HTML TABLE tag is used to control the alignment of numbers into columns.

PrintWriter pw = new PrintWriter(new FileWriter("temperature.html"));

DecimalFormat ff = new DecimalFormat("#0"), cf = new DecimalFormat("0.0");
pw.println("<TABLE BORDER><TR><TH>Fahrenheit<TH>Celsius</TR>");
for (double f=100; f<=400; f+=10) {
 double c = 5 * (f - 32) / 9;
 pw.println("<TR ALIGN=RIGHT><TD>" + ff.format(f) + "<TD>" + cf.format(c));
}
pw.println("</TABLE>");
pw.close(); // Without this, the output file may be empty

Example 103: Printing a Text Table
To print a conversion table in text format in a fixed-pitch font, replace the second pw.println call in example
102 by pw.println(padLeft(ff.format(f), 10) + padLeft(cf.format(c), 10)), which
uses the method padLeft from example 87 to align numbers to the right.

 103

Some DecimalFormat Patterns and Their Effect

DecimalFormat Pattern

Num
ber

#.#

#.##

0.0

0.0#

0.00

000.0

#,##
0.00

0.0

0 0 0 0.0

0.0

0.00

000.0

0.00

0.1

0 0.1

0.1

0.1

0.1

0.10

000.1

0.10

1.0

1 1 1 1.0

1.0

1.00

001.0

1.00

1.5

2 1.5

1.5

1.5

1.5

1.50

001.5

1.50

2.5

2 2.5

2.5

2.5

2.5

2.50

002.5

2.50

-1.5

-2

-1.5

-1.5

-1.5

-1.5

-1.50

-001.5

-1.50

330.8

331

330.8

330.8

330.8

330.8

330.80

330.8

330.
80

1234
.516

1235

1234.5

1234.5
2 1234.5

1234.5
2 1234.5
2 1234.5

1,23
4.52

21.7 Reading Primitive Data from a Character Stream: StreamTokenizer
Reading words and numbers from a character stream is more complicated than printing them, so there
is no text input counterpart to PrintWriter. Instead create a StreamTokenizer from a Reader.

A StreamTokenizer collects characters into tokens. Characters are classified as white space (separating
tokens), number characters (making up a number token), word characters (making up a word token),

 104

quote characters (delimiting a string token), end-line comment characters (initiating a comment
extending to end-of-line), or ordinary characters (none of the preceding).

A StreamTokenizer can be created and configured using this constructor and these methods and fields:
 StreamTokenizer (Reader r) creates a StreamTokenizer that reads from stream r.
 void commentChar (int ch) tells the tokenizer that ch is an end-line comment

character.
 void eolIsSignificant (boolean b) tells the tokenizer to consider newline as a

separate token of type TT_EOL, not as white space, if b is true.
 void ordinaryChars (int c1, int c2) tells the tokenizer that any character in the

range c1..c2 (inclusive) is an ordinary character: a single-character token, with ttype set to
the character code.

 void parseNumbers() tells the tokenizer to recognize number tokens. A number token is
a "word" beginning with a decimal digit (0..9) or a decimal point (.) or a minus sign (-),
and consisting only of these three kinds of characters, so numbers in scientific notation
6.02e23 are not recognized. A number token has type TT_NUMBER.

 void quoteChar(int ch) tells the tokenizer that character ch is a string delimiter. When
this character is encountered, ttype is set to ch, and sval is set to the string's contents:
the characters strictly between ch and the next occurrence of ch or newline or end-of-
stream.

 void resetSyntax() makes all characters ordinary; see ordinaryChars.
 void whitespaceChars (int c1, int c2) tells the tokenizer that all characters in the

range c1..c2 (inclusive) are white space also, that is, token separators.
 void wordChars (int c1, int c2) tells the tokenizer that all characters in the range

c1..c2 (inclusive) are word characters also.

Class StreamTokenizer has these methods and fields for reading values:
 int lineno() returns the current line number, counting from 1.
 int nextToken() reads the next (or first) token and returns its type.
 double nval is the number value of the current number token (when ttype is

TT_NUMBER).
 String sval is the string value of the current word token (when ttype is TT_WORD), or the

string body of the current string token (when ttype is a quote character).
 int ttype is the type of the current token. The type may be

StreamTokenizer.TT_NUMBER, indicating a number, or StreamTokenizer.TT_WORD,
indicating a word, or StreamTokenizer.TT_EOL, indicating a newline, or
StreamTokenizer.TT_EOF, indicating end-of-stream (no more tokens), or a quote
character, indicating a string (in quotes), or any other character, indicating that character
as a token by itself.

While a StreamTokenizer is useful for reading fairly simple text files, more structured text files should be
read using a proper lexer and parser (see common textbooks for compiler courses) or special-purpose
libraries (e.g., for XML files or XML streams).

