Preface

This is a working draft of a book on the foundations of programming languages. The central organizing principle of the book is that programming language features may be seen as manifestations of an underlying type structure that governs its syntax and semantics. The emphasis, therefore, is on the concept of *type*, which codifies and organizes the computational universe in much the same way that the concept of *set* may be seen as an organizing principle for the mathematical universe. The purpose of this book is to explain this remark.

This is very much a work in progress, with major revisions made nearly every day. This means that there may be internal inconsistencies as revisions to one part of the book invalidate material at another part. Please bear this in mind!

Corrections, comments, and suggestions are most welcome, and should be sent to the author at rwh@cs.cmu.edu. I am grateful to the following people for their comments, corrections, and suggestions to various versions of this book: Arbob Ahmad, Andrew Appel, Zena Ariola, Guy E. Blelloch, William Byrd, Luca Cardelli, Iliano Cervesato, Manuel Chakravarti, Richard C. Cobbe, Karl Crary, Daniel Dantas, Anupam Datta, Jake Donham, Derek Dreyer, Matthias Felleisen, Frank Pfenning, Dan Friedman, Maia Ginsburg, Kevin Hely, Cao Jing, Gabriele Keller, Danielle Kramer, Akiva Leffert, Dan Licata, Karen Liu, Dave MacQueen, Greg Morrisett, Tom Murphy, Aleksandar Nanevski, Georg Neis, David Neville, Doug Perkins, Frank Pfenning, Benjamin C. Pierce, Andrew M. Pitts, Gordon D. Plotkin, John C. Reynolds, Carter T. Schonwald, Dale Schumacher, Dana Scott, Zhong Shao, Robert Simmons, Pawel Sobocinski, Daniel Spoonhower, Michael Tschantz, Kami Vaniea, Carsten Varming, David Walker, Dan Wang, Jack Wileden, Todd Wilson, Roger Wolff, Luke Zarko, Yu Zhang.
Contents

Preface iii

I Judgements and Rules 1

1 Inductive Definitions 3
 1.1 Judgements 3
 1.2 Inference Rules 4
 1.3 Derivations 5
 1.4 Rule Induction 7
 1.5 Iterated and Simultaneous Inductive Definitions 9
 1.6 Defining Functions by Rules 11
 1.7 Modes 12
 1.8 Exercises 13

2 Hypothetical Judgements 15
 2.1 Derivability 15
 2.2 Admissibility 17
 2.3 Hypothetical Inductive Definitions 19
 2.4 Exercises 21

3 Syntactic Objects 23
 3.1 Abstract Syntax Trees 23
 3.2 Abstract Binding Trees 25
 3.3 Parameterization 30

4 Generic Judgements 33
 4.1 Rule Schemes 33
 4.2 Generic Derivability 34
 4.3 Generic Inductive Definitions 35
4.4 Parametric Derivability 36
4.5 Exercises 37

II Levels of Syntax 39

5 Concrete Syntax 41
 5.1 Strings Over An Alphabet 41
 5.2 Lexical Structure 42
 5.3 Context-Free Grammars 46
 5.4 Grammatical Structure 47
 5.5 Ambiguity 48
 5.6 Exercises 50

5.4 Grammatical Structure 47

5.5 Ambiguity 48

5.6 Exercises 50

6 Abstract Syntax 51
 6.1 Hierarchical and Binding Structure 51
 6.2 Parsing Into Abstract Syntax Trees 53
 6.3 Parsing Into Abstract Binding Trees 55
 6.4 Exercises 57

III Statics and Dynamics 59

7 Statics 61
 7.1 Syntax 61
 7.2 Type System 62
 7.3 Structural Properties 64
 7.4 Exercises 66

7.2 Type System 62

7.3 Structural Properties 64

7.4 Exercises 66

8 Dynamics 67
 8.1 Transition Systems 67
 8.2 Structural Dynamics 68
 8.3 Contextual Dynamics 71
 8.4 Equational Dynamics 73
 8.5 Exercises 76

8.2 Structural Dynamics 68

8.3 Contextual Dynamics 71

8.4 Equational Dynamics 73

8.5 Exercises 76

9 Type Safety 77
 9.1 Preservation 78
 9.2 Progress 78
 9.3 Run-Time Errors 80
 9.4 Exercises 81

9.2 Progress 78

9.3 Run-Time Errors 80

9.4 Exercises 81
15 Sum Types
- 15.1 Binary and Nullary Sums .. 123
- 15.2 Finite Sums .. 125
- 15.3 Applications of Sum Types 126
 - 15.3.1 Void and Unit ... 126
 - 15.3.2 Booleans ... 127
 - 15.3.3 Enumerations ... 127
 - 15.3.4 Options ... 128
- 15.4 Classes and Methods ... 129
- 15.5 Exercises .. 132

16 Pattern Matching
- 16.1 A Pattern Language .. 134
- 16.2 Statics .. 134
- 16.3 Dynamics .. 136
- 16.4 Exhaustiveness and Redundancy 138
 - 16.4.1 Match Constraints 138
 - 16.4.2 Enforcing Exhaustiveness and Redundancy 140
 - 16.4.3 Checking Exhaustiveness and Redundancy 141
- 16.5 Exercises .. 142

17 Generic Programming
- 17.1 Introduction .. 143
- 17.2 Type Operators ... 144
- 17.3 Generic Extension .. 144
- 17.4 Exercises .. 147

VI Infinite Data Types

18 Inductive and Co-Inductive Types
- 18.1 Motivating Examples 151
- 18.2 Statics .. 155
 - 18.2.1 Types .. 155
 - 18.2.2 Expressions .. 156
- 18.3 Dynamics .. 156
- 18.4 Exercises .. 157
CONTENTS

19 Recursive Types 159
 19.1 Solving Type Isomorphisms 160
 19.2 Recursive Data Structures 162
 19.3 Self-Reference 163
 19.4 Self-Reference in Methods 166
 19.5 Exercises ... 167

VII Dynamic Types 169

20 The Untyped λ-Calculus 171
 20.1 The λ-Calculus 171
 20.2 Definability .. 173
 20.3 Scott’s Theorem 175
 20.4 Untyped Means Uni-Typed 177
 20.5 Exercises .. 179

21 Dynamic Typing 181
 21.1 Dynamically Typed PCF 181
 21.2 Variations and Extensions 184
 21.3 Critique of Dynamic Typing 187
 21.4 Exercises .. 188

22 Hybrid Typing 189
 22.1 A Hybrid Language 189
 22.2 Optimization of Dynamic Typing 191
 22.3 Static “Versus” Dynamic Typing 193
 22.4 Reduction to Recursive Types 194

VIII Variable Types 197

23 Girard’s System F 199
 23.1 System F ... 200
 23.2 Polymorphic Definability 203
 23.2.1 Products and Sums 203
 23.2.2 Natural Numbers 204
 23.3 Parametricity Overview 205
 23.4 Restricted Forms of Polymorphism 206
 23.4.1 Predicative Fragment 207
 23.4.2 Prenex Fragment 208
CONTENTS

29 Continuations
29.1 Informal Overview .. 253
29.2 Semantics of Continuations 255
29.3 Coroutines .. 257
29.4 Exercises .. 261

X Types and Propositions

30 Constructive Logic
30.1 Constructive Semantics 266
30.2 Constructive Logic ... 267
30.2.1 Rules of Provability 268
30.2.2 Rules of Proof .. 270
30.3 Propositions as Types 271
30.4 Exercises .. 272

31 Classical Logic
31.1 Classical Logic ... 274
31.1.1 Provability and Refutability 274
31.1.2 Proofs and Refutations 276
31.2 Deriving Elimination Forms 278
31.3 Proof Dynamics ... 280
31.4 Law of the Excluded Middle 281
31.5 Exercises .. 283

XI Subtyping

32 Subtyping
32.1 Subsumption ... 288
32.2 Varieties of Subtyping 288
32.2.1 Numeric Types .. 288
32.2.2 Product Types .. 289
32.2.3 Sum Types .. 291
32.3 Variance .. 292
32.3.1 Product Types .. 292
32.3.2 Sum Types .. 292
32.3.3 Function Types ... 293
32.3.4 Recursive Types .. 294
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.4</td>
<td>Safety for Subtyping</td>
<td>296</td>
</tr>
<tr>
<td>32.5</td>
<td>Exercises</td>
<td>298</td>
</tr>
<tr>
<td>33</td>
<td>Singleton and Dependent Kinds</td>
<td>299</td>
</tr>
<tr>
<td>33.1</td>
<td>Informal Overview</td>
<td>300</td>
</tr>
<tr>
<td>XII</td>
<td>Symbols</td>
<td>303</td>
</tr>
<tr>
<td>34</td>
<td>Symbols</td>
<td>305</td>
</tr>
<tr>
<td>34.1</td>
<td>Statics</td>
<td>305</td>
</tr>
<tr>
<td>34.2</td>
<td>Ephemeral Dynamics</td>
<td>307</td>
</tr>
<tr>
<td>34.3</td>
<td>Persistent Dynamics</td>
<td>308</td>
</tr>
<tr>
<td>34.4</td>
<td>Safety</td>
<td>309</td>
</tr>
<tr>
<td>34.5</td>
<td>Exercises</td>
<td>310</td>
</tr>
<tr>
<td>35</td>
<td>Fluid Binding</td>
<td>311</td>
</tr>
<tr>
<td>35.1</td>
<td>Statics</td>
<td>311</td>
</tr>
<tr>
<td>35.2</td>
<td>Dynamics</td>
<td>312</td>
</tr>
<tr>
<td>35.3</td>
<td>Type Safety</td>
<td>313</td>
</tr>
<tr>
<td>35.4</td>
<td>Some Subtleties</td>
<td>314</td>
</tr>
<tr>
<td>35.5</td>
<td>Fluid References</td>
<td>317</td>
</tr>
<tr>
<td>35.6</td>
<td>Exercises</td>
<td>318</td>
</tr>
<tr>
<td>36</td>
<td>Dynamic Classification</td>
<td>319</td>
</tr>
<tr>
<td>36.1</td>
<td>Statics</td>
<td>320</td>
</tr>
<tr>
<td>36.2</td>
<td>Dynamics</td>
<td>321</td>
</tr>
<tr>
<td>36.3</td>
<td>Defining Dynamic Classification</td>
<td>322</td>
</tr>
<tr>
<td>36.4</td>
<td>Classifying Secrets</td>
<td>323</td>
</tr>
<tr>
<td>36.5</td>
<td>Exercises</td>
<td>324</td>
</tr>
<tr>
<td>XIII</td>
<td>Storage Effects</td>
<td>325</td>
</tr>
<tr>
<td>37</td>
<td>Modernized Algol</td>
<td>327</td>
</tr>
<tr>
<td>37.1</td>
<td>Basic Commands</td>
<td>327</td>
</tr>
<tr>
<td>37.1.1</td>
<td>Statics</td>
<td>328</td>
</tr>
<tr>
<td>37.1.2</td>
<td>Dynamics</td>
<td>329</td>
</tr>
<tr>
<td>37.1.3</td>
<td>Safety</td>
<td>331</td>
</tr>
<tr>
<td>37.2</td>
<td>Some Programming Idioms</td>
<td>333</td>
</tr>
<tr>
<td>37.3</td>
<td>Typed Commands and Typed Assignables</td>
<td>335</td>
</tr>
</tbody>
</table>
CONTENTS

37.4 Capabilities and References ... 337
37.5 Exercises ... 341

38 Mutable Data Structures ... 343
38.1 Free Assignables ... 344
38.2 Free References .. 345
38.3 Safety ... 346
38.4 Integrating Commands and Expressions 348
38.5 Exercises ... 352

XIV Laziness ... 353

39 Lazy Evaluation .. 355
39.1 Need Dynamics ... 356
39.2 Safety ... 359
39.3 Lazy Data Structures .. 362
39.4 Suspensions .. 363
39.5 Exercises ... 365

40 Polarization ... 367
40.1 Polarization .. 368
40.2 Focusing ... 369
40.3 Statics ... 370
40.4 Dynamics .. 373
40.5 Safety ... 374
40.6 Definability .. 375
40.7 Exercises ... 375

XV Parallelism ... 377

41 Nested Parallelism ... 379
41.1 Binary Fork-Join ... 380
41.2 Cost Dynamics ... 383
41.3 Multiple Fork-Join ... 386
41.4 Provably Efficient Implementations 388
41.5 Exercises ... 392
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 Futures and Speculation</td>
<td>393</td>
</tr>
<tr>
<td>42.1 Futures</td>
<td>394</td>
</tr>
<tr>
<td>42.1.1 Statics</td>
<td>394</td>
</tr>
<tr>
<td>42.1.2 Sequential Dynamics</td>
<td>395</td>
</tr>
<tr>
<td>42.2 Suspensions</td>
<td>395</td>
</tr>
<tr>
<td>42.2.1 Statics</td>
<td>395</td>
</tr>
<tr>
<td>42.2.2 Sequential Dynamics</td>
<td>396</td>
</tr>
<tr>
<td>42.3 Parallel Dynamics</td>
<td>396</td>
</tr>
<tr>
<td>42.4 Applications of Futures</td>
<td>399</td>
</tr>
<tr>
<td>42.5 Exercises</td>
<td>401</td>
</tr>
<tr>
<td>XVI Concurrency</td>
<td>403</td>
</tr>
<tr>
<td>43 Process Calculus</td>
<td>405</td>
</tr>
<tr>
<td>43.1 Actions and Events</td>
<td>405</td>
</tr>
<tr>
<td>43.2 Synchronous Interaction</td>
<td>407</td>
</tr>
<tr>
<td>43.3 Replication</td>
<td>409</td>
</tr>
<tr>
<td>43.4 Synchronous Communication</td>
<td>411</td>
</tr>
<tr>
<td>43.5 Private Channels</td>
<td>412</td>
</tr>
<tr>
<td>43.6 Asynchronous Communication</td>
<td>413</td>
</tr>
<tr>
<td>43.7 A Sort Discipline</td>
<td>415</td>
</tr>
<tr>
<td>43.8 Exercises</td>
<td>417</td>
</tr>
<tr>
<td>44 A Concurrent Language</td>
<td>419</td>
</tr>
<tr>
<td>44.1 Framework</td>
<td>420</td>
</tr>
<tr>
<td>44.2 Character Input/Output</td>
<td>422</td>
</tr>
<tr>
<td>44.3 Mutable Cells</td>
<td>423</td>
</tr>
<tr>
<td>44.4 Asynchronous Communication</td>
<td>424</td>
</tr>
<tr>
<td>44.5 Exercises</td>
<td>428</td>
</tr>
<tr>
<td>XVII Modularity</td>
<td>429</td>
</tr>
<tr>
<td>45 Separate Compilation and Linking</td>
<td>431</td>
</tr>
<tr>
<td>45.1 Linking and Substitution</td>
<td>431</td>
</tr>
<tr>
<td>45.2 Exercises</td>
<td>431</td>
</tr>
<tr>
<td>46 Basic Modules</td>
<td>433</td>
</tr>
<tr>
<td>47 Parameterized Modules</td>
<td>435</td>
</tr>
</tbody>
</table>

13:08 Draft June 2, 2010
CONTENTS

XVIII Equivalence 437

48 Equational Reasoning for T 439
 48.1 Observational Equivalence 440
 48.2 Extensional Equivalence 444
 48.3 Extensional and Observational Equivalence Coincide 445
 48.4 Some Laws of Equivalence 448
 48.4.1 General Laws 448
 48.4.2 Extensionality Laws 449
 48.4.3 Induction Law 449
 48.5 Exercises 450

49 Equational Reasoning for PCF 451
 49.1 Observational Equivalence 451
 49.2 Extensional Equivalence 452
 49.3 Extensional and Observational Equivalence Coincide 453
 49.4 Compactness 456
 49.5 Co-Natural Numbers 459
 49.6 Exercises 461

50 Parametricity 463
 50.1 Overview 463
 50.2 Observational Equivalence 464
 50.3 Logical Equivalence 466
 50.4 Parametricity Properties 471
 50.5 Exercises 475

XIX Appendices 477

A Mathematical Preliminaries 479
 A.1 Finite Sets and Maps 479
 A.2 Families of Sets 479
Part I

Judgements and Rules
Chapter 1

Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages. In this chapter we will develop the basic framework of inductive definitions, and give some examples of their use.

1.1 Judgements

We start with the notion of a judgement, or assertion, about a syntactic object.¹ We shall make use of many forms of judgement, including examples such as these:

- \(n \text{ nat} \): \(n \) is a natural number
- \(n = n_1 + n_2 \): \(n \) is the sum of \(n_1 \) and \(n_2 \)
- \(\tau \text{ type} \): \(\tau \) is a type
- \(e : \tau \): expression \(e \) has type \(\tau \)
- \(e \Downarrow v \): expression \(e \) has value \(v \)

A judgement states that one or more syntactic objects have a property or stand in some relation to one another. The property or relation itself is called a judgement form, and the judgement that an object or objects have that property or stand in that relation is said to be an instance of that judgement form. A judgement form is also called a predicate, and the syntactic objects constituting an instance are its subjects.

We will use the meta-variable \(J \) to stand for an unspecified judgement form, and the meta-variables \(a, b, \) and \(c \) to stand for syntactic objects. We write \(a \ J \) for the judgement asserting that \(J \) holds of \(a \). When it is not

¹We will defer a precise treatment of syntactic objects to Chapter 3. For the present purposes the meaning should be self-evident.
important to stress the subject of the judgement, we write \(J \) to stand for an unspecified judgement. For particular judgement forms, we freely use prefix, infix, or mixfix notation, as illustrated by the above examples, in order to enhance readability.

1.2 Inference Rules

An inductive definition of a judgement form consists of a collection of rules of the form

\[
\begin{array}{c}
J_1 \quad \cdots \quad J_k \\
\hline
J
\end{array}
\]

in which \(J \) and \(J_1, \ldots, J_k \) are all judgements of the form being defined. The judgements above the horizontal line are called the premises of the rule, and the judgement below the line is called its conclusion. If a rule has no premises (that is, when \(k \) is zero), the rule is called an axiom; otherwise it is called a proper rule.

An inference rule may be read as stating that the premises are sufficient for the conclusion: to show \(J \), it is enough to show \(J_1, \ldots, J_k \). When \(k \) is zero, a rule states that its conclusion holds unconditionally. Bear in mind that there may be, in general, many rules with the same conclusion, each specifying sufficient conditions for the conclusion. Consequently, if the conclusion of a rule holds, then it is not necessary that the premises hold, for it might have been derived by another rule.

For example, the following rules constitute an inductive definition of the judgement \(a \nat \):

1. \(\frac{}{\text{zero nat}} \) \hspace{1cm} (1.2a)
2. \(\frac{}{\text{a nat} \quad \text{succ(a) nat}} \) \hspace{1cm} (1.2b)

These rules specify that \(a \nat \) holds whenever either \(a \) is zero, or \(a \) is \(\text{succ}(b) \) where \(b \nat \). Taking these rules to be exhaustive, it follows that \(a \nat \) iff \(a \) is a natural number written in unary.

Similarly, the following rules constitute an inductive definition of the judgement \(a \tree \):

1. \(\frac{}{\text{empty tree}} \) \hspace{1cm} (1.3a)
2. \(\frac{}{\text{a1 tree} \quad \text{a2 tree} \quad \text{node(a1;a2) tree}} \) \hspace{1cm} (1.3b)
1.3 Derivations

These rules specify that a tree holds if either a is empty, or a is node(a1; a2), where a1 tree and a2 tree. Taking these to be exhaustive, these rules state that a is a binary tree, which is to say it is either empty, or a node consisting of two children, each of which is also a binary tree.

The judgement a = b nat defining equality of a nat and b nat is inductively defined by the following rules:

\[
\begin{align*}
\text{zero} &= \text{zero nat} \\
\text{succ} (a) &= \text{succ} (b) \text{ nat}
\end{align*}
\]

In each of the preceding examples we have made use of a notational convention for specifying an infinite family of rules by a finite number of patterns, or rule schemes. For example, Rule (1.2b) is a rule scheme that determines one rule, called an instance of the rule scheme, for each choice of object a in the rule. We will rely on context to determine whether a rule is stated for a specific syntactic object, a, or is instead intended as a rule scheme specifying a rule for each choice of syntactic objects in the rule.

A collection of rules is considered to define the strongest judgement that is closed under, or respects, those rules. To be closed under the rules simply means that the rules are sufficient to show the validity of a judgement: J holds if there is a way to obtain it using the given rules. To be the strongest judgement closed under the rules means that the rules are also necessary: J holds only if there is a way to obtain it by applying the rules. The sufficiency of the rules means that we may show that J holds by deriving it by composing rules. Their necessity means that we may reason about it using rule induction.

1.3 Derivations

To show that an inductively defined judgement holds, it is enough to exhibit a derivation of it. A derivation of a judgement is a finite composition of rules, starting with axioms and ending with that judgement. It may be thought of as a tree in which each node is a rule whose children are derivations of its premises. We sometimes say that a derivation of J is evidence for the validity of an inductively defined judgement J.

We usually depict derivations as trees with the conclusion at the bottom, and with the children of a node corresponding to a rule appearing
above it as evidence for the premises of that rule. Thus, if

\[
\begin{array}{c}
J_1 \\
\vdots \\
J_k \\
\hline \\
J
\end{array}
\]

is an inference rule and \(\nabla_1, \ldots, \nabla_k \) are derivations of its premises, then

\[
\begin{array}{c}
\nabla_1 \\
\vdots \\
\nabla_k \\
\hline \\
J
\end{array}
\]

(1.5)

is a derivation of its conclusion. In particular, if \(k = 0 \), then the node has no children.

For example, this is a derivation of \(\text{succ(succ(succ(zero)))} \cdot \text{nat} \):

\[
\begin{array}{c}
\text{zero} \\
\hline \\
\text{nat}
\end{array}
\]

\[
\begin{array}{c}
\text{succ(zero)} \\
\hline \\
\text{nat}
\end{array}
\]

\[
\begin{array}{c}
\text{succ(succ(zero))} \\
\hline \\
\text{nat}
\end{array}
\]

\[
\begin{array}{c}
\text{succ(succ(succ(zero)))} \\
\hline \\
\text{nat}
\end{array}
\]

(1.6)

Similarly, here is a derivation of \(\text{node(node(empty; empty); empty)} \cdot \text{tree} \):

\[
\begin{array}{c}
\text{empty} \\
\hline \\
\text{tree}
\end{array}
\]

\[
\begin{array}{c}
\text{empty} \\
\hline \\
\text{tree}
\end{array}
\]

\[
\begin{array}{c}
\text{node(empty; empty)} \\
\text{tree}
\end{array}
\]

\[
\begin{array}{c}
\text{empty} \\
\hline \\
\text{tree}
\end{array}
\]

(1.7)

To show that an inductively defined judgement is derivable we need only find a derivation for it. There are two main methods for finding derivations, called forward chaining, or bottom-up construction, and backward chaining, or top-down construction. Forward chaining starts with the axioms and works forward towards the desired conclusion, whereas backward chaining starts with the desired conclusion and works backwards towards the axioms.

More precisely, forward chaining search maintains a set of derivable judgements, and continually extends this set by adding to it the conclusion of any rule all of whose premises are in that set. Initially, the set is empty; the process terminates when the desired judgement occurs in the set. Assuming that all rules are considered at every stage, forward chaining will eventually find a derivation of any derivable judgement, but it is impossible (in general) to decide algorithmically when to stop extending the set and conclude that the desired judgement is not derivable. We may go on
and on adding more judgements to the derivable set without ever achieving the intended goal. It is a matter of understanding the global properties of the rules to determine that a given judgement is not derivable.

Forward chaining is undirected in the sense that it does not take account of the end goal when deciding how to proceed at each step. In contrast, backward chaining is goal-directed. Backward chaining search maintains a queue of current goals, judgements whose derivations are to be sought. Initially, this set consists solely of the judgement we wish to derive. At each stage, we remove a judgement from the queue, and consider all rules whose conclusion is that judgement. For each such rule, we add the premises of that rule to the back of the queue, and continue. If there is more than one such rule, this process must be repeated, with the same starting queue, for each candidate rule. The process terminates whenever the queue is empty, all goals having been achieved; any pending consideration of candidate rules along the way may be discarded. As with forward chaining, backward chaining will eventually find a derivation of any derivable judgement, but there is, in general, no algorithmic method for determining in general whether the current goal is derivable. If it is not, we may futilely add more and more judgements to the goal set, never reaching a point at which all goals have been satisfied.

1.4 Rule Induction

Since an inductive definition specifies the strongest judgement closed under a collection of rules, we may reason about them by rule induction. The principle of rule induction states that to show that a property \(P \) holds of a judgement \(J \) whenever \(J \) is derivable, it is enough to show that \(P \) is closed under, or respects, the rules defining \(J \). Writing \(P(J) \) to mean that the property \(P \) holds of the judgement \(J \), we say that \(P \) respects the rule

\[
\frac{J_1 \ldots J_k}{J}
\]

if \(P(J) \) holds whenever \(P(J_1), \ldots, P(J_k) \). The assumptions \(P(J_1), \ldots, P(J_k) \) are called the inductive hypotheses, and \(P(J) \) is called the inductive conclusion, of the inference.

The principle of rule induction is simply the expression of the definition of an inductively defined judgement form as the strongest judgement form closed under the rules comprising the definition. This means that the judgement form is both (a) closed under those rules, and (b) sufficient
for any other property also closed under those rules. The former property means that a derivation is evidence for the validity of a judgement; the latter means that we may reason about an inductively defined judgement form by rule induction.

If \(P(J) \) is closed under a set of rules defining a judgement form, then so is the conjunction of \(P \) with the judgement itself. This means that when showing \(P \) to be closed under a rule, we may inductively assume not only that \(P(J_i) \) holds for each of the premises \(J_i \), but also that \(J_i \) itself holds as well. We shall generally take advantage of this without explicit mentioning that we are doing so.

When specialized to Rules (1.2), the principle of rule induction states that to show \(P(a \text{ nat}) \) whenever \(a \text{ nat} \), it is enough to show:

1. \(P(\text{zero} \text{ nat}) \).
2. for every \(a \), if \(P(a \text{ nat}) \), then \(P(\text{succ} (a) \text{ nat}) \).

This is just the familiar principle of \textit{mathematical induction} arising as a special case of rule induction. The first condition is called the \textit{basis} of the induction, and the second is called the \textit{inductive step}.

Similarly, rule induction for Rules (1.3) states that to show \(P(a \text{ tree}) \) whenever \(a \text{ tree} \), it is enough to show

1. \(P(\text{empty} \text{ tree}) \).
2. for every \(a_1 \) and \(a_2 \), if \(P(a_1 \text{ tree}) \) and \(P(a_2 \text{ tree}) \), then \(P(\text{node} (a_1; a_2) \text{ tree}) \).

This is called the principle of \textit{tree induction}, and is once again an instance of rule induction.

As a simple example of a proof by rule induction, let us prove that natural number equality as defined by Rules (1.4) is reflexive:

\textbf{Lemma 1.1.} If \(a \text{ nat} \), then \(a = a \text{ nat} \).

\textbf{Proof.} By rule induction on Rules (1.2):

\textbf{Rule (1.2a)} Applying Rule (1.4a) we obtain \(\text{zero} = \text{zero} \text{ nat} \).

\textbf{Rule (1.2b)} Assume that \(a = a \text{ nat} \). It follows that \(\text{succ}(a) = \text{succ}(a) \text{ nat} \) by an application of Rule (1.4b).
As another example of the use of rule induction, we may show that the predecessor of a natural number is also a natural number. While this may seem self-evident, the point of the example is to show how to derive this from first principles.

Lemma 1.2. If $\text{succ}(a) \in \text{nat}$, then $a \in \text{nat}$.

Proof. It is instructive to re-state the lemma in a form more suitable for inductive proof: if $b \in \text{nat}$ and b is $\text{succ}(a)$ for some a, then $a \in \text{nat}$. We proceed by rule induction on Rules (1.2).

Rule (1.2a) Vacuously true, since zero is not of the form $\text{succ}(-)$.

Rule (1.2b) We have that b is $\text{succ}(b')$, and we may assume both that the lemma holds for b' and that $b' \in \text{nat}$. The result follows directly, since if $\text{succ}(b') = \text{succ}(a)$ for some a, then a is b'.

Similarly, let us show that the successor operation is injective.

Lemma 1.3. If $\text{succ}(a_1) = \text{succ}(a_2) \in \text{nat}$, then $a_1 = a_2 \in \text{nat}$.

Proof. It is instructive to re-state the lemma in a form more directly amenable to proof by rule induction. We are to show that if $b_1 = b_2 \in \text{nat}$ then if b_1 is $\text{succ}(a_1)$ and b_2 is $\text{succ}(a_2)$, then $a_1 = a_2 \in \text{nat}$. We proceed by rule induction on Rules (1.4):

Rule (1.4a) Vacuously true, since zero is not of the form $\text{succ}(-)$.

Rule (1.4b) Assuming the result for $b_1 = b_2 \in \text{nat}$, and hence that the premise $b_1 = b_2 \in \text{nat}$ holds as well, we are to show that if $\text{succ}(b_1)$ is $\text{succ}(a_1)$ and $\text{succ}(b_2)$ is $\text{succ}(a_2)$, then $a_1 = a_2 \in \text{nat}$. Under these assumptions we have b_1 is a_1 and b_2 is a_2, and so $a_1 = a_2$ is just the premise of the rule. (We make no use of the inductive hypothesis to complete this step of the proof.)

1.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often *iterated*, meaning that one inductive definition builds on top of another. In an iterated inductive definition the premises of a rule

$$
\begin{array}{c}
J_1 \\
\vdots \\
J_k \\
\hline
J
\end{array}
$$

June 2, 2010

Draft

13:08
may be instances of either a previously defined judgement form, or the judgement form being defined. For example, the following rules, define the judgement \(a \text{ list} \) stating that \(a \) is a list of natural numbers.

\[
\begin{align*}
\text{nil} & \vdash \text{list} \\
\frac{a \text{ nat} \quad b \text{ list}}{\text{cons}(a; b) \text{ list}}
\end{align*}
\] (1.8a)

The first premise of Rule (1.8b) is an instance of the judgement form \(a \text{ nat} \), which was defined previously, whereas the premise \(b \text{ list} \) is an instance of the judgement form being defined by these rules.

Frequently two or more judgements are defined at once by a **simultaneous inductive definition**. A simultaneous inductive definition consists of a set of rules for deriving instances of several different judgement forms, any of which may appear as the premise of any rule. Since the rules defining each judgement form may involve any of the others, none of the judgement forms may be taken to be defined prior to the others. Instead one must understand that all of the judgement forms are being defined at once by the entire collection of rules. The judgement forms defined by these rules are, as before, the strongest judgement forms that are closed under the rules. Therefore the principle of proof by rule induction continues to apply, albeit in a form that allows us to prove a property of each of the defined judgement forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive definition of the judgements \(a \text{ even} \), stating that \(a \) is an even natural number, and \(a \text{ odd} \), stating that \(a \) is an odd natural number:

\[
\begin{align*}
\text{zero} & \vdash \text{even} \\
\frac{a \text{ odd}}{\text{succ}(a) \text{ even}} \\
\frac{a \text{ even}}{\text{succ}(a) \text{ odd}}
\end{align*}
\] (1.9a)

The principle of rule induction for these rules states that to show simultaneously that \(\mathcal{P}(a \text{ even}) \) whenever \(a \text{ even} \) and \(\mathcal{P}(a \text{ odd}) \) whenever \(a \text{ odd} \), it is enough to show the following:

1. \(\mathcal{P}(\text{zero even}); \)
1.6 Defining Functions by Rules

2. if \(P(a \text{ odd}) \), then \(P(\text{succ}(a) \text{ even}) \);

3. if \(P(a \text{ even}) \), then \(P(\text{succ}(a) \text{ odd}) \).

As a simple example, we may use simultaneous rule induction to prove that (1) if \(a \text{ even} \), then \(a \text{ nat} \), and (2) if \(a \text{ odd} \), then \(a \text{ nat} \). That is, we define the property \(P \) by (1) \(P(a \text{ even}) \) iff \(a \text{ nat} \), and (2) \(P(a \text{ odd}) \) iff \(a \text{ nat} \). The principle of rule induction for Rules (1.9) states that it is sufficient to show the following facts:

1. \(\text{zero} \text{ nat} \), which is derivable by Rule (1.2a).

2. If \(a \text{ nat} \), then \(\text{succ}(a) \text{ nat} \), which is derivable by Rule (1.2b).

3. If \(a \text{ nat} \), then \(\text{succ}(a) \text{ nat} \), which is also derivable by Rule (1.2b).

1.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an inductive definition of its graph relating inputs to outputs, and then showing that the relation uniquely determines the outputs for given inputs. For example, we may define the addition function on natural numbers as the relation \(\text{sum}(a; b; c) \), with the intended meaning that \(c \) is the sum of \(a \) and \(b \), as follows:

\[
\frac{b \text{ nat}}{\text{sum}(\text{zero}; b; b)} \quad (1.10a)
\]

\[
\frac{\text{sum}(a; b; c)}{\text{sum}(\text{succ}(a); b; \text{succ}(c))} \quad (1.10b)
\]

The rules define a ternary (three-place) relation, \(\text{sum}(a; b; c) \), among natural numbers \(a, b, \) and \(c \). We may show that \(c \) is determined by \(a \) and \(b \) in this relation.

Theorem 1.4. For every \(a \text{ nat} \) and \(b \text{ nat} \), there exists a unique \(c \text{ nat} \) such that \(\text{sum}(a; b; c) \).

Proof. The proof decomposes into two parts:

1. (Existence) If \(a \text{ nat} \) and \(b \text{ nat} \), then there exists \(c \text{ nat} \) such that \(\text{sum}(a; b; c) \).

2. (Uniqueness) If \(a \text{ nat}, b \text{ nat}, c \text{ nat}, c' \text{ nat}, \text{sum}(a; b; c), \) and \(\text{sum}(a; b; c') \), then \(c = c' \text{ nat} \).
For existence, let \(P(a \text{ nat}) \) be the proposition if \(b \text{ nat} \) then there exists \(c \text{ nat} \) such that \(\text{sum}(a; b; c) \). We prove that if \(a \text{ nat} \) then \(P(a \text{ nat}) \) by rule induction on Rules (1.2). We have two cases to consider:

Rule (1.2a) We are to show \(P(\text{zero nat}) \). Assuming \(b \text{ nat} \) and taking \(c \) to be \(b \), we obtain \(\text{sum(\text{zero}; b; c)} \) by Rule (1.10a).

Rule (1.2b) Assuming \(P(a \text{ nat}) \), we are to show \(P(\text{succ}(a) \text{ nat}) \). That is, we assume that if \(b \text{ nat} \) then there exists \(c \) such that \(\text{sum}(a; b; c) \), and are to show that if \(b' \text{ nat} \), then there exists \(c' \) such that \(\text{sum}((\text{succ}(a)); b'; c') \).

To this end, suppose that \(b' \text{ nat} \). Then by induction there exists \(c \) such that \(\text{sum}(a; b'; c) \). Taking \(c' = \text{succ}(c) \), and applying Rule (1.10b), we obtain \(\text{sum}((\text{succ}(a)); b'; c') \), as required.

For uniqueness, we prove that if \(\text{sum}(a; b; c_1) \), then if \(\text{sum}(a; b; c_2) \), then \(c_1 = c_2 \text{ nat} \) by rule induction based on Rules (1.10).

Rule (1.10a) We have \(a = \text{zero} \) and \(c_1 = b \). By an inner induction on the same rules, we may show that if \(\text{sum}(\text{zero}; b; c_2) \), then \(c_2 = b \). By Lemma 1.1 on page 8 we obtain \(b = b \text{ nat} \).

Rule (1.10b) We have that \(a = \text{succ}(a') \) and \(c_1 = \text{succ}(c'_1) \), where \(\text{sum}(a'; b; c'_1) \). By an inner induction on the same rules, we may show that if \(\text{sum}(a; b; c_2) \), then \(c_2 = \text{succ}(c'_2) \text{ nat} \) where \(\text{sum}(a'; b; c'_2) \). By the outer inductive hypothesis \(c'_1 = c'_2 \text{ nat} \) and so \(c_1 = c_2 \text{ nat} \).

1.7 Modes

The statement that one or more arguments of a judgement is (perhaps uniquely) determined by its other arguments is called a *mode specification* for that judgement. For example, we have shown that every two natural numbers have a sum according to Rules (1.10). This fact may be restated as a mode specification by saying that the judgement \(\text{sum}(a; b; c) \) has mode \((\forall, \forall, \exists)\). The notation arises from the form of the proposition it expresses: *for all \(a \text{ nat} \) and for all \(b \text{ nat} \), there exists \(c \text{ nat} \) such that \(\text{sum}(a; b; c) \).* If we wish to further specify that \(c \) is uniquely determined by \(a \) and \(b \), we would say that the judgement \(\text{sum}(a; b; c) \) has mode \((\forall, \forall, \exists!)\), corresponding to the proposition *for all \(a \text{ nat} \) and for all \(b \text{ nat} \), there exists a unique \(c \text{ nat} \) such that \(\text{sum}(a; b; c) \).* If we wish only to specify that the sum is unique, *if it exists,*
then we would say that the addition judgement has mode \((\forall, \forall, \exists \leq 1)\), corresponding to the proposition for all \(a\) nat and for all \(b\) nat there exists at most one \(c\) nat such that \(\text{sum}(a; b; c)\).

As these examples illustrate, a given judgement may satisfy several different mode specifications. In general the universally quantified arguments are to be thought of as the inputs of the judgement, and the existentially quantified arguments are to be thought of as its outputs. We usually try to arrange things so that the outputs come after the inputs, but it is not essential that we do so. For example, addition also has the mode \((\forall, \exists \leq 1, \forall)\), stating that the sum and the first addend uniquely determine the second addend, if there is any such addend at all. Put in other terms, this says that addition of natural numbers has a (partial) inverse, namely subtraction. We could equally well show that addition has mode \((\exists \leq 1, \forall, \forall)\), which is just another way of stating that addition of natural numbers has a partial inverse.

Often there is an intended, or principal, mode of a given judgement, which we often foreshadow by our choice of notation. For example, when giving an inductive definition of a function, we often use equations to indicate the intended input and output relationships. For example, we may re-state the inductive definition of addition (given by Rules (1.10)) using equations:

\[
\begin{align*}
a \text{ nat} & \quad \frac{a + \text{zero} = a \text{ nat}}{} \\
& \quad a + b = c \text{ nat} \quad a + \text{succ}(b) = \text{succ}(c) \text{ nat}
\end{align*}
\]

When using this notation we tacitly incur the obligation to prove that the mode of the judgement is such that the object on the right-hand side of the equations is determined as a function of those on the left. Having done so, we abuse notation, writing \(a + b\) for the unique \(c\) such that \(a + b = c\) nat.

1.8 Exercises

1. Give an inductive definition of the judgement \(\text{max}(a; b; c)\), where \(a\) nat, \(b\) nat, and \(c\) nat, with the meaning that \(c\) is the larger of \(a\) and \(b\). Prove that this judgement has the mode \((\forall, \forall, \exists!)\).

2. Consider the following rules, which define the height of a binary tree as the judgement \(\text{hgt}(a; b)\).

\[
\begin{align*}
& \quad \frac{}{\text{hgt}(\text{empty}; \text{zero})}
\end{align*}
\]
Prove by tree induction that the judgement hgt has the mode (\forall, \exists), with inputs being binary trees and outputs being natural numbers.

3. Give an inductive definition of the judgement “∇ is a derivation of J” for an inductively defined judgement J of your choice.

4. Give an inductive definition of the forward-chaining and backward-chaining search strategies.
Chapter 2

Hypothetical Judgements

A hypothetical judgement expresses an entailment between one or more hypotheses and a conclusion. We will consider two notions of entailment, called derivability and admissibility. Derivability expresses the stronger of the two forms of entailment, namely that the conclusion may be deduced directly from the hypotheses by composing rules. Admissibility expresses the weaker form, that the conclusion is derivable from the rules whenever the hypotheses are also derivable. Both forms of entailment enjoy the same structural properties that characterize conditional reasoning. One consequence of these properties is that derivability is stronger than admissibility (but the converse fails, in general). We then generalize the concept of an inductive definition to admit rules that have hypothetical judgements as premises. Using these we may enrich the rules with new axioms that are available for use within a specified premise of a rule.

2.1 Derivability

For a given set, \(\mathcal{R} \), of rules, we define the derivability judgement, written \(J_1, \ldots, J_k \vdash_\mathcal{R} K \), where each \(J_i \) and \(K \) are basic judgements, to mean that we may derive \(K \) from the expansion \(\mathcal{R}[J_1, \ldots, J_k] \) of the rules \(\mathcal{R} \) with the additional axioms

\[
\frac{J_1 \quad \cdots \quad J_k}{K}
\]

That is, we treat the hypotheses, or antecedents, of the judgement, \(J_1, \ldots, J_n \) as temporary axioms, and derive the conclusion, or consequent, by composing rules in \(\mathcal{R} \). That is, evidence for a hypothetical judgement consists of a derivation of the conclusion from the hypotheses using the rules in \(\mathcal{R} \).
2.1 Derivability

We use capital Greek letters, frequently \(\Gamma \) or \(\Delta \), to stand for a finite collection of basic judgements, and write \(\mathcal{R}[\Gamma] \) for the expansion of \(\mathcal{R} \) with an axiom corresponding to each judgement in \(\Gamma \). The judgement \(\Gamma \vdash \mathcal{R} \) means that \(K \) is derivable from rules \(\mathcal{R}[\Gamma] \). We sometimes write \(\vdash \mathcal{R} \) \(\Gamma \) to mean that \(\vdash \mathcal{R} \) \(J \) for each judgement \(J \) in \(\Gamma \). The derivability judgement \(J_1, \ldots, J_n \vdash \mathcal{R} \) \(J \) is sometimes expressed by saying that the rule

\[
\frac{J_1 \quad \cdots \quad J_n}{J}
\]

is derivable from the rules \(\mathcal{R} \).

For example, consider the derivability judgement

\[
a \text{nat} \vdash_{(1.2)} \text{succ} (\text{succ}(a)) \text{nat}
\]

relative to Rules (1.2). This judgement is valid for any choice of object \(a \), as evidenced by the derivation

\[
\frac{a \text{ nat}}{\text{succ}(a) \text{ nat}} \quad \frac{\text{succ}(a) \text{ nat}}{\text{succ}(\text{succ}(a)) \text{ nat}},
\]

which composes Rules (1.2), starting with \(a \) \(\text{nat} \) as an axiom, and ending with \(\text{succ}(\text{succ}(a)) \text{ nat} \). Equivalently, the validity of (2.2) may also be expressed by stating that the rule

\[
\frac{a \text{ nat}}{\text{succ}(\text{succ}(a)) \text{ nat}}
\]

is derivable from Rules (1.2).

It follows directly from the definition of derivability that it is stable under extension with new rules.

Theorem 2.1 (Stability). If \(\Gamma \vdash \mathcal{R} \) \(J \), then \(\Gamma \vdash_{\mathcal{R} \cup \mathcal{R}'} \) \(J \).

Proof. Any derivation of \(J \) from \(\mathcal{R}[\Gamma] \) is also a derivation from \((\mathcal{R} \cup \mathcal{R}')[\Gamma] \), since the presence of additional rules does not influence the validity of the derivation.

Derivability enjoys a number of structural properties that follow from its definition, independently of the rules, \(\mathcal{R} \), in question.

Reflexivity Every judgement is a consequence of itself: \(\Gamma, J \vdash \mathcal{R} \) \(J \). Each hypothesis justifies itself as conclusion.
2.2 Admissibility

Weakening If $\Gamma \vdash_{\mathcal{R}} J$, then $\Gamma, K \vdash_{\mathcal{R}} J$. Entailment is not influenced by unexercised options.

Exchange If $\Gamma_1, J_1, J_2 \vdash_{\mathcal{R}} J$, then $\Gamma_1, J_2, J_1 \vdash_{\mathcal{R}} J$. The relative ordering of the axioms is immaterial.

Contraction If $\Gamma, J \vdash_{\mathcal{R}} K$, then $\Gamma, J \vdash_{\mathcal{R}} K$. We may use a hypothesis as many times as we like in a derivation.

Transitivity If $\Gamma, K \vdash_{\mathcal{R}} J$ and $\Gamma \vdash_{\mathcal{R}} K$, then $\Gamma \vdash_{\mathcal{R}} J$. If we replace an axiom by a derivation of it, the result is a derivation of its consequent without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening follows directly from uniformity. Exchange and contraction follow from the treatment of the rules, \mathcal{R}, as a finite set, for which order does not matter and replication is immaterial. Transitivity is proved by rule induction on the first premise.

In view of the structural properties of exchange and contraction, we regard the hypotheses, Γ, of a derivability judgement as a finite set of assumptions, so that the order and multiplicity of hypotheses does not matter. In particular, when writing Γ as the union $\Gamma_1 \Gamma_2$ of two sets of hypotheses, a hypothesis may occur in both Γ_1 and Γ_2. This is obvious when Γ_1 and Γ_2 are given, but when decomposing a given Γ into two parts, it is well to remember that the same hypothesis may occur in both parts of the decomposition.

2.2 Admissibility

Admissibility, written $\Gamma \vdash_{\mathcal{R}}= J$, is a weaker form of hypothetical judgement stating that $\vdash_{\mathcal{R}} \Gamma$ implies $\vdash_{\mathcal{R}} J$. That is, the conclusion J is derivable from rules \mathcal{R} whenever the assumptions Γ are all derivable from rules \mathcal{R}. In particular if any of the hypotheses are not derivable relative to \mathcal{R}, then the judgement is vacuously true. The admissibility judgement $J_1, \ldots, J_n \vdash_{\mathcal{R}}= J$ is sometimes expressed by stating that the rule,

$$
\frac{J_1 \quad \ldots \quad J_n}{J},
$$

(2.5)

is admissible relative to the rules in \mathcal{R}.

For example, the admissibility judgement

$$\text{succ}(a) \text{ nat} \vdash_{\{1,2\}} a \text{ nat}$$

(2.6)
is valid, because any derivation of $\text{succ}(a) \text{ nat}$ from Rules (1.2) must contain a sub-derivation of $a \text{ nat}$ from the same rules, which justifies the conclusion. The validity of (2.6) may equivalently be expressed by stating that the rule

$$
\begin{array}{c}
\text{succ}(a) \text{ nat} \\
\hline
a \text{ nat}
\end{array}
$$

is admissible for Rules (1.2).

In contrast to derivability the admissibility judgement is not stable under extension to the rules. For example, if we enrich Rules (1.2) with the axiom

$$
\text{succ}(\text{junk}) \text{ nat}
$$

(where junk is some object for which $\text{junk} \text{ nat}$ is not derivable), then the admissibility (2.6) is invalid. This is because Rule (2.8) has no premises, and there is no composition of rules deriving $\text{junk} \text{ nat}$. Admissibility is as sensitive to which rules are absent from an inductive definition as it is to which rules are present in it.

The structural properties of derivability ensure that derivability is stronger than admissibility.

Theorem 2.2. If $\Gamma \vdash_R J$, then $\Gamma \models_R J$.

Proof. Repeated application of the transitivity of derivability shows that if $\Gamma \vdash_R J$ and $\vdash_R \Gamma$, then $\vdash_R J$. \qed

To see that the converse fails, observe that there is no composition of rules such that

$$
\text{succ}(\text{junk}) \text{ nat} \vdash_{(1.2)} \text{junk} \text{ nat},
$$

yet the admissibility judgement

$$
\text{succ}(\text{junk}) \text{ nat} \models_{(1.2)} \text{junk} \text{ nat}
$$

holds vacuously.

Evidence for admissibility may be thought of as a mathematical function transforming derivations $\nabla_1, \ldots, \nabla_n$ of the hypotheses into a derivation ∇ of the consequent. Therefore, the admissibility judgement enjoys the same structural properties as derivability, and hence is a form of hypothetical judgement:

Reflexivity If J is derivable from the original rules, then J is derivable from the original rules: $J \models_R J$.
2.3 Hypothetical Inductive Definitions

Weakening If \(J \) is derivable from the original rules assuming that each of the judgements in \(\Gamma \) are derivable from these rules, then \(J \) must also be derivable assuming that \(\Gamma \) and also \(K \) are derivable from the original rules: if \(\Gamma \vdash_{\mathcal{R}} J \), then \(\Gamma, K \vdash_{\mathcal{R}} J \).

Exchange The order of assumptions in an iterated implication does not matter.

Contraction Assuming the same thing twice is the same as assuming it once.

Transitivity If \(\Gamma, K \vdash_{\mathcal{R}} J \) and \(\Gamma \vdash_{\mathcal{R}} K \), then \(\Gamma \vdash_{\mathcal{R}} J \). If the assumption \(K \) is used, then we may instead appeal to the assumed derivability of \(K \).

Theorem 2.3. The admissibility judgement \(\Gamma \vdash_{\mathcal{R}} J \) is structural.

Proof. Follows immediately from the definition of admissibility as stating that if the hypotheses are derivable relative to \(\mathcal{R} \), then so is the conclusion. \(\square \)

Just as with derivability, we may, in view of the properties of exchange and contraction, regard the hypotheses, \(\Gamma \), of an admissibility judgement as a finite set, for which order and multiplicity does not matter.

2.3 Hypothetical Inductive Definitions

It is useful to enrich the concept of an inductive definition to permit rules with derivability judgements as premises and conclusions. Doing so permits us to introduce *local hypotheses* that apply only in the derivation of a particular premise, and also allows us to constrain inferences based on the *global hypotheses* in effect at the point where the rule is applied.

A hypothetical inductive definition consists of a collection of hypothetical rules of the form

\[
\frac{\Gamma_1 \vdash J_1 \quad \ldots \quad \Gamma_n \vdash J_n}{\Gamma \vdash J}.
\]

(2.9)

The hypotheses \(\Gamma \) are the *global hypotheses* of the rule, and the hypotheses \(\Gamma_i \) are the *local hypotheses* of the \(i \)th premise of the rule. Informally, this rule states that \(J \) is a derivable consequence of \(\Gamma \) whenever each \(J_i \) is a derivable consequence of \(\Gamma_i \), augmented with the additional hypotheses \(\Gamma_i \). Thus, one way to show that \(J \) is derivable from \(\Gamma \) is to show, in turn, that each \(J_i \) is derivable from \(\Gamma \). The derivation of each premise involves a “context
2.3 Hypothetical Inductive Definitions

switch” in which we extend the global hypotheses with the local hypotheses of that premise, establishing a new set of global hypotheses for use within that derivation.

In most cases a rule is stated for all choices of global context, in which case it is said to be uniform. A uniform rule may be given in the implicit form

$$\Gamma_1 \vdash J_1 \quad \ldots \quad \Gamma_n \vdash J_n \quad \vdash J,$$ \hspace{1cm} (2.10)

which stands for the collection of all rules of the form (2.9) in which the global hypotheses have been made explicit.

A hypothetical inductive definition is to be regarded as an ordinary inductive definition of a formal derivability judgement $\Gamma \vdash J$ consisting of a finite set of basic judgements, Γ, and a basic judgement, J. A collection of hypothetical rules, \mathcal{R}, defines the strongest formal derivability judgement closed under rules \mathcal{R}, which, by an abuse of notation, we write as $\Gamma \vdash_{\mathcal{R}} J$.

Since $\Gamma \vdash_{\mathcal{R}} J$ is the strongest judgement closed under \mathcal{R}, the principle of hypothetical rule induction is valid for reasoning about it. Specifically, to show that $\mathcal{P}(\Gamma \vdash J)$ whenever $\Gamma \vdash_{\mathcal{R}} J$, it is enough to show, for each rule (2.9) in \mathcal{R},

if $\mathcal{P}(\Gamma \Gamma_1 \vdash J_1)$ and \ldots and $\mathcal{P}(\Gamma \Gamma_n \vdash J_n)$, then $\mathcal{P}(\Gamma \vdash J)$.

This is just a restatement of the principle of rule induction given in Chapter 1, specialized to the formal derivability judgement $\Gamma \vdash J$.

It is important to ensure that the formal derivability relation defined by a collection of hypothetical rules is structural. This amounts to showing that the following structural rules are admissible:

$$\Gamma, J \vdash J \hspace{1cm} (2.11a)$$

$$\Gamma \vdash J \quad \vdash \Gamma, K \vdash J \hspace{1cm} (2.11b)$$

$$\Gamma \vdash K \quad \Gamma, K \vdash J \quad \Gamma \vdash J \hspace{1cm} (2.11c)$$

If all of the rules of a hypothetical inductive definition are uniform, it is automatically the case that the structural rules (2.11b) and (2.11c) are admissible. However, it is typically necessary to include Rule (2.11a) explicitly to ensure reflexivity.
2.4 Exercises

1. Define $\Gamma' \vdash \Gamma$ to mean that $\Gamma' \vdash J_i$ for each J_i in Γ. Show that $\Gamma \vdash J$ iff whenever $\Gamma' \vdash \Gamma$, it follows that $\Gamma' \vdash J$. Hint: from left to right, appeal to transitivity of entailment; from right to left, consider the case of $\Gamma' = \Gamma$.

2. Show that it is dangerous to permit admissibility judgements in the premise of a rule. Hint: show that using such rules one may “define” an inconsistent judgement form J for which we have $a J$ iff it is not the case that $a J$.

2.4 Exercises
Chapter 3

Syntactic Objects

Throughout this book we shall have need of a variety of syntactic objects with which to model programming language concepts. We will use a very general framework for specifying syntactic objects that accounts for three crucial concepts: (1) hierarchical structure, (2) binding and scope, and (3) parameterization. Abstract syntax trees account for hierarchical structure; these form the foundation of the framework. Abstract binding trees enrich abstract syntax trees with variable binding and scope. Parameterized abstract binding trees support two forms of indexed families of objects.

3.1 Abstract Syntax Trees

An abstract syntax tree, or ast for short, is a finitary ordered tree whose leaves are variables and each of whose nodes are operators, or constructors. The children of a node are the arguments of the operator at that node. Abstract syntax trees are classified into sorts. Variables are assigned sorts. Operators are assigned both a sort and an arity, a sequence of sorts specifying the number and sort of each argument.

To make this precise, fix a set, \mathcal{S}, of sorts. Let $\{\mathcal{O}_s\}_{s \in \mathcal{S}}$ be a family of sets \mathcal{O}_s whose elements are the operators of sort s. Let the arity of each operator, o, be given by $\text{ar}(o) = (s_1, \ldots, s_n)$. For each \mathcal{S}-indexed family of sets $\{\mathcal{X}_s\}_{s \in \mathcal{S}}$ of variables of sort s, the family of sets $\mathcal{A}[\mathcal{X}] = \{\mathcal{A}[\mathcal{X}]_s\}_{s \in \mathcal{S}}$ is the smallest family of sets satisfying the following two conditions:

1. A variable of sort s is an ast of sort s: $\mathcal{X}_s \subseteq \mathcal{A}[\mathcal{X}]_s$ for each $s \in \mathcal{S}$.

2. Abstract syntax trees are closed under each of the operators: if $o \in \mathcal{O}_s$, $\text{ar}(o) = (s_1, \ldots, s_n)$, and $a_1 \in \mathcal{A}[\mathcal{X}]_{s_1}, \ldots, a_n \in \mathcal{A}[\mathcal{X}]_{s_n}$, then
For example, let Expr be the sort of expressions, let zero be an operator of sort Expr and arity (), and let succ be an operator of sort Expr and arity (Expr). Then \(\text{succ}(\text{succ}(\text{zero}())) \in \mathcal{A}[\emptyset]\)Expr and if \(x \in \mathcal{X}_{\text{Expr}}\), then \(\text{succ}(\text{succ}(x)) \in \mathcal{A}[\mathcal{X}]_{\text{Expr}}\).

We will often use notational conventions to identify the variables of a sort, and speak loosely of an “ast of sort \(s\)” without precisely specifying the sets of variables of each sort. When specifying the variables, we often write \(\mathcal{X}, x\), where \(x\) is a variable of sort \(s\) such that \(x / \in \mathcal{X}_s\), to mean the family of sets \(\mathcal{Y}\) such that \(\mathcal{Y}_s = \mathcal{X}_s \cup \{x\}\) and \(\mathcal{Y}_{s'} = \mathcal{X}_{s'}\) for all \(s' \neq s\). The family \(\mathcal{X}, x\), where \(x\) is of sort \(s\), is said to be the family obtained by adjoining the variable \(x\) to the family \(\mathcal{X}\).

It follows immediately from the definition of abstract syntax trees that if \(\mathcal{X} \subseteq \mathcal{Y}\), then \(\mathcal{A}[\mathcal{X}] \subseteq \mathcal{A}[\mathcal{Y}]\).

A family of bijections \(\pi: \mathcal{X} \leftrightarrow \mathcal{Y}\) between sets of variables of each sort induces a renaming, \(\pi \cdot a\), on \(a \in \mathcal{A}[\mathcal{X}]\) yielding an ast in \(\mathcal{A}[\mathcal{Y}]\) obtained by replacing \(x \in \mathcal{X}_s\) by \(\pi_s(x)\) everywhere in \(a\). (Renamings will play an important role in the generalization of ast’s to account for binding and scope to be developed in Section 3.2 on the next page.)

Variables are so-called because they are given meaning by substitution. Specifically, if \(a \in \mathcal{A}[\mathcal{X}, x]\) and \(b \in \mathcal{A}[\mathcal{X}]\), then \([b/x]a \in \mathcal{A}[\mathcal{X}]\), where \([b/x]a\) is the result of substituting \(b\) for every occurrence of \(x\) in \(a\). The ast \(a\) is sometimes called the target, and \(x\) is called the subject, of the substitution. Substitution is defined by the following conditions:

1. \([b/x]x = b\) and \([b/x]y = y\) if \(x \neq y\).
2. \([b/x]o (a_1; \ldots; a_n) = o ([b/x]a_1; \ldots; [b/x]a_n)\).

For example, we may readily check that

\([\text{succ}(\text{zero}())/x] \text{succ}(\text{succ}(x)) = \text{succ}(\text{succ}(\text{succ}(\text{zero}()))).\)

That is, we simply “plug in” the given ast for the variable \(x\) in the target of the substitution.

The fact that substitution is properly defined by these equations may be justified using the principle of structural induction. Let \(\mathcal{P}\) be a sort-indexed family of subsets of \(\mathcal{A}[\mathcal{X}]\), to be thought of as a property of the ast’s of each sort \(s \in \mathcal{S}\). To show that \(\mathcal{A}[\mathcal{X}] \subseteq \mathcal{P}\), it is enough to show:

\(\)
3.2 Abstract Binding Trees

1. $\mathcal{X} \subseteq \mathcal{P}$.

2. for every operator o of sort s such that $\text{ar}(o) = (s_1, \ldots, s_n)$, if $a_1 \in \mathcal{P}_{s_1}$ and \ldots and $a_n \in \mathcal{P}_{s_n}$, then $o(a_1; \ldots; a_n) \in \mathcal{P}_s$.

That is, to show that every ast of sort s has property \mathcal{P}_s, it is enough to show that every variable of sort s has the property \mathcal{P}_s and that for every operator o of sort s whose arguments have sorts s_1, \ldots, s_n, respectively, if a_1 has property \mathcal{P}_{s_1}, and \ldots and a_n has property \mathcal{P}_{s_n}, then $o(a_1; \ldots; a_n)$ has property \mathcal{P}_s.

For example, we may show by structural induction on $a \in A[\mathcal{X}, x]$ that if $b \in A[\mathcal{X}]$, then there exists a unique $c \in A[\mathcal{X}]$ such that $[b/x]a = c$. For if $y \in \mathcal{X}, x$, then either $y = x$, in which case $c = b$, or $y \neq x$, in which case $c = y$. And if $[b/x]a_1 = c_1$ and \ldots $[b/x]a_n = c_n$, then $c = o(c_1; \ldots; c_n)$.

3.2 Abstract Binding Trees

Abstract syntax goes a long way towards separating objective issues of syntax (the hierarchical structure of expressions) from subjective issues (their layout on the page). This can be usefully pushed a bit further by enriching abstract syntax to account for binding and scope.

All languages have facilities for introducing an identifier with a specified range of significance. For example, we may define a variable, x, to stand for an expression, e_1, so that we may conveniently refer to it within another expression, e_2, by writing $\text{let } x \text{ be } e_1 \text{ in } e_2$. The intention is that x stands for e_1 inside of the expression e_2, but has no meaning whatsoever outside of that expression. The variable x is said to be bound within e_2 by the definition; equivalently, the scope of the variable x is the expression e_2.

Moreover, the name x has no intrinsic significance; we may just as well use any variable y for the same purpose, provided that we rename x to y within e_2. Such a renaming is always possible, provided only that there can be no confusion between two different definitions. So, for example, there is no difference between the expressions

\[
\text{let } x \text{ be succ(succ(zero)) in succ(succ(x))}
\]

and

\[
\text{let } y \text{ be succ(succ(zero)) in succ(succ(y)).}
\]

But we must be careful when nesting definitions, since

\[
\text{let } x \text{ be succ(succ(zero)) in let } y \text{ be succ(zero) in succ(x)}
\]
is entirely different from

\[\text{let } y \text{ be succ(succ(zero)) in let } y \text{ be succ(zero) in succ}(y).\]

In this case we cannot rename \(x\) to \(y\), nor can we rename \(y\) to \(x\), because to do so would confuse two different definitions. The guiding principle is that bound variables are *pointers* to their binding sites, and that any renaming must preserve the pointer structure of the expression. Put in other terms, bound variables function as *pronouns*, which refer to objects separately introduced by a noun phrase (here, an expression). Renaming must preserve the pronoun structure, so that we cannot get confusions such as “which he do you mean?” that arise in less formal languages.

The concepts of binding and scope can be accounted by enriching abstract syntax trees with some additional structure. Such enriched abstract syntax trees are called *abstract binding trees*, or abt’s for short. An operator on abt’s may bind zero or more variables in each of its arguments independently of one another. Each argument is an *abstractor* of the form \(x_1, \ldots, x_k \cdot a\), where \(x_1, \ldots, x_k\) are variables and \(a\) is an abt possibly mentioning those variables. Such an abstractor specifies that the variables \(x_1, \ldots, x_k\) are bound within \(e_2\). When \(k\) is zero, we usually elide the distinction between \(.a\) and \(a\) itself. Thus, when written in the form of an abt, a definition has the form \(1let(e_1; x \cdot e_2)\). The abstractor \(x \cdot e_2\) in the second argument position makes clear that \(x\) is bound within \(e_2\), and not within \(e_1\).

Since an operator may bind variables in each of its arguments, the arity of an operator is generalized to be a finite sequence of *valences* of the form \((s_1, \ldots, s_k)\) consisting of a finite sequence of sorts together with a sort. Such a valence specifies the overall sort of the argument, \(s\), and the sorts \(s_1, \ldots, s_k\) of the variables bound within that argument. Thus, for example, the arity of the operator \(1let\) is \((\text{Expr}, (\text{Expr})\text{Expr})\), which indicates that it takes two arguments described as follows:

1. The first argument is of sort \(\text{Expr}\), and binds no variables.
2. The second argument is also of sort \(\text{Expr}\), and binds one variable of sort \(\text{Expr}\).

A precise definition of abt’s requires some care. As a first approximation let us naively define the \(S\)-indexed family \(B[X]\) of abt’s over the \(S\)-indexed variables \(X\) and \(S\)-indexed family \(O\) of operators \(o\) of arity \(ar(o)\). To lighten the notation let us write \(\vec{x}\) for a finite sequence \(x_1, \ldots, x_n\) of \(n\) distinct variables, and \(\vec{s}\) for a finite sequence \(s_1, \ldots, s_n\) of \(n\) sorts. We say that
3.2 Abstract Binding Trees

\(\vec{x} \) is a sequence of variables of sort \(\vec{s} \) iff the two sequences have the same length, \(n \), and for each \(1 \leq i \leq n \) the variable \(x_i \) is of sort \(s_i \). The following conditions would appear to suffice as the definition of the abt’s of each sort:

1. Every variable is an abt: \(X \subseteq B[X] \).

2. Abt’s are closed under combination by operators: for every operator \(o \) of sort \(s \) and arity \(\langle (\vec{s}_1 s_1), \ldots, (\vec{s}_n s_n) \rangle \), if \(\vec{x}_1 \) is of sort \(\vec{s}_1 \) and \(a_1 \in B[X, \vec{x}_1]_{s_1} \) and \(\ldots \) and \(\vec{x}_n \) is of sort \(\vec{s}_n \) and \(a_n \in B[X, \vec{x}_n]_{s_n} \), then \(o(\vec{x}_1; a_1; \ldots; \vec{x}_n; a_n) \in B[X]_s \).

