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The computer is bringing about a revolution in our understanding of
inference, representation, and reasoning, some of the most fundamental no-
tions of logic.  The revolution is far from complete, but we think the direction
is clear enough.  In this article we describe how the computer led the two of
us first to change the way we teach elementary logic, and eventually to re-
think basic assumptions about the subject matter of our discipline.  We think
the story is a remarkable case study of the synergy between teaching, technol-
ogy, and research.

1 Some autobiography

Our story begins in 1983 when we both returned to Stanford from teaching at
other universities.  Elementary logic instruction is part of the bread-and-but-
ter teaching in Stanford’s philosophy department, as it is in most philosophy
departments.  There is a difference, though, because Stanford has a long tradi-
tion of using computers in logic instruction.  This dates back to the late 1960’s,
when Patrick Suppes introduced his program Valid into Philosophy 57,
Stanford’s elementary logic course.  This program ran on a mainframe com-
puter devoted to nothing else, and provided students with an entire course of
instruction in introductory logic.  Like most logic courses offered from the
60’s through the 80’s, it focused on teaching the basic syntactic rules of proof
in a formal calculus.  Unlike most, it covered the subject in considerable
depth, delving into axiomatic systems of some sophistication.

1The programs described in this paper were conceived by the authors, but would never have be-
come realities without the design and programming talents of Gerry Allwein, Dave Barker-
Plummer, Kalpana Bharadwaj, Alan Bush, Doug Felt, Dan Fish, Christopher Fuselier, Bill
Graham, Mark Greaves, Adrian Klein, Mike Lenz, Steve Loving, Eric Ly, Atty Mullins, Pete
Murray, Mark Ravaglia, Xin Wei Sha, Jason Strober, Rolf van Widenfelt, and Rick Wong.
Financial support was received from Stanford University’s Faculty Author Development
Program and Center for the Study of Language and Information, and from Indiana University’s
Visual Inference Laboratory.
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Over the years, thousands of Stanford students learned logic from
Valid.  While one section of Philosophy 57 was always “person taught”—for
computer-phobic students—the bulk of elementary logic instruction was
shouldered by Suppes’ pioneering program.  This freed most of the Stanford
philosophy faculty from the burden of teaching elementary logic.  In particu-
lar, the two of us could teach more advanced and interesting logic courses.
That first year we taught courses in computability (Turing machines, recur-
sive functions, undecidablity) and mathematical logic (truth, models, sound-
ness, completeness).

In the winter of 1984, the same year we returned to Stanford, Apple
Computer introduced its Macintosh.  The graphical capabilities of the
Macintosh immediately captured our imagination as a way to solve some ba-
sic pedagogical problems we had encountered in these logic courses.  One
problem in teaching computability had to do with Turing machines, a model
of computation developed in the thirties by the famous logician Alan Turing,
and a fundamental notion in theoretical computer science.  The problem was
the difficulty of giving students a real sense of the power of Turing machines.
Since Turing machines get extremely complicated extremely fast, the only ex-
ercises we could assign (and have any hope of grading) were toy problems that
called for the construction of very simple machines.  And even with these
simple machines students often failed to get them right, due to the difficulty
of verifying that a particular machine did what it was supposed to do. For
many students the gap between the problems they could hope to solve with
pencil and paper and the evident power of the modern computer made many
claims in the course seem far-fetched.  For example, students were led to ac-
cept Church’s Thesis, the claim that Turing machines can compute any func-
tion that can be calculated by mechanical or algorithmic means, more on the
basis of our authority than on the basis of their own appreciation of the in-
credible power of these machines.

The problem in mathematical logic was of a very different sort.  In our
classes many students who had been quite successful in constructing proofs
using Valid, students who should have understood the symbolic language in
which those proofs were couched, in fact had great difficulty grasping the very
intuitive notion of truth in a structure.  This lack of understanding evidenced
itself repeatedly.  For example, students would make egregious errors in
translating between sentences of English and sentences of first-order logic, er-
rors that would have been inconceivable had they really understood the
meanings of both sentences.