Example 104: Reading Numbers from a Text File
A StreamTokenizer stok is created from a buffered file reader and told to recognize number tokens.
Tokens are read until end-of-stream, and the number tokens are added together, whereas nonnumber
tokens are printed to standard output. The buffering is important: it makes the program more than 20 times
faster.

static void sumfile(String filename) throws IOException {

 Reader r = new BufferedReader(new FileReader(filename));

 StreamTokenizer stok = new StreamTokenizer(r);

 stok.parseNumbers();

 double sum = 0; stok.nextToken() ;

 while (stok.ttype != StreamTokenizer.TT_EOF) {

 105

 if (stok.ttype == StreamTokenizer.TT_NUMBER)

 sum += stok.nval;

 else

 System.out.println("Nonnumber: " + stok.sval);

 stok.nextToken();

 }

 System.out.println("The file sum is " + sum);

}

Example 105: Reading Numbers from a Text File, Line by Line
A StreamTokenizer stok is created from a LineNumberReader and told to recognize number tokens and
new-lines. Tokens are read until end-of-stream, and the sum of the number tokens is computed line by
line. The line number is set to count from 1 (default is 0). Class LineNumberReader is a subclass of
BufferedReader and therefore is already buffered. Using a LineNumberReader is somewhat redundant,
since StreamTokenizer itself provides a lineno() method.

static void sumlines(String filename) throws IOException {

 LineNumberReader lnr = new LineNumberReader(new FileReader(filename));

 lnr.setLineNumber(1);

 StreamTokenizer stok = new StreamTokenizer(lnr);

 stok.parseNumbers();

 stok.eolIsSignificant(true);

 stok.nextToken();

 while (stok.ttype != StreamTokenizer.TT_EOF) {

 int lineno = lnr.getLineNumber();

 double sum = 0;

 while (stok.ttype != StreamTokenizer.TT_EOL) {

 if (stok.ttype == StreamTokenizer.TT_NUMBER)

 sum += stok.nval;

 stok.nextToken();

 }

 System.out.println("Sum of line " + lineno + " is " + sum);

 stok.nextToken();

 }

}

 106

21.8 Sequential Byte Input: InputStream
The abstract class InputStream and its subclasses (all of whose names end in InputStream) are used
for byte-oriented sequential input. They have the following methods:

 int available() returns the number of bytes that can be read or skipped without
blocking.

 void close() closes the stream.
 void mark(int limt) marks the current input position, permitting at least limt bytes to

be read before calling reset.
 boolean markSupported() returns true if the stream supports mark and reset.
 int read() reads one byte (0...255) and returns it, blocking until input is available; returns -

1 on end-of-stream.
 int read (byte[] b) reads at most b.length bytes into b, blocking until at least one

byte is available; then returns the number of bytes actually read. Returns -1 on end-of-
stream.

 int read(byte[] b, int i, int n) reads at most n bytes into b at position i,
blocking until at least one byte is available, and returns the number of bytes actually read.
Returns -1 on end-of-stream. Throws IndexOutOfBoundsException if i<0 or n<0 or
i+n>b. length.

 void reset() repositions the stream to the position at which the mark method was last
called.

 long skip (long n) skips at most n bytes, blocking until a byte is available, and returns
the number of bytes actually skipped. Returns 0 if end-of-stream is reached before input is
available.

The standard input System.in is an InputStream; to read characters from it, create an
InputStreamReader using new InputStreamReader (System.in); see example 100.

21.8.1 Sequential Byte Input from File: FileInputStream
A FileInputStream is an InputStream that reads sequentially from an existing file on the file system. It
has the same methods as InputStream (section 21.8), and these constructors and additional method:

 FileInputStream (String name) creates a byte input stream and associates it
with file name in the file system. Throws FileNotFoundException if the file does not exist,
is a directory, or cannot be opened.

 FileInputStream (File file) works like the preceding, but associates the
stream with file.

 FileInputStream (FileDescriptor fd) works like the preceding, but associates
the stream with fd.

 FileDescriptor getFD() returns the file descriptor associated with this stream.

21.8.2 Sequential Binary Input of Primitive Data: DataInputStream
Class DataInputStream provides methods for machine-independent sequential binary input of Java
primitive types such as int and double. The class implements the DataInput interface (section 21.10)
and in addition provides this constructor and static method:

 DataInputStream (InputStream is) creates a DataInputStream that reads from
stream is.

 static String readUTF (DataInput di) reads a Java UTF-8 encoded string
from stream di.

Class DataInputStream also has a readLine method, which is deprecated. To read lines of text from a
DataInputStream, create an InputStreamReader (section 21.4.1) from it instead.

21.9 Sequential Byte Output: OutputStream
The abstract class OutputStream and its subclasses (all of whose names end in OutputStream) are
used for byte-oriented sequential output. It has the following methods:

 void close() closes the output stream.
 void f lush() flushes the output stream and forces any buffered output bytes to be

written to the underlying stream or file, then flushes that.

 107

 void write (byte[] b) writes b.length bytes from b to the output stream.
 void write (byte[] b, int i, int n) writes n bytes from b starting at offset i to

the output stream. Throws IndexOutOfBoundsException if i<0 or n<0 or
i+n>b.length.

 void write (int b) writes the byte b(0...255) to the output stream.

21.9.1 Sequential Byte Output to a File: FileOutputStream
A FileOutputStream is an OutputStream that writes sequentially to a file on the file system. It has the
same methods as OutputStream (section 21.9) and these constructors and additional method:

 FileOutputStream (String name) creates a byte output stream and associates it
with the named file in the file system. If the file exists, then it truncates the file;
otherwise, it attempts to create the file. Throws FileNotFoundException if the file is a
directory or cannot be opened or created for some other reason.