The bound variables are adjoined to the set of active variables within each argument, with the sort of each variable determined by the valence of the operator.

This definition is almost correct. The problem is that it takes too literally the names of the bound variables in an ast. In particular an abt of the form \(\text{let}(e_1; x.\text{let}(e_2; x.e_3)) \) is always ill-formed according to this definition, because the first binding adjoins \(x \) to \(X \), which implies that the second cannot adjoin \(x \) to \(X, x \) because it is already present.

To ensure that the names of bound variables do not matter, the second condition on formation of abt’s is strengthened as follows:

\[\text{if for every } 1 \leq i \leq n \text{ and for every renaming } \pi_i : \vec{x}_i \leftrightarrow \vec{x}'_i \text{ such that } \vec{x}'_i \notin X \text{ we have } \pi_i \cdot a_i \in B[X, \vec{x}'_i], \text{ then } \]

\[o(\vec{x}_1; a_1; \ldots; \vec{x}_n; a_n) \in B[X]. \]

That is, we demand that an abstractor be well-formed with respect to every choice of variables that are not already active. This ensures, for example, that when nesting binders we rename bound variables to avoid collisions. This is called the freshness condition on binders, since it chooses the bound variable names to be “fresh” relative to any variables already in use in a given context.

The principle of structural induction extends to abt’s, and is called structural induction modulo renaming. It states that to show that \(B[X] \subseteq P[X] \), it is enough to show the following conditions:

1. \(X \subseteq P[X] \).

\(^2\)The action of a renaming extends to abt’s in the obvious way by replacing every occurrence of \(x \) by \(\pi(x) \), including any occurrences in the variable list of an abstractor as well as within its body.
2. For every o of sort s and arity $((\vec{s}_1 s_1, \ldots, (\vec{s}_n s_n)$, if for every $1 \leq i \leq n$ and for every renaming $\pi_i : \vec{x}_i' \leftrightarrow \vec{x}_i''$ we have $\pi_i \cdot a_i \in P[\mathcal{X}, \vec{x}_i']$, then $o(\vec{x}_1 . a_1; \ldots; \vec{x}_n . a_n) \in P[\mathcal{X}]$.

This means that in the inductive hypothesis we may assume that the property P holds for all renamings of the bound variables, provided only that no confusion arises by re-using variable names.

As an example let us define by structural induction modulo renaming the relation $x \in a$, where $a \in B[\mathcal{X}, x]$, to mean that x occurs free in a. Speaking somewhat loosely, we may say that this judgement is defined by the following conditions:

1. $x \in y$ if $x = y$.
2. $x \in o(\vec{x}_1 . a_1; \ldots; \vec{x}_n . a_n)$ if $x \in a_i$ for some $1 \leq i \leq n$.

More precisely, we are defining a family of relations $x \in a$ for each family \mathcal{X} of variables such that $a \in B[\mathcal{X}, x]$. The first condition condition states that x is free in x, and the second states that if x is free in any argument for any fresh choice of bound variables, then it is free in the abt constructed by an operator. We need not concern ourselves with the case that x may occur in some \vec{x}_i, because the principle of structural induction will rename any such variable away from x before checking whether x occurs in the body.

This implies, in particular, that x is not free in $\text{let}(\text{zero}; x.x)$, since x is not free in x' for any choice of x' distinct from x.

The relation $a =_\alpha b$ of α-equivalence (so-called for historical reasons), is defined to mean that a and b are identical up to the choice of bound variable names. This relation is defined to be the strongest congruence containing the following two conditions:

1. $x =_\alpha x$.
2. $o(\vec{x}_1 . a_1; \ldots; \vec{x}_n . a_n) =_\alpha o(\vec{x}_1' . a_1'; \ldots; \vec{x}_n' . a_n')$ if for every $1 \leq i \leq n$, $\pi_i \cdot a_i =_\alpha \pi_i' \cdot a_i'$ for all renamings $\pi_i : \vec{x}_i \leftrightarrow \vec{z}_i$ and $\pi_i' : \vec{x}_i' \leftrightarrow \vec{z}_i$ with \vec{z}_i fresh.

The idea is that we rename \vec{x}_i and \vec{x}_i' consistently, avoiding confusion, and check that a_i and a_i' are α-equivalent. As a matter of terminology, if $a =_\alpha b$, then b is said to be an α-variant of a (and vice-versa).

Some care is required in the definition of substitution of an abt b of sort s for free occurrences of a variable x of sort s in some abt a of some sort, written $[b/x]a$. Substitution is partially defined by the following conditions:
3.2 Abstract Binding Trees

1. \([b/x]x = b\), and \([b/x]y = y\) if \(x \neq y\).

2. \([b/x]o(\vec{x}_1 . a_1 ; \ldots ; \vec{x}_n . a_n) = o(\vec{x}_1 . a_1' ; \ldots ; \vec{x}_n . a_n')\), where, for each \(1 \leq i \leq n\), we require that \(\vec{x}_i \notin b\), and we set \(a_i' = [b/x]a_i\) if \(x \notin \vec{x}_i\), and \(a_i' = a_i\) otherwise.

If \(x\) is bound in some argument to an operator, then substitution does not descend into its scope, for to do so would be to confuse two distinct variables. For this reason we must take care to define \(a_i'\) in the second equation according to whether or not \(x \in \vec{x}_i\). The requirement that \(\vec{x}_i \notin b\) in the second equation is called capture avoidance. If some \(x_{i,j}\) occurred free in \(b\), then the result of the substitution \([b/x]a_i\) would in general contain \(x_{i,j}\) free as well, but then forming \(\vec{x}_i . [b/x]a_i\) would incur capture by changing the referent of \(x_{i,j}\) to be the \(j\)th bound variable of the \(i\)th argument. In such cases substitution is undefined since we cannot replace \(x\) by \(b\) in \(a_i\) without incurring capture.

One way around this is to alter the definition of substitution so that the bound variables in the result are chosen fresh by substitution. By the principle of structural induction we know inductively that, for any renaming \(\pi_i : \vec{x}_i \leftrightarrow \vec{x}_i'\) with \(\vec{x}_i'\) fresh, the substitution \([b/x](\pi_i \cdot a_i)\) is well-defined. Hence we may define

\([b/x]o(\vec{x}_1 . a_1 ; \ldots ; \vec{x}_n . a_n) = o(\vec{x}_1 . [b/x](\pi_1 \cdot a_1) ; \ldots ; \vec{x}_n . [b/x](\pi_n \cdot a_n))\)

for some particular choice of fresh bound variable names (any choice will do). There is no longer any need to take care that \(x \notin \vec{x}_i\) in each argument, because the freshness condition on binders ensures that this cannot occur, the variable \(x\) already being active. Noting that

\(o(\vec{x}_1 . a_1 ; \ldots ; \vec{x}_n . a_n) =_a o(\vec{x}_1' . \pi_1 \cdot a_1 ; \ldots ; \vec{x}_n' . \pi_n \cdot a_n)\),

another way to avoid undefined substitutions is to first choose an \(\alpha\)-variant of the target of the substitution whose binders avoid any free variables in the substituting abt, and then perform substitution without fear of incurring capture. In other words substitution is totally defined on \(\alpha\)-equivalence classes of abt’s.

This motivates the following general policy:

Abstract binding trees are always to be identified up to \(\alpha\)-equivalence.

That is, we henceforth work with equivalence classes of abt’s modulo \(\alpha\)-equivalence. Whenever a particular abt is considered, we choose a convenient representative of its \(\alpha\)-equivalence class so that its bound variables are
disjoint from the finite set of active variables in a particular context. We tac-

titly assert that all operations and relations on abt’s respect α-equivalence,

so that they are properly defined on α-equivalence classes of abt’s. Thus, in

particular, it makes no sense to speak of a particular bound variable within
an abt, because bound variables have no fixed identity. Whenever we ex-

amine an abt, we are choosing a representative of its α-equivalence class,

and we have no control over how the bound variable names are chosen.

On the other hand experience shows that any operation or property of in-
terest respects α-equivalence, so there is no obstacle to achieving it. Indeed,

we might say that a property or operation is legitimate exactly insofar as it

respects α-equivalence!

3.3 Parameterization

It is often useful to consider indexed families of operators of the same sort

and arity. We will consider two different forms of families of operators,

the closed families, which are indexed by a fixed set, and the open families,

which are indexed by an evolving set of scoped parameters, or names.

As an example of closed indexing, suppose that we wish to enrich the

sort of expressions with boolean constants. The obvious way would be to

introduce two different operators, true and false, of sort Expr, each with

arity $()$, so that the booleans are given by the abt’s true() and false() of

sort Expr. However, it is sometimes preferable to consider constructors such

as these to be instances of a single family of operators of the same sort in

order to stress their uniformity. We might then represent the booleans as in-

stances of the family bool[b], indexed by $b \in \{tt, ff\}$, so that the boolean

constants are represented by the abt’s bool[tt]() and bool[ff]().

In this case such a representation seems strained, but in more general

situations it is useful to consider families of operators $\{o[i]\}_{i \in I}$, where I

is some index set and each $o[i]$ has the same sort and arity. Various choices

of index set, I, arise. Examples include the set \mathbb{N} of natural numbers, and

any set isomorphic to a finite set \mathbb{N}_k with $k \geq 0$ elements. For example,
supose that we wish to consider a finite sequence of expressions to be a

form of expression. One way to do this is to introduce a family of operators

$\{seq[n]\}_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$ the operator seq[n] has sort Expr

and arity (Expr, \ldots, Expr) specifying n arguments of sort Expr.

More important are the open families of operators, which are indexed

by varying finite sets of symbols, or names, or atoms. Symbolic parameters

behave, in some respects, like variables, with the crucial difference that pa-
3.3 Parameterization

Parameters are not forms of abt. As with variables, new parameters may be introduced within a scope, and the names of bound parameters are not significant. In contrast to variables, however, parameters serve only as indices for families of operators; there is no notion of substitution for parameters.

Making this precise requires some additional machinery. We assume given a set \mathcal{R} of parameter sorts, r, and we let \mathcal{U} range over \mathcal{R}-indexed families of finite sets of parameters of sort r. The family of sets of operators $\{O_s\}_{s \in S}$ is generalized to the family of sets of operators $\{O_{r,s}\}_{r \in \mathcal{R}, s \in S}$ of sort s parameterized by parameters of sort r. Given a \mathcal{R}-indexed family \mathcal{U} of parameters and a S-indexed family \mathcal{X} of variables, we define the set of parameterized abt’s $B[\mathcal{U}; \mathcal{X}]$ by the following two clauses:

1. $\mathcal{X} \subseteq B[\mathcal{U}; \mathcal{X}]$.

2. For each $o \in O_{r,s}$ such that $\text{ar}(o) = ((\vec{r}_1; \vec{s}_1)s_1, \ldots, (\vec{r}_n; \vec{s}_n)s_n)$ and for each $u \in \mathcal{U}_r$, if $a_1 \in B[\mathcal{U}, \vec{u}_1; \mathcal{X}, \vec{x}_1]$ and \ldots and $a_n \in B[\mathcal{U}, \vec{u}_n; \mathcal{X}, \vec{x}_n]$, then $o[u](u_1, \vec{x}_1, a_1; \ldots; \vec{u}_n, \vec{x}_n, a_n) \in B[\mathcal{U}; \mathcal{X}]$.

Observe that each argument binds a sequence of parameters, as well as a sequence of variables, and that arities are correspondingly generalized to specify the sorts of the bound parameters, as well as bound variables, in each argument to an operator. The principle of structural induction modulo renaming extends to parameterized abt’s in such a way that the names of bound parameters may be chosen arbitrarily to be fresh, just as may the names of bound variables be chosen arbitrarily in the induction principle for abt’s.

The relation of α-equivalence extends to parameterized abt’s in the evident manner, relating any two abt’s that differ only in their choice of bound parameter names. As with abt’s, we tacitly identify parameterized abt’s up to this extended notion of α-equivalence, and demand that all properties and operations on parameterized abt’s respect α-equivalence.

3More precisely, we must consider all possible fresh renamings of the bound parameters in a parameterized abt, just as we considered all possible fresh renamings of the bound variables in the definition of an abt. We omit specifying this explicitly for the sake of clarity.
Chapter 4

Generic Judgements

Basic judgements express properties of objects of the universe of discourse. Hypothetical judgements express entailments between judgements, or reasoning under hypotheses. Generic and parametric judgements express generality with respect to variables and parameters, respectively. Generic judgements are given meaning by substitution, whereas parametric judgements express uniform dependence on parameters.

4.1 Rule Schemes

An inductive definition consists of a set, \mathcal{R}, of rules whose premises and conclusion are judgements involving syntactic objects generated by given sets of parameters and variables. We write $\Gamma \vdash_{\mathcal{R}} J$ to indicate that J is derivable from rules \mathcal{R} and hypotheses Γ over the universe $\mathcal{B}[\mathcal{U}; \mathcal{X}]$. Thus, for example, if $a \in \mathcal{B}[\mathcal{U}; \mathcal{X}]$, then the judgment $a \text{ nat} \vdash \text{succ}(a) \text{ nat}$ is derivable from Rules (1.2) by applying Rule (1.2b) to the hypothesis $a \text{ nat}$.

This definition hides a subtle issue of the interpretation of rules. When working over a fixed universe of syntactic objects, one may understand a rule of the form

$$\frac{a \text{ nat}}{\text{succ}(a) \text{ nat}}$$

(4.1)

as standing for an infinite set of rules, one for each choice of object a in the universe. However, when considering the same rule over many different universes (for example, by expanding the set of variables), this rough-and-ready interpretation must be refined.

To allow for variation in the universe we regard (4.1) as a rule scheme in which the meta-variable a stands for a syntactic object in any expansion
of the universe. So, for example, if the variable x is adjoined to the set of active variables, then (4.1) has as an instance the rule

$$
\frac{x \text{ nat}}{\text{succ}(x) \text{ nat}}
$$

in which we have taken a to be the parameter, x. If we further adjoin another variable, y, then more instances of the rule are possible.

4.2 Generic Derivability

A generic derivability judgement expresses the uniform derivability of a judgement with respect to specified parameters and variables. Let us consider first variables, and expand out to accommodate parameters later. The generic derivability judgement $\vec{x} \mid \Gamma \vdash X \mathcal{R} J$ states that for every fresh renaming $\pi : \vec{x} \leftrightarrow \vec{x}'$, the judgement $\pi \cdot \Gamma \vdash X', \vec{x}' \mathcal{R} \pi \cdot J$ holds. The renaming ensures that the choice of variables, \vec{x}, does not affect the meaning of the judgement; variables are simply placeholders that have no intrinsic meaning of their own.

Evidence for a generic derivability judgement $\vec{x} \mid \Gamma \vdash X \mathcal{R} J$ consists of a generic derivation, $\nabla_{\vec{x}}$, such that for every fresh renaming $\pi : \vec{x} \leftrightarrow \vec{x}'$, the derivation $\nabla_{\vec{x}'}$ is evidence for $\pi \cdot \Gamma \vdash X, \vec{x}' \mathcal{R} \pi \cdot J$. For example, the derivation ∇_x given by

$$
\frac{\vec{x} \text{ nat}}{\text{succ}(x) \text{ nat}}
$$

is evidence for the generic judgement

$$
x \mid x \text{ nat} \vdash X_{(1.2)} \text{ succ(succ(x)) nat.}
$$

As long as the rule schemes, \mathcal{R}, are pure, the generic derivability judgement enjoys the following structural properties:

Proliferation If $\vec{x} \mid \Gamma \vdash X \mathcal{R} J$, then $\vec{x}, x \mid \Gamma \vdash X \mathcal{R} J$.

Renaming If $\vec{x}, x \mid \Gamma \vdash X \mathcal{R} J$, then $\vec{x}, x' \mid [x \leftrightarrow x'] \cdot \Gamma \vdash X' \mathcal{R} [x \leftrightarrow x'] \cdot J$ for any $x' \notin X, \vec{x}$.

Substitution If $\vec{x}, x \mid \Gamma \vdash X \mathcal{R} J$ and $a \in \mathcal{B}[X, \vec{x}]$, then $\vec{x} \mid [a/x] \Gamma \vdash [a/x] J$.

Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expansions of the universe. Renaming is built into the meaning of the generic judgement. Substitution follows from purity, since a substitution instance of a rule instance is itself a rule instance.
4.3 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgements in the premises of rules, with the effect of augmenting the variables, as well as the rules, within those premises. A generic rule has the form

\[
\begin{align*}
\vec{x} \vec{x}_1 | \Gamma \Gamma_1 \vdash J_1 & \ldots \vec{x} \vec{x}_n | \Gamma \Gamma_n \vdash J_n \\
\vec{x} | \Gamma \vdash J \quad (4.3)
\end{align*}
\]

The variables \(\vec{x} \) are the global variables of the inference, and, for each \(1 \leq i \leq n \), the variables \(\vec{x}_i \) are the local variables of the \(i \)th premise. In most cases a rule is stated for all choices of global variables and global hypotheses. Such rules may be given in implicit form,

\[
\begin{align*}
\vec{x}_1 | \Gamma \vdash J_1 & \ldots \vec{x}_n | \Gamma \vdash J_n \\
J \quad (4.4)
\end{align*}
\]

A generic inductive definition is just an ordinary inductive definition of a family of formal generic judgements of the form \(\vec{x} | \Gamma \vdash J \). Formal generic judgements are identified up to renaming of variables, so that the latter judgement is treated as identical to the judgement \(\vec{x}' | \pi \cdot \Gamma \vdash \pi \cdot J \) for any renaming \(\pi : \vec{x} \leftrightarrow \vec{x}' \). If \(\mathcal{R} \) is a collection of generic rules, we write \(\vec{x} | \Gamma \vdash_{\mathcal{R}} J \) to mean that the formal generic judgement \(\vec{x} | \Gamma \vdash J \) is derivable from rules \(\mathcal{R} \).

When specialized to a collection of generic rules, the principle of rule induction states that to show \(\mathcal{P}(\vec{x} \vec{x}_1 | \Gamma \Gamma_1 \vdash J_1) \ldots \mathcal{P}(\vec{x} \vec{x}_n | \Gamma \Gamma_n \vdash J_n) \) then \(\mathcal{P}(\vec{x} | \Gamma \vdash J) \).

Because of the identification convention the property \(\mathcal{P} \) must respect re-namings of the variables in a formal generic judgement. It is common to use notations such as \(\mathcal{P}_{\vec{x}}(\Gamma \vdash J) \) or \(\mathcal{P}_{\vec{J}}(\vec{x}) \) or similar variations to indicate that \(\mathcal{P} \) holds of the judgement \(\vec{x} | \Gamma \vdash J \).

To ensure that the formal generic judgement behaves like a generic judgement, we must always ensure that the following structural rules are admissible in any generic inductive definition:

\[
\begin{align*}
\vec{x} | \Gamma, J \vdash J \\
\quad (4.5a)
\end{align*}
\]
The admissibility of Rule (4.5a) is, in practice, ensured by explicitly including it. The admissibility of Rules (4.5b) and (4.5c) is assured if each of the generic rules is uniform, since we may assimilate the additional parameter, x, to the global parameters, and the additional hypothesis, J, to the global hypotheses. The admissibility of Rule (4.5d) is ensured by the identification convention for the formal generic judgement. The second premise of Rule (4.5f) is the local form of the requirement that $a \in B[\bar{x}, \bar{x}]$, in which the global variables are made explicit.

4.4 Parametric Derivability

The parametric derivability judgement $\bar{u}, \bar{x} | \Gamma \vdash J$ states that the generic judgement holds uniformly for all choices of parameters \bar{u}. That is, for all $\pi : \bar{u} \leftrightarrow \bar{u}'$ such that $\bar{u}' \cap \mathcal{U} = \emptyset$, the generic judgement $\bar{x} \mid [a/x] \pi \cdot \Gamma \vdash [a/x] \pi \cdot J$ is derivable.

The parametric judgement satisfies the following structural properties:

Proliferation If $\bar{u}, \bar{x} | \Gamma \vdash J$, then $\bar{u}, u | \bar{x} | \Gamma \vdash u \cdot J$.

Renaming If $\bar{u}, \bar{x} | \Gamma \vdash J$ and $\pi : \bar{u} \leftrightarrow \bar{u}'$, then $\bar{u}', \bar{x} | \pi \cdot \Gamma \vdash \bar{x} | \pi \cdot \Gamma \vdash \bar{u}' \cdot J$.

Proliferation states that parametric derivability is sensitive only to the presence, but not the absence, of parameters. Renaming states that parametric derivability is independent of the choice of parameters. (There is no analogue of the structural property of substitution for parameters, since parameters are not themselves forms of syntactic object, but rather are just indices of operators.)
4.5 Exercises

We may also extend the concept of a generic inductive definition to allow for local parameters, as well as local variables, following the same pattern as for the generic case. In particular rules are defined for formal parametric judgements of the form \(\vec{u} \parallel \vec{x} \mid \Gamma \vdash J \), identified up to renaming of parameters, as well as variables.

It is often convenient to segregate the hypotheses of a parametric, generic judgement into two zones, written \(\vec{u} \parallel \vec{x} \mid \Sigma \mid \Gamma \vdash J \), where the hypotheses \(\Sigma \) govern only the parameters. To avoid notational clutter, we often write such a judgement in the form \(\vec{x} \mid \Gamma \vdash \vec{u} \mid \Sigma \mid J \), or even just \(\Gamma \vdash \Sigma \mid J \), wherein we rely on naming conventions to distinguish variables from parameters.

4.5 Exercises
Part II

Levels of Syntax
Chapter 5

Concrete Syntax

The concrete syntax of a language is a means of representing expressions as strings that may be written on a page or entered using a keyboard. The concrete syntax usually is designed to enhance readability and to eliminate ambiguity. While there are good methods for eliminating ambiguity, improving readability is, to a large extent, a matter of taste.

In this chapter we introduce the main methods for specifying concrete syntax, using as an example an illustrative expression language, called \(L\{\text{num,str}\} \), that supports elementary arithmetic on the natural numbers and simple computations on strings. In addition, \(L\{\text{num,str}\} \) includes a construct for binding the value of an expression to a variable within a specified scope.

5.1 Strings Over An Alphabet

An alphabet is a (finite or infinite) collection of characters. We write \(c \) char to indicate that \(c \) is a character, and let \(\Sigma \) stand for a finite set of such judgements, which is sometimes called an alphabet. The judgement \(\Sigma \vdash s \) str, defining the strings over the alphabet \(\Sigma \), is inductively defined by the following rules:

\[
\begin{align*}
\Sigma \vdash & \epsilon \text{ str} \\
\Sigma \vdash & c \text{ char} \quad \Sigma \vdash s \text{ str} \\
\Sigma \vdash & c \cdot s \text{ str}
\end{align*}
\]

Thus a string is essentially a list of characters, with the null string being the empty list. We often suppress explicit mention of \(\Sigma \) when it is clear from context.
5.2 Lexical Structure

When specialized to Rules (5.1), the principle of rule induction states that to show \(s \in \mathcal{P} \) holds whenever \(s \text{ str} \), it is enough to show

1. \(e \in \mathcal{P} \), and
2. if \(s \in \mathcal{P} \) and \(c \text{ char} \), then \(c \cdot s \in \mathcal{P} \).

This is sometimes called the principle of string induction. It is essentially equivalent to induction over the length of a string, except that there is no need to define the length of a string in order to use it.

The following rules constitute an inductive definition of the judgement \(s_1 \cdot s_2 = s \text{ str} \), stating that \(s \) is the result of concatenating the strings \(s_1 \) and \(s_2 \).

\[
\begin{align*}
\epsilon \cdot s &= s \text{ str} \\
(\epsilon \cdot s_1) \cdot s_2 &= c \cdot (\epsilon \cdot s_1) \cdot s_2 = c \cdot s \text{ str}
\end{align*}
\]

(5.2a) (5.2b)

It is easy to prove by string induction on the first argument that this judgement has mode \((\forall, \forall, \exists!) \). Thus, it determines a total function of its first two arguments.

String concatenation is associative.

Lemma 5.1. If \(s_1 \cdot s_2 = s_{12} \text{ str} \) and \(s_2 \cdot s_3 = s_{23} \text{ str} \), then \(s_1 \cdot s_2 \cdot s_3 = s \text{ str} \) and \(s_{12} \cdot s_3 = s \text{ str} \) for some (uniquely determined) string \(s \).

In Section 5.5 on page 48 we will see that this innocuous-seeming fact is responsible for most of the complications in defining the concrete syntax of a language.

Strings are usually written as juxtapositions of characters, writing just \(abcd \) for the four-letter string \(a \cdot (b \cdot (c \cdot (d \cdot \epsilon))) \), for example. Concatenation is also written as juxtaposition, and individual characters are often identified with the corresponding unit-length string. This means that \(abcd \) can be thought of in many ways, for example as the concatenations \(ab cd \), \(a bcd \), or \(abc d \), or even \(e ab cd \) or \(ab cd e \), as may be convenient in a given situation.

5.2 Lexical Structure

The first phase of syntactic processing is to convert from a character-based representation to a symbol-based representation of the input. This is called *lexical analysis*, or *lexing*. The main idea is to aggregate characters into symbols that serve as tokens for subsequent phases of analysis. For example,
5.2 Lexical Structure

the numeral 467 is written as a sequence of three consecutive characters, one for each digit, but is regarded as a single token, namely the number 467. Similarly, an identifier such as \texttt{temp} comprises four letters, but is treated as a single symbol representing the entire word. Moreover, many character-based representations include empty “white space” (spaces, tabs, newlines, and, perhaps, comments) that are discarded by the lexical analyzer.\footnote{In some languages white space is significant, in which case it must be converted to symbolic form for subsequent processing.}

The lexical structure of a language is usually described using \textit{regular expressions}. For example, the lexical structure of \(L\{\text{num str}\} \) may be specified as follows:

\begin{verbatim}
Item itm ::= kwd | id | num | lit | spl
Keyword kwd ::= l·e·t·e | b·e·e | i·n·e
Identifier id ::= ltr (ltr | dig)*
Numeral num ::= dig dig*
Literal lit ::= qum (ltr | dig)*qum
Special spl ::= + | * | ^ | (|) | |
Letter ltr ::= a | b | ...
Digit dig ::= 0 | 1 | ...
Quote qum ::= "
\end{verbatim}

A lexical item is either a keyword, an identifier, a numeral, a string literal, or a special symbol. There are three keywords, specified as sequences of characters, for emphasis. Identifiers start with a letter and may involve subsequent letters or digits. Numerals are non-empty sequences of digits. String literals are sequences of letters or digits surrounded by quotes. The special symbols, letters, digits, and quote marks are as enumerated. (Observe that we tacitly identify a character with the unit-length string consisting of that character.)

The job of the lexical analyzer is to translate character strings into token strings using the above definitions as a guide. An input string is scanned, ignoring white space, and translating lexical items into tokens, which are specified by the following rules:

\begin{align}
\text{s str} & \quad \text{ID[s] tok} \quad \text{(5.3a)} \\
\text{n nat} & \quad \text{NUM[n] tok} \quad \text{(5.3b)} \\
\text{s str} & \quad \text{LIT[s] tok} \quad \text{(5.3c)}
\end{align}
5.2 Lexical Structure

Rule (5.3a) admits any string as an identifier, even though only certain strings will be treated as identifiers by the lexical analyzer.

Lexical analysis is inductively defined by the following judgement forms:

\[s \text{ charstr} \leftrightarrow t \text{ tokstr} \quad \text{Scan input} \]
\[s \text{ itm} \leftrightarrow t \text{ tok} \quad \text{Scan an item} \]
\[s \text{ kw}d \leftrightarrow t \text{ tok} \quad \text{Scan a keyword} \]
\[s \text{ id} \leftrightarrow t \text{ tok} \quad \text{Scan an identifier} \]
\[s \text{ num} \leftrightarrow t \text{ tok} \quad \text{Scan a number} \]
\[s \text{ spl} \leftrightarrow t \text{ tok} \quad \text{Scan a symbol} \]
\[s \text{ lit} \leftrightarrow t \text{ tok} \quad \text{Scan a string literal} \]

The definition of these forms, which follows, makes use of several auxiliary judgements corresponding to the classifications of characters in the lexical structure of the language. For example, \(s \text{ whs} \) states that the string \(s \) consists only of “white space”, \(s \text{ lord} \) states that \(s \) is either an alphabetic letter or a digit, and \(s \text{ non-lord} \) states that \(s \) does not begin with a letter or digit, and so forth.

\[\epsilon \text{ charstr} \leftrightarrow \epsilon \text{ tokstr} \quad (5.4a) \]
\[s = s_1 \cdot s_2 \cdot s_3 \text{ str} \quad s_1 \text{ whs} \quad s_2 \text{ itm} \leftrightarrow t \text{ tok} \quad s_3 \text{ charstr} \leftrightarrow t \text{ tokstr} \quad (5.4b) \]
\[s \text{ kw}d \leftrightarrow t \text{ tok} \quad (5.4c) \]
\[s \text{ id} \leftrightarrow t \text{ tok} \quad (5.4d) \]
\[s \text{ itm} \leftrightarrow t \text{ tok} \]
5.2 Lexical Structure

\[
\begin{align*}
\text{s num} & \rightarrow \text{l tok} \\
\text{s itm} & \rightarrow \text{l tok} \\
\text{s lit} & \rightarrow \text{l tok} \\
\text{s itm} & \rightarrow \text{l tok} \\
\text{s spl} & \rightarrow \text{l tok} \\
\text{s itm} & \rightarrow \text{l tok} \\
\text{s} & = 1 \cdot e \cdot t \cdot e \text{ str} \\
\text{s kwd} & \rightarrow \text{LET tok} \\
\text{s} & = b \cdot e \cdot e \text{ str} \\
\text{s kwd} & \rightarrow \text{BE tok} \\
\text{s} & = i \cdot n \cdot e \text{ str} \\
\text{s kwd} & \rightarrow \text{IN tok} \\
\text{s} & = a \cdot s' \text{ str} \cdot a \text{ ltr} \cdot s' \text{ lds} \\
\text{s id} & \rightarrow \text{ID[s] tok} \\
\text{s} & = s_1 \cdot s_2 \cdot s_3 \text{ str} \\
\text{s num} & \rightarrow \text{n nat} \\
\text{s num} & \rightarrow \text{NUM[n] tok} \\
\text{s} & = s_1 \cdot s_2 \cdot s_3 \text{ str} \\
\text{s lit} & \rightarrow \text{LIT[s_2] tok} \\
\text{s} & = + \cdot e \text{ str} \\
\text{s spl} & \rightarrow \text{ADD tok} \\
\text{s} & = * \cdot e \text{ str} \\
\text{s spl} & \rightarrow \text{MUL tok} \\
\text{s} & = ^\ast \cdot e \text{ str} \\
\text{s spl} & \rightarrow \text{CAT tok} \\
\text{s} & = (\cdot e \text{ str} \\
\text{s spl} & \rightarrow \text{LP tok} \\
\text{s} & =) \cdot e \text{ str} \\
\text{s spl} & \rightarrow \text{RP tok} \\
\text{s} & = | \cdot e \text{ str} \\
\text{s spl} & \rightarrow \text{VB tok}
\end{align*}
\]

Rules (5.4) do not specify a deterministic algorithm. Rather, Rule (5.4b) applies whenever the input string may be partitioned into three parts, consisting of white space, a lexical item, and the rest of the input. However, the associativity of string concatenation implies that the partitioning is not unique. For example, the string \text{insert} may be partitioned as \text{in} \cdot \text{sert} or \text{insert} \cdot \epsilon, and hence tokenized as either \text{IN} followed by \text{ID[sert]}, or as \text{ID[insert]} (or, indeed, as two consecutive identifiers in several ways).

One solution to this problem is to impose some extrinsic control criteria on the rules to ensure that they have a unique interpretation. For example,
one may insist that Rule (5.4b) apply only when the string s_2 is chosen to be as long as possible so as to ensure that the string `insert` is analyzed as the identifier `ID[insert]`, rather than as two consecutive identifiers, say `ID[ins]` and `ID[ert]`. Moreover, we may impose an ordering on the rules, so that so that Rule (5.4j) takes priority over Rule (5.4k) so as to avoid interpreting `in` as an identifier, rather than as a keyword. Another solution is to reformulate the rules so that they are completely deterministic, a technique that will be used in the next section to resolve a similar ambiguity at the level of the concrete syntax.

5.3 Context-Free Grammars

The standard method for defining concrete syntax is by giving a context-free grammar for the language. A grammar consists of three components:

1. The tokens, or terminals, over which the grammar is defined.
2. The syntactic classes, or non-terminals, which are disjoint from the terminals.
3. The rules, or productions, which have the form $A ::=$ α, where A is a non-terminal and α is a string of terminals and non-terminals.

Each syntactic class is a collection of token strings. The rules determine which strings belong to which syntactic classes.

When defining a grammar, we often abbreviate a set of productions,

\[
A ::= \alpha_1 \\
\vdots \\
A ::= \alpha_n,
\]

each with the same left-hand side, by the compound production

\[
A ::= \alpha_1 \mid \ldots \mid \alpha_n,
\]

which specifies a set of alternatives for the syntactic class A.

A context-free grammar determines a simultaneous inductive definition of its syntactic classes. Specifically, we regard each non-terminal, A, as a judgement form, $s \ A$, over strings of terminals. To each production of the form

\[
A ::= s_1 A_1 s_2 \ldots s_n A_n s_{n+1}
\]
we associate an inference rule

\[
\frac{s'_1 A_1 \ldots s'_n A_n}{s_1 s'_1 s_2 \ldots s_n s'_n s_{n+1} A}.
\] (5.6)

The collection of all such rules constitutes an inductive definition of the syntactic classes of the grammar.

Recalling that juxtaposition of strings is short-hand for their concatenation, we may re-write the preceding rule as follows:

\[
\frac{s'_1 A_1 \ldots s'_n A_n}{s = s_1 s'_1 s_2 \ldots s_n s'_n s_{n+1}}.
\] (5.7)

This formulation makes clear that \(s A\) holds whenever \(s\) can be partitioned as described so that \(s'_i A\) for each \(1 \leq i \leq n\). Since string concatenation is associative, the decomposition is not unique, and so there may be many different ways in which the rule applies.

5.4 Grammatical Structure

The concrete syntax of \(L\{\text{num str}\}\) may be specified by a context-free grammar over the tokens defined in Section 5.2 on page 42. The grammar has only one syntactic class, \(\text{exp}\), which is defined by the following compound production:

Expression \(\text{exp} ::= \text{num} | \text{lit} | \text{id} | \text{LP} \text{exp} \text{RP} | \text{exp ADD} \text{exp} | \text{exp MUL} \text{exp} | \text{exp CAT} \text{exp} | \text{VB exp VB} | \text{LET id BE exp IN exp}\)

Number \(\text{num} ::= \text{NUM}[n] \quad (n \text{ nat})\)

String \(\text{lit} ::= \text{LIT}[s] \quad (s \text{ str})\)

Identifier \(\text{id} ::= \text{ID}[s] \quad (s \text{ str})\)

This grammar makes use of some standard notational conventions to improve readability: we identify a token with the corresponding unit-length string, and we use juxtaposition to denote string concatenation.

Applying the interpretation of a grammar as an inductive definition, we obtain the following rules:

\[
\frac{s_{\text{num}}}{s} \quad (5.8a)
\]

\[
\frac{s_{\text{lit}}}{s} \quad (5.8b)
\]
To emphasize the role of string concatenation, we may rewrite Rule (5.8e), for example, as follows:

\[s = s_1 \text{MUL} s_2 \text{str} \quad s_1 \text{exp} \quad s_2 \text{exp} \]

That is, \(s \text{exp} \) is derivable if \(s \) is the concatenation of \(s_1 \), the multiplication sign, and \(s_2 \), where \(s_1 \text{exp} \) and \(s_2 \text{exp} \).

5.5 Ambiguity

Apart from subjective matters of readability, a principal goal of concrete syntax design is to avoid ambiguity. The grammar of arithmetic expressions given above is \textit{ambiguous} in the sense that some token strings may be thought of as arising in several different ways. More precisely, there are token strings \(s \) for which there is more than one derivation ending with \(s \text{exp} \) according to Rules (5.8).

For example, consider the character string \(1+2*3 \), which, after lexical analysis, is translated to the token string

\[\text{NUM[1]} \text{ADD NUM[2]} \text{MUL NUM[3]} \].

Apart from subjective matters of readability, a principal goal of concrete syntax design is to avoid ambiguity. The grammar of arithmetic expressions given above is \textit{ambiguous} in the sense that some token strings may be thought of as arising in several different ways. More precisely, there are token strings \(s \) for which there is more than one derivation ending with \(s \text{exp} \) according to Rules (5.8).

For example, consider the character string \(1+2*3 \), which, after lexical analysis, is translated to the token string

\[\text{NUM[1]} \text{ADD NUM[2]} \text{MUL NUM[3]} \].
5.5 Ambiguity

Since string concatenation is associative, this token string can be thought of as arising in several ways, including

\[\text{NUM}[1] \text{ ADD} \backslash \text{NUM}[2] \text{ MUL} \text{NUM}[3] \]

and

\[\text{NUM}[1] \text{ ADD} \text{NUM}[2] \backslash \text{MUL} \text{NUM}[3], \]

where the caret indicates the concatenation point.

One consequence of this observation is that the same token string may be seen to be grammatical according to the rules given in Section 5.4 on page 47 in two different ways. According to the first reading, the expression is principally an addition, with the first argument being a number, and the second being a multiplication of two numbers. According to the second reading, the expression is principally a multiplication, with the first argument being the addition of two numbers, and the second being a number.

Ambiguity is a purely syntactic property of grammars; it has nothing to do with the “meaning” of a string. For example, the token string

\[\text{NUM}[1] \text{ ADD} \text{NUM}[2] \text{ADD} \text{NUM}[3], \]

also admits two readings. It is immaterial that both readings have the same meaning under the usual interpretation of arithmetic expressions. Moreover, nothing prevents us from interpreting the token ADD to mean “division,” in which case the two readings would hardly coincide! Nothing in the syntax itself precludes this interpretation, so we do not regard it as relevant to whether the grammar is ambiguous.

To avoid ambiguity the grammar of \(L\{\text{num str}\} \) given in Section 5.4 on page 47 must be re-structured to ensure that every grammatical string has at most one derivation according to the rules of the grammar. The main method for achieving this is to introduce precedence and associativity conventions that ensure there is only one reading of any token string. Parenthesization may be used to override these conventions, so there is no fundamental loss of expressive power in doing so.

Precedence relationships are introduced by layering the grammar, which is achieved by splitting syntactic classes into several subclasses.

\[
\begin{align*}
\text{Factor} & \quad \text{fct} ::= \text{num} \mid \text{lit} \mid \text{id} \mid \text{LP prg RP} \\
\text{Term} & \quad \text{trm} ::= \text{fct} \mid \text{fct MUL trm} \mid \text{VB fct VB} \\
\text{Expression} & \quad \text{exp} ::= \text{trm} \mid \text{trm ADD exp} \mid \text{trm CAT exp} \\
\text{Program} & \quad \text{prg} ::= \text{exp} \mid \text{LET id BE exp IN prg}
\end{align*}
\]
The effect of this grammar is to ensure that \texttt{let} has the lowest precedence, addition and concatenation intermediate precedence, and multiplication and length the highest precedence. Moreover, all forms are right-associative. Other choices of rules are possible, according to taste; this grammar illustrates one way to resolve the ambiguities of the original expression grammar.

5.6 Exercises
Chapter 6

Abstract Syntax

The concrete syntax of a language is concerned with the linear representation of the phrases of a language as strings of symbols—the form in which we write them on paper, type them into a computer, and read them from a page. But languages are also the subjects of study, as well as the instruments of expression. As such the concrete syntax of a language is just a nuisance. When analyzing a language mathematically we are only interested in the deep structure of its phrases, not their surface representation. The abstract syntax of a language exposes the hierarchical and binding structure of the language. Parsing is the process of translation from concrete to abstract syntax. It consists of analyzing the linear representation of a phrase in terms of the grammar of the language and transforming it into an abstract syntax tree or an abstract binding tree that reveals the deep structure of the phrase. Formatting is the inverse process of generating a linear representation of a given piece of abstract syntax.

6.1 Hierarchical and Binding Structure

For the purposes of analysis the most important elements of the syntax of a language are its hierarchical and binding structure. Ignoring binding and scope, the hierarchical structure of a language may be expressed using abstract syntax trees. Accounting for these requires the additional structure of abstract binding trees. We will define both an ast and an abt representation of $L\{\text{num str}\}$ in order to compare the two and show how they relate to the concrete syntax described in Chapter 5.

The purely hierarchical abstract syntax of $L\{\text{num str}\}$ is generated by
6.1 Hierarchical and Binding Structure

the following operators and their arities:

\[
\begin{align*}
num[n] & (n \text{ nat}) \\
str[s] & (s \text{ str}) \\
id[s] & (s \text{ str}) \\
times & (\text{Expr}, \text{Expr}) \\
plus & (\text{Expr}, \text{Expr}) \\
len & (\text{Expr}) \\
cat & (\text{Expr}, \text{Expr}) \\
let[s] & (\text{Expr}, \text{Expr}) (s \text{ str})
\end{align*}
\]

There is one sort, \text{Expr}, generated by the above operators. For each \(n \text{ nat}\) there is an operator \(num[n]\) of arity () representing the number \(n\). Similarly, for each \(s \text{ str}\) there is an operator \(str[s]\) of arity (), representing a string literal. There are several operators corresponding to functions on numbers and strings.

Most importantly, there are two operators related to identifiers. The first, \(id[s]\), where \(s \text{ str}\), represents the identifier with name \(s\) thought of as an operator of arity (). The second, \(let[s]\), is a family of operators indexed by \(s \text{ str}\) with two arguments, the binding of the identifier \(id[s]\) and the scope of that binding. These characterizations, however, are purely informal in that there is nothing in the “plain” abstract syntax of the language that supports these interpretations. In particular, there is no connection between any occurrences of \(id[s]\) and any occurrence of \(let[s]\) within an expression.

To account for the binding and scope of identifiers requires the greater expressive power of abstract binding trees. An abt representation of \(L\{\text{num str}\}\) is defined by the following operators and their arities:

\[
\begin{align*}
num[n] & (n \text{ nat}) \\
str[s] & (s \text{ str}) \\
times & (\text{Expr}, \text{Expr}) \\
plus & (\text{Expr}, \text{Expr}) \\
len & (\text{Expr}) \\
cat & (\text{Expr}, \text{Expr}) \\
let & (\text{Expr}, (\text{Expr})\text{Expr})
\end{align*}
\]

There is no longer an operator \(id[s]\); we instead use a variable to refer to a binding site. Correspondingly, the family of operators \(let[s]\) is replaced by a single operator, \(let\), of arity \((\text{Expr}, (\text{Expr})\text{Expr})\), which binds a variable in its second argument.
To illustrate the relationship between these two representations of the abstract syntax of $L\{\text{num str}\}$, we will first describe the translation from the concrete syntax, given in Chapter 5, to an abstract syntax tree. We will then alter this translation to account for binding and scope, yielding an abstract binding tree.

6.2 Parsing Into Abstract Syntax Trees

We will simultaneously define parsing and formatting as a binary judgement relating the concrete to the abstract syntax. This judgement will have the mode $(\forall, \exists \leq 1)$, which states that the parser is a partial function of its input, being undefined for ungrammatical token strings, but otherwise uniquely determining the abstract syntax tree representation of each well-formed input. It will also have the mode (\exists, \forall), which states that each piece of abstract syntax has a (not necessarily unique) representation as a token string in the concrete syntax.

The parsing judgements for $L\{\text{num str}\}$ follow the unambiguous grammar given in Chapter 5:

- $s \text{ prg} \longleftrightarrow e \text{ expr}$ Parse/format as a program
- $s \text{ exp} \longleftrightarrow e \text{ expr}$ Parse/format as an expression
- $s \text{ trm} \longleftrightarrow e \text{ expr}$ Parse/format as a term
- $s \text{ fct} \longleftrightarrow e \text{ expr}$ Parse/format as a factor
- $s \text{ num} \longleftrightarrow e \text{ expr}$ Parse/format as a number
- $s \text{ lit} \longleftrightarrow e \text{ expr}$ Parse/format as a literal
- $s \text{ id} \longleftrightarrow e \text{ expr}$ Parse/format as an identifier

These judgements relate a token string, s, to an expression, e, viewed as an abstract syntax tree.

These judgements are inductively defined simultaneously by the following rules:

\[
\begin{align*}
\text{NUM}\{n\} \text{ num} & \longleftrightarrow \text{num}\{n\} \text{ expr} \\
\text{LIT}\{s\} \text{ lit} & \longleftrightarrow \text{str}\{s\} \text{ expr} \\
\text{ID}\{s\} \text{ id} & \longleftrightarrow \text{id}\{s\} \text{ expr} \\
\text{s num} & \longleftrightarrow e \text{ expr} \\
\text{s fct} & \longleftrightarrow e \text{ expr}
\end{align*}
\]
A successful parse implies that the token string must have been derived according to the rules of the unambiguous grammar and that the result is a well-formed abstract syntax tree.

Theorem 6.1. If \(s \text{ prg} \leftrightarrow e \text{ expr} \), then \(s \text{ prg} \) and \(e \text{ expr} \), and similarly for the other parsing judgements.

Proof. By a straightforward induction on Rules (6.1).

Moreover, if a string is generated according to the rules of the grammar, then it has a parse as an ast.

Theorem 6.2. If \(s \text{ prg} \), then there is a unique \(e \) such that \(s \text{ prg} \leftrightarrow e \text{ expr} \), and similarly for the other parsing judgements. That is, the parsing judgements have mode \((\forall, \exists!)\) over well-formed strings and abstract syntax trees.

Proof. By rule induction on the rules determined by reading Grammar (5.5) as an inductive definition.
Finally, any piece of abstract syntax may be formatted as a string that parses as the given ast.

Theorem 6.3. If e expr, then there exists a (not necessarily unique) string s such that s prg and s prg ←→ e expr. That is, the parsing judgement has mode (∃, ∀).

Proof. By rule induction on Grammar (5.5).

The string representation of an abstract syntax tree is not unique, since we may introduce parentheses at will around any sub-expression.

6.3 Parsing Into Abstract Binding Trees

In this section we revise the parser given in Section 6.2 on page 53 to translate from token strings to abstract binding trees to make explicit the binding and scope of identifiers in a program. The revised parsing judgement, s prg ←→ e expr, between strings s and abt’s e, is defined by a collection of rules similar to those given in Section 6.2 on page 53. These rules take the form of a generic inductive definition (see Chapter 2) in which the premises and conclusions of the rules involve hypothetical judgments of the form

\[\text{ID}[s_1] \ id \leftarrow \ x_1 \ expr, \ldots, \text{ID}[s_n] \ id \leftarrow \ x_n \ expr \vdash s \ prg \leftarrow \ e \ expr, \]

where the \(x_i \)'s are pairwise distinct variable names. The hypotheses of the judgement dictate how identifiers are to be parsed as variables, for it follows from the reflexivity of the hypothetical judgement that

\[\Gamma, \text{ID}[s] \ id \leftarrow \ x \ expr \vdash \text{ID}[s] \ id \leftarrow \ x \ expr. \]

To maintain the association between identifiers and variables when parsing a let expression, we update the hypotheses to record the association between the bound identifier and a corresponding variable:

\[\begin{align*}
\Gamma \vdash s_1 \ id \leftarrow x \ expr \\
\Gamma \vdash s_2 \ exp \leftarrow e_2 \ expr \\
\Gamma, s_1 \ id \leftarrow x \ expr \vdash s_3 \ prg \leftarrow e_3 \ expr
\end{align*} \]

\[\Gamma \vdash \text{LET} s_1 \ BE \ s_2 \ IN \ s_3 \ prg \leftarrow \text{let}(e_2; x. e_3) \ expr \]

Unfortunately, this approach does not quite work properly! If an inner let expression binds the same identifier as an outer let expression, there is an ambiguity in how to parse occurrences of that identifier. Parsing such nested let’s will introduce two hypotheses, say ID[s] id ←→ x₁ expr and
ID[s] id \leftarrow x_2 \text{ expr}, for the same identifier ID[s]. By the structural property of exchange, we may choose arbitrarily which to apply to any particular occurrence of ID[s], and hence we may parse different occurrences differently.

To rectify this we resort to less elegant methods. Rather than use hypotheses, we instead maintain an explicit symbol table to record the association between identifiers and variables. We must define explicitly the procedures for creating and extending symbol tables, and for looking up an identifier in the symbol table to determine its associated variable. This gives us the freedom to implement a shadowing policy for re-used identifiers, according to which the most recent binding of an identifier determines the corresponding variable.

The main change to the parsing judgement is that the hypothetical judgement

\[\Gamma \vdash s \text{ prg} \leftarrow e \text{ expr} \]

is reduced to the basic judgement

\[s \text{ prg} \leftarrow e \text{ expr} [\sigma], \]

where \(\sigma \) is a symbol table. (Analogous changes must be made to the other parsing judgements.) The symbol table is now an argument to the judgement form, rather than an implicit mechanism for performing inference under hypotheses.

The rule for parsing let expressions is then formulated as follows:

\[
\begin{align*}
& s_1 \text{ id} \leftarrow x [\sigma] & \quad & s_2 \text{ exp} \leftarrow e_2 \text{ expr} [\sigma] \\
& \sigma' = \sigma[s_1 \mapsto x] & \quad & s_3 \text{ prg} \leftarrow e_3 \text{ expr} [\sigma']
\end{align*}
\]

\[\text{LET } s_1 \text{ BE } s_2 \text{ IN } s_3 \text{ prg} \leftarrow \text{let}(e_2; x.e_3) \text{ expr } [\sigma] \]

This rule is quite similar to the hypothetical form, the difference being that we must manage the symbol table explicitly. In particular, we must include a rule for parsing identifiers, rather than relying on the reflexivity of the hypothetical judgement to do it for us.

\[
\sigma(\text{ID}[s]) = x
\]

\[\text{ID}[s] \text{ id} \leftarrow x [\sigma] \]

The premise of this rule states that \(\sigma \) maps the identifier \(\text{ID}[s] \) to the variable \(x \).

Symbol tables may be defined to be finite sequences of ordered pairs of the form \((\text{ID}[s], x)\), where \(\text{ID}[s] \) is an identifier and \(x \) is a variable.
name. Using this representation it is straightforward to define the following judgement forms:

\[
\begin{align*}
\sigma \text{ symtab} & \quad \text{well-formed symbol table} \\
\sigma' = \sigma[\text{ID} \mapsto x] & \quad \text{add new association} \\
\sigma(\text{ID}[s]) = x & \quad \text{lookup identifier}
\end{align*}
\]

We leave the precise definitions of these judgements as an exercise for the reader.

6.4 Exercises
Part III

Statics and Dynamics
Chapter 7

Statics

Most programming languages exhibit a phase distinction between the static and dynamic phases of processing. The static phase consists of parsing and type checking to ensure that the program is well-formed; the dynamic phase consists of execution of well-formed programs. A language is said to be safe exactly when well-formed programs are well-behaved when executed.

The static phase is specified by a statics comprising a collection of rules for deriving typing judgements stating that an expression is well-formed of a certain type. Types mediate the interaction between the constituent parts of a program by “predicting” some aspects of the execution behavior of the parts so that we may ensure they fit together properly at run-time. Type safety tells us that these predictions are accurate; if not, the statics is considered to be improperly defined, and the language is deemed unsafe for execution.

In this chapter we present the statics of the language $\mathcal{L}\{\text{num,str}\}$ as an illustration of the methodology that we shall employ throughout this book.

7.1 Syntax

When defining a language we shall be primarily concerned with its abstract syntax, specified by a collection of operators and their arities. The abstract syntax provides a systematic, unambiguous account of the hierarchical and binding structure of the language, and is therefore to be considered the official presentation of the language. However, for the sake perspicuity of examples, it is also useful to specify minimal concrete syntax conventions, without going through the trouble to set up a fully precise grammar for it.
We will accomplish both of these purposes with a *syntax chart*, whose meaning is best illustrated by example. The following chart summarizes the abstract and concrete syntax of \(L\{\text{num str}\} \), which was analyzed in detail in Chapters 5 and 6.

<table>
<thead>
<tr>
<th>Type</th>
<th>(\tau) ::=</th>
<th>num</th>
<th>num</th>
<th>numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>str</td>
<td>str</td>
<td></td>
<td>strings</td>
</tr>
<tr>
<td>Expr</td>
<td>(e) ::=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x)</td>
<td>(x)</td>
<td></td>
<td>variable</td>
</tr>
<tr>
<td></td>
<td>(\text{num}[n])</td>
<td>(n)</td>
<td></td>
<td>numeral</td>
</tr>
<tr>
<td></td>
<td>(\text{str}[s])</td>
<td>"s"</td>
<td></td>
<td>literal</td>
</tr>
<tr>
<td></td>
<td>(\text{plus}(e_1;e_2))</td>
<td>(e_1 + e_2)</td>
<td></td>
<td>addition</td>
</tr>
<tr>
<td></td>
<td>(\text{times}(e_1;e_2))</td>
<td>(e_1 * e_2)</td>
<td></td>
<td>multiplication</td>
</tr>
<tr>
<td></td>
<td>(\text{cat}(e_1;e_2))</td>
<td>(e_1 \cdot e_2)</td>
<td></td>
<td>concatenation</td>
</tr>
<tr>
<td></td>
<td>(\text{len}(e))</td>
<td>(</td>
<td>e</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td>(\text{let}(e_1;x . e_2))</td>
<td>(\text{let } x \text{ be } e_1 \text{ in } e_2)</td>
<td></td>
<td>definition</td>
</tr>
</tbody>
</table>

There are two sorts, Type ranged over by the meta-variable \(\tau \), and Expr, ranged over by the meta-variable \(e \). The meta-variable \(x \) ranges over variables of sort Expr. The chart defines a number of operators and their arities. For example, the operator \(\text{let} \) has arity \((\text{Expr},(\text{Expr})\text{Expr})\), which specifies that it has two arguments of sort Expr, and binds a variable of sort Expr in the second argument.

7.2 Type System

The role of a type system is to impose constraints on the formations of phrases that are sensitive to the context in which they occur. For example, whether or not the expression \(\text{plus}(x;\text{num}[n]) \) is sensible depends on whether or not the variable \(x \) is declared to have type num in the surrounding context of the expression. This example is, in fact, illustrative of the general case, in that the only information required about the context of an expression is the type of the variables within whose scope the expression lies. Consequently, the statics of \(L\{\text{num str}\} \) consists of an inductive definition of generic hypothetical judgements of the form

\[
\vec{x} | \Gamma \vdash e : \tau,
\]

where \(\vec{x} \) is a finite set of variables, and \(\Gamma \) is a *typing context* consisting of hypotheses of the form \(x : \tau \), one for each \(x \in \mathcal{X} \). We rely on typographical conventions to determine the set of variables, using the letters \(x \) and \(y \) for
variables that serve as parameters of the typing judgement. We write \(x \notin \text{dom}(\Gamma) \) to indicate that there is no assumption in \(\Gamma \) of the form \(x : \tau \) for any type \(\tau \), in which case we say that the variable \(x \) is fresh for \(\Gamma \).

The rules defining the statics of \(\mathcal{L}\{\text{num str}\} \) are as follows:

\[
\begin{align*}
\Gamma, x : \tau &\vdash x : \tau \\
\Gamma &\vdash \text{str}[s] : \text{str} \\
\Gamma &\vdash \text{num}[n] : \text{num} \\
\Gamma &\vdash e_1 : \text{num}, \Gamma &\vdash e_2 : \text{num} \\
\Gamma &\vdash \text{plus}(e_1; e_2) : \text{num} \\
\Gamma &\vdash e_1 : \text{num}, \Gamma &\vdash e_2 : \text{num} \\
\Gamma &\vdash \text{times}(e_1; e_2) : \text{num} \\
\Gamma &\vdash e_1 : \text{str}, \Gamma &\vdash e_2 : \text{str} \\
\Gamma &\vdash \text{cat}(e_1; e_2) : \text{str} \\
\Gamma &\vdash e : \text{str} \\
\Gamma &\vdash \text{len}(e) : \text{num} \\
\Gamma &\vdash e_1 : \tau_1, \Gamma, x : \tau_1 &\vdash e_2 : \tau_2 \\
\Gamma &\vdash \text{let}(e_1; x. e_2) : \tau_2
\end{align*}
\]

In Rule (7.1h) we tacitly assume that the variable, \(x \), is not already declared in \(\Gamma \). This condition may always be met by choosing a suitable representative of the \(\alpha \)-equivalence class of the \text{let} expression.

Rules (7.1) illustrate an important organizational principle, called the principle of introduction and elimination, for a type system. The constructs of the language may be classified into one of two forms associated with each type. The introductory forms of a type are the means by which values of that type are created, or introduced. In the case of \(\mathcal{L}\{\text{num str}\} \), the introductory forms for the type \(\text{num} \) are the numerals, \(\text{num}[n] \), and for the type \(\text{str} \) are the literals, \(\text{str}[s] \). The eliminatory forms of a type are the means by which we may compute with values of that type to obtain values of some (possibly different) type. In the present case the eliminatory forms for the type \(\text{num} \) are addition and multiplication, and for the type \(\text{str} \) are concatenation and length. Each eliminatory form has one or more principal arguments of associated type, and zero or more non-principal arguments. In the present case all arguments for each of the eliminatory forms is principal, but we shall later see examples in which there are also non-principal arguments for eliminatory forms.

It is easy to check that every expression has at most one type.
Lemma 7.1 (Unicity of Typing). For every typing context \(\Gamma \) and expression \(e \), there exists at most one \(\tau \) such that \(\Gamma \vdash e : \tau \).

Proof. By rule induction on Rules (7.1).

The typing rules are syntax-directed in the sense that there is exactly one rule for each form of expression. Consequently it is easy to give necessary conditions for typing an expression that invert the sufficient conditions expressed by the corresponding typing rule.

Lemma 7.2 (Inversion for Typing). Suppose that \(\Gamma \vdash e : \tau \). If \(e = \text{plus}(e_1; e_2) \), then \(\tau = \text{num} \), \(\Gamma \vdash e_1 : \text{num} \), and \(\Gamma \vdash e_2 : \text{num} \), and similarly for the other constructs of the language.

Proof. These may all be proved by induction on the derivation of the typing judgement \(\Gamma \vdash e : \tau \).

In richer languages such inversion principles are more difficult to state and to prove.

7.3 Structural Properties

The statics enjoys the structural properties of the generic hypothetical judgement.

Lemma 7.3 (Weakening). If \(\Gamma \vdash e' : \tau' \), then \(\Gamma, x : \tau \vdash e' : \tau' \) for any \(x \not\in \text{dom}(\Gamma) \) and any type \(\tau \).

Proof. By induction on the derivation of \(\Gamma \vdash e' : \tau' \). We will give one case here, for rule (7.1h). We have that \(e' = \text{let}(e_1;z.e_2) \), where by the conventions on parameters we may assume \(z \) is chosen such that \(z \not\in \text{dom}(\Gamma) \) and \(z \neq x \). By induction we have

1. \(\Gamma, x : \tau \vdash e_1 : \tau_1 \),
2. \(\Gamma, x : \tau, z : \tau_1 \vdash e_2 : \tau' \),

from which the result follows by Rule (7.1h).

Lemma 7.4 (Substitution). If \(\Gamma, x : \tau \vdash e' : \tau' \) and \(\Gamma \vdash e : \tau \), then \(\Gamma \vdash [e/x]e' : \tau' \).

Proof. By induction on the derivation of \(\Gamma, x : \tau \vdash e' : \tau' \). We again consider only rule (7.1h). As in the preceding case, \(e' = \text{let}(e_1;z.e_2) \), where \(z \) may be chosen so that \(z \neq x \) and \(z \not\in \text{dom}(\Gamma) \). We have by induction
7.3 Structural Properties

1. $\Gamma \vdash [e/x]e_1 : \tau_1$
2. $\Gamma, z : \tau_1 \vdash [e/x]e_2 : \tau'$

By the choice of z we have
$$[e/x]\text{let}(e_1; z. e_2) = \text{let}([e/x]e_1; z. [e/x]e_2).$$

It follows by Rule (7.1h) that $\Gamma \vdash [e/x]\text{let}(e_1; z. e_2) : \tau$, as desired. \qed

From a programming point of view, Lemma 7.3 on the facing page allows us to use an expression in any context that binds its free variables: if e is well-typed in a context Γ, then we may “import” it into any context that includes the assumptions Γ. In other words the introduction of new variables beyond those required by an expression, e, does not invalidate e itself; it remains well-formed, with the same type.\footnote{This may seem so obvious as to be not worthy of mention, but, suprisingly, there are useful type systems that lack this property. Since they do not validate the structural principle of weakening, they are called sub-structural type systems.} More significantly, Lemma 7.4 on the preceding page expresses the concepts of modularity and linking. We may think of the expressions e and e' as two components of a larger system in which the component e' is to be thought of as a client of the implementation e. The client declares a variable specifying the type of the implementation, and is type checked knowing only this information. The implementation must be of the specified type in order to satisfy the assumptions of the client. If so, then we may link them to form the composite system, $[e/x]e'$. This may itself be the client of another component, represented by a variable, y, that is replaced by that component during linking. When all such variables have been implemented, the result is a closed expression that is ready for execution (evaluation).

The converse of Lemma 7.4 on the facing page is called decomposition. It states that any (large) expression may be decomposed into a client and implementor by introducing a variable to mediate their interaction.

Lemma 7.5 (Decomposition). If $\Gamma \vdash [e/x]e' : \tau'$, then for every type τ such that $\Gamma \vdash e : \tau$, we have $\Gamma, x : \tau \vdash e' : \tau'$.

Proof. The typing of $[e/x]e'$ depends only on the type of e wherever it occurs, if at all. \qed

This lemma tells us that any sub-expression may be isolated as a separate module of a larger system. This is especially useful when the variable x occurs more than once in e', because then one copy of e suffices for all occurrences of x in e'.
7.4 Exercises

1. Show that the expression $e = \text{plus}(\text{num}[7]; \text{str}[\text{abc}])$ is ill-typed in that there is no τ such that $e : \tau$.
Chapter 8

Dynamics

The *dynamics* of a language is a description of how programs are to be executed. The most important way to define the dynamics of a language is by the method of *structural dynamics*, which defines a *transition system* that inductively specifies the step-by-step process of executing a program. Another method for presenting dynamics, called *contextual dynamics*, is a variation of structural dynamics in which the transition rules are specified in a slightly different manner. An *equational dynamics* presents the dynamics of a language equationally by a collection of rules for deducing when one program is *definitionally equivalent* to another.

8.1 Transition Systems

A *transition system* is specified by the following four forms of judgment:

1. \(s \) state, asserting that \(s \) is a *state* of the transition system.
2. \(s \) final, where \(s \) state, asserting that \(s \) is a *final* state.
3. \(s \) initial, where \(s \) state, asserting that \(s \) is an *initial* state.
4. \(s \rightarrow s' \), where \(s \) state and \(s' \) state, asserting that state \(s \) may transition to state \(s' \).

In practice we always arrange things so that no transition is possible from a final state: if \(s \) final, then there is no \(s' \) state such that \(s \rightarrow s' \). A state from which no transition is possible is sometimes said to be *stuck*. Whereas all final states are, by convention, stuck, there may be stuck states in a transition system that are not final. A transition system is *deterministic* iff for
every state \(s \) there exists at most one state \(s' \) such that \(s \mapsto s' \), otherwise it is non-deterministic.

A transition sequence is a sequence of states \(s_0, \ldots, s_n \) such that \(s_0 \) initial, and \(s_i \mapsto s_{i+1} \) for every \(0 \leq i < n \). A transition sequence is maximal iff \(s_n \not\mapsto \), and it is complete iff it is maximal and, in addition, \(s_n \) final. Thus every complete transition sequence is maximal, but maximal sequences are not necessarily complete. We write \(s \downarrow \) to mean that there is a complete transition sequence starting from \(s \), which is to say that there exists \(s' \) final such that \(s \mapsto^* s' \).

