
Generalized Inductive Definitions in Constructive Set Theory

Michael Rathjen∗

Department of Mathematics, Ohio State University
Columbus, OH 43210, U.S.A.
rathjen@math.ohio-state.edu

July 10, 2004

Abstract
The intent of this paper is to study generalized inductive definitions on the basis of Con-

structive Zermelo-Fraenkel Set Theory, CZF. In theories such as classical Zermelo-Fraenkel Set
Theory, it can be shown that every inductive definition over a set gives rise to a least and a
greatest fixed point, which are sets. The latter principle, notated GID, can also be deduced
from CZF plus the full impredicative separation axiom or CZF augmented by the power set
axiom. Full separation and a fortiori the power set axiom, however, are entirely unacceptable
from a constructive point of view. It will be shown that while CZF + GID is stronger than
CZF, the principle GID does not embody the strength of any of these axioms. CZF + GID
can be interpreted in Feferman’s Explicit Mathematics with a least fixed point principle. The
proof-theoretic strength of the latter theory is expressible by means of a fragment of second
order arithmetic.
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1 Introduction

In set theory, a monotone inductive definition over a given set A is derived from a mapping

Ψ : P(A) → P(A)

that is monotone, i.e., Ψ(X) ⊆ Ψ(Y ) whenever X ⊆ Y ⊆ A. Here P(A) denotes the class of all
subsets of A. The set inductively defined by Ψ, Ψ∞, is the smallest set Z such that Ψ(Z) ⊆ Z.
Due to the monotonicity of Ψ such a set exists (on the basis of the axioms of ZF say).

But even if the operator is non-monotone it gives rise to a non-monotone inductive definition.
The classical view is that the inductively defined set is obtained in stages by iteratively applying
the corresponding operator to what has been generated at previous stages along the ordinals until
no new objects are generated in this way. More precisely, if Υ : P(A) → P(A) is an arbitrary
mapping then the the set-theoretic definition of the set inductively defined by Υ is given by

Υ∞ :=
⋃
α

Υα,

Υα := Υ(
⋃

β<α

Υβ) ∪
⋃

β<α

Υβ,

∗This material is based upon work supported by the National Science Foundation under Award No. DMS-0301162.
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where α ranges over the ordinals.
Inductive definitions feature prominently in set theory, proof theory, constructivism, and com-

puter science. The question of constructive justification of Spector’s consistency proof for analysis
prompted the study of formal theories featuring inductive definitions (cf. [17]). In the 1970s, proof-
theoretic investigations (cf. [10]) focussed on theories of iterated positive and accessibility inductive
definitions with the result that their strength is the same regardless of whether intuitionistic or
classical logic is being assumed.

The concept of an inductive type is also central to Martin-Löf’s constructivism [19, 20]. Inductive
types such the types of natural numbers and lists, W -types and type universes are central to the
expressiveness and mathematical strength of Martin-Löf type theory.

The objective of this paper is to study generalized inductive definitions on the basis of Construc-
tive Zermelo-Fraenkel Set Theory, CZF, a framework closely related to Martin-Löf type theory. In
theories such as classical Zermelo-Fraenkel Set Theory (ZF), it can be shown that every inductive
definition over a set gives rise to a least and a greatest fixed point, which are sets. The latter prin-
ciple, notated GID, can also be deduced from CZF plus the full impredicative separation axiom
or CZF augmented by the power set axiom. However, full separation and a fortiori the power set
axiom are entirely unacceptable from a constructive point of view. It will be shown that while
CZF + GID is stronger than CZF, the principle GID does not embody the strength of any of
these axioms. A rough lower bound for the strength of CZF + GID is established by translating
an intuitionistic µ-calculus into CZF + GID. An upper bound for the strength of this theory
is obtained through an interpretation in Feferman’s Explicit Mathematics with a least fixed point
principle. The proof-theoretic strength of the latter theory is expressible by means of a fragment
of second order arithmetic based on Π1

2 comprehension.

The paper is organized as follows: Section 2 shows that CZF provides a flexible framework for
inductively defined classes and and reviews the basic results. Moreover, the general inductive defi-
nition principle is introduced therein. Section 3 is concerned with lower bounds while section 4 is
devoted to finding an upper bound.

2 Inductive definitions in Constructive Zermelo-Fraenkel Set The-
ory

CZF provides an excellent framework for reasoning about inductive definitions. The next subsec-
tion will briefly review the language and axioms for CZF.

2.1 The system CZF

The language of CZF is the same first order language as that of classical Zermelo-Fraenkel Set
Theory, ZF whose only non-logical symbol is ∈. The logic of CZF is intuitionistic first order logic
with equality. Among its non-logical axioms are Extensionality, Pairing and Union in their usual
forms. CZF has additionally axiom schemata which we will now proceed to summarize.

Infinity: ∃x∀u[u∈x ↔ (∅ = u ∨ ∃v∈x u = v + 1)] where v + 1 = v ∪ {v}.

Set Induction: ∀x[∀y ∈ xφ(y) → φ(x)] → ∀xφ(x)
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Bounded Separation: ∀a∃b∀x[x ∈ b ↔ x ∈ a ∧ φ(x)]

for all bounded formulae φ. A set-theoretic formula is bounded or restricted or ∆0 if it is constructed
from prime formulae using ¬,∧,∨,→,∀x∈y and ∃x∈y only.

Strong Collection: For all formulae φ,

∀a[∀x ∈ a∃yφ(x, y) → ∃b [∀x ∈ a ∃y ∈ b φ(x, y) ∧ ∀y ∈ b∃x ∈ a φ(x, y)]]

Subset Collection: For all formulae ψ,

∀a∀b∃c∀u [∀x ∈ a∃y ∈ b ψ(x, y, u) →
∃d ∈ c [∀x ∈ a∃y ∈ dψ(x, y, u) ∧ ∀y ∈ d ∃x ∈ aψ(x, y, u)]].