 FileOutputStream (String name, boolean append) works like the preceding,
but if append is true, then does not truncate the file: instead output will be appended
to the existing file contents.

 FileOutputStream (File file) works like the preceding, but associates the
stream with file.

 FileOutputStream(FileDescriptor fd) works like the preceding, but associates
the stream with fd.

 FileDescriptor getFD() returns the file descriptor associated with this stream.

21.9.2 Sequential Binary Output of Primitive Data: DataOutputStream
Class DataOutputStream provides methods for machine-independent sequential binary output of Java
primitive types such as int and double. The class implements the DataOutput interface (section
21.10) and provides this constructor and method:

 DataOutputStream (OutputStream os) creates an DataOutputStream that writes
to the stream os.

 int size() returns the number of bytes written to this DataOutputStream.

21.10 Binary Input-Output of Primitive Data: DataInput and DataOutput
The interfaces DataInput and DataOutput describe operations for byte-oriented input and output of
values of primitive type, such as boolean, int, and double. Thus DataInput's method readInt()
is suitable for reading integers written using DataOutput's method writeInt (int). The data format
is platform-independent.
The DataInput interface describes the following methods. The read and skip methods block until the
required number of bytes have become available, and throw EOFException if end-of-stream is reached
first.

 boolean readBoolean() reads one input byte and returns true if nonzero, false
otherwise.

 byte readByte() reads one input byte and returns a byte in range -128...127.
 char readChar() reads two bytes and returns a character in range 0...65535.
 double readDouble() reads eight bytes and returns a double.
 float readFloat() reads four bytes and returns a float.
 void readFully (byte[] b) reads exactly b.length bytes into buffer b.
 void readFully (byte[] b, int i, int n) reads exactly n bytes into b[i..(i+n-

1)].
 int readInt() reads four bytes and returns an integer.
 String readLine() reads a line of one-byte characters in the range 0...255 (not Unicode).
 long readLong() reads eight bytes and returns a long integer.
 short readShort() reads two bytes and returns a short integer -32768...32676.
 int readUnsignedByte() reads one byte and returns an integer in the range 0...255.
 int readUnsignedShort() reads two bytes and returns an integer in the range

0...65535.
 String readUTF() reads a string encoded using the Java modified UTF-8 format.
 int skipBytes(int n) skips exactly n bytes of data and returns n.

 108

The DataOutput interface describes the following methods. Note that writeInt (i) writes four bytes
representing the Java integer i, whereas write(i) writes one byte containing the low-order eight bits
of i.

 void write(byte[] b) writes all the bytes from array b.
 void write(byte[] b, int i, int n) writes n bytes from array b[i..(i+n-1)].
 void write(int v) writes the eight low-order bits of byte v.
 void writeBoolean(boolean v) writes one byte: 1 if v is true, otherwise 0.
 void writeByte(int v) writes the low-order byte (eight low-order bits) of integer v.
 void writeBytes(String s) writes the low-order byte of each character in s(not

Unicode).
 void writeChar(int v) writes two bytes (high-order, low-order) representing v.
 void writeChars(String s) writes the string s, two bytes per character.
 void writeDouble(double v) writes eight bytes representing v.
 void writeFloat(float v) writes four bytes representing v.
 void writeInt(int v) writes four bytes representing v.
 void writeLong(long v) writes eight bytes representing v.
 void writeShort(int v) writes two bytes representing v.
 void writeUTF(String s) writes two bytes of (byte) length information, followed by the

Java modified UTF-8 representation of every character in the string s.
Example 106: Binary Input and Output of Primitive Data
Method writedata demonstrates all ways to write primitive data to a DataOutput stream (a stream of
class DataInputStream or RandomAccessFile). Similarly, method readdata demonstrates all ways to
read primitive values from a DataInput stream (a stream of class DataOutputStream or
RandomAccessFile). The methods complement each other, so after writing a stream with writedata,
one can read it using readdata.

public static void main(String[] args) throws IOException {

 DataOutputStream daos = new DataOutputStream(new FileOutputStream("tmpl.dat"));

 writedata(daos); daos.close();

 DataInputStream dais = new DataInputStream(new FileInputStream("tmp1.dat"));

 readdata(dais);

 RandomAccessFile raf = new RandomAccessFile("tmp2.dat", "rw");

 writedata(raf); raf.seek(0); readdata(raf);