The iteration of transition judgement, \(s \mapsto^* s' \), is inductively defined by the following rules:

\[
\begin{align*}
\frac{}{s \mapsto^* s} & \quad (8.1a) \\
\frac{s \mapsto s', s' \mapsto^* s''}{s \mapsto^* s''} & \quad (8.1b)
\end{align*}
\]

It is easy to show that iterated transition is transitive: if \(s \mapsto^* s' \) and \(s' \mapsto^* s'' \), then \(s \mapsto^* s'' \).

When applied to the definition of iterated transition, the principle of rule induction states that to show that \(P(s, s') \) holds whenever \(s \mapsto^* s' \), it is enough to show these two properties of \(P \):

1. \(P(s, s) \).
2. if \(s \mapsto s' \) and \(P(s', s'') \), then \(P(s, s'') \).

The first requirement is to show that \(P \) is reflexive. The second is to show that \(P \) is closed under head expansion, or converse evaluation. Using this principle, it is easy to prove that \(\mapsto^* \) is reflexive and transitive.

The \(n \)-times iterated transition judgement, \(s \mapsto^n s' \), where \(n \geq 0 \), is inductively defined by the following rules.

\[
\begin{align*}
\frac{}{s \mapsto^0 s} & \quad (8.2a) \\
\frac{s \mapsto s', s' \mapsto^n s''}{s \mapsto^{n+1} s''} & \quad (8.2b)
\end{align*}
\]

Theorem 8.1. For all states \(s \) and \(s' \), \(s \mapsto^* s' \) iff \(s \mapsto^k s' \) for some \(k \geq 0 \).

8.2 Structural Dynamics

A structural dynamics for \(\mathcal{L\{num\ str\}} \) consists of a transition system whose states are closed expressions. All states are initial, but the final states are the
(closed) values, which are inductively defined by the following rules:

\[\text{num}[n] \text{ val} \] \hspace{2cm} (8.3a)

\[\text{str}[s] \text{ val} \] \hspace{2cm} (8.3b)

The transition judgement, \(e \mapsto e' \), between states is inductively defined by the following rules:

\[n_1 + n_2 = n \text{ nat} \]
\[\text{plus}(\text{num}[n_1]; \text{num}[n_2]) \mapsto \text{num}[n] \] \hspace{2cm} (8.4a)

\[e_1 \mapsto e'_1 \]
\[\text{plus}(e_1; e_2) \mapsto \text{plus}(e'_1; e_2) \] \hspace{2cm} (8.4b)

\[e_1 \text{ val} \]
\[e_2 \mapsto e'_2 \]
\[\text{plus}(e_1; e_2) \mapsto \text{plus}(e_1; e'_2) \] \hspace{2cm} (8.4c)

\[s_1 \hat{s}_2 = s \text{ str} \]
\[\text{cat}(\text{str}[s_1]; \text{str}[s_2]) \mapsto \text{str}[s] \] \hspace{2cm} (8.4d)

\[e_1 \mapsto e'_1 \]
\[\text{cat}(e_1; e_2) \mapsto \text{cat}(e'_1; e_2) \] \hspace{2cm} (8.4e)

\[e_1 \text{ val} \]
\[e_2 \mapsto e'_2 \]
\[\text{cat}(e_1; e_2) \mapsto \text{cat}(e_1; e'_2) \] \hspace{2cm} (8.4f)

\[\text{let}(e_1; x.e_2) \mapsto [e_1/x]e_2 \] \hspace{2cm} (8.4g)

We have omitted rules for multiplication and computing the length of a string, which follow a similar pattern. Rules (8.4a), (8.4d), and (8.4g) are instruction transitions, since they correspond to the primitive steps of evaluation. The remaining rules are search transitions that determine the order in which instructions are executed.

Rules (8.4) exhibit structure arising from the principle of introduction and elimination discussed in Chapter 7. The instruction transitions express the inversion principle, which states that eliminatory forms are inverse to introductory forms. For example, Rule (8.4a) extracts the natural number from the introductory forms of its arguments, adds these two numbers, and yields the corresponding numeral as result. The search transitions specify that the principal arguments of each eliminatory form are to be evaluated. (When non-principal arguments are present, which is not the case here, there is discretion about whether to evaluate them or not.) This is essential, because it prepares for the instruction transitions, which expect their principal arguments to be introductory forms.
Rule (8.4g) specifies a by-name interpretation, in which the bound variable stands for the expression \(e_1 \) itself.\(^1\) If \(x \) does not occur in \(e_2 \), the expression \(e_1 \) is never evaluated. If, on the other hand, it occurs more than once, then \(e_1 \) will be re-evaluated at each occurrence. To avoid repeated work in the latter case, we may instead specify a by-value interpretation of binding by the following rules:

\[
\frac{\text{val}}{\text{let}(e_1; x. e_2) \mapsto [e_1/x]e_2} \quad (8.5a)
\]
\[
\frac{e_1 \mapsto e_1'}{\text{let}(e_1; x. e_2) \mapsto \text{let}(e_1'; x. e_2)} \quad (8.5b)
\]

Rule (8.5b) is an additional search rule specifying that we may evaluate \(e_1 \) before \(e_2 \). Rule (8.5a) ensures that \(e_2 \) is not evaluated until evaluation of \(e_1 \) is complete.

A derivation sequence in a structural dynamics has a two-dimensional structure, with the number of steps in the sequence being its “width” and the derivation tree for each step being its “height.” For example, consider the following evaluation sequence.

\[
\begin{align*}
\text{let}(\text{plus}(\text{num}[1]; \text{num}[2]); x. \text{plus}(x; \text{num}[3]); \text{num}[4])) \\
\mapsto \text{let}(\text{num}[3]; x. \text{plus}(x; \text{num}[3]); \text{num}[4])) \\
\mapsto \text{plus}(\text{plus}(\text{num}[3]; \text{num}[3]); \text{num}[4]) \\
\mapsto \text{plus}(\text{num}[6]; \text{num}[4]) \\
\mapsto \text{num}[10]
\end{align*}
\]

Each step in this sequence of transitions is justified by a derivation according to Rules (8.4). For example, the third transition in the preceding example is justified by the following derivation:

\[
\frac{\text{plus}(\text{num}[3]; \text{num}[3]) \mapsto \text{num}[6]}{\text{plus}(\text{plus}(\text{num}[3]; \text{num}[3]); \text{num}[4]) \mapsto \text{plus}(\text{num}[6]; \text{num}[4])} \quad (8.4b)
\]

The other steps are similarly justified by a composition of rules.

The principle of rule induction for the structural dynamics of \(\mathcal{L}\{\text{num str}\} \) states that to show \(\mathcal{P}(e \mapsto e') \) whenever \(e \mapsto e' \), it is sufficient to show that \(\mathcal{P} \) is closed under Rules (8.4). For example, we may show by rule induction that structural dynamics of \(\mathcal{L}\{\text{num str}\} \) is determinate.

\(^1\)The justification for the terminology “by name” is obscure, but as it is very well-established we will stick with it.
8.3 Contextual Dynamics

Lemma 8.2 (Determinacy). If $e \mapsto e'$ and $e \mapsto e''$, then e' and e'' are α-equivalent.

Proof. By rule induction on the premises $e \mapsto e'$ and $e \mapsto e''$, carried out either simultaneously or in either order. Since only one rule applies to each form of expression, e, the result follows directly in each case. \hfill \square

8.3 Contextual Dynamics

A variant of structural dynamics, called contextual dynamics, is sometimes useful. There is no fundamental difference between the two approaches, only a difference in the style of presentation. The main idea is to isolate instruction steps as a special form of judgement, called instruction transition, and to formalize the process of locating the next instruction using a device called an evaluation context. The judgement, $e \text{ val}$, defining whether an expression is a value, remains unchanged.

The instruction transition judgement, $e_1 \leadsto e_2$, for $L\{\text{num, str}\}$ is defined by the following rules, together with similar rules for multiplication of numbers and the length of a string.

\begin{align*}
\text{plus}(\text{num}[m]; \text{num}[n]) & \leadsto \text{num}[p] \\
\text{cat}(\text{str}[s]; \text{str}[t]) & \leadsto \text{str}[u] \\
\text{let}(e_1; x.e_2) & \leadsto [e_1/x]e_2
\end{align*}

The judgement $E \text{ extxt}$ determines the location of the next instruction to execute in a larger expression. The position of the next instruction step is specified by a “hole”, written \circ, into which the next instruction is placed, as we shall detail shortly. (The rules for multiplication and length are omitted for concision, as they are handled similarly.)

\begin{align*}
\circ \text{ extxt} \\
E_1 \text{ extxt} & \text{plus}(E_1; e_2) \text{ extxt} \\
e_1 \text{ val} E_2 \text{ extxt} & \text{plus}(e_1; E_2) \text{ extxt}
\end{align*}

The first rule for evaluation contexts specifies that the next instruction may occur “here”, at the point of the occurrence of the hole. The remaining rules
correspond one-for-one to the search rules of the structural dynamics. For example, Rule (8.7c) states that in an expression \(\text{plus}(e_1; e_2) \), if the first principal argument, \(e_1 \), is a value, then the next instruction step, if any, lies at or within the second principal argument, \(e_2 \).

An evaluation context is to be thought of as a template that is instantiated by replacing the hole with an instruction to be executed. The judgement \(e' = \mathcal{E}\{e\} \) states that the expression \(e' \) is the result of filling the hole in the evaluation context \(\mathcal{E} \) with the expression \(e \). It is inductively defined by the following rules:

\[
\begin{align*}
\text{val} & \quad e \Rightarrow o\{e\} \\
E_1 & \quad e_1 = E_1\{e\} \\
\text{plus} & \quad \text{plus}(e_1; e_2) = \text{plus}(E_1; e_2)\{e\} \\
\text{val} & \quad e_1 = E_2\{e\} \\
\text{plus} & \quad \text{plus}(e_1; e_2) = \text{plus}(e_1; E_2)\{e\}
\end{align*}
\]

There is one rule for each form of evaluation context. Filling the hole with \(e \) results in \(e \); otherwise we proceed inductively over the structure of the evaluation context.

Finally, the contextual dynamics for \(L\{\text{num str}\} \) is defined by a single rule:

\[
\begin{align*}
\text{val} & \quad e_0 \Rightarrow e'_0 \\
E & \quad e = \mathcal{E}\{e_0\} \\
E' & \quad e' = \mathcal{E}'\{e'_0\} \\
\Rightarrow & \quad e \mapsto e'
\end{align*}
\]

Thus, a transition from \(e \) to \(e' \) consists of (1) decomposing \(e \) into an evaluation context and an instruction, (2) execution of that instruction, and (3) replacing the instruction by the result of its execution in the same spot within \(e \) to obtain \(e' \).

The structural and contextual dynamics define the same transition relation. For the sake of the proof, let us write \(e \Rightarrow_s e' \) for the transition relation defined by the structural dynamics (Rules (8.4)), and \(e \Rightarrow_c e' \) for the transition relation defined by the contextual dynamics (Rules (8.9)).

Theorem 8.3. \(e \Rightarrow_s e' \) if, and only if, \(e \Rightarrow_c e' \).

Proof. From left to right, proceed by rule induction on Rules (8.4). It is enough in each case to exhibit an evaluation context \(\mathcal{E} \) such that \(e = \mathcal{E}\{e_0\} \), \(e' = \mathcal{E}'\{e'_0\} \), and \(e_0 \Rightarrow e'_0 \). For example, for Rule (8.4a), take \(\mathcal{E} = o \), and observe that \(e \Rightarrow e' \). For Rule (8.4b), we have by induction that there exists an evaluation context \(\mathcal{E}_1 \) such that \(e_1 = \mathcal{E}_1\{e_0\} \), \(e'_1 = \mathcal{E}_1\{e'_0\} \), and \(e_0 \Rightarrow e'_0 \). Take \(\mathcal{E} = \text{plus}(\mathcal{E}_1; e_2) \), and observe that \(e = \text{plus}(\mathcal{E}_1; e_2)\{e_0\} \) and \(e' = \text{plus}(\mathcal{E}_1; e_2)\{e'_0\} \) with \(e_0 \Rightarrow e'_0 \).
From right to left, observe that if \(e \mapsto \langle c e \rangle e' \), then there exists an evaluation context \(E \) such that \(e = E\{e_0\} \), \(e' = E\{e'_0\} \), and \(e_0 \rightsquigarrow e'_0 \). We prove by induction on Rules (8.8) that \(e \mapsto e' \). For example, for Rule (8.8a), \(e_0 \) is \(e \), \(e'_0 \) is \(e' \), and \(e \rightsquigarrow e' \). Hence \(e \mapsto e' \). For Rule (8.8b), we have that \(E = \text{plus}(E_1; e_2) \), \(e_1 = E_1\{e_0\} \), \(e'_1 = E_1\{e'_0\} \), and \(e_1 \mapsto e'_1 \). Therefore \(e \) is \(\text{plus}(e_1; e_2) \), \(e' \) is \(\text{plus}(e'_1; e_2) \), and therefore by Rule (8.4b), \(e \mapsto e' \).

Since the two transition judgements coincide, contextual dynamics may be seen as an alternative way of presenting a structural dynamics. It has two advantages over structural dynamics, one relatively superficial, one rather less so. The superficial advantage stems from writing Rule (8.9) in the simpler form

\[
\frac{e_0 \rightsquigarrow e'_0}{E\{e_0\} \mapsto E\{e'_0\}}.
\]

This formulation is simpler insofar as it leaves implicit the definition of the decomposition of the left- and right-hand sides. The deeper advantage, which we will exploit in Chapter 13, is that the transition judgement in contextual dynamics applies only to closed expressions of a fixed type, whereas structural dynamics transitions are necessarily defined over expressions of every type.

8.4 Equational Dynamics

Another formulation of the dynamics of a language is based on regarding computation as a form of equational deduction, much in the style of elementary algebra. For example, in algebra we may show that the polynomials \(x^2 + 2x + 1 \) and \((x + 1)^2\) are equivalent by a simple process of calculation and re-organization using the familiar laws of addition and multiplication. The same laws are sufficient to determine the value of any polynomial, given the values of its variables. So, for example, we may plug in 2 for \(x \) in the polynomial \(x^2 + 2x + 1 \) and calculate that \(2^2 + 2 \cdot 2 + 1 = 9 \), which is indeed \((2 + 1)^2\). This gives rise to a model of computation in which we may determine the value of a polynomial for a given value of its variable by substituting the given value for the variable and proving that the resulting expression is equal to its value.

Very similar ideas give rise to the concept of definitional, or computational, equivalence of expressions in \(\mathcal{L}\{\text{num str} \} \), which we write as \(X \mid \Gamma \vdash e \equiv e' : \tau \), where \(\Gamma \) consists of one assumption of the form \(x : \tau \) for each
\(x \in \mathcal{X} \). We only consider definitional equality of well-typed expressions, so that when considering the judgement \(\Gamma \vdash e \equiv e' : \tau \), we tacitly assume that \(\Gamma \vdash e : \tau \) and \(\Gamma \vdash e' : \tau \). Here, as usual, we omit explicit mention of the parameters, \(\mathcal{X} \), when they can be determined from the forms of the assumptions \(\Gamma \).

Definitional equivalence of expressions in \(\mathcal{L}\{\text{num str}\} \) is inductively defined by the following rules:

\[
\begin{align*}
\Gamma & \vdash e \equiv e : \tau \\
\Gamma & \vdash e' \equiv e : \tau \\
\Gamma & \vdash e' \equiv e'' : \tau \\
\Gamma & \vdash e \equiv e'' : \tau
\end{align*}
\]

\(\text{(8.11a)} \)

\[
\Gamma \vdash e_1 \equiv e'_1 : \text{num} \quad \Gamma \vdash e_2 \equiv e'_2 : \text{num}
\]

\[
\Rightarrow \quad \Gamma \vdash \text{plus}(e_1; e_2) \equiv \text{plus}(e'_1; e'_2) : \text{num}
\]

\(\text{(8.11b)} \)

\[
\Gamma \vdash e_1 \equiv e'_1 : \text{str} \quad \Gamma \vdash e_2 \equiv e'_2 : \text{str}
\]

\[
\Rightarrow \quad \Gamma \vdash \text{cat}(e_1; e_2) \equiv \text{cat}(e'_1; e'_2) : \text{str}
\]

\(\text{(8.11c)} \)

\[
\Gamma \vdash e_1 \equiv e'_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash e_2 \equiv e'_2 : \tau_2
\]

\[
\Rightarrow \quad \Gamma \vdash \text{let}(e_1; x. e_2) \equiv \text{let}(e'_1; x. e'_2) : \tau_2
\]

\(\text{(8.11d)} \)

\[
\Gamma \vdash n_1 + n_2 = n : \text{nat}
\]

\[
\Rightarrow \quad \Gamma \vdash \text{plus}(\text{num}[n_1]; \text{num}[n_2]) \equiv \text{num}[n] : \text{num}
\]

\(\text{(8.11e)} \)

\[
\Gamma \vdash s_1 \cdot s_2 = s : \text{str}
\]

\[
\Rightarrow \quad \Gamma \vdash \text{cat}(\text{str}[s_1]; \text{str}[s_2]) \equiv \text{str}[s] : \text{str}
\]

\(\text{(8.11f)} \)

\[
\Gamma \vdash \text{let}(e_1; x. e_2) \equiv [e_1/x]e_2 : \tau
\]

\(\text{(8.11g)} \)

Rules (8.11a) through (8.11c) state that definitional equivalence is an equivalence relation. Rules (8.11d) through (8.11f) state that it is a congruence relation, which means that it is compatible with all expression-forming constructs in the language. Rules (8.11g) through (8.11i) specify the meanings of the primitive constructs of \(\mathcal{L}\{\text{num str}\} \). For the sake of concision, Rules (8.11) may be characterized as defining the strongest congruence closed under Rules (8.11g), (8.11h), and (8.11i).

Rules (8.11) are sufficient to allow us to calculate the value of an expression by an equational deduction similar to that used in high school algebra. For example, we may derive the equation

\[
\text{let } x \text{ be } 1 + 2 \text{ in } x + 3 + 4 \equiv 10 : \text{num}
\]
by applying Rules (8.11). Here, as in general, there may be many different ways to derive the same equation, but we need find only one derivation in order to carry out an evaluation.

Definitional equivalence is rather weak in that many equivalences that one might intuitively think are true are not derivable from Rules (8.11). A prototypical example is the putative equivalence

\[
x : \text{num}, y : \text{num} \vdash x + y \equiv y + x : \text{num},
\]

(8.12)

which, intuitively, expresses the commutativity of addition. Although we shall not prove this here, this equivalence is \textit{not} derivable from Rules (8.11). And yet we \textit{may} derive all of its closed instances,

\[
n_1 + n_2 \equiv n_2 + n_1 : \text{num},
\]

(8.13)

where \(n_1\) nat and \(n_2\) nat are particular numbers.

The “gap” between a general law, such as Equation (8.12), and all of its instances, given by Equation (8.13), may be filled by enriching the notion of equivalence to include a principle of proof by mathematical induction. Such a notion of equivalence is sometimes called \textit{semantic}, or \textit{observational}, \textit{equivalence}, since it expresses relationships that hold by virtue of the dynamics of the expressions involved.\(^2\) Semantic equivalence is a \textit{synthetic} judgement, one that requires proof. It is to be distinguished from definitional equivalence, which expresses an \textit{analytic} judgement, one that is self-evident based solely on the dynamics of the operations involved. As such definitional equivalence may be thought of as \textit{symbolic evaluation}, which permits simplification according to the evaluation rules of a language, but which does not permit reasoning by induction.

Definitional equivalence is adequate for evaluation in that it permits the calculation of the value of any closed expression.

\textbf{Theorem 8.4.} \(e \equiv e' : \tau\) iff there exists \(e_0\) \textit{val} such that \(e \mapsto^* e_0\) and \(e' \mapsto^* e_0\).

\textit{Proof.} The proof from right to left is direct, since every transition step is a valid equation. The converse follows from the following, more general, proposition. If \(x_1 : \tau_1, \ldots, x_n : \tau_n \vdash e \equiv e' : \tau\), then whenever \(e_1 : \tau_1, \ldots, e_n : \tau_n\), if

\[
[e_1, \ldots, e_n/x_1, \ldots, x_n]e \equiv [e_1, \ldots, e_n/x_1, \ldots, x_n]e' : \tau,
\]

then there exists \(e_0\) \textit{val} such that

\[
[e_1, \ldots, e_n/x_1, \ldots, x_n]e \mapsto^* e_0
\]

\(^2\)This concept of equivalence is developed rigorously in Chapter 48.
and
\[[e_1, \ldots, e_n / x_1, \ldots, x_n]e' \rightarrow^* e_0. \]
This is proved by rule induction on Rules (8.11). \qed

The formulation of definitional equivalence for the by-value dynamics of binding requires a bit of additional machinery. The key idea is motivated by the modifications required to Rule (8.11i) to express the requirement that \(e_1 \) be a value. As a first cut one might consider simply adding an additional premise to the rule:

\[
\frac{e_1 \text{ val}}{\Gamma \vdash \text{let}(e_1; x. e_2) \equiv [e_1 / x] e_2 : \tau}
\] (8.14)

This is almost correct, except that the judgement \(e \text{ val} \) is defined only for closed expressions, whereas \(e_1 \) might well involve free variables in \(\Gamma \). What is required is to extend the judgement \(e \text{ val} \) to the hypothetical judgement

\[
x_1 \text{ val}, \ldots, x_n \text{ val} \vdash e \text{ val}
\]

in which the hypotheses express the assumption that variables are only ever bound to values, and hence can be regarded as values. To maintain this invariant, we must maintain a set, \(\Xi \), of such hypotheses as part of definitional equivalence, writing \(\Xi \Gamma \vdash e \equiv e' : \tau \), and modifying Rule (8.11f) as follows:

\[
\frac{\Xi \Gamma \vdash e_1 \equiv e'_1 : \tau_1 \quad \Xi, x \text{ val} \Gamma, x : \tau_1 \vdash e_2 \equiv e'_2 : \tau_2}{\Xi \Gamma \vdash \text{let}(e_1; x. e_2) \equiv \text{let}(e'_1; x. e'_2) : \tau_2}
\] (8.15)

The other rules are correspondingly modified to simply carry along \(\Xi \) is an additional set of hypotheses of the inference.

8.5 Exercises

1. For the structural dynamics of \(\mathcal{L}\{\text{num str}\} \), prove that if \(e \rightarrow e_1 \) and \(e \rightarrow e_2 \), then \(e_1 =_\alpha e_2 \).

2. Formulate a variation of \(\mathcal{L}\{\text{num str}\} \) with both a by-name and a by-value \texttt{let} construct.
Chapter 9

Type Safety

Most contemporary programming languages are safe (or, type safe, or strongly typed). Informally, this means that certain kinds of mismatches cannot arise during execution. For example, type safety for $\mathcal{L}\{\text{num\ str}\}$ states that it will never arise that a number is to be added to a string, or that two numbers are to be concatenated, neither of which is meaningful.

In general type safety expresses the coherence between the statics and the dynamics. The statics may be seen as predicting that the value of an expression will have a certain form so that the dynamics of that expression is well-defined. Consequently, evaluation cannot “get stuck” in a state for which no transition is possible, corresponding in implementation terms to the absence of “illegal instruction” errors at execution time. This is proved by showing that each step of transition preserves typability and by showing that typable states are well-defined. Consequently, evaluation can never “go off into the weeds,” and hence can never encounter an illegal instruction.

More precisely, type safety for $\mathcal{L}\{\text{num\ str}\}$ may be stated as follows:

Theorem 9.1 (Type Safety).

1. If $e : \tau$ and $e \rightarrow e'$, then $e' : \tau$.

2. If $e : \tau$, then either $e \\text{val}$, or there exists e' such that $e \rightarrow e'$.

The first part, called preservation, says that the steps of evaluation preserve typing; the second, called progress, ensures that well-typed expressions are either values or can be further evaluated. Safety is the conjunction of preservation and progress.

We say that an expression, e, is stuck iff it is not a value, yet there is no e' such that $e \rightarrow e'$. It follows from the safety theorem that a stuck state is
necessarily ill-typed. Or, putting it the other way around, that well-typed states do not get stuck.

9.1 Preservation

The preservation theorem for \(L\{\text{num,str}\} \) defined in Chapters 7 and 8 is proved by rule induction on the transition system (rules (8.4)).

Theorem 9.2 (Preservation). If \(e : \tau \) and \(e \rightarrow e' \), then \(e' : \tau \).

Proof. We will consider two cases, leaving the rest to the reader. Consider rule (8.4b),

\[
\begin{align*}
e_1 & \rightarrow e'_1 \\
\text{plus}(e_1; e_2) & \rightarrow \text{plus}(e'_1; e_2)
\end{align*}
\]

Assume that \(\text{plus}(e_1; e_2) : \tau \). By inversion for typing, we have that \(\tau = \text{num}, e_1 : \text{num}, \) and \(e_2 : \text{num} \). By induction we have that \(e'_1 : \text{num} \), and hence \(\text{plus}(e'_1; e_2) : \text{num} \). The case for concatenation is handled similarly.

Now consider rule (8.4g),

\[
\begin{align*}
e_1 & \text{val} \\
\text{let}(e_1; x.e_2) & \rightarrow [e_1/x]e_2
\end{align*}
\]

Assume that \(\text{let}(e_1; x.e_2) : \tau_2 \). By the inversion lemma 7.2 on page 64, \(e_1 : \tau_1 \) for some \(\tau_1 \) such that \(x : \tau_1 \vdash e_2 : \tau_2 \). By the substitution lemma 7.4 on page 64 \([e_1/x]e_2 : \tau_2 \), as desired. \(\square \)

The proof of preservation is naturally structured as an induction on the transition judgement, since the argument hinges on examining all possible transitions from a given expression. In some cases one may manage to carry out a proof by structural induction on \(e \), or by an induction on typing, but experience shows that this often leads to awkward arguments, or, in some cases, cannot be made to work at all.

9.2 Progress

The progress theorem captures the idea that well-typed programs cannot “get stuck”. The proof depends crucially on the following lemma, which characterizes the values of each type.

Lemma 9.3 (Canonical Forms). If \(e \text{ val} \) and \(e : \tau \), then
9.2 Progress

1. If $\tau = \text{num}$, then $e = \text{num}[n]$ for some number n.

2. If $\tau = \text{str}$, then $e = \text{str}[s]$ for some string s.

Proof. By induction on rules (7.1) and (8.3).

Progress is proved by rule induction on rules (7.1) defining the statics of the language.

Theorem 9.4 (Progress). If $e : \tau$, then either $e \text{ val}$, or there exists e' such that $e \mapsto e'$.

Proof. The proof proceeds by induction on the typing derivation. We will consider only one case, for rule (7.1d),

$$
\frac{e_1 : \text{num} \quad e_2 : \text{num}}{\text{plus}(e_1; e_2) : \text{num}},
$$

where the context is empty because we are considering only closed terms.

By induction we have that either $e_1 \text{ val}$, or there exists e'_1 such that $e_1 \mapsto e'_1$. In the latter case it follows that $\text{plus}(e_1; e_2) \mapsto \text{plus}(e'_1; e_2)$, as required. In the former we also have by induction that either $e_2 \text{ val}$, or there exists e'_2 such that $e_2 \mapsto e'_2$. In the latter case we have that $\text{plus}(e_1; e_2) \mapsto \text{plus}(e_1; e'_2)$, as required. In the former, we have, by the Canonical Forms Lemma 9.3 on the preceding page, $e_1 = \text{num}[n_1]$ and $e_2 = \text{num}[n_2]$, and hence

$$
\text{plus}(\text{num}[n_1]; \text{num}[n_2]) \mapsto \text{num}[n_1 + n_2].
$$

Since the typing rules for expressions are syntax-directed, the progress theorem could equally well be proved by induction on the structure of e, appealing to the inversion theorem at each step to characterize the types of the parts of e. But this approach breaks down when the typing rules are not syntax-directed, that is, when there may be more than one rule for a given expression form. No difficulty arises if the proof proceeds by induction on the typing rules.

Summing up, the combination of preservation and progress together constitute the proof of safety. The progress theorem ensures that well-typed expressions do not “get stuck” in an ill-defined state, and the preservation theorem ensures that if a step is taken, the result remains well-typed (with the same type). Thus the two parts work hand-in-hand to ensure that the statics and dynamics are coherent, and that no ill-defined states can ever be encountered while evaluating a well-typed expression.
9.3 Run-Time Errors

Suppose that we wish to extend $\mathcal{L}\{\text{num}\ 	ext{str}\}$ with, say, a quotient operation that is undefined for a zero divisor. The natural typing rule for quotients is given by the following rule:

$$
\frac{e_1 : \text{num} \quad e_2 : \text{num}}{\text{div}(e_1; e_2) : \text{num}}.
$$

But the expression $\text{div}(\text{num}[3]; \text{num}[0])$ is well-typed, yet stuck! We have two options to correct this situation:

1. Enhance the type system, so that no well-typed program may divide by zero.
2. Add dynamic checks, so that division by zero signals an error as the outcome of evaluation.

Either option is, in principle, viable, but the most common approach is the second. The first requires that the type checker prove that an expression be non-zero before permitting it to be used in the denominator of a quotient. It is difficult to do this without ruling out too many programs as ill-formed. This is because one cannot reliably predict statically whether an expression will turn out to be non-zero when executed (because this is an undecidable property). We therefore consider the second approach, which is typical of current practice.

The general idea is to distinguish checked from unchecked errors. An unchecked error is one that is ruled out by the type system. No run-time checking is performed to ensure that such an error does not occur, because the type system rules out the possibility of it arising. For example, the dynamics need not check, when performing an addition, that its two arguments are, in fact, numbers, as opposed to strings, because the type system ensures that this is the case. On the other hand the dynamics for quotient must check for a zero divisor, because the type system does not rule out the possibility.

One approach to modelling checked errors is to give an inductive definition of the judgment $e \ err$ stating that the expression e incurs a checked run-time error, such as division by zero. Here are some representative rules that would appear in a full inductive definition of this judgement:

$$
\frac{e_1 \ \text{val}}{\text{div}(e_1; \text{num}[0]) \ err}
$$

(9.1a)
Rule (9.1a) signals an error condition for division by zero. The other rules propagate this error upwards: if an evaluated sub-expression is a checked error, then so is the overall expression.

Once the error judgement is available, we may also consider an expression, error, which forcibly induces an error, with the following static and dynamic semantics:

\[\Gamma \vdash \text{error} : \tau \]
\[\text{error} \text{ err} \]

The preservation theorem is not affected by the presence of checked errors. However, the statement (and proof) of progress is modified to account for checked errors.

Theorem 9.5 (Progress With Error). If \(e : \tau \), then either \(e \text{ err} \), or \(e \text{ val} \), or there exists \(e' \) such that \(e \rightarrow e' \).

Proof. The proof is by induction on typing, and proceeds similarly to the proof given earlier, except that there are now three cases to consider at each point in the proof.

9.4 Exercises

1. Complete the proof of preservation.

2. Complete the proof of progress.
Chapter 10

Evaluation Dynamics

In Chapter 8 we defined the evaluation of \(\mathcal{L\{num\ str\} \) expression using the method of structural dynamics. This approach is useful as a foundation for proving properties of a language, but other methods are often more appropriate for other purposes, such as writing user manuals. Another method, called evaluation dynamics presents the dynamics as a relation between a phrase and its value, without detailing how it is to be determined in a step-by-step manner. Evaluation dynamics suppresses the step-by-step details of determining the value of an expression, and hence does not provide any useful notion of the time complexity of a program. Cost dynamics rectifies this by augmenting evaluation dynamics with a cost measure. Various cost measures may be assigned to an expression. One example is the number of steps in the structural dynamics required for an expression to reach a value.

10.1 Evaluation Dynamics

Another method for defining the dynamics of \(\mathcal{L\{num\ str\} \) , called evaluation dynamics, consists of an inductive definition of the evaluation judgement, \(e \Downarrow v \) , stating that the closed expression, \(e \) , evaluates to the value, \(v \).

\[
\begin{align*}
num[n] \Downarrow num[n] & \quad (10.1a) \\
str[s] \Downarrow str[s] & \quad (10.1b) \\
\begin{array}{c}
e_1 \Downarrow num[n_1] \\
e_2 \Downarrow num[n_2]
\end{array} & n_1 + n_2 = n \ \text{nat} \\
\begin{array}{c}
\text{plus}(e_1; e_2) \Downarrow num[n]
\end{array} & (10.1c) \\
\begin{array}{c}
e_1 \Downarrow str[s_1] \\
e_2 \Downarrow str[s_2]
\end{array} & s_1 \hat{s_2} = s \ \text{str} \\
\begin{array}{c}
cat(e_1; e_2) \Downarrow str[s]
\end{array} & (10.1d)
\end{align*}
\]
10.2 Relating Structural and Evaluation Dynamics

\[
\begin{align*}
 e \Downarrow \text{str}[s] & \quad |s| = n \text{ str} \\
 \text{len}(e) \Downarrow \text{num}[n] \\
 [e_1/x]e_2 \Downarrow v_2 & \quad \Downarrow v_2 \\
 \text{let}(e_1; x.e_2) \Downarrow v_2
\end{align*}
\] (10.1e)

\[
\begin{align*}
 e_1 \Downarrow \text{num}[n] \\
 e_2 \Downarrow \text{num}[n_2] & \quad n_1 + n_2 = n \text{ nat}
\end{align*}
\] (10.1f)

The value of a \text{let} expression is determined by substitution of the binding into the body. The rules are therefore not syntax-directed, since the premise of Rule (10.1f) is not a sub-expression of the expression in the conclusion of that rule.

The evaluation judgement is inductively defined, we prove properties of it by rule induction. Specifically, to show that the property \(P(e \Downarrow v)\) holds, it is enough to show that \(P\) is closed under Rules (10.1):

1. Show that \(P(\text{num}[n] \Downarrow \text{num}[n])\).
2. Show that \(P(\text{str}[s] \Downarrow \text{str}[s])\).
3. Show that \(P(\text{plus}(e_1; e_2) \Downarrow \text{num}[n]), if \(P(e_1 \Downarrow \text{num}[n_1]), P(e_2 \Downarrow \text{num}[n_2])\), and \(n_1 + n_2 = n \text{ nat}\).
4. Show that \(P(\text{cat}(e_1; e_2) \Downarrow \text{str}[s]), if \(P(e_1 \Downarrow \text{str}[s_1]), P(e_2 \Downarrow \text{str}[s_2])\), and \(s_1 \ast s_2 = s \text{ str}\).
5. Show that \(P(\text{let}(e_1; x.e_2) \Downarrow v_2), if \(P([e_1/x]e_2 \Downarrow v_2)\).

This induction principle is \textit{not} the same as structural induction on \(e \text{ exp}\), because the evaluation rules are not syntax-directed!

\textbf{Lemma 10.1.} If \(e \Downarrow v\), then \(v \text{ val}\).

\textit{Proof.} By induction on Rules (10.1). All cases except Rule (10.1f) are immediate. For the latter case, the result follows directly by an appeal to the inductive hypothesis for the second premise of the evaluation rule. \(\square\)

10.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for \(L\{\text{num, str}\}\). It is natural to ask whether they are equivalent, but to do so first requires that we consider carefully what we mean by equivalence. The structural dynamics describes a step-by-step process of execution, whereas the evaluation dynamics suppresses the intermediate states, focusing attention on the initial and final states alone. This suggests that the appropriate correspondence
is between complete execution sequences in the structural dynamics and the evaluation judgement in the evaluation dynamics. (We will consider only numeric expressions, but analogous results hold also for string-valued expressions.)

Theorem 10.2. For all closed expressions e and values v, $e \mapsto^* v$ iff $e \downarrow v$.

How might we prove such a theorem? We will consider each direction separately. We consider the easier case first.

Lemma 10.3. If $e \downarrow v$, then $e \mapsto^* v$.

Proof. By induction on the definition of the evaluation judgement. For example, suppose that $\text{plus}(e_1; e_2) \downarrow \text{num}[n]$ by the rule for evaluating additions. By induction we know that $e_1 \mapsto^* \text{num}[n_1]$ and $e_2 \mapsto^* \text{num}[n_2]$. We reason as follows:

$$
\begin{align*}
\text{plus}(e_1; e_2) & \mapsto^* \text{plus}(\text{num}[n_1]; e_2) \\
& \mapsto^* \text{plus}(\text{num}[n_1]; \text{num}[n_2]) \\
& \mapsto \text{num}[n_1 + n_2]
\end{align*}
$$

Therefore $\text{plus}(e_1; e_2) \mapsto^* \text{num}[n_1 + n_2]$, as required. The other cases are handled similarly. \square

For the converse, recall from Chapter 8 the definitions of multi-step evaluation and complete evaluation. Since $v \downarrow v$ whenever v val, it suffices to show that evaluation is closed under reverse execution.

Lemma 10.4. If $e \mapsto e'$ and $e' \downarrow v$, then $e \downarrow v$.

Proof. By induction on the definition of the transition judgement. For example, suppose that $\text{plus}(e_1; e_2) \mapsto \text{plus}(e'_1; e_2)$, where $e_1 \mapsto e'_1$. Suppose further that $\text{plus}(e'_1; e_2) \downarrow v$, so that $e'_1 \downarrow \text{num}[n_1]$, $e_2 \downarrow \text{num}[n_2]$, $n_1 + n_2 = n$ nat, and v is $\text{num}[n]$. By induction $e_1 \downarrow \text{num}[n_1]$, and hence $\text{plus}(e_1; e_2) \downarrow \text{num}[n]$, as required. \square

10.3 Type Safety, Revisited

The type safety theorem for $L\{\text{num str}\}$ (Theorem 9.1 on page 77) states that a language is safe iff it satisfies both preservation and progress. This formulation depends critically on the use of a transition system to specify the dynamics. But what if we had instead specified the dynamics as an
evaluation relation, instead of using a transition system? Can we state and prove safety in such a setting?

The answer, unfortunately, is that we cannot. While there is an analogue of the preservation property for an evaluation dynamics, there is no clear analogue of the progress property. Preservation may be stated as saying that if \(e \Downarrow v \) and \(e : \tau \), then \(v : \tau \). This can be readily proved by induction on the evaluation rules. But what is the analogue of progress? One might be tempted to phrase progress as saying that if \(e : \tau \), then \(e \Downarrow v \) for some \(v \). While this property is true for \(\mathcal{L}\{\text{num str}\} \), it demands much more than just progress — it requires that every expression evaluate to a value!

If \(\mathcal{L}\{\text{num str}\} \) were extended to admit operations that may result in an error (as discussed in Section 9.3 on page 80), or to admit non-terminating expressions, then this property would fail, even though progress would remain valid.

One possible attitude towards this situation is to simply conclude that type safety cannot be properly discussed in the context of an evaluation dynamics, but only by reference to a structural dynamics. Another point of view is to instrument the dynamics with explicit checks for run-time type errors, and to show that any expression with a type fault must be ill-typed. Re-stated in the contrapositive, this means that a well-typed program cannot incur a type error. A difficulty with this point of view is that one must explicitly account for a form of error solely to prove that it cannot arise! Nevertheless, we will press on to show how a semblance of type safety can be established using evaluation dynamics.

The main idea is to define a judgement \(e \uparrow \) stating, in the jargon of the literature, that the expression \(e \) goes wrong when executed. The exact definition of “going wrong” is given by a set of rules, but the intention is that it should cover all situations that correspond to type errors. The following rules are representative of the general case:

\[
\begin{align*}
\text{plus}(\text{str}[s]; e_2) \uparrow & \quad (10.2a) \\
\text{e}_1 \text{ val} & \quad (10.2b)
\end{align*}
\]

These rules explicitly check for the misapplication of addition to a string; similar rules govern each of the primitive constructs of the language.

Theorem 10.5. If \(e \uparrow \), then there is no \(\tau \) such that \(e : \tau \).

Proof. By rule induction on Rules (10.2). For example, for Rule (10.2a), we observe that \(\text{str}[s] : \text{str} \), and hence \(\text{plus}(\text{str}[s]; e_2) \) is ill-typed. \(\square \)
Corollary 10.6. If $e : \tau$, then $\neg (e \uparrow)$.

Apart from the inconvenience of having to define the judgement $e \uparrow$ only to show that it is irrelevant for well-typed programs, this approach suffers a very significant methodological weakness. If we should omit one or more rules defining the judgement $e \uparrow$, the proof of Theorem 10.5 on the facing page remains valid; there is nothing to ensure that we have included sufficiently many checks for run-time type errors. We can prove that the ones we define cannot arise in a well-typed program, but we cannot prove that we have covered all possible cases. By contrast the structural dynamics does not specify any behavior for ill-typed expressions. Consequently, any ill-typed expression will “get stuck” without our explicit intervention, and the progress theorem rules out all such cases. Moreover, the transition system corresponds more closely to implementation—a compiler need not make any provisions for checking for run-time type errors. Instead, it relies on the statics to ensure that these cannot arise, and assigns no meaning to any ill-typed program. Execution is therefore more efficient, and the language definition is simpler, an elegant win-win situation for both the dynamics and the implementation.

10.4 Cost Dynamics

A structural dynamics provides a natural notion of time complexity for programs, namely the number of steps required to reach a final state. An evaluation dynamics, on the other hand, does not provide such a direct notion of complexity. Since the individual steps required to complete an evaluation are suppressed, we cannot directly read off the number of steps required to evaluate to a value. Instead we must augment the evaluation relation with a cost measure, resulting in a cost dynamics.

Evaluation judgements have the form $e \Downarrow^k v$, with the meaning that e evaluates to v in k steps.

\[
\begin{align*}
\text{num}[n] & \Downarrow^0 \text{num}[n] & (10.3a) \\
\text{num}[n_1] & \Downarrow^{k_1} \text{num}[n_2] & \text{num}[n_2] & \Downarrow^{k_2} \text{num}[n_1 + n_2] & \text{plus}(e_1; e_2) & \Downarrow^{k_1 + k_2 + 1} \text{num}[n_1 + n_2] & (10.3b) \\
\text{str}[s] & \Downarrow^0 \text{str}[s] & (10.3c) \\
\text{str}[s_1] & \Downarrow^{k_1} s_1 & \text{str}[s_2] & \Downarrow^{k_2} s_2 & \text{cat}(e_1; e_2) & \Downarrow^{k_1 + k_2 + 1} \text{str}[s_1 \hat{s}_2] & (10.3d)
\end{align*}
\]
\[
\frac{[e_1/x]e_2 \Downarrow^k v_2}{\text{let}(e_1; x.e_2) \Downarrow^{k+1} v_2} \quad (10.3e)
\]

Theorem 10.7. For any closed expression \(e \) and closed value \(v \) of the same type, \(e \Downarrow^k v \) iff \(e \rightarrow^k v \).

Proof. From left to right proceed by rule induction on the definition of the cost dynamics. From right to left proceed by induction on \(k \), with an inner rule induction on the definition of the structural dynamics. \(\square \)

10.5 Exercises

1. Prove that if \(e \Downarrow v \), then \(v \) val.

2. Prove that if \(e \Downarrow v_1 \) and \(e \Downarrow v_2 \), then \(v_1 = v_2 \).

3. Complete the proof of equivalence of evaluation and structural dynamics.

4. Prove preservation for the instrumented evaluation dynamics, and conclude that well-typed programs cannot go wrong.

5. Is it possible to use environments in a structural dynamics? What difficulties do you encounter?
Part IV

Function Types
Chapter 11

Function Definitions and Values

In the language $L\{\text{num}, \text{str}\}$ we may perform calculations such as the doubling of a given expression, but we cannot express doubling as a concept in itself. To capture the general pattern of doubling, we abstract away from the particular number being doubled using a variable to stand for a fixed, but unspecified, number, to express the doubling of an arbitrary number. Any particular instance of doubling may then be obtained by substituting a numeric expression for that variable. In general an expression may involve many distinct variables, necessitating that we specify which of several possible variables is varying in a particular context, giving rise to a function of that variable.

In this chapter we will consider two extensions of $L\{\text{num}, \text{str}\}$ with functions. The first, and perhaps most obvious, extension is by adding function definitions to the language. A function is defined by binding a name to an abt with a bound variable that serves as the argument of that function. A function is applied by substituting a particular expression (of suitable type) for the bound variable, obtaining an expression.

The domain and range of defined functions are limited to the types nat and str, since these are the only types of expression. Such functions are called first-order functions, in contrast to higher-order functions, which permit functions as arguments and results of other functions. Since the domain and range of a function are types, this requires that we introduce function types whose elements are functions. Consequently, we may form functions of higher type, those whose domain and range may themselves be function types.
Historically the introduction of higher-order functions was responsible for a mistake in language design that subsequently was re-characterized as a feature, called dynamic binding. Dynamic binding arises from getting the definition of substitution wrong by failing to avoid capture. This makes the names of bound variables important, in violation of the fundamental principle of binding stating that the names of bound variables are unimportant.

11.1 First-Order Functions

The language $L\{\text{num str fun}\}$ is the extension of $L\{\text{num str}\}$ with function definitions and function applications as described by the following grammar:

$$\text{Expr} \ e \ ::= \ \text{call}[f](e) \quad f(e) \quad \text{fun}[\tau_1; \tau_2](x_1.e_2; f.e) \quad \text{fun}(x_1: \tau_1): \tau_2 = e_2 \ 	ext{in} \ e \quad \text{definition}$$

The expression $\text{fun}[\tau_1; \tau_2](x_1.e_2; f.e)$ binds the function name f within e to the pattern $x_1.e_2$, which has parameter x_1 and definition e_2. The domain and range of the function are, respectively, the types τ_1 and τ_2. The expression $\text{call}[f](e)$ instantiates the binding of f with the argument e.

The statics of $L\{\text{num str fun}\}$ defines two forms of judgement:

1. Expression typing, $e : \tau$, stating that e has type τ;

2. Function typing, $f(\tau_1) : \tau_2$, stating that f is a function with argument type τ_1 and result type τ_2.

The judgment $f(\tau_1) : \tau_2$ is called the function header of f; it specifies the domain type and the range type of a function.

The statics of $L\{\text{num str fun}\}$ is defined by the following rules:

$$\frac{\Gamma, x_1 : \tau_1 \vdash e_2 : \tau_2 \quad \Gamma, f(\tau_1) : \tau_2 \vdash e : \tau}{\Gamma \vdash \text{fun}[\tau_1; \tau_2](x_1.e_2; f.e) : \tau} \quad (11.1a)$$

$$\frac{\Gamma \vdash f(\tau_1) : \tau_2 \quad \Gamma \vdash e : \tau_1}{\Gamma \vdash \text{call}[f](e) : \tau_2} \quad (11.1b)$$

Function substitution, written $[[x.e/f]]e'$, is defined by induction on the structure of e' much like the definition of ordinary substitution. However, a function name, f, is not a form of expression, but rather can only occur in
Higher-Order Functions

a call of the form \(\text{call}[f](e) \). Function substitution for such expressions is defined by the following rule:

\[
[x.e/f]\text{call}[f](e') = \text{let}(e'; x.e)
\]

At call sites to \(f \) with argument \(e' \), function substitution yields a \(\text{let} \) expression that binds \(x \) to \(e' \) within \(e \).

Lemma 11.1. If \(\Gamma, f(\tau_1) : \tau_2 \vdash e : \tau \) and \(\Gamma, x_1 : \tau_2 \vdash e_2 : \tau_2 \), then \(\Gamma \vdash [x_1.e_2/f]e : \tau \).

Proof. By induction on the structure of \(e' \).

The dynamics of \(\mathcal{L}\{\text{num str fun}\} \) is defined using function substitution:

\[
\text{fun}[\tau_1; \tau_2] (x_1.e_2; f.e) \mapsto [x_1.e_2/f]e
\]

Since function substitution replaces all calls to \(f \) by appropriate \(\text{let} \) expressions, there is no need to give a rule for function calls.

The safety of \(\mathcal{L}\{\text{num str fun}\} \) may be obtained as an immediate corollary of the safety theorem for higher-order functions, which we discuss next.

11.2 Higher-Order Functions

The syntactic and semantic similarity between variable definitions and function definitions in \(\mathcal{L}\{\text{num str fun}\} \) is striking. This suggests that it may be possible to consolidate the two concepts into a single definition mechanism. The gap that must be bridged is the segregation of functions from expressions. A function name \(f \) is bound to an abstracter \(x.e \) specifying a pattern that is instantiated when \(f \) is applied. To consolidate function definitions with expression definitions it is sufficient to *reify* the abstracter into a form of expression, called a *\(\lambda \)-abstraction*, written \(\text{lam}[\tau_1](x.e) \). Correspondingly, we must generalize application to have the form \(\text{ap}(e_1; e_2) \), where \(e_1 \) is any expression, and not just a function name. These are, respectively, the introduction and elimination forms for the *function type*, \(\text{arr}(\tau_1; \tau_2) \), whose elements are functions with domain \(\tau_1 \) and range \(\tau_2 \).
The language $\mathcal{L}\{\text{num str} \to\}$ is the enrichment of $\mathcal{L}\{\text{num str}\}$ with function types, as specified by the following grammar:

\[
\begin{align*}
\text{Type } \tau & ::= \text{arr}(\tau_1; \tau_2) & \tau_1 \to \tau_2 \quad \text{function} \\
\text{Expr } e & ::= \lambda x.\tau \ (x.\ e) & \lambda (x.\ e) \quad \text{abstraction} \\
& \quad \text{ap}(e_1; e_2) & e_1(e_2) \quad \text{application}
\end{align*}
\]

Functions are now “first class” in the sense that a function is an expression of function type.

The statics of $\mathcal{L}\{\text{num str} \to\}$ is given by extending Rules (7.1) with the following rules:

\[
\begin{align*}
\Gamma, x : \tau_1 \vdash e : \tau_2 & \quad \text{(11.4a)} \\
\Gamma \vdash \lambda x.\tau (x.\ e) : \text{arr}(\tau_1; \tau_2) & \\
\Gamma \vdash e_1 : \text{arr}(\tau_2; \tau) & \Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash \text{ap}(e_1; e_2) : \tau & \quad \text{(11.4b)}
\end{align*}
\]

Lemma 11.2 (Inversion). Suppose that $\Gamma \vdash e : \tau$.

1. If $e = \lambda x.\tau (x.\ e)$, then $\tau = \text{arr}(\tau_1; \tau_2)$ and $\Gamma, x : \tau_1 \vdash e : \tau_2$.

2. If $e = \text{ap}(e_1; e_2)$, then there exists τ_2 such that $\Gamma \vdash e_1 : \text{arr}(\tau_2; \tau)$ and $\Gamma \vdash e_2 : \tau_2$.

Proof. The proof proceeds by rule induction on the typing rules. Observe that for each rule, exactly one case applies, and that the premises of the rule in question provide the required result.

Lemma 11.3 (Substitution). If $\Gamma, x : \tau \vdash e' : \tau'$, and $\Gamma \vdash e : \tau$, then $\Gamma \vdash [e/x]e' : \tau'$.

Proof. By rule induction on the derivation of the first judgement.

The dynamics of $\mathcal{L}\{\text{num str} \to\}$ extends that of $\mathcal{L}\{\text{num str}\}$ with the following additional rules:

\[
\begin{align*}
\lambda x.\tau (x.\ e) & \quad \text{val} \quad \text{(11.5a)} \\
\Gamma \vdash e_1 : \tau & \Gamma \vdash e'_1 : \tau \\
\text{ap}(e_1; e_2) & \quad \text{ap}(e'_1; e_2) \quad \text{(11.5b)} \\
\text{ap}(\lambda x.\tau (x.\ e_1); e_2) & \quad [e_2/x]e_1 \quad \text{(11.5c)}
\end{align*}
\]

These rules specify a call-by-name discipline for function application. It is a good exercise to formulate a call-by-value discipline as well.
11.3 Evaluation Dynamics and Definitional Equivalence

Theorem 11.4 (Preservation). If \(e : \tau \) and \(e \mapsto e' \), then \(e' : \tau \).

Proof. The proof is by induction on rules (11.5), which define the dynamics of the language.

Consider rule (11.5c),

\[
\text{ap}(\text{lam}[\tau_2](x.e_1); e_2) \mapsto [e_2/x]e_1.
\]

Suppose that \(\text{ap}(\text{lam}[\tau_2](x.e_1); e_2) : \tau_1 \). By Lemma 11.2 on the preceding page \(e_2 : \tau_2 \) and \(x : \tau_2 \vdash e_1 : \tau_1 \), so by Lemma 11.3 on the facing page \([e_2/x]e_1 : \tau_1 \).

The other rules governing application are handled similarly.

Lemma 11.5 (Canonical Forms). If \(e \text{ val} \) and \(e : \text{arr}(\tau_1; \tau_2) \), then \(e = \text{lam}[\tau_1](x.e_2) \) for some \(x \) and \(e_2 \) such that \(x : \tau_1 \vdash e_2 : \tau_2 \).

Proof. By induction on the typing rules, using the assumption \(e \text{ val} \).

Theorem 11.6 (Progress). If \(e : \tau \), then either \(e \) is a value, or there exists \(e' \) such that \(e \mapsto e' \).

Proof. The proof is by induction on rules (11.4). Note that since we consider only closed terms, there are no hypotheses on typing derivations.

Consider rule (11.4b). By induction either \(e_1 \text{ val} \) or \(e_1 \mapsto e_1' \). In the latter case we have \(\text{ap}(e_1; e_2) \mapsto \text{ap}(e_1'; e_2) \). In the former case, we have by Lemma 11.5 that \(e_1 = \text{lam}[\tau_2](x.e) \) for some \(x \) and \(e \). But then \(\text{ap}(e_1; e_2) \mapsto [e_2/x]e \).

11.3 Evaluation Dynamics and Definitional Equivalence

An inductive definition of the evaluation judgement \(e \Downarrow v \) for \(L\{\text{num str} \rightarrow\} \) is given by the following rules:

\[
\text{lam}[\tau](x.e) \Downarrow \text{lam}[\tau](x.e) \quad (11.6a)
\]

\[
e_1 \Downarrow \text{lam}[\tau](x.e) \quad [e_2/x]e \Downarrow v \quad \text{ap}(e_1; e_2) \Downarrow v \quad (11.6b)
\]

It is easy to check that if \(e \Downarrow v \), then \(v \text{ val} \), and that if \(e \text{ val} \), then \(e \Downarrow e \).

Theorem 11.7. \(e \Downarrow v \) iff \(e \mapsto^* v \) and \(v \text{ val} \).
Proof. In the forward direction we proceed by rule induction on Rules (11.6). The proof makes use of a pasting lemma stating that, for example, if \(e_1 \mapsto^* e'_1 \), then \(\text{ap}(e_1; e_2) \mapsto^* \text{ap}(e'_1; e_2) \), and similarly for the other constructs of the language.

In the reverse direction we proceed by rule induction on Rules (8.1). The proof relies on a converse evaluation lemma, which states that if \(e \mapsto e' \) and \(e' \Downarrow v \), then \(e \Downarrow v \). This is proved by rule induction on Rules (11.5).

Definitional equivalence for the call-by-name dynamics of \(\mathcal{L}\{\text{num str } \to \} \) is defined by a straightforward extension to Rules (8.11).

\[
\frac{
\Gamma \vdash \text{ap}(\lambda \tau \,(x \cdot e_2); e_1) \equiv [e_1/x]e_2 : \tau_2
}{
\Xi \vdash e_1 \equiv e_2 : \tau
}\]
(11.7a)

\[
\frac{
\Gamma \vdash e_1 \equiv e'_1 : \tau_2 \to \tau \quad \Gamma \vdash e_2 \equiv e'_2 : \tau_2
}{
\Gamma \vdash \text{ap}(e_1; e_2) \equiv \text{ap}(e'_1; e'_2) : \tau
}\]
(11.7b)

\[
\frac{
\Gamma, x : \tau_1 \vdash e_2 \equiv e'_2 : \tau_2
}{
\Gamma \vdash \lambda \tau \,(x \cdot e_2) \equiv \lambda \tau \,(x \cdot e'_2) : \tau_1 \to \tau_2
}\]
(11.7c)

Definitional equivalence for call-by-value requires a small bit of additional machinery. The main idea is to restrict Rule (11.7a) to require that the argument be a value. However, to be fully expressive, we must also widen the concept of a value to include all variables that are in scope, so that Rule (11.7a) would apply even when the argument is a variable. The justification for this is that in call-by-value, the parameter of a function stands for the value of its argument, and not for the argument itself. The call-by-value definitional equivalence judgement has the form

\[
\Xi \vdash e_1 \equiv e_2 : \tau,
\]

where \(\Xi \) is the finite set of hypotheses \(x_1 \text{ val}, \ldots, x_k \text{ val} \) governing the variables in scope at that point. We write \(\Xi \vdash e \text{ val} \) to indicate that \(e \) is a value under these hypotheses, so that, for example, \(\Xi, x \text{ val} \vdash x \text{ val} \).

The rule of definitional equivalence for call-by-value are similar to those for call-by-name, modified to take account of the scopes of value variables. Two illustrative rules are as follows:

\[
\Xi, x \text{ val} \quad \Gamma, x : \tau_1 \vdash e_2 \equiv e'_2 : \tau_2
\]

\[
\Xi \vdash \lambda \tau \,(x \cdot e_2) \equiv \lambda \tau \,(x \cdot e'_2) : \tau_1 \to \tau_2
\]
(11.8a)

\[
\Xi \vdash e_1 \text{ val}
\]

\[
\Xi \vdash \text{ap}(\lambda \tau \,(x \cdot e_2); e_1) \equiv [e_1/x]e_2 : \tau
\]
(11.8b)
11.4 Dynamic Scope

The dynamics of function application given by Rules (11.5) is defined only for expressions without free variables. When a function is called, the argument is substituted for the function parameter, ensuring that the result remains closed. Moreover, since substitution of closed expressions can never incur capture, the scopes of variables are not disturbed by the dynamics, ensuring that the principles of binding and scope described in Chapter 3 are respected. This treatment of variables is called static scoping, or static binding, to contrast it with an alternative approach that we now describe.

Another approach, called dynamic scoping, or dynamic binding, is sometimes advocated as an alternative to static binding. Evaluation is defined for expressions that may contain free variables. Evaluation of a variable is undefined; it is an error to ask for the value of an unbound variable. Function call is defined similarly to dynamic binding, except that when a function is called, the argument replaces the parameter in the body, possibly incurring, rather than avoiding, capture of free variables in the argument. (As we will explain shortly, this behavior is considered to be a feature, not a bug!)

The difference between replacement and substitution may be illustrated by example. Let e be the expression $\lambda (x:\text{str}. y + |x|)$ in which the variable y occurs free, and let e' be the expression $\lambda (y:\text{str}. f(y))$ with free variable f. If we substitute e for f in e' we obtain an expression of the form

$$\lambda (y':\text{str}. \lambda (x:\text{str}. y + |x|)(y')),$$

where the bound variable, y, in e has been renamed to some fresh variable y' so as to avoid capture. If we instead replace f by e in e' we obtain

$$\lambda (y:\text{str}. \lambda (x:\text{str}. y + |x|)(y))$$

in which y is no longer free: it has been captured during replacement.

The implications of this seemingly small change to the dynamics of $\mathcal{L}\{\rightarrow\}$ are far-reaching. The most obvious implication is that the language is not type safe. In the above example we have that $y:\text{nat} \vdash e:\text{str} \rightarrow \text{nat}$, and that $f:\text{str} \rightarrow \text{nat} \vdash e':\text{str} \rightarrow \text{nat}$. It follows that $y:\text{nat} \vdash [e/f]e':\text{str} \rightarrow \text{nat}$, but it is easy to see that the result of replacing f by e in e' is ill-typed, regardless of what assumption we make about y. The difficulty, of course, is that the bound occurrence of y in e' has type str, whereas the free occurrence in e must have type nat in order for e to be well-formed.

One way around this difficulty is to ignore types altogether, and rely on run-time checks to ensure that bad things do not happen, despite the...
evident failure of safety. (See Chapter 21 for a full exploration of this approach.) But even if ignore the safety issues, we are still left with the serious problem that the names of bound variables matter, and cannot be altered without changing the meaning of a program. So, for example, to use expression e', one must bear in mind that the parameter, f, occurs within the scope of a binder for y, a fact that is not revealed by the type of e' (and certainly not if one disregards types entirely!) If we change e' so that it binds a different variable, say z, then we must correspondingly change e to ensure that it refers to z, and not y, in order to preserve the overall behavior of the system of two expressions. This means that e and e' must be developed in tandem, violating a basic principle of modular decomposition. (For more on dynamic scope, please see Chapter 35.)

11.5 Exercises
The language $L\{\text{nat} \rightarrow\}$, better known as Gödel’s System T, is the combination of function types with the type of natural numbers. In contrast to $L\{\text{num\ str}\}$, which equips the naturals with some arbitrarily chosen arithmetic primitives, the language $L\{\text{nat} \rightarrow\}$ provides a general mechanism, called primitive recursion, from which these primitives may be defined. Primitive recursion captures the essential inductive character of the natural numbers, and hence may be seen as an intrinsic termination proof for each program in the language. Consequently, we may only define total functions in the language, those that always return a value for each argument. In essence every program in $L\{\text{nat} \rightarrow\}$ “comes equipped” with a proof of its termination. While this may seem like a shield against infinite loops, it is also a weapon that can be used to show that some programs cannot be written in $L\{\text{nat} \rightarrow\}$. To do so would require a master termination proof for every possible program in the language, something that we shall prove does not exist.
12.1 Statics

The syntax of $\mathcal{L}\{\text{nat} \to\}$ is given by the following grammar:

- **Type** $\tau ::= \text{nat} \quad \text{naturals}$
- $\text{arr}(\tau_1; \tau_2) \quad \tau_1 \to \tau_2 \quad \text{function}$

- **Expr** $e ::= x \quad \text{variable}$
- $z \quad \text{zero}$
- $\text{s}(e) \quad \text{successor}$
- $\text{natrec}(e; e_0; x.y.e_1) \quad \text{natrec}\{z \Rightarrow e_0 \mid s(x) \text{ with } y \Rightarrow e_1\} \quad \text{recursion}$
- $\text{lam}[\tau](x.y.e) \quad \lambda(x:\tau.e) \quad \text{abstraction}$
- $\text{ap}(e_1; e_2) \quad e_1(e_2) \quad \text{application}$

We write \overline{n} for the expression $s(\ldots s(z))$, in which the successor is applied $n \geq 0$ times to zero. The expression $\text{natrec}(e; e_0; x.y.e_1)$ is called *primitive recursion*. It represents the e-fold iteration of the transformation $x.y.e_1$ starting from e_0. The bound variable x represents the predecessor and the bound variable y represents the result of the x-fold iteration. The "with" clause in the concrete syntax for the recursor binds the variable y to the result of the recursive call, as will become apparent shortly.

Sometimes *iteration*, written $\text{natiter}(e; e_0; y.e_1)$, is considered as an alternative to primitive recursion. It has essentially the same meaning as primitive recursion, except that only the result of the recursive call is bound to y in e_1, and no binding is made for the predecessor. Clearly iteration is a special case of primitive recursion, since we can always ignore the predecessor binding. Conversely, primitive recursion is definable from iteration, provided that we have product types (Chapter 14) at our disposal. To define primitive recursion from iteration we simultaneously compute the predecessor while iterating the specified computation.

The statics of $\mathcal{L}\{\text{nat} \to\}$ is given by the following typing rules:

\[
\begin{align*}
\Gamma, x : \text{nat} & \vdash x : \text{nat} & \quad (12.1a) \\
\Gamma & \vdash z : \text{nat} & \quad (12.1b) \\
\Gamma & \vdash e : \text{nat} & \quad (12.1c) \\
\Gamma & \vdash s(e) : \text{nat} & \\
\Gamma & \vdash e : \text{nat} & \quad \Gamma & \vdash e_0 : \tau & \quad \Gamma, x : \text{nat}, y : \tau & \vdash e_1 : \tau & \quad (12.1d) \\
\Gamma & \vdash \text{natrec}(e; e_0; x.y.e_1) : \tau \\
\Gamma, x : \sigma & \vdash e : \tau & \quad (12.1e) \\
\Gamma & \vdash \text{lam}[\sigma](x.e) : \text{arr}(\sigma; \tau)
\end{align*}
\]
12.2 Dynamics

\[
\frac{\Gamma \vdash e_1 : \text{arr}(\tau_2; \tau) \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{ap}(e_1; e_2) : \tau}
\] (12.1f)

As usual, admissibility of the structural rule of substitution is crucially important.