The Macintosh’s graphical capabilities inspired us to tackle these prob-
lems in a new way.  We envisioned tools that would facilitate the student’s
ability to visualize the abstract subject matter of logic, and thereby work more
effectively with it.  Over the next four years, funded by Stanford’s Faculty
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Author Development project, we worked with teams of student program-
mers to develop programs we called Turing’s World [2] and Tarski’s World
[3].  As hoped, these programs have been extremely successful in addressing
the pedagogical problems at which they were aimed.  What we did not expect,
however, was that they would lead us to rethink the conceptual foundations
of our subject.  In order to explain this second result, we need to briefly de-
scribe the programs.

Turing’s World

Introduced by Alan Turing in 1936, Turing machines are one of the key ab-
stractions used in modern computability theory, the study of what computers
can and cannot do.  A Turing machine is a particularly simple model of the
digital computer, one whose operations are limited to reading and writing
symbols on a linear tape, or moving along the tape to the left or right.  The
tape is marked off into squares, each of which can be filled with at most one
symbol.  At any given point in its operation, the Turing machine can read or
write on only one of these squares, the square located directly below its
“read/write” head.

In Turing’s World the tape is represented by a narrow window that sits
at the bottom of the screen.  Figure 1 shows the tape with a series of A’s and
B’s written on it, and with the read/write head located on the leftmost of
these symbols.

Figure 1: A tape from Turing’s World.

A Turing machine has a finite number of states and is in exactly one of
these states at any given time.  Associated with these states are instructions
telling the machine what action to perform if it is currently scanning a partic-
ular symbol, and what state to go into after performing this action.  The states
of a Turing machine are generally represented by a “flow” or “state” diagram,
using circles for the states and labeled arcs for the instructions associated with
those states.

For example, Figure 2 shows the state diagram of a Turing machine
with just two states.
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Figure 2: A simple Turing machine.

The linguistic description of this same machine would be given as fol-
lows:

In state 0: if you see an A, move right and go into state 0.
In state 0: if you see a B, move right and go into state 1.
In state 1: if you see a B, move right and go into state 1.

or, in abbreviated “4-tuple” notation:

0, A, R, 0
0, B, R, 1
1, B, R, 1

This machine will run down a string of A’s and B’s, stopping at the first
A it sees after a B.  For example, if run on the sample tape above, it would
stop when it got to the fourth symbol from the left, because it would then be
in state 1 with no instructions about what to do next.

In Turing’s World, a collection of graphical tools lets you design Turing
machines by directly drawing their state diagrams.  When you run a Turing
machine in Turing’s World, the operation of the machine is displayed graph-
ically, both on the tape and in the state diagram window.  On the tape, the
read/write head moves, making the changes required by the machine you’ve
designed.  In the state diagram, the nodes and arcs highlight to show the
changing state of the computation.  Turing’s World also allows students to
display the text-based “4-tuple” description of their machines, though we
have found that they rarely do.

Despite their simplicity, Turing machines can be designed to compute
remarkably complex functions.  In fact, they are generally thought to be as
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powerful (in theory) as any possible computer.  Finding out what they can do
is half the fun of studying computability.  Figure 3 shows part of the detail of a
Turing machine that adds two numbers expressed in decimal notation.

Figure 3:  A Turing machine for adding in base 10.

The ability to design a Turing machine by simply drawing its state dia-
gram, combined with the ability to run the machine and watch it go through
its transitions, is a powerful aid in the student’s understanding of the intu-
itive idea of a Turing machine.  By allowing students to introduce subma-
chines (as illustrated in Figure 3), the program lets them quickly build up a
powerful arsenal of Turing machines and to combine them in important
ways.  In our classes we now routinely ask students to design a Universal
Turing machine, a machine that acts as a fully programmable computer.  This
exercise is several orders of magnitude more complex than what we could ex-
pect of our students before the advent of Turing’s World.  Our students now
learn to appreciate the power of Turing’s abstract machines, and have fun
while doing it.

Tarski’s World

The goal of Tarski’s World is to teach students the symbolic language at the
core of modern, first-order logic.  The program allows students to represent
simple, three-dimensional worlds inhabited by geometric objects of various
shapes and sizes, and to test first-order sentences to see whether they are true
or false in those worlds.  Figure 4 shows an example of such a world and
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some sentences (numbers 11–15 out of a longer list) that the student has been
examining.

Figure 4:  An example from Tarski’s World.