}

static void writedata(DataOutput out) throws IOException {

 out.writeBoolean(true); // Write 1 byte

 out.writeByte(120); // Write 1 byte

 out.writeBytes("foo"); // Write 3 bytes

 out.writeBytes("fo"); // Write 2 bytes

 out.writeChar('A'); // Write 2 bytes

 out.writeChars("foo"); // Write 6 bytes

 out.writeDouble(300.1); // Write 8 bytes

 out.writeFloat(300.2F); // Write 4 bytes

 109

 out.writeInt(1234); // Write 4 bytes

 out.writeLong(12345L); // Write 8 bytes

 out.writeShort(32000); // Write 2 bytes

 out.writeUTF("foo"); // Write 2 + 3 bytes
 out.writeUTF("Rhône"); // Write 2 + 6 bytes
 out.writeByte(-1); // Write 1 byte
 out.writeShort(-1); // Write 2 bytes
}
static void readdata(DataInput in) throws IOException {
 byte[] buf1 = new byte[3];
 System.out.print(in.readBoolean()); // Read 1 byte
 System.out.print(" " + in.readByte()); // Read 1 byte
 in.readFully(buf1); // Read 3 bytes
 in.readFully(buf1, 0, 2); // Read 2 bytes
 System.out.print(" " + in.readChar()); // Read 2 bytes
 System.out.print(" " + in.readChar()+in.readChar()+in.readChar());
 System.out.print(" " + in.readDouble()); // Read 8 bytes
 System.out.print(" " + in.readFloat()); // Read 4 bytes
 System.out.print(" " + in.readInt()); // Read 4 bytes
 System.out.print(" " + in.readLong()); // Read 8 bytes
 System.out.print(" " + in.readShort()); // Read 2 bytes
 System.out.print(" " + in.readUTF()); // Read 2 + 3 bytes
 System.out.print(" " + in.readUTF()); // Read 2 + 6 bytes
 System.out.print(" " + in.readUnsignedByte()); // Read 1 byte
 System.out.print(" " + in.readUnsignedShort()); // Read 2 bytes
 System.out.println();
}

21.11 Serialization of Objects: ObjectInput and ObjectOutput
The interfaces ObjectInput and ObjectOutput describe operations for byte-oriented input and output of
values of reference type, that is, objects and arrays. This is also called serialization.

An object or array can be serialized (converted to a sequence of bytes) if its class and all classes on
which the object or array depends have been declared to implement the interface Serializable. The
Serializable interface does not declare any methods; it only serves to show that the class admits
serialization.
Serialization of an object o writes the object's nonstatic (instance) fields, except those declared
transient, to the stream. When the object is deserialized, a transient field gets the default value
for its type (false or 0 or 0.0 or null). Class fields (static fields) are not serialized.
Serialization to an ObjectOutputStream preserves sharing among the objects written to it, and more
generally, preserves the form of the object reference graph. For instance, if object o1 and o2 both refer
to a common object c (so o1.c == o2.c), and o1 and o2 are serialized to ObjectOutputStream oos,
then object c is serialized only once to oos. When o1 and o2 are restored again from oos, then c is
restored also, exactly once, so o1.c == o2.c holds as before. If o1 and o2 are serialized to two
different ObjectOutputStreams, then restoration of o1 and o2 will produce two distinct copies of c, so
o1.c ! = o2.c. Thus sharing among objects is not preserved across multiple ObjectOutputStreams.
The interface ObjectInput has all the methods specified by DataInput, and the following additional ones.
Class ObjectInputStream implements ObjectInput. The methods available(), close(),
read(byte[]), read(byte[], int, int), and skip(int) behave like those of class
InputStream (section 21.8).

 int available() returns the number of bytes that can be read or skipped without
blocking.

 void close() closes the stream, as in InputStream.
 int read() reads one byte, as in InputStream.
 int read(byte[] b) reads bytes into b, as in InputStream.
 int read(byte[] b, int i, int n) reads into b[i..(i+n-1)], as in InputStream.

 110

 Object readObject() reads, deserializes, and returns an object, which must have been
previously serialized. Throws ClassNotFoundException if the declaration (class file) for an
object that is being deserialized cannot be found. Throws ObjectStreamException or one
of its subclasses if no object can be read from the stream, e.g., if end-of-stream is
encountered before the object is complete.

 long skip (long n) skips n bytes, as in InputStream.
The interface ObjectOutput has all the methods of interface DataOutput (section 21.10) and the
following one. Class ObjectOutputStream implements ObjectOutput.

 void writeObject(Object obj) writes the object using serialization. All classes being
serialized must implement the Serializable interface; otherwise NotSerializableException is
thrown.

Interface Externalizable is a subinterface of Serializable that can be implemented by classes that need
full control over the serialization and deserialization of their objects.

Example 107: Serialization to the Same ObjectOutputStream Preserves Sharing
Objects o1 and o2 refer to a shared object c of class SC. We serialize o1 and o2 to the same file using a
single ObjectOutputStream, so we get a single copy of the shared object. When we deserialize the objects
and bind them to variables o1i and o2i, we also get a single copy of the shared SC object:

class SC implements Serializable { int ci; }

class SO implements Serializable {

 int i; SC c;

 SO(int i, SC c) { this.i = i; this.c = c; }

 void cprint() { System.out.print("i" + i + "c" + c.ci + " "); }

}

...

File f = new File("objects.dat");

// Create the objects and write them to file.

SC c = new SC();

SO o1 = new SO(1, c), o2 = new SO(2, c);

o1.c.ci = 3; o2.c.ci = 4; // Update the shared c twice

o1.cprint(); o2.cprint(); // Prints: i1c4 i2c4

OutputStream os = new FileOutputStream(f);

ObjectOutputStream oos = new ObjectOutputStream(os);

oos.writeObject(o1); oos.writeobject(o2); oos.close();

// Read the objects from file.