Lemma 12.1. If \(\Gamma \vdash e : \tau \) and \(\Gamma, x : \tau \vdash e' : \tau' \), then \(\Gamma \vdash [e/x]e' : \tau' \).

12.2 Dynamics

The dynamics of \(L\{\text{nat} \to \} \) adopts a call-by-name interpretation of function application, and requires that the successor operation evaluate its argument (so that values of type \(\text{nat} \) are numerals).

The closed values of \(L\{\text{nat} \to \} \) are determined by the following rules:

\(z \text{ val} \) (12.2a)

\(e \text{ val} \)

\(s(e) \text{ val} \) (12.2b)

\(\text{lam}[\tau](x.e) \text{ val} \) (12.2c)

The dynamics of \(L\{\text{nat} \to \} \) is given by the following rules:

\(e \mapsto e' \) (12.3a)

\(s(e) \mapsto s(e') \)

\(e_1 \mapsto e'_1 \)

\(\text{ap}(e_1; e_2) \mapsto \text{ap}(e'_1; e'_2) \) (12.3b)

\(\text{ap}(\text{lam}[\tau](x.e); e_2) \mapsto [e_2/x]e \) (12.3c)

\(\text{natrec}(e; e_0; x.y.e_1) \mapsto \text{natrec}(e'; e_0; x.y.e_1) \) (12.3d)

\(\text{natrec}(z; e_0; x.y.e_1) \mapsto e_0 \) (12.3e)

\(s(e) \text{ val} \)

\(\text{natrec}(s(e); e_0; x.y.e_1) \mapsto [e, \text{natrec}(e; e_0; x.y.e_1)/x, y]e_1 \) (12.3f)

Rules (12.3e) and (12.3f) specify the behavior of the recursor on \(z \) and \(s(e) \).

In the former case the recursor evaluates \(e_0 \), and in the latter case the variable \(x \) is bound to the predecessor, \(e \), and \(y \) is bound to the (unevaluated) recursion on \(e \). If the value of \(y \) is not required in the rest of the computation, the recursive call will not be evaluated.
Lemma 12.2 (Canonical Forms). If $e : \tau$ and $e \val$, then

1. If $\tau = \nat$, then $e = s(s(\ldots z))$ for some number $n \geq 0$ occurrences of the successor starting with zero.

2. If $\tau = \tau_1 \rightarrow \tau_2$, then $e = \lambda (x : \tau_1). e_2$ for some e_2.

Theorem 12.3 (Safety). 1. If $e : \tau$ and $e \rightarrow e'$, then $e' : \tau$.

2. If $e : \tau$, then either $e \val$ or $e \rightarrow e'$ for some e'

12.3 Definability

A mathematical function $f : \mathbb{N} \rightarrow \mathbb{N}$ on the natural numbers is definable in $\mathcal{L}\{\nat \rightarrow}\}$ iff there exists an expression e_f of type $\nat \rightarrow \nat$ such that for every $n \in \mathbb{N}$,

$$e_f(n) \equiv f(n) : \nat. \ (12.4)$$

That is, the numeric function $f : \mathbb{N} \rightarrow \mathbb{N}$ is definable iff there is a expression e_f of type $\nat \rightarrow \nat$ such that, when applied to the numeral representing the argument $n \in \mathbb{N}$, is definitionally equivalent to the numeral corresponding to $f(n) \in \mathbb{N}$.

Definitional equivalence for $\mathcal{L}\{\nat \rightarrow}\}$, written $\Gamma \vdash e \equiv e' : \tau$, is the strongest congruence containing these axioms:

$$\Gamma \vdash \text{ap}(\text{lam}\[\tau\](x.e_2);e_1) \equiv [e_1/x]e_2 : \tau \quad (12.5a)$$

$$\Gamma \vdash \text{natrec}(z;e_0;x.y.e_1) \equiv e_0 : \tau \quad (12.5b)$$

$$\Gamma \vdash \text{natrec}(s(e);e_0;x.y.e_1) \equiv [e,\text{natrec}(e;e_0;x.y.e_1)/x,y]e_1 : \tau \quad (12.5c)$$

For example, the doubling function, $d(n) = 2 \times n$, is definable in $\mathcal{L}\{\nat \rightarrow}\}$ by the expression $e_d : \nat \rightarrow \nat$ given by

$$\lambda (x : \nat. \text{natrec } x \{z \Rightarrow z \mid s(u) \text{ with } v \Rightarrow s(s(v))\}).$$

To check that this defines the doubling function, we proceed by induction on $n \in \mathbb{N}$. For the basis, it is easy to check that

$$e_d(\bar{0}) \equiv \bar{0} : \nat.$$
For the induction, assume that
\[e_d(n) \equiv d(n) : \text{nat}. \]

Then calculate using the rules of definitional equivalence:
\[
e_d(n+1) \equiv s(s(e_d(n)))
\equiv s(s(2 \times n))
\equiv 2 \times (n+1)
\equiv d(n+1).
\]

As another example, consider the following function, called Ackermann’s function, defined by the following equations:
\[
A(0, n) = n + 1
A(m + 1, 0) = A(m, 1)
A(m + 1, n + 1) = A(m, A(m + 1, n)).
\]

This function grows very quickly. For example, \(A(4, 2) \approx 2^{65,536} \), which is often cited as being much larger than the number of atoms in the universe! Yet we can show that the Ackermann function is total by a lexicographic induction on the pair of argument \((m, n)\). On each recursive call, either \(m\) decreases, or else \(m\) remains the same, and \(n\) decreases, so inductively the recursive calls are well-defined, and hence so is \(A(m, n)\).

A first-order primitive recursive function is a function of type \(\text{nat} \to \text{nat}\) that is defined using primitive recursion, but without using any higher-order functions. Ackermann’s function is defined so that it is not first-order primitive recursive, but is higher-order primitive recursive. The key is to showing that it is definable in \(\mathcal{L}\{\text{nat} \to \}\) is to observe that \(A(m + 1, n)\) iterates the function \(A(m, -)\) for \(n\) times, starting with \(A(m, 1)\). As an auxiliary, let us define the higher-order function
\[
\text{it} : (\text{nat} \to \text{nat}) \to \text{nat} \to \text{nat} \to \text{nat}
\]
to be the \(\lambda\)-abstraction
\[
\lambda (f : \text{nat} \to \text{nat}, \lambda (n : \text{nat}. \text{natrec} n \{ z \Rightarrow \text{id} \mid s(...) \ \text{with} \ g \Rightarrow f \circ g\})),
\]
where \(\text{id} = \lambda (x : \text{nat}. x)\) is the identity, and \(f \circ g = \lambda (x : \text{nat}. f(g(x)))\) is the composition of \(f\) and \(g\). It is easy to check that
\[
\text{it}(f)(n)(m) \equiv f^{(n)}(m) : \text{nat},
\]
where the latter expression is the n-fold composition of f starting with m. We may then define the Ackermann function

$$e_a : \text{nat} \to \text{nat} \to \text{nat}$$

to be the expression

$$\lambda (m:\text{nat}. \text{natrec } m \{ z \Rightarrow \text{succ} \mid s(_{\cdot}) \text{ with } f \Rightarrow \lambda (n:\text{nat}. \text{it}(f)(n)(f(\overline{1})))\})$$

It is instructive to check that the following equivalences are valid:

$$e_a (\overline{0}) (\overline{n}) \equiv s (\overline{n}) \tag{12.6}$$

$$e_a (\overline{m + 1}) (\overline{0}) \equiv e_a (\overline{m}) (\overline{1}) \tag{12.7}$$

$$e_a (\overline{m + 1}) (\overline{n + 1}) \equiv e_a (\overline{m}) (e_a (\overline{s(m)}) (\overline{n})) \tag{12.8}$$

That is, the Ackermann function is definable in $\mathcal{L}\{\text{nat} \to \}$.

12.4 Non-Definability

It is impossible to define an infinite loop in $\mathcal{L}\{\text{nat} \to \}$.

Theorem 12.4. If $e : \tau$, then there exists $v \text{ val}$ such that $e \equiv v : \tau$.

Proof. See Corollary 48.9 on page 446.

Consequently, values of function type in $\mathcal{L}\{\text{nat} \to \}$ behave like mathematical functions: if $f : \sigma \to \tau$ and $e : \sigma$, then $f(e)$ evaluates to a value of type τ. Moreover, if $e : \text{nat}$, then there exists a natural number n such that $e \equiv n : \text{nat}$.

Using this, we can show, using a technique called diagonalization, that there are functions on the natural numbers that are not definable in the $\mathcal{L}\{\text{nat} \to \}$. We make use of a technique, called Gödel-numbering, that assigns a unique natural number to each closed expression of $\mathcal{L}\{\text{nat} \to \}$. This allows us to manipulate expressions as data values in $\mathcal{L}\{\text{nat} \to \}$, and hence permits $\mathcal{L}\{\text{nat} \to \}$ to compute with its own programs.\(^1\)

The essence of Gödel-numbering is captured by the following simple construction on abstract syntax trees. (The generalization to abstract binding trees is slightly more difficult, the main complication being to ensure

\(^1\)The same technique lies at the heart of the proof of Gödel’s celebrated incompleteness theorem. The non-definability of certain functions on the natural numbers within $\mathcal{L}\{\text{nat} \to \}$ may be seen as a form of incompleteness similar to that considered by Gödel.
that α-equivalent expressions are assigned the same Gödel number.) Recall that a general ast, a, has the form \(o(a_1, \ldots, a_k) \), where \(o \) is an operator of arity \(k \). Fix an enumeration of the operators so that every operator has an index \(i \in \mathbb{N} \), and let \(m \) be the index of \(o \) in this enumeration. Define the Gödel number \(\langle a \rangle \) of \(a \) to be the number

\[
2^m 3^{n_1} 5^{n_2} \cdots p_k^{n_k},
\]

where \(p_k \) is the \(k \)th prime number (so that \(p_0 = 2, p_1 = 3 \), and so on), and \(n_1, \ldots, n_k \) are the Gödel numbers of \(a_1, \ldots, a_k \), respectively. This obviously assigns a natural number to each ast. Conversely, given a natural number, \(n \), we may apply the prime factorization theorem to “parse” \(n \) as a unique abstract syntax tree. (If the factorization is not of the appropriate form, which can only be because the arity of the operator does not match the number of factors, then \(n \) does not code any ast.)

Now, using this representation, we may define a (mathematical) function \(f_{\text{univ}} : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \) such that, for any \(e : \text{nat} \to \text{nat} \), \(f_{\text{univ}}(\langle e \rangle)(m) = n \) iff \(e(m) = n : \text{nat} \).\(^2\) The determinacy of the dynamics, together with Theorem 12.4 on the preceding page, ensure that \(f_{\text{univ}} \) is a well-defined function. It is called the universal function for \(\mathcal{L}\{\text{nat} \to\} \) because it specifies the behavior of any expression \(e \) of type \(\text{nat} \to \text{nat} \). Using the universal function, let us define an auxiliary mathematical function, called the diagonal function, \(d : \mathbb{N} \to \mathbb{N} \), by the equation \(d(m) = f_{\text{univ}}(m)(m) \). This function is chosen so that \(d(\langle e \rangle) = n \) iff \(e(\langle e \rangle) = n : \text{nat} \). (The motivation for this definition will be apparent in a moment.)

The function \(d \) is not definable in \(\mathcal{L}\{\text{nat} \to\} \). Suppose that \(d \) were defined by the expression \(e_d \), so that we have

\[
e_d(\langle e \rangle) \equiv e(\langle e \rangle) : \text{nat}.
\]

Let \(e_D \) be the expression

\[
\lambda (x : \text{nat}. \, s(e_d(x)))
\]

of type \(\text{nat} \to \text{nat} \). We then have

\[
e_D(\langle e \rangle) \equiv s(e_d(\langle e_D \rangle))
\]

\[
\equiv s(e(\langle e_D \rangle)).
\]

\(^2\)The value of \(f_{\text{univ}}(k)(m) \) may be chosen arbitrarily to be zero when \(k \) is not the code of any expression \(e \).
But the termination theorem implies that there exists \(n \) such that \(e_D(\overline{e_D}) \equiv \overline{n} \), and hence we have \(\overline{n} \equiv s(\overline{n}) \), which is impossible.

The function \(f_{\text{univ}} \) is computable (that is, one can write an interpreter for \(L\{\text{nat} \rightarrow \} \)), but it is not programmable in \(L\{\text{nat} \rightarrow \} \) itself. In general a language \(L \) is universal if we can write an interpreter for \(L \) in the language \(L \) itself. The foregoing argument shows that \(L\{\text{nat} \rightarrow \} \) is not universal. Consequently, there are computable numeric functions, such as the diagonal function, that cannot be programmed in \(L\{\text{nat} \rightarrow \} \). Consequently, the universal function for \(L\{\text{nat} \rightarrow \} \) cannot be programmed in the language. In other words, one cannot write an interpreter for \(L\{\text{nat} \rightarrow \} \) in the language itself!

12.5 Exercises

1. Explore variant dynamics for \(L\{\text{nat} \rightarrow \} \), both separately and in combination, in which the successor does not evaluate its argument, and in which functions are called by value.
Chapter 13

Plotkin’s PCF

The language $\mathcal{L}\{\text{nat} \rightarrow\}$, also known as Plotkin’s PCF, integrates functions and natural numbers using general recursion, a means of defining self-referential expressions. In contrast to $\mathcal{L}\{\text{nat} \rightarrow\}$ expressions in $\mathcal{L}\{\text{nat} \rightarrow\}$ may not terminate when evaluated; consequently, functions are partial (may be undefined for some arguments), rather than total (which explains the “partial arrow” notation for function types). Compared to $\mathcal{L}\{\text{nat} \rightarrow\}$, the language $\mathcal{L}\{\text{nat} \rightarrow\}$ moves the termination proof from the expression itself to the mind of the programmer. The type system no longer ensures termination, which permits a wider range of functions to be defined in the system, but at the cost of admitting infinite loops when the termination proof is either incorrect or absent.

The crucial concept embodied in $\mathcal{L}\{\text{nat} \rightarrow\}$ is the fixed point characterization of recursive definitions. In ordinary mathematical practice one may define a function f by recursion equations such as these:

$$f(0) = 1$$
$$f(n + 1) = (n + 1) \times f(n)$$

These may be viewed as simultaneous equations in the variable, f, ranging over functions on the natural numbers. The function we seek is a solution to these equations—a function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that the above conditions are satisfied. We must, of course, show that these equations have a unique solution, which is easily shown by mathematical induction on the argument to f.

The solution to such a system of equations may be characterized as the fixed point of an associated functional (operator mapping functions to
functions). To see this, let us re-write these equations in another form:

\[
f(n) = \begin{cases}
1 & \text{if } n = 0 \\
n \times f(n') & \text{if } n = n' + 1
\end{cases}
\]

Re-writing yet again, we seek \(f \) such that

\[
f : n \mapsto \begin{cases}
1 & \text{if } n = 0 \\
n \times f(n') & \text{if } n = n' + 1
\end{cases}
\]

Now define the functional \(F \) by the equation \(F(f) = f' \), where

\[
f' : n \mapsto \begin{cases}
1 & \text{if } n = 0 \\
n \times f(n') & \text{if } n = n' + 1
\end{cases}
\]

Note well that the condition on \(f' \) is expressed in terms of the argument, \(f \), to the functional \(F \), and not in terms of \(f' \) itself! The function \(f \) we seek is then a fixed point of \(F \), which is a function \(f : \mathbb{N} \to \mathbb{N} \) such that \(f = F(f) \). In other words \(f \) is defined to the \(\text{fix}(F) \), where \(\text{fix} \) is an operator on functionals yielding a fixed point of \(F \).

Why does an operator such as \(F \) have a fixed point? Informally, a fixed point may be obtained as the limit of series of approximations to the desired solution obtained by iterating the functional \(F \). This is where partial functions come into the picture. Let us say that a partial function, \(\phi \) on the natural numbers, is an approximation to a total function, \(f \), if \(\phi(m) = n \) implies that \(f(m) = n \). Let \(\bot : \mathbb{N} \to \mathbb{N} \) be the totally undefined partial function—\(\bot(n) \) is undefined for every \(n \in \mathbb{N} \). Intuitively, this is the “worst” approximation to the desired solution, \(f \), of the recursion equations given above. Given any approximation, \(\phi \), of \(f \), we may “improve” it by considering \(\phi' = F(\phi) \). Intuitively, \(\phi' \) is defined on 0 and on \(m + 1 \) for every \(m \geq 0 \) on which \(\phi \) is defined. Continuing in this manner, \(\phi'' = F(\phi') = F(F(\phi)) \) is an improvement on \(\phi' \), and hence a further improvement on \(\phi \). If we start with \(\bot \) as the initial approximation to \(f \), then pass to the limit

\[
\lim_{i \geq 0} F^{(i)}(\bot),
\]

we will obtain the least approximation to \(f \) that is defined for every \(m \in \mathbb{N} \), and hence is the function \(f \) itself. Turning this around, if the limit exists, it must be the solution we seek.

This fixed point characterization of recursion equations is taken as a primitive concept in \(L\{\text{nat} \to \} \)—we may obtain the least fixed point of any
functional definable in the language. Using this we may solve any set of recursion equations we like, with the proviso that there is no guarantee that the solution is a total function. Rather, it is guaranteed to be a partial function that may be undefined on some, all, or no inputs. This is the price we may for expressive power—we may solve all systems of equations, but the solution may not be as well-behaved as we might like it to be. It is our task as programmer's to ensure that the functions defined by recursion are total—all of our loops terminate.

13.1 Statics

The abstract binding syntax of $L\{\text{nat} \rightarrow \}$ is given by the following grammar:

$$
\text{Type } \tau ::= \text{nat nat} \quad \text{naturals} \\
\text{parr}(\tau_1; \tau_2) \quad \tau_1 \rightarrow \tau_2 \quad \text{partial function} \\
\text{Expr } e ::= x x \quad \text{variable} \\
\quad z z \quad \text{zero} \\
\quad s(e) s(e) \quad \text{successor} \\
\quad \text{ifz}(e; e_0; x.e_1) \quad \{z \Rightarrow e_0 | s(x) \Rightarrow e_1\} \quad \text{zero test} \\
\quad \text{lam}[\tau](x.e) \quad \lambda (x: \tau.e) \quad \text{abstraction} \\
\quad \text{ap}(e_1; e_2) \quad e_1(e_2) \quad \text{application} \\
\quad \text{fix}[\tau](x.e) \quad \text{fix } x: \tau \quad \text{recursion}
$$

The expression $\text{fix}[\tau](x.e)$ is called general recursion; it is discussed in more detail below. The expression $\text{ifz}(e; e_0; x.e_1)$ branches according to whether e evaluates to z or not, binding the predecessor to x in the case that it is not.

The statics of $L\{\text{nat} \rightarrow \}$ is inductively defined by the following rules:

1. $\Gamma, x : \tau \vdash x : \tau$ (13.1a)
2. $\Gamma \vdash z : \text{nat}$ (13.1b)
3. $\Gamma \vdash e : \text{nat}$ (13.1c)
4. $\Gamma \vdash s(e) : \text{nat}$ (13.1d)
5. $\Gamma \vdash e : \text{nat} \quad \Gamma \vdash e_0 : \tau \quad \Gamma, x : \text{nat} \vdash e_1 : \tau \\
 \Gamma \vdash \text{ifz}(e; e_0; x.e_1) : \tau$ (13.1e)
6. $\Gamma, x : \tau_1 \vdash e : \tau_2 \\
 \Gamma \vdash \text{lam}[\tau_1](x.e) : \text{parr}(\tau_1; \tau_2)$
\[\Gamma \vdash e_1 : \text{parr}(\tau_2; \tau) \quad \Gamma \vdash e_2 : \tau_2 \]
\[\Gamma \vdash \text{ap}(e_1; e_2) : \tau \]
\[\Gamma, x : \tau \vdash e : \tau \]
\[\Gamma \vdash \text{fix}[\tau](x.e) : \tau \]

Rule (13.1g) reflects the self-referential nature of general recursion. To show that \(\text{fix}[\tau](x.e)\) has type \(\tau\), we assume that it is the case by assigning that type to the variable, \(x\), which stands for the recursive expression itself, and checking that the body, \(e\), has type \(\tau\) under this very assumption.

The structural rules, including in particular substitution, are admissible for the static semantics.

Lemma 13.1. If \(\Gamma, x : \tau \vdash e' : \tau'\), \(\Gamma \vdash e : \tau\), then \(\Gamma \vdash [e/x]e' : \tau'\).

13.2 Dynamics

The dynamic semantics of \(L\{\text{nat} \rightarrow \}\) is defined by the judgements \(e \text{ val}\), specifying the closed values, and \(e \mapsto e'\), specifying the steps of evaluation. We will consider a call-by-name dynamics for function application, and require that the successor evaluate its argument.

The judgement \(e \text{ val}\) is defined by the following rules:

\[
\begin{align*}
\text{z val} & \quad (13.2a) \\
\text{s(e) val} & \quad (13.2b) \\
\text{lam}[\tau](x.e) \text{ val} & \quad (13.2c)
\end{align*}
\]

The transition judgement \(e \mapsto e'\) is defined by the following rules:

\[
\begin{align*}
e \mapsto e' & \quad (13.3a) \\
s(e) \mapsto s(e') & \\
\text{ifz}(e; e_0; x.e_1) \mapsto \text{ifz}(e'; e_0; x.e_1) & \quad (13.3b) \\
\text{ifz}(z; e_0; x.e_1) & \mapsto e_0 & \quad (13.3c) \\
s(e) \text{ val} \quad \text{ifz}(s(e); e_0; x.e_1) & \mapsto [e/x]e_1 & \quad (13.3d) \\
e_1 \mapsto e'_1 & \quad (13.3e) \\
\text{ap}(e_1; e_2) \mapsto \text{ap}(e'_1; e_2) & \\
\end{align*}
\]
13.3 Definability

Rule (13.3g) implements self-reference by substituting the recursive expression itself for the variable \(x \) in its body. This is called *unwinding* the recursion.

Theorem 13.2 (Safety).

1. If \(e : \tau \) and \(e \rightarrow e' \), then \(e' : \tau \).

2. If \(e : \tau \), then either \(e \) val or there exists \(e' \) such that \(e \rightarrow e' \).

Proof. The proof of preservation is by induction on the derivation of the transition judgement. Consider Rule (13.3g). Suppose that \(\text{fix}[\tau](\ldots) : \tau \). By inversion of typing we have \(\text{fix}[\tau](\ldots) : \tau \vdash [\text{fix}[\tau](\ldots)/x]e : \tau \), from which the result follows directly by transitivity of the hypothetical judgement. The proof of progress proceeds by induction on the derivation of the typing judgement. For example, for Rule (13.1g) the result follows immediately since we may make progress by unwinding the recursion.

Definitional equivalence for \(\mathcal{L}\{	ext{nat} \rightarrow \} \), written \(\Gamma \vdash e_1 \equiv e_2 : \tau \), is defined to be the strongest congruence containing the following axioms:

\[
\begin{align*}
\Gamma \vdash \text{ifz}(z; e_0; x.e_1) & \equiv e_0 : \tau \\
\Gamma \vdash \text{ifz}(s(e); e_0; x.e_1) & \equiv [e/x]e_1 : \tau \\
\Gamma \vdash \text{fix}[\tau](x.e) & \equiv [\text{fix}[\tau](x.e)/x]e : \tau \\
\Gamma \vdash \text{ap}(\text{lam}[\tau](x.e_2); e_1) & \equiv [e_1/x]e_2 : \tau
\end{align*}
\]

These rules are sufficient to calculate the value of any closed expression of type \(\text{nat} \): if \(e : \text{nat} \), then \(e \equiv n : \text{nat} \) iff \(e \rightarrow^* n \).

13.3 Definability

General recursion is a very flexible programming technique that permits a wide variety of functions to be defined within \(\mathcal{L}\{	ext{nat} \rightarrow \} \). The drawback is that, in contrast to primitive recursion, the termination of a recursively defined function is not intrinsic to the program itself, but rather must be proved extrinsically by the programmer. The benefit is a much greater freedom in writing programs.
General recursive functions are definable from general recursion and non-recursive functions. Let us write \(\text{fun} \, x : \tau_1 \to \tau_2 \) for a recursive function within whose body, \(e : \tau_2 \), are bound two variables, \(y : \tau_1 \) standing for the argument and \(x : \tau_1 \to \tau_2 \) standing for the function itself. The dynamic semantics of this construct is given by the axiom

\[
\text{fun} \, x : \tau_1 \to \tau_2 \, \text{is} \, e \rightarrow [\text{fun} \, x : \tau_1 \to \tau_2 \, \text{is} \, e, e_1 / x, y] \, e.
\]

That is, to apply a recursive function, we substitute the recursive function itself for \(x \) and the argument for \(y \) in its body.

Recursive functions may be defined in \(\mathcal{L}\{\text{nat} \to\} \) using a combination of recursion and functions, writing

\[
\text{fix} \, x : \tau_1 \to \tau_2 \, \text{is} \, \lambda (y : \tau_1. e)
\]

for \(\text{fun} \, x : \tau_1 \to \tau_2 \, \text{is} \, e \). It is a good exercise to check that the static and dynamic semantics of recursive functions are derivable from this definition.

The primitive recursion construct of \(\mathcal{L}\{\text{nat} \to\} \) is defined in \(\mathcal{L}\{\text{nat} \to\} \) using recursive functions by taking the expression

\[
\text{natrec} \, e \{z \Rightarrow e_0 \mid \text{s(x) with} \, y \Rightarrow e_1\}
\]

to stand for the application, \(e'(e) \), where \(e' \) is the general recursive function

\[
\text{fun} \, f : \text{nat} \to \tau \, \text{is} \, \text{if} \, z \Rightarrow e_0 \mid \text{s(x)} \Rightarrow [f(x) / y] \, e_1.
\]

The static and dynamic semantics of primitive recursion are derivable in \(\mathcal{L}\{\text{nat} \to\} \) using this expansion.

In general, functions definable in \(\mathcal{L}\{\text{nat} \to\} \) are partial in that they may be undefined for some arguments. A partial (mathematical) function, \(\phi : \mathbb{N} \to \mathbb{N} \), is definable in \(\mathcal{L}\{\text{nat} \to\} \) iff there is an expression \(e_\phi : \text{nat} \to \text{nat} \) such that \(\phi(m) = n \) iff \(e_\phi(m) \equiv n : \text{nat} \). So, for example, if \(\phi \) is the totally undefined function, then \(e_\phi \) is any function that loops without returning whenever it is called.

It is informative to classify those partial functions \(\phi \) that are definable in \(\mathcal{L}\{\text{nat} \to\} \). These are the so-called partial recursive functions, which are defined to be the primitive recursive functions augmented by the minimization operation: given \(\phi \), define \(\psi(m) \) to be the least \(n \geq 0 \) such that (1) for \(m < n, \phi(m) \) is defined and non-zero, and (2) \(\phi(n) = 0 \). If no such \(n \) exists, then \(\psi(m) \) is undefined.

Theorem 13.3. A partial function \(\phi \) on the natural numbers is definable in \(\mathcal{L}\{\text{nat} \to\} \) iff it is partial recursive.
Proof sketch. Minimization is readily definable in $\mathcal{L}\{\text{nat} \rightarrow\}$, so it is at least as powerful as the set of partial recursive functions. Conversely, we may, with considerable tedium, define an evaluator for expressions of $\mathcal{L}\{\text{nat} \rightarrow\}$ as a partial recursive function, using Gödel-numbering to represent expressions as numbers. Consequently, $\mathcal{L}\{\text{nat} \rightarrow\}$ does not exceed the power of the set of partial recursive functions.

Church’s Law states that the partial recursive functions coincide with the set of effectively computable functions on the natural numbers—those that can be carried out by a program written in any programming language currently available or that will ever be available. Therefore $\mathcal{L}\{\text{nat} \rightarrow\}$ is as powerful as any other programming language with respect to the set of definable functions on the natural numbers.

The universal function, ϕ_{univ}, for $\mathcal{L}\{\text{nat} \rightarrow\}$ is the partial function on the natural numbers defined by

$$\phi_{\text{univ}}(\langle e \rangle)(m) = n \text{ iff } e(m) \equiv n : \text{nat}.$$

In contrast to $\mathcal{L}\{\text{nat} \rightarrow\}$, the universal function ϕ_{univ} for $\mathcal{L}\{\text{nat} \rightarrow\}$ is partial (may be undefined for some inputs). It is, in essence, an interpreter that, given the code $\langle e \rangle$ of a closed expression of type $\text{nat} \rightarrow \text{nat}$, simulates the dynamic semantics to calculate the result, if any, of applying it to the m, obtaining n. Since this process may not terminate, the universal function is not defined for all inputs.

By Church’s Law the universal function is definable in $\mathcal{L}\{\text{nat} \rightarrow\}$. In contrast, we proved in Chapter 12 that the analogous function is not definable in $\mathcal{L}\{\text{nat} \rightarrow\}$ using the technique of diagonalization. It is instructive to examine why that argument does not apply in the present setting. As in Section 12.4 on page 104, we may derive the equivalence

$$e_D(\langle e \rangle) \equiv s(e_D(\langle e \rangle))$$

for $\mathcal{L}\{\text{nat} \rightarrow\}$. The difference, however, is that this equation is not inconsistent! Rather than being contradictory, it is merely a proof that the expression $e_D(\langle e \rangle)$ does not terminate when evaluated, for if it did, the result would be a number equal to its own successor, which is impossible.

13.4 Co-Natural Numbers

The evaluation strategy for the successor operation specified by Rules (13.3) ensures that the type nat is interpreted standardly as the type of natural numbers.

1See Chapter 20 for further discussion of Church’s Law.
numbers. This means that if \(e : \text{nat} \) and \(e \text{ val} \), then \(e \) is definitionally equivalent to a numeral. In contrast the lazy interpretation of successor, obtained by omitting Rule (13.3a), and requiring that \(s(e) \text{ val} \) for any \(e \), ruins this correspondence. The expression

\[
\omega = \text{fix } x : \text{nat} \rightarrow s(x)
\]

evaluates to \(s(\omega) \), which is a value of type \(\text{nat} \). The “number” \(\omega \) may be thought of as an infinite stack of successors, which is therefore larger than any finite stack of successors starting with zero. In other words \(\omega \) is larger than any (finite) natural number, and hence can be regarded as an infinite “natural number.”

Of course it is stretching the terminology to refer to \(\omega \) as a number, much less as a natural number. Rather, we should say that the lazy interpretation of the successor operation gives rise to a distinct type, called the lazy natural numbers, or the co-natural numbers. The latter terminology arises from considering the co-natural numbers as “dual” to the ordinary natural numbers in the following sense. The standard natural numbers are inductively defined as the least type such that if \(e \equiv z : \text{nat} \) or \(e \equiv s(e') : \text{nat} \) for some \(e' : \text{nat} \), then \(e : \text{nat} \). Dually, the co-natural numbers may be regarded as the largest type such that if \(e : \text{conat} \), then either \(e \equiv z : \text{conat} \), or \(e \equiv s(e') : \text{nat} \) for some \(e' : \text{conat} \). The difference is that \(\omega : \text{conat} \), because \(\omega \) is definitionally equivalent to its own successor, whereas it is not the case that \(\omega : \text{nat} \), according to these definitions.

The duality between the natural numbers and the co-natural numbers is developed further in Chapter 18, wherein we consider the concepts of inductive and co-inductive types. Eagerness and laziness in general is discussed further in Chapter 39.

13.5 Exercises
Part V

Finite Data Types
Chapter 14

Product Types

The binary product of two types consists of ordered pairs of values, one from each type in the order specified. The associated eliminatory forms are projections, which select the first and second component of a pair. The nullary product, or unit, type consists solely of the unique “null tuple” of no values, and has no associated eliminatory form. The product type admits both a lazy and an eager dynamics. According to the lazy dynamics, a pair is a value without regard to whether its components are values; they are not evaluated until (if ever) they are accessed and used in another computation. According to the eager dynamics, a pair is a value only if its components are values; they are evaluated when the pair is created.

More generally, we may consider the finite product, \(\prod_{i \in I} \tau_i \), indexed by a finite set of indices, \(I \). The elements of the finite product type are \(I \)-indexed tuples whose \(i \)th component is an element of the type \(\tau_i \), for each \(i \in I \). The components are accessed by \(I \)-indexed projection operations, generalizing the binary case. Special cases of the finite product include \(n \)-tuples, indexed by sets of the form \(I = \{ 0, \ldots, n-1 \} \), and labelled tuples, or records, indexed by finite sets of symbols. Similarly to binary products, finite products admit both an eager and a lazy interpretation.
14.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

\[
\begin{align*}
\text{Type } \tau & ::= \text{unit} \quad \text{nullary product} \\
& \quad \text{prod}(\tau_1; \tau_2) \quad \tau_1 \times \tau_2 \quad \text{binary product} \\
\text{Expr } e & ::= \text{triv} \quad \langle \rangle \quad \text{null tuple} \\
& \quad \text{pair}(e_1; e_2) \quad \langle e_1, e_2 \rangle \quad \text{ordered pair} \\
& \quad \text{proj}[l](e) \quad e \cdot l \quad \text{left projection} \\
& \quad \text{proj}[r](e) \quad e \cdot r \quad \text{right projection}
\end{align*}
\]

There is no elimination form for the unit type, there being nothing to extract from the null tuple.

The statics of product types is given by the following rules.

\[
\begin{align*}
\Gamma \vdash \text{triv} : \text{unit} & \quad (14.1a) \\
\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 & \quad \Gamma \vdash \text{pair}(e_1; e_2) : \text{prod}(\tau_1; \tau_2) \quad (14.1b) \\
\Gamma \vdash e : \text{prod}(\tau_1; \tau_2) & \quad \Gamma \vdash \text{proj}[l](e) : \tau_1 \quad (14.1c) \\
\Gamma \vdash e : \text{prod}(\tau_1; \tau_2) & \quad \Gamma \vdash \text{proj}[r](e) : \tau_2 \quad (14.1d)
\end{align*}
\]

The dynamics of product types is specified by the following rules:

\[
\begin{align*}
\text{triv val} & \quad (14.2a) \\
\{e_1 \text{ val}\} \quad \{e_2 \text{ val}\} & \quad \text{pair}(e_1; e_2) \text{ val} \quad (14.2b) \\
\{e_1 \mapsto e'_1\} & \quad \text{pair}(e_1; e_2) \mapsto \text{pair}(e'_1; e_2) \quad (14.2c) \\
\{e_1 \text{ val} \quad e_2 \mapsto e'_2\} & \quad \text{pair}(e_1; e_2) \mapsto \text{pair}(e_1; e'_2) \quad (14.2d) \\
\text{e} \mapsto e' & \quad \text{proj}[l](e) \mapsto \text{proj}[l](e') \quad (14.2e) \\
\text{e} \mapsto e' & \quad \text{proj}[r](e) \mapsto \text{proj}[r](e') \quad (14.2f)
\end{align*}
\]
14.2 Finite Products

\[
\begin{align*}
\{e_1 \text{ val}\} \quad \{e_2 \text{ val}\} \\
\text{proj}[l](\text{pair}(e_1; e_2)) & \mapsto e_1 \\
\{e_1 \text{ val}\} \quad \{e_2 \text{ val}\} \\
\text{proj}[r](\text{pair}(e_1; e_2)) & \mapsto e_2
\end{align*}
\] \hspace{1cm} (14.2g)

(14.2h)

The bracketed rules and premises are to be omitted for a lazy dynamics, and included for an eager dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics, with the proof proceeding along similar lines in each case.

Theorem 14.1 (Safety).
1. If \(e : \tau \) and \(e \mapsto e' \), then \(e' : \tau \).
2. If \(e : \tau \) then either \(e \text{ val} \) or there exists \(e' \) such that \(e \mapsto e' \).

Proof. Preservation is proved by induction on transition defined by Rules (14.2). Progress is proved by induction on typing defined by Rules (14.1). \(\square \)

14.2 Finite Products

The syntax of finite product types is given by the following grammar:

\[
\begin{align*}
\textbf{Type} & \quad \tau ::= \prod_{i \in I} \tau_i \\
\textbf{Expr} & \quad e ::= \text{tuple}[I](i \mapsto e_i) \\
& \quad \text{proj}[I][j](e) \\
& \quad e \cdot i
\end{align*}
\]

For \(I \) a finite index set of size \(n \geq 0 \), the syntactic form \(\prod_{i \in I} \tau_i \) specifies an \(n \)-argument operator of arity \((0,0,\ldots,0)\) whose \(i \)th argument is the type \(\tau_i \). When it is useful to emphasize the tree structure, such an abt is written in the form \(\prod \langle i_0 : \tau_0, \ldots, i_{n-1} : \tau_{n-1} \rangle \). Similarly, the syntactic form \(\text{tuple}[I](i \mapsto e_i) \) specifies an abt constructed from an \(n \)-argument operator whose \(i \) operand is \(e_i \). This may alternatively be written in the form \(\langle i_0 : e_0, \ldots, i_{n-1} : e_{n-1} \rangle \).

The statics of finite products is given by the following rules:

\[
\begin{align*}
(\forall i \in I) \quad \Gamma \vdash e_i : \tau_i \\
\Gamma \vdash \text{tuple}[I](i \mapsto e_i) : \prod_{i \in I} \tau_i
\end{align*}
\] \hspace{1cm} (14.3a)

\[
\begin{align*}
\Gamma \vdash e : \prod_{i \in I} \tau_i \\
\Gamma \vdash \text{proj}[I][j](e) : \tau_j
\end{align*}
\] \hspace{1cm} (14.3b)

In Rule (14.3b) the index \(j \in I \) is a particular element of the index set \(I \), whereas in Rule (14.3a), the index \(i \) ranges over the index set \(I \).
The dynamics of finite products is given by the following rules:

\[
\begin{align*}
\frac{}{\text{tuple}[I](i \mapsto e_i) \text{ val}} \\
\frac{(\forall i \in I) \ e_i \text{ val}}{\text{tuple}[I](i \mapsto e_i) \text{ val}} \\
\{ e_j \mapsto e'_j \quad (\forall i \neq j) \ e'_i = e_i \} \\
\text{tuple}[I](i \mapsto e_i) \mapsto \text{tuple}[I](i \mapsto e'_i) \\
\frac{}{e \mapsto e'} \\
\frac{}{\text{proj}[I][j](\text{tuple}[I](i \mapsto e_i)) \mapsto \text{proj}[I][j](e')} \\
\frac{\text{tuple}[I](i \mapsto e_i) \text{ val}}{\text{proj}[I][j](\text{tuple}[I](i \mapsto e_i)) \mapsto e_j}
\end{align*}
\] (14.4a, 14.4b, 14.4c, 14.4d)

Rule (14.4b) specifies that the components of a tuple are to be evaluated in some sequential order, without specifying the order in which they components are considered. It is straightforward, if a bit technically complicated, to impose a linear ordering on index sets that determines the evaluation order of the components of a tuple.

Theorem 14.2 (Safety). If \(e : \tau \), then either \(e \text{ val} \) or there exists \(e' \) such that \(e' : \tau \) and \(e \mapsto e' \).

Proof. The safety theorem may be decomposed into progress and preservation lemmas, which are proved as in Section 14.1 on page 118. \qed

We may define nullary and binary products as particular instances of finite products by choosing an appropriate index set. The type unit may be defined as the product \(\prod \in \emptyset \emptyset \) of the empty family over the empty index set, taking the expression \(\langle \rangle \) to be the empty tuple, \(\langle \emptyset \rangle \in \emptyset \). Binary products \(\tau_1 \times \tau_2 \) may be defined as the product \(\prod_{i \in \{1,2\}} \tau_i \) of the two-element family of types consisting of \(\tau_1 \) and \(\tau_2 \). The pair \(\langle e_1, e_2 \rangle \) may then be defined as the tuple \(\langle e_i \rangle_{i \in \{1,2\}} \), and the projections \(e \cdot 1 \) and \(e \cdot 2 \) are correspondingly defined, respectively, to be \(e \cdot 1 = e \cdot 1 \) and \(e \cdot 2 \).

Finite products may also be used to define *labelled tuples*, or *records*, whose components are accessed by symbolic names. If \(L = \{ l_1, \ldots, l_n \} \) is a finite set of symbols, called *field names*, or *field labels*, then the product type \(\prod \langle l_0 : \tau_0, \ldots, l_{n-1} : \tau_{n-1} \rangle \) has as values tuples of the form \(\langle l_0 : e_0, \ldots, l_{n-1} : e_{n-1} \rangle \) in which \(e_i : \tau_i \) for each \(0 \leq i < n \). If \(e \) is such a tuple, then \(e \cdot l \) projects the component of \(e \) labeled by \(l \in L \).
14.3 Primitive and Mutual Recursion

In the presence of products we may simplify the primitive recursion construct defined in Chapter 12 so that only the result on the predecessor, and not the predecessor itself, is passed to the successor branch. Writing this as \texttt{natiter} \{\texttt{z} \Rightarrow e_0 \mid \texttt{s}(x) \Rightarrow e_1\}, we may define primitive recursion in the sense of Chapter 12 to be the expression \(e' \cdot r \), where \(e' \) is the expression

\[
\text{natiter} \ e \ \{\texttt{z} \Rightarrow \langle \texttt{z}, e_0 \rangle \mid \texttt{s}(x) \Rightarrow \langle \texttt{s}(x \cdot 1), [x \cdot 1, x \cdot r / x_0, x_1] e_1 \rangle\}.
\]

The idea is to compute inductively both the number, \(n \), and the result of the recursive call on \(n \), from which we can compute both \(n + 1 \) and the result of an additional recursion using \(e_1 \). The base case is computed directly as the pair of zero and \(e_0 \). It is easy to check that the statics and dynamics of the recursor are preserved by this definition.

We may also use product types to implement \emph{mutual recursion}, which allows several mutually recursive computations to be defined simultaneously. For example, consider the following recursion equations defining two mathematical functions on the natural numbers:

\[
\begin{align*}
E(0) &= 1 \\
O(0) &= 0 \\
E(n + 1) &= O(n) \\
O(n + 1) &= E(n)
\end{align*}
\]

Intuitively, \(E(n) \) is non-zero iff \(n \) is even, and \(O(n) \) is non-zero iff \(n \) is odd. If we wish to define these functions in \(\mathcal{L}\{\texttt{nat} \rightarrow \} \), we immediately face the problem of how to define two functions simultaneously. There is a trick available in this special case that takes advantage of the fact that \(E \) and \(O \) have the same type: simply define \(\texttt{eo} \) of type \(\texttt{nat} \rightarrow \texttt{nat} \rightarrow \texttt{nat} \) so that \(\texttt{eo} (0) \) represents \(E \) and \(\texttt{eo} (1) \) represents \(O \). (We leave the details as an exercise for the reader.)

A more general solution is to recognize that the definition of two mutually recursive functions may be thought of as the recursive definition of a pair of functions. In the case of the even and odd functions we will define the labelled tuple, \(e_{EO} \), of type, \(\tau_{EO} \), given by

\[
\prod \langle \texttt{even} : \texttt{nat} \rightarrow \texttt{nat}, \texttt{odd} : \texttt{nat} \rightarrow \texttt{nat} \rangle.
\]

From this we will obtain the required mutually recursive functions as the projections \(e_{EO} \cdot \texttt{even} \) and \(e_{EO} \cdot \texttt{odd} \).
To effect the mutual recursion the expression \(e_{EO} \) is defined to be

\[
\text{fix } \text{this} : \tau_{EO} \text{ is } \langle \text{even} : e_E, \text{odd} : e_O \rangle,
\]

where \(e_E \) is the expression

\[
\lambda (x : \text{nat}. \text{if} z x \{ z \Rightarrow z | s(y) \Rightarrow \text{this} \cdot \text{odd}(y) \}),
\]

and \(e_O \) is the expression

\[
\lambda (x : \text{nat}. \text{if} z x \{ z \Rightarrow z | s(y) \Rightarrow \text{this} \cdot \text{even}(y) \}).
\]

The functions \(e_E \) and \(e_O \) refer to each other by projecting the appropriate component from the variable \text{this} standing for the object itself. The choice of variable name with which to effect the self-reference is, of course, immaterial, but it is common to use \text{this} or \text{self} to emphasize its role.

In the context of object-oriented languages, labelled tuples of mutually recursive functions defined in this manner are called objects, and their component functions are called methods. Component projection is called message passing, viewing the component name as a “message” sent to the object to invoke the method by that name in the object. Internally to the object the methods refer to one another by sending a “message” to \text{this}, the canonical name for the object itself.
Chapter 15

Sum Types

Most data structures involve alternatives such as the distinction between a leaf and an interior node in a tree, or a choice in the outermost form of a piece of abstract syntax. Importantly, the choice determines the structure of the value. For example, nodes have children, but leaves do not, and so forth. These concepts are expressed by sum types, specifically the binary sum, which offers a choice of two things, and the nullary sum, which offers a choice of no things. Finite sums generalize nullary and binary sums to permit an arbitrary number of cases indexed by a finite index set. As with products, sums come in both eager and lazy variants, differing in how values of sum type are defined.

15.1 Binary and Nullary Sums

The abstract syntax of sums is given by the following grammar:

Type $\tau ::= \text{void} \quad \text{nullary sum}$
$\quad \quad \quad \quad \quad \quad \text{sum}(\tau_1; \tau_2) \quad \tau_1 + \tau_2 \quad \text{binary sum}$

Expr $e ::= \text{abort}[\tau](e) \quad \text{abort}$
$\quad \quad \quad \quad \quad \quad \text{in}[l][\tau](e) \quad 1 \cdot e \quad \text{left injection}$
$\quad \quad \quad \quad \quad \quad \text{in}[r][\tau](e) \quad r \cdot e \quad \text{right injection}$
$\quad \quad \quad \quad \quad \quad \text{case}(e; x_1. e_1; x_2. e_2) \quad \text{case analysis} \quad \{1 \cdot x_1 \Rightarrow e_1 \mid r \cdot x_2 \Rightarrow e_2\}$

The nullary sum represents a choice of zero alternatives, and hence admits no introductory form. The eliminatory form, $\text{abort}[\tau](e)$, aborts the computation in the event that e evaluates to a value, which it cannot do. The elements of the binary sum type are labelled to indicate whether
they are drawn from the left or the right summand, either in\([l]\) \([\tau]\) \(e\) or in\([r]\) \([\tau]\) \(e\). A value of the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.

\[
\begin{align*}
\Gamma &\vdash e : \text{void} & \quad (15.1a) \\
\Gamma &\vdash \text{abort}[[\tau](e) : \tau \\
\Gamma &\vdash e : \tau_1 \quad \tau = \text{sum}((\tau_1; \tau_2)) & \quad (15.1b) \\
\Gamma &\vdash \text{in}[[l]\tau](e) : \tau \\
\Gamma &\vdash e : \tau_2 \quad \tau = \text{sum}((\tau_1; \tau_2)) & \quad (15.1c) \\
\Gamma &\vdash \text{in}[[r]\tau](e) : \tau \\
\Gamma &\vdash \text{case}(e; x_1.e_1; x_2.e_2) : \tau & \quad (15.1d)
\end{align*}
\]

Both branches of the case analysis must have the same type. Since a type expresses a static “prediction” on the form of the value of an expression, and since a value of sum type could evaluate to either form at run-time, we must insist that both branches yield the same type.

The dynamics of sums is given by the following rules:

\[
\begin{align*}
e &\mapsto e' & \quad (15.2a) \\
\text{abort}[[\tau](e) &\mapsto \text{abort}[[\tau](e') \\
\{e \text{ val}\} &\mapsto \{e \text{ val}\} & \quad (15.2b) \\
\text{in}[[l]\tau](e) &\mapsto \text{val} \quad (15.2c) \\
\{e \text{ val}\} &\mapsto \{e \text{ val}\} \\
\text{in}[[r]\tau](e) &\mapsto \text{val} \\
\{e \mapsto e'\} &\mapsto \{e \mapsto e'\} & \quad (15.2d) \\
\text{in}[[l]\tau](e) &\mapsto \text{val} \\
\{e \mapsto e'\} &\mapsto \{e \mapsto e'\} & \quad (15.2e) \\
\text{case}(e; x_1.e_1; x_2.e_2) &\mapsto \text{case}(e'; x_1.e_1; x_2.e_2) & \quad (15.2f) \\
\{e \text{ val}\} &\mapsto \{e \text{ val}\} \\
\text{case}(\text{in}[[l]\tau](e); x_1.e_1; x_2.e_2) &\mapsto [e/x_1]e_1 & \quad (15.2g) \\
\{e \text{ val}\} &\mapsto \{e \text{ val}\} \\
\text{case}(\text{in}[[r]\tau](e); x_1.e_1; x_2.e_2) &\mapsto [e/x_2]e_2 & \quad (15.2h)
\end{align*}
\]

The bracketed premises and rules are to be included for an eager dynamics, and excluded for a lazy dynamics.

The coherence of the statics and dynamics is stated and proved as usual.
Theorem 15.1 (Safety).

1. If \(e : \tau \) and \(e \mapsto e' \), then \(e' : \tau \).

2. If \(e : \tau \), then either \(e \text{ val} \) or \(e \mapsto e' \) for some \(e' \).

Proof. The proof proceeds by induction on Rules (15.2) for preservation, and by induction on Rules (15.1) for progress. \(\square \)

15.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so may we also generalize nullary and binary sums to finite sums. The syntax for finite sums is given by the following grammar:

\[
\begin{align*}
\text{Type } \tau &::= \text{sum}[I](i \mapsto \tau_i) & \sum_{i \in I} \tau_i & \text{sum} \\
\text{Expr } e &::= \text{in}[I][j](e) & j \cdot e & \text{injection} \\
& & \text{case}[I](e; i \mapsto x_i.e_i) & \text{case} e \{ i \cdot x_i \Rightarrow e_i \}_{i \in I} & \text{case analysis}
\end{align*}
\]

We write \(\sum \langle i_0: \tau_0, \ldots, i_{n-1}: \tau_{n-1} \rangle \) for \(\sum_{i \in I} \tau_i \), where \(I = \{ i_0, \ldots, i_{n-1} \} \).

The statics of finite sums is defined by the following rules:

\[
\begin{align*}
\Gamma \vdash e : \tau_j & \quad j \in I \\
\Gamma \vdash \text{in}[I][j](e) : \text{sum}[I](i \mapsto \tau_i) & \\
\Gamma \vdash e : \text{sum}[I](i \mapsto \tau_i) & \quad (\forall i \in I) \; \Gamma, x_i : \tau_i \vdash e_i : \tau \\
\Gamma \vdash \text{case}[I](e; i \mapsto x_i.e_i) : \tau & \tag{15.3b}
\end{align*}
\]

These rules generalize to the finite case the statics for nullary and binary sums given in Section 15.1 on page 123.

The dynamics of finite sums is defined by the following rules:

\[
\begin{align*}
\{ e \text{ val} \} & \quad \text{in}[I][j](e) \text{ val} & \tag{15.4a} \\
\left\{ \begin{array}{l}
\{ e \mapsto e' \} \\
\text{in}[I][j](e) \mapsto \text{in}[I][j](e')
\end{array} \right. & \tag{15.4b} \\
\{ e \mapsto e' \} & \quad \text{case}[I](e; i \mapsto x_i.e_i) \mapsto \text{case}[I](e'; i \mapsto x_i.e_i) & \tag{15.4c} \\
\{ e \text{ val} \} & \quad \text{case}[I](\text{in}[I][j](e); i \mapsto x_i.e_i) \mapsto [e/x_j]e_j & \tag{15.4d}
\end{align*}
\]

These again generalize the dynamics of binary sums given in Section 15.1 on page 123.
Theorem 15.2 (Safety). If \(e : \tau \), then either \(e \) val or there exists \(e' : \tau \) such that \(e \mapsto e' \).

Proof. The proof is similar to that for the binary case, as described in Section 15.1 on page 123.

As with products, nullary and binary sums are special cases of the finite form. The type \texttt{void} may be defined to be the sum type \(\sum_{\varepsilon \in \emptyset} \emptyset \) of the empty family of types. The expression \texttt{abort(e)} may corresponding be defined as the empty case analysis, \texttt{case e \{\emptyset\}}. Similarly, the binary sum type \(\tau_1 + \tau_2 \) may be defined as the sum \(\sum_{i \in I} \tau_i \), where \(I = \{1, r\} \) is the two-element index set. The binary sum injections \(l \cdot e \) and \(r \cdot e \) are defined to be their counterparts, \(l \cdot e \) and \(r \cdot e \), respectively. Finally, the binary case analysis,

\[
\texttt{case e \{1 \cdot x_1 \Rightarrow e_1 \mid r \cdot x_r \Rightarrow e_r\}},
\]

is defined to be the case analysis, \texttt{case e \{i \cdot x_i \Rightarrow \tau_i\}_{i \in I}}. It is easy to check that the static and dynamics of sums given in Section 15.1 on page 123 is preserved by these definitions.

Two special cases of finite sums arise quite commonly. The \textit{n-ary sum} corresponds to the finite sum over an index set of the form \(\{0, \ldots, n-1\} \) for some \(n \geq 0 \). The \textit{labelled sum} corresponds to the case of the index set being a finite set of symbols serving as symbolic indices for the injections.

15.3 Applications of Sum Types

Sum types have numerous uses, several of which we outline here. More interesting examples arise once we also have recursive types, which are introduced in Part VI.

15.3.1 Void and Unit

It is instructive to compare the types \texttt{unit} and \texttt{void}, which are often confused with one another. The type \texttt{unit} has exactly one element, \texttt{triv}, whereas the type \texttt{void} has no elements at all. Consequently, if \(e : \texttt{unit} \), then if \(e \) evaluates to a value, it must be \texttt{unit} — in other words, \(e \) has no interesting value (but it could diverge). On the other hand, if \(e : \texttt{void} \), then \(e \) must not yield a value; if it were to have a value, it would have to be a value of type \texttt{void}, of which there are none. This shows that what is called the \texttt{void} type in many languages is really the type \texttt{unit} because it indicates that an expression has no interesting value, not that it has no value at all!
15.3 Applications of Sum Types

15.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans, whose syntax is given by the following grammar:

\[
\begin{align*}
\text{Type } \tau & ::= \text{bool} \quad \text{bool} \quad \text{booleans} \\
\text{Expr } e & ::= \text{tt} \quad \text{tt} \quad \text{truth} \\
& \quad \text{ff} \quad \text{ff} \quad \text{falsity} \\
& \quad \text{if}(e; e_1; e_2) \quad \text{if } e \text{ then } e_1 \text{ else } e_2 \quad \text{conditional}
\end{align*}
\]

The expression \(\text{if}(e; e_1; e_2)\) branches on the value of \(e : \text{bool}\). We leave a precise formulation of the static and dynamics of this type as an exercise for the reader.

The type \(\text{bool}\) is definable in terms of binary sums and nullary products:

\[
\begin{align*}
\text{bool} &= \text{sum} \left(\text{unit}; \text{unit} \right) \\
\text{tt} &= \text{in}[\text{l}][\text{bool}](\text{triv}) \\
\text{ff} &= \text{in}[\text{r}][\text{bool}](\text{triv}) \\
\text{if}(e; e_1; e_2) &= \text{case}(e; x_1.e_1; x_2.e_2)
\end{align*}
\]

In the last equation above the variables \(x_1\) and \(x_2\) are chosen arbitrarily such that \(x_1 \not\in e_1\) and \(x_2 \not\in e_2\). (We often write an underscore in place of a variable to stand for a variable that does not occur within its scope.) It is a simple matter to check that the evident static and dynamics of the type \(\text{bool}\) is engendered by these definitions.

15.3.3 Enumerations

More generally, sum types may be used to define finite enumeration types, those whose values are one of an explicitly given finite set, and whose elimination form is a case analysis on the elements of that set. For example, the type suit, whose elements are \(\spadesuit, \heartsuit, \diamondsuit, \text{ and } \spadesuit\), has as elimination form the case analysis

\[
\text{case } e \{ \spadesuit \Rightarrow e_0 | \heartsuit \Rightarrow e_1 | \diamondsuit \Rightarrow e_2 | \spadesuit \Rightarrow e_3 \},
\]

which distinguishes among the four suits. Such finite enumerations are easily representable as sums. For example, we may define suit = \(\sum_{i \in I} \text{unit}\), where \(I = \{ \spadesuit, \heartsuit, \diamondsuit, \spadesuit \}\) and the type family is constant over this set. The case analysis form for a labelled sum is almost literally the desired case
15.3 Applications of Sum Types

analysis for the given enumeration, the only difference being the binding for the uninteresting value associated with each summand, which we may ignore.

15.3.4 Options

Another use of sums is to define the option types, which have the following syntax:

<table>
<thead>
<tr>
<th>Type</th>
<th>Expr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau) ::= \text{opt} (\tau)</td>
<td>\text{null}</td>
</tr>
<tr>
<td></td>
<td>\text{just} (e)</td>
</tr>
<tr>
<td></td>
<td>\text{ifnull}[\tau] (e; e_1; x; x_2)</td>
</tr>
</tbody>
</table>

The type \(\text{opt}(\tau) \) represents the type of “optional” values of type \(\tau \). The introductory forms are \text{null}, corresponding to “no value”, and \text{just}(e), corresponding to a specified value of type \(\tau \). The elimination form discriminates between the two possibilities.

The option type is definable from sums and nullary products according to the following equations:

\[
\begin{align*}
\text{opt}(\tau) &= \text{sum(unit}; \tau) \quad (15.6a) \\
\text{null} &= \text{in}[l][\text{opt}(\tau)](\text{triv}) \quad (15.6b) \\
\text{just}(e) &= \text{in}[r][\text{opt}(\tau)](e) \quad (15.6c) \\
\text{ifnull}[\tau](e; e_1; x; x_2) &= \text{case}(e; _; e_1; x; x_2) \quad (15.6d)
\end{align*}
\]

We leave it to the reader to examine the statics and dynamics implied by these definitions.

The option type is the key to understanding a common misconception, the null pointer fallacy. This fallacy, which is particularly common in object-oriented languages, is based on two related errors. The first error is to deem the values of certain types to be mysterious entities called pointers, based on suppositions about how these values might be represented at run-time, rather than on the semantics of the type itself. The second error compounds the first. A particular value of a pointer type is distinguished as the null pointer, which, unlike the other elements of that type, does not designate a value of that type at all, but rather rejects all attempts to use it as such.

To help avoid such failures, such languages usually include a function, say \text{null}: \tau \rightarrow \text{bool}, that yields \text{tt} if its argument is null, and \text{ff} otherwise.
This allows the programmer to take steps to avoid using null as a value of the type it purports to inhabit. Consequently, programs are riddled with conditionals of the form

\[
\text{if null}(e) \quad \text{then...error... else...proceed...} \quad (15.7)
\]

Despite this, “null pointer” exceptions at run-time are rampant, in part because it is quite easy to overlook the need for such a test, and in part because detection of a null pointer leaves little recourse other than abortion of the program.

The underlying problem may be traced to the failure to distinguish the type \(\tau \) from the type \(\text{opt}(\tau) \). Rather than think of the elements of type \(\tau \) as pointers, and thereby have to worry about the null pointer, one instead distinguishes between a genuine value of type \(\tau \) and an optional value of type \(\tau \). An optional value of type \(\tau \) may or may not be present, but, if it is, the underlying value is truly a value of type \(\tau \) (and cannot be null). The elimination form for the option type,

\[
\text{ifnull}[\tau](e; e_{\text{error}}; x . e_{\text{ok}}) \quad (15.8)
\]

propagates the information that \(e \) is present into the non-null branch by binding a genuine value of type \(\tau \) to the variable \(x \). The case analysis effects a change of type from “optional value of type \(\tau \)” to “genuine value of type \(\tau \)”, so that within the non-null branch no further null checks, explicit or implicit, are required. Observe that such a change of type is not achieved by the simple Boolean-valued test exemplified by expression (15.7); the advantage of option types is precisely that it does so.

15.4 Classes and Methods

Sums partition the values of a type into a collection of classes. A value of a sum type \(\sigma = \sum_{c \in C} \sigma^c \) is an injection \(c \cdot e \), where \(c \in C \) and \(e : \sigma^c \). Such a value is sometimes said to be an instance of the class \(c \), with \(e \) being the instance data of type \(\sigma^c \), the instance type of \(c \). A method acting on the sum type \(\sigma \) is a function of type \(\sigma \rightarrow \rho \), for some type \(\rho \). Since the domain of a method is a sum type, its behavior is determined by specifying its behavior on each class of instance as a function of the associated instance data.

1. Strictly speaking, such a function is a single-dispatch method. Multiple dispatch methods act on many classified values at once; they are examples of the more general concept of pattern matching considered in Chapter 16.
A good example is provided by the type of points in the plane, which may be classified as either cartesian or polar, according to the coordinate system used to represent a point. The instance data for a cartesian point consists of its x and y coordinates represented as a value of type $\sigma^c = (x: \text{real}, y: \text{real})$. The instance data for a polar point consists of its ρ and θ coordinates represented as a value of type $\sigma^p = (r: \text{real}, \theta: \text{real})$. The type point may then be defined to be the labelled sum

$$[\text{cart}: \sigma^c, \text{polar}: \sigma^p]$$

consisting of two classes, cart and polar, of points with their associated instance data.

An instance of the class cart is given by specifying its coordinates in the xy-plane:

$$\text{new } [\text{cart}](\langle x = x_0, y = y_0 \rangle) := \text{cart} \cdot (x = x_0, y = y_0).$$

Similarly an instance of class polar is given by its polar coordinates:

$$\text{new } [\text{polar}](\langle r = r_0, \theta = \theta_0 \rangle) := \text{polar} \cdot (r = r_0, \theta = \theta_0).$$

In short a point is obtained by labelling the instance data with its class.

A method is defined by specifying its behavior on each class of point. For example, the method that computes the squared distance of a point from the origin is defined by specifying how this distance is calculated as a function of the class of point. This amounts to specifying a tuple, $e_d = (\text{cart} = e^c_d, \text{polar} = e^p_d)$, of type

$$\tau_d = (\text{cart}: \sigma^c \rightarrow \text{real}, \text{polar}: \sigma^p \rightarrow \text{real}),$$

where e^c_d computes the distance as a function of its cartesian coordinates,

$$\lambda (u: \sigma^c. (u \cdot x)^2 + (u \cdot y)^2),$$

and e^p_d computes the distance as a function of its polar coordinates,

$$\lambda (v: \sigma^p. (v \cdot r)^2).$$

Similarly, a method to calculate the quadrant of a point is given by a tuple $e_q = (\text{cart} = e^c_q, \text{polar} = e^p_q)$, of type

$$\tau_q = (\text{cart}: \sigma^c \rightarrow \text{quadrant}, \text{polar}: \sigma^p \rightarrow \text{quadrant}),$$
where \(e^c_q \) computes the quadrant from the cartesian coordinates of a point, and \(e^p_q \) computes the quadrant from its polar coordinates.\(^2\)

The method suite exhibits a two-dimensional structure in which the “rows” correspond to methods, and the “columns” correspond to classes. Each entry in the associated matrix specifies the behavior of a method on an instance of a class, expressed as a function of its instance data. This structure may be expressed by the tuple, \(M \), of type \(\langle \text{dist} : \tau_d, \text{quad} : \tau_q \rangle \) given by the expression \(\langle \text{dist} = e^c_d, \text{quad} = e^p_q \rangle \). Thus, the expression \(M \cdot \text{dist} \cdot \text{cart} \) is equivalent to \(e^c_q \); it defines the squared distance from the origin of a cartesian point. Similarly, the expression \(M \cdot \text{quad} \cdot \text{polar} \) is equivalent to \(e^p_q \); it defines the quadrant of a point in polar form.

A method is invoked by a message send operation that requests of a point that it execute a specified method on its own instance data. For example, to send a message to a point, \(e \), to obtain its distance from the origin we write

\[
e \leftarrow \text{dist} := \begin{cases} \text{cart} \cdot u \Rightarrow M \cdot \text{dist} \cdot \text{cart}(u) & | \text{polar} \cdot v \Rightarrow M \cdot \text{dist} \cdot \text{polar}(v) \end{cases} \]

(15.9)

Similarly, to compute the quadrant of a point, \(e \), we write

\[
e \leftarrow \text{quad} := \begin{cases} \text{cart} \cdot u \Rightarrow M \cdot \text{quad} \cdot \text{cart}(u) & | \text{polar} \cdot v \Rightarrow M \cdot \text{quad} \cdot \text{polar}(v) \end{cases} \]

(15.10)

Sending a message consists of dispatching on the class of point, selecting the appropriate method, and applying it to the corresponding instance data.\(^3\)

The symmetries of the situation suggest an alternative organization in which we define the type point to be the labelled product type

\(\langle \text{dist} : \tau, \text{quad} : \tau_q \rangle \)

\(^2\)For the sake of the example, the type \(\text{quad} \) may be taken to be the labelled sum type \([I, II, III, IV] \).