As you can see from the T’s and F’s at the left, three of the displayed
sentences are true, while two are false. Sentence 12, for example, is false: it
claims that there is a unique, medium-sized tetrahedron, when in fact there
are three such blocks in the depicted world.  If students do not understand
why the sentence is false, they can choose to play an interactive game that
successively breaks down the claim into simpler constituent parts.  Though
we cannot demonstrate the game in a static description, its rules are based on
the meanings of the symbols (quantifiers and connectives) of the language,
and thereby drive home the real import of the sentence at issue.  The game
continues until the student’s misunderstanding of the sentence becomes
completely evident.  Thus the student quickly identifies and corrects his or
her own misconstruals of the language, rather than waiting for classroom
help or, as we found to be so common, getting through the entire course
without the problem being recognized.

Despite its simplicity, there are many ways that we use Tarski’s World
in teaching the language of first-order logic.  Most straightforwardly, we give
students exercises in which they are asked to evaluate a set of sentences in a
given world.  But we also give them a set of sentences and ask them to con-
struct a world that makes the sentences all true.  Or we start with a world and
ask the students to express certain facts about the world in the first-order lan-
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guage.  Tarski’s World can also be used to show various kinds of non-entail-
ments.  For instance, the example shown above proves that neither sentence
12 nor sentence 15 follows from 11, 13, and 14.  Finally, it can be used for pos-
ing some interesting deduction problems, as we will see in a moment.

2 Visualization and reasoning

In using Turing’s World in our teaching, we became enormously impressed
by the cognitive power of the graphical representation of Turing machines
over the more text-based, 4-tuple representation.  There was no comparison
between the two when it came to ease of design, understanding, or verifica-
tion of Turing machines.  While both modes of representation are available
in Turing’s World, students never resorted to the linguistic representation
except when told to do so.  This sparked our interest in the general topic of vi-
sual programming languages even before it become a lively topic in computer
science.

We must confess, though, that we did not really grasp the revolution-
ary import for logic of what we were observing in our students.  After all, we
already knew that it was much easier to use the diagrammatic representation
of a Turing machine:  that is why we designed Turing’s World with its graph-
ical capabilities in the first place.  The full import of what we had noticed only
hit us with Tarski’s World.

We mentioned earlier that in using Tarski’s World, we assigned stu-
dents exercises that required deductive reasoning for their solutions.  In these
problems, we would present a picture of a blocks world constructed in Tarski’s
World, as well as a list of sentences involving names, some of whose refer-
ents were not indicated in the picture.  We would then ask students to deduce
certain facts from the information they had been given.

Figure 5:  A blocks world.

An example

For a simple example of this sort, consider the situation depicted in Figure 5.  This figure shows
us a world made up of blocks arranged on a chess board. The blocks come in three shapes (cubes,
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tetrahedra, and dodecahedra) and three sizes (small, medium, and large).  Suppose our goal is
to determine as much as we can about two blocks, named b and c.  Ideally we would be able to
identify them in the picture. Failing that, we should at least figure out as much as we can about
them.

Suppose we are initially given the following information:

Nothing is on a square adjacent to block b and block c is not a cube.

Clearly on the basis of this information we cannot identify either of the blocks.  We can rule out
some possibilities, though. For example, c cannot be either of the cubes on the left, and b cannot
be in the central grouping of five blocks, since each of them is adjacent to others.  Indeed, a mo-
ment’s thought shows that there are eight possible blocks that could be c and five for b, giving
us a total of forty cases consistent with this information.

Suppose we are next given the following information:

Block c is either small or large.

This information tells us nothing more about b, of course, but it does significantly narrow the
range of possibilities for c.  Given our earlier information, we now see that there are two cases to
consider: c has to be either one of the two small dodecahedra in the center, or the large dodeca-
hedron toward the front.  We cannot tell which one it is, but nonetheless we can observe in each
case that c is a dodecahedron.

Continuing, suppose we are given the following piece of evidence:

Block b is farther back than either of the tetrahedra.

This tells us that b must be one of the three backmost dodecahedra.  But since we already know
that b is not in the central group of blocks, we can conclude that b is the lone dodecahedron at
the back of the board. We have thus successfully identified b.

Suppose our final piece of information is:

Block b is larger than block c.

We already know that c is either one of the two small dodecahedra or else the large dodeca-
hedron up front.  Since we now know that b is a medium-sized block, we can rule out the possibil-
ity that c is the large dodecahedron. However, we cannot rule out either of the other two possi-
bilities.  Thus c is one of the small dodecahedra, but we cannot tell which.  Either of these cases
is consistent with all our given information.  Thus, in the end, we are left with two consistent
cases, those depicted in Figure 6.
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Figure 6:  Two remaining possibilities.