InputStream is = new FileInputStream(f);

ObjectInputStream ois = new ObjectInputStream(is);

SO o1i = (SO)(ois.readObject()), o2i = (SO)(ois.readObject());

o1i.cprint(); o2i.cprint(); // Prints: i1c4 i2c4

o1i.c.ci = 5; o2i.c.ci = 6; // Update the shared c twice

 111

o1i.cprint(); o2i.cprint(); // Prints: i1c6 i2c6

Example 108: Serialization to Distinct ObjectOutputStreams Does Not Preserve Sharing
If we serialize the objects o1 and o2 from example 107 to the same file using two different
ObjectOutputStreams, each object stream will write a copy of the shared object. When we deserialize the
objects, we get two copies of the previously shared SC object:

// Create the objects (as in above example) and write them to file.

ObjectOutputStream oos1 = new ObjectOutputStream(os);

oos1.writeObject(o1); oos1.flush();

ObjectOutputStream oos2 = new ObjectOutputStream(os);

oos2.writeObject(o2); oos2.close();

// Read the objects from file, nonshared c.

InputStream is = new FileInputStream(f);

ObjectInputStream ois1 = new ObjectInputStream(is);

SO o1i = (SO)(ois1.readObject());

ObjectInputStream ois2 = new ObjectInputStream(is);

SO o2i = (SO)(ois2.readObject());

o1i.cprint(); o2i.cprint(); // Prints: i1c4 i2c4

o1i.c.ci = 5; o2i.c.ci = 6; // Update two different c's

o1i.cprint(); o2i.cprint(); // Prints: i1c5 i2c6

21.12 Buffered Input and Output
Writing one byte or character at a time to a file or network connection is very inefficient. It is better to
collect the bytes or characters in a buffer, and then write the whole buffer in one operation. The same
holds for reading from a file or network connection. However, buffering will not speed up input from and
output to byte arrays, character arrays, strings, or string buffers.
To buffer a plain input stream is, create a BufferedInputStream from is and read from that stream
instead; and similarly for output streams, readers, and writers.
The operation flush() can be used on a buffered stream to request that the output actually gets
written to the underlying stream. A buffered stream should be properly closed by a call to close() to
ensure that all data written to the buffer are eventually written to the underlying stream.
Class BufferedReader has all the methods of class Reader (section 21.4) and these constructors and
method:

 BufferedReader(Reader rd) creates a buffered reader that reads from rd.
 BufferedReader(Reader rd, int sz) creates a buffered reader with buffer of size sz.

It throws IllegalArgumentException if sz <= 0.
 String readLine() reads a line of text. A line is terminated by line feed ("\n") or

carriage return ("\r") or carriage return and line feed ("\r\n"). Returns the line without
any line termination characters; returns null at end-of-stream.

Class BufferedWriter has all the methods of Writer (section 21.5) and also these constructors and
method:

 BufferedWriter (Writer wr) creates a buffered writer that writes to stream wr.

 112

 BufferedWriter (Writer wr, int sz) creates a buffered writer with a buffer of size
sz. It throws IllegalArgumentException if sz <= 0.

 void newLine() writes a line separator, such as "\n" or "\r\n", depending on the
platform.

Class BufferedInputStream is a subclass of FilterInputStream. It has the same methods as InputStream
(section 21.8) and these constructors:

 BufferedInputStream(InputStream is) creates a BufferedInputStream that reads
from stream is.

 BufferedInputStream(InputStream is, int sz) creates a BufferedInputStream
with buffer size sz; throws IllegalArgumentException if sz <= 0.

Class BufferedOutputStream is a subclass of FilterOutputStream. It has the same methods as
OutputStream (section 21.9) and these constructors:

 BufferedOutputStream (OutputStream os) creates a BufferedOutputStream that
writes to stream os.

 BufferedOutputStream (OutputStream os, int sz) creates a
BufferedOutputStream with a buffer of size sz; throws IllegalArgumentException if sz <=
0.

Example 109: Output Buffering

Buffering may speed up writes to a FileOutputStream by a large factor. Buffering the writes to a FileWriter
has less effect, because a FileWriter is an OutputStreamWriter, which buffers the bytes converted from
written characters before writing them to an underlying FileOutputStream. In one experiment, buffering
made writes to a FileOutputStream 18 times faster and writes to a FileWriter only two or three times faster.

public static void main(String[] args) throws IOException {

 OutputStream os1 = new FileOutputStream("tmp1.dat");

 writeints("Unbuffered: ", 1000000, os1);

 OutputStream os2 = new BufferedOutputStream(new FileOutputStream("tmp2.dat"));

 writeints("Buffered: ", 1000000, os2);

 Writer wr1 = new FileWriter("tmp1.dat");

 writeints("Unbuffered: ", 1000000, wr1);

 Writer wr2 = new BufferedWriter(new FileWriter("tmp2.dat"));

 writeints("Buffered: ", 1000000, wr2);

}

static void writeints(String msg, int count, OutputStream os) throws IOException {

 Timer t = new Timer();
 for (int i=0; i<count; i++)
 os.write(i & 255);
 os. close();
 System.out .println (msg + t.check());
}

static void writeints(String msg, int count, Writer os) throws IOException {
 Timer t = new Timer();
 for (int i=0; i<count; i++)
 os.write(i & 255);

 113

 os.close();
 System.out.println(msg + t.check());
}

For efficiency, one should usually wrap buffered streams around file streams and socket streams as
follows:

Replace By
new FileInputStream(e) new

BufferedInputStream(n
ew
FileInputStream(e))

new FileOutputStream(e) new
BufferedOutputStream(
new
FileOutputStream(e))

new FileWriter(e) new
BufferedWriter(new
FileWriter(e))

new FileReader(e) new
BufferedReader(new
FileReader(e))