Subset Collection can be expressed in a less obtuse way as a single axiom by using the notion of
fullness.

Definition: 2.1 As per usual, we use 〈x, y〉 to denote the ordered pair of x and y. We use Fun(g),
dom(R), ran(R) to convey that g is a function and to denote the domain and range of any relation
R, respectively.

For sets A,B let A × B be the cartesian product of A and B, that is the set of ordered pairs
〈x, y〉 with x∈A and y∈B. Let AB be the class of all functions with domain A and with range
contained in B. Let mv(AB) be the class of all sets R ⊆ A× B satisfying ∀u∈A∃v∈B 〈u, v〉 ∈ R.
The expression mv(AB) should be read as the collection of multi-valued functions from the set A
to the set B. A set C is said to be full in mv(AB) if C ⊆ mv(AB) and

∀R ∈ mv(AB)∃S∈C S ⊆ R.

Over the axioms of CZF with Subset Collection omitted, Subset Collection is equivalent to Fullness,
that is to say the statement ∀x∀y∃z z is full in mv(xy) (cf. [2]).

2.2 Inductively defined classes in CZF

Here we shall review some facts showing that CZF accommodates inductively defined classes. We
begin with a general approach to i.d. classes due to [1] which reflects most directly the generative
feature of inductive definitions by viewing them as a collection of rules for generating mathematical
objects.

Definition: 2.2 An inductive definition is a class of ordered pairs. If Φ is an inductive definition
and 〈x, a〉 ∈ Φ then we write

x

a
Φ

and call x
a Φ an (inference) step of Φ, with set x of premisses and conclusion a. For any class Y , let

ΓΦ(Y ) = {a | ∃x (x ⊆ Y ∧ x

a
Φ )}.

Thus ΓΦ(Y ) consists of all conclusions that can be deduced from a set of premisses comprised by Y
using a single Φ-inference step. A class Y is Φ-closed if ΓΦ(Y ) ⊆ Y . Y is Φ-correct if Y ⊆ ΓΦ(Y ).
Note that ΓΦ is monotone; i.e. for classes Y1, Y2, whenever Y1 ⊆ Y2, then ΓΦ(Y1) ⊆ ΓΦ(Y2).
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We define the class inductively defined by Φ to be the smallest Φ-closed class, and denote it by
I∗(Φ). In other words, I∗(Φ) is the class of Φ-theorems. Likewise, we define the class coinductively
defined by Φ to be the greatest Φ-closed class, and denote it by I∗(Φ). For precise definitions of
I∗(Φ) and I∗(Φ) in the language of set theory we refer to the two main results about inductively
and coinductively defined classes given below. They also state that these classes always exist.

An ordinal is a transitive set whose elements are transitive also. As per usual, we use variables
α, β, γ, . . . to range over ordinals.

Theorem: 2.3 (CZF) (Class Inductive Definition Theorem) For any inductive definition Φ there
is a smallest Φ-closed class I∗(Φ).

Moreover, there is a class J ⊆ ON×V such that

I∗(Φ) =
⋃
α

Jα,

and for each α,
Jα = ΓΦ(

⋃

β∈α

Jβ).

J is uniquely determined by the above, and its stages Jα will be denoted by Γα
Φ
.

Proof: [3], section 4.2 or [6], Theorem 5.1. 2

The next result uses the Relativized Dependent Choices Axiom, RDC. It asserts that for arbitrary
formulae φ and ψ, whenever ∀x[φ(x) → ∃y(φ(y) ∧ ψ(x, y))] and φ(b0), then there exists a function
f with dom(f) = ω such that f(0) = b0 and (∀n ∈ ω)[φ(f(n)) ∧ ψ(f(n), f(n + 1))].

Theorem: 2.4 (CZF + RDC) (Class Coinductive Definition Theorem) For any inductive defini-
tion Φ there is a greatest Φ-closed class I∗(Φ). Moreover, I∗(Φ) can be characterized as the class
of Φ-correct sets, i.e.,

I∗(Φ) =
⋃
{x | ΓΦ(x) ⊆ x}.

Proof: [5], 6.5 or [25], 5.17. 2

2.3 Inductively defined sets in CZF + REA

Working in CZF alone, it is in general not possible to deduce that an inductively defined class
actually constitutes a set. To be able to show that certain inductive definitions give rise to sets,
Aczel proposed to add the Regular Extension Axiom, REA, to CZF (cf. [4]). REA is an axiom
which is validated by the interpretation of set theory in Martin-Löf type theory, too. It is related
to the W -type in type theory and can also be viewed as a “large” set axiom. In this subsection
we present a body of results about so-called bounded inductive definitions which have sets as least
fixed points providing one adopts REA or the slightly weaker wREA.

Definition: 2.5 A is inhabited if ∃xx ∈ A. An inhabited set A is regular if A is transitive, and
for every a ∈ A and set R ⊆ a × A if ∀x ∈ a∃y (〈x, y〉 ∈ R), then there is a set b ∈ A such that
∀x ∈ a ∃y ∈ b (〈x, y〉 ∈ R) ∧ ∀y ∈ b∃x ∈ a (〈x, y〉 ∈ R). We write Reg(C) to express that C is
regular. REA is the principle

∀x ∃y (x ⊆ y ∧ Reg(y)).
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For the purposes of inductive definitions, a weakened notion of regularity suffices. A transitive
inhabited set C is weakly regular if for any u∈C and R ∈ mv(uC) there exists a set v ∈ C such
that ∀x∈u∃y∈v 〈x, y〉 ∈ R. We write wReg(C) to express that C is weakly regular. The Weak
Regular Extension Axiom, wREA, is as follows: Every set is a subset of a weakly regular set.