\(^3\)To be more accurate, the message send operation is also parameterized by the method table, \(M \), to which it refers, but we usually do not make this dependency explicit in the notation.
so that a point is identified with the methods that act on it. In this organization a cartesian point is created by writing

\[
\text{new [cart]}(\langle x = x_0, y = y_0 \rangle) :=
\]

\[
\text{let } u \text{ be } \langle x = x_0, y = y_0 \rangle \text{ in } \langle \text{dist} = M \cdot \text{dist} \cdot \text{cart}(u), \text{quad} = M \cdot \text{quad} \cdot \text{cart}(u) \rangle.
\]

Similarly, a polar point is created by writing

\[
\text{new [polar]}(r = r_0, \theta = \theta_0) :=
\]

\[
\text{let } u \text{ be } \langle r = r_0, \theta = \theta_0 \rangle \text{ in } \langle \text{dist} = M \cdot \text{dist} \cdot \text{polar}(u), \text{quad} = M \cdot \text{quad} \cdot \text{polar}(u) \rangle.
\]

Message send reduces to field selection,

\[
e \leftarrow \text{dist} := e \cdot \text{dist},
\]

and

\[
e \leftarrow \text{quad} := e \cdot \text{quad}.
\]

Summarizing, let \(C \) be a finite set of classes and \(D \) a finite set of methods such that for each class \(c \in C \) there is a type \(\sigma^c \) of the instance data for \(c \) and for each method \(d \in D \) there is a type \(\rho_d \) of the result of method \(d \). The method table, \(M \), is a two-dimensional matrix of type

\[
\prod_{d \in D} \prod_{c \in C} \sigma^c \rightarrow \rho_d
\]

specifying the behavior of method \(d \) on a value of class \(c \) as a function of the instance data for \(c \). The first organization outlined above focuses on the instance type \(\sigma = \sum_{c \in C} \sigma^c \) consisting of the instance data labelled with its class. The second organization focuses on the instance type \(\rho = \prod_{d \in D} \rho_d \) consisting of the specialization of each of the methods to each class. The two organizations are equivalent in that the following equivalence is valid for all classes, \(c \in C \), and methods, \(d \in D \):

\[
\text{(new [c]} \langle e_0 \rangle) \leftarrow d \equiv M \cdot d \cdot c \langle e_0 \rangle.
\]

That is, sending a message \(d \in D \) to an instance of class \(c \in C \) amounts to invoking the method \(M \cdot d \cdot c \) on the appropriate instance data.

15.5 Exercises

4This representation is favored by many object-oriented languages. The members of such types are then called objects. The term “object-oriented” reflects the vagueness of the concept; it is mainly used to express approval.
Chapter 16

Pattern Matching

Pattern matching is a natural and convenient generalization of the elimination forms for product and sum types. For example, rather than write

\[
\text{let } x \text{ be } e \text{ in } x \cdot 1 + x \cdot r
\]

to add the components of a pair, \(e \), of natural numbers, we may instead write

\[
\text{match } e \{ (x_1, x_2) \Rightarrow x_1 + x_2 \}.
\]

using pattern matching to name the components of the pair and refer to them directly. The first argument to the match expression is called the match value and the second argument consist of a finite sequence of rules, separated by vertical bars. In this example there is only one rule, but as we shall see shortly there is, in general, more than one rule in a given match expression. Each rule consists of a pattern, possibly involving variables, and an expression that may involve those variables (as well as any others currently in scope). The value of the match is determined by considering each rule in the order given to determine the first rule whose pattern matches the match value. If such a rule is found, the value of the match is the value of the expression part of the matching rule, with the variables of the pattern replaced by the corresponding components of the match value.

Pattern matching becomes more interesting, and useful, when combined with sums. The patterns \(1 \cdot x \) and \(r \cdot x \) match the corresponding values of sum type. These may be used in combination with other patterns to express complex decisions about the structure of a value. For example, the following match expresses the computation that, when given a pair of type \((\text{unit} + \text{unit}) \times \text{nat}\), either doubles or squares its second component
depending on the form of its first component:

\[
\text{match } e \{\langle l \cdot \rangle, x\} \Rightarrow x + x \mid \langle r \cdot \rangle, y\rangle \Rightarrow y * y. \quad (16.1)
\]

It is an instructive exercise to express the same computation using only the primitives for sums and products given in Chapters 14 and 15.

In this chapter we study a simple language, \(\mathcal{L}\{\text{pat}\} \), of pattern matching over eager product and sum types.

16.1 A Pattern Language

The abstract syntax of \(\mathcal{L}\{\text{pat}\} \) is defined by the following grammar:

<table>
<thead>
<tr>
<th>Expr</th>
<th>(e ::= \text{match}(e;rs))</th>
<th>(\text{match } e {rs}) case analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rules</td>
<td>(rs ::= \text{rules}[n](r_1; \ldots ; r_n))</td>
<td>(r_1 \mid \ldots \mid r_n) (n nat)</td>
</tr>
<tr>
<td>Rule r</td>
<td>(r ::= \text{rule}[k](p; x_1, \ldots , x_k.e))</td>
<td>(p \Rightarrow e) (k nat)</td>
</tr>
<tr>
<td>Pat p</td>
<td>(p ::= \text{wild})</td>
<td>(-) wild card</td>
</tr>
<tr>
<td></td>
<td>(x \mid \text{triv})</td>
<td>(x) variable</td>
</tr>
<tr>
<td></td>
<td>(\text{pair}(p_1; p_2))</td>
<td>(\langle p_1, p_2 \rangle) pair</td>
</tr>
<tr>
<td></td>
<td>(\text{in}l)</td>
<td>(1 \cdot p) left injection</td>
</tr>
<tr>
<td></td>
<td>(\text{in}r)</td>
<td>(r \cdot p) right injection</td>
</tr>
</tbody>
</table>

The operator \text{match} has arity \((0,0)\), specifying that it takes two operands, the expression to match and a series of rules. A sequence of rules is constructed using the operator \text{rules}[n], which has arity \((0, \ldots , 0)\) specifying that it has \(n \geq 0 \) operands. Each rule is constructed by the operator \text{rule}[k] of arity \((0,k)\) which specifies that it has two operands, binding \(k \) variables in the second.

16.2 Statics

The statics of \(\mathcal{L}\{\text{pat}\} \) makes use of a special form of hypothetical judgement, written

\[x_1 : \tau_1, \ldots , x_k : \tau_k \vdash p : \tau, \]

with almost the same meaning as

\[x_1 : \tau_1, \ldots , x_k : \tau_k \vdash p : \tau, \]

except that each variable is required to be used \emph{at most once} in \(p \). When reading the judgement \(\Lambda \vdash p : \tau \) it is helpful to think of \(\Lambda \) as an \emph{output},

\[13:08 \quad \text{DRAFT} \quad \text{JUNE 2, 2010} \]
and \(p \) and \(\tau \) as inputs. Given \(p \) and \(\tau \), the rules determine the hypotheses \(\Lambda \) such that \(\Lambda \models p : \tau \).

\[
\Lambda, x : \tau \models x : \tau
\]

(16.2a)

\[
\emptyset \models _ : \tau
\]

(16.2b)

\[
\emptyset \models \langle _ \rangle : \text{unit}
\]

(16.2c)

\[
\Lambda_1 \models p_1 : \tau_1 \quad \Lambda_2 \models p_2 : \tau_2 \quad \text{dom}(\Lambda_1) \cap \text{dom}(\Lambda_2) = \emptyset
\]

\[
\Lambda_1 \Lambda_2 \models \langle p_1, p_2 \rangle : \tau_1 \times \tau_2
\]

(16.2d)

\[
\Lambda_1 \models p : \tau_1
\]

\[
\Lambda_1 \models _ \cdot p : \tau_1 + \tau_2
\]

(16.2e)

\[
\Lambda_2 \models p : \tau_2
\]

\[
\Lambda_2 \models _ \cdot p : \tau_1 + \tau_2
\]

(16.2f)

Rule (16.2a) states that a variable is a pattern of type \(\tau \). Rule (16.2d) states that a pair pattern consists of two patterns with disjoint variables.

The typing judgments for a rule,

\[p \Rightarrow e : \tau > \tau', \]

and for a sequence of rules,

\[r_1 | \ldots | r_n : \tau > \tau', \]

specify that rules transform a value of type \(\tau \) into a value of type \(\tau' \). These judgements are inductively defined as follows:

\[
\frac{\Lambda \models p : \tau \quad \Gamma \models e : \tau'}{\Gamma \models p \Rightarrow e : \tau > \tau'}
\]

(16.3a)

\[
\frac{\Gamma \models r_1 : \tau > \tau' \quad \ldots \quad \Gamma \models r_n : \tau > \tau'}{\Gamma \models r_1 | \ldots | r_n : \tau > \tau'}
\]

(16.3b)

Using the typing judgements for rules, the typing rule for a match expression may be stated quite easily:

\[
\frac{\Gamma \models e : \tau \quad \Gamma \models rs : \tau > \tau'}{\Gamma \models \text{match } e \{ rs \} : \tau'}
\]

(16.4)
16.3 Dynamics

A substitution, θ, is a finite mapping from variables to values. If θ is the substitution $\langle x_1 : e_1 \rangle \otimes \cdots \otimes \langle x_k : e_k \rangle$, we write $\hat{\theta}(e)$ for $[e_1, \ldots, e_k/x_1, \ldots, x_k]e$. The judgement $\theta : \Lambda$ is inductively defined by the following rules:

$$
\frac{}{\sigma : \emptyset} \tag{16.5a}
$$

$$
\frac{\sigma : \Lambda \quad \sigma(x) = e \quad e : \tau}{\sigma : \Lambda, x : \tau} \tag{16.5b}
$$

The judgement $\theta \vdash p \triangleleft e$ states that the pattern, p, matches the value, e, as witnessed by the substitution, θ, defined on the variables of p. This judgement is inductively defined by the following rules:

$$
\frac{}{(x : e) \vdash x \triangleleft e} \tag{16.6a}
$$

$$
\frac{}{\emptyset \vdash \cdot \triangleleft e} \tag{16.6b}
$$

$$
\frac{}{\emptyset \vdash \langle \rangle \triangleleft \langle \rangle} \tag{16.6c}
$$

$$
\frac{\theta_1 \vdash p_1 \triangleleft e_1 \quad \theta_2 \vdash p_2 \triangleleft e_2 \quad \text{dom}(\theta_1) \cap \text{dom}(\theta_2) = \emptyset}{\theta_1 \otimes \theta_2 \vdash \langle p_1, p_2 \rangle \triangleleft \langle e_1, e_2 \rangle} \tag{16.6d}
$$

$$
\frac{\theta \vdash p \triangleleft e}{\theta \vdash 1 \cdot p \triangleleft 1 \cdot e} \tag{16.6e}
$$

$$
\frac{\theta \vdash p \triangleleft e}{\theta \vdash x \cdot p \triangleleft x \cdot e} \tag{16.6f}
$$

These rules simply collect the bindings for the pattern variables required to form a substitution witnessing the success of the matching process.

The judgement $e \perp p$ states that e does not match the pattern p. It is inductively defined by the following rules:

$$
\frac{e_1 \perp p_1}{\langle e_1, e_2 \rangle \perp \langle p_1, p_2 \rangle} \tag{16.7a}
$$

$$
\frac{e_2 \perp p_2}{\langle e_1, e_2 \rangle \perp \langle p_1, p_2 \rangle} \tag{16.7b}
$$

$$
\frac{1 \cdot e \perp x \cdot p}{e \perp p} \tag{16.7c}
$$

$$
\frac{e \perp p}{1 \cdot e \perp 1 \cdot p} \tag{16.7d}
$$
Neither a variable nor a wildcard nor a null-tuple can mismatch any value of appropriate type. A pair can only mismatch a pair pattern due to a mismatch in one of its components. An injection into a sum type can mismatch the opposite injection, or it can mismatch the same injection by having its argument mismatch the argument pattern.

Theorem 16.1. Suppose that \(e : \tau \), \(e \text{ val} \), and \(\Lambda \vdash p : \tau \). Then either there exists \(\theta \) such that \(\theta : \Lambda \) and \(\theta \vdash p \triangleleft e \), or \(e \perp p \).

Proof. By rule induction on Rules (16.2), making use of the canonical forms lemma to characterize the shape of \(e \) based on its type. \(\square \)

The dynamics of the match expression is given in terms of the pattern match and mismatch judgements as follows:

\[
\frac{e \mapsto e'}{\text{match } e \{rs\} \mapsto \text{match } e' \{rs\}} \quad (16.8a)
\]

\[
\frac{e \text{ val}}{\text{match } e \{\} \text{ err}} \quad (16.8b)
\]

\[
\frac{e \text{ val} \quad \theta \vdash p_0 \triangleleft e}{\text{match } e \{p_0 \Rightarrow e_0; rs\} \mapsto \hat{\theta}(e_0)} \quad (16.8c)
\]

\[
\frac{e \text{ val} \quad e \perp p_0 \quad \text{match } e \{rs\} \mapsto e'}{\text{match } e \{p_0 \Rightarrow e_0; rs\} \mapsto e'} \quad (16.8d)
\]

Rule (16.8b) specifies that evaluation results in a checked error once all rules are exhausted. Rules (16.8c) specifies that the rules are to be considered in order. If the match value, \(e \), matches the pattern, \(p_0 \), of the initial rule in the sequence, then the result is the corresponding instance of \(e_0 \); otherwise, matching continues by considering the remaining rules.

Theorem 16.2 (Preservation). If \(e \mapsto e' \) and \(e : \tau \), then \(e' : \tau \).

Proof. By a straightforward induction on the derivation of \(e \mapsto e' \). \(\square \)
16.4 Exhaustiveness and Redundancy

While it is possible to state and prove a progress theorem for $L\{\text{pat}\}$ as defined in Section 16.1 on page 134, it would not have much force, because the statics does not rule out pattern matching failure. What is missing is enforcement of the exhaustiveness of a sequence of rules, which ensures that every value of the domain type of a sequence of rules must match some rule in the sequence. In addition it would be useful to rule out redundancy of rules, which arises when a rule can only match values that are also matched by a preceding rule. Since pattern matching considers rules in the order in which they are written, such a rule can never be executed, and hence can be safely eliminated.

16.4.1 Match Constraints

To express exhaustiveness and irredundancy, we introduce a language of match constraints that identify a subset of the closed values of a type. With each rule we associate a constraint that classifies the values that are matched by that rule. A sequence of rules is exhaustive if every value of the domain type of the rule satisfies the match constraint of some rule in the sequence. A rule in a sequence is redundant if every value that satisfies its match constraint also satisfies the match constraint of some preceding rule.

The language of match constraints is defined by the following grammar:

\[
\text{Constr } \xi := \forall{\tau} \quad \top \quad \text{truth} \\
\text{and}(\xi_1;\xi_2) \quad \xi_1 \land \xi_2 \quad \text{conjunction} \\
\text{nothing}[\tau] \quad \bot \quad \text{falsity} \\
\text{or}(\xi_1;\xi_2) \quad \xi_1 \lor \xi_2 \quad \text{disjunction} \\
\text{in}[\ell](\xi_1) \quad \ell \cdot \xi_1 \quad \text{left injection} \\
\text{in}[\ell](\xi_2) \quad r \cdot \xi_2 \quad \text{right injection} \\
\text{triv} \quad \langle \rangle \quad \text{unit} \\
\text{pair}(\xi_1;\xi_2) \quad \langle \xi_1,\xi_2 \rangle \quad \text{pair}
\]

It is easy to define the judgement $\xi : \tau$ specifying that the constraint ξ constrains values of type τ.

The De Morgan Dual, $\overline{\xi}$, of a match constraint, ξ, is defined by the fol-
16.4 Exhaustiveness and Redundancy

Following rules:

\begin{align*}
\top &= \bot \\
\xi_1 \land \xi_2 &= \xi_1 \lor \xi_2 \\
\bot &= \top \\
\xi_1 \lor \xi_2 &= \xi_1 \land \xi_2 \\
1 \cdot \xi_1 &= 1 \cdot \xi_1 \lor r \cdot \top \\
r \cdot \xi_1 &= r \cdot \xi_1 \lor 1 \cdot \top \\
\langle \rangle &= \bot \\
\langle \xi_1, \xi_2 \rangle &= \langle \xi_1, \xi_2 \rangle \lor \langle \xi_1, \xi_2 \rangle \lor \langle \xi_1, \xi_2 \rangle
\end{align*}

Intuitively, the dual of a match constraint expresses the negation of that constraint. In the case of the last four rules it is important to keep in mind that these constraints apply only to specific types.

The satisfaction judgement, \(e \models \xi \), is defined for values \(e \) and constraints \(\xi \) of the same type by the following rules:

\begin{align*}
e \models \top & \quad (16.9a) \\
e \models \xi_1 & \models \xi_2 \\
e \models \xi_1 \land \xi_2 & \quad (16.9b) \\
e \models \xi_1 & \quad (16.9c) \\
e \models \xi_2 & \quad (16.9d) \\
e \models \xi_1 & \land \xi_2 \\
1 \cdot e_1 & \models 1 \cdot \xi_1 & \quad (16.9e) \\
e_2 & \models \xi_2 \\
r \cdot e_2 & \models r \cdot \xi_2 & \quad (16.9f) \\
\langle \rangle & \models \langle \rangle & \quad (16.9g) \\
e_1 & \models \xi_1 & \models \xi_2 \\
\langle e_1, e_2 \rangle & \models \langle \xi_1, \xi_2 \rangle & \quad (16.9h)
\end{align*}

The De Morgan dual construction negates a constraint.

Lemma 16.3. If \(\xi : \tau \), then, for every value \(e : \tau \), \(e \models \xi \) if, and only if, \(e \nmid \xi \).

June 2, 2010 Draft 13:08
16.4 Exhaustiveness and Redundancy

We define the entailment of two constraints, $\xi_1 \models \xi_2$ to mean that $e \models \xi_2$ whenever $e \models \xi_1$. By Lemma 16.3 on the previous page we have that $\xi_1 \models \xi_2$ iff $\bar{\bigvee} \xi_1 \land \bar{\bigvee} \xi_2$. We often write $\xi_1, \ldots, \xi_n \models \xi$ for $\xi_1 \land \ldots \land \xi_n \models \xi$ so that in particular $\models \xi$ means $e \models \xi$ for every value $e : \tau$.

16.4.2 Enforcing Exhaustiveness and Redundancy

To enforce exhaustiveness and irredundancy the statics of pattern matching is augmented with constraints that express the set of values matched by a given set of rules. A sequence of rules is exhaustive if every value of suitable type satisfies the associated constraint. A rule is redundant relative to the preceding rules if every value satisfying its constraint satisfies one of the preceding constraints. A sequence of rules is irredundant iff no rule is redundant relative to the rules that precede it in the sequence.

The judgement $\Lambda \models p : \tau [\xi]$ augments the judgement $\Lambda \models p : \tau$ with a match constraint characterizing the set of values of type τ matched by the pattern p. It is inductively defined by the following rules:

\begin{align}
(16.10a) & \quad x : \tau \vdash x : \tau [\top] \\
(16.10b) & \quad \emptyset \vdash \perp : \tau [\top] \\
(16.10c) & \quad \emptyset \vdash \langle \rangle : \text{unit} [\langle \rangle] \\
(16.10d) & \quad \Lambda_1 \models p : \tau_1 [\xi_1] \\
(16.10e) & \quad \Lambda_2 \models p : \tau_2 [\xi_2] \\
(16.10f) & \quad \Lambda_1 \vdash p_1 : \tau_1 [\xi_1] \quad \Lambda_2 \vdash p_2 : \tau_2 [\xi_2] \quad \Lambda_1 \# \Lambda_2 \\
\Lambda_1 \Lambda_2 \vdash \langle p_1, p_2 \rangle : \tau_1 \times \tau_2 [\langle \xi_1, \xi_2 \rangle]
\end{align}

Lemma 16.4. Suppose that $\Lambda \models p : \tau [\xi]$. For every $e : \tau$ such that $e \text{ val}$, $e \models \xi$ iff $\theta \models p < e$ for some θ, and $e \not\models \xi$ iff $e \perp p$.

The judgement $\Gamma \vdash r : \tau > \tau' [\xi]$ augments the formation judgement for a rule with a match constraint characterizing the pattern component of the rule. The judgement $\Gamma \vdash rs : \tau > \tau' [\xi]$ augments the formation judgement for a sequence of rules with a match constraint characterizing the values matched by some rule in the given rule sequence.

\begin{align}
(16.11a) & \quad \Lambda \models p : \tau [\xi] \\
& \quad \Gamma \vdash e : \tau' \\
& \quad \Gamma \vdash p \Rightarrow e : \tau > \tau' [\xi]
\end{align}
Rule (16.11b) requires that each successive rule not be redundant relative to the preceding rules. The overall constraint associated to the rule sequence specifies that every value of type τ satisfy the constraint associated with some rule.

The typing rule for match expressions demands that the rules that comprise it be exhaustive:

$$\Gamma \vdash e : \tau \quad \Gamma \vdash rs : \tau > \tau'[\xi_1] \quad \vdash \xi_i$$

[16.12]

Rule (16.11b) ensures that ξ is a disjunction of the match constraints associated to the constituent rules of the match expression. The requirement that ξ be valid amounts to requiring that every value of type τ satisfies the constraint of at least one rule of the match.

Theorem 16.5. If $e : \tau$, then either $e \text{ val}$ or there exists e' such that $e \mapsto e'$.

Proof. The exhaustiveness check in Rule (16.12) ensures that if $e \text{ val}$ and $e : \tau$, then $e \vdash \xi$. The form of ξ given by Rule (16.11b) ensures that $e \vdash \xi_i$ for some constraint ξ_i corresponding to the ith rule. By Lemma 16.4 on the facing page the value e must match the ith rule, which is enough to ensure progress. \qed

16.4.3 Checking Exhaustiveness and Redundancy

Checking exhaustiveness and redundancy reduces to showing that the constraint validity judgement $\vdash \xi$ is decidable. We will prove this by defining a judgement $\Xi \text{ incon}$, where Ξ is a finite set of constraints of the same type, with the meaning that no value of this type satisfies all of the constraints in Ξ. We will then show that either $\Xi \text{ incon}$ or not.

The rules defining inconsistency of a finite set, Ξ, of constraints of the same type are as follows:

$$\frac{\Xi \text{ incon}}{\Xi, \top \text{ incon}}$$ \hspace{1cm} (16.13a)

$$\frac{\Xi, \xi_1, \xi_2 \text{ incon}}{\Xi, \xi_1 \land \xi_2 \text{ incon}}$$ \hspace{1cm} (16.13b)

$$\frac{\Xi, \bot \text{ incon}}{\Xi, \text{ incon}}$$ \hspace{1cm} (16.13c)
In Rule (16.13f) we write $1 \cdot \Xi$ for the finite set of constraints $1 \cdot \xi_1, \ldots, 1 \cdot \xi_n$, where $\Xi = \xi_1, \ldots, \xi_n$, and similarly in Rules (16.13g), (16.13h), and (16.13i).

Lemma 16.6. It is decidable whether or not $\Xi \text{ incon}$.

Proof. The premises of each rule involving only constraints that are proper components of the constraints in the conclusion. Consequently, we can simplify Ξ by inverting each of the applicable rules until no rule applies, then determine whether or not the resulting set, Ξ', is contradictory in the sense that it contains \bot or both $1 \cdot \xi$ and $r \cdot \xi'$ for some ξ and ξ'.

Lemma 16.7. $\Xi \text{ incon iff } \Xi \models \bot$.

Proof. From left to right we proceed by induction on Rules (16.13). From right to left we may show that if $\Xi \text{ incon}$ is not derivable, then there exists a value e such that $e \models \Xi$, and hence $\Xi \not\models \bot$.

16.5 Exercises
Chapter 17

Generic Programming

17.1 Introduction

Many programs can be seen as instances of a general pattern applied to a particular situation. Very often the pattern is determined by the types of the data involved. For example, in Chapter 12 the pattern of computing by recursion over a natural number is isolated as the defining characteristic of the type of natural numbers. This concept will itself emerge as an instance of the concept of type-generic, or just generic, programming.

Suppose that we have a function, f, of type $\sigma \rightarrow \sigma'$ that transforms values of type σ into values of type σ'. For example, f might be the doubling function on natural numbers. We wish to extend f to a transformation from type $[\sigma/t]\tau$ to type $[\sigma'/t]\tau$ by applying f to various spots in the input where a value of type σ occurs to obtain a value of type σ', leaving the rest of the data structure alone. For example, τ might be $\texttt{bool} \times \sigma$, in which case f could be extended to a function of type $\texttt{bool} \times \sigma \rightarrow \texttt{bool} \times \sigma'$ that sends the pairs (a, b) to the pair $(a, f(b))$.

This example glosses over a significant problem of ambiguity of the extension. Given a function f of type $\sigma \rightarrow \sigma'$, it is not obvious in general how to extend it to a function mapping $[\sigma/t]\tau$ to $[\sigma'/t]\tau$. The problem is that it is not clear which of many occurrences of σ in $[\sigma/t]\tau$ are to be transformed by f, even if there is only one occurrence of σ. To avoid ambiguity we need a way to mark which occurrences of σ in $[\sigma/t]\tau$ are to be transformed, and which are to be left fixed. This can be achieved by isolating the type operator, $t \cdot \tau$, which is a type expression in which a designated variable, t, marks the spots at which we wish the transformation to occur. Given $t \cdot \tau$ and $f : \sigma \rightarrow \sigma'$, we can extend f unambiguously to a function of
type $[\sigma/t]\tau \rightarrow [\sigma'/t]\tau$.

The technique of using a type operator to determine the behavior of a piece of code is called *generic programming*. The power of generic programming depends on which forms of type operator are considered. The simplest case is that of a *polynomial* type operator, one constructed from sum and product of types, including their nullary forms. These may be extended to *positive* type operators, which also permit restricted forms of function types.

17.2 Type Operators

A *type operator* is a type equipped with a designated variable whose occurrences mark the positions in the type where a transformation is to be applied. A type operator is represented by an abstractor $t.\tau$ such that $t\ type \vdash \tau\ type$. An example of a type operator is the abstractor $t.\text{unit} + (\text{bool} \times t)$ in which occurrences of t mark the spots in which a transformation is to be applied. An *instance* of the type operator $t.\tau$ is obtained by substituting a type, σ, for the variable, t, within the type τ. We sometimes write $\text{Map}[t.\tau](\sigma)$ for the substitution instance $[\sigma/t]\tau$.

The *polynomial* type operators are those constructed from the type variable, t, the types void and unit, and the product and sum type constructors, $\tau_1 \times \tau_2$ and $\tau_1 + \tau_2$. It is a straightforward exercise to give inductive definitions of the judgement $t.\tau\ poly$ stating that the operator $t.\tau$ is a polynomial type operator.

17.3 Generic Extension

The *generic extension* primitive has the form

$$\text{map}[t.\tau](x.e';e)$$

with statics given by the following rule:

$$\frac{t\ type \vdash \tau\ type \quad \Gamma, x : \sigma \vdash e' : \sigma' \quad \Gamma \vdash e : [\sigma/t]\tau}{\Gamma \vdash \text{map}[t.\tau](x.e';e) : [\sigma'/t]\tau} \quad (17.1)$$

The abstractor $x.e'$ specifies a transformation from type σ, the type of x, to type σ', the type of e'. The expression e of type $[\sigma/t]\tau$ determines the value...
to be transformed to obtain a value of type \([\sigma'/t]\tau\). The occurrences of \(t\) in \(\tau\) determine the spots at which the transformation given by \(x.e\) is to be performed.

The dynamics of generic extension is specified by the following rules. We consider here only polynomial type operators, leaving the extension to positive type operators to be considered later.

\[
\begin{align*}
\text{map}[t.t](x.e';e) &\mapsto [e/x]e' & \text{(17.2a)} \\
\text{map}[t.\text{unit}](x.e';e) &\mapsto \langle \rangle & \text{(17.2b)} \\
\text{map}[t.\tau_1 \times \tau_2](x.e';e) &\mapsto \\
&\mapsto \langle \text{map}[t.\tau_1](x.e';e \cdot l), \text{map}[t.\tau_2](x.e';e \cdot r) \rangle & \text{(17.2c)} \\
\text{map}[t.\text{void}](x.e';e) &\mapsto \text{abort}(e) & \text{(17.2d)} \\
\text{map}[t.\tau_1 + \tau_2](x.e';e) &\mapsto \\
&\mapsto \text{case } e \{ l \cdot x_1 \Rightarrow 1 \cdot \text{map}[t.\tau_1](x.e';x_1) | r \cdot x_2 \Rightarrow r \cdot \text{map}[t.\tau_2](x.e';x_2) \} & \text{(17.2e)}
\end{align*}
\]

Rule (17.2a) applies the transformation \(x.e'\) to \(e\) itself, since the operator \(t.t\) specifies that the transformation is to be performed directly. Rule (17.2b) states that the empty tuple is transformed to itself. Rule (17.2c) states that to transform \(e\) according to the operator \(t.\tau_1 \times \tau_2\), the first component of \(e\) is transformed according to \(t.\tau_1\) and the second component of \(e\) is transformed according to \(t.\tau_2\). Rule (17.2d) states that the transformation of a value of type \(\text{void}\) aborts, since there can be no such values. Rule (17.2e) states that to transform \(e\) according to \(t.\tau_1 + \tau_2\), case analyze \(e\) and reconstruct it after transforming the injected value according to \(t.\tau_1\) or \(t.\tau_2\).

Consider the type operator \(t.\tau\) given by \(t.\text{unit} + (\text{bool} \times t)\). Let \(x.e\) be the abstractor \(x.s(x)\), which increments a natural number. Using Rules (17.2) we may derive that

\[
\text{map}[t.\tau](x.e;r \cdot \langle \text{tt}, n \rangle) \mapsto^* r \cdot \langle \text{tt}, n + 1 \rangle.
\]
The natural number in the second component of the pair is incremented, since the type variable, \(t \), occurs in that position in the type operator \(t \cdot \tau \).

Theorem 17.1 (Preservation). If \(\text{map}[t \cdot \tau] (x. e'; e) : \rho \) and \(\text{map}[t \cdot \tau] (x. e'; e) \mapsto e'' \), then \(e'' : \rho \).

Proof. By inversion of Rule (17.1) we have

1. \(t \text{ type } \vdash \tau \text{ type} \);
2. \(x : \sigma \vdash e' : \sigma' \) for some \(\sigma \) and \(\sigma' \);
3. \(e : [\sigma/t] \tau \);
4. \(\rho = [\sigma'/t] \tau \).

We proceed by cases on Rules (17.2). For example, consider Rule (17.2c). It follows from inversion that \(\text{map}[t \cdot \tau_1] (x. e'; e \cdot 1) : [\sigma'/t] \tau_1 \), and similarly that \(\text{map}[t \cdot \tau_2] (x. e'; e \cdot \tau) : [\sigma'/t] \tau_2 \). It is easy to check that

\[
\langle \text{map}[t \cdot \tau_1] (x. e'; e \cdot 1), \text{map}[t \cdot \tau_2] (x. e'; e \cdot \tau) \rangle
\]

has type \([\sigma'/t] \tau_1 \times \tau_2 \), as required. \(\square \)

The *positive* type operators extend the polynomial type operators to admit restricted forms of function type. Specifically, \(t \cdot \tau_1 \rightarrow \tau_2 \) is a positive type operator, provided that (1) \(t \) does not occur in \(\tau_1 \), and (2) \(t \cdot \tau_2 \) is a positive type operator. In general, any occurrences of a type variable \(t \) in the domain a function type are said to be **negative occurrences**, whereas any occurrences of \(t \) within the range of a function type, or within a product or sum type, are said to be **positive occurrences**.\(^1\) A positive type operator is one for which only positive occurrences of the parameter, \(t \), are permitted.

The generic extension according to a positive type operator is defined similarly to the case of a polynomial type operator, with the following additional rule:

\[
\text{map}[t \cdot \tau_1 \rightarrow \tau_2] (x. e'; e) \mapsto \lambda (x_1 : \tau_1. \text{map}[t \cdot \tau_2] (x. e'; e(x_1)))
\]

\(^1\)The origin of this terminology appears to be that a function type \(\tau_1 \rightarrow \tau_2 \) is, by the propositions-as-types principle, analogous to the implication \(\phi_1 \supset \phi_2 \), which is classically equivalent to \(\neg \phi_1 \lor \phi_2 \), placing occurrences in the domain beneath the negation sign.
Since t is not permitted to occur within the domain type, the type of the result is $\tau_1 \rightarrow [\sigma'/t]\tau_2$, assuming that e is of type $\tau_1 \rightarrow [\sigma/t]\tau_2$. It is easy to verify preservation for the generic extension of a positive type operator.

It is interesting to consider what goes wrong if we relax the restriction on positive type operators to admit negative, as well as positive, occurrences of the parameter of a type operator. Consider the type operator $t.\tau_1 \rightarrow \tau_2$, without restriction on t, and suppose that $x : \sigma \vdash e' : \sigma'$. The generic extension $\text{map}[t.\tau_1 \rightarrow \tau_2](x.e';e)$ should have type $[\sigma'/t]\tau_1 \rightarrow [\sigma'/t]\tau_2$, given that e has type $[\sigma/t]\tau_1 \rightarrow [\sigma/t]\tau_2$. The extension should yield a function of the form

$$\lambda (x_1 : [\sigma'/t]\tau_1 (e . . . (x_1))))$$

in which we apply e to a transformation of x_1 and then transform the result. The trouble is that we are given, inductively, that $\text{map}[t.\tau_1](x.e';-)\text{map}[t.\tau_1]$ transforms values of type $[\sigma/t]\tau_1$ into values of type $[\sigma'/t]\tau_1$, but we need to go the other way around in order to make x_1 suitable as an argument for e. But there is no obvious way to obtain the required transformation.

One solution to this is to assume that the fundamental transformation $x.e'$ is invertible so that we may apply the inverse transformation on x_1 to get an argument of type suitable for e, then apply the forward transformation on the result, just as in the positive case. Since we cannot invert an arbitrary transformation, we must instead pass both the transformation and its inverse to the generic extension operation so that it can “go backwards” as necessary to cover negative occurrences of the type parameter. So in the general case the generic extension applies only when we are given a type isomorphism (a pair of mutually inverse mappings between two types), and then results in another isomorphism pair. We leave the formulation of this as an exercise for the reader.

17.4 Exercises

Since t is not permitted to occur within the domain type, the type of the result is $\tau_1 \rightarrow [\sigma'/t]\tau_2$, assuming that e is of type $\tau_1 \rightarrow [\sigma/t]\tau_2$. It is easy to verify preservation for the generic extension of a positive type operator.

It is interesting to consider what goes wrong if we relax the restriction on positive type operators to admit negative, as well as positive, occurrences of the parameter of a type operator. Consider the type operator $t.\tau_1 \rightarrow \tau_2$, without restriction on t, and suppose that $x : \sigma \vdash e' : \sigma'$. The generic extension $\text{map}[t.\tau_1 \rightarrow \tau_2](x.e';e)$ should have type $[\sigma'/t]\tau_1 \rightarrow [\sigma'/t]\tau_2$, given that e has type $[\sigma/t]\tau_1 \rightarrow [\sigma/t]\tau_2$. The extension should yield a function of the form

$$\lambda (x_1 : [\sigma'/t]\tau_1 (e . . . (x_1))))$$

in which we apply e to a transformation of x_1 and then transform the result. The trouble is that we are given, inductively, that $\text{map}[t.\tau_1](x.e';-)\text{map}[t.\tau_1]$ transforms values of type $[\sigma/t]\tau_1$ into values of type $[\sigma'/t]\tau_1$, but we need to go the other way around in order to make x_1 suitable as an argument for e. But there is no obvious way to obtain the required transformation.

One solution to this is to assume that the fundamental transformation $x.e'$ is invertible so that we may apply the inverse transformation on x_1 to get an argument of type suitable for e, then apply the forward transformation on the result, just as in the positive case. Since we cannot invert an arbitrary transformation, we must instead pass both the transformation and its inverse to the generic extension operation so that it can “go backwards” as necessary to cover negative occurrences of the type parameter. So in the general case the generic extension applies only when we are given a type isomorphism (a pair of mutually inverse mappings between two types), and then results in another isomorphism pair. We leave the formulation of this as an exercise for the reader.
Part VI

Infinite Data Types
Chapter 18

Inductive and Co-Inductive Types

The inductive and the coinductive types are two important forms of recursive type. Inductive types correspond to least, or initial, solutions of certain type isomorphism equations, and coinductive types correspond to their greatest, or final, solutions. Intuitively, the elements of an inductive type are those that may be obtained by a finite composition of its introductory forms. Consequently, if we specify the behavior of a function on each of the introductory forms of an inductive type, then its behavior is determined for all values of that type. Such a function is called a recursor, or catamorphism. Dually, the elements of a coinductive type are those that behave properly in response to a finite composition of its elimination forms. Consequently, if we specify the behavior of an element on each elimination form, then we have fully specified that element as a value of that type. Such an element is called an generator, or anamorphism.

18.1 Motivating Examples

The most important example of an inductive type is the type of natural numbers as formalized in Chapter 12. The type nat is defined to be the least type containing z and closed under s(−). The minimality condition is witnessed by the existence of the recursor, nat iter e \{z⇒e_0 | s(x)⇒e_1\}, which transforms a natural number into a value of type τ, given its value for zero, and a transformation from its value on a number to its value on the successor of that number. This operation is well-defined precisely because there are no other natural numbers. Put the other way around, the existence
of this operation expresses the inductive nature of the type \texttt{nat}.

With a view towards deriving the type \texttt{nat} as a special case of an inductive type, it is useful to consolidate zero and successor into a single introductory form, and to correspondingly consolidate the basis and inductive step of the recursor. This following rules specify the statics of this reformulation:

\[
\begin{align*}
\Gamma & \vdash e : \text{unit} + \text{nat} \\
\Gamma & \vdash \text{foldnat}(e) : \text{nat} \\
\Gamma, x : \text{unit} + \tau & \vdash e_1 : \tau \\
& \vdash e_2 : \text{nat} \\
\Gamma & \vdash \text{recnat}[x.e_1](e_2) : \tau
\end{align*}
\] (18.1a)

The expression \text{foldnat}(e) is the unique introductory form of the type \texttt{nat}. Using this, the expression \(z \) is defined to be \text{foldnat}(l \cdot \langle \rangle), and \(s(e) \) is defined to be \text{foldnat}(r \cdot e). The recursor, \text{recnat}[x.e_1](e_2), takes as argument the abstractor \(x.e_1 \) that consolidates the basis and inductive step into a single computation that is given a value of type \text{unit} + \tau yields a value of type \(\tau \). Intuitively, if \(x \) is replaced by the value \(l \cdot \langle \rangle \), then \(e_1 \) computes the base case of the recursion, and if \(x \) is replaced by the value \(r \cdot e \), then \(e_1 \) computes the inductive step as a function of the result, \(e \), of the recursive call.

The dynamics of the consolidated representation of natural numbers is given by the following rules:

\[
\begin{align*}
\text{foldnat}(e) & \rightarrow^* e_2 \\
\text{recnat}[x.e_1](e_2) & \rightarrow^* \text{recnat}[x.e_1](e'_2) \\
\text{recnat}[x.e_1](\text{foldnat}(e_2)) & \rightarrow^* \text{recnat}[x.e_1](\text{foldnat}(e'_2)) \\
\end{align*}
\] (18.2a, 18.2b, 18.2c)

Rule (18.2c) makes use of generic extension (see Chapter 8) to apply the recursor to the predecessor, if any, of a natural number. The idea is that the result of extending the recursor from the type \text{unit} + \text{nat} to the type \text{unit} + \tau is substituted into the inductive step, given by the expression \(e_1 \). If we expand the definition of the generic extension in place, we obtain the
18.1 Motivating Examples

following reformulation of this rule:

\[
\text{rec nat } [x.e_1](\text{fold nat}(e_2)) \mapsto \text{case } e_2 \{ l \cdot \Rightarrow l \cdot (\cdot) | r \cdot y \Rightarrow r \cdot \text{rec nat } [x.e_1](y) / x \} e_1
\]

An illustrative example of a coinductive type is the type of streams of natural numbers. A stream is an infinite sequence of natural numbers such that an element of the stream can be computed only after computing all preceding elements in that stream. That is, the computations of successive elements of the stream are sequentially dependent in that the computation of one element influences the computation of the next. This characteristic of the introductory form for streams is dual to the analogous property of the eliminatory form for natural numbers whereby the result for a number is determined by its result for all preceding numbers.

A stream is characterized by its behavior under the elimination forms for the stream type: \(\text{hd}(e) \) returns the next, or head, element of the stream, and \(\text{tl}(e) \) returns the tail of the stream, the stream resulting when the head element is removed. A stream is introduced by a generator, the dual of a recursor, that determines the head and the tail of the stream in terms of the current state of the stream, which is represented by a value of some type. The statics of streams is given by the following rules:

\[
\begin{align*}
\Gamma \vdash e : \text{stream} \\
\Gamma \vdash \text{hd}(e) : \text{nat} \\
\Gamma \vdash e : \text{stream} \\
\Gamma \vdash \text{tl}(e) : \text{stream}
\end{align*}
\]

(18.3a) (18.3b)

\[
\begin{align*}
\Gamma \vdash e : \tau & \quad \Gamma, x : \tau \vdash e_1 : \text{nat} & \quad \Gamma, x : \tau \vdash e_2 : \tau \\
\Gamma \vdash \text{strgen } e < \text{hd}(x) \Rightarrow e_1 & \quad \& \quad \text{tl}(x) \Rightarrow e_2 > : \text{stream}
\end{align*}
\]

(18.3c)

In Rule (18.3c) the current state of the stream is given by the expression \(e \) of some type \(\tau \), and the head and tail of the stream are determined by the expressions \(e_1 \) and \(e_2 \), respectively, as a function of the current state.

The dynamics of streams is given by the following rules:

\[
\begin{align*}
\text{strgen } e < \text{hd}(x) \Rightarrow e_1 & \quad \& \quad \text{tl}(x) \Rightarrow e_2 > : \text{val} \\
\end{align*}
\]

(18.4a)

\[
\begin{align*}
\frac{e \mapsto e'}{\text{hd}(e) \mapsto \text{hd}(e')} \\
\end{align*}
\]

(18.4b)
Motivating Examples

\[\text{hd}(\text{strgen} e < \text{hd}(x) \Rightarrow e_1 \& \text{tl}(x) \Rightarrow e_2>) \mapsto [e/x]e_1 \]
\[(18.4c) \]

\[\begin{align*}
\frac{e \mapsto e'}{\text{tl}(e) \mapsto \text{tl}(e')}
\end{align*} \]
\[(18.4d) \]

\[\text{tl}(\text{strgen} e < \text{hd}(x) \Rightarrow e_1 \& \text{tl}(x) \Rightarrow e_2>) \mapsto \text{strgen} [e/x]e_2 < \text{hd}(x) \Rightarrow e_1 \& \text{tl}(x) \Rightarrow e_2> \]
\[(18.4e) \]

Rules (18.4c) and (18.4e) express the dependency of the head and tail of the stream on its current state. Observe that the tail is obtained by applying the generator to the new state determined by \(e_2 \) as a function of the current state.

To derive streams as a special case of a coinductive type, we consolidate the head and the tail into a single eliminatory form, and reorganize the generator correspondingly. This leads to the following statics:

\[\Gamma \vdash e : \text{stream} \]
\[\Rightarrow \]
\[\Gamma \vdash \text{unfoldstream}(e) : \text{nat} \times \text{stream} \]
\[(18.5a) \]

\[\begin{align*}
\frac{\Gamma, x : \tau \vdash e_1 : \text{nat} \times \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{genstream}[x.\ e_1](e_2) : \text{stream}}
\end{align*} \]
\[(18.5b) \]

Rule (18.5a) states that a stream may be unfolded into a pair consisting of its head, a natural number, and its tail, another stream. The head, \(\text{hd}(e) \), and tail, \(\text{tl}(e) \), of a stream, \(e \), are defined to be the projections \(\text{unfoldstream}(e) \cdot 1 \) and \(\text{unfoldstream}(e) \cdot \tau \), respectively. Rule (18.5b) states that a stream may be generated from the state element, \(e_2 \), by an expression \(e_1 \) that yields the head element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

\[\text{genstream}[x.\ e_1](e_2) \text{ val} \]
\[(18.6a) \]

\[\begin{align*}
\frac{e \mapsto e'}{\text{unfoldstream}(e) \mapsto \text{unfoldstream}(e')}
\end{align*} \]
\[(18.6b) \]

\[\begin{align*}
\text{unfoldstream}(\text{genstream}[x.\ e_1](e_2)) \mapsto \text{map}[t.\text{nat} \times t] (y.\text{genstream}[x.\ e_1](y)); [e_2/x]e_1 \)
\end{align*} \]
\[(18.6c) \]
Rule (18.6c) uses generic extension to generate a new stream whose state is the second component of \([e_2/x]e_1\). Expanding the generic extension we obtain the following reformulation of this rule:

\[
\text{unfoldstream}(\text{genstream}[x.e_1](e_2)) \\
\rightarrow \\
\langle ([e_2/x]e_1) \cdot 1, \text{genstream}[x.e_1](([e_2/x]e_1) \cdot r) \rangle
\]

18.2 Statics

We may now give a fully general account of inductive and coinductive types, which are defined in terms of positive type operators. We will consider the language \(L\{\mu_i\mu_i\}\), which extends \(L\{\to \times +\}\) with inductive and co-inductive types.

18.2.1 Types

The syntax of inductive and coinductive types involves type variables, which are, of course, variables ranging over types. The abstract syntax of inductive and coinductive types is given by the following grammar:

\[
\text{Type } \tau ::= \quad t \quad \text{self-reference} \\
\text{ind}(t.\tau) \quad \mu_i(t.\tau) \quad \text{inductive} \\
\text{coi}(t.\tau) \quad \mu_f(t.\tau) \quad \text{coinductive}
\]

Type formation judgements have the form

\[
t_1 \text{ type}, \ldots, t_n \text{ type} \vdash \tau \text{ type},
\]

where \(t_1, \ldots, t_n\) are type names. We let \(\Delta\) range over finite sets of hypotheses of the form \(t \text{ type}\), where \(t\) name is a type name. The type formation judgement is inductively defined by the following rules:

\[
\Delta, t \text{ type} \vdash t \text{ type} \quad (18.7a)
\]

\[
\Delta \vdash \text{unit type} \quad (18.7b)
\]

\[
\Delta \vdash \tau_1 \text{ type} \quad \Delta \vdash \tau_2 \text{ type} \quad \Delta \vdash \text{prod}(\tau_1; \tau_2) \text{ type} \quad (18.7c)
\]

\[
\Delta \vdash \text{void type} \quad (18.7d)
\]
18.3 Dynamics

\[
\frac{\Delta \vdash \tau_1 \text{ type} \quad \Delta \vdash \tau_2 \text{ type}}{\Delta \vdash \text{sum}(\tau_1; \tau_2) \text{ type}} \tag{18.7e}
\]

\[
\frac{\Delta \vdash \tau_1 \text{ type} \quad \Delta \vdash \tau_2 \text{ type}}{\Delta \vdash \text{arr}(\tau_1; \tau_2) \text{ type}} \tag{18.7f}
\]

\[
\frac{\Delta, t \text{ type} \vdash \tau \text{ type} \quad \Delta \vdash t.\tau \text{ pos}}{\Delta \vdash \text{ind}(t.\tau) \text{ type}} \tag{18.7g}
\]

\[
\frac{\Delta, t \text{ type} \vdash \tau \text{ type} \quad \Delta \vdash t.\tau \text{ pos}}{\Delta \vdash \text{coi}(t.\tau) \text{ type}} \tag{18.8}
\]

18.2.2 Expressions

The abstract syntax of expressions for inductive and coinductive types is given by the following grammar:

\[
\text{Expr } e ::= \text{fold}[t.\tau](e) \quad \text{fold}(e) \quad \text{constructor} \\
\quad \text{rec}[t.\tau][x.e_1](e_2) \quad \text{rec}[x.e_1](e_2) \quad \text{recursor} \\
\quad \text{unfold}[t.\tau](e) \quad \text{unfold}(e) \quad \text{destructor} \\
\quad \text{gen}[t.\tau][x.e_1](e_2) \quad \text{gen}[x.e_1](e_2) \quad \text{generator}
\]

The statics for inductive and coinductive types is given by the following typing rules:

\[
\frac{\Gamma \vdash e : [\text{ind}(t.\tau)/t] \tau}{\Gamma \vdash \text{fold}[t.\tau](e) : \text{ind}(t.\tau)} \tag{18.9a}
\]

\[
\frac{\Gamma, x : [\rho/t] \tau \vdash e_1 : \rho \quad \Gamma \vdash e_2 : \text{ind}(t.\tau)}{\Gamma \vdash \text{rec}[t.\tau][x.e_1](e_2) : \rho} \tag{18.9b}
\]

\[
\frac{\Gamma \vdash e : \text{coi}(t.\tau)}{\Gamma \vdash \text{unfold}[t.\tau](e) : [\text{coi}(t.\tau)/t] \tau} \tag{18.9c}
\]

\[
\frac{\Gamma \vdash e_2 : \rho \quad \Gamma, x : \rho \vdash e_1 : [\rho/t] \tau}{\Gamma \vdash \text{gen}[t.\tau][x.e_1](e_2) : \text{coi}(t.\tau)} \tag{18.9d}
\]

18.3 Dynamics

The dynamics of these constructs is given in terms of the generic extension operation described in Chapter 17. The following rules specify a lazy dynamics for \(\mathcal{L}\{\mu_i \mu_i\} \):

\[
\text{fold}(e) \quad \text{val} \tag{18.10a}
\]
Rule (18.10c) states that to evaluate the recursor on a value of recursive type, we inductively apply the recursor as guided by the type operator to the value, and then perform the inductive step on the result. Rule (18.10f) is simply the dual of this rule for coinductive types.

Lemma 18.1. If \(e : \tau \) and \(e \mapsto e' \), then \(e' : \tau \).

Proof. By rule induction on Rules (18.10).

Lemma 18.2. If \(e : \tau \), then either \(e \text{ val} \) or there exists \(e' \) such that \(e \mapsto e' \).

Proof. By rule induction on Rules (18.9).

18.4 Exercises
Chapter 19

Recursive Types

Inductive and coinductive types, such as natural numbers and streams, may be seen as examples of fixed points of type operators up to isomorphism. An isomorphism between two types, \(\tau_1 \) and \(\tau_2 \), is given by two expressions

1. \(x_1 : \tau_1 \vdash e_2 : \tau_2 \), and
2. \(x_2 : \tau_2 \vdash e_1 : \tau_1 \)

that are mutually inverse to each other.\(^1\) For example, the types \(\text{nat} \) and \(\text{unit} + \text{nat} \) are isomorphic, as witnessed by the following two expressions:

1. \(x : \text{unit} + \text{nat} \vdash \text{case } x \{ 1 \cdot \Rightarrow z \mid r \cdot x_2 \Rightarrow s(x_2) \} : \text{nat}, \) and
2. \(x : \text{nat} \vdash \text{ifz } x \{ z \Rightarrow 1 \cdot \} \mid s(x_2) \Rightarrow r \cdot x_2 \} : \text{unit} + \text{nat}. \)

These are called, respectively, the fold and unfold operations of the isomorphism \(\text{nat} \cong \text{unit} + \text{nat} \). Thinking of \(\text{unit} + \text{nat} \) as \([\text{nat}/t](\text{unit} + t) \), this means that \(\text{nat} \) is a fixed point of the type operator \(t.\text{unit} + t.\)

In this chapter we study the language \(L\{+ \times \mu\} \), which provides solutions to all type isomorphism equations. The recursive type \(\mu t.\tau \) is defined to be a solution to the type isomorphism

\[
\mu t.\tau \cong [\mu t.\tau/t]\tau.
\]

This is witnessed by the operations

\[
x : \mu t.\tau \vdash \text{unfold}(x) : [\mu t.\tau/t]\tau
\]

\(^1\)To make this precise requires a discussion of equivalence of expressions to be taken up in Chapter 48. For now we will rely on an intuitive understanding of when two expressions are equivalent.
19.1 Solving Type Isomorphisms

and

\[x : [\mu t. \tau / t] \tau \vdash \text{fold}(x) : \mu t. \tau, \]

which are mutually inverse to each other.

Requiring solutions to all type equations may seem suspicious, since we know by Cantor’s Theorem that an isomorphisms such as \(X \cong (X \to 2) \) is impossible. This negative result tells us not that our requirement is untenable, but rather that types are not sets. To permit solution of arbitrary type equations, we must take into account that types describe computations, some of which may not even terminate. Consequently, the function space does not coincide with the set-theoretic function space, but rather is analogous to it (in a precise sense that we shall not enter into here).

19.1 Solving Type Isomorphisms

The recursive type \(\mu t. \tau \), where \(t. \tau \) is a type operator, represents a solution for \(t \) to the isomorphism \(t \cong \tau \). The solution is witnessed by two operations, \(\text{fold}(e) \) and \(\text{unfold}(e) \), that relate the recursive type \(\mu t. \tau \) to its unfolding, \([\mu t. \tau / t] \tau \), and serve, respectively, as its introduction and elimination forms.

The language \(L\{+ \times \mu \} \) extends \(L\{\to \} \) with recursive types and their associated operations.

\[
\text{Type } \tau ::= \quad t \quad \text{self-reference} \\
\quad \text{rec}(t. \tau) \quad \mu t. \tau \quad \text{recursive}
\]

\[
\text{Expr } e ::= \quad \text{fold}[t. \tau](e) \quad \text{fold}(e) \quad \text{constructor} \\
\quad \text{unfold}(e) \quad \text{unfold}(e) \quad \text{destructor}
\]

The statics of \(L\{+ \times \mu \} \) consists of two forms of judgement. The first, called type formation, is a general hypothetical judgement of the form

\[\Delta \vdash \tau \text{ type}, \]

where \(\Delta \) has the form \(t_1 \text{ type}, \ldots, t_k \text{ type} \). Type formation is inductively defined by the following rules:

\[
\Delta, t \text{ type} \vdash t \text{ type} \quad (19.1a)
\]

\[
\Delta \vdash \tau_1 \text{ type} \quad \Delta \vdash \tau_2 \text{ type} \quad \Delta \vdash \text{arr}(\tau_1; \tau_2) \text{ type} \quad (19.1b)
\]
19.1 Solving Type Isomorphisms

\[\Delta, t \text{ type} \vdash \tau \text{ type} \]
\[\Delta \vdash \text{rec}(t.\tau) \text{ type} \] \hspace{1cm} (19.1c)

The second form of judgement comprising the statics is the typing judgement, which is a hypothetical judgement of the form

\[\Gamma \vdash e : \tau, \]

where we assume that \(\tau \text{ type} \). Typing for \(\mathcal{L}\{+ \times \rightarrow \mu\} \) is inductively defined by the following rules:

\[\frac{\Gamma \vdash e : [\text{rec}(t.\tau)/t] \tau}{\Gamma \vdash \text{fold}[t.\tau](e) : \text{rec}(t.\tau)} \] \hspace{1cm} (19.2a)

\[\frac{\Gamma \vdash e : \text{rec}(t.\tau)}{\Gamma \vdash \text{unfold}(e) : [\text{rec}(t.\tau)/t] \tau} \] \hspace{1cm} (19.2b)

The dynamics of \(\mathcal{L}\{+ \times \rightarrow \mu\} \) is specified by one axiom stating that the elimination form is inverse to the introduction form, together with rules specifying the order of evaluation (eager or lazy, according to whether the bracketed rules and premises are included or omitted):

\[\frac{\{ e \text{ val} \}}{\text{fold}[t.\tau](e) \text{ val}} \] \hspace{1cm} (19.3a)

\[\frac{\{ e \mapsto e' \}}{\text{fold}[t.\tau](e) \mapsto \text{fold}[t.\tau](e')}} \] \hspace{1cm} (19.3b)

\[\frac{e \mapsto e'}{\text{unfold}(e) \mapsto \text{unfold}(e')}} \] \hspace{1cm} (19.3c)

\[\frac{\text{fold}[t.\tau](e) \text{ val}}{\text{unfold}(\text{fold}[t.\tau](e)) \mapsto e} \] \hspace{1cm} (19.3d)

It is a straightforward exercise to prove type safety for \(\mathcal{L}\{+ \times \rightarrow \mu\} \).

Theorem 19.1 (Safety).
1. If \(e : \tau \) and \(e \mapsto e' \), then \(e' : \tau \).

2. If \(e : \tau \), then either \(e \text{ val} \), or there exists \(e' \) such that \(e \mapsto e' \).
19.2 Recursive Data Structures

One important application of recursive types is to the representation of inductive data types such as the type of natural numbers. We may think of the type nat as a solution (up to isomorphism) of the type equation

\[\text{nat} \cong [z: \text{unit}, s: \text{nat}] \]

According to this isomorphism every natural number is either zero or the successor of another natural number. A solution is given by the recursive type

\[\mu t. [z: \text{unit}, s: t]. \] (19.4)

The introductory forms for the type nat are defined by the following equations:

\[
\begin{align*}
 z &= \text{fold}(z \cdot \langle \rangle) \\
 s(e) &= \text{fold}(s \cdot e).
\end{align*}
\]

The conditional branch may then be defined as follows:

\[
\text{ifz} \ e \{ z \Rightarrow e_0 \mid s(x) \Rightarrow e_1 \} = \text{case unfold}(e) \{ z \cdot _- \Rightarrow e_0 \mid s \cdot x \Rightarrow e_1 \},
\]

where the “underscore” indicates a variable that does not occur free in \(e_0 \). It is easy to check that these definitions exhibit the expected behavior.

As another example, the type list of lists of natural numbers may be represented by the recursive type

\[\mu t. [n: \text{unit}, c: \text{nat} \times t] \]

so that we have the isomorphism

\[\text{list} \cong [n: \text{unit}, c: \text{nat} \times \text{list}] \]

The list formation operations are represented by the following equations:

\[
\begin{align*}
 \text{nil} &= \text{fold}(n \cdot \langle \rangle) \\
 \text{cons}(e_1; e_2) &= \text{fold}(c \cdot \langle e_1, e_2 \rangle).
\end{align*}
\]

A conditional branch on the form of the list may be defined by the following equation:

\[
\text{listcase} \ e \{ \text{nil} \Rightarrow e_0 \mid \text{cons}(x; y) \Rightarrow e_1 \} = \text{case unfold}(e) \{ n \cdot _- \Rightarrow e_0, \mid c \cdot \langle x, y \rangle \Rightarrow e_1 \},
\]
where we have used an underscore for a “don’t care” variable, and used pattern-matching syntax to bind the components of a pair.

As long as sums and products are evaluated eagerly, there is a natural correspondence between this representation of lists and the conventional “blackboard notation” for linked lists. We may think of fold as an abstract heap-allocated pointer to a tagged cell consisting of either (a) the tag \(n \) with no associated data, or (b) the tag \(c \) attached to a pair consisting of a natural number and another list, which must be an abstract pointer of the same sort. If sums or products are evaluated lazily, then the blackboard notation breaks down because it is unable to depict the suspended computations that are present in the data structure. In general there is no substitute for the type itself. Drawings can be helpful, but the type determines the semantics.

We may also represent coinductive types, such as the type of streams of natural numbers, using recursive types. The representation is particularly natural in the case that \(\text{fold}(\cdot) \) is evaluated lazily, for then we may define the type \(\text{stream} \) to be the recursive type

\[
\mu t. \text{nat} \times t.
\]

This states that every stream may be thought of as a computation of a pair consisting of a number and another stream. If \(\text{fold}(\cdot) \) is evaluated eagerly, then we may instead consider the recursive type

\[
\mu t. \text{unit} \rightarrow (\text{nat} \times t),
\]

which expresses the same representation of streams. In either case streams cannot be easily depicted in blackboard notation, not so much because they are infinite, but because there is no accurate way to depict the delayed computation other than by an expression in the programming language. Here again we see that pictures can be helpful, but are not adequate for accurately defining a data structure.

19.3 Self-Reference

In the general recursive expression, \(\text{fix}[\tau](x.e) \), the variable, \(x \), stands for the expression itself. This is ensured by the unrolling transition

\[
\text{fix}[\tau](x.e) \rightarrow [\text{fix}[\tau](x.e)/x]e,
\]

which substitutes the expression itself for \(x \) in its body during execution. It is useful to think of \(x \) as an implicit argument to \(e \), which is to be thought of
as a function of \(x \) that it implicitly implied to the recursive expression itself whenever it is used. In many well-known languages this implicit argument has a special name, such as this or self, that emphasizes its self-referential interpretation.

Using this intuition as a guide, we may derive general recursion from recursive types. This derivation shows that general recursion may, like other language features, be seen as a manifestation of type structure, rather than an ad hoc language feature. The derivation is based on isolating a type of self-referential expressions of type \(\tau \), written \(\text{self}(\tau) \). The introduction form of this type is (a variant of) general recursion, written \(\text{self}[\tau](x.e) \), and the elimination form is an operation to unroll the recursion by one step, written \(\text{unroll}(e) \). The statics of these constructs is given by the following rules:

\[
\begin{align*}
\Gamma, x : \text{self}(\tau) & \vdash e : \tau \\
\Gamma & \vdash \text{self}[\tau](x.e) : \text{self}(\tau) \\
\Gamma & \vdash e : \text{self}(\tau) \\
\Gamma & \vdash \text{unroll}(e) : \tau
\end{align*}
\]

The dynamics is given by the following rule for unrolling the self-reference:

\[
\begin{align*}
\text{self}[\tau](x.e) & \text{ val} \\
& e \mapsto e' \\
\text{unroll}(e) & \mapsto \text{unroll}(e') \\
\text{unroll}(\text{self}[\tau](x.e)) & \mapsto [\text{self}[\tau](x.e)/x]e
\end{align*}
\]

The main difference, compared to general recursion, is that we distinguish a type of self-referential expressions, rather than impose self-reference at every type. However, as we shall see shortly, the self-referential type is sufficient to implement general recursion, so the difference is largely one of technique.

The type \(\text{self}(\tau) \) is definable from recursive types. As suggested earlier, the key is to consider a self-referential expression of type \(\tau \) to be a function of the expression itself. That is, we seek to define the type \(\text{self}(\tau) \) so that it satisfies the isomorphism

\[\text{self}(\tau) \cong \text{self}(\tau) \to \tau. \]

This means that we seek a fixed point of the type operator \(t.t \to \tau \), where \(t \notin \tau \) is a type variable standing for the type in question. The required fixed
point is just the recursive type
\[\text{rec}(t. t \rightarrow \tau), \]
which we take as the definition of \(\text{self}(\tau) \).

The self-referential expression \(\text{self}[\tau](x.e) \) is then defined to be the expression
\[\text{fold}(\lambda (x:\text{self}(\tau).e)). \]

We may easily check that Rule (19.5a) is derivable according to this definition. The expression \(\text{unroll}(e) \) is correspondingly defined to be the expression
\[\text{unfold}(e)(e). \]

It is easy to check that Rule (19.5b) is derivable from this definition. Moreover, we may check that
\[\text{unroll}(\text{self}[\tau](y.e)) \mapsto^* [\text{self}[\tau](y.e)/y]. \]

This completes the derivation of the type \(\text{self}(\tau) \) of self-referential expressions of type \(\tau \).