21.13 Random Access Files: RandomAccessFile
Class RandomAccessFile is used for input from and output to so-called random access files. The data
in a random access file can be accessed in any order, in contrast to streams, which can be read and
written only sequentially from the beginning. Thus a random access file is similar to an extensible byte
array stored on the file system. A random access file has an associated file pointer, which determines
where the next read or write operation will begin. Setting the file pointer permits random access to all
parts of the file (albeit thousands or millions times more slowly than to a byte array stored in memory).
The file pointer is an offset from the beginning of the file; the first byte in the file has offset 0, the last
byte in a file raf has offset raf.length()-1. The method call seek(pos) sets the file pointer to
point at byte number pos.
Class RandomAccessFile implements the DataInput and DataOutput interfaces (section 21.10) and has
the following constructors and additional methods. The methods read(), read(byte[]), and read
(byte[], int, int) behave as in InputStream (section 21.8); in particular, they return —1 on end-
of-file, and block until at least one byte of input is available. The methods readt() , where t is a type,
behave as in DataInput (section 21.10); in particular, they throw EOFException on end-of-file.

 RandomAccessFile (String name, String mode) creates a new random access file
stream and associates it with a file of the given name on the file system. Initially the file
pointer is at offset 0. Throws IOException if the name indicates a directory. The mode
must be "r" for read-only, or "rw" for read-write; otherwise IllegalArgumentException is
thrown. If the file does not exist on the file system, and the mode is "r", then
FileNotFoundException is thrown, but if the mode is "rw", then a new empty file is created
if possible. If the mode is "r", any call to the write methods will throw IOException.

 RandomAccessFile (File file, String mode) works like the preceding, but
associates the random access file stream with file.

 void close() closes the file stream.
 FileDescriptor getFD() returns the file descriptor associated with the stream.
 long getFilePointer() returns the current value of the file pointer.
 long length() returns the length of the file in bytes.
 int read() reads one byte, as in InputStream.
 int read (byte[] b) reads into array b, as in InputStream.
 int read(byte[] b, int i, int n) reads at most n bytes into b, as in InputStream.

 114

 void seek (long pos) sets the file pointer to byte number pos. Throws IOException if
pos<0. The file pointer may be set beyond end-of-file; a subsequent write will then extend
the file's length.

 void setLength(long newlen) sets the length of the file by truncating or extending it (at
the end); in the case of extension, the content of the extension is undefined.

Example 110: Organizing a String Array File for Random Access

This example shows a way to implement random access to large numbers of texts, such as millions of
cached Web pages or millions of DNA sequences. We define a string array file to have three parts: (1) a
sequence of Strings, each of which is in Java modified UTF-8 format; (2) a sequence of long integers,
representing the start offsets of the strings; and (3) an integer, which is the number of strings in the file.
(Note that Java limits the length of each UTF-encoded string; using a slightly more complicated
representation in the file, we could lift this restriction.)

By putting the number of strings and the string offset table at the end of the file rather than at the
beginning, we do not need to know the number of strings or the length of each string before writing the file.
The strings can be written to the file incrementally, and the only structure we need to keep in memory is
the table (ArrayList) of string lengths.

static void writeStrings(String filename, Iterator strIter)

 throws IOException {

 RandomAccessFile raf = new RandomAccessFile(filename, "rw");

 raf.setLength(0); // Truncate the file

 ArrayList offsettable = new ArrayList(); // Contains Longs

 while (strIter.hasNext()) {

 offsettable.add(new Long(raf.getFilePointer())); // Store string offset

 raf.writeUTF((String)strIter.next()); // Write string

 }

 Iterator iter = offsettable.iterator();

 while (iter.hasNext()) // Write string offsets

 raf.writeLong(((Long)iter.next()).longValue());

 raf.writeInt(offsettable.size()); // Write string count

 raf.close();

}

Example 111: Random Access Reads from a String Array File
The method call readOneString (f, i) reads string number i from a string array file f (example 110)
in three stages, using three calls to seek. First, it reads the offset table length N from the last 4 bytes of
the file. Second, since an int takes 4 bytes and a long takes 8 bytes (section 5.1), the string offset table
must begin at position length()-4-8*N, and so the offset si of string number i can be read from
position length()-4-8*N+8*i. Third, the string itself is read from offset si.

static String readOneString(String filename, int i) throws IOException {

 final int INTSIZE = 4, LONGSIZE = 8;

 115

 RandomAccessFile raf = new RandomAccessFile(filename, "r");

 raf.seek(raf.length() - INTSIZE);

 int N = raf.readInt() ;

 raf.seek(raf.length() - INTSIZE - LONGSIZE * N + LONGSIZE * i);

 long si = raf.readLong();

 raf.seek(si);

 String s = raf.readUTF();

 raf.close();

 return s;

}

21.14 Files, Directories, and File Descriptors

21.14.1 Path Names in a File System: Class File

An object of class File represents a path name, that is, a directory/file path in the file system. The path
name may denote a directory, a data file, or nothing at all (if there is no file or directory of that name).
Even if the path name denotes a file or directory, a given program may lack the permission to read or
write that file or directory. These are a few of the constructors and methods in class File:

 File (String pname) creates a path name corresponding to the string pname.
 boolean exists() returns true if a file or directory denoted by this path name

exists.
 String getName() returns this path name as a string.
 boolean isDirectory() tests whether the file denoted by this path name is a

directory.
 boolean isFile() tests whether the file denoted by this path name is a normal file.
 long length() returns the length of the file in bytes, or 0 if the file does not exist.
 File[] listFiles() returns the files and directories in the directory denoted by the

path name; returns null on error or if the path name does not denote a directory.
 boolean mkdir() creates the directory named by this path name.