Definition: 2.6 We call an inductive definition Φ local if ΓΦ(X) is a set for all sets X.
We define a class B to be a bound for Φ if whenever x

a Φ then x is an image of a set b ∈ B; i.e.
there is a function from b onto x. We define Φ to be (regular, weakly regular) bounded if

1. {y | x
y Φ} is a set for all sets x,

2. Φ has a bound that is a (regular, weakly regular) set.

Proposition: 2.7 (CZF)

(i) Every bounded inductive definition Φ is local; i.e. ΓΦ(X) is a set for each set X.

(ii) If Φ is a weakly regular bounded local inductive definition then I∗(Φ) is a set.

Proof: [6], 8.6, 8.7. 2

Theorem: 2.8 (CZF + wREA) If Φ is a bounded inductive definition then I∗(Φ) is a set.

Proof: [4], 5.2. 2

Definition: 2.9 (Examples) Let A be a class.

1. H(A) is the smallest class X such that for each set a that is an image of a set in A

a ∈ P(X) ⇒ a ∈ X.

Note that H(A) = I(Φ) where Φ is the class of all pairs 〈a, a〉 such that a is an image of a set
in A.

2. If R is a subclass of A×A such that Ra = {x | xRa} is a set for each a ∈ A then WF(A,R)
is the smallest subclass X of A such that

∀a ∈ A [Ra ⊆ X ⇒ a ∈ X].

Note that WF(A,R) = I(Φ) where Φ is the class of all pairs 〈Ra, a〉 such that a ∈ A.

3. If Ba is a set for each a ∈ A then Wa∈ABa is the smallest class X such that

a ∈ A ∧ f : Ba → X ⇒ 〈a, f〉 ∈ X.

Note that Wx∈ABa = I(Φ) where Φ is the class of all pairs 〈ran(f), 〈a, f〉〉 such that a ∈ A
and f : Ba → V .

Corollary: 2.10 (CZF + wREA). If A is a set then

1. H(A) is a set,

2. if R ⊆ A×A such that Ra = {x | xRa} is a set for each a ∈ A then WF(A,R) is a set.

3. if Ba is a set for each a ∈ A then Wa∈ABa is a set.

Proof: These inductive definitions are bounded and thus give rise to sets by 2.8. 2
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2.4 General inductive definitions

Let Φ be an arbitrary inductive definition. What are the minimum requirements that Φ should
satisfy if I∗(Φ) and I∗(Φ) are to be sets? It is surely expected that ΓΦ(X) be a set for every set X;
so Φ ought to be local. But locality is not enough as the following example shows: The powerset
inductive definition Pow := {〈x, a〉 | a ⊆ x} is provably local in ZF but I∗(Pow) is a proper class
(provably in ZF), namely the class of all sets V . The second requirement we shall adopt is that
Φ be conclusion bounded, i.e., there is a set A such whenever x

y Φ then y ∈ A. Such a set will be
called a conclusion bound for Φ.

Definition: 2.11 Let GID be the principle (schema) asserting that if Φ is a local and conclusion
bounded inductive definition then I∗(Φ) and I∗(Φ) are sets.

Lemma: 2.12 (i) CZF + Full Separation ` GID.

(ii) CZF + Pow ` GID, where Pow stands for the Powerset Axiom.

Proof: (i) is obvious by 2.3 and 2.4.
(ii): Let Φ be a local inductive definition with conclusion bound A. P(A) is a set by Pow

and for every X ⊆ A, ΓΦ(X) is a set. Hence, using Strong Collection there exists a function f
with domain P(A) such that f(X) = ΓΦ(X) for all X ∈ P(A). As a result, I∗(Φ) and I∗(Φ)
are sets by ∆0 Separation as I∗(Φ) = {u ∈ A | (∀X ∈ P(A))[f(X) ⊆ X → u ∈ X]} and
I∗(Φ) = {u ∈ A | (∃X ∈ P(A))[X ⊆ f(X) ∧ u ∈ X]}. 2

CZF+Pow is an extremely strong theory. It is stronger than classical nth order arithmetic for
all n, since by means of ω many iterations of the power set operation (starting with ω) one can build
a model of intuitionistic type theory within CZF+ Pow. The Gödel-Gentzen negative translation
can be extended so as to provide an interpretation of classical type theory with extensionality in
intuitionistic type theory (cf. [22]). But more than that can be shown. Iterating the power set
operation ω + ω times one obtains the set Vω+ω which can be demonstrated to be a model of
intuitionistic Zermelo set theory. The latter theory is of the same strength as classical Zermelo
set theory (see [13], 2.3.1). Thus CZF + Pow is even stronger than classical Zermelo set theory.
The situation with CZF + Full Separation is not as bad. The latter theory is actually of the
same strength as full second order arithmetic. On the other hand, CZF is of modest proof-
theoretic strength, namely of that of Kripke-Platek set theory or the theory of non-iterated inductive
definitions. We will prove that CZF + GID is in strength related to a subsystem of second order
arithmetic based on Π1

2 comprehension. Thus CZF+GID is considerably stronger than CZF but
also has only a fraction of the strength of CZF + Full Separation and CZF + Pow.

The following gives an equivalent rendering of GID.