One consequence of admitting the self-referential type \(\text{self}(\tau) \) is that we may use it to define general recursion at \textit{any} type. To be precise, we may define \(\text{fix}[\tau](x.e) \) to stand for the expression
\[\text{unroll}(\text{self}[\tau](y.[\text{unroll}(y)/x].e)) \]
in which we have unrolled the recursion at each occurrence of \(x \) within \(e \). It is easy to check that this verifies the statics of general recursion given in Chapter 13. Moreover, it also validates the dynamics, as evidenced by the following derivation:
\[
\begin{align*}
\text{fix}[\tau](x.e) &= \text{unroll}(\text{self}[\tau](y.[\text{unroll}(y)/x].e)) \\
& \mapsto^* [\text{unroll}(\text{self}[\tau](y.[\text{unroll}(y)/x].e))/x].e \\
& = [\text{fix}[\tau](x.e)/x].e.
\end{align*}
\]

It follows that recursive types may be used to define a non-terminating expression of every type, namely \(\text{fix}[\tau](x.x) \). Unlike many other type constructs we have considered, recursive types change the meaning of every type, not just those that involve recursion. Recursive types are therefore said to be a \textit{non-conservative extension} of languages such as \(\mathcal{L}\{\text{nat} \rightarrow \} \), which otherwise admits no non-terminating computations.
19.4 Self-Reference in Methods

In Chapter 15 we considered two ways to organize a collection of methods acting on classified values. In this section we wish to extend the concept of a method to permit a method to invoke another method, possibly itself, on the instance to which it is applied. This is achieved by writing \texttt{this} \leftarrow \texttt{d'} to invoke the method, \texttt{d'}, within another method, \texttt{d}. The main idea is to arrange that \texttt{this} always refers to the instance on which the method is invoked so that it may in turn invoke another method on the same instance.

When using the first representation discussed in Section 15.4 on page 129, in which methods act on a classified value of sum type, \(\sigma\), we must modify both the representation of methods and their protocol for sending a message to an instance. First, we augment each method with an additional argument of type \(\sigma\) representing the instance itself, so that the type of an entry in the method table for method \texttt{d} and class \(c\) is \(\sigma \rightarrow \sigma^c \rightarrow \rho^d\). A method of this type will therefore have the form \(\lambda \texttt{(this}::\sigma.\lambda \texttt{(u}::\sigma^c.\ldots\texttt{)})\), so that within the body of the method we may recur by sending a message to \texttt{this}. Second, we arrange that the method table be self-referential so that a message send inside of a method can invoke another method in the same table. Making the method table self-referential is easily accomplished by defining it as follows:

\[
M := \text{self}M \text{is} \langle d = \langle c = e^c_d, \ldots \rangle, \ldots \rangle.
\]

We must correspondingly alter the definition of message send so that it is explicitly parameterized by the method table to which it refers, and so that it unrolls the method table whenever a method is fetched from it. The message send operation \(e \overset{N}{\Rightarrow} d\) is defined for general \(N\), \(e\), and \(d\) by the expression

\[
\text{case} \ e \{ c \cdot u \Rightarrow (\text{unfold}(N) \cdot d \cdot c)(e)(u) | \ldots \}.
\]

Thus, message send dispatches on the class of \(e\), unrolls the recursive self-reference in the method table, \(M\), selects method \(d\) for class \(c\), and applies it to \(e\) itself (thereby defining \texttt{this} within the method body), and to \(u\), the instance data for class \(c\). Within the body of a method in a method table, \(M\), the expression \(\texttt{this} \overset{M}{\Rightarrow} d\) invokes method \(d\) from the same table, \(M\), on the instance to which the invoking method applies.

Let us consider now the second representation from Section 15.4 on page 129, in which an instance has type \(\rho = \prod_{d \in D} \rho^d\) and consists of the action of each method on a value of that class. To permit methods to refer to one another it suffices to make each instance self-referential, and to
19.5 Exercises

re-define message send to unroll the self-reference. The implementation of method \(d \) for class \(c \) has type \(\rho \rightarrow \sigma \rightarrow \rho_d \), where the first argument is the instance on which the method acts. Note well that the type of \(\text{this} \) is now the product, \(\rho \), rather than the sum, \(\sigma \! \).

An instance of a class is self-referential:

\[
\text{new } [c](e) := \text{let } u \text{ be } e \text{ in self this is } \langle d = M \cdot d \cdot c(\text{this})(u), \ldots \rangle.
\]

Thus, the instance \(\text{this} \) refers to the tuple of methods that comprise the instance of the class, \(c \), sharing the instance data, \(e \). Since instances are self-referential, message send must unroll the self-reference before selecting the requested method:

\[
e := d := \text{unfold}(e) \cdot d.
\]

The unrolling ensures that \(\text{this} \) refers to the recipient of the message in the body of the method invoked. A message send to \(\text{this} \) will therefore refer to a method acting on the same instance data, \(u \).

19.5 Exercises
Part VII

Dynamic Types
Chapter 20

The Untyped \(\lambda\)-Calculus

Types are the central organizing principle in the study of programming languages. Yet many languages of practical interest are said to be untyped. Have we missed something important? The answer is no! The supposed opposition between typed and untyped languages turns out to be illusory. In fact, untyped languages are special cases of typed languages with a single, pre-determined recursive type. Far from being untyped, such languages are instead uni-typed.\(^1\)

In this chapter we study the premier example of a uni-typed programming language, the (untyped) \(\lambda\)-calculus. This formalism was introduced by Church in the 1930's as a universal language of computable functions. It is distinctive for its austere elegance. The \(\lambda\)-calculus has but one “feature”, the higher-order function, with which to compute. Everything is a function, hence every expression may be applied to an argument, which must itself be a function, with the result also being a function. To borrow a well-worn phrase, in the \(\lambda\)-calculus it’s functions all the way down!

20.1 The \(\lambda\)-Calculus

The abstract syntax of \(L\{\lambda\}\) is given by the following grammar:

\[
\text{Expr } u ::= \quad x \quad x \quad \text{variable} \\
\quad \lambda(x. \, u) \quad \lambda x. \, u \quad \text{\(\lambda\)-abstraction} \\
\quad \text{ap}(u_1; u_2) \quad u_1(u_2) \quad \text{application}
\]

The statics of \(L\{\lambda\}\) is defined by general hypothetical judgements of the form \(x_1 \text{ ok}, \ldots, x_n \text{ ok} \vdash u \text{ ok}\), stating that \(u\) is a well-formed expression

\(^1\)An apt description of Dana Scott’s.
involving the variables \(x_1, \ldots, x_n\). (As usual, we omit explicit mention of
the parameters when they can be determined from the form of the hypothe-
ses.) This relation is inductively defined by the following rules:

\[
\frac{}{\Gamma, x \text{ ok} \vdash x \text{ ok}} \tag{20.1a}
\]

\[
\frac{\Gamma \vdash u_1 \text{ ok} \quad \Gamma \vdash u_2 \text{ ok}}{\Gamma \vdash \text{ap}(u_1; u_2) \text{ ok}} \tag{20.1b}
\]

\[
\frac{\Gamma, x \text{ ok} \vdash u \text{ ok}}{\Gamma \vdash \lambda (x. u) \text{ ok}} \tag{20.1c}
\]

The dynamics is given by the following rules:

\[
\lambda (x. u) \text{ val} \tag{20.2a}
\]

\[
\frac{\text{ap}(\lambda (x. u_1); u_2) \mapsto [u_2/x]u_1}{u_1 \mapsto u_1' \quad \text{ap}(u_1'; u_2) \mapsto \text{ap}(u_1'; u_2)} \tag{20.2b}
\]

In the \(\lambda\)-calculus literature this judgement is called *weak head reduction*. The
first rule is called \(\beta\)-reduction; it defines the meaning of function application
as substitution of argument for parameter.

Despite the apparent lack of types, \(\mathcal{L}\{\lambda\}\) is nevertheless type safe!

Theorem 20.1. If \(u\ \text{ ok}\), then either \(u\ \text{ val}\), or there exists \(u'\) such that \(u \mapsto u'\) and \(u'\ \text{ ok}\).

Proof. Exactly as in preceding chapters. We may show by induction on
transition that well-formation is preserved by the dynamics. Since every
closed value of \(\mathcal{L}\{\lambda\}\) is a \(\lambda\)-abstraction, every closed expression is either a
value or can make progress. \(\square\)

Definitional equivalence for \(\mathcal{L}\{\lambda\}\) is a judgement of the form \(\Gamma \vdash u \equiv u'\), where \(\Gamma = x_1 \text{ ok}, \ldots, x_n \text{ ok}\) for some \(n \geq 0\), and \(u\) and \(u'\) are terms
having at most the variables \(x_1, \ldots, x_n\) free. It is inductively defined by the
following rules:

\[
\frac{}{\Gamma, u \text{ ok} \vdash u \equiv u} \tag{20.3a}
\]

\[
\frac{\Gamma \vdash u \equiv u' \quad \Gamma \vdash u' \equiv u}{\Gamma \vdash u \equiv u} \tag{20.3b}
\]

\[
\frac{\Gamma \vdash u \equiv u' \quad \Gamma \vdash u' \equiv u''}{\Gamma \vdash u \equiv u''} \tag{20.3c}
\]
20.2 Definability

\[
\begin{align*}
\Gamma \vdash e_1 & \equiv e'_1 \quad \Gamma \vdash e_2 \equiv e'_2 \\
\Gamma \vdash \text{ap}(e_1; e_2) & \equiv \text{ap}(e'_1; e'_2) & (20.3d) \\
\Gamma, x \text{ ok} \vdash u & \equiv u' \\
\Gamma \vdash \lambda(x. u) & \equiv \lambda(x. u') & (20.3e) \\
\Gamma \vdash \text{ap}(\lambda(x. e_2); e_1) & \equiv [e_1/x]e_2 & (20.3f)
\end{align*}
\]

We often write just \(u \equiv u' \) when the variables involved need not be emphasized or are clear from context.

20.2 Definability

Interest in the untyped \(\lambda \)-calculus stems from its surprising expressiveness. It is a Turing-complete language in the sense that it has the same capability to express computations on the natural numbers as does any other known programming language. Church’s Law states that any conceivable notion of computable function on the natural numbers is equivalent to the \(\lambda \)-calculus. This is certainly true for all known means of defining computable functions on the natural numbers. The force of Church’s Law is that it postulates that all future notions of computation will be equivalent in expressive power (measured by definability of functions on the natural numbers) to the \(\lambda \)-calculus. Church’s Law is therefore a scientific law in the same sense as, say, Newton’s Law of Universal Gravitation, which makes a prediction about all future measurements of the acceleration in a gravitational field.\(^2\)

We will sketch a proof that the untyped \(\lambda \)-calculus is as powerful as the language PCF described in Chapter 13. The main idea is to show that the PCF primitives for manipulating the natural numbers are definable in the untyped \(\lambda \)-calculus. This means, in particular, that we must show that the natural numbers are definable as \(\lambda \)-terms in such a way that case analysis, which discriminates between zero and non-zero numbers, is definable. The principal difficulty is with computing the predecessor of a number, which requires a bit of cleverness. Finally, we show how to represent general recursion, completing the proof.

\(^2\)Unfortunately, it is common in Computer Science to put forth as “laws” assertions that are not scientific laws at all. For example, Moore’s Law is merely an observation about a near-term trend in microprocessor fabrication that is certainly not valid over the long term, and Amdahl’s Law is but a simple truth of arithmetic. Worse, Church’s Law, which is a proper scientific law, is usually called Church’s Thesis, which, to the author’s ear, suggests something less than the full force of a scientific law.
The first task is to represent the natural numbers as certain \(\lambda \)-terms, called the Church numerals.

\[
\begin{align*}
0 &= \lambda \, b \, \lambda \, s \, b \\
\overline{n + 1} &= \lambda \, b \, \lambda \, s \, s (\overline{b} \, (s))
\end{align*}
\]

(20.4a)

(20.4b)

It follows that

\[\overline{n}(u_1)(u_2) \equiv u_2(\ldots(u_2(u_1))),\]

the \(n \)-fold application of \(u_2 \) to \(u_1 \). That is, \(\overline{n} \) iterates its second argument (the induction step) \(n \) times, starting with its first argument (the basis).

Using this definition it is not difficult to define the basic functions of arithmetic. For example, successor, addition, and multiplication are defined by the following untyped \(\lambda \)-terms:

\[
\begin{align*}
succ &= \lambda \, x \, \lambda \, b \, \lambda \, s \, (x \, (b) \, (s)) \\
\text{plus} &= \lambda \, x \, \lambda \, y \, y \, (x \, (\text{succ})) \\
\text{times} &= \lambda \, x \, \lambda \, y \, y \, (\overline{0}) \, (\text{plus}(x))
\end{align*}
\]

(20.5)

(20.6)

(20.7)

It is easy to check that \(\text{succ}(\overline{n}) \equiv \overline{n + 1} \), and that similar correctness conditions hold for the representations of addition and multiplication.

To define \(\text{ifz}(u; u_0; x \, u_1) \) requires a bit of ingenuity. We wish to find a term \(\text{pred} \) such that

\[
\begin{align*}
\text{pred}(\overline{0}) &= \overline{0} \quad (20.8) \\
\text{pred}(\overline{n + 1}) &= \overline{n}. \quad (20.9)
\end{align*}
\]

To compute the predecessor using Church numerals, we must show how to compute the result for \(\overline{n + 1} \) as a function of its value for \(\overline{n} \). At first glance this seems straightforward—just take the successor—until we consider the base case, in which we define the predecessor of \(\overline{0} \) to be \(\overline{0} \). This invalidates the obvious strategy of taking successors at inductive steps, and necessitates some other approach.

What to do? A useful intuition is to think of the computation in terms of a pair of “shift registers” satisfying the invariant that on the \(n \)th iteration the registers contain the predecessor of \(n \) and \(n \) itself, respectively. Given the result for \(n \), namely the pair \((n - 1, n) \), we pass to the result for \(n + 1 \) by shifting left and incrementing to obtain \((n, n + 1) \). For the base case, we initialize the registers with \((0, 0) \), reflecting the stipulation that the predecessor of zero be zero. To compute the predecessor of \(n \) we compute the pair \((n - 1, n) \) by this method, and return the first component.
To make this precise, we must first define a Church-style representation of ordered pairs.

\[\langle u_1, u_2 \rangle = \lambda f.f(u_1)(u_2) \] \hspace{1cm} (20.10)
\[u \cdot 1 = u(\lambda x.\lambda y.x) \] \hspace{1cm} (20.11)
\[u \cdot r = u(\lambda x.\lambda y.y) \] \hspace{1cm} (20.12)

It is easy to check that under this encoding \(\langle u_1, u_2 \rangle \cdot 1 \equiv u_1 \), and that a similar equivalence holds for the second projection. We may now define the required representation, \(u_p \), of the predecessor function:

\[u'_p = \lambda x.x(\langle 0, 0 \rangle)(\lambda y.\langle y \cdot r, s(y \cdot r) \rangle) \] \hspace{1cm} (20.13)
\[u_p = \lambda x.u(x) \cdot 1 \] \hspace{1cm} (20.14)

It is easy to check that this gives us the required behavior. Finally, we may define \(\text{ifz}(u; u_0; x \cdot u_1) \) to be the untyped term

\[u(u_0)(\lambda x[u_p(u)/x](u_1)) \]

This gives us all the apparatus of PCF, apart from general recursion. But this is also definable using a fixed point combinator. There are many choices of fixed point combinator, of which the best known is the \(Y \) combinator:

\[Y = \lambda F.\langle \lambda f.F(f(f)) \rangle(\lambda f.F(f(f))) \] \hspace{1cm} (20.15)

Observe that

\[Y(F) \equiv F(Y(F)) \].

Using the \(Y \) combinator, we may define general recursion by writing \(Y(\lambda x.u) \), where \(x \) stands for the recursive expression itself.

20.3 Scott’s Theorem

Definitional equivalence for the untyped \(\lambda \)-calculus is undecidable: there is no algorithm to determine whether or not two untyped terms are definitionally equivalent. The proof of this result is based on two key lemmas:

1. For any untyped \(\lambda \)-term \(u \), we may find an untyped term \(v \) such that \(u(\overline{\overline{v}}) \equiv v \), where \(\overline{v} \) is the Gödel number of \(v \), and \(\overline{\overline{\overline{v}}} \) is its representation as a Church numeral. (See Chapter 12 for a discussion of Gödel-numbering.)
2. Any two non-trivial\footnote{A property of untyped terms is said to be trivial if it either holds for all untyped terms or never holds for any untyped term.} properties A_0 and A_1 of untyped terms that respect definitional equivalence are inseparable. This means that there is no decidable property B of untyped terms such that $A_0 \ u$ implies that $B \ u$ and $A_1 \ u$ implies that it is not the case that $B \ u$. In particular, if A_0 and A_1 are inseparable, then neither is decidable.

For a property B of untyped terms to respect definitional equivalence means that if $B \ u$ and $u \equiv u'$, then $B \ u'$.

Lemma 20.2. For any u there exists v such that $u \ (\langle v \rangle) \equiv v$.

Proof Sketch. The proof relies on the definability of the following two operations in the untyped λ-calculus:

1. $ap (\langle u_1 \rangle) (\langle u_2 \rangle) \equiv \langle u_1 (u_2) \rangle$.
2. $nm (n) \equiv \langle n \rangle$.

Intuitively, the first takes the representations of two untyped terms, and builds the representation of the application of one to the other. The second takes a numeral for n, and yields the representation of n. Given these, we may find the required term v by defining $v = w (\langle w \rangle)$, where $w = \lambda x. u (ap (x) (nm (x)))$. We have

\[
v = w (\langle w \rangle) \\
\equiv u (ap (\langle w \rangle) (nm (\langle w \rangle))) \\
\equiv u (\langle w (\langle w \rangle) \rangle) \\
\equiv u (\langle v \rangle).
\]

The definition is very similar to that of $Y (u)$, except that u takes as input the representation of a term, and we find a v such that, when applied to the representation of v, the term u yields v itself. \hfill \Box

Lemma 20.3. Suppose that A_0 and A_1 are two non-vacuous properties of untyped terms that respect definitional equivalence. Then there is no untyped term w such that

1. For every u either $w (\langle u \rangle) \equiv 0$ or $w (\langle u \rangle) \equiv 1$.
2. If $A_0 \ u$, then $w (\langle u \rangle) \equiv 0$.

13:08

Draft

JUNE 2, 2010
3. If $A_1 u$, then $w(\overline{u^1}) \equiv I$.

Proof. Suppose there is such an untyped term w. Let v be the untyped term $\lambda x. \text{if} z(w(x); u_1; \ldots; u_0)$, where $A_0 u_0$ and $A_1 u_1$. By Lemma 20.2 on the preceding page there is an untyped term t such that $v(\overline{T}) \equiv t$. If $w(\overline{T}) \equiv \overline{0}$, then $t \equiv v(\overline{T}) \equiv u_1$, and so $A_1 t$, since A_1 respects definitional equivalence and $A_1 u_1$. But then $w(\overline{T}) \equiv \overline{1}$ by the defining properties of w, which is a contradiction. Similarly, if $w(\overline{T}) \equiv \overline{1}$, then $A_0 t$, and hence $w(\overline{T}) \equiv \overline{0}$, again a contradiction.

Corollary 20.4. There is no algorithm to decide whether or not $u \equiv u'$.

Proof. For fixed u consider the property $E_u u'$ defined by $u' \equiv u$. This is non-vacuous and respects definitional equivalence, and hence is undecidable.

20.4 Untyped Means Uni-Typed

The untyped λ-calculus may be faithfully embedded in the typed language $L\{+ \times \rightarrow \mu\}$, enriched with recursive types. This means that every untyped λ-term has a representation as an expression in $L\{+ \times \rightarrow \mu\}$ in such a way that execution of the representation of a λ-term corresponds to execution of the term itself. If the execution model of the λ-calculus is call-by-name, this correspondence holds for the call-by-name variant of $L\{+ \times \rightarrow \mu\}$, and similarly for call-by-value.

It is important to understand that this form of embedding is not a matter of writing an interpreter for the λ-calculus in $L\{+ \times \rightarrow \mu\}$ (which we could surely do), but rather a direct representation of untyped λ-terms as certain typed expressions of $L\{+ \times \rightarrow \mu\}$. It is for this reason that we say that untyped languages are just a special case of typed languages, provided that we have recursive types at our disposal.

The key observation is that the untyped λ-calculus is really the uni-typed λ-calculus! It is not the absence of types that gives it its power, but rather that it has only one type, namely the recursive type

$$D = \mu t. t \rightarrow t.$$

A value of type D is of the form $\text{fold}(e)$ where e is a value of type $D \rightarrow D$ — a function whose domain and range are both D. Any such function can be regarded as a value of type D by “rolling”, and any value of type D can be turned into a function by “unrolling”. As usual, a recursive type may
be seen as a solution to a type isomorphism equation, which in the present case is the equation

\[D \cong D \to D. \]

This specifies that \(D \) is a type that is isomorphic to the space of functions on \(D \) itself, something that is impossible in conventional set theory, but is feasible in the computationally-based setting of the \(\lambda \)-calculus.

This isomorphism leads to the following translation, of \(\mathcal{L}\{\lambda\} \) into \(\mathcal{L}\{+ \to \mu\} \):

\[
\begin{align*}
x^\dagger &= x \\
\lambda x. u^\dagger &= \text{fold}(\lambda (x:D. u^\dagger)) \\
u_1(u_2)^\dagger &= \text{unfold}(u_1^\dagger)(u_2^\dagger)
\end{align*}
\]

(20.16a) (20.16b) (20.16c)

Observe that the embedding of a \(\lambda \)-abstraction is a value, and that the embedding of an application exposes the function being applied by unrolling the recursive type. Consequently,

\[
\begin{align*}
\lambda x. u_1(u_2)^\dagger &= \text{unfold}(\text{fold}(\lambda (x:D. u_1^\dagger))) (u_2^\dagger) \\
&\equiv \lambda (x:D. u_1^\dagger)(u_2^\dagger) \\
&\equiv [u_2^\dagger/x]u_1^\dagger \\
&= ([u_2/x]u_1)^\dagger.
\end{align*}
\]

The last step, stating that the embedding commutes with substitution, is easily proved by induction on the structure of \(u_1 \). Thus \(\beta \)-reduction is faithfully implemented by evaluation of the embedded terms.

Thus we see that the canonical untyped language, \(\mathcal{L}\{\lambda\} \), which by dint of terminology stands in opposition to typed languages, turns out to be but a typed language after all! Rather than eliminating types, an untyped language consolidates an infinite collection of types into a single recursive type. Doing so renders static type checking trivial, at the expense of incurring substantial dynamic overhead to coerce values to and from the recursive type. In Chapter 21 we will take this a step further by admitting many different types of data values (not just functions), each of which is a component of a “master” recursive type. This shows that so-called dynamically typed languages are, in fact, statically typed. Thus a traditional distinction can hardly be considered an opposition, since dynamic languages are but particular forms of static language in which (undue) emphasis is placed on a single recursive type.
20.5 Exercises
Chapter 21
Dynamic Typing

We saw in Chapter 20 that an untyped language may be viewed as a uni-
typed language in which the so-called untyped terms are terms of a distin-
guished recursive type. In the case of the untyped \(\lambda \)-calculus this recursive
type has a particularly simple form, expressing that every term is isomor-
phic to a function. Consequently, no run-time errors can occur due to the
misuse of a value—the only elimination form is application, and its first argu-
ment can only be a function. Obviously this property breaks down once
more than one class of value is permitted into the language. For example, if
we add natural numbers as a primitive concept to the untyped \(\lambda \)-calculus
(rather than defining them via Church encodings), then it is possible to in-
cur a run-time error arising from attempting to apply a number to an argu-
ment, or to add a function to a number. One school of thought in language
design is to turn this vice into a virtue by embracing a model of compu-
tation that has multiple classes of value of a single type. Such languages
are said to be dynamically typed, in purported opposition to statically typed
languages. But the supposed opposition is illusory. Just as the untyped \(\lambda \)-
calculus is really unityped, so dynamic languages are special cases of static
languages.

21.1 Dynamically Typed PCF

To illustrate dynamic typing we formulate a dynamically typed version of
\(\mathcal{L}\{\text{nat} \rightarrow\} \), called \(\mathcal{L}\{\text{dyn}\} \). The abstract syntax of \(\mathcal{L}\{\text{dyn}\} \) is given by the
following grammar:

\[
\begin{align*}
\text{Expr} \; d & ::= x & x & \text{variable} \\
& | \text{num}(\pi) & \pi & \text{numeral} \\
& | \text{zero} & \text{zero} & \text{zero} \\
& | \text{succ}(d) & \text{succ}(d) & \text{successor} \\
& | \text{ifz}(d; d_0; x. d_1) & \text{ifz}d \{ \text{zero} \Rightarrow d_0 \mid \text{succ}(x) \Rightarrow d_1 \} & \text{zero test} \\
& | \text{fun}(\lambda x. d) & \lambda(x. d) & \text{abstraction} \\
& | \text{dap}(d_1; d_2) & d_1(d_2) & \text{application} \\
& | \text{fix}(x. d) & \text{fix is } d & \text{recursion}
\end{align*}
\]

There are two classes of values in \(\mathcal{L}\{\text{dyn}\} \), the \textit{numbers}, which have the form \(\overline{n} \), and the \textit{functions}, which have the form \(\lambda(x. d) \). The expressions \text{zero} and \text{succ}(d) are not in themselves values, but rather are operations that evaluate to classified values.

The concrete syntax of \(\mathcal{L}\{\text{dyn}\} \) is somewhat deceptive, in keeping with common practice in dynamic languages. For example, the concrete syntax for a number is a bare numeral, \(\overline{n} \), but in fact it is just a convenient notation for the classified value, \text{num}(\overline{n})\), of class \text{num}. Similarly, the concrete syntax for a function is a \(\lambda \)-abstraction, \(\lambda(x. d) \), which must be regarded as standing for the classified value \text{fun}(\lambda x. d)\) of class \text{fun}.

The statics of \(\mathcal{L}\{\text{dyn}\} \) is essentially the same as that of \(\mathcal{L}\{\lambda\} \) given in Chapter 20; it merely checks that there are no free variables in the expression. The judgement

\[
\begin{align*}
x_1 \text{ ok}, & \ldots, x_n \text{ ok} \vdash d \text{ ok}
\end{align*}
\]

states that \(d \) is a well-formed expression with free variables among those in the hypothesis list.

The dynamics of \(\mathcal{L}\{\text{dyn}\} \) checks for errors that would never arise in a safe statically typed language. For example, function application must ensure that its first argument is a function, signaling an error in the case that it is not, and similarly the case analysis construct must ensure that its first argument is a number, signaling an error if not. The reason for having classes labelling values is precisely to make this run-time check possible. One could argue that the required check may be made by inspection of the unlabelled value itself, but this is unrealistic. At run-time both numbers and functions might be represented by machine words, the former a two's complement number, the latter an address in memory. But given an arbitrary word, one cannot determine whether it is a number or an address!

\footnote{The numerals, \(\overline{n} \), are \(n \)-fold compositions of the form \(s(s(\ldots s(z) \ldots)) \).}
21.1 Dynamically Typed PCF

The value judgement, $d \text{ val}$, states that d is a fully evaluated (closed) expression:

\[
\frac{\text{num}(\overline{n})}{\text{val}} \quad (21.1a) \\
\frac{\text{fun}(\lambda x. d)}{\text{val}} \quad (21.1b)
\]

The dynamics makes use of judgements that check the class of a value, and recover the underlying λ-abstraction in the case of a function.

\[
\frac{\text{num}(\overline{n})}{\text{is_num} \ \overline{n}} \quad (21.2a) \\
\frac{\text{fun}(\lambda x. d)}{\text{is_fun} \ x \ d} \quad (21.2b)
\]

The second argument of each of these judgements has a special status—it is not an expression of $\mathcal{L}\{\text{dyn}\}$, but rather just a special piece of syntax used internally to the transition rules given below.

We also will need the “negations” of the class-checking judgements in order to detect run-time type errors.

\[
\frac{\text{num}(_)}{\text{isnt_fun}} \quad (21.3a) \\
\frac{\text{fun}(_)}{\text{isnt_num}} \quad (21.3b)
\]

The transition judgement, $d \mapsto d'$, and the error judgement, $d \text{ err}$, are defined simultaneously by the following rules:\footnote{The obvious error propagation rules discussed in Chapter 9 are omitted here for the sake of concision.}

\[
\frac{\text{zero} \mapsto \text{num}(\bar{z})}{(21.4a)} \\
\frac{d \mapsto d'}{\text{succ}(d) \mapsto \text{succ}(d')} \quad (21.4b) \\
\frac{\overline{n} \text{ is_num} \ \text{succ}(d) \mapsto \text{num}(\overline{s(n)})}{(21.4c)} \\
\frac{\overline{n} \text{ isnt_num} \ \text{succ}(d) \err}{(21.4d)} \\
\frac{d \mapsto d'}{\text{ifz}(d; d_0; x. d_1) \mapsto \text{ifz}(d'; d_0; x. d_1)} \quad (21.4e) \\
\frac{\overline{n} \text{ is_num} \ \text{z} \ \text{ifz}(d; d_0; x. d_1) \mapsto d_0}{(21.4f)} \\
\frac{\overline{n} \text{ is_num} \ \text{s}(\overline{n}) \ \text{ifz}(d; d_0; x. d_1) \mapsto [\text{num}(\overline{n}) / x] d_1}{(21.4g)}
\]
21.2 Variations and Extensions

\[
\text{ifz}(d; d_0; x. d_1) \rightarrow \text{err} \\
\text{d_1} \rightarrow d'_1
\]

(21.4h)

\[
\text{dap}(d_1; d_2) \rightarrow \text{dap}(d'_1; d_2)
\]

(21.4i)

\[
\text{dap}(d_1; d_2) \rightarrow [d_2/x]d
\]

(21.4j)

\[
\text{dap}(d_1; d_2) \rightarrow \text{err}
\]

(21.4k)

\[
\text{fix}(x. d) \rightarrow [\text{fix}(x. d)/x]d
\]

(21.4l)

Rule (21.4g) labels the predecessor with the class \text{num} to maintain the invariant that variables are bound to expressions of \(L\{\text{dyn}\}\).

The language \(L\{\text{dyn}\}\) enjoys essentially the same safety properties as \(L\{\text{nat} \rightarrow\}\), except that there are more opportunities for errors to arise at run-time.

Theorem 21.1 (Safety). If \(d\) \text{ok}, then either \(d\) \text{val}, or \(d\) \text{err}, or there exists \(d'\) such that \(d \Rightarrow d'\).

Proof. By rule induction on Rules (21.4). The rules are designed so that if \(d\) \text{ok}, then some rule, possibly an error rule, applies, ensuring progress. Since well-formedness is closed under substitution, the result of a transition is always well-formed. \(\square\)

21.2 Variations and Extensions

The dynamic language \(L\{\text{dyn}\}\) defined in Section 21.1 on page 181 closely parallels the static language \(L\{\text{nat} \rightarrow\}\) defined in Chapter 13. One discrepancy, however, is in the treatment of natural numbers. Whereas in \(L\{\text{nat} \rightarrow\}\) the zero and successor operations are introductory forms for the type \text{nat}, in \(L\{\text{dyn}\}\) they are elimination forms that act on separately-defined numerals. The point of this representation is to ensure that there is a well-defined class of numbers in the language. It is worthwhile to explore an alternative representation that, superficially, is even closer to \(L\{\text{nat} \rightarrow\}\). Suppose that we eliminate the expression \text{num}(\overline{n}) from the language, but retain \text{zero} and \text{succ}(d), with the idea that these are to be thought of as introductory forms for numbers in the language.

Regardless of whether we give \text{succ}(d) an eager or a lazy dynamics, we are immediately faced with the problem that such an expression is well-formed for any well-formed \(d\). So, in particular, the expression \text{succ}(\lambda (x. d))
is a value, as is \texttt{succ(zero)}. It is clear that we have admitted much more than just numbers into the language. Put in other terms, there is no longer a well-defined class of numbers, but rather two separate classes of values, zero and successor, with no guarantee that an instance of the successor class involves another number.

The dynamics of the conditional branch changes only slightly, as described by the following rules:

\begin{align*}
 d & \mapsto d' \\
 \text{ifz}(d; d_0; x. d_1) & \mapsto \text{ifz}(d'; d_0; x. d_1) \quad (21.5a) \\
 d \text{ is zero} & \mapsto d_0 \quad (21.5b) \\
 d \text{ is succ } d' & \mapsto [d'/x]d_1 \quad (21.5c) \\
 d \text{ isnt zero } d \text{ isnt succ} & \mapsto \text{err} \quad (21.5d)
\end{align*}

The foregoing rules are to be augmented by the following rules that check whether a value is of class zero or successor:

\begin{align*}
 \text{zero is zero} \quad (21.6a) \\
 \text{succ}(d) \text{ isnt zero} \quad (21.6b) \\
 \text{succ}(d) \text{ is succ } d \quad (21.6c) \\
 \text{zero isnt succ} \quad (21.6d)
\end{align*}

A peculiarity of this formulation of the conditional is that it can only be understood as distinguishing \texttt{zero} from \texttt{succ(_)}, rather than as distinguishing \texttt{zero} from non-\texttt{zero}. The reason is that if \(d \) is not zero, it might be either a successor or a function, and hence its “predecessor” is not well-defined.

Similar considerations arise when enriching \(L\{\text{dyn}\} \) with structured data. The classic example is to enrich the language as follows:

\[
\begin{align*}
\text{Expr } d & := \, \text{nil} \quad \text{nil} \quad \text{null} \\
& \quad \text{cons}(d_1; d_2) \quad \text{cons}(d_1; d_2) \quad \text{pair} \\
& \quad \text{ifnil}(d; d_0; x, y, d_1) \quad \text{ifnil } d \{\text{nil } \mapsto d_0 \mid \text{cons}(x, y) \mapsto d_1\} \quad \text{conditional}
\end{align*}
\]
The expression \(\text{ifnil}(d; d_0; x, y, d_1) \) distinguishes the null structure from the pair of two structures. We leave to the reader the exercise of formulating the dynamics of this extension.

An advantage of dynamic typing is that the constructors \(\text{nil} \) and \(\text{cons}(d_1; d_2) \) are sufficient to build unbounded, as well as bounded, data structures such as lists or trees. For example, the list consisting of three zero’s may be represented by the value

\[
\text{cons}(\text{zero}; \text{cons}(\text{zero}; \text{cons}(\text{zero}; \text{nil}))).
\]

But what to make of this beast?

\[
\text{cons}(\text{zero}; \text{cons}(\text{zero}; \text{cons}(\text{zero}; \lambda(x)x))).
\]

It is a perfectly valid expression, but does not correspond to any natural data structure.

The disadvantage of this representation becomes apparent as soon as one wishes to define operations on lists, such as the append function:

\[
\text{fixa is } \lambda(x. \lambda(y. \text{ifnil}(x; y; x_1, x_2. \text{cons}(x_1; \text{a}(x_2)(y))))).
\]

What if \(x \) is the second list-like value given above? As it stands, the append function will signal an error upon reaching the function at the end of the list. If, however, \(y \) is this value, no error is signalled. This asymmetry may seem innocuous, but it is only one simple manifestation of a pervasive problem with dynamic languages: it is impossible to state within the language even the most rudimentary assumptions about the inputs, such as the assumption that both arguments to the append function ought to be genuine lists.

There is something quite unnatural about the conditional expression \(\text{ifnil}(d; d_0; x, y, d_1) \): why should there be a special distinction between \(\text{nil} \) and a pair? Why not distinguish, say, \(\text{nil} \) from a function? Or a function from a successor? Or a multi-way distinction among various type classes? The choice made here is quite \textit{ad hoc}. It raises the question of whether some more systematic account is possible.

The standard solution is to enrich the language with \textit{predicates} that distinguish values based on their class and \textit{destructors} that decompose values built with constructors such as \(\text{nil} \) and \(\text{cons}(d_1; d_2) \).

\[
\begin{align*}
\text{Expr} \ d & \ ::= \ \text{cond}(d; d_0; d_1) \quad \text{cond}(d; d_0; d_1) \quad \text{conditional} \\
& \quad \text{nil?}(d) \quad \text{nil?}(d) \quad \text{nil test} \\
& \quad \text{cons?}(d) \quad \text{cons?}(d) \quad \text{pair test} \\
& \quad \text{car}(d) \quad \text{car}(d) \quad \text{first projection} \\
& \quad \text{cdr}(d) \quad \text{cdr}(d) \quad \text{second projection}
\end{align*}
\]
21.3 Critique of Dynamic Typing

The conditional $\text{cond}(d; d_0; d_1)$ distinguishes d between nil and all other values. If d is not nil, the conditional evaluates to d_0, and otherwise evaluates to d_1. In other words the value nil represents boolean falsehood, and all other values represent boolean truth. The predicates $\text{nil?}(d)$ and $\text{cons?}(d)$ test the class of their argument, yielding nil if the argument is not of the specified class, and yielding some non-nil if so. The destructors $\text{car}(d)$ and $\text{cdr}(d)$ decompose $\text{cons}(d_1; d_2)$ into d_1 and d_2, respectively.

When written using predicates and destructors, the append function becomes

$$\text{fix a} = \lambda(x, y).\text{cond}(x; \text{cons}(\text{car}(x); a(\text{cdr}(x)))(y); y))$$

The main difference compared to the previous version is that there is some additional bureaucracy involving the destructors and predicates.

21.3 Critique of Dynamic Typing

The safety theorem for $\mathcal{L}\{\text{dyn}\}$ is often promoted as an advantage of dynamic over static typing. Unlike static languages, which rule out some candidate programs as ill-typed, essentially every piece of abstract syntax in $\mathcal{L}\{\text{dyn}\}$ is well-formed, and hence, by Theorem 21.1 on page 184, has a well-defined dynamics. But this can also be seen as a disadvantage, since errors that could be ruled out at compile time by type checking are not signalled until run time in $\mathcal{L}\{\text{dyn}\}$. To make this possible, the dynamics of $\mathcal{L}\{\text{dyn}\}$ must enforce conditions that need not be checked in a statically typed language.

Consider, for example, the addition function in $\mathcal{L}\{\text{dyn}\}$, whose specification is that, when passed two values of class num, returns their sum, which is also of class num:

$$\text{fun}(\lambda x.\text{fix}(p.\text{fun}(\lambda y.\text{ifz}(y; x; y'.\text{succ}(p(y'))))))$$

The addition function may, deceptively, be written in concrete syntax as follows:

$$\lambda(x.\text{fix}\ p \ is \ \lambda(y.\text{ifz}\ y\ {\text{zero} \Rightarrow x} \ | \ \text{succ}(y') \ \Rightarrow \ \text{succ}(p(y'))}))$$

3 This terminology for the projections is archaic, but firmly established in the literature.
4 This specification imposes no restrictions on the behavior of addition on arguments that are not classified as numbers, but one could make the further demand that the function abort when applied to arguments that are not classified by num.
It is deceptive, because the concrete syntax obscures the class tags on values, and obscures the use of primitives that check those tags. Let us now examine the costs of these operations in a bit more detail.

First, observe that the body of the fixed point expression is labelled with class fun. The dynamics of the fixed point construct binds \(p \) to this function. This means that the dynamic class check incurred by the application of \(p \) in the recursive call is guaranteed to succeed. But \(\mathcal{L}\{\text{dyn}\} \) offers no means of suppressing this redundant check, because it cannot express the invariant that \(p \) is always bound to a value of class fun.

Second, observe that the result of applying the inner \(\lambda \)-abstraction is either \(x \), the argument of the outer \(\lambda \)-abstraction, or the successor of a recursive call to the function itself. The successor operation checks that its argument is of class num, even though this is guaranteed for all but the base case, which returns the given \(x \), which can be of any class at all. In principle we can check that \(x \) is of class num once, and observe that it is otherwise a loop invariant that the result of applying the inner function is of this class. However, \(\mathcal{L}\{\text{dyn}\} \) gives us no way to express this invariant; the repeated, redundant tag checks imposed by the successor operation cannot be avoided.

Third, the argument, \(y \), to the inner function is either the original argument to the addition function, or is the predecessor of some earlier recursive call. But as long as the original call is to a value of class num, then the dynamics of the conditional will ensure that all recursive calls have this class. And again there is no way to express this invariant in \(\mathcal{L}\{\text{dyn}\} \), and hence there is no way to avoid the class check imposed by the conditional branch.

Classification is not free—storage is required for the class label, and it takes time to detach the class from a value each time it is used and to attach a class to a value whenever it is created. Although the overhead of classification is not asymptotically significant (it slows down the program only by a constant factor), it is nevertheless non-negligible, and should be eliminated whenever possible. But this is impossible within \(\mathcal{L}\{\text{dyn}\} \), because it cannot enforce the restrictions required to express the required invariants. For that we need a static type system.

21.4 Exercises
Chapter 22

Hybrid Typing

A hybrid language is one that combines static and dynamic typing by enriching a statically typed language with a distinguished type, dyn, of dynamic values. The dynamically typed language considered in Chapter 21 may be embedded into the hybrid language by regarding a dynamically typed program as a statically typed program of type dyn. This shows that static and dynamic types are not opposed to one another, but may coexist harmoniously.

The notion of a hybrid language, however, is itself illusory, because the type dyn is really a particular recursive type. This shows that there is no need for any special mechanisms to support dynamic typing. Rather, they may be derived from the more general concept of a recursive type. Moreover, this shows that dynamic typing is but a mode of use of static typing! The supposed opposition between dynamic and static typing is, therefore, a fallacy: dynamic typing can hardly be opposed to that of which it is but a special case!

22.1 A Hybrid Language

Consider the language $\mathcal{L}\{\text{nat dyn} \rightarrow\}$, which extends $\mathcal{L}\{\text{nat} \rightarrow\}$ (defined in Chapter 13) with the following additional constructs:

\[
\begin{align*}
\text{Type} & \quad \tau \ ::= \quad \text{dyn} & \quad \text{dyn} & \quad \text{dynamic} \\
\text{Expr} & \quad e \ ::= \quad \text{new}[l](e) & \quad l \cdot e & \quad \text{construct} \\
 & \quad \quad \quad \quad \quad \text{cast}[l](e) & \quad e \cdot l & \quad \text{destruct} \\
\text{Class} & \quad l \ ::= \quad \text{num} & \quad \text{num} & \quad \text{number} \\
 & \quad \quad \quad \quad \quad \text{fun} & \quad \text{fun} & \quad \text{function}
\end{align*}
\]
The type \(\text{dyn} \) is the type of dynamically classified values. The \textit{new} operation attaches a classifier to a value, and the \textit{cast} operation checks the classifier and returns the associated value.

The statics of \(\mathcal{L}\{\text{nat dyn} \rightarrow \} \) extends that of \(\mathcal{L}\{\text{nat} \rightarrow \} \) with the following additional rules:

\[
\begin{align*}
\Gamma &\vdash e : \text{nat} \\
\Gamma &\vdash \text{new}[\text{num}](e) : \text{dyn} \quad (22.1a) \\
\Gamma &\vdash e : \text{parr(dyn; dyn)} \\
\Gamma &\vdash \text{new}[\text{fun}](e) : \text{dyn} \\
\Gamma &\vdash e : \text{dyn} \\
\Gamma &\vdash \text{cast}[\text{num}](e) : \text{nat} \quad (22.1c) \\
\Gamma &\vdash e : \text{dyn} \\
\Gamma &\vdash \text{cast}[\text{fun}](e) : \text{parr(dyn; dyn)} \quad (22.1d)
\end{align*}
\]

The statics ensures that class labels are applied to objects of the appropriate type, namely \text{num} for natural numbers, and \text{fun} for functions defined over labelled values.

The dynamics of \(\mathcal{L}\{\text{nat dyn} \rightarrow \} \) extends that of \(\mathcal{L}\{\text{nat} \rightarrow \} \) with the following rules:

\[
\begin{align*}
e \text{ val} & \Rightarrow \text{new}[l](e) \text{ val} \\
e \mapsto e' & \Rightarrow \text{new}[l](e) \mapsto \text{new}[l](e') \quad (22.2a) \\
e \mapsto e' & \Rightarrow \text{cast}[l](e) \mapsto \text{cast}[l](e') \quad (22.2b) \\
e \text{ val} & \Rightarrow \text{new}[l](e) \text{ val} \\
\text{cast}[l](\text{new}[l](e)) & \mapsto e \quad (22.2c) \\
\text{new}[l'](e) \text{ val} & \Rightarrow \text{cast}[l](\text{new}[l'](e)) \text{ err} \quad (22.2d)
\end{align*}
\]

Casting compares the class of the object to the required class, returning the underlying object if these coincide, and signalling an error otherwise.

Lemma 22.1 (Canonical Forms). If \(e : \text{dyn} \) and \(e \text{ val} \), then \(e = \text{new}[l](e') \) for some class \(l \) and some \(e' \text{ val} \). If \(l = \text{num} \), then \(e' : \text{nat} \), and if \(l = \text{fun} \), then \(e' : \text{parr(dyn; dyn)} \).

Proof. By a straightforward rule induction on the statics of \(\mathcal{L}\{\text{nat dyn} \rightarrow \} \).

Theorem 22.2 (Safety). The language \(\mathcal{L}\{\text{nat dyn} \rightarrow \} \) is safe:
22.2 Optimization of Dynamic Typing

1. If $e : \tau$ and $e \rightarrow e'$, then $e' : \tau$.

2. If $e : \tau$, then either $e \text{ val}$, or $e \text{ err}$, or $e \rightarrow e'$ for some e'.

Proof. Preservation is proved by rule induction on the dynamics, and progress is proved by rule induction on the statics, making use of the canonical forms lemma. The opportunities for run-time errors are the same as those for $L\{\text{dyn}\}$—a well-typed cast might fail at run-time if the class of the cast does not match the class of the value. □

22.2 Optimization of Dynamic Typing

The language $L\{\text{nat dyn} \rightarrow\}$ combines static and dynamic typing by enriching $L\{\text{nat} \rightarrow\}$ with the type, dyn, of classified values. It is, for this reason, called a hybrid language. Unlike a purely dynamic type system, a hybrid type system can express invariants that are crucial to the optimization of programs in $L\{\text{dyn}\}$.

Let us examine this in the case of the addition function, which may be defined in $L\{\text{nat dyn} \rightarrow\}$ as follows:

$$\text{fun} \cdot \lambda (x: \text{dyn}. \text{fix} p: \text{dyn} \mapsto \text{fun} \cdot \lambda (y: \text{dyn}. e_{x, p, y})),\$$

where

$$x : \text{dyn}, p : \text{dyn}, y : \text{dyn} \vdash e_{x, p, y} : \text{dyn}\$$

is defined to be the expression

$$\text{ifz} (y \cdot \text{num}) \{\text{zero} \Rightarrow x \mid \text{succ}(y') \Rightarrow \text{num} \cdot (s((p \cdot \text{fun})(\text{num} \cdot y') \cdot \text{num}))\}.$$

This is a reformulation of the dynamic addition function given in Section 21.3 on page 187 in which we have made explicit the checking and imposition of classes on values. We will exploit the static type system of $L\{\text{nat dyn} \rightarrow\}$ to optimize this dynamically typed implementation of addition in accordance with the specification given in Section 21.3 on page 187.

First, note that the body of the fix expression is an explicitly labelled function. This means that when the recursion is unwound, the variable p is bound to this value of type dyn. Consequently, the check that p is labelled with class fun is redundant, and can be eliminated. This is achieved by rewriting the function as follows:

$$\text{fun} \cdot \lambda (x: \text{dyn}. \text{fun} \cdot \text{fix} p: \text{dyn} \mapsto \text{fun} \cdot \lambda (y: \text{dyn}. e'_{x, p, y})),\$$
where $e'_{x,p,y}$ is the expression

\[
\text{ifz} (y \cdot \text{num}) \{ \text{zero} \Rightarrow x | \text{succ}(y') \Rightarrow \text{num} \cdot (s(p(\text{num} \cdot y') \cdot \text{num})) \}.
\]

We have “hoisted” the function class label out of the loop, and suppressed the cast inside the loop. Correspondingly, the type of p has changed to $\text{dyn} \rightarrow \text{dyn}$, reflecting that the body is now a “bare function”, rather than a labelled function value of type dyn.

Next, observe that the parameter y of type dyn is cast to a number on each iteration of the loop before it is tested for zero. Since this function is recursive, the bindings of y arise in one of two ways, at the initial call to the addition function, and on each recursive call. But the recursive call is made on the predecessor of y, which is a true natural number that is labelled with num at the call site, only to be removed by the class check at the conditional on the next iteration. This suggests that we hoist the check on y outside of the loop, and avoid labelling the argument to the recursive call. Doing so changes the type of the function, however, from $\text{dyn} \rightarrow \text{dyn}$ to $\text{nat} \rightarrow \text{dyn}$. Consequently, further changes are required to ensure that the entire function remains well-typed.

Before doing so, let us make another observation. The result of the recursive call is checked to ensure that it has class num, and, if so, the underlying value is incremented and labelled with class num. If the result of the recursive call came from an earlier use of this branch of the conditional, then obviously the class check is redundant, because we know that it must have class num. But what if the result came from the other branch of the conditional? In that case the function returns x, which need not be of class num because it is provided by the caller of the function. However, we may reasonably insist that it is an error to call addition with a non-numeric argument. This can be enforced by replacing x in the zero branch of the conditional by $x \cdot \text{num}$.

Combining these optimizations we obtain the inner loop e''_x defined as follows:

\[
\text{fix } p : \text{nat} \rightarrow \text{nat} \text{ is } \lambda (y : \text{nat} . \text{ifz } y \{ \text{zero} \Rightarrow x \cdot \text{num} | \text{succ}(y') \Rightarrow s(p(y')) \} \}.
\]

This function has type $\text{nat} \rightarrow \text{nat}$, and runs at full speed when applied to a natural number—all checks have been hoisted out of the inner loop.

Finally, recall that the overall goal is to define a version of addition that works on values of type dyn. Thus we require a value of type $\text{dyn} \rightarrow \text{dyn}$, but what we have at hand is a function of type $\text{nat} \rightarrow \text{nat}$. This can be
converted to the required form by pre-composing with a cast to \texttt{num} and post-composing with a coercion to \texttt{num}:

\[
\texttt{fun} \cdot \lambda (x: \texttt{dyn}. \texttt{fun} \cdot \lambda (y: \texttt{nat}. \texttt{num} \cdot (e''_x (y \cdot \texttt{num})))).
\]

The innermost \(\lambda\)-abstraction converts the function \(e''_x\) from type \(\texttt{nat} \rightarrow \texttt{nat}\) to type \(\texttt{dyn} \rightarrow \texttt{dyn}\) by composing it with a class check that ensures that \(y\) is a natural number at the initial call site, and applies a label to the result to restore it to type \(\texttt{dyn}\).

22.3 Static "Versus" Dynamic Typing

There are many attempts to distinguish dynamic from static typing, all of which are misleading or wrong. For example, it is often said that static type systems associate types with variables, but dynamic type systems associate types with values. This oft-repeated characterization appears to be justified by the absence of type annotations on \(\lambda\)-abstractions, and the presence of classes on values. But it is based on a confusion of classes with types—the \textit{class} of a value (\texttt{num} or \texttt{fun}) is not its \textit{type}. Moreover, a static type system assigns types to values just as surely as it does to variables, so the description fails on this account as well. Thus, this supposed distinction between dynamic and static typing makes no sense, and is best disregarded.

Another way to differentiate dynamic from static languages is to say that whereas static languages check types at compile time, dynamic languages check types at run time. While this description seems superficially accurate, it does not bear scrutiny. To say that static languages check types statically is to state a tautology, and to say that dynamic languages check types at run-time is to utter a falsehood. Dynamic languages perform \textit{class checking}, not \textit{type checking}, at run-time. For example, application checks that its first argument is labelled with \texttt{fun}; it does not type check the body of the function. Indeed, at no point does the dynamics compute the \textit{type} of a value, rather it checks its class against its expectations before proceeding. Here again, a supposed contrast between static and dynamic languages evaporates under careful analysis.

Another characterization is to assert that dynamic languages admit \textit{heterogeneous} lists, whereas static languages admit only \textit{homogeneous} lists. (The distinction applies to other collections as well.) To see why this description is wrong, let us consider briefly how one might add lists to \(L\{\texttt{dyn}\}\). One would add two constructs, \texttt{nil}, representing the empty list, and \texttt{cons}(d_1;d_2), representing the non-empty list with head \(d_1\) and tail \(d_2\). The origin of the
supposed distinction lies in the observation that each element of a list represented in this manner might have a different class. For example, one might form the list

cons(s(z); cons(λ(λ(x)); nil)),

whose first element is a number, and whose second element is a function. Such a list is said to be heterogeneous. In contrast static languages commit to a single type for each element of the list, and hence are said to be homogeneous. But here again the supposed distinction breaks down on close inspection, because it is based on the confusion of the type of a value with its class. Every labelled value has type dyn, so that the lists are type homogeneous. But since values of type dyn may have different classes, lists are class heterogeneous—regardless of whether the language is statically or dynamically typed!

What, then, are we to make of the traditional distinction between dynamic and static languages? Rather than being in opposition to each other, we see that dynamic languages are a mode of use of static languages. If we have a type dyn in the language, then we have all of the apparatus of dynamic languages at our disposal, so there is no loss of expressive power. But there is a very significant gain from embedding dynamic typing within a static type discipline! We can avoid much of the overhead of dynamic typing by simply limiting our use of the type dyn in our programs, as was illustrated in Section 22.2 on page 191.

22.4 Reduction to Recursive Types

The type dyn codifies the use of dynamic typing within a static language. Its introduction form labels an object of the appropriate type, and its elimination form is a (possibly undefined) casting operation. Rather than treating dyn as primitive, we may derive it as a particular use of recursive types, according to the following definitions:

\[
\begin{align*}
\text{dyn} & = \mu t . \text{[num : nat, fun : } t \to t]\quad (22.3) \\
\text{new[num]}(e) & = \text{fold(num } \cdot e) \\
\text{new[fun]}(e) & = \text{fold(fun } \cdot e) \\
\text{cast[num]}(e) & = \text{case unfold}(e) \{\text{num } x \Rightarrow x \mid \text{fun } x \Rightarrow \text{error}\} \quad (22.6) \\
\text{cast[fun]}(e) & = \text{case unfold}(e) \{\text{num } x \Rightarrow \text{error} \mid \text{fun } x \Rightarrow x\} \quad (22.7)
\end{align*}
\]
One may readily check that the static and dynamics for the type \texttt{dyn} are derivable according to these definitions.

This encoding readily generalizes to any number of classes of values: we need only consider additional summands corresponding to each class. For example, to account for the constructors \texttt{nil} and \texttt{cons}(d_1; d_2) considered in Chapter 21, the definition of \texttt{dyn} is expanded to the recursive type

\[
\mu t. [\texttt{num}: \texttt{nat}, \texttt{fun}: t \rightarrow t, \texttt{nil}: \texttt{unit}, \texttt{cons}: t \times t],
\]

with corresponding definitions for the \texttt{new} and \texttt{cast} operations. This exemplifies the general case: dynamic typing is a mode of use of static types in which classes of values are simply names of summands in a recursive type of dynamic values.
22.4 Reduction to Recursive Types
Part VIII

Variable Types
Chapter 23

Girard’s System F

The languages we have considered so far are all monomorphic in that every expression has a unique type, given the types of its free variables, if it has a type at all. Yet it is often the case that essentially the same behavior is required, albeit at several different types. For example, in \(L\{\text{nat} \rightarrow \} \) there is a distinct identity function for each type \(\tau \), namely \(\lambda (x : \tau . x) \), even though the behavior is the same for each choice of \(\tau \). Similarly, there is a distinct composition operator for each triple of types, namely

\[
\circ_{\tau_1, \tau_2, \tau_3} = \lambda (f : \tau_2 \rightarrow \tau_3 . \lambda (g : \tau_1 \rightarrow \tau_2 . \lambda (x : \tau_1 . f (g (x))))).
\]

Each choice of the three types requires a different program, even though they all exhibit the same behavior when executed.

Obviously it would be useful to capture the general pattern once and for all, and to instantiate this pattern each time we need it. The expression patterns codify generic (type-independent) behaviors that are shared by all instances of the pattern. Such generic expressions are said to be polymorphic. In this chapter we will study a language introduced by Girard under the name System F and by Reynolds under the name polymorphic typed \(\lambda \)-calculus. Although motivated by a simple practical problem (how to avoid writing redundant code), the concept of polymorphism is central to an impressive variety of seemingly disparate concepts, including the concept of data abstraction (the subject of Chapter 24), and the definability of product, sum, inductive, and coinductive types considered in the preceding chapters. (Only general recursive types extend the expressive power of the language.)
23.1 System F

System F, or the polymorphic \(\lambda \)-calculus, or \(\mathcal{L}\{\rightarrow\forall}\), is a minimal functional language that illustrates the core concepts of polymorphic typing, and permits us to examine its surprising expressive power in isolation from other language features. The syntax of System F is given by the following grammar:

\[
\text{Type } \tau ::= \ t \quad \text{variable} \\
\quad \text{arr}(\tau_1; \tau_2) \quad \tau_1 \rightarrow \tau_2 \quad \text{function} \\
\quad \text{all}(t.\tau) \quad \forall(t.\tau) \quad \text{polymorphic}
\]

\[
\text{Expr } e ::= x \quad \text{x} \\
\quad \text{lam}[\tau](x.e) \quad \lambda(x: \tau.e) \quad \text{abstraction} \\
\quad \text{ap}(e_1; e_2) \quad e_1(e_2) \quad \text{application} \\
\quad \text{Lam}(t.e) \quad \Lambda(t.e) \quad \text{type abstraction} \\
\quad \text{App}[\tau](e) \quad e[\tau] \quad \text{type application}
\]

A type abstraction, \(\text{Lam}(t.e) \), defines a generic, or polymorphic, function with type parameter \(t \) standing for an unspecified type within \(e \). A type application, or instantiation, \(\text{App}[\tau](e) \), applies a polymorphic function to a specified type, which is then plugged in for the type parameter to obtain the result. Polymorphic functions are classified by the universal type, \(\text{all}(t.\tau) \), that determines the type, \(\tau \), of the result as a function of the argument, \(t \).

The statics of \(\mathcal{L}\{\rightarrow\forall}\) consists of two judgement forms, the type formation judgement,

\[
\vec{t} \mid \Delta \vdash \tau \text{ type},
\]

and the typing judgement,

\[
\vec{t} \vec{x} \mid \Delta \Gamma \vdash e : \tau.
\]

These are generic judgements over type variables \(\vec{t} \) and expression variables \(\vec{x} \). They are also hypothetical in a set \(\Delta \) of type assumptions of the form \(t \text{ type} \), where \(t \in \mathcal{T} \), and typing assumptions of the form \(x : \tau \), where \(x \in \mathcal{T} \) and \(\Delta \vdash \tau \text{ type} \). As usual we drop explicit mention of the parameter sets, relying on typographical conventions to determine them.

The rules defining the type formation judgement are as follows:

\[
\begin{align*}
\frac{}{\Delta, t \text{ type } \vdash t \text{ type}} & \quad (23.1a) \\
\frac{\Delta \vdash \tau_1 \text{ type} \quad \Delta \vdash \tau_2 \text{ type}}{\Delta \vdash \text{arr}(\tau_1; \tau_2) \text{ type}} & \quad (23.1b)
\end{align*}
\]
23.1 System F

\[\Delta, \Gamma \vdash \tau \text{ type} \quad \Delta \vdash \text{all}(t, \tau) \text{ type} \]

(23.1c)

The rules defining the typing judgement are as follows:

\[\Delta, \Gamma, x : \tau \vdash x : \tau \]

(23.2a)

\[\Delta \vdash \tau_1 \text{ type} \quad \Delta, \Gamma, x_1 : \tau_1 \vdash e_1 : \tau_2 \]
\[\Delta \vdash \text{lam}[\tau_1](x, e) : \text{arr}(\tau_1; \tau_2) \]

(23.2b)

\[\Delta, \Gamma \vdash \tau_2 \text{ type} \quad \Delta \vdash \text{arr}(\tau_2; \tau) \]
\[\Delta, \Gamma \vdash e_2 : \tau_2 \]
\[\Delta \vdash \text{ap}(e_1; e_2) : \tau \]

(23.2c)

\[\Delta, \Gamma \vdash \tau \text{ type} \quad \Delta, \Gamma \vdash \text{all}(t, \tau) \]
\[\Delta \vdash \text{Lam}(t, e) : \text{all}(t, \tau) \]

(23.2d)

\[\Delta, \Gamma \vdash \tau \text{ type} \quad \Delta, \Gamma \vdash \text{all}(t, \tau') \]
\[\Delta \vdash \text{App}[\tau](e) : [\tau/t]\tau' \]

(23.2e)

Lemma 23.1 (Regularity). If \(\Delta, \Gamma \vdash e : \tau \), and if \(\Delta \vdash \tau_i \text{ type} \) for each assumption \(x_i : \tau_i \) in \(\Gamma \), then \(\Delta \vdash \tau \text{ type} \).

Proof. By induction on Rules (23.2). \(\Box \)

The statics admits the structural rules for a general hypothetical judgement. In particular, we have the following critical substitution property for type formation and expression typing.

Lemma 23.2 (Substitution). 1. If \(\Delta, \Gamma \vdash \tau' \text{ type} \) and \(\Delta \vdash \tau \text{ type} \), then \(\Delta \vdash [\tau/t]\tau' \text{ type} \).

2. If \(\Delta, \Gamma \vdash e' : \tau' \text{ and } \Delta \vdash \tau \text{ type} \), then \(\Delta \vdash [\tau/t]\Gamma \vdash [\tau/t]e' : [\tau/t]\tau' \).

3. If \(\Delta, \Gamma, x : \tau \vdash e' : \tau' \text{ and } \Delta \vdash e : \tau \text{, then } \Delta \vdash [e/x]e' : \tau' \).

The second part of the lemma requires substitution into the context, \(\Gamma \), as well as into the term and its type, because the type variable \(t \) may occur freely in any of these positions.

Returning to the motivating examples from the introduction, the polymorphic identity function, \(I \), is written

\[\Lambda(t, \lambda (x : t, x)) \]

it has the polymorphic type

\[\forall(t, t \to t) \]
Instances of the polymorphic identity are written $I[\tau]$, where τ is some type, and have the type $\tau \rightarrow \tau$.

Similarly, the polymorphic composition function, C, is written

$$\Lambda(t_1. \Lambda(t_2. \Lambda(t_3. \lambda(f: t_2 \rightarrow t_3. \lambda(g: t_1 \rightarrow t_2. \lambda(x: t_1. f(g(x))))))))).$$

The function C has the polymorphic type

$$\forall(t_1. \forall(t_2. \forall(t_3. (t_2 \rightarrow t_3) \rightarrow (t_1 \rightarrow t_2) \rightarrow (t_1 \rightarrow t_3))))).$$

Instances of C are obtained by applying it to a triple of types, writing $C[\tau_1][\tau_2][\tau_3]$. Each such instance has the type

$$(\tau_2 \rightarrow \tau_3) \rightarrow (\tau_1 \rightarrow \tau_2) \rightarrow (\tau_1 \rightarrow \tau_3).$$

Dynamics

The dynamics of $\lambda\{\rightarrow\forall\}$ is given as follows:

1. $\text{lam}[\tau](x. e) \text{ val}$ (23.3a)
2. $\text{Lam}(t.e) \text{ val}$ (23.3b)
3. $\text{ap}(\text{lam}[\tau_1](x.e); e_2) \mapsto [e_2/x]e$ (23.3c)
4. $e_1 \mapsto e'_1$ (23.3d)
5. $\text{ap}(e_1; e_2) \mapsto \text{ap}(e'_1; e_2)$
6. $\text{app}[\tau](\text{Lam}(t.e)) \mapsto [\tau/t]e$ (23.3e)
7. $e \mapsto e'$ (23.3f)

These rules endow $\lambda\{\rightarrow\forall\}$ with a call-by-name interpretation of application, but one could as well consider a call-by-value variant.

It is a simple matter to prove safety for $\lambda\{\rightarrow\forall\}$, using familiar methods.

Lemma 23.3 (Canonical Forms). Suppose that $e : \tau$ and $e \text{ val}$, then

1. If $\tau = \text{arr}(\tau_1; \tau_2)$, then $e = \text{lam}[\tau_1](x.e_2)$ with $x : \tau_1 \vdash e_2 : \tau_2$.
2. If $\tau = \text{all}(t. \tau')$, then $e = \text{Lam}(t.e')$ with t type $\vdash e' : \tau'$.

Proof. By rule induction on the statics. \hfill \square

Theorem 23.4 (Preservation). If $e : \sigma$ and $e \mapsto e'$, then $e' : \sigma$.