Heterogeneous reasoning

From a pedagogical point of view, exercises like this were quite effective, both
in helping the students learn the first-order language (in our class, the
English sentences used above would have been replaced by first-order sen-
tences) and in developing some important reasoning skills.  The students
found the problems challenging but enjoyable, contrary to our experience
with the sorts of proofs familiar from elementary logic courses.  More impor-
tant, we discovered that the exercises forced students to focus on the content
of the reasoning tasks, rather than the syntactic form of the representations
employed.

While this was all very positive, there was a down side.  The reasoning
students used in solving these problems was of a very different kind from
that modeled in standard deductive systems.  While it was quite clear when
the students’ reasoning was correct and when it was faulty, in neither case did
it fit the patterns we had come to expect.  In other words, the theory of reason-
ing we were preparing to teach our students seemed inadequate to account for
the reasoning the students were already doing to solve the homework prob-
lems we set them with Tarski’s World.

We explored various ways to treat this reasoning using traditional
logic, the logic of first-order sentences.  For example, we explored the possibil-
ity of considering the visual information presented by the diagram as an effi-
cient way of encapsulating a very large set of sentences.  There are two imme-
diate problems with this idea.  First, even when it is possible, there are many
arbitrary choices to be made in going from a visual representation to a
roughly equivalent set of sentences.  What language do you use, with which
predicates and relations?  How do you represent the conclusions, which seem
to have the indexical form “that block is d”?  And from the infinite set of sen-
tences true in the diagram, exactly which ones do you choose?  In each case,
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the wrong decision would make the problem unsolvable, and so practically
speaking, the conversion to traditional logic could only be accomplished after
the problem had been solved.  This process clearly bore no relation to what
our students were doing, nor did it offer a practical tool that would aid them
in the future.

The more interesting difficulty concerned the methods of reasoning
encountered in this context.  If you examine the steps in the above reasoning,
it becomes evident that the methods are quite different from those we usually
teach in logic.  They have a distinctly “semantic” character, quite unlike the
syntactically defined methods in formal systems of deduction.  For example,
you are as likely to break into cases based on atomic, negated or quantified
sentences as you are on the basis of a disjunctive claim.  As a consequence, at-
tempts to represent the reasoning using sentences do not faithfully model the
real character of the reasoning.  Simple proofs explode into proofs involving
hundreds of steps, proofs in which the key steps in the original reasoning are
obscured or obliterated.

We did not abandon our attempt to fit this reasoning into the first-
order formalism lightly.  As they say, when all you have is a hammer, every
problem looks like a nail.  But the more we tried reducing the reasoning to
sentential reasoning, reasoning amenable to traditional deductive systems,
the more we became convinced that the attempted reduction was wrong-
headed.  Even when we could write down a set of sentences that arguably cap-
tured the key features of the blocks world diagram required in the students’
reasoning, we realized that those sentences were in fact merely consequences
of the diagram, and consequently that the inference from the diagram to the
sentences was itself a matter of logic, could itself be valid or invalid.  Thus
there was a clear sense in which the reasoning our students found so natural
was irreducibly heterogeneous , involving the interaction of two forms of
representation: the Tarski’s World diagrams and the first-order sentences.
Using traditional sentential systems of deduction, we could at best model
parts of that reasoning, and even that model did not seem faithful to the
actual train of reasoning we witnessed in these exercises.

Looking back at our experience with Turing’s World in light of our
new-found respect for visualization, we realized that the phenomenon had
been staring us in the face there as well.  In that case every diagram did have a
clear “sentential” counterpart (its 4-tuple representation) but the reasoning
involved in constructing or verifying properties of a Turing machine was
quite different with the two representational forms.  For example, the dia-
grams make explicit any loops in the program, loops that are not evident in
the 4-tuple representation.  These loops correspond to recursion and call for
proofs by induction.  Simply looking at the state diagram leads you to expect
when and where induction will be needed to verify a property of the repre-
sented machine.  Looking at the 4-tuples gives you no such clue.
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Once we were sensitized to the power of visualization in reasoning, we
realized that it is far more pervasive than we had ever imagined.  In everyday
life we get information from a variety of sources and in a variety of forms.
An important component of everyday reasoning consists in combining these
variously presented forms of information.  Imagine going to the visitor
information center in a city you have never visited and asking for directions.
To find your way, you will need to combine the linguistic information from
the informant with the visual information gathered from the scenes that
unfold before you.  Every scientific and engineering discipline has its own
system or systems for visualizing information in problem solving, from
chemistry’s molecular diagrams to geometrical diagrams to ordinary maps
and blueprints.