Definition: 2.13 The schema MFP is defined as follows: Let ϕ(x, y) be a formula of set theory
and A be a set. If

∀x ⊆ A∃!y [y ⊆ A ∧ ϕ(x, y)] ∧ (1)
∀x, x′, y, y′ ⊆ A [ϕ(x, y) ∧ ϕ(x′, y′) ∧ x ⊆ x′ ⇒ y ⊆ y′], (2)

then there exists sets I∗, I∗ ⊆ A such that

ϕ(I∗, I∗) ∧ ∀x, y ⊆ A [ϕ(x, y) ∧ y ⊆ x ⇒ I∗ ⊆ x] ∧ (3)
ϕ(I∗, I∗) ∧ ∀x, y ⊆ A [ϕ(x, y) ∧ x ⊆ y ⇒ x ⊆ I∗].
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Proposition: 2.14 (CZF) GID and MFP are equivalent.

Proof: First assume GID and suppose A is a set such that (1) and (2) hold. We specify an
inductive definition Φ by

Φ := {〈x, u〉 | x ⊆ A ∧ ∃y ⊆ A [ϕ(x, y) ∧ u ∈ y].}
On account of (1) and (2), Φ is local. As Φ is also conclusion bounded by A, I∗(Φ) and I∗(Φ) are
sets due to GID. Letting I∗ := I∗(Φ) and I∗ := I∗(Φ), one easily checks that (3) is satisfied.

Conversely, assume MFP and let Φ be a local inductive definition with conclusion bound A. Define
ϕ(x, y) by y = ΓΦ(x). Then (1) follows from the locality of Φ and (2) is obvious by the definition of
ΓΦ . Hence we may apply MFP to conclude that there exists sets I∗ and I∗ such that ΓΦ(I∗) = I∗,
ΓΦ(I∗) = I∗, ∀x ⊆ A [ΓΦ(x) ⊆ x ⇒ I∗ ⊆ x], and ∀x ⊆ A [x ⊆ ΓΦ(x) ⇒ x ⊆ I∗]. Consequently we
have I∗ = I∗(Φ) and I∗ = I∗(Φ). 2

3 Lower bounds

To calibrate a first lower bound for the strength of CZF + GID we shall introduce some fairly
recent results about an intuitionistic µ-calculus which is shown to be interpretable in CZF+GID.

3.1 The µ-calculus

The µ-calculus extends the concept of an inductive definition. It is basically an algebra of monotone
functions over the power class of the domain of a first order structure (or over a complete lattice),
whose basic constructors are first order definable operators, functional composition and least and
greatest fixed point operators. The µ-calculus arose from numerous works of logicians and computer
scientists. It originated with Scott and DeBakker [30] and was developed by Hitchcock and Park
[15], Park [23], Kozen [16], Pratt [24], and others (see [7]). The µ-calculus is used in verification
of computer programs and provides a tool box for modelling a variety of phenomena, from finite
automata to alternating automata on infinite trees and infinite games with finitely presentable
winning conditions. Here we will be interested in the µ-calculus over the natural numbers. The µ-
definable sets over the natural numbers were first described by Lubarsky [18]. He determined their
complexity in the constructible hierarchy and showed that their ordinal ranks in that hierarchy
can reach rather large countable ordinals. In the following we denote by ACA0(Lµ) an axiomatic
theory whose language is an extension of that of the classical µ-calculus over N, Lµ (see [18]), by set
quantifiers. This version was axiomatized by Möllerfeld [21]. The letters ACA stand for arithmetic
comprehension and the subscript 0 indicates that the induction principle on natural numbers holds
for sets rather than arbitrary classes.

Definition: 3.1 The language of ACA0(Lµ) builds on the language of Peano arithmetic, PA.
The terms of PA will be referred to as number terms. Number terms, set terms and formulas of
the language Lµ are defined as follows.

1. The terms of PA are number terms of Lµ.

2. Set variables are set terms.

3. ⊥ is a formula.
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4. If s and t are number terms then s = t is a formula.

5. If s is a number term and S is a set term then s ∈ S is a formula.

6. If ϕ0 and ϕ1 are formulas then ϕ0 ∧ ϕ1, ϕ0 ∨ ϕ1 and ϕ0 → ϕ1 are formulas.

7. If ψ is a formula then ∀xψ and ∃xψ are formulas.

8. If ψ is a formula then ∀Xψ and ∃Xψ are formulas.

9. If ϕ is an X-positive first-order formula then µxX.ϕ is a set term.

In the definition above we call a formula first-order or arithmetic if it does not contain set quantifiers
∃X, ∀X. For X a set variable an expression E is said to be X-positive (X-negative) if every
occurrence of X in E is positive (negative). In classical logic we can restrict ourselves to the
connectives ¬,∧,∨ and then X is positive in a formula ϕ if every occurrence of X in ϕ is in the
scope of an even number of negations. But as we shall also be concerned with the intuitionistic
µ-calculus, we define this notion inductively as follows:
(1) X is X-positive; (2) Y is both X-positive and X-negative if Y is a set variable different from X;
(3) ⊥ and s = t are also both X-positive and X-negative; (4) s ∈ S is X-positive (-negative) iff S
is; (5) polarity does not change with ∧, ∨, quantifiers and the µ-symbol; (6) and, finally, ϕ0 → ϕ1

is X-positive (-negative) iff ϕ0 is X-negative (-positive) and ϕ1 is X-positive (-negative).
For set terms S, T , S ⊆ T is the formula ∀x(x ∈ S → x ∈ T ).

Definition: 3.2 The axioms of ACA0(Lµ) are the following:

1. The axioms of PA.

2. (Induction) ∀X (0 ∈ X ∧ ∀u(u ∈ X → u + 1 ∈ X) → ∀uu ∈ X).

3. (Arithmetic comprehension) ∃Z∀x[x ∈ Z ↔ ϕ(x)] for every first-order formula ϕ in which
the set variable Z does not appear free.