13:08 \hspace{1cm} DRAFT \hspace{1cm} JUNE 2, 2010
23.2 Polymorphic Definability

Proof. By rule induction on the dynamics. □

Theorem 23.5 (Progress). If \(e : \sigma \), then either \(e \) val or there exists \(e' \) such that \(e \to e' \).

Proof. By rule induction on the statics. □

23.2 Polymorphic Definability

The language \(\mathcal{L}\{\to, \forall\} \) is astonishingly expressive. Not only are all finite products and sums definable in the language, but so are all inductive and coinductive types! This is most naturally expressed using definitional equivalence, which is defined to be the least congruence containing the following two axioms:

\[
\begin{align*}
\Delta \Gamma, x : \tau_1 &\vdash e : \tau_2 & \Delta \Gamma &\vdash e_1 : \tau_1 \\
\Delta \Gamma &\vdash \lambda (x : \tau_2. e_2) (e_1) \equiv [e_1/x]e_2 : \tau_2
\end{align*}
\] (23.4a)

\[
\begin{align*}
\Delta, t &\text{ type } \Gamma \vdash e : \tau & \Delta &\vdash \sigma \text{ type} \\
\Delta \Gamma &\vdash \Lambda(t.e) [\sigma] \equiv [\sigma/t]e : [\sigma/t]\tau
\end{align*}
\] (23.4b)

In addition there are rules omitted here specifying that definitional equivalence is reflexive, symmetric, and transitive, and that it is compatible with both forms of application and abstraction.

23.2.1 Products and Sums

The nullary product, or unit, type is definable in \(\mathcal{L}\{\to, \forall\} \) as follows:

\[
\begin{align*}
\text{unit} &= \forall (r : r \to r) \\
\langle \rangle &= \Lambda (r. \lambda (x : r. x))
\end{align*}
\]

It is easy to check that the statics given in Chapter 14 is derivable. There being no elimination rule, there is no requirement on the dynamics.

Binary products are definable in \(\mathcal{L}\{\to, \forall\} \) by using encoding tricks similar to those described in Chapter 20 for the untyped \(\lambda \)-calculus:

\[
\begin{align*}
\tau_1 \times \tau_2 &= \forall (r : (\tau_1 \rightarrow \tau_2 \to r) \to r) \\
\langle e_1, e_2 \rangle &= \Lambda (r. \lambda (x : \tau_1 \to \tau_2 \to r. x(e_1)(e_2))) \\
e \cdot 1 &= e [\tau_1] (\lambda (x : \tau_1. \lambda (y : \tau_2. x))) \\
e \cdot r &= e [\tau_2] (\lambda (x : \tau_1. \lambda (y : \tau_2. y)))
\end{align*}
\]
The statics given in Chapter 14 is derivable according to these definitions. Moreover, the following definitional equivalences are derivable in $L\{\rightarrow\forall\}$ from these definitions:

$\langle e_1, e_2 \rangle \cdot 1 \equiv e_1 : \tau_1$

and

$\langle e_1, e_2 \rangle \cdot r \equiv e_2 : \tau_2$.

The nullary sum, or void, type is definable in $L\{\rightarrow\forall\}$:

$$\text{void} = \forall (r.r)$$

$$\text{abort}[\rho](e) = e[\rho]$$

There is no definitional equivalence to be checked, there being no introductory rule for the void type.

Binary sums are also definable in $L\{\rightarrow\forall\}$:

$$\tau_1 + \tau_2 = \forall (r.(\tau_1 \rightarrow r) \rightarrow (\tau_2 \rightarrow r) \rightarrow r)$$

$$1 \cdot e = \Lambda (r. \lambda (x: \tau_1 \rightarrow r. \lambda (y: \tau_2 \rightarrow r. x(e))))$$

$$r \cdot e = \Lambda (r. \lambda (x: \tau_1 \rightarrow r. \lambda (y: \tau_2 \rightarrow r. y(e))))$$

$$\text{case } e \{ 1 \cdot x_1 \Rightarrow e_1 \mid r \cdot x_2 \Rightarrow e_2 \} =$$

$$e[\rho] (\lambda (x_1: \tau_1.e_1)(\lambda (x_2: \tau_2.e_2))$$

provided that the types make sense. It is easy to check that the following equivalences are derivable in $L\{\rightarrow\forall\}$:

$$\text{case } 1 \cdot d_1 \{ 1 \cdot x_1 \Rightarrow e_1 \mid r \cdot x_2 \Rightarrow e_2 \} \equiv [d_1/x_1]e_1 : \rho$$

and

$$\text{case } r \cdot d_2 \{ 1 \cdot x_1 \Rightarrow e_1 \mid r \cdot x_2 \Rightarrow e_2 \} \equiv [d_2/x_2]e_2 : \rho.$$

Thus the dynamic behavior specified in Chapter 15 is correctly implemented by these definitions.

23.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation) are also definable in $L\{\rightarrow\forall\}$. The key is the representation of the iterator, whose typing rule we recall here for reference:

$$
\frac{e_0 : \text{nat} \quad e_1 : \tau \quad x : \tau \vdash e_2 : \tau}{\text{natiter}(e_0; e_1; x.e_2) : \tau}.
$$
Since the result type τ is arbitrary, this means that if we have an iterator, then it can be used to define a function of type

$$\text{nat} \rightarrow \forall (t \cdot t \rightarrow (t \rightarrow t) \rightarrow t).$$

This function, when applied to an argument n, yields a polymorphic function that, for any result type, t, if given the initial result for z, and if given a function transforming the result for x into the result for $s(x)$, then it returns the result of iterating the transformer n times starting with the initial result.

Since the only operation we can perform on a natural number is to iterate up to it in this manner, we may simply identify a natural number, n, with the polymorphic iterate-up-to-n function just described. This means that we may define the type of natural numbers in $\mathcal{L}\{\rightarrow \forall\}$ by the following equations:

$$\text{nat} = \forall (t \cdot t \rightarrow (t \rightarrow t) \rightarrow t)$$
$$z = \Lambda (t \cdot \lambda (z : t \cdot \lambda (s : t \rightarrow t \cdot z)))$$
$$s(e) = \Lambda (t \cdot \lambda (z : t \cdot \lambda (s : t \rightarrow t \cdot s(e[t]((z)(s))))))$$
$$\text{natiter}(e_0; e_1; x. e_2) = e_0[\tau] (e_1) (\lambda (x : \tau \cdot e_2))$$

It is a straightforward exercise to check that the static and dynamics given in Chapter 12 is derivable in $\mathcal{L}\{\rightarrow \forall\}$ under these definitions.

This shows that $\mathcal{L}\{\rightarrow \forall\}$ is at least as expressive as $\mathcal{L}\{\text{nat} \rightarrow\}$. But is it more expressive? Yes! It is possible to show that the evaluation function for $\mathcal{L}\{\text{nat} \rightarrow\}$ is definable in $\mathcal{L}\{\rightarrow \forall\}$, even though it is not definable in $\mathcal{L}\{\text{nat} \rightarrow\}$ itself. However, the same diagonal argument given in Chapter 12 applies here, showing that the evaluation function for $\mathcal{L}\{\rightarrow \forall\}$ is not definable in $\mathcal{L}\{\rightarrow \forall\}$. We may enrich $\mathcal{L}\{\rightarrow \forall\}$ a bit more to define the evaluator for $\mathcal{L}\{\rightarrow \forall\}$, but as long as all programs in the enriched language terminate, we will once again have an undefinable function, the evaluation function for that extension. The extension process will never close as long as all programs written in it terminate.

23.3 Parametricity Overview

A remarkable property of $\mathcal{L}\{\rightarrow \forall\}$ is that polymorphic types severely constrain the behavior of their elements. One may prove useful theorems about an expression knowing only its type—that is, without ever looking at the code! For example, if i is any expression of type $\forall (t \cdot t \rightarrow t)$, then it must
be the identity function. Informally, when \(i \) is applied to a type, \(\tau \), and an argument of type \(\tau \), it must return a value of type \(\tau \). But since \(\tau \) is not specified until \(i \) is called, the function has no choice but to return its argument, which is to say that it is essentially the identity function. Similarly, if \(b \) is any expression of type \(\forall (t. t \rightarrow t \rightarrow t) \), then \(b \) must be either \(\Lambda (t. \lambda (x: t. \lambda (y: t. x))) \) or \(\Lambda (t. \lambda (x: t. \lambda (y: t. y))) \). For when \(b \) is applied to two arguments of some type, its only choice to return a value of that type is to return one of the two.

A full proof of these claims is somewhat involved (see Chapter 50 for details), but the core idea is relatively simple, namely to interpret types as relations. The parametricity theorem (Theorem 50.8 on page 469) states that every well-typed term respects the relational interpretation of its type. For example, the parametricity theorem implies that if \(i : \forall (t. t \rightarrow t) \), then for any type \(\tau \), any predicate \(P \) on expressions of type \(\tau \), and any \(e : \tau \), if \(P(e) \), then \(P(i[\tau] (e)) \). Fix \(\tau \) and \(e : \tau \), and define \(P(x) \) to hold iff \(x \equiv e \). By the theorem we have that for any \(e' : \tau \), if \(e' \equiv e \), then \(i[\tau] (e') \equiv e \), and so in particular \(i[\tau] (e) \equiv e \). Similarly, if \(c : \forall (t. t \rightarrow t \rightarrow t) \), then, fixing \(\tau \), \(e_1 : \tau \), and \(e_2 : \tau \), we may define \(P(e) \) to hold iff either \(e \equiv e_1 \) or \(e \equiv e_2 \). It follows from the theorem that either \(c[\tau] (e_1) (e_2) \equiv e_1 \) or \(c[\tau] (e_1) (e_2) \equiv e_2 \).

What is remarkable is that these properties of \(i \) and \(c \) have been derived without knowing anything about the expressions themselves, but only their types! The theory of parametricity implies that we are able to derive theorems about the behavior of a program knowing only its type. Such theorems are sometimes called free theorems because they come “for free” as a consequence of typing, and require no program analysis or verification to derive (beyond the once-and-for-all proof of Theorem 50.8 on page 469). Free theorems such as those illustrated above underly the experience that in a polymorphic language, well-typed programs tend to behave as expected no further debugging or analysis required. Parametricity so constrains the behavior of a program that it is relatively easy to ensure that the code works just by checking its type. Free theorems also underly the principle of representation independence for abstract types, which is discussed further in Chapter 24.

23.4 Restricted Forms of Polymorphism

In this section we briefly examine some restricted forms of polymorphism with less than the full expressive power of \(L(\rightarrow \forall) \). These are obtained in one of two ways:
23.4 Restricted Forms of Polymorphism

1. Restricting type quantification to unquantified types.

2. Restricting the occurrence of quantifiers within types.

23.4.1 Predicative Fragment

The remarkable expressive power of the language $L\{\to\forall\}$ may be traced to the ability to instantiate a polymorphic type with another polymorphic type. For example, if we let τ be the type $\forall(t. t \to t)$, and, assuming that $e : \tau$, we may apply e to its own type, obtaining the expression $e[\tau]$ of type $\tau \to \tau$. Written out in full, this is the type

$$\forall(t. t \to t) \to \forall(t. t \to t),$$

which is larger (both textually, and when measured by the number of occurrences of quantified types) than the type of e itself. In fact, this type is large enough that we can go ahead and apply $e[\tau]$ to e again, obtaining the expression $e[e[\tau]]$ (e), which is again of type τ — the very type of e!

This property of $L\{\to\forall\}$ is called impredicativity\(^1\); the language $L\{\to\forall\}$ is said to permit impredicative (type) quantification. The distinguishing characteristic of impredicative polymorphism is that it involves a kind of circularity in that the meaning of a quantified type is given in terms of its instances, including the quantified type itself. This quasi-circularity is responsible for the surprising expressive power of $L\{\to\forall\}$, and is correspondingly the prime source of complexity when reasoning about it (for example, in the proof that all expressions of $L\{\to\forall\}$ terminate).

Contrast this with $L\{\to\}$, in which the type of an application of a function is evidently smaller than the type of the function itself. For if $e : \tau_1 \to \tau_2$, and $e_1 : \tau_1$, then we have $e(e_1) : \tau_2$, a smaller type than the type of e. This situation extends to polymorphism, provided that we impose the restriction that a quantified type can only be instantiated by an un-quantified type. For in that case passage from $\forall(t. \tau)$ to $[\sigma/t]\tau$ decreases the number of quantifiers (even if the size of the type expression viewed as a tree grows). For example, the type $\forall(t. t \to t)$ may be instantiated with the type $u \to u$ to obtain the type $(u \to u) \to (u \to u)$. This type has more symbols in it than τ, but is smaller in that it has fewer quantifiers. The restriction to quantification only over unquantified types is called predicative\(^2\) polymorphism. The predicative fragment is significantly less expressive than

\(^1\) pronounced *im-PRED-ic-a-tiv-it-y*

\(^2\) pronounced *PRED-i-ca-tive*
the full impredicative language. In particular, the natural numbers are no longer definable in it.

The formalization of $\mathcal{L}\{\rightarrow \forall \rho\}$ is left to Chapter 25, where the appropriate technical machinery is available.

23.4.2 Prenex Fragment

A rather more restricted form of polymorphism, called the *prenex fragment*, further restricts polymorphism to occur only at the outermost level — not only is quantification predicative, but quantifiers are not permitted to occur within the arguments to any other type constructors. This restriction, called *prenex quantification*, is often imposed for the sake of type inference, which permits type annotations to be omitted entirely in the knowledge that they can be recovered from the way the expression is used. We will not discuss type inference here, but we will give a formulation of the prenex fragment of $\mathcal{L}\{\rightarrow \forall\}$, because it plays an important role in the design of practical polymorphic languages.

The prenex fragment of $\mathcal{L}\{\rightarrow \forall\}$ is designated $\mathcal{L}^1\{\rightarrow \forall\}$, for reasons that will become clear in the next subsection. It is defined by stratifying types into two sorts, the *monotypes* (or *rank-0* types) and the *polytypes* (or *rank-1* types). The monotypes are those that do not involve any quantification, and may be used to instantiate the polymorphic quantifier. The polytypes include the monotypes, but also permit quantification over monotypes. These classifications are expressed by the judgements $\Delta \vdash \tau_{\text{mono}}$ and $\Delta \vdash \tau_{\text{poly}}$, where Δ is a finite set of hypotheses of the form t_{mono}, where t is a type variable not otherwise declared in Δ. The rules for deriving these judgements are as follows:

\[
\begin{align*}
\Delta, t_{\text{mono}} & \vdash t_{\text{mono}} \\
\Delta \vdash \tau_1_{\text{mono}} & \quad \Delta \vdash \tau_2_{\text{mono}} \\
\Delta & \vdash \text{arr}(\tau_1; \tau_2)_{\text{mono}} \\
\Delta & \vdash \tau_{\text{mono}} \\
\Delta & \vdash \tau_{\text{poly}} \\
\Delta, t_{\text{mono}} & \vdash \tau_{\text{poly}} \\
\Delta & \vdash \text{all}(t, \tau)_{\text{poly}}
\end{align*}
\]

(23.5a) (23.5b) (23.5c) (23.5d)

Base types, such as nat (as a primitive), or other type constructors, such as sums and products, would be added to the language as monotypes.

The statics of $\mathcal{L}^1\{\rightarrow \forall\}$ is given by rules for deriving hypothetical judgements of the form $\Delta \Gamma \vdash e : \sigma$, where Δ consists of hypotheses of the form t_{mono}.

13:08 DRAFT JUNE 2, 2010
23.4 Restricted Forms of Polymorphism

\(t \) mono, and \(\Gamma \) consists of hypotheses of the form \(x : \sigma \), where \(\Delta \vdash \sigma \) poly. The rules defining this judgement are as follows:

\[
\begin{align*}
\Delta, x : \tau \vdash x : \tau \\
\Delta \vdash \tau_1 \text{ mono} & \quad \Delta, x : \tau_1 \vdash e_2 : \tau_2 \\
\Delta \Gamma \vdash \text{lam}[(\tau_1)(x,e_2) : \text{arr}(\tau_1;\tau_2)] \\
\Delta \vdash e_1 : \text{arr}(\tau_2;\tau) & \quad \Delta \Gamma \vdash e_2 : \tau_2 \\
\Delta \vdash \text{ap}(e_1;e_2) : \tau \\
\Delta, t \text{ mono} \Gamma \vdash e : \tau \\
\Delta \Gamma \vdash \text{let}[(\tau_1)(e_1;x.e_2) : \tau_2] \\
\end{align*}
\]

(23.6)

We tacitly exploit the inclusion of monotypes as polytypes so that all typing judgements have the form \(e : \sigma \) for some expression \(e \) and polytype \(\sigma \).

The restriction on the domain of a \(\lambda \)-abstraction to be a monotype means that a fully general \texttt{let} construct is no longer definable—there is no means of binding an expression of polymorphic type to a variable. For this reason it is usual to augment \(\mathcal{L}\{\to\forall_p\} \) with a primitive \texttt{let} construct whose statics is as follows:

\[
\begin{align*}
\Delta \vdash \tau_1 \text{ poly} & \quad \Delta \Gamma \vdash e_1 : \tau_1 & \quad \Delta, x : \tau_1 \vdash e_2 : \tau_2 \\
\Delta \Gamma \vdash \text{let}[(\tau_1)(e_1;x.e_2) : \tau_2] \\
\end{align*}
\]

(23.7)

For example, the expression

\[
\text{let } I : \forall(t.t \to t) \text{ be } \Lambda(t, \lambda(x:t.x)) \text{ in } I[\tau \to \tau](I[\tau])
\]

has type \(\tau \to \tau \) for any polytype \(\tau \).

23.4.3 Rank-Restricted Fragments

The binary distinction between monomorphic and polymorphic types in \(\mathcal{L}^{1}\{\to\forall\} \) may be generalized to form a hierarchy of languages in which the occurrences of polymorphic types are restricted in relation to function types. The key feature of the prenex fragment is that quantified types are not permitted to occur in the domain of a function type. The prenex fragment also prohibits polymorphic types from the range of a function type, but it would be harmless to admit it, there being no significant difference between the type \(\sigma \to \forall(t.\tau) \) and the type \(\forall(t.\sigma \to \tau) \) (where \(t \notin \sigma \)).
This motivates the definition of a hierarchy of fragments of $\mathcal{L}\{\to \forall\}$ that subsumes the prenex fragment as a special case.

We will define a judgement of the form $\tau \text{ type } [k]$, where $k \geq 0$, to mean that τ is a type of rank k. Informally, types of rank 0 have no quantification, and types of rank $k + 1$ may involve quantification, but the domains of function types are restricted to be of rank k. Thus, in the terminology of Section 23.4.2 on page 208, a monotype is a type of rank 0 and a polytype is a type of rank 1.

The definition of the types of rank k is defined simultaneously for all k by the following rules. These rules involve hypothetical judgements of the form $\Delta \vdash \tau \text{ type } [k]$, where Δ is a finite set of hypotheses of the form $t_i \text{ type } [k_i]$ for some pairwise distinct set of type variables t_i. The rules defining these judgements are as follows:

$$
\Delta, t \text{ type } [k] \vdash t \text{ type } [k] \quad (23.8a)
$$

$$
\Delta \vdash \tau_1 \text{ type } [0] \quad \Delta \vdash \tau_2 \text{ type } [0] \quad \frac{\Delta \vdash \text{arr}(\tau_1; \tau_2) \text{ type } [0]}{} \quad (23.8b)
$$

$$
\Delta \vdash \tau_1 \text{ type } [k] \quad \Delta \vdash \tau_2 \text{ type } [k + 1] \quad \frac{\Delta \vdash \text{arr}(\tau_1; \tau_2) \text{ type } [k + 1]}{} \quad (23.8c)
$$

$$
\Delta \vdash \tau \text{ type } [k] \quad \frac{\Delta \vdash \tau \text{ type } [k + 1]}{} \quad (23.8d)
$$

$$
\Delta, t \text{ type } [k] \vdash \tau \text{ type } [k + 1] \quad \frac{\Delta \vdash \text{all}(t \cdot \tau) \text{ type } [k + 1]}{} \quad (23.8e)
$$

With these restrictions in mind, it is a good exercise to define the statics of $\mathcal{L}^k\{\to \forall\}$, the restriction of $\mathcal{L}\{\to \forall\}$ to types of rank k (or less). It is most convenient to consider judgements of the form $e: \tau [k]$ specifying simultaneously that $e : \tau$ and $\tau \text{ type } [k]$. For example, the rank-limited rules for λ-abstractions is phrased as follows:

$$
\Delta \vdash \tau_1 \text{ type } [0] \quad \Delta, \Gamma, x: \tau_1 [0] \vdash e_2 : \tau_2 [0] \quad \frac{\Delta \Gamma \vdash \text{lam}[\tau_1](x.e_2) : \text{arr}(\tau_1; \tau_2) [0]}{} \quad (23.9a)
$$

$$
\Delta \vdash \tau_1 \text{ type } [k] \quad \Delta, \Gamma, x: \tau_1 [k] \vdash e_2 : \tau_2 [k + 1] \quad \frac{\Delta \Gamma \vdash \text{lam}[\tau_1](x.e_2) : \text{arr}(\tau_1; \tau_2) [k + 1]}{} \quad (23.9b)
$$

The remaining rules follow a similar pattern.
The rank-limited languages $\mathcal{L}^k \{ \rightarrow \forall \}$ clarifies the requirement for a primitive let construct in $\mathcal{L}^1 \{ \rightarrow \forall \}$. The prenex fragment of $\mathcal{L} \{ \rightarrow \forall \}$ corresponds to the rank-one fragment $\mathcal{L}^1 \{ \rightarrow \forall \}$. The let construct for rank-one types is definable in $\mathcal{L}^2 \{ \rightarrow \forall \}$ from λ-abstraction and application. This definition only makes sense at rank two, since it abstracts over a rank-one polymorphic type.

23.5 Exercises

1. Show that primitive recursion is definable in $\mathcal{L} \{ \rightarrow \forall \}$ by exploiting the definability of iteration and binary products.

2. Investigate the representation of eager products and sums in eager and lazy variants of $\mathcal{L} \{ \rightarrow \forall \}$.

3. Show how to write an interpreter for $\mathcal{L} \{ \text{nat} \rightarrow \}$ in $\mathcal{L} \{ \rightarrow \forall \}$.
Chapter 24

Abstract Types

Data abstraction is perhaps the most important technique for structuring programs. The main idea is to introduce an interface that serves as a contract between the client and the implementor of an abstract type. The interface specifies what the client may rely on for its own work, and, simultaneously, what the implementor must provide to satisfy the contract. The interface serves to isolate the client from the implementor so that each may be developed in isolation from the other. In particular one implementation may be replaced by another without affecting the behavior of the client, provided that the two implementations meet the same interface and are, in a sense to be made precise below, suitably related to one another. (Roughly, each simulates the other with respect to the operations in the interface.) This property is called representation independence for an abstract type.

Data abstraction may be formalized by extending the language $\mathcal{L}\{\to\forall\}$ with existential types. Interfaces are modelled as existential types that provide a collection of operations acting on an unspecified, or abstract, type. Implementations are modelled as packages, the introductory form for existentials, and clients are modelled as uses of the corresponding elimination form. It is remarkable that the programming concept of data abstraction is modelled so naturally and directly by the logical concept of existential type quantification. Existential types are closely connected with universal types, and hence are often treated together. The superficial reason is that both are forms of type quantification, and hence both require the machinery of type variables. The deeper reason is that existentials are definable from universals — surprisingly, data abstraction is actually just a form of polymorphism! One consequence of this observation is that representation independence is just a use of the parametricity properties of polymorphic
functions discussed in Chapter 23.

24.1 Existential Types

The syntax of $\mathcal{L}\{\rightarrow\forall\exists\}$ is the extension of $\mathcal{L}\{\rightarrow\forall\}$ with the following constructs:

Type $\tau ::= \text{some}(t.\tau) \quad \exists(t.\tau) \quad \text{interface}$

Expr $e ::= \text{pack}[t.\tau][\rho](e) \quad \text{pack } \rho \text{ with } e \text{ as } \exists(t.\tau) \quad \text{implementation}$

$\text{open}[t.\tau][\rho](e_1; t, x. e_2) \quad \text{open } e_1 \text{ as } t \text{ with } x : \tau \text{ in } e_2 \quad \text{client}$

The introductory form for the existential type $\sigma = \exists(t.\tau)$ is a package of the form $\text{pack } \rho \text{ with } e \text{ as } \exists(t.\tau)$, where ρ is a type and e is an expression of type $[\rho/t]\tau$. The type ρ is called the representation type of the package, and the expression e is called the implementation of the package. The eliminatory form for existentials is the expression $\text{open } e_1 \text{ as } t \text{ with } x : \tau \text{ in } e_2$, which opens the package e_1 for use within the client e_2 by binding its representation type to t and its implementation to x for use within e_2. Crucially, the typing rules ensure that the client is type-correct independently of the actual representation type used by the implementor, so that it may be varied without affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable, t, and the expression variable, x, are bound within the client. They may be renamed at will by α-equivalence without affecting the meaning of the construct, provided, of course, that the names are chosen so as not to conflict with any others that may be in scope. In other words the type, t, may be thought of as a “new” type, one that is distinct from all other types, when it is introduced. This is sometimes called generativity of abstract types: the use of an abstract type by a client “generates” a “new” type within that client. This behavior is simply a consequence of identifying terms up to α-equivalence, and is not particularly tied to data abstraction.

24.1.1 Statics

The statics of existential types is specified by rules defining when an existential is well-formed, and by giving typing rules for the associated introductory and eliminatory forms.

$$
\Delta, t \text{ type } \vdash \tau \text{ type} \\
\Delta \vdash \text{some}(t.\tau) \text{ type}
$$

(24.1a)
24.1 Existential Types

\[
\begin{align*}
\Delta \vdash \rho \text{ type} & \quad \Delta, t \text{ type} \vdash \tau \text{ type} & \quad \Delta \Gamma \vdash e : [\rho/t]\tau \\
\Delta \Gamma \vdash \text{pack}[t.\tau][\rho](e) : \text{some}(t.\tau) \\
\Delta \Gamma \vdash e_1 : \text{some}(t.\tau) & \quad \Delta, t \text{ type} \quad \Gamma, x : \tau \vdash e_2 : \tau_2 & \quad \Delta \vdash \tau_2 \text{ type} \\
\Delta \Gamma \vdash \text{open}[t.\tau][\tau_2](e_1; t, x. e_2) : \tau_2
\end{align*}
\] (24.1b)

Rule (24.1c) is complex, so study it carefully! There are two important things to notice:

1. The type of the client, \(\tau_2\), must not involve the abstract type \(t\). This restriction prevents the client from attempting to export a value of the abstract type outside of the scope of its definition.

2. The body of the client, \(e_2\), is type checked without knowledge of the representation type, \(t\). The client is, in effect, polymorphic in the type variable \(t\).

Lemma 24.1 (Regularity). Suppose that \(\Delta \Gamma \vdash e : \tau\). If \(\Delta \vdash \tau_i \text{ type}\) for each \(x_i : \tau_i\) in \(\Gamma\), then \(\Delta \vdash \tau\text{ type}\).

Proof. By induction on Rules (24.1).

24.1.2 Dynamics

The (eager or lazy) dynamics of existential types is specified as follows:

\[
\begin{align*}
\{e \text{ val}\} \\
\text{pack}[t.\tau][\rho](e) \text{ val} \\
\{e \mapsto e'\} \\
\text{pack}[t.\tau][\rho](e) \mapsto \text{pack}[t.\tau][\rho](e') \\
\text{open}[t.\tau][\tau_2](e_1; t, x. e_2) \mapsto \text{open}[t.\tau][\tau_2](e_1'; t, x. e_2) \\
\{e \text{ val}\} \\
\text{pack}[t.\tau][\rho](e); t, x. e_2) \mapsto [\rho, e/t, x]e_2
\end{align*}
\] (24.2a)

(24.2b)

(24.2c)

(24.2d)

It is important to observe that, according to these rules, there are no abstract types at run time! The representation type is propagated to the client by substitution when the package is opened, thereby eliminating the abstraction boundary between the client and the implementor. Thus, data abstraction is a compile-time discipline that leaves no traces of its presence at execution time.

JUNE 2, 2010 DRAFT 13:08
24.1.3 Safety

The safety of the extension is stated and proved as usual. The argument is a simple extension of that used for $L\{\rightarrow\forall\}$ to the new constructs.

Theorem 24.2 (Preservation). If $e : \tau$ and $e \mapsto e'$, then $e' : \tau$.

Proof. By rule induction on $e \mapsto e'$, making use of substitution for both expression- and type variables. □

Lemma 24.3 (Canonical Forms). If $e : \text{some}(t.\tau)$ and $e \text{ val}$, then $e = \text{pack}[t.\tau]\{\rho\}(e')$ for some type ρ and some e' such that $e' : [\rho/t]\tau$.

Proof. By rule induction on the statics, making use of the definition of closed values. □

Theorem 24.4 (Progress). If $e : \tau$ then either $e \text{ val}$ or there exists e' such that $e \mapsto e'$.

Proof. By rule induction on $e : \tau$, making use of the canonical forms lemma. □

24.2 Data Abstraction Via Existentials

To illustrate the use of existentials for data abstraction, we consider an abstract type of queues of natural numbers supporting three operations:

1. Formation of the empty queue.
2. Inserting an element at the tail of the queue.
3. Remove the head of the queue.

This is clearly a bare-bones interface, but is sufficient to illustrate the main ideas of data abstraction. Queue elements may be taken to be of any type, τ, of our choosing; we will not be specific about this choice, since nothing depends on it.

The crucial property of this description is that nowhere do we specify what queues actually are, only what we can do with them. This is captured by the following existential type, $\exists(t.\tau)$, which serves as the interface of the queue abstraction:

$$\exists(t.\langle\text{emp}:t,\text{ins}:\text{nat} \times t \rightarrow t,\text{rem}:t \rightarrow \text{nat} \times t\rangle).$$
The representation type, \(t \), of queues is *abstract* — all that is specified about it is that it supports the operations \(\text{emp}, \text{ins}, \text{rem} \), with the specified types.

An implementation of queues consists of a package specifying the representation type, together with the implementation of the associated operations in terms of that representation. Internally to the implementation, the representation of queues is known and relied upon by the operations. Here is a very simple implementation, \(e_I \), in which queues are represented as lists:

\[
\text{pack list with } \langle \text{emp} = \text{nil}, \text{ins} = e_i, \text{rem} = e_r \rangle \text{ as } \exists (t. \tau),
\]

where
\[
e_i : \text{nai} \times \text{list} \rightarrow \text{list} = \lambda (x: \text{nai} \times \text{list}. e'_i),
\]

and
\[
e_r : \text{list} \rightarrow \text{nai} \times \text{list} = \lambda (x: \text{list}. e'_r).
\]

Here the expression \(e'_i \) conses the first component of \(x \), the element, onto the second component of \(x \), the queue. Correspondingly, the expression \(e'_r \) reverses its argument, and returns the head element paired with the reversal of the tail. These operations “know” that queues are represented as values of type \(\text{list} \), and are programmed accordingly.

It is also possible to give another implementation, \(e_P \), of the same interface, \(\exists (t. \tau) \), but in which queues are represented as pairs of lists, consisting of the “back half” of the queue paired with the reversal of the “front half”. This representation avoids the need for reversals on each call, and, as a result, achieves amortized constant-time behavior:

\[
\text{pack list } \times \text{ list with } \langle \text{emp} = \langle \text{nil}, \text{nil} \rangle, \text{ins} = e_i, \text{rem} = e_r \rangle \text{ as } \exists (t. \tau).
\]

In this case \(e_i \) has type
\[
\text{nai} \times (\text{list } \times \text{list}) \rightarrow (\text{list } \times \text{list}),
\]

and \(e_r \) has type
\[
(\text{list } \times \text{list}) \rightarrow \text{nai} \times (\text{list } \times \text{list}).
\]

These operations “know” that queues are represented as values of type \(\text{list } \times \text{list} \), and are implemented accordingly.

The important point is that the *same* client type checks regardless of which implementation of queues we choose. This is because the representation type is hidden, or *held abstract*, from the client during type checking.
24.3 Definability of Existentials

Consequently, it cannot rely on whether it is list or list × list or some other type. That is, the client is independent of the representation of the abstract type.

24.3 Definability of Existentials

It turns out that it is not necessary to extend $L\{\to \forall\}$ with existential types to model data abstraction, because they are already definable using only universal types! Before giving the details, let us consider why this should be possible. The key is to observe that the client of an abstract type is polymorphic in the representation type. The typing rule for

$$\text{open} e \text{ as } t \text{ with } x : \tau \text{ in } e' : \tau',$$

where $e : \exists(t.\tau)$, specifies that $e' : \tau'$ under the assumptions t type and $x : \tau$. In essence, the client is a polymorphic function of type

$$\forall(t.\tau \to \tau'),$$

where t may occur in τ (the type of the operations), but not in τ' (the type of the result).

This suggests the following encoding of existential types:

$$\exists(t.\sigma) = \forall(t'.\forall(t.\sigma \to t') \to t')$$

$$\text{pack } \rho \text{ with } e \text{ as } \exists(t.\sigma) = \Lambda(t'.\Lambda(x : \forall(t.\sigma \to t').x [\rho] (e)))$$

$$\text{open } e \text{ as } t \text{ with } x : \sigma \text{ in } e' = e[\tau'](\Lambda(t.\Lambda(x : \sigma.e')))$$

An existential is encoded as a polymorphic function taking the overall result type, t', as argument, followed by a polymorphic function representing the client with result type t', and yielding a value of type t' as overall result. Consequently, the open construct simply packages the client as such a polymorphic function, instantiates the existential at the result type, τ, and applies it to the polymorphic client. (The translation therefore depends on knowing the overall result type, τ, of the open construct.) Finally, a package consisting of a representation type ρ and an implementation e is a polymorphic function that, when given the result type, t, and the client, x, instantiates x with ρ and passes to it the implementation e.

It is then a straightforward exercise to show that this translation correctly reflects the statics and dynamics of existential types.
24.4 Representation Independence

An important consequence of parametricity is that it ensures that clients are insensitive to the representations of abstract types. More precisely, there is a criterion, called bisimilarity, for relating two implementations of an abstract type such that the behavior of a client is unaffected by swapping one implementation by another that is bisimilar to it. This leads to a simple methodology for proving the correctness of candidate implementation of an abstract type, which is to show that it is bisimilar to an obviously correct reference implementation of it. Since the candidate and the reference implementations are bisimilar, no client may distinguish them from one another, and hence if the client behaves properly with the reference implementation, then it must also behave properly with the candidate.

To derive the definition of bisimilarity of implementations, it is helpful to examine the definition of existentials in terms of universals given in Section 24.3 on the facing page. It is an immediate consequence of the definition that the client of an abstract type is polymorphic in the representation of the abstract type. A client, c, of an abstract type $\exists (t. \sigma)$ has type $\forall (t. (\sigma \rightarrow t) \rightarrow t)$, where t does not occur free in τ (but may, of course, occur in σ). Applying the parametricity property described informally in Chapter 23 (and developed rigorously in Chapter 50), this says that if R is a bisimulation relation between any two implementations of the abstract type, then the client behaves identically on both of them. The fact that t does not occur in the result type ensures that the behavior of the client is independent of the choice of relation between the implementations, provided that this relation is preserved by the operation that implement it.

To see what this means requires that we specify what is meant by a bisimulation. This is best done by example. So suppose that σ is the type $\langle \text{emp} : t, \text{ins} : \tau \times t \rightarrow t, \text{rem} : t \rightarrow \tau \times t \rangle$.

Theorem 50.8 on page 469 ensures that if ρ and ρ' are any two closed types, R is a relation between expressions of these two types, then if any the implementations $e : [\rho/x]\sigma$ and $e' : [\rho'/x]\sigma$ respect R, then $c[\rho]e$ behaves the same as $c[\rho']e'$. It remains to define when two implementations e respect the relation R. Let

$$e = \langle \text{emp} = e_m, \text{ins} = e_i, \text{rem} = e_r \rangle$$

and

$$e' = \langle \text{emp} = e'_m, \text{ins} = e'_i, \text{rem} = e'_r \rangle.$$
For these implementations to respect \(R \) means that the following three conditions hold:

1. The empty queues are related: \(R(e_m, e'_m) \).

2. Inserting the same element on each of two related queues yields related queues: if \(d : \tau \) and \(R(q, q') \), then \(R(e(d) \langle q \rangle, e'(d) \langle q' \rangle) \).

3. If two queues are related, their front elements are the same and their back elements are related: if \(R(q, q') \), \(e_r(q) \equiv \langle d, r \rangle \), \(e'_r(q') \equiv \langle d', r' \rangle \), then \(d = d' \) and \(R(r, r') \).

If such a relation \(R \) exists, then the implementations \(e \) and \(e' \) are said to be bisimilar. The terminology stems from the requirement that the operations of the abstract type preserve the relation: if it holds before an operation is performed, then it must also hold afterwards, and the relation must hold for the initial state of the queue. Thus each implementation simulates the other up to the relationship specified by \(R \).

To see how this works in practice, let us consider informally two implementations of the abstract type of queues specified above. For the reference implementation we choose \(\rho \) to be the type \(\text{list} \), and define the empty queue to be the empty list, insert to add the specified element to the front of the list, and remove to remove the last element of the list. (A remove therefore takes time linear in the length of the list.) For the candidate implementation we choose \(\rho' \) to be the type \(\text{list} \times \text{list} \) consisting of two lists, \(\langle b, f \rangle \), where \(b \) represents the “back” of the queue, and \(f \) represents the “front” of the queue represented in reverse order of insertion. The empty queue consists of two empty lists. To insert \(d \) onto \(\langle b, f \rangle \), we simply return \(\langle \text{cons}(d; b), f \rangle \), placing it on the “back” of the queue as expected.

To remove an element from \(\langle b, f \rangle \) breaks into two cases. If the front, \(f \), of the queue is non-empty, say \(\text{cons}(d; f') \), then return \(\langle d, \langle b, f' \rangle \rangle \) consisting of the front element and the queue with that element removed. If, on the other hand, \(f \) is empty, then we must move elements from the “back” to the “front” by reversing \(b \) and re-performing the remove operation on \(\langle \text{nil}, \text{rev}(b) \rangle \), where \(\text{rev} \) is the obvious list reversal function.

To show that the candidate implementation is correct, we show that it is bisimilar to the reference implementation. This reduces to specifying a relation, \(R \), between the types \(\text{list} \) and \(\text{list} \times \text{list} \) such that the three simulation conditions given above are satisfied by the two implementations just described. The relation in question states that \(R(l, \langle b, f \rangle) \) iff the list \(l \) is the list \(\text{app}(b) (\text{rev}(f)) \), where \(\text{app} \) is the evident append function.
on lists. That is, thinking of \(l \) as the reference representation of the queue, the candidate must maintain that the elements of \(b \) followed by the elements of \(f \) in reverse order form precisely the list \(l \). It is easy to check that the implementations just described preserve this relation. Having done so, we are assured that the client, \(c \), behaves the same regardless of whether we use the reference or the candidate. Since the reference implementation is obviously correct (albeit inefficient), the candidate must also be correct in that the behavior of any client is unaffected by using it instead of the reference.

24.5 Exercises
Chapter 25

Constructors and Kinds

Types such as $\tau_1 \to \tau_2$ or list may be thought of as being built from other types by the application of a type constructor, or type operator. These two examples differ from each other in that the function space type constructor takes two arguments, whereas the list type constructor takes only one. We may, for the sake of uniformity, think of types such as nat as being built by a type constructor of no arguments. More subtly, we may even think of the types $\forall (t. \tau)$ and $\exists (t. \tau)$ as being built up in the same way by regarding the quantifiers as higher-order type operator.

These seemingly disparate cases may be treated uniformly by enriching the syntactic structure of a language with a new layer of constructors. To ensure that constructors are used properly (for example, that the list constructor is given only one argument, and that the function constructor is given two), we classify constructors by kinds. Constructors of a distinguished kind, Type, are types, which may be used to classify expressions. To allow for multi-argument and higher-order constructors, we will also consider finite product and function kinds. (Later we shall consider even richer kinds.)

The distinction between constructors and kinds on one hand and types and expressions on the other reflects a fundamental separation between the static and dynamic phase of processing of a programming language, called the phase distinction. The static phase implements the statics and the dynamic phase implements the dynamics. Constructors may be seen as a form of static data that is manipulated during the static phase of processing. Expressions are a form of dynamic data that is manipulated at run-time. Since the dynamic phase follows the static phase (we only execute well-typed programs), we may also manipulate constructors at run-time.
Adding constructors and kinds to a language introduces more technical complications than might at first be apparent. The main difficulty is that as soon as we enrich the kind structure beyond the distinguished kind of types, it becomes essential to simplify constructors to determine whether they are equivalent. For example, if we admit product kinds, then a pair of constructors is a constructor of product kind, and projections from a constructor of product kind are also constructors. But what if we form the first projection from the pair consisting of the constructors \texttt{nat} and \texttt{str}? This should be equivalent to \texttt{nat}, since the elimination form is post-inverse to the introduction form. Consequently, any expression (say, a variable) of the one type should also be an expression of the other. That is, typing should respect definitional equivalence of constructors.

There are two main ways to deal with this. One is to introduce a concept of definitional equivalence for constructors, and to demand that the typing judgement for expressions respect definitional equivalence of constructors of kind \texttt{Type}. This means, however, that we must show that definitional equivalence is decidable if we are to build a complete implementation of the language. The other is to prohibit formation of awkward constructors such as the projection from a pair so that there is never any issue of when two constructors are equivalent (only when they are identical). But this complicates the definition of substitution, since a projection from a constructor variable is well-formed, until you substitute a pair for the variable. Both approaches have their benefits, but the second is simplest, and is adopted here.

25.1 Statics

The syntax of kinds is given by the following grammar:

\[
\text{Kind } \kappa ::= \text{Type} \quad \text{Type} \quad \text{types} \\
\text{Unit} \quad 1 \quad \text{nullary product} \\
\text{Prod}(\kappa_1; \kappa_2) \quad \kappa_1 \times \kappa_2 \quad \text{binary product} \\
\text{Arr}(\kappa_1; \kappa_2) \quad \kappa_1 \rightarrow \kappa_2 \quad \text{function}
\]

The kinds consist of the kind of types, \texttt{Type}, the unit kind, \texttt{Unit}, and are closed under formation of product and function kinds.

The syntax of constructors is divided into two syntactic sorts, the \textit{neutral}
25.1 Statics

and the canonical, according to the following grammar:

\[
\text{Neut } a ::= \begin{aligned}
 & u & \text{variable} \\
 & \text{proj}[1](a) & \text{proj}[1](a) & \text{first projection} \\
 & \text{proj}[r](a) & \text{proj}[r](a) & \text{second projection} \\
 & \text{app}(a_1;c_2) & a_1[c_2] & \text{application}
\end{aligned}
\]

\[
\text{Canon } c ::= \begin{aligned}
 & \text{atom}(a) & \hat{a} & \text{atomic} \\
 & \text{unit} & \langle \rangle & \text{null tuple} \\
 & \text{pair}(c_1;c_2) & \langle c_1,c_2 \rangle & \text{pair} \\
 & \text{lam}(u.c) & \lambda u.c & \text{abstraction}
\end{aligned}
\]

The reason to distinguish neutral from canonical constructors is to ensure that it is impossible to apply an elimination form to an introduction form, which demands an equation to capture the inversion principle. For example, the putative constructor \(\text{pr}_1(\langle c_1,c_2 \rangle) \), which would be definitionally equivalent to \(c_1 \), is ill-formed according to Grammar (25.1). This is because the argument to a projection must be neutral, but a pair is only canonical, not neutral.

The canonical constructor \(\text{atom}(a) \) is the inclusion of neutral constructors into canonical constructors. However, the grammar does not capture a crucial property of the statics that ensures that only neutral constructors of kind \(\text{Type} \) may be treated as canonical. This requirement is imposed to limit the forms of canonical constructors of the other kinds. In particular, variables of function, product, or unit kind will turn out not to be canonical, but only neutral.

The statics of constructors and kinds is specified by the judgements

\[
\Delta \vdash a \uparrow \kappa \quad \text{neutral constructor formation}
\]
\[
\Delta \vdash c \downarrow \kappa \quad \text{canonical constructor formation}
\]

In each of these judgements \(\Delta \) is a finite set of hypotheses of the form

\[
u_1 \uparrow \kappa_1, \ldots, u_n \uparrow \kappa_n
\]

for some \(n \geq 0 \). The form of the hypotheses expresses the principle that variables are neutral constructors. The formation judgements are to be understood as generic hypothetical judgements with parameters \(u_1, \ldots, u_n \) that are determined by the forms of the hypotheses.

The rules for constructor formation are as follows:

\[
\Delta, u \uparrow \kappa \vdash u \uparrow \kappa \quad (25.1a)
\]
25.2 Adding Constructors and Kinds

Rule (25.1e) specifies that the only neutral constructors that are canonical are those with kind \text{Type}. This ensures that the language enjoys the following canonical forms property, which is easily proved by inspection of Rules (25.1).

Lemma 25.1. Suppose that $\Delta \vdash c : \kappa$.

1. If $\kappa = 1$, then $c = \langle \rangle$.

2. If $\kappa = \kappa_1 \times \kappa_2$, then $c = \langle c_1, c_2 \rangle$ for some c_1 and c_2 such that $\Delta \vdash c_i : \kappa_i$ for $i = 1, 2$.

3. If $\kappa = \kappa_1 \rightarrow \kappa_2$, then $c = \lambda u . c_2$ with $\Delta, u : \kappa_1 \vdash c_2 : \kappa_2$.

25.2 Adding Constructors and Kinds

To equip a language, \mathcal{L}, with constructors and kinds requires that we augment its statics with hypotheses governing constructor variables, and that we relate constructors of kind Type (types as static data) to the classifiers of dynamic expressions (types as classifiers). To achieve this the statics of \mathcal{L} must be defined to have judgements of the following two forms:

\[
\Delta \vdash \tau \text{ type} \\
\Delta \Gamma \vdash e : \tau
\]

expression formation
where, as before, \(\Gamma \) is a finite set of hypotheses of the form

\[
x_1 : \tau_1, \ldots, x_k : \tau_k
\]

for some \(k \geq 0 \) such that \(\Delta \vdash \tau_i \) type for each \(1 \leq i \leq k \).

As a general principle, every constructor of kind Type is a classifier:

\[
\Delta \vdash \tau \uparrow \text{Type} \\
\Delta \vdash \tau \text{ type}
\]

In many cases this is the sole rule of type formation, so that every classifier is a constructor of kind Type. However, this need not be the case. In some situations we may wish to have strictly more classifiers than constructors of the distinguished kind.

To see how this might arise, let us consider two extensions of \(L\{\to\forall\} \) from Chapter 23. In both cases we extend the universal quantifier \(\forall (t . \tau) \) to admit quantification over an arbitrary kind, written \(\forall_k u . \tau \), but the two languages differ in what constitutes a constructor of kind Type. In one case, the impredicative, we admit quantified types as constructors, and in the other, the predicative, we exclude quantified types from the domain of quantification.

The impredicative fragment includes the following two constructor constants:

\[
\Delta \vdash \to \uparrow \text{Type} \to \text{Type} \to \text{Type} \tag{25.3a}
\]

\[
\Delta \vdash \forall_k \uparrow (\kappa \to \text{Type}) \to \text{Type} \tag{25.3b}
\]

We regard the classifier \(\tau_1 \to \tau_2 \) to be the application \(\to [\tau_1] \tau_2 \). Similarly, we regard the classifier \(\forall_k u . \tau \) to be the application \(\forall_k \lambda u . \tau \).

The predicative fragment excludes the constant specified by Rule (25.3b) in favor of a separate rule for the formation of universally quantified types:

\[
\Delta, u \uparrow \kappa \vdash \tau \text{ type} \\
\Delta \vdash \forall_k u . \tau \text{ type} \tag{25.4}
\]

The important point is that \(\forall_k u . \tau \) is a type (as classifier), but is not a constructor of kind type.

The significance of this distinction becomes apparent when we consider the introduction and elimination forms for the generalized quantifier, which are the same for both fragments:

\[
\Delta, u \uparrow \kappa \Gamma \vdash e : \tau \\
\Delta \Gamma \vdash \Lambda(u : \kappa . e) : \forall_k u . \tau \tag{25.5a}
\]
Rule (25.5b) makes use of substitution, whose definition requires some care. We will return to this point in Section 25.3.)

Rule (25.5b) makes clear that a polymorphic abstraction quantifies over the constructors of kind κ. When κ is Type this kind may or may not include all of the classifiers of the language, according to whether we are working with the impredicative formulation of quantification (in which the quantifiers are distinguished constants for building constructors of kind Type) or the predicative formulation (in which quantifiers arise only as classifiers and not as constructors).

The important principle here is that constructors are static data, so that a constructor abstraction \(\Lambda (u : \kappa . e) \) of type \(\forall \kappa . u . \tau \) is a mapping from static data \(c \) of kind \(\kappa \) to dynamic data \([c/u]e \) of type \([c/u]\tau \). Rule (25.1e) tells us that every constructor of kind Type determines a classifier, but it may or may not be the case that every classifier arises in this manner.

25.3 Substitution

Rule (25.5b) involves substitution of a canonical constructor, \(c \), of kind \(\kappa \) into a family of types \(u \uparrow \kappa \vdash \tau \) type. This operation is is written \([c/u]\tau \), as usual. Although the intended meaning is clear, it is in fact impossible to interpret \([c/u]\tau \) as the standard concept of substitution defined in Chapter 3. The reason is that to do so would risk violating the distinction between neutral and canonical constructors. Consider, for example, the case of the family of types

\[
u \uparrow \text{Type} \rightarrow \text{Type} \vdash u[d] \uparrow \text{Type},\]

where \(d \uparrow \text{Type} \). (It is not important what we choose for \(d \), so we leave it abstract.) Now if \(c \downarrow \text{Type} \rightarrow \text{Type} \), then by Lemma 25.1 on page 226 we have that \(c = \lambda u'.c' \). Thus, if interpreted conventionally, substitution of \(c \) for \(u \) in the given family yields the “constructor” \((\lambda u'.c') [d] \), which is not well-formed.

The solution is to define a form of canonizing substitution that simplifies such “illegal” combinations as it performs the replacement of a variable by a constructor of the same kind. In the case just sketched this means that we must ensure that

\[
[\lambda u'.c'/u]u[d] = [d/u']c'.
\]

If viewed as a definition this equation is problematic because it switches from substituting for \(u \) in the constructor \(u[d] \) to substituting for \(u' \) in the...
unrelated constructor \(c' \). Why should such a process terminate? The answer lies in the observation that the kind of \(u' \) is definitely smaller than the kind of \(u \), since the former’s kind is the domain kind of the latter’s function kind. In all other cases of substitution (as we shall see shortly) the size of the target of the substitution becomes smaller; in the case just cited the size may increase, but the type of the target variable decreases. Therefore by a lexicographic induction on the type of the target variable and the structure of the target constructor, we may prove that canonizing substitution is well-defined.

We now turn to the task of making this precise. We will define simultaneously two principal forms of substitution, one of which divides into two cases:

\[
\begin{align*}
[c / u : \kappa]a &= a' & \text{canonical into neutral yielding neutral} \\
[c / u : \kappa]a &= c' \Downarrow \kappa' & \text{canonical into neutral yielding canonical and kind} \\
[c / u : \kappa]c' &= c'' & \text{canonical into canonical yielding canonical}
\end{align*}
\]

Substitution into a neutral constructor divides into two cases according to whether the substituted variable \(u \) occurs in critical position in a sense to be made precise below.

These forms of substitution are simultaneously inductively defined by the following rules, which are broken into groups for clarity.

The first set of rules defines substitution of a canonical constructor into a canonical constructor; the result is always canonical.

\[
\begin{align*}
[c / u : \kappa]a' &= a'' \\
[c / u : \kappa]a' &= \hat{a}'' \\
[c / u : \kappa]a' &= c'' \Downarrow \kappa'' \\
[c / u : \kappa]a' &= c'' \\
[u / \langle \rangle : \kappa] &= \langle \rangle \\
[c / u : \kappa]c_1' &= c_1'' & [c / u : \kappa]c_2' &= c_2'' \\
[c / u : \kappa][c_1', c_2'] &= (c_1'', c_2'') \\
[c / u : \kappa]c' &= c'' & (u \neq u') & (u' \notin c) \\
[c / u : \kappa]\lambda u'. c' &= \lambda u'. c''
\end{align*}
\]

The conditions on variables in Rule (25.6e) may always be met by renaming the bound variable, \(u' \), of the abstraction.
The second set of rules defines substitution of a canonical constructor into a neutral constructor, yielding another neutral constructor.

\[
\frac{(u \neq u')}{\lbrack c/u : \kappa \rbrack u' = u'} \tag{25.7a}
\]

\[
\frac{[c/u : \kappa]a' = a''}{\lbrack c/u : \kappa \rbrack \pr_1 (a') = \pr_1 (a'')} \tag{25.7b}
\]

\[
\frac{[c/u : \kappa]a' = a''}{\lbrack c/u : \kappa \rbrack \pr_r (a') = \pr_r (a'')} \tag{25.7c}
\]

\[
\frac{[c/u : \kappa]a_1 = a'_1 \quad [c/u : \kappa]c_2 = c'_2}{[c/u : \kappa]a_1 [c_2] = a'_1 (c'_2)} \tag{25.7d}
\]

Rule (25.7a) pertains to a non-critical variable, which is not the target of substitution. The remaining rules pertain to situations in which the recursive call on a neutral constructor yields a neutral constructor.

The third set of rules defines substitution of a canonical constructor into a neutral constructor, yielding a canonical constructor and its kind.

\[
\frac{[c/u : \kappa]u = c \Downarrow \kappa}{[c/u : \kappa]u} \tag{25.8a}
\]

\[
\frac{[c/u : \kappa]a' = \langle c'_1, c'_2 \rangle \Downarrow \kappa'_1 \times \kappa'_2}{[c/u : \kappa] \pr_1 (a') = c'_1 \Downarrow \kappa'_1} \tag{25.8b}
\]

\[
\frac{[c/u : \kappa]a' = \langle c'_1, c'_2 \rangle \Downarrow \kappa'_1 \times \kappa'_2}{[c/u : \kappa] \pr_r (a') = c'_2 \Downarrow \kappa'_2} \tag{25.8c}
\]

\[
\frac{[c/u : \kappa]a_1' = \lambda u' \cdot c' \Downarrow \kappa'_2 \rightarrow \kappa'}{[c/u : \kappa]c_2' = c'_2 \quad [c'_2 / u' : \kappa'_2]c' = c''} \quad [c/u : \kappa]a_1 [c'_2] = c'' \Downarrow \kappa'} \tag{25.8d}
\]

Rule (25.8a) governs a critical variable, which is the target of substitution. The substitution transforms it from a neutral constructor to a canonical constructor. This has a knock-on effect in the remaining rules of the group, which analyze the canonical form of the result of the recursive call to determine how to proceed. Rule (25.8d) is the most interesting rule. In the third premise, all three arguments to substitution change as we substitute the (substituted) argument of the application for the parameter of the (substituted) function into the body of that function. Here we require the type of the function in order to determine the type of its parameter.
Theorem 25.2. Suppose that $\Delta \vdash c \downarrow \kappa$, and $\Delta, u \uparrow \kappa \vdash c' \downarrow \kappa'$, and $\Delta, u \uparrow \kappa \vdash a' \uparrow \kappa'$. There exists a unique $\Delta \vdash c'' \downarrow \kappa'$ such that $[c/u : \kappa]c' = c''$. Either there exists a unique $\Delta \vdash a'' \uparrow \kappa'$ such that $[c/u : \kappa]a' = a''$, or there exists a unique $\Delta \vdash c'' \downarrow \kappa'$ such that $[c/u : \kappa]a' = c''$, but not both.

Proof. Simultaneously by a lexicographic induction with major component the structure of the kind κ, and with minor component determined by Rules (25.1) governing the formation of c' and a'. For all rules except Rule (25.8d) the inductive hypothesis applies to the premise(s) of the relevant formation rules. For Rule (25.8d) we appeal to the major inductive hypothesis applied to κ_2', which is a component of the kind $\kappa_2' \rightarrow \kappa'$.

25.4 Exercises
Chapter 26

Indexed Families of Types

26.1 Type Families

26.2 Exercises
Part IX

Control Effects
Chapter 27

Control Stacks

The technique of structural dynamics is very useful for theoretical purposes, such as proving type safety, but is too high level to be directly usable in an implementation. One reason is that the use of “search rules” requires the traversal and reconstruction of an expression in order to simplify one small part of it. In an implementation we would prefer to use some mechanism to record “where we are” in the expression so that we may “resume” from that point after a simplification. This can be achieved by introducing an explicit mechanism, called a control stack, that keeps track of the context of an instruction step for just this purpose. By making the control stack explicit the transition rules avoid the need for any premises—every rule is an axiom. This is the formal expression of the informal idea that no traversals or reconstructions are required to implement it. In this chapter we introduce an abstract machine, $K\{\text{nat} \rightarrow\}$, for the language $L\{\text{nat} \rightarrow\}$. The purpose of this machine is to make control flow explicit by introducing a control stack that maintains a record of the pending sub-computations of a computation. We then prove the equivalence of $K\{\text{nat} \rightarrow\}$ with the structural dynamics of $L\{\text{nat} \rightarrow\}$.

27.1 Machine Definition

A state, s, of $K\{\text{nat} \rightarrow\}$ consists of a control stack, k, and a closed expression, e. States may take one of two forms:

1. An evaluation state of the form $k \triangleright e$ corresponds to the evaluation of a closed expression, e, relative to a control stack, k.

2. A return state of the form \(k \triangleleft e \), where \(e \) \(\text{val} \), corresponds to the evaluation of a stack, \(k \), relative to a closed value, \(e \).

As an aid to memory, note that the separator “points to” the focal entity of the state, the expression in an evaluation state and the stack in a return state.

The control stack represents the context of evaluation. It records the “current location” of evaluation, the context into which the value of the current expression is to be returned. Formally, a control stack is a list of frames:

\[
\begin{align*}
\text{c stack} \\
\text{f frame} & \quad \text{k stack} \\
\text{k; f stack}
\end{align*}
\]

The definition of frame depends on the language we are evaluating. The frames of \(\mathcal{K}\{\text{nat} \rightarrow \} \) are inductively defined by the following rules:

\[
\begin{align*}
\text{s(\(- \)) frame} \\
\text{ifz(\(- ; e_1 ; x . e_2 \)) frame} \\
\text{ap(\(- ; e_2 \)) frame}
\end{align*}
\]

The frames correspond to rules with transition premises in the dynamics of \(\mathcal{L}\{\text{nat} \rightarrow \} \). Thus, instead of relying on the structure of the transition derivation to maintain a record of pending computations, we make an explicit record of them in the form of a frame on the control stack.

The transition judgement between states of the \(\mathcal{K}\{\text{nat} \rightarrow \} \) is inductively defined by a set of inference rules. We begin with the rules for natural numbers.

\[
\begin{align*}
\text{k \triangleright z } & \quad \text{\(k \triangleleft z \) } \\
\text{k \triangleright s(e) } & \quad \text{\(k; s(\(- \)) \triangleright e \) } \\
k; s(\(- \)) \triangleleft e & \quad \text{\(k \triangleleft s(e') \) }
\end{align*}
\]

To evaluate \(z \) we simply return it. To evaluate \(s(e) \), we push a frame on the stack to record the pending successor, and evaluate \(e \); when that returns with \(e' \), we return \(s(e') \) to the stack.

Next, we consider the rules for case analysis.

\[
\begin{align*}
\text{k \triangleright \text{ifz(\(- ; e_1 ; x . e_2 \)) } } & \quad \text{\(k; \text{ifz(\(- ; e_1 ; x . e_2 \)) \triangleright e \) } \\
\text{k; \text{ifz(\(- ; e_1 ; x . e_2 \)) \triangleleft z } } & \quad \text{\(k \triangleright e_1 \) }
\end{align*}
\]
27.2 Safety

First, the test expression is evaluated, recording the pending case analysis on the stack. Once the value of the test expression has been determined, we branch to the appropriate arm of the conditional, substituting the predecessor in the case of a positive number.

Finally, we consider the rules for functions and recursion.

These rules ensure that the function is evaluated before the argument, applying the function when both have been evaluated. Note that evaluation of general recursion requires no stack space! (But see Chapter 39 for more on evaluation of general recursion.)

The initial and final states of the $K\{\text{nat} \rightarrow \}$ are defined by the following rules:

27.2 Safety

To define and prove safety for $K\{\text{nat} \rightarrow \}$ requires that we introduce a new typing judgement, $k : \tau$, stating that the stack k expects a value of type τ. This judgement is inductively defined by the following rules:

This definition makes use of an auxiliary judgement, $f : \tau \Rightarrow \tau'$, stating that a frame f transforms a value of type τ to a value of type τ'.
The two forms of $K\{\text{nat} \rightarrow \}$ state are well-formed provided that their stack and expression components match.

\[
\begin{align*}
\frac{e : \tau}{k : \tau \Rightarrow \tau} & \Rightarrow \tau (27.8c) \\
\frac{k : \tau \quad e : \tau}{k \triangleright e \ ok} & \Rightarrow \tau (27.9a) \\
\frac{k : \tau \quad e : \tau \quad e \ val}{k \triangleleft e \ ok} & \Rightarrow \tau (27.9b)
\end{align*}
\]

We leave the proof of safety of $K\{\text{nat} \rightarrow \}$ as an exercise.

Theorem 27.1 (Safety). 1. If $s \ ok$ and $s \mapsto s'$, then $s' \ ok$.

2. If $s \ ok$, then either $s \ final$ or there exists s' such that $s \mapsto s'$.

27.3 Correctness of the Control Machine

It is natural to ask whether $K\{\text{nat} \rightarrow \}$ correctly implements $L\{\text{nat} \rightarrow \}$. If we evaluate a given expression, e, using $K\{\text{nat} \rightarrow \}$, do we get the same result as would be given by $L\{\text{nat} \rightarrow \}$, and *vice versa*?

Answering this question decomposes into two conditions relating $K\{\text{nat} \rightarrow \}$ to $L\{\text{nat} \rightarrow \}$:

Completeness If $e \mapsto^* e'$, where e' val, then $e \triangleright e \mapsto^* e \triangleleft e'$.

Soundness If $e \triangleright e \mapsto^* e \triangleleft e'$, then $e \mapsto^* e'$ with e' val.

Let us consider, in turn, what is involved in the proof of each part.

For completeness it is natural to consider a proof by induction on the definition of multistep transition, which reduces the theorem to the following two lemmas:

1. If e val, then $e \triangleright e \mapsto^* e \triangleleft e$.

2. If $e \mapsto e'$, then, for every v val, if $e \triangleright e \mapsto^* e \triangleleft v$, then $e \triangleright e \mapsto^* e \triangleleft v$.

The first can be proved easily by induction on the structure of e. The second requires an inductive analysis of the derivation of $e \mapsto e'$, giving rise to two complications that must be accounted for in the proof. The first complication is that we cannot restrict attention to the empty stack, for if e is, say, $\text{ap}(e_1; e_2)$, then the first step of the machine is

\[
\begin{align*}
\frac{e \triangleright \text{ap}(e_1; e_2) \mapsto e \triangleright \text{ap}(e; e_2) \triangleright e_1}
\end{align*}
\]
and so we must consider evaluation of e_1 on a non-empty stack.

A natural generalization is to prove that if $e \mapsto e'$ and $k \triangleright e' \mapsto^* k \triangleleft v$, then $k \triangleright e \mapsto^* k \triangleleft v$. Consider again the case $e = ap(e_1; e_2)$, $e' = ap(e_1'; e_2)$, with $e_1 \mapsto e_1'$. We are given that $k \triangleright ap(e_1'; e_2) \mapsto^* k \triangleleft v$, and we are to show that $k \triangleright ap(e_1; e_2) \mapsto^* k \triangleleft v$. It is easy to show that the first step of the former derivation is

$$k \triangleright ap(e_1'; e_2) \mapsto k; ap(-; e_2) \triangleright e_1'.$$

We would like to apply induction to the derivation of $e_1 \mapsto e_1'$, but to do so we must have a v_1 such that $e_1' \mapsto^* v_1$, which is not immediately at hand.

This means that we must consider the ultimate value of each sub-expression of an expression in order to complete the proof. This information is provided by the evaluation dynamics described in Chapter 10, which has the property that $e \Downarrow e'$ iff $e \mapsto^* v$.