We were reminded, too, that over the years a handful of logicians,
most notably Euler, Venn, and Peirce, had stressed the importance and inter-
est of nonsentential inference.  The diagrams of Euler and Venn, both of
which use circles to represent collections of objects, are still widely known
and used, even though their expressive power is sorely limited.  C. S. Peirce,
inspired by the utility of molecular diagrams in reasoning about chemical
compounds, developed a more intricate and powerful diagrammatic formal-
ism.  While Peirce’s system has not won over many human users, it has
become an important tool in computer science.

We also looked at the so-called “analytical reasoning” problems posed
on standardized tests like the Graduate Record Examination (GRE) and the
Law School Aptitude Test (LSAT).  These problems are logical puzzles, but the
natural way to attack them is almost always to find a good way to represent
the information diagrammatically and to use the diagram in reasoning
through to a solution.  Casting the problem into standard propositional or
first-order notation typically obscures the situation, making the solution even
harder to find.

An example

Let’s look at an example in some detail.  The following analytical reasoning problem is
adapted from Summers (1968).

Bob, his sister Carol, son Ted, and daughter Alice, are all chess players. The best play-
er’s twin and the worst player are of the opposite sex. The best player and the worst
player are the same age. Can you determine who is best and who is worst?

If one approaches this puzzle as a problem in first-order logic, its solution is quite difficult.
However, if you use everyday representational devices, the solution is easy to find.  We use
symbols according to the following conventions:
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female

male

child of
same 
age

Using this system of representations, we apply the first sentence of the problem to infer the fol-
lowing diagram, depicting the basic family relationships:

BobCarol

TedAlice

There are various ways to proceed at this point.  The most straightforward is to break into four
cases, depending on which of the four people is the best chess player.  Indicating the best
player with a B and the worst with a W , we end up with the following four diagrams.

BobCarol

TedAlice

BobCarol

TedAlice

B

W

BobCarol

TedAlice B

W BobCarol

TedAlice B

W

B

W

Three of these turn out to be inconsistent with the information that the best player and the
worst player are the same age, since a father cannot be the same age as his children.  The only
one that is possible is the third, in which Carol is the worst and Alice is the best.

3 What to do?

By 1988 we had collected and studied many examples of valid reasoning that
did not fit within the confines of logic as it is normally understood.  This was
both exciting and unsettling.  Like most logicians, we thought we understood
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the basic methods of reasoning, methods like conditional proof, proof by con-
tradiction, proof by cases, and universal generalization.  But here were meth-
ods of reasoning used every day, methods every bit as basic and important,
that did not fit into the conceptual framework with which we were working.
Whereas the traditional methods are grouped around the so-called “logical
operators,” these new methods seemed to have nothing to do with them.
Some of the methods had to do with taking information in sentential form
and applying it to modify a diagram, or observing information in a diagram
and expressing it with a sentence.  Others involved breaking into a range of
cases, not on the basis of a disjunctive sentence, but rather on the basis of
other kinds of information.

What to do in the face of this discrepancy between logical theory and
empirical observation?  Rewrite the theory?  That was not possible.  All we
really had were several examples that did not fit comfortably into the current
theory.  We did not yet have a framework for thinking about, let alone
presenting, a richer theory that would encompass all the forms of valid
reasoning we found in the wild.  But our case studies showed that there were
certain methods of reasoning using diagrammatic information combined
with sentences that were widely applicable, methods we called observe, apply,
exhaustive cases, and so forth.

We became convinced that these principles were at work in reasoning
involving many kinds of diagrams and visualization, that these methods
were as important as the familiar sentential methods, and that we should be
teaching them to our students.  For this reason, we initiated the development
of a third courseware project, Hyperproof, to make it possible to teach these
methods of reasoning in addition to the more traditional, sentential methods.
We also wrote a paper [5] making the philosophical case for the legitimacy of
diagrammatic representations in rigorous reasoning, and a more technical
paper [6] sketching the beginnings of a theoretical framework for understand-
ing such reasoning.