21.14.2 File System Objects: Class FileDescriptor
An object of class FileDescriptor is a file descriptor, an internal representation of an active file system
object, such as an open file or an open socket. A file descriptor may be obtained from a FileInputStream
(section 21.8) or FileOutputStream (section 21.9). The class has this method:

 void sync() requests that all system buffers are synchronized with the underlying
physical devices; blocks until this has been done. Throws SyncFailedException if it
cannot be done.

The class has static fields in, out, and err, which are the file descriptors associated with the
standard input (System.in), standard output (System.out), and standard error (System.err)
streams.

21.15 Thread Communication: PipedInputStream and
PipedOutputStream
Threads (chapter 15) execute concurrently and may communicate asynchronously using internal pipes.
A pipe is a pair of a PipedInputStream and a PipedOutputStream, or a pair of a PipedReader and a
PipedWriter. By contrast, communication with other processes or with remote computers uses
InputStreams and OutputStreams, possibly obtained from operating system sockets, briefly described in
section 21.16.

 116

To create a pipe, create one end of it by outpipe = new PipedOutputStream(), then use that to
create and connect the other end by inpipe = new PipedInputStream (outpipe). Either end
may be created first. A pipe end can be connected only once.
A producer thread writes to a PipedOutputStream (or PipedWriter), and a consumer thread reads from a
PipedInputStream (or PipedReader) associated with the PipedOutputStream (or PipedWriter). If the
producer thread is fast and the pipe fills up, then the next write operation blocks until there is room for
data in the pipe. If the consumer thread is fast and there are no available data in the pipe, then the next
read operation blocks until data become available. When either the consumer or the producer dies, and
one end of the pipe is destroyed, the next write (or read) at the other end of the pipe throws an
IOException.

Example 112: Reading and Printing a Directory Hierarchy
The call showDir(0, pathname) will print the path name, and if the path name exists and is a directory,
then showDir recursively prints all its subdirectories and files. Because indent is increased for every
recursive call, the layout reflects the directory structure.

static void showDir(int indent, File file) throws IOException {
 for (int i=0; i<indent; i++)
 System.out.print('-');
 System.out.println(file.getName());
 if (file.isDirectory()) {
 File[] files = file.listFiles();
 for (int i=0; i<files.length; i++)
 showDir(indent+4, files[i]);
 }
}

Example 113: Internal Pipes Between Threads

The producer thread writes the infinite sequence of prime numbers 2, 3, 5, 7,11,13,... to a
PipedOutputStream, while the consumer (the main thread) reads from a PipedInputStream connected to
the PipedOutputStream. Actually, the producer writes to a DataInputStream built on top of the
PipedOutputStream, and the consumer reads from a DataInputStream built on top of the
PipedInputStream, because we want to send integers, not only bytes, through the pipe.

PipedOutputStream outpipe = new PipedOutputStream();

PipedInputStream inpipe = new PipedInputStream(outpipe);

final DataOutputStream outds = new DataOutputStream(outpipe);

DataInputStream inds = new DataInputStream(inpipe);
// This thread outputs primes to outds -> outpipe -> inpipe -> inds:
class Producer extends Thread {
 public void run() {
 try {
 outds.writeInt(2);
 for (int p=3; true; p+=2) {
 int q=3;
 while (q*q <= p && p%q != 0)
 q+=2;
 if (q*q > p)
 { outds.writeInt(p); System.out.print("."); }
 }
 } catch (IOException e) { System.out.println("<terminated>: " + e); }
 }
}

new Producer().start();
for (;;) { // Forever

 117

 for (int n=0; n<10; n++) // output 10 primes
 System.out.print(inds.readInt() + " "); // and
 System.in.read(); // wait for Enter
}

21.16 Socket Communication
Whereas a pair of Java threads can communicate through a local pipe (e.g., PipedInputStream), a pair
of distinct processes may communicate through sockets. The processes may be on the same machine,
or on different machines connected by a network.
Sockets are often used in client/server architectures, where the server process creates a server socket
that listens for connections from clients. When a client connects to the server socket, a fresh socket is
created on the server side and is connected to the socket that the client used when connecting to the
server. The socket connection is used for bidirectional communication between client and server; both
ends can obtain an input stream and an output stream from the socket.
Here are a constructor and some methods from the ServerSocket class in package java.net:

 ServerSocket(int port) creates a server socket on the given port.
 Socket accept() listens for a connection, blocking until a connection is made. Creates

and returns a new Socket when a connection is made. If a timeout is set, the call to
accept throws InterruptedIOException when the timeout expires.

 void close() closes the server socket.
 void setSoTimeout(int tmo) sets the timeout so that a call to accept will time out

after tmo milliseconds, if positive. Disables timeout (the default) if tmo is zero.
Here are a constructor and some methods from the Socket class in package java .net:

 Socket (String host, int port) creates a client socket and connects to a given
port on the given host. The host may be a name ("localhost") or an IP address
("127.0.0.1").

 void close() closes the socket.
 InetAddress getInetAddress() returns the address to which this socket is connected,

as an object of class java.net.InetAddress; methods getHostName() and
getHostAddress() can be used to convert this address to a string.