4. (Least fixed point axiom)

∀x[x ∈ P ↔ ϕ(x, P )] ∧ ∀Y [∀x(ϕ(x, Y ) → x ∈ Y ) → P ⊆ Y ] (4)

where P is a set term µxX.ϕ.

ACA0(Lµ) is based on classical logic. The system with the underlying logic changed to intuitionistic
logic will be denoted by ACAi

0(Lµ).
The theories with the full induction scheme IND will be denoted by ACA(Lµ) and ACAi(Lµ),

respectively. IND is the schema

ψ(0) ∧ ∀x[ψ(x) → ψ(x + 1)] → ∀xψ(x)

for all formulas ψ.

That X is positive (negative) in ψ will be notated by ψ(X+) (ψ(X−)). Positivity is a guarantor of
monotonicity, while negativity guarantees anti-monotonicity.

Lemma: 3.3 For every X-positive formulas ψ(X+) and and every X-negative formula θ(X−) of
ACA0(Lµ) we have:
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(i) ACAi
0(Lµ) ` ∀X∀Y [X ⊆ Y ∧ ψ(X) → ψ(Y )].

(ii) ACAi
0(Lµ) ` ∀X∀Y [X ⊆ Y ∧ θ(Y ) → θ(X)].

Proof: Use induction on the complexity of the formulas. 2

At first blush, the µ-calculus appears to be innocent enough. Though a first order formula
ϕ(X+, x) may contain complicated µ-terms, it might seem that these act solely as parameters and
therefore one could obtain µxX.ϕ(X+, x) via an ordinary first order arithmetic inductive definition
in these parameters, so that all the µ-definable sets would turn out to be sets recursive in finite
iterations of the hyperjump. But this is far from being true. The µ-calculus allows for nestings of
least fixed point operators. Better yet, there can be feedback. This provides the major difficulty in
understanding the expressive power of Lµ. To illustrate the complexity of nested set terms in Lµ,
let θ(X+, Y −, Z+,W−) be a first order formula of Lµ. Then the following are set terms: µzZ.θ,
µyY. w /∈ µzZ.θ, µxX.µyY. w /∈ µzZ.θ, µwW.µxX.µyY.w /∈ µzZ.θ.

In the µ-calculus one can also define the greatest fixed point constructor ν : If ϕ(X+, x) is first
order, νxX.ϕ(X+, x) is {u | u /∈ µxX.¬ϕ(¬X, x)}. The appropriate measure for the complexity of
µ-terms was determined by Lubarsky [18]. µ and ν can be viewed as higher order quantifiers giving
rise to complexity classes Σµ

n and Πµ
n of Lµ formulas which measure the alternations of µ and ν.

The pivotal proof-theoretic connection between ACA0(Lµ) and ACAi
0(Lµ) was established by

Tupailo.

Theorem: 3.4 (Tupailo) ACA0(Lµ) can be interpreted in ACAi
0(Lµ) via a double negation trans-

lation.

Proof: [31] 2

3.2 Fragments of second order arithmetic

The proof-theoretic strength of theories is commonly calibrated using standard theories and their
canonical fragments. In classical set theory this linear line of consistency strengths is couched in
terms of large cardinal axioms while for weaker theories the line of reference systems traditionally
consist in second order arithmetic and its fragments, owing to Hilbert’s and Bernays’ [14] observa-
tion that large chunks of mathematics can already be formalized in second order arithmetic.

Definition: 3.5 The language L2 of second-order arithmetic contains (free and bound) number
variables a, b, c, . . . , x, y, z, . . ., (free and bound) set variables A,B, C, . . . ,X, Y, Z, . . ., the constant
0, function symbols Suc,+, ·, and relation symbols =, <,∈. Suc stands for the successor function.
Terms are built up as usual. For n∈N, let n̄ be the canonical term denoting n. Formulae are built
from the prime formulae s = t, s < t, and s ∈ A using ∧,∨,¬,∀x,∃x,∀X and ∃X where s, t are
terms. Note that equality in L2 is only a relation on numbers. However, equality of sets will be
considered a defined notion, namely A = B if and only if ∀x[x∈A ↔ x∈B]. As per usual, number
quantifiers are called bounded if they occur in the context ∀x(x < s → . . .) or ∃x(x < s∧ . . .) for a
term s which does not contain x. The Σ0

0-formulae are those formulae in which all quantifiers are
bounded number quantifiers. For k > 0, Σ0

k-formulae are formulae of the form ∃x1∀x2 . . . Qxkφ,
where φ is Σ0

0; Π0
k-formulae are those of the form ∀x1∃x2 . . . Qxkφ. The union of all Π0

k- and Σ0
k-

formulae for all k ∈ N is the class of arithmetical or Π0∞-formulae. The Σ1
k-formulae (Π1

k-formulae)
are the formulae ∃X1∀X2 . . . QXkφ (resp. ∀X1∃X2 . . . Qxkφ) for arithmetical φ.
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The basic axioms in all theories of second-order arithmetic are the defining axioms of 0, 1,+, ·, <
and the induction axiom

∀X(0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X) → ∀x(x ∈ X)),

respectively the schema of induction

IND φ(0) ∧ ∀x(φ(x) → φ(x + 1)) → ∀xφ(x),

where φ is an arbitrary L2-formula. We consider the axiom schema of C-comprehension for formula
classes C which is given by

C −CA ∃X∀u(u ∈ X ↔ φ(u))

for all formulae φ ∈ C in which X does not occur.
For each axiom schema Ax we denote by (Ax) the theory consisting of the basic arithmetical

axioms, the schema Π0∞−CA, the schema of induction and the schema Ax. If we replace the schema
of induction by the induction axiom, we denote the resulting theory by (Ax)0. An example for
these notations is the theory (Π1

1−CA) which contains the induction schema, whereas (Π1
1−CA)0

only contains the induction axiom in addition to the comprehension schema for Π1
1-formulae.