Hyperproof

In Figure 7, we show a simple proof constructed by a student using
Hyperproof.  This is a proof in which we are given some initial information
and asked to determine whether it follows that blocks d  and e  are in the same
row. As it turns out, it does, and the proof shows this to be the case.
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Figure 7: A proof in Hyperproof.

The initial information is given in the diagram at the top of the figure,
plus the two sentences marked as Given. The diagram is self-explanatory, ex-
cept for the meaning of the block depicted to the right of the chess board. This
is Hyperproof’s way of indicating that this block’s location is unknown.  The
block depicted has a location on the chess board, but the diagram does not tell
us where.  (Hyperproof has devices for indicating partial information about
size and shape, as well.)

 The two given sentences assert, first, that d  is a dodecahedron if e  is,
and second, that e  is small.  The first step in the proof applies this second
piece of information to identify e  as the one small block in the depicted situa-
tion.  The student then observes that e  is indeed a dodecahedron.  This allows
the student to conclude that d  is a dodecahedron as well.  Since there are three
dodecahedra, there are three possible cases the student must consider.  But in
each of these, one can observe that d  and e  happen to be in the same row.
Hence the conclusion follows.

If we change the initial diagram slightly, then the conclusion would no
longer follow.  In Figure 8 we have changed the unlocated block to a dodeca-
hedron. In this proof, the student has started in the same way as before, but
has discovered that the unlocated block might be d . This provides a possible
counterexample to the claim that d  and e  are in the same row.  By placing this
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block in a different row, the student constructs a possible case in which the
premises are true but the purported conclusion is false.

Figure 8: A proof of nonconsequence.

An interesting feature of Hyperproof is that it naturally gives rise to
many different types of reasoning problems, types that are reflected in the 27
distinct kinds of goals that can be presented with a problem. In addition to the
usual problem of the form “show that such-and-such follows from so-and-
so,” we can ask “does such-and-such follow from so-and-so?” or “show that
such-and-such does not follow from so-and-so.”  More interestingly, we can
have goals that are expressible only using the diagram, like “can you deter-
mine the size of the specified block?” or “can you identify the specified
block?”  These examples, special as they are to Hyperproof, showed us just
how limiting the traditional notion of proof is when it comes to real-world
reasoning and problem solving.  Of the 27 types of goals available in Hyper-
proof, only one (the first mentioned above) fits naturally into standard treat-
ments of logic.

4 Toward a theory of reasoning

As we said earlier, a theory of inference rich enough to encompass the use of
both diagrams and language does not yet exist, but its shape is beginning to
emerge.  In this final section we want to give our best guess as to the broad
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shape of this theory and the place the traditional theory will take within the
enriched theory.

Reasoning, proofs, and problem-solving

Two of the key concepts of modern logic are the notions of proof and
counterexample (in the form of a model or structure).  A proof is used to
demonstrate that some piece of information follows from the given informa-
tion; a counterexample is used to demonstrate that it does not.  Notice, how-
ever, that these notions do not model reasoning itself, but only two of its pos-
sible outcomes.

To see what is left out, think of the legal process.  Proofs are the stock-
in-trade of the prosecuting attorney, whose aim is to demonstrate that the de-
fendant is guilty.  Counterexamples are a standard tool of the defense attor-
ney, whose job is to show that the defendant’s guilt has not been established
by the evidence.  What is left out is the prior role of the detective, who tries to
use the available evidence to figure out who is guilty and who is not.

When Sherlock Holmes tries to solve a murder case, he does not start
out trying to prove that the butler did it.  Rather, his goal is to discover the
identity of the murderer, no matter who he or she might be.  There is a space
of possible suspects and the evidence available to Holmes will either rule out
all but one of the suspects, or else be insufficient to determine the murderer.
Of course it is not in general a simple matter to figure out which is the case,
which is why Holmes is famous for his deductive abilities.

It is often said that modern logic was designed with mathematical rea-
soning as its paradigm.  We think this is not entirely accurate, since the the-
ory provides no better an account of the mathematician’s reasoning than it
does of everyday reasoning and problem solving.  Rather, it is based on the
paradigm of mathematical communication: the rigorous proofs (or disproofs)
by which one mathematician communicates results to another.  This is why
the theory, as important as it may be, yields neither a practical tool nor an ac-
curate model of the real-life process of reasoning.