 InputStream getInputStream() returns the input stream associated with this socket.
 OutputStream getOutputStream() returns the output stream associated with this

socket.
 void setSoTimeout (int tmo) sets the timeout so that a call to read on the input

stream obtained from this socket will time out after tmo milliseconds, if positive. If tmo is
zero, then timeout is disabled (the default). If a timeout is set, a call to read throws
InterruptedIOException when the timeout expires.

The Socket and ServerSocket classes are declared in the Java class library package java.net. The
Java class library documentation [3] provides more information about sockets and server sockets.

Example 114: Socket Communication Between Processes
This example program runs as a server process or as a client process, depending on the first command
line argument. The server and client may run on the same machine, or on different machines
communicating via a network. Several clients may connect to the same server. The server creates a
server socket that accepts connections on port 2357. When a client connects, a new client socket is
created and an integer is received on that socket. If the integer is a prime, the server replies true on the
same socket, otherwise false.

Each client process asks the server about the primality of the numbers 1 through 999 and prints those that
are primes.
It is rather inefficient for the client to create a new socket for every request to the server, but it suffices for
this example. Also, buffering the input and output streams may speed up socket communication (section
21.12).

import java.io.*;

import java.net.*;

 118

class SocketTest {

 final static int PORT = 2357;

 public static void main(String[] args) throws IOException {
 boolean server = args.length == 1 && args[0].equals("server");
 boolean client = args.length == 2 && args[0].equals("client");
 if (server) { // Server: accept questions about primality
 ServerSocket serversock = new ServerSocket(PORT);
 for (;;) {
 Socket sock = serversock.accept();
 DataInputStream dis = new DataInputStream(sock.getInputStream());
 DataOutputStream dos = new DataOutputStream(sock.getOutputStream());
 int query = dis.readInt();
 dos.writeBoolean(isprime(query));
 dis.close(); dos.close();
 }
 } else if (client) { // Client: ask questions about primality
 for (int i=1; i<1000; i++) {
 Socket sock = new Socket(args[1], PORT);
 DataOutputStream dos = new DataOutputStream(sock.getOutputStream());
 DataInputStream dis = new DataInputStream(sock.getInputStream());
 dos.writeInt(i);
 if (dis.readBoolean())
 System.out.print(i + " ");
 dos.close(); dis.close();
 }
 } else { ... } // Neither server nor client
 }

 static boolean isprime(int p) { ... return true if p is prime ... }
}

 119

References
[1] The authoritative reference on the Java programming language is J. Gosling,B. Joy,G. Steele, and G.
Bracha, The Java Language Specification, 2nd ed. (Boston: Addison Wesley, 2000). Browse or download in
HTML (573 KB) at <http://java.sun.com/docs/books/jls/>.

[2] An introduction to all aspects of Java programming is K. Arnold,J. Gosling, and D. Holmes, The Java
Programming Language, 3rd ed. (Boston: Addison Wesley, 2000).

[3] The Java class libraries (or Java Core API) are described in two volumes of The Java Class Libraries,
Second Edition (Boston: Addison Wesley, 1997/98). Volume 1, by P. Chan,R. Lee, and D. Kramer, covers
java.io, java.lang, java.math, java.net, java.text, and java.util. Volume 2, by P. Chan and
R. Lee, covers java.applet, java.awt, and java.beans. Also available is P. Chan,R.Lee, and D.
Kramer, The Java Class Libraries: 1.2 Supplement (Boston: Addison Wesley, 1999).

The class library documentation can be downloaded (22 MB) at <http://java.sun.com/docs/> or browsed at
<http://java.sun.com/j2se/1.4/docs/api/>.

[4] A compact guide to Java programming style is The Elements of Java Style (Cambridge: Cambridge
University Press, 2000) by A. Vermeulen et al.

[5] The Unicode character encoding (<http://www.unicode.org/>) corresponds to part of the Universal
Character Set (UCS), which is international standard ISO 10646-1:2000. The UTF-8 is a variable-length
encoding of UCS, in which seven-bit ASCII characters are encoded as themselves, described in Annex R of
this standard.

[6] Floating-point arithmetic is described in the ANSI/IEEE Standard for Binary Floating-Point Arithmetic
(IEEE Std 754-1985).

	Table of Contents
	Preface
	Notational Conventions
	Running Java: Compilation, Loading, and Execution
	Names and Reserved Names
	Java Naming Conventions
	Comments and Program Layout
	Types
	Variables, Parameters, Fields, and Scope
	Strings
	Arrays
	Classes
	Classes and Objects in the Computer
	Expressions
	Statements
	Interfaces
	Exceptions, Checked and Unchecked
	Threads, Concurrent Execution, and Synchronization
	Compilation, Source Files, Class Names, and Class Files
	Packages and Jar Files
	Mathematical Functions
	String Buffers
	Collections and Maps
	Input and Output
	References