In the framework of these theories one can introduce defined symbols for all primitive recursive
functions. Especially, let 〈, 〉 : N× N −→ N be a primitive recursive and bijective pairing function.
The xth section of U is defined by Ux := {y : 〈x, y〉 ∈ U}. Observe that a set U is uniquely
determined by its sections on account of 〈, 〉’s bijectivity. Any set R gives rise to a binary relation
≺R defined by y ≺R x := 〈y, x〉 ∈ R. Using the latter coding, we can formulate the schema of Bar
induction

BI ∀X[WF(≺X) ∧ ∀u(∀v ≺X uφ(v) → φ(u)) → ∀uφ(u)]

for all formulae φ, where WF(≺X) expresses that ≺X is well-founded, i.e., WF(≺X) stands for
the formula ∀Y [∀u[(∀v ≺X u v ∈ Y ) → u ∈ Y ] → ∀u u ∈ Y ].

The strength of ACA0(Lµ) can be expressed by means of a fragment of second order arithmetic.

Theorem: 3.6 (Möllerfeld) ACA0(Lµ) and (Π1
2 −CA)0 have the same proof-theoretic strength.

The theories prove the same Π1
1-sentences of second order arithmetic.

Proof: [21], 10.6. 2

3.3 A first lower bound

Theorem: 3.7 The theory ACAi(Lµ) can be interpreted in CZF + GID. Specifically, if θ is a
statement of second order arithmetic and ACAi(Lµ) ` θ then CZF + GID ` θ.

Proof: We will first embed ACAi(Lµ) into a conservative extension of CZF + GID with class
terms. The set-theoretic language with class terms allows one to build a class term {u | ϕ(u)}
whenever ϕ is a formula of the (extended) language. Moreover, for every class term {u | ϕ(u)}
and variable x, x ∈ {u | ϕ(u)} and x = {u | ϕ(u)} are formulas. For class terms {u | ϕ(u)} and
{u | ψ(u)}, the expressions {u | ϕ(u)} ∈ {u | ψ(u)} and {u | ϕ(u)} = {u | ψ(u)} are considered to
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be abbreviations for ∃y[y = {u | ϕ(u)} ∧ y ∈ {u | ψ(u)}] and ∃y[y = {u | ϕ(u)} ∧ y = {u | ψ(u)}],
respectively. The extension of CZF + GID via class terms has the additional axioms

∀z[z ∈ {u | ϕ(u)} ↔ ϕ(z)], (5)

whereas the other axioms are just the axioms of CZF+GID in the original language without class
terms. Formulas in the class language are easily translated back into the official language of set
theory by using the direction “→” of (5).

The translation ∗ from the language of ACAi(Lµ) into the language with class terms will be
given next. For number terms s, t, (s = t)∗ is the usual translation of such formulas of PA into
the set-theoretic language. For a set variable X let X∗ := X and for a µ-term µxX.ϕ(X+, x) let
(µxX.ϕ(X+, x))∗ be the class term I∗(Φ) (according to 2.3), where

Φ := {〈X, x〉 | ϕ∗(X,x) ∧ X ⊆ ω ∧ x ∈ ω}.
The translation of the remaining set terms and formulas is as follows: ⊥∗ := (0 = 1)∗; (ψ2 θ)∗ :=
ψ∗2 θ∗ if 2 = ∧,∨,→; (∀xψ)∗ := (∀x ∈ ω)ψ∗; (∀Xψ)∗ := (∀X ⊆ ω)ψ∗.

Next we aim at showing that for all formulas θ( ~X, ~y) of ACAi(Lµ) with all free variables
exhibited (where ~X = X1, . . . , Xn, ~y = y1, . . . , yr) we have:

If ACAi
0(Lµ) ` θ( ~X, ~y) then CZF + GID ` ~X ⊆ ω ∧ ~y ∈ ω → θ∗( ~X, ~y). (6)

Closer scrutiny reveals that the translation leaves positive (negative) occurrences positive (neg-
ative). Therefore it is easy to show that the ∗-translation of the fixed point axioms (4) are provable
in CZF + GID. The only axioms requiring special considerations are the axioms for arithmetical
comprehension. CZF has only ∆0 Separation. But in general, the ∗-translations of a first order
formula of ACA0(Lµ) is not ∆0. This is where GID and also Strong Collection (in the guise
of Replacement) will be needed. By induction on the build-up of first order formulas θ(x) and
µ-terms µXx.ϕ(X+, x), we show that {x ∈ ω | θ∗(x)} and (µxX.ϕ(X+, x))∗ are sets. Note that
(µxX.ϕ(X+, x))∗ is the class term I∗(Φ), where

Φ = {〈X, x〉 | ϕ∗(X, x) ∧ X ⊆ ω ∧ x ∈ ω}.
Inductively we then have that {x ∈ ω | ϕ∗(X, x)} is a set for all sets X ⊆ ω. Owing to the positivity
of X in ϕ we get that

ΓΦ(X) = {x ∈ ω | ϕ∗(X, x)},
showing that Φ is local. Since ω is a conclusion bound for Φ, we get that I∗(Φ) is a set.