A more accurate and useful theory of reasoning will provide deduc-
tively correct methods that can be applied without antecedent knowledge of
the ultimate outcome of the reasoning.  In other words, the methods should
further the goals of the reasoning whether or not they end up producing a
proof or a disproof, and whether or not you know ahead of time the specific
claim you may ultimately derive.  To a limited extent, semantic tableaux have
this characteristic:  you can apply these methods to a selected sentence to see
whether or not it is a consequence of some others.   But you still need to
choose a specific claim—say, “the butler did it”—before you can apply the
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method.  The deductive system built into Hyperproof shares this advantage of
the tableaux method, but also allows you to reason to an initially unspecified
conclusion and to do so using information expressed in nonsentential form.

Exploration, information, and possibilities

When thinking about reasoning and problem solving, a useful metaphor is
that of exploration:  to solve a reasoning problem, we explore a space of possi-
ble situations or worlds consistent with the initial information we are given.
Exploration in this context is the attempt to discover information about this
space of possibilities, information about what it contains, where the bound-
aries lie, and so forth.

Sentences, whether of English or of first-order logic, partition this space
of possibilities, dividing it up into fiefdoms with a multitude of overlapping
claims.  The study of traditional logic deals with the relations among these
claims.  Thus, traditional proof techniques allow us to add to a collection of
sentences that characterize a set of possibilities, additional sentences that also
hold in that set.  In this way we can show that the latter information, the in-
formation carried by the new sentences, was implicit in the former.  The dis-
covery of a counterexample, in contrast, exhibits possible situations consistent
with the given information but which falsify the hypothesis in question. In
this way we show that the hypothesis is not  a consequence of the given.

When we view reasoning in this way, it is clear where diagrams and
visualization fit in.  Diagrams, like sentences, carry information: they carve
up the same space of possibilities, though perhaps in very different ways.  A
good diagram, for example, may represent information in a form that is par-
ticularly appropriate for the subject matter at hand, one that allows you to vi-
sualize and manipulate the information more readily than would a collection
of sentences or even a different sort of diagram.  Diagrams useful for depict-
ing relations among sets, say Euler circles, are very different from those used
for depicting the structure of a building to be built.  The one takes advantage
of the inclusion relation among sets; the other takes advantage of spatial rela-
tions among parts of a building.

By focusing on sentences, to the exclusion of all other forms of repre-
sentation, we have neglected one of the most striking facts about the process
of reasoning:  the heterogeneity of ways in which people represent informa-
tion in this process.  Maps, charts, diagrams, and other nonsentential forms of
representation can be, and often are, of equal importance to sentences.
Reasoning typically involves the manipulation of information represented
both in sentences and various kinds of diagrams.  The diagrams play a crucial
and legitimate role in both the way the information is presented and in the
reasoning itself.  This fact has been appreciated in computer science—indeed,
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database theory is largely the study of the logic of various forms of representa-
tion that do not fit neatly into the sentential paradigm.  But there is more to
be understood about the logic of alternate forms of representation, and it is
the natural business of logic to undertake this task.

Efficiency, informativeness, and complexity

We try to teach our students to be efficient reasoners.  But just what does this
mean?  When reasoning results in a proof, there is an inverse relationship
between the efficiency and the complexity of the proof—the latter being mea-
sured by some combination of length and maximal depth of nested subproofs.
The less complex a proof, the more efficient it is.  On the other hand, when
reasoning results in a counterexample, there is no ready measure of its com-
plexity, except perhaps size.  But the size of a counterexample is not a good
measure of the efficiency with which it was discovered.

 Our metaphor of reasoning as exploration of a space of possibilities
gives another potential metric for efficiency.  In this context, more informa-
tion corresponds to fewer possibilities.  To put it the other way around, the
more possibilities eliminated by a given proof, or by a given step within a
proof, the more information one has extracted, and so the more efficient one
is being.  Consider, for example, the game of guessing a number between 1
and 100, where you are only allowed to ask “yes/no” questions.  A very ineffi-
cient method is to ask “Is the number 1?” “Is the number 2?” and so on.  The
most efficient method is to ask questions like “Is the number greater than
50?” and so on.  While the former method eliminates only one number at a
time, the latter cuts the possibilities in half.  On average, this second method
will arrive at the solution faster, though of course users of the first sometimes
get lucky.

The notion of informativeness implicit in this strategy is at the basis of
Shannon-Weaver communication theory, in which the amount of informa-
tion in a signal is measured by the number of possibilities eliminated by the
signal.  The same idea can be used to guide reasoning strategies.  In general we
can expect that the more informative a given step in a piece of reasoning is,
the fewer steps we will need to get to our desired conclusion.  This is not an
infallible rule, but does give us a good rule of thumb: given a choice of infer-
ence steps which are otherwise similar, choose a more informative over a less
informative step.  This is similar to Grice’s conversational maxim of informa-
tiveness.

This simple idea has a number of striking applications in everyday rea-
soning.  In our book [4] we include several sections on reasoning strategies in
which we use this idea to describe strategies that the students find helpful in
their own problem solving.  One strategy, for example, helps guide decisions
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about breaking into diagrammatic cases.  By using a maximally informative
sentence, you can break into the minimal number of cases, and this, on aver-
age, increases the efficiency of your reasoning.

5 Conclusion

The natural domain of logic is the study of valid forms of reasoning, methods
of extracting new information from information already obtained.  Since its
inception in Aristotle’s Prior Analytics, this study has been dominated by a
small number of logical systems that apply to information expressed in spe-
cific linguistic forms.  On the face of it, none of these systems—whether Aris-
totle’s syllogistic, Boole’s propositional logic, or the quantified logic of Frege,
Peano and Peirce—comes close to accounting for the incredible variety of
valid reasoning observed in everyday life.

The history of logic has been a history of squeezing recalcitrant reason-
ing into existing, well-understood forms.  Witness the fact that the paradig-
matic syllogism:

All men are mortal.
Socrates is a man.
So Socrates is mortal.

does not itself fit naturally into the theory of syllogisms, since the last two
sentences are not of official, Aristotelian form.  Yet this did not give two
thousand years of Aristotelians pause, because they could easily recast the ar-
gument into regulation form:

All men are mortal.
All things that are Socrates are men.
So all things that are Socrates are mortal.

It is interesting to speculate what would have happened had they questioned
this simple conversion, had they recognized the move from the natural form
to the official form as involving a logically valid inference, albeit one not ac-
counted for by Aristotelian logic.  It is entirely possible that the great advances
in quantificational logic of the 20th century might well have occurred cen-
turies before.

Recasting recalcitrant reasoning into well-understood forms can suc-
ceed so long as the recalcitrant forms are of less prominence than those that
fit the prevailing paradigms, and so long as an alternative account of equal
persuasiveness is unavailable.  Until recently, reasoning using nonsentential
representations could easily be swept under the logician’s rug.  But the com-
puter revolution has changed this in two main ways.  First, the wide variety
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of representational forms used by computers, both internally and externally,
requires us to confront a much richer array of representations, and with
them, new forms of valid inference.  Consider for example the reasoning in-
volved in extracting sentential information from a city map, a type of reason-
ing we all engage in from time to time.  Prior to the computer, logicians could
maintain the fiction that this type of reasoning was, at some deep level, ac-
counted for by first-order logic.  But the practical problem of implementing
systems to automate this process quickly forces us to give up this fiction.

Second, computers, with their sophisticated graphical capabilities, pro-
vide us with powerful tools for constructing, displaying, and even under-
standing a wide variety of nonsentential representations.  In particular,
graphical representations become relatively easy to produce and modify, so
that a dynamic inference process can be captured and reproduced.  It is not an
accident that the Hyperproof system was developed on a computer: the com-
puter's graphical capabilities are what makes it practical to create deductive
systems employing complex and sophisticated diagrams.

The proper domain of logic is the study of valid forms of information
extraction, no matter how that information is represented.  Traditionally, lo-
gicians have focused on an important, but narrow slice of this domain.  In the
long run, logic must come to grips with how people use a multitude of repre-
sentations in rigorous ways.  This will force us to extend and enrich the tradi-
tional notions of syntax, semantics, logical consequence and proof, in ways
that admit these new forms of representation.  In the process, what seemed
like a finished success story in philosophical and mathematical analysis will
be refashioned in exciting new ways.
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