Now let θ(y) be first-order. Then there are µ-terms P1, . . . , Pr whose free number variables are
among ~y = y1, . . . , yk, and a ∆0 formula ϑ(x, u1, . . . , ur) of set theory such that θ∗(x) is of the form
ϑ(x, P ∗

1 , . . . , P ∗
r ). Note that the number variables ~y may get captured by quantifiers in θ and then

will also get quantified in ϑ. By the inductive assumptions P ∗
i (~y/~n) is a set for all ~n ∈ ωk. Thus,

using Replacement there are functions f1, . . . , fr with domain ωk such that fi(~n) = P ∗
i (~y/~n) for all

~n ∈ ωk. If we now replace every subformula u ∈ P ∗
i of ϑ(x, P ∗

1 , . . . , P ∗
r ) by u ∈ fi(~y) we obtain a ∆0

formula η(x) such that (∀x ∈ ω)[η(x) ↔ θ∗(x)]. Thus, as {x ∈ ω | η(x)} is a set by ∆0 Separation,
{x ∈ ω | θ∗(x)} is a set, too.

As the ∗-translations of instances of IND are easily deduced in CZF, we have shown that all
translations of axioms of ACAi(Lµ) are provable in CZF + GID, so that (6) ensues. 2

Since the theory ACAi(Lµ) is stronger than ACAi
0(Lµ) and the latter is of the same strength

as (Π1
2 −CA)0 we get the following:
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Corollary: 3.8 CZF + GID is stronger than (Π1
2 −CA)0.

3.4 Better lower bounds

In view of Theorem 3.6 one might conjecture that ACA(Lµ) and (Π1
2 − CA) share the same

strength. This is however not the case. As Lubarsky [18] showed, the nestings of the µ-terms
provide the correct measure for the expressive power of formulas of the µ-calculus. ACA(Lµ) still
only allows for finite nestings of the µ-operator while in (Π1

2 − CA) we can interpret transfinite
nestings of such terms. It will be demonstrated in [29] that a monotone µ-calculus with transfi-
nite nestings for all ordinals less than ε0 can be embedded into (Π1

2 − CA). Moreover, [29] also
shows that the intuitionistic and classical versions of these theories with < α iterated µ-terms,
dubbed ACA(Lµ,mon

<α ) and ACAi(Lµ,mon
<α ), respectively, are of the same strength. Here one allows

ordinals α from an arbitrary primitive recursive ordinal representation system. As the theories
ACAi(Lµ,mon

<α ) can be translated into CZF + GID as long as α is a provable ordinal of the latter
theory, we get that CZF+GID is stronger than (Π1

2−CA). A more precise results can be stated
in terms of the Bar Rule:

(BR)
WF(≺)

∀u(∀v ≺ uφ(v) → φ(u)) → ∀uφ(u)

for all primitive recursive orderings ≺ and arbitrary L2 formulae φ.

Theorem: 3.9 CZF + GID is at least as strong as (Π1
2 −CA) + BR.

Proof: This will follow from results in [29]. 2

4 An upper bound

How can we obtain an upper bound for the strength of CZF+GID? The usual proof of GID utilizes
full separation or the outlandishly strong powerset axiom. As detailed before, CZF+Full Separation
is reducible to second order arithmetic. But it turns out that a much more reasonable upper can
be found.

Theorem: 4.1 The theory CZF + REA + GID can be reduced to (Π1
2 −CA) + BI. Specifically,

every Π0
2 statement of arithmetic provable in CZF+REA+GID is provable in (Π1

2−CA)+BI.

Proof: The reduction is achieved in two steps. The first consists of an interpretation of CZF +
REA + GID in Feferman’s explicit mathematics augmented with a least fixed point operator,
dubbed T0 +UMID+V, by emulating the formulae-as-types interpretation of CZF in Martin-Löf
type theory. The second step is to reduce the latter theory to (Π1

2−CA)+BI. This is achieved by
way of model constructions for explicit mathematics from [27] together with partial cut-elimination
for systems of explicit mathematics combined with asymmetric interpretations controlled by a
hierarchy of operators as introduced in [26]. The latter result will appear in [28].

Here we shall focuss on the first step. Due to page limitations for this paper we’ll have to
be concise. We will mainly use the formalization of the system of explicit mathematics, T0, as
presented in [11, 12], but for precise reference we’ll use the formalization given in [26], except that
we call types what was called classifications in [26]. The language of T0, LT0 , is two-sorted, with
individual variable a, b, c, . . . , x, y, z, . . . and type variables A,B, C, . . . , X, Y, Z, . . .. Elementhood of
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an object a in a type X will be conveyed by a
◦∈ X. In addition to the usual constants of T0, we’ll

assume that LT0 has a constant lfp. The principle that every monotone operation f on types has
a least fixed point lfp(f), which is a type, will be notated by UMID. Moreover, we will add a
unary predicate V to the language which serves the purpose of providing a proper class of objects
over which to interpret the quantifiers of CZF. V serves the same purpose as the large type of
iterative sets in Aczel’s interpretation. V is not allowed to occur in elementary formulae. There
are two axiomatic principles associated with V:

∀X∀f [∀u ◦∈ X V(fu) → V(〈X, f〉)], (7)

∀X∀f [V(〈X, f〉) ∧ [∀u ◦∈ X ϕ(fu)] → ϕ(〈X, f〉)] → ∀y [V(y) → ϕ(y)] (8)

for all formulae ϕ, where 〈x, y〉 is pxy with p being the constant for the pairing operation of the
applicative part of T0. Note also that V will not be the extension of a type.

The theory T0 + UMID with the predicate V and the axioms (7) and (8) will be notated
by T0 + UMID + V. It will also be shown in [28] that the latter system can be reduced to
(Π1

2 −CA) + BI. We will use variables α, β, γ, . . . to range over V, that is to say over the objects
x such that V(x). The induction principle (8) for V implies that every α is a pair 〈X, f〉 where
X is a type and ∀u ◦∈ X V(fx). We put ᾱ := p0α = X and α̃ := p1α = f , where p0,p1 are the
projection constants pertaining to p. In the same vein as in [2] one defines type-valued operations
α, β 7→ α =̇β and α, β 7→ α ∈̇β which serve to interpret the atomic formulae of set theory. These
operations are defined with the aid of the recursion theorem of T0 with their totality on V being a
consequence of (8). In particular there are closed application terms t1, t2 such that t1αβ ' (α =̇β)
and t2αβ ' (α ∈̇β). We are now in a position to assign to each formula θ(v1, . . . , vn) of set theory
(with all free variables among those shown) and α1, . . . , αn from V a class ‖ θ(α1, . . . , αn) ‖ of
objects of T0 uniformly in ~α := α1, . . . , αn:

‖ α = β ‖ := {u | u ◦∈ (α =̇β)}
‖ α ∈ β ‖ := {u | u ◦∈ (α ∈̇β)}

‖ ⊥‖ := ∅
‖ θ1(~α) ∨ θ2(~α) ‖ := {〈0, u〉 | u ∈ ‖ θ1(~α) ‖} ∪ {〈1, v〉 | v ∈ ‖ θ2(~α) ‖}
‖ θ1(~α) ∧ θ2(~α) ‖ := {〈u, v〉 | u ∈ ‖ θ1(~α) ‖ ∧ v ∈ ‖ θ2(~α) ‖}
‖ θ1(~α) → θ2(~α) ‖ := {e | (∀u ∈ ‖ θ1(~α) ‖)(eu ∈ ‖ θ2(~α) ‖)}
‖ (∀x ∈ β)θ(β, ~α) ‖ := {e | (∀i ◦∈ β̄)(ei ∈ ‖ θ(β̃i, ~α) ‖)}
‖ (∃x ∈ β)θ(β, ~α) ‖ := {〈i, u〉 | i ◦∈ β̄ ∧ u ∈ ‖ θ(β̃i, ~α) ‖}

‖ (∀xθ(x, ~α) ‖ := {e | ∀β(eβ ∈ ‖ θ(β, ~α) ‖)}
‖ (∃xθ(x, ~α) ‖ := {〈β, u〉 | u ∈ ‖ θ(β, ~α) ‖}

A pivotal property of the above interpretation is that for every ∆0 formula θ(~x) and ~α, there is
a type A(~α) such that ∀u[u ∈ ‖ θ(~α) ‖ ↔ u

◦∈ A(~α)]. Furthermore, using the constructions for
embedding CZF + REA into type theory, one constructs for every formula θ(~x) of set theory a
closed application term tθ such that

CZF + REA ` θ(~x) ⇒ T0 + V ` ∀~α(tθ~α ∈ ‖ θ(~α) ‖). (9)

In what follows, we shall write e ° θ(~α) rather than e ∈ ‖ θ(~α) ‖. We want to extend (9) to include
GID. By Proposition 2.14 it suffices to construct for every instance θ(~w) of MFP an application
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term tθ such tθ~α ° θ(~α) holds for all ~α. So suppose

e ° ∀x ⊆ β ∃!y [y ⊆ β ∧ ϕ(x, y)], (10)
d ° ∀x, x′, y, y′ ⊆ β [ϕ(x, y) ∧ ϕ(x′, y′) ∧ x ⊆ x′ ⇒ y ⊆ y′]. (11)

We define X to be a subtype of Y , notated X
◦⊆ Y , by ∀u ◦∈ X u

◦∈ Y . Let B := β̄ and suppose
X

◦⊆ B. Then βX := 〈X, β̃〉 is in V and there is a closed application term ts (independent of X)
such that ts ° βX ⊆ β. Hence, by (1) we get

e βXts ° ∃!y [y ⊆ β ∧ ϕ(βX , y)]. (12)

We can further effectively construct closed application terms t0, t1, t2 such that from (12) we obtain
that t1 e βX ° δX ⊆ β and t2 e βX ° ϕ(βX , δX), where δX := t0 e βX . Unravelling the meaning of
t1 e βX ° δX ⊆ β, we find that there are closed application terms q0,q1 such that for all i

◦∈ δX

we have q0 e βX i
◦∈ β̄ and q1 e βX i ° δ̃X(i) = β̃(ν(i)), where ν(i) := q0 e βX i. Using Elementary

Comprehension, there exists a subtype CX of B such that

∀j(j ◦∈ CX ↔ [j
◦∈ β̄ ∧ (∃i ◦∈ δX)∃z [z ° β̃(j) = β̃(ν(i))]]).

Moreover, CX can be effectively obtained from X,β, e, that is to say, there exists a closed applica-
tion term r such that rβ e X ' CX . Put f := rβ e. If one now also takes (11) into account, one
can ferret out that f is a monotone operation on subtypes of B. Whence, using UMID, lfp(f)
is a subtypes of B which names the least fixed point of f . Similarly one can effectively obtain
the greatest fixed point of f as in the classical µ-calculus (Did I mention that in this paper T0 is
assumed to be based on classical logic?). So there is another closed application term gfp such that
gfp(f) is a type denoting the greatest fixed point of f . Finally we define β∗ := 〈lfp(f), β̃〉 and
β∗ := 〈gfp(f), β̃〉. It remains to verify that we can effectively construct a closed application term `
such that ` e d β ° θ(β∗, β∗), where θ(β∗, β∗) is the formula of (3) with I∗ := β∗ and I∗ := β∗. This
is tedious but straightforward. As there is no space left we leave that to the reader. 2

The upshot of this paper is that CZF + GID is sandwiched between (Π1
2 −CA) + (BR) and

(Π1
2 −CA) + BI.

Corollary: 4.2 The proof-theoretic strength of CZF+GID is at least that of (Π1
2−CA)+ (BR)

while CZF + REA + GID is not stronger than (Π1
2 −CA) + BI.
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