Lemma 27.2. If $e \Downarrow v$, then for every k stack, $k \triangleright e \mapsto^* k \triangleleft v$.

The desired result follows by the analogue of Theorem 10.2 on page 85 for $L\{\text{nat} \rightarrow\}$, which states that $e \Downarrow v$ iff $e \mapsto^* v$.

For the proof of soundness, it is awkward to reason inductively about the multistep transition from $e \triangleright e \mapsto^* e \triangleleft v$, because the intervening steps may involve alternations of evaluation and return states. Instead we regard each $K\{\text{nat} \rightarrow\}$ machine state as encoding an expression, and show that $K\{\text{nat} \rightarrow\}$ transitions are simulated by $L\{\text{nat} \rightarrow\}$ transitions under this encoding.

Specifically, we define a judgement, $s \triangleleft e$, stating that state s “unravels to” expression e. It will turn out that for initial states, $s = e \triangleright e$, and final states, $s = e \triangleleft e$, we have $s \triangleleft e$. Then we show that if $s \mapsto^* s'$, where s' final, $s \triangleleft e$, and $s' \triangleleft e'$, then e' val and $e \mapsto^* e'$. For this it is enough to show the following two facts:

1. If $s \triangleleft e$ and s final, then e val.
2. If $s \mapsto s'$, $s \triangleleft e$, $s' \triangleleft e'$, and $e' \mapsto^* v$, where v val, then $e \mapsto^* v$.

The first is quite simple, we need only observe that the unravelling of a final state is a value. For the second, it is enough to show the following lemma.

Lemma 27.3. If $s \mapsto s'$, $s \triangleleft e$, and $s' \triangleleft e'$, then $e \mapsto^* e'$.

Corollary 27.4. $e \mapsto^* \pi$ iff $e \triangleright e \mapsto^* e \triangleleft \pi$.

The remainder of this section is devoted to the proofs of the soundness and completeness lemmas.
27.3 Correctness of the Control Machine

27.3.1 Completeness

Proof of Lemma 27.2 on the previous page. The proof is by induction on an evaluation dynamics for \(\mathcal{L}\{\text{nat} \rightarrow \} \).

Consider the evaluation rule

\[
\frac{e_1 \Downarrow \lambda \tau_2 \, (x.\, e) \quad [e_2 / x] e \Downarrow v}{\text{ap}(e_1; e_2) \Downarrow v} \tag{27.10}
\]

For an arbitrary control stack, \(k \), we are to show that \(k \triangleright \text{ap}(e_1; e_2) \mapsto^* k \triangleleft v \). Applying both of the inductive hypotheses in succession, interleaved with steps of the abstract machine, we obtain

\[
\begin{align*}
 k \triangleright \text{ap}(e_1; e_2) & \mapsto k; \text{ap}(\neg; e_2) \triangleright e_1 \\
 & \mapsto^* k; \text{ap}(\neg; e_2) \triangleleft \lambda \tau_2 \, (x.\, e) \\
 & \mapsto k \triangleright [e_2 / x] e \\
 & \mapsto^* k \triangleleft v.
\end{align*}
\]

The other cases of the proof are handled similarly. \(\square \)

27.3.2 Soundness

The judgement \(s \dashv e', \) where \(s \) is either \(k \triangleright e \) or \(k \triangleleft e \), is defined in terms of the auxiliary judgement \(k \triangleright\triangleleft e = e' \) by the following rules:

\[
\begin{align*}
 k \triangleright e = e' & \qquad k \triangleright e \dashv e' \tag{27.11a} \\
 k \triangleleft e = e' & \qquad k \triangleleft e \dashv e' \tag{27.11b}
\end{align*}
\]

In words, to unravel a state we wrap the stack around the expression. The latter relation is inductively defined by the following rules:

\[
\begin{align*}
 e \triangleleft e = \bar{e} & \tag{27.12a} \\
 k \triangleleft s(e) = e' & \qquad k; s(\neg) \triangleright e = \bar{e'} \tag{27.12b} \\
 k \triangleright \text{ifz}(e_1; e_2; x.\, e_3) = e' & \tag{27.12c} \\
 k; \text{ifz}(\neg; e_2; x.\, e_3) \triangleright e_1 = \bar{e'} \\
 k \triangleright \text{ap}(e_1; e_2) = e & \qquad k; \text{ap}(\neg; e_2) \triangleright e_1 = e \tag{27.12d}
\end{align*}
\]

These judgements both define total functions.
Lemma 27.5. The judgement $s \vdash e$ has mode $(\forall, \exists !)$, and the judgement $k \triangleright e = e'$ has mode $(\forall, \forall, \exists !)$.

That is, each state unravels to a unique expression, and the result of wrapping a stack around an expression is uniquely determined. We are therefore justified in writing $k \triangleright e$ for the unique e' such that $k \triangleright e = e'$.

The following lemma is crucial. It states that unravelling preserves the transition relation.

Lemma 27.6. If $e \mapsto e'$, $k \triangleright e = d$, $k \triangleright e' = d'$, then $d \mapsto d'$.

Proof. The proof is by rule induction on the transition $e \mapsto e'$. The inductive cases, in which the transition rule has a premise, follow easily by induction. The base cases, in which the transition is an axiom, are proved by an inductive analysis of the stack, k.

For an example of an inductive case, suppose that $e = \text{ap}(e_1; e_2)$, $e' = \text{ap}(e'_1; e_2)$, and $e_1 \mapsto e'_1$. We have $k \triangleright e = d$ and $k \triangleright e' = d'$. It follows from Rules (27.12) that $k; \text{ap}(-; e_2) \triangleright e_1 = d$ and $k; \text{ap}(-; e_2) \triangleright e'_1 = d'$. So by induction $d \mapsto d'$, as desired.

For an example of a base case, suppose that $e = \text{ap}(\text{lam}[\tau_2](x.e); e_2)$ and $e' = [e_2/x]e$ with $e \mapsto e'$ directly. Assume that $k \triangleright e = d$ and $k \triangleright e' = d'$; we are to show that $d \mapsto d'$. We proceed by an inner induction on the structure of k. If $k = e$, the result follows immediately. Consider, say, the stack $k = k'; \text{ap}(-; e_2)$. It follows from Rules (27.12) that $k' \triangleright \text{ap}(e; e_2) = d$ and $k' \triangleright \text{ap}(e'; e_2) = d'$. But by the SOS rules $\text{ap}(e; e_2) \mapsto \text{ap}(e'; e_2)$, so by the inner inductive hypothesis we have $d \mapsto d'$, as desired.

We are now in a position to complete the proof of Lemma 27.3 on page 241.

Proof of Lemma 27.3 on page 241. The proof is by case analysis on the transitions of $K\{\text{nat} \rightarrow \}$. In each case after unravelling the transition will correspond to zero or one transitions of $L\{\text{nat} \rightarrow \}$.

Suppose that $s = k \triangleright s(e)$ and $s' = k; s(-) \triangleright e$. Note that $k \triangleright s(e) = e'$ iff $k; s(-) \triangleright e = e'$, from which the result follows immediately.

Suppose that $s = k; \text{ap}(\text{lam}[\tau](x.e_1); -) \triangleright e_2$ and $s' = k \triangleright [e_2/x]e_1$. Let e' be such that $k; \text{ap}(\text{lam}[\tau](x.e_1); -) \triangleright e_2 = e'$ and let e'' be such that $k \triangleright [e_2/x]e_1 = e''$. Observe that $k \triangleright \text{ap}(\text{lam}[\tau](x.e_1); e_2) = e'$. The result follows from Lemma 27.6.

27.4 Exercises
Chapter 28

Exceptions

Exceptions effect a non-local transfer of control from the point at which the exception is raised to an enclosing *handler* for that exception. This transfer interrupts the normal flow of control in a program in response to unusual conditions. For example, exceptions can be used to signal an error condition, or to indicate the need for special handling in certain circumstances that arise only rarely. To be sure, one could use explicit conditionals to check for and process errors or unusual conditions, but using exceptions is often more convenient, particularly since the transfer to the handler is direct and immediate, rather than indirect via a series of explicit checks.

28.1 Failures

A *failure* is a control mechanism that permits a computation to refuse to return a value to the point of its evaluation. Failure can be detected by *catching* it, diverting evaluation to another expression, called a *handler*. Failure can be turned into success, provided that the handler does not itself fail.

The following grammar defines the syntax of failures:

\[\text{Expr } e ::=} \text{fail } \text{fail } \text{failure } \quad \text{catch}(e_1; e_2) \quad \text{catch } e_1 \text{ ow } e_2 \quad \text{handler} \]

The expression *fail* aborts the current evaluation, and the expression *catch*(*e*₁; *e*₂) handles any failure in *e*₁ by evaluating *e*₂ instead.

The statics of failures is straightforward:

\[
\Gamma \vdash \text{fail} : \tau \quad (28.1a)
\]
28.1 Failures

\[\Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau \]
\[\Gamma \vdash \text{catch}(e_1; e_2) : \tau \]

(28.1b)

A failure can have any type, because it never returns. The two expressions in a `catch` expression must have the same type, since either might determine the value of that expression.

The dynamics of failures may be given using stack unwinding. Evaluation of a `catch` installs a handler on the control stack. Evaluation of a `fail` unwinds the control stack by popping frames until it reaches the nearest enclosing handler, to which control is passed. The handler is evaluated in the context of the surrounding control stack, so that failures within it propagate further up the stack.

Stack unwinding can be defined directly using structural dynamics, but we prefer to make use of the stack machine defined in Chapter 27. In addition to states of the form \(k \triangleright e \), which evaluates the expression \(e \) on the stack \(k \), and \(k \triangleleft e \), which passes the value \(e \) to the stack \(k \), we make use of an additional form of state, \(k \blacktriangleleft \), which passes a failure up the stack to the nearest enclosing handler.

The set of frames defined in Chapter 27 is extended with the additional form `catch(−; e_2)`. The transition rules given in Chapter 27 are extended with the following additional rules:

\[k \triangleright \text{fail} \mapsto k \blacktriangleleft \]

(28.2a)

\[k \triangleright \text{catch}(e_1; e_2) \mapsto k; \text{catch}(−; e_2) \triangleright e_1 \]

(28.2b)

\[k; \text{catch}(−; e_2) \triangleleft v \mapsto k \triangleleft v \]

(28.2c)

\[k; \text{catch}(−; e_2) \blacktriangleleft \mapsto k \triangleright e_2 \]

(28.2d)

\[(f \neq \text{catch}(−; e_2)) \]
\[k; f \blacktriangleleft \mapsto k \blacktriangleleft \]

(28.2e)

Evaluating `fail` propagates a failure up the stack. Evaluating `catch(e_1; e_2)` consists of pushing the handler onto the control stack and evaluating \(e_1 \). If a value is propagated to the handler, the handler is removed and the value continues to propagate upwards. If a failure is propagated to the handler, the stored expression is evaluated with the handler removed from the control stack. All other frames propagate failures.
28.2 Exceptions

The definition of initial state remains the same as for $K\{\text{nat} \rightarrow \}$, but we change the definition of final state to include these two forms:

$$\begin{align*}
e & \text{ val} \\
_ & \text{ e final} \\
_ & \text{ e final}
\end{align*}$$

(28.3a)

(28.3b)

The first of these is as before, corresponding to a normal result with the specified value. The second is new, corresponding to an uncaught exception propagating through the entire program.

It is a straightforward exercise the extend the definition of stack typing given in Chapter 27 to account for the new forms of frame. Using this, safety can be proved by standard means. Note, however, that the meaning of the progress theorem is now significantly different: a well-typed program does not get stuck, but it may well result in an uncaught failure!

Theorem 28.1 (Safety). 1. If $s\ ok$ and $s \rightarrow s'$, then $s'\ ok$.

2. If $s\ ok$, then either $s\ final$ or there exists s' such that $s \rightarrow s'$.

28.2 Exceptions

Failures are simplistic in that they do not distinguish different causes, and hence do not permit handlers to react differently to different circumstances. An *exception* is a generalization of a failure that associates a value with the failure. This value is passed to the handler, allowing it to discriminate between various forms of failures, and to pass data appropriate to that form of failure. The type of values associated with exceptions is discussed in Section 28.3 on the next page. For now, we simply assume that there is some type, τ_{exn}, of values associated with a failure.

The syntax of exceptions is given by the following grammar:

$$\text{Expr} \ e ::= \text{raise}\[\tau\](e) \quad \text{raise}(e) \quad \text{exception} \quad \text{handle}(e_1;x.e_2) \quad \text{handle} e_1 \text{ ow } x \Rightarrow e_2 \quad \text{handler}$$

The argument to *raise* is evaluated to determine the value passed to the handler. The expression $\text{handle}(e_1;x.e_2)$ binds a variable, x, in the handler, e_2, to which the associated value of the exception is bound, should an exception be raised during the execution of e_1.
The statics of exceptions generalizes that of failures:

\[
\Gamma \vdash e : \tau_{\text{exn}} \\
\Gamma \vdash \text{raise}[\tau](e) : \tau
\]
(28.4a)

\[
\Gamma \vdash e_1 : \tau \\
\Gamma, x : \tau_{\text{exn}} \vdash e_2 : \tau \\
\Gamma \vdash \text{handle}(e_1; x.e_2) : \tau
\]
(28.4b)

The dynamics of exceptions is a mild generalization of the dynamics of failures in which we generalize the failure state, \(k \triangledown \), to the exception state, \(k \triangledown e \), which passes a value of type \(\tau_{\text{exn}} \) along with the failure. The syntax of stack frames is extended to include \(\text{raise}[\tau](-) \) and \(\text{handle}(-;x.e) \).

The dynamics of exceptions is specified by the following rules:

\[
k \triangleright \text{raise}[\tau](e) \mapsto \rightarrow k; \text{raise}[\tau](-) \triangleright e
\]
(28.5a)

\[
k; \text{raise}[\tau](-) \triangleleft e \mapsto \rightarrow k \triangledown e
\]
(28.5b)

\[
k; \text{raise}[\tau](-) \triangledown e \mapsto \rightarrow k \triangledown e
\]
(28.5c)

\[
k \triangleright \text{handle}(e_1; x.e_2) \mapsto \rightarrow k; \text{handle}(-; x.e_2) \triangleright e_1
\]
(28.5d)

\[
k; \text{handle}(-; x.e_2) \triangleleft e \mapsto \rightarrow k \triangleleft e
\]
(28.5e)

\[
k; \text{handle}(-; x.e_2) \triangledown e \mapsto \rightarrow k \triangleright [e/x]e_2
\]
(28.5f)

\[
(f \neq \text{handle}(-; x.e_2)) \\
\frac{\rightarrow k; f \triangledown e \mapsto \rightarrow k \triangledown e}{(28.5g)}
\]

It is a straightforward exercise to extend the safety theorem given in Section 28.1 on page 245 to exceptions.

28.3 Exception Type

The statics of exceptions is parameterized by the type of exception values, \(\tau_{\text{exn}} \). This type may be chosen arbitrarily, but it must be shared by all exceptions in a program to ensure type safety. For otherwise a handler cannot tell what type of value to expect from an exception, compromising safety.
But how do we choose the type of exceptions? A very naïve choice would be to take τ_{exn} to be the type str, so that, for example, one may write

$$\text{raise "Division by zero error."}$$

to signal the obvious arithmetic fault. This is fine as far as it goes, but a handler for such an exception would have to interpret the string if it is to distinguish one exception from another!

Motivated by this, we might choose τ_{exn} to be nat, which amounts to saying that exceptional conditions are coded as natural numbers. This does allow the handler to distinguish one source of failure from another, but makes no provision for associating data with the failure. Moreover, it forces the programmer to impose a single, global convention for indexing the causes of failure, compromising modular development and evolution.

The first concern—how to associate data specific to the type of failure—can be addressed by taking τ_{exn} to be a labelled sum type whose classes are the forms of failure, and whose associated types determine the form of the data attached to the exception. For example, the type τ_{exn} might have the form

$$\tau_{\text{exn}} = \text{div:unit,fnf:string, ...}.$$

The class div might represent an arithmetic fault, with no associated data, and the class fnf might represent a “file not found” error, with associated data being the name of the file.

Using a sum type for τ_{exn} makes it easy for the handler to discriminate on the source of the failure, and to recover the associated data without fear of a type safety violation. For example, we might write

$$\begin{align*}
\text{try } e_1 \text{ ow } x \Rightarrow \\
\text{match } x \{ \\
\text{div } \langle \rangle \Rightarrow e_{\text{div}} \\
| \text{fnf } s \Rightarrow e_{\text{fnf}} \}
\end{align*}$$

to handle the exceptions specified by the sum type given in the preceding paragraph.

The problem with choosing a sum type for τ_{exn} is that it imposes a static classification of the sources of failure in a program. There must be one, globally agreed-upon type that classifies all possible forms of failure, and specifies their associated data. Using sums in this manner impedes modular development and evolution.

1In Unix these are called errno’s, for error numbers.
development and evolution, since all of the modules comprising a system must agree on the one, central type of exception values. A better approach is to use dynamic classification for exception values by choosing τ_{exn} to be an extensible sum, one to which new classes may be added at execution time. This allows separate program modules to introduce their own failure classification scheme without worrying about interference with one another; the initialization of the module generates new classes at run-time that are guaranteed to be distinct from all other classes previously or subsequently generated. (See Chapter 36 for more on dynamic classification.)

28.4 Encapsulation

It is sometimes useful to distinguish expressions that can fail or raise an exception from those that cannot. An expression is called fallible, or exceptional, if it can fail or raise an exception during its evaluation, and is infallible, or unexceptional, otherwise. The concept of fallibility is intentionally permissive in that an infallible expression may be considered to be (vacuously) fallible, whereas infallibility is intended to be strict in that an infallible expression cannot fail. Consequently, if e_1 and e_2 are two infallible expressions both of whose values are required in a computation, we may evaluate them in either order without affecting the outcome. If, on the other hand, one or both are fallible, then the outcome of the computation is sensitive to the evaluation order (whichever fails first determines the overall result).

To formalize this distinction we distinguish two modes of expression, the fallible and the infallible, linked by a modality classifying the fallible expressions of a type.

\[
\begin{align*}
\text{Type } \tau &::= \text{fallible}(\tau) \quad \tau \text{ fallible} \\
\text{Fall } f &::= \text{fail} \quad \text{failure} \\
&\quad \text{succ}(e) \quad \text{success} \\
&\quad \text{try}(e;x.f_1;f_2) \quad \text{let } \text{fall}(x) \text{ be } e \text{ in } f_1 \text{ ow } f_2 \\
\text{Infall } e &::= x \quad x \quad \text{variable} \\
&\quad \text{fall}(f) \quad \text{fall } f \quad \text{fallible} \\
&\quad \text{try}(e;x.e_1;e_2) \quad \text{let } \text{fall}(x) \text{ be } e \text{ in } e_1 \text{ ow } e_2 \\
\end{align*}
\]

The type $\tau \text{ fallible}$ is the type of encapsulated fallible expressions of type τ. Fallible expressions include failures, successes (infallible expressions thought of as vacuously fallible), and handlers that intercept failures,
Encapsulation but which may itself fail. Infallible expressions include variables, encapsulated fallible expressions, and handlers that intercepts failures, always yielding an infallible result.

The statics of encapsulated failures consists of two judgement forms, $\Gamma \vdash e : \tau$ for infallible expressions and $\Gamma \vdash f \sim \tau$ for fallible expressions. These judgements are defined by the following rules:

\begin{align*}
\Gamma, x : \tau &\vdash x : \tau \quad (28.6a) \\
\Gamma &\vdash f \sim \tau \quad (28.6b) \\
\Gamma &\vdash \text{fall}(f) : \text{fallible}(\tau) \\
\Gamma &\vdash e : \text{fallible}(\tau) \quad \Gamma, x : \tau \vdash e_1 : \tau' \quad \Gamma \vdash e_2 : \tau' \quad (28.6c) \\
\Gamma &\vdash \text{try}(e; x. e_1; e_2) : \tau' \\
\Gamma &\vdash \text{fail} \sim \tau \quad (28.6d) \\
\Gamma &\vdash e : \tau \quad (28.6e) \\
\Gamma &\vdash \text{succ}(e) \sim \tau \\
\Gamma &\vdash e : \text{fallible}(\tau) \quad \Gamma, x : \tau \vdash f_1 \sim \tau' \quad \Gamma \vdash f_2 \sim \tau' \quad (28.6f) \\
\Gamma &\vdash \text{try}(e; x. f_1; f_2) \sim \tau'
\end{align*}

Rule (28.6c) specifies that a handler may be used to turn a fallible expression (encapsulated by e) into an infallible computation, provided that the result is infallible regardless of whether the encapsulated expression succeeds or fails.

The dynamics of encapsulated failures is readily derived, though some care must be taken with the elimination form for the modality.

\begin{align*}
\text{fall}(f) &\vdash \text{val} \quad (28.7a) \\
\text{k} \triangleright \text{try}(e; x. e_1; e_2) &\leftrightarrow \text{k}; \text{try}(-; x. e_1; e_2) \triangleright e \quad (28.7b) \\
k; \text{try}(-; x. e_1; e_2) &\triangleleft \text{fall}(f) \leftrightarrow k; \text{try}(-; x. e_1; e_2); \text{fall}(-) \triangleright f \quad (28.7c) \\
k \triangleright \text{fail} &\leftrightarrow k \uparrow \quad (28.7d)
\end{align*}
We have omitted the rules for the fallible form of handler; they are similar to Rules (28.7b) to (28.7b) and (28.7g) to (28.7h), albeit with infallible subexpressions e_1 and e_2 replaced by fallible subexpressions f_1 and f_2.

An initial state has the form $k \triangleright e$, where e is an infallible expression, and k is a stack of suitable type. Consequently, a fallible expression, f, can only be evaluated on a stack of the form

$$k;\text{try}(-;x.e_1;e_2);\text{fall}(-) \leadsto k \triangleright e$$

We have omitted the rules for the fallible form of handler; they are similar to Rules (28.7b) to (28.7b) and (28.7g) to (28.7h), albeit with infallible subexpressions e_1 and e_2 replaced by fallible subexpressions f_1 and f_2.

An initial state has the form $k \triangleright e$, where e is an infallible expression, and k is a stack of suitable type. Consequently, a fallible expression, f, can only be evaluated on a stack of the form

$$k;\text{try}(-;x.e_1;e_2);\text{fall}(-) \leadsto k \triangleright e$$

in which a handler for any failure that may arise from f is present. Therefore, a final state has the form $e \triangleright e$, where e val; no uncaught failure can arise.

28.5 Exercises
Chapter 29

Continuations

The semantics of many control constructs (such as exceptions and co-routines) can be expressed in terms of reified control stacks, a representation of a control stack as an ordinary value. This is achieved by allowing a stack to be passed as a value within a program and to be restored at a later point, even if control has long since returned past the point of reification. Reified control stacks of this kind are called continuations, where the qualification “first class” stresses that they are ordinary values with an indefinite lifetime that can be passed and returned at will in a computation. Continuations never “expire”, and it is always sensible to reinstate a continuation without compromising safety. Thus continuations support unlimited “time travel” — we can go back to a previous point in the computation and then return to some point in its future, at will.

Why are continuations useful? Fundamentally, they are representations of the control state of a computation at a given point in time. Using continuations we can “checkpoint” the control state of a program, save it in a data structure, and return to it later. In fact this is precisely what is necessary to implement threads (concurrently executing programs) — the thread scheduler must be able to checkpoint a program and save it for later execution, perhaps after a pending event occurs or another thread yields the processor.

29.1 Informal Overview

We will extend L_\rightarrow with the type $\text{cont}(\tau)$ of continuations accepting values of type τ. The introduction form for $\text{cont}(\tau)$ is $\text{letcc}[\tau](x.e)$, which binds the current continuation (that is, the current control stack) to the
variable x, and evaluates the expression e. The corresponding elimination form is $\text{throw}[\tau](e_1; e_2)$, which restores the value of e_1 to the control stack that is the value of e_2.

To illustrate the use of these primitives, consider the problem of multiplying the first n elements of an infinite sequence q of natural numbers, where q is represented by a function of type $\text{nat} \rightarrow \text{nat}$. If zero occurs among the first n elements, we would like to effect an “early return” with the value zero, rather than perform the remaining multiplications. This problem can be solved using exceptions (we leave this as an exercise), but we will give a solution that uses continuations in preparation for what follows.

Here is the solution in $\mathcal{L}\{\text{nat} \rightarrow \}$, without short-cutting:

```plaintext
fix ms is
\lambda q : \text{nat} \rightarrow \text{nat}.
\lambda n : \text{nat}.
  case n {
    z ⇒ \text{s(z)}
  | s(n') ⇒ (q z) × (ms (q ◦ \text{succ}) n')
  }
```

The recursive call composes q with the successor function to shift the sequence by one step.

Here is the version with short-cutting:

```plaintext
λ q : \text{nat} \rightarrow \text{nat}.
λ n : \text{nat}.
  letcc ret : \text{nat cont in}
    let ms be
      fix ms is
      \lambda q : \text{nat} \rightarrow \text{nat}.
      \lambda n : \text{nat}.
        case n {
          z ⇒ \text{s(z)}
        | s(n') ⇒
          case q z {
            z ⇒ \text{throw z to ret}
          | s(n'') ⇒ (q z) × (ms (q ◦ \text{succ}) n')
          }
        }
      in
      ms q n
```

The letcc binds the return point of the function to the variable ret for use within the main loop of the computation. If zero is encountered, control is thrown to ret, effecting an early return with the value zero.

Let’s look at another example: given a continuation \(k \) of type \(\tau \) cont and a function \(f \) of type \(\tau' \rightarrow \tau \), return a continuation \(k' \) of type \(\tau' \) cont with the following behavior: throwing a value \(v' \) of type \(\tau' \) to \(k' \) throws the value \(f(v') \) to \(k \). This is called composition of a function with a continuation. We wish to fill in the following template:

\[
\text{fun compose}(f:\tau' \rightarrow \tau, k:\tau \text{ cont}): \tau' \text{ cont} = \ldots
\]

The first problem is to obtain the continuation we wish to return. The second problem is how to return it. The continuation we seek is the one in effect at the point of the ellipsis in the expression \(\text{throw } f(\ldots) \text{ to } k \). This is the continuation that, when given a value \(v' \), applies \(f \) to it, and throws the result to \(k \). We can seize this continuation using letcc, writing

\[
\text{throw } f(\text{letcc } x: \tau' \text{ cont in } \ldots) \text{ to } k
\]

At the point of the ellipsis the variable \(x \) is bound to the continuation we wish to return. How can we return it? By using the same trick as we used for short-circuiting evaluation above! We don’t want to actually throw a value to this continuation (yet), instead we wish to abort it and return it as the result. Here’s the final code:

\[
\text{fun compose}(f:\tau' \rightarrow \tau, k:\tau \text{ cont}): \tau' \text{ cont} = \\
\text{letcc ret: } \tau' \text{ cont cont in} \\
\text{throw } (f(\text{letcc } r \text{ in throw } r \text{ to } ret)) \text{ to } k
\]

The type of \(ret \) is that of a continuation-expecting continuation!

29.2 Semantics of Continuations

We extend the language of \(\mathcal{L}\{\rightarrow\} \) expressions with these additional forms:

\[
\begin{align*}
\text{Type} & \quad : = \quad \text{cont}(\tau) \quad \tau \text{ cont} \quad \text{continuation} \\
\text{Expr} & \quad : = \quad \text{letcc}[\tau](x.e) \quad \text{letcc } x \text{ in } e \quad \text{mark} \\
& \quad \quad \quad \text{throw}[\tau](e_1; e_2) \quad \text{throw } e_1 \text{ to } e_2 \quad \text{goto} \\
& \quad \quad \quad \text{cont}(k) \quad \text{cont}(k) \quad \text{continuation}
\end{align*}
\]

The expression \(\text{cont}(k) \) is a reified control stack, which arises during evaluation.
The statics of this extension is defined by the following rules:

\[
\Gamma, x : \text{cont}(\tau) \vdash e : \tau \quad (29.1a)
\]

\[
\Gamma \vdash \text{letcc}[\tau](x.e) : \tau \quad (29.1b)
\]

The result type of a \texttt{throw} expression is arbitrary because it does not return to the point of the call.

The statics of continuation values is given by the following rule:

\[
\frac{k : \tau}{\Gamma \vdash \text{cont}(k) : \text{cont}(\tau)} \quad (29.2)
\]

A continuation value \text{cont}(k) has type \text{cont}(\tau) exactly if it is a stack accepting values of type \tau.

To define the dynamics we extend \text{K\{nat→\}} stacks with two new forms of frame:

\[
\frac{e_2 \text{ exp}}{\text{throw}[\tau](-;e_2) \text{ frame}} \quad (29.3a)
\]

\[
\frac{e_1 \text{ val}}{\text{throw}[\tau](e_1; -) \text{ frame}} \quad (29.3b)
\]

Every reified control stack is a value:

\[
\frac{k \text{ stack}}{\text{cont}(k) \text{ val}} \quad (29.4)
\]

The transition rules for the continuation constructs are as follows:

\[
k \triangleright \text{letcc}[\tau](x.e) \rightarrow k \triangleright [\text{cont}(k)/x]e \quad (29.5a)
\]

\[
k \triangleright \text{throw}[\tau](v; -) \triangleleft \text{cont}(k') \rightarrow k' \triangleleft v \quad (29.5b)
\]

\[
k \triangleright \text{throw}[\tau](e_1; e_2) \rightarrow k \triangleright \text{throw}[\tau](-; e_2) \triangleright e_1 \quad (29.5c)
\]

\[
e_1 \text{ val}
\]

\[
k \triangleright \text{throw}[\tau](-; e_2) \triangleleft e_1 \rightarrow k \triangleright \text{throw}[\tau](e_1; -) \triangleright e_2 \quad (29.5d)
\]

Evaluation of a \texttt{letcc} expression duplicates the control stack; evaluation of a \texttt{throw} expression destroys the current control stack.

The safety of this extension of \text{L\{→\}} may be established by a simple extension to the safety proof for \text{K\{nat→\}} given in Chapter 27.
29.3 Coroutines

We need only add typing rules for the two new forms of frame, which are as follows:

\[
\begin{align*}
\frac{e_2 : \text{cont}(\tau)}{
\text{throw}[\tau](_; e_2) : \tau \Rightarrow \tau' \quad (29.6a)}
\end{align*}
\]

\[
\frac{e_1 : \tau \quad e_1 \text{ val}}{
\text{throw}[\tau](e_1; _ ; \text{cont}(\tau)) \Rightarrow \tau' \quad (29.6b)}
\]

The rest of the definitions remain as in Chapter 27.

Lemma 29.1 (Canonical Forms). If \(e : \text{cont}(\tau) \) and \(e \text{ val} \), then \(e = \text{cont}(k) \) for some \(k \) such that \(k : \tau \).

Theorem 29.2 (Safety). 1. If \(s \text{ ok} \) and \(s \mapsto s' \), then \(s' \text{ ok} \).

2. If \(s \text{ ok} \), then either \(s \text{ final} \) or there exists \(s' \) such that \(s \mapsto s' \).

29.3 Coroutines

A familiar pattern of control flow in a program distinguishes the main routine of a computation, which represents the principal control path of the program, from a sub-routine, which represents a subsidiary path that performs some auxiliary computation. The main routine invokes the sub-routine by passing it a data value, its argument, and a control point to return to once it has completed its work. This arrangement is asymmetric in that the main routine plays the active role, whereas the subroutine is passive. In particular the subroutine passes control directly to the return point without itself providing a return point with which it can be called back. A coroutine is a symmetric pattern of control flow in which each routine passes to the other the return point of the call. The asymmetric call/return pattern is symmetrized to a call/call pattern in which each routine is effectively a subroutine of the other. (This raises an interesting question of how the interaction commences, which we will discuss in more detail below.)

To see how coroutines are implemented in terms of continuations, it is best to think of the “steady state” interaction between the two routines, leaving the initialization phase to be discussed separately. A routine is represented by a continuation that, when invoked, is passed a data item, whose type is shared between the two routines, and a return continuation, which represents the partner routine. Crucially, the argument type of the other continuation is again of the very same form, consisting of a data item...
and another return continuation. If we think of the coroutine as a trajectory through a succession of such continuations, then the state of the continuation (which changes as the interaction progresses) satisfies the type isomorphism

\[\text{state} \cong (\tau \times \text{state}) \text{cont}, \]

where \(\tau \) is the type of data exchanged by the routines. The solution to such an isomorphism is, of course, the recursive type

\[\text{state} = \mu t. (\tau \times t) \text{cont}. \]

Thus a state, \(s \), encapsulates a pair consisting of a value of type \(\tau \) together with another state.

The routines pass control from one to the other by calling the function \(\text{resume} \) of type

\[\tau \times \text{state} \rightarrow \tau \times \text{state}. \]

That is, given a datum, \(d \), and a state, \(s \), the application \(\text{resume}(\langle d, s \rangle) \) passes \(d \) and its own return address to the routine represented by the state \(s \). The function \(\text{resume} \) is defined by the following expression:

\[
\lambda (\langle x, s \rangle: \tau \times \text{state}). \text{letcc } k \text{ in } \text{throw}(x, \text{fold}(k)) \text{ to unfold}(s)
\]

When applied, this function seizes the current continuation, and passes the given datum and this continuation to the partner routine, using the isomorphism between \(\text{state} \) and \((\tau \times \text{state}) \text{cont} \).

The general form of a coroutine consists of a loop that, on each iteration, takes a datum, \(d \), and a state, \(s \), performs a transformation on \(d \), resuming its partner routine with the result, \(d' \), of the transformation. The function \(\text{corout} \) builds a coroutine from a data transformation routine; it has type

\[(\tau \rightarrow \tau) \rightarrow (\tau \times \text{state}) \rightarrow \tau'. \]

The result type, \(\tau' \), is arbitrary, because the routine never returns to the call site. A coroutine is shut down by an explicit exit operation, which will be specified shortly. The function \(\text{corout} \) is defined by the following expression (with types omitted for concision):

\[\lambda \text{next. fix loop is } \lambda \langle d, s \rangle. \text{loop}(\text{resume}(\langle \text{next}(d), s \rangle)). \]

Each time through the loop, the partner routine, \(s \), is resumed with the updated datum given by applying \(\text{next} \) to the current datum, \(d \).
Let ρ be the ultimate type of a computation consisting of two interacting coroutines that exchanges values of type τ during their execution. The function run, which has type

$$\tau \rightarrow ((\rho \text{ cont} \rightarrow \tau \rightarrow \tau) \times (\rho \text{ cont} \rightarrow \tau \rightarrow \tau)) \rightarrow \rho,$$

takes an initial value of type τ and two routines, each of type

$$\rho \text{ cont} \rightarrow \tau \rightarrow \tau,$$

and builds a coroutine of type ρ from them. The first argument to each routine is the exit point, and the result is a data transformation operation. The definition of run begins as follows:

$$\lambda \text{ init. } \lambda \langle r_1, r_2 \rangle. \text{ letcc exit in let } r'_1 \text{ be } r_1(\text{exit}) \text{ in let } r'_2 \text{ be } r_2(\text{exit}) \text{ in } \ldots$$

First, run establishes an exit point that is passed to the two routines to obtain their data transformation components. This allows either or both of the routines to terminate the computation by throwing the ultimate result value to exit. The implementation of run continues as follows:

$$\text{corout}(r'_2)(\text{letcc } k \text{ in corout}(r'_1)((\text{init}, \text{fold}(k))))$$

The routine r'_1 is called with the initial datum, init, and the state $\text{fold}(k)$, where k is the continuation corresponding to the call to r'_2. The first resume from the coroutine built from r'_1 will cause the coroutine built from r'_2 to be initiated. At this point the steady state behavior is in effect, with the two routines exchanging control using resume. Either may terminate the computation by throwing a result value, v, of type ρ to the continuation exit.

A good example of coroutining arises whenever we wish to interleave input and output in a computation. We may achieve this using a coroutine between a producer routine and a consumer routine. The producer emits the next element of the input, if any, and passes control to the consumer with that element removed from the input. The consumer processes the next data item, and returns control to the producer, with the result of processing attached to the output. The input and output are modeled as lists of type $\tau_i \text{ list}$ and $\tau_o \text{ list}$, respectively, which are passed back and forth between the routines.\(^1\) The routines exchange messages according to the following

\[^1\text{In practice the input and output state are implicit, but we prefer to make them explicit for the sake of clarity.}\]
protocol. The message \(\text{OK}(\langle i, o \rangle)\) is sent from the consumer to producer to acknowledge receipt of the previous message, and to pass back the current state of the input and output channels. The message \(\text{EMIT}(\langle v, \langle i, o \rangle \rangle)\), where \(v\) is a value of type \(\tau_i\ \text{opt}\), is sent from the producer to the consumer to emit the next value (if any) from the input, and to pass the current state of the input and output channels to the consumer.

This leads to the following implementation of the producer/consumer model. The type \(\tau\) of data exchanged by the routines is the labelled sum type
\[
[\text{OK}: \tau_i \text{list} \times \tau_o \text{list}, \text{EMIT}: \tau_i \text{opt} \times (\tau_i \text{list} \times \tau_o \text{list})].
\]

This type specifies the message protocol between the producer and the consumer described in the preceding paragraph.

The producer, \texttt{producer}, is defined by the expression
\[
\lambda \text{exit}. \lambda \text{msg}. \text{case msg \{ } b_1 | b_2 | b_3 \text{ },
\]
where the first branch, \(b_1\), is
\[
\text{OK} \cdot \langle \text{nil, os} \rangle \Rightarrow \text{EMIT} \cdot \langle \text{null, \langle nil, os \rangle} \rangle
\]
and the second branch, \(b_2\), is
\[
\text{OK} \cdot \langle \text{cons}(i; is), os \rangle \Rightarrow \text{EMIT} \cdot \langle \text{just}(i), \langle is, os \rangle \rangle,
\]
and the third branch, \(b_3\), is
\[
\text{EMIT} \cdot _\text{-} \Rightarrow \text{error}.
\]

In words, if the input is exhausted, the producer emits the value \text{null}, along with the current channel state. Otherwise, it emits \text{just}(i), where \(i\) is the first remaining input, and removes that element from the passed channel state. The producer cannot see an \text{EMIT} message, and signals an error if it should occur.

The consumer, \texttt{consumer}, is defined by the expression
\[
\lambda \text{exit}. \lambda \text{msg}. \text{case msg \{ } b'_1 | b'_2 | b'_3 \text{ },
\]
where the first branch, \(b'_1\), is
\[
\text{EMIT} \cdot \langle \text{null, \langle _. os \rangle} \rangle \Rightarrow \text{throw os to exit},
\]
the second branch, b'_2, is

$$\text{EMIT} \cdot \langle \text{just}(i), \langle \text{is}, \text{os} \rangle \rangle \Rightarrow \text{OK} \cdot \langle \text{is}, \text{cons}(f(i); \text{os}) \rangle,$$

and the third branch, b'_3, is

$$\text{OK} \cdot _ \Rightarrow \text{error}.$$

The consumer dispatches on the emitted datum. If it is absent, the output channel state is passed to \textit{exit} as the ultimate value of the computation. If it is present, the function f (unspecified here) of type $\tau_i \rightarrow \tau_o$ is applied to transform the input to the output, and the result is added to the output channel. If the message \text{OK} is received, the consumer signals an error, as the producer never produces such a message.

The initial datum, \text{init}, has the form \text{OK} \cdot \langle \text{is}, \text{os} \rangle, where \text{is} and \text{os} are the initial input and output channel state, respectively. The computation is created by the expression

$$\text{run(init)}((\langle \text{producer}, \text{consumer} \rangle),$$

which sets up the coroutines as described earlier.

While it is relatively easy to visualize and implement coroutines involving only two partners, it is more complex, and less useful, to consider a similar pattern of control among $n \geq 2$ participants. In such cases it is more common to structure the interaction as a collection of n routines, each of which is a coroutine of a central \textit{scheduler}. When a routine resumes its partner, it passes control to the scheduler, which determines which routine to execute next, again as a coroutine of itself. When structured as coroutines of a scheduler, the individual routines are called \textit{threads}. A thread \textit{yields} control by resuming its partner, the scheduler, which then determines which thread to execute next as a coroutine of itself. This pattern of control is called \textit{cooperative multi-threading}, since it is based on explicit yields, rather than implicit yields imposed by asynchronous events such as timer interrupts.

29.4 Exercises

1. Study the short-circuit multiplication example carefully to be sure you understand why it works!

2. Attempt to solve the problem of composing a continuation with a function yourself, before reading the solution.
3. Simulate the evaluation of \texttt{compose} \((f, k)\) on the empty stack. Observe that the control stack substituted for \(x\) is
\[
\epsilon; \text{throw}[\tau](-;k); \text{ap}(f;-)
\]
This stack is returned from \texttt{compose}. Next, simulate the behavior of throwing a value \(v'\) to this continuation. Observe that the stack is reinstated and that \(v'\) is passed to it.
Part X

Types and Propositions
Chapter 30

Constructive Logic

The correspondence between propositions and types, and the associated correspondence between proofs and programs, is the central organizing principle of programming languages. A type specifies a behavior, and a program implements it. Similarly, a proposition poses a problem, and a proof solves it. A statics relates a program to the type it implements, and a dynamics relates a program to its simplification by an execution step. Similarly, a formal logical system relates a proof to the proposition it proves, and proof reduction relates equivalent proofs. The structural rule of substitution underlies the decomposition of a program into separate modules. Similarly, the structural rule of transitivity underlies the decomposition of a theorem into lemmas.

These correspondences are neither accidental nor incidental. The propositions-as-types principle, identifies propositions with types and proofs with programs. According to this principle, a proposition is the type of its proofs, and a proof is a program of that type. Consequently, every theorem has computational content, the its proof viewed as a program, and every program has mathematical content, the proof that the program represents.

Can every conceivable form of proposition also be construed as a type? Does every type correspond to a proposition? Must every proof have computational content? Is every program a proof of a theorem? To answer these questions would require a book of its own (and still not settle the matter). From a constructive perspective we may say that type theory en-

1The propositions-as-types principle is sometimes called the Curry-Howard Isomorphism. Although it is arguably snappier, this name ignores the essential contributions of Arend Heyting, Nicolaas deBruijn, and Per Martin-Löf to the development of the propositions-as-types principle.
riches logic to incorporate not only types of proofs, but also types for the objects of study. In this sense logic is a particular mode of use of type theory. If we think of type theory as a comprehensive view of mathematics, this implies that, contrary to conventional wisdom, logic is based on mathematics, rather than mathematics on logic!

In this chapter we introduce the propositions-as-types correspondence for a particularly simple system of logic, called propositional constructive logic. In Chapter 31 we will extend the correspondence to propositional classical logic. This will give rise to a computational interpretation of classical proofs that makes essential use of continuations.

30.1 Constructive Semantics

Constructive logic is concerned with two judgements, $\phi \prop$, stating that ϕ expresses a proposition, and $\phi \true$, stating that ϕ is a true proposition. What distinguishes constructive from non-constructive logic is that a proposition is not conceived of as merely a truth value, but instead as a problem statement whose solution, if it has one, is given by a proof. A proposition is said to be true exactly when it has a proof, in keeping with ordinary mathematical practice. There is no other criterion of truth than the existence of a proof.

This principle has important, possibly surprising, consequences, the most important of which is that we cannot say, in general, that a proposition is either true or false. If for a proposition to be true means to have a proof of it, what does it mean for a proposition to be false? It means that we have a refutation of it, showing that it cannot be proved. That is, a proposition is false if we can show that the assumption that it is true (has a proof) contradicts known facts. In this sense constructive logic is a logic of positive, or affirmative, information — we must have explicit evidence in the form of a proof in order to affirm the truth or falsity of a proposition.

In light of this it should be clear that not every proposition is either true or false. For if ϕ expresses an unsolved problem, such as the famous $P \nleq \text{NP}$ problem, then we have neither a proof nor a refutation of it (the mere absence of a proof not being a refutation). Such a problem is undecided, precisely because it is unsolved. Since there will always be unsolved problems (there being infinitely many propositions, but only finitely many proofs at a given point in the evolution of our knowledge), we cannot say that every proposition is decidable, that is, either true or false.

Having said that, some propositions are decidable, and hence may be
considered to be either true or false. For example, if \(\phi \) expresses an inequality between natural numbers, then \(\phi \) is decidable, because we can always work out, for given natural numbers \(m \) and \(n \), whether \(m \leq n \) or \(m \nless n \) — we can either prove or refute the given inequality. This argument does not extend to the real numbers. To get an idea of why not, consider the presentation of a real number by its decimal expansion. At any finite time we will have explored only a finite initial segment of the expansion, which is not enough to determine if it is, say, less than 1. For if we have determined the expansion to be 0.99\ldots 9, we cannot decide at any time, short of infinity, whether or not the number is 1. (This argument is not a proof, because one may wonder whether there is some other representation of real numbers that admits such a decision to be made finitely, but it turns out that this is not the case.)

The constructive attitude is simply to accept the situation as inevitable, and make our peace with that. When faced with a problem we have no choice but to roll up our sleeves and try to prove it or refute it. There is no guarantee of success! Life’s hard, but we muddle through somehow.

30.2 Constructive Logic

The judgements \(\phi \) prop and \(\phi \) true of constructive logic are rarely of interest by themselves, but rather in the context of a hypothetical judgement of the form

\[
\phi_1 \text{ true}, \ldots, \phi_n \text{ true} \vdash \phi \text{ true}.
\]

This judgement expresses that the proposition \(\phi \) is true (has a proof), under the assumptions that each of \(\phi_1, \ldots, \phi_n \) are also true (have proofs). Of course, when \(n = 0 \) this is just the same as the judgement \(\phi \) true.

The structural properties of the hypothetical judgement, when specialized to constructive logic, define what we mean by reasoning under hypotheses:

\[
\frac{\Gamma, \phi \text{ true} \vdash \phi \text{ true}}{(30.1a)}
\]

\[
\frac{\Gamma \vdash \phi_1 \text{ true}, \Gamma, \phi_1 \text{ true} \vdash \phi_2 \text{ true}}{\Gamma \vdash \phi_2 \text{ true}}
\]

\[
\frac{\Gamma \vdash \phi_2 \text{ true}}{\Gamma, \phi_1 \text{ true} \vdash \phi_2 \text{ true}}
\]

\[
\frac{\Gamma, \phi_1 \text{ true}, \phi_1 \text{ true} \vdash \phi_2 \text{ true}}{\Gamma, \phi_1 \text{ true} \vdash \phi_2 \text{ true}}
\]
The last two rules are implicit in that we regard \(\Gamma \) as a set of hypotheses, so that two “copies” are as good as one, and the order of hypotheses does not matter.

30.2.1 Rules of Provability

The syntax of propositional logic is given by the following grammar:

\[
\text{Prop } \phi \ ::= \ \text{true} \quad \top \quad \text{truth} \\
\text{false} \quad \bot \quad \text{falsity} \\
\text{and}(\phi_1; \phi_2) \quad \phi_1 \land \phi_2 \quad \text{conjunction} \\
\text{or}(\phi_1; \phi_2) \quad \phi_1 \lor \phi_2 \quad \text{disjunction} \\
\text{imp}(\phi_1; \phi_2) \quad \phi_1 \supset \phi_2 \quad \text{implication}
\]

The connectives of propositional logic are given meaning by rules that determine (a) what constitutes a “direct” proof of a proposition formed from a given connective, and (b) how to exploit the existence of such a proof in an “indirect” proof of another proposition. These are called the introduction and elimination rules for the connective. The principle of conservation of proof states that these rules are inverse to one another — the elimination rule cannot extract more information (in the form of a proof) than was put into it by the introduction rule, and the introduction rules can be used to reconstruct a proof from the information extracted from it by the elimination rules.

Truth Our first proposition is trivially true. No information goes into proving it, and so no information can be obtained from it.

\[
\Gamma \vdash \top \quad \text{(30.2a)}
\]

(no elimination rule)

\[
\Gamma \vdash \top \quad \text{(30.2b)}
\]

Conjunction Conjunction expresses the truth of both of its conjuncts.

\[
\Gamma \vdash \phi_1 \quad \Gamma \vdash \phi_2 \quad \Gamma \vdash \phi_1, \phi_2 \quad \text{(30.3a)}
\]

\[
\Gamma \vdash \phi_1, \phi_2 \quad \Gamma \vdash \phi_1 \land \phi_2 \true \quad \text{(30.3b)}
\]
30.2 Constructive Logic

\[\Gamma \vdash \phi_1 \land \phi_2 \text{ true} \]
\[\therefore \Gamma \vdash \phi_2 \text{ true} \quad (30.3c) \]

Implication Implication states the truth of a proposition under an assumption.

\[\begin{array}{c}
\Gamma, \phi_1 \text{ true} \vdash \phi_2 \text{ true} \\
\therefore \Gamma \vdash \phi_1 \supset \phi_2 \text{ true} \\
\end{array} \quad (30.4a) \]
\[\begin{array}{c}
\Gamma \vdash \phi_1 \supset \phi_2 \text{ true} \\
\Gamma \vdash \phi_1 \text{ true} \\
\therefore \Gamma \vdash \phi_2 \text{ true} \\
\end{array} \quad (30.4b) \]

Falsehood Falsehood expresses the trivially false (refutable) proposition.

\[(\text{no introduction rule}) \]
\[\begin{array}{c}
\Gamma \vdash \bot \text{ true} \\
\therefore \Gamma \vdash \phi \text{ true} \\
\end{array} \quad (30.5a) \]
\[\Gamma \vdash \phi \text{ true} \quad (30.5b) \]

Disjunction Disjunction expresses the truth of either (or both) of two propositions.

\[\begin{array}{c}
\Gamma \vdash \phi_1 \text{ true} \\
\therefore \Gamma \vdash \phi_1 \lor \phi_2 \text{ true} \\
\Gamma \vdash \phi_2 \text{ true} \\
\therefore \Gamma \vdash \phi_1 \lor \phi_2 \text{ true} \\
\end{array} \quad (30.6a) \]
\[\begin{array}{c}
\Gamma \vdash \phi_1 \lor \phi_2 \text{ true} \\
\Gamma, \phi_1 \text{ true} \vdash \phi \text{ true} \\
\Gamma, \phi_2 \text{ true} \vdash \phi \text{ true} \\
\therefore \Gamma \vdash \phi \text{ true} \\
\end{array} \quad (30.6c) \]

Negation The negation, \(\neg \phi\), of a proposition, \(\phi\), may be defined as the implication \(\phi \supset \bot\). This means that \(\neg \phi \text{ true if } \phi \text{ true } \vdash \bot \text{ true}\), which is to say that the truth of \(\phi\) is refutable in that we may derive a proof of falsehood from any purported proof of \(\phi\). Because constructive truth is identified with the existence of a proof, the implied semantics of negation is rather strong. In particular, a problem, \(\phi\), is open exactly when we can neither affirm nor refute it. This is in contrast to the classical conception of truth, which assigns a fixed truth value to each proposition, so that every proposition is either true or false.
30.2.2 Rules of Proof

The key to the propositions-as-types principle is to make explicit the forms of proof. The basic judgement ϕ true, which states that ϕ has a proof, is replaced by the judgement $p : \phi$, stating that p is a proof of ϕ. (Sometimes p is called a “proof term”, but we will simply call p a “proof.”) The hypothetical judgement is modified correspondingly, with variables standing for the presumed, but unknown, proofs:

$$x_1 : \phi_1, \ldots, x_n : \phi_n \vdash p : \phi.$$

We again let Γ range over such hypothesis lists, subject to the restriction that no variable occurs more than once.

The rules of constructive propositional logic may be restated using proof terms as follows.

\[
\frac{}{\Gamma \vdash \text{trueI} : \top} \quad (30.7a) \\
\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\Gamma \vdash \text{andI}(p_1 ; p_2) : \phi_1 \land \phi_2} \quad (30.7b) \\
\frac{\Gamma \vdash p_1 : \phi_1 \land \phi_2}{\Gamma \vdash \text{andE}[l](p_1) : \phi_1} \quad (30.7c) \\
\frac{\Gamma \vdash p_1 : \phi_1 \land \phi_2}{\Gamma \vdash \text{andE}[r](p_1) : \phi_2} \quad (30.7d) \\
\frac{\Gamma, x : \phi_1 \vdash p_2 : \phi_2}{\Gamma \vdash \text{impI}[\phi_1](x . p_2) : \phi_1 \supset \phi_2} \quad (30.7e) \\
\frac{\Gamma \vdash p : \phi_1 \supset \phi_2 \quad \Gamma \vdash p_1 : \phi_1}{\Gamma \vdash \text{impE}(p ; p_1) : \phi_2} \quad (30.7f) \\
\frac{}{\Gamma \vdash \text{falseE}[\phi](p) : \phi} \quad (30.7g) \\
\frac{\Gamma \vdash p_1 : \phi_1}{\Gamma \vdash \text{orI}[l](\phi_2)(p_1) : \phi_1 \lor \phi_2} \quad (30.7h) \\
\frac{\Gamma \vdash p_2 : \phi_2}{\Gamma \vdash \text{orI}[r](\phi_1)(p_2) : \phi_1 \lor \phi_2} \quad (30.7i) \\
\frac{\Gamma \vdash p : \phi_1 \lor \phi_2 \quad \Gamma, x_1 : \phi_1 \vdash p_1 : \phi \quad \Gamma, x_2 : \phi_2 \vdash p_2 : \phi}{\Gamma \vdash \text{orE}[\phi_1; \phi_2](p ; x . p_1 ; y . p_2) : \phi} \quad (30.7j)
\]
30.3 Propositions as Types

Reviewing the rules of proof for constructive logic, we observe a striking correspondence between them and the rules for forming expressions of various types. For example, the introduction rule for conjunction specifies that a proof of a conjunction consists of a pair of proofs, one for each conjunct, and the elimination rule inverts this, allowing us to extract a proof of each conjunct from any proof of a conjunction. There is an obvious analogy with the static semantics of product types, whose introductory form is a pair and whose eliminatory forms are projections.

This correspondence extends to other forms of proposition as well, as summarized by the following chart relating a proposition, ϕ, to a type ϕ^*:

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>\top</td>
<td>unit</td>
</tr>
<tr>
<td>\bot</td>
<td>void</td>
</tr>
<tr>
<td>$\phi_1 \land \phi_2$</td>
<td>$\phi_1^* \times \phi_2^*$</td>
</tr>
<tr>
<td>$\phi_1 \lor \phi_2$</td>
<td>$\phi_1^* \rightarrow \phi_2^*$</td>
</tr>
<tr>
<td>$\phi_1 \rightarrow \phi_2$</td>
<td>$\phi_1^* + \phi_2^*$</td>
</tr>
</tbody>
</table>

It is obvious that this correspondence is invertible, so that we may associate a proposition with each product, sum, or function type.

Importantly, this correspondence extends to the introductory and eliminatory forms of proofs and programs as well:

<table>
<thead>
<tr>
<th>Proof</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>trueI</td>
<td>$\langle \rangle$</td>
</tr>
<tr>
<td>$\text{falseE}\phi$</td>
<td>$\text{abort}(p^*)$</td>
</tr>
<tr>
<td>$\text{andI}(p_1; p_2)$</td>
<td>$\langle p_1^, p_2^ \rangle$</td>
</tr>
<tr>
<td>$\text{andE}l$</td>
<td>$p^* \cdot l$</td>
</tr>
<tr>
<td>$\text{andE}r$</td>
<td>$p^* \cdot r$</td>
</tr>
<tr>
<td>$\text{impI}[\phi_1](x_1 \cdot p_2)$</td>
<td>$\lambda (x_1 : \phi_1^* \cdot p_2^*)$</td>
</tr>
<tr>
<td>$\text{impE}(p; p_1)$</td>
<td>$p^* (p_1^*)$</td>
</tr>
<tr>
<td>$\text{orI}[l]\phi_2$</td>
<td>$1 \cdot p^*$</td>
</tr>
<tr>
<td>$\text{orI}[r]\phi_1$</td>
<td>$r \cdot p^*$</td>
</tr>
<tr>
<td>$\text{orE}[\phi_1; \phi_2](p; x_1 \cdot p_1; x_2 \cdot p_2)$</td>
<td>$\text{case } p^* {1 \cdot x_1 \Rightarrow p_1^*</td>
</tr>
</tbody>
</table>

Here again the correspondence is easily seen to be invertible, so that we may regard a program of a product, sum, or function type as a proof of the corresponding proposition.

Theorem 30.1.
1. If \(\phi \) prop, then \(\phi^* \) type.

2. If \(\Gamma \vdash p : \phi \), then \(\Gamma^* \vdash p^* : \phi^* \).

The foregoing correspondence between the statics of propositions and proofs on one hand, and types and programs on the other extends also to the dynamics, by applying the inversion principle stating that eliminatory forms are post-inverse to introductory forms. The dynamic correspondence may be expressed by the validity of these definitional equivalences under the static correspondences given above:

\[
\begin{align*}
\text{andE}[1](\text{and}(p; q)) & \equiv p \\
\text{andE}[r](\text{and}(p; q)) & \equiv q \\
\text{impE}(\text{impI}[\phi](x.p_2); p_1) & \equiv [p_1/x]p_2 \\
\text{orE}[\phi_1; \phi_2](\text{orI}[l][\phi_2](p); x_1.p_2; x_2.p_2) & \equiv [p/x_1]p_2 \\
\text{orE}[\phi_1; \phi_2](\text{orI}[r][\phi_1](p); x_1.p_1; x_2.p_2) & \equiv [p/x_2]p_2
\end{align*}
\]

Observe that these equations are all valid under the static correspondence given above. For example, the first of these equations corresponds to the definitional equivalence \(\langle e_1, e_2 \rangle \cdot l \equiv e_1 \), which is valid for the lazy interpretation of ordered pairs.

The significance of the dynamic correspondence is that it assigns computational content to proofs: a proof in constructive propositional logic may be read as a program. Put the other way around, it assigns logical content to programs: every expression of product, sum, or function type may be read as a proof of a proposition.

30.4 Exercises
Chapter 31

Classical Logic

In constructive logic a proposition is true exactly when it has a *proof*, a derivation of it from axioms and assumptions, and is false exactly when it has a *refutation*, a derivation of a contradiction from the assumption that it is true. Constructive logic is a logic of positive evidence. To affirm or deny a proposition requires a proof, either of the proposition itself, or of a contradiction, under the assumption that it has a proof. We are not always in a position to affirm or deny a proposition. An *open problem* is one for which we have neither a proof nor a refutation—so that, constructively speaking, it is neither true nor false!

In contrast classical logic (the one we learned in school) is a logic of perfect information in which every proposition is either true or false. One may say that classical logic corresponds to “god’s view” of the world—there are no open problems, rather all propositions are either true or false. Put another way, to assert that every proposition is either true or false is to *weaken* the notion of truth to encompass all that is *not false*, dually to the constructively (and classically) valid interpretation of falsity as all that is *not true*. The symmetry between truth and falsity is appealing, but there is a price to pay for this: the meanings of the logical connectives are weaker in the classical case than in the constructive.

A prime example is provided by the *law of the excluded middle*, the assertion that $\phi \lor \neg\phi$ true is valid for all propositions ϕ. Constructively, this principle is not universally valid, because it would mean that every proposition either has a proof or a refutation, which is manifestly not the case. Classically, however, the law of the excluded middle is valid, because every proposition is either true or false. The discrepancy between the constructive and classical interpretations can be attributed to the different meanings
given to disjunction and negation by the two logics. In particular the classical truth of a disjunction cannot guarantee the constructive truth of one or the other disjunct. Something other than a constructive proof must be admitted as evidence for a disjunction if the law of the excluded middle is to hold true. And it is precisely for this reason that a classical proof expresses less than does a constructive proof of the same proposition.

Despite this weakness, classical logic admits a computational interpretation similar to, but somewhat less expressive than, that of constructive logic. The dynamics of classical proofs is derived from the complementarity of truth and falsity. A computation is initiated by juxtaposing a proof and a refutation—or, in programming terms, an expression and a continuation, or control stack. Continuations are essential to the meaning of classical proofs. In particular, the proof of the law of the excluded middle will be seen to equivocate between proving and refuting a proposition, using continuations to avoid getting caught in a contradiction.

31.1 Classical Logic

In constructive logic a connective is defined by giving its introduction and elimination rules. In classical logic a connective is defined by giving its truth and falsity conditions. Its truth rules correspond to introduction, and its falsity rules to elimination. The symmetry between truth and falsity is expressed by the principle of indirect proof. To show that ϕ true it is enough to show that ϕ false entails a contradiction, and, conversely, to show that ϕ false it is enough to show that ϕ true leads to a contradiction. While the second of these is constructively valid, the first is fundamentally classical, expressing the principle of indirect proof.

31.1.1 Provability and Refutability

There are three judgement forms in classical logic:

1. ϕ true, stating that the proposition ϕ is provable;
2. ϕ false, stating that the proposition ϕ is refutable;
3. $\#$, stating that a contradiction has been derived.

We will consider hypothetical judgements of the form

$$\phi_1 \text{ false, } \ldots, \phi_m \text{ false } \psi_1 \text{ true, } \ldots, \psi_n \text{ true } \vdash J,$$
where J is any of the three basic judgement forms. The hypotheses are divided into two “zones” for convenience. We let Γ stand for a finite set of “true” hypotheses, and Δ stand for a finite set of “false” hypotheses.

The rules of classical logic are organized around the symmetry between truth and falsity, which is mediated by the contradiction judgement.

The hypothetical judgement is reflexive:

$$\Delta, \phi \text{ false} \vdash \phi \text{ false} \quad (31.1a)$$
$$\Delta, \phi \text{ true} \vdash \phi \text{ true} \quad (31.1b)$$

The remaining rules are stated so that the structural properties of weakening, contraction, and transitivity are admissible.

A contradiction arises when a proposition is judged to be both true and false. A proposition is true if its falsity is absurd, and is false if its truth is absurd.

$$\Delta, \phi \text{ false} \Delta \Gamma \vdash \phi \text{ true} \quad (31.1c)$$
$$\Delta, \phi \text{ true} \Delta \Gamma \vdash \phi \text{ false} \quad (31.1d)$$

Truth is trivially true, and cannot be refuted.

$$\Delta \Gamma \vdash \top \text{ true} \quad (31.1f)$$

A conjunction is true if both conjuncts are true, and is false if either conjunct is false.

$$\Delta, \phi_1 \text{ true} \Delta \Gamma \vdash \phi_2 \text{ true} \quad (31.1g)$$
$$\Delta \Gamma \vdash \phi_1 \land \phi_2 \text{ true}$$
$$\Delta, \phi_1 \text{ false} \Delta \Gamma \vdash \phi_2 \text{ false} \quad (31.1h)$$
$$\Delta \Gamma \vdash \phi_1 \land \phi_2 \text{ false}$$

Falsity is trivially false, and cannot be proved.

$$\Delta \Gamma \vdash \bot \text{ false} \quad (31.1j)$$
31.1 Classical Logic

A disjunction is true if either disjunct is true, and is false if both disjuncts are false.

\[\frac{\Delta, \Gamma \vdash \phi_1 \text{ true}}{\Delta, \Gamma \vdash \phi_1 \lor \phi_2 \text{ true}} \] \hspace{1cm} (31.1k)

\[\frac{\Delta, \Gamma \vdash \phi_2 \text{ true}}{\Delta, \Gamma \vdash \phi_1 \lor \phi_2 \text{ true}} \] \hspace{1cm} (31.1l)

\[\Delta, \Gamma \vdash \phi_1 \text{ false} \quad \Delta, \Gamma \vdash \phi_2 \text{ false} \]
\[\frac{\Delta, \Gamma \vdash \phi_1 \lor \phi_2 \text{ false}}{\Delta, \Gamma \vdash \phi_1 \lor \phi_2 \text{ false}} \] \hspace{1cm} (31.1m)

Negation inverts the sense of each judgement:

\[\frac{\Delta, \Gamma \vdash \phi \text{ false}}{\Delta, \Gamma \vdash \neg \phi \text{ true}} \] \hspace{1cm} (31.1n)

\[\frac{\Delta, \Gamma \vdash \phi \text{ true}}{\Delta, \Gamma \vdash \neg \phi \text{ false}} \] \hspace{1cm} (31.1o)

An implication is true if its conclusion is true whenever the assumption is true, and is false if its conclusion is false yet its assumption is true.

\[\frac{\Delta, \phi_1 \text{ true} \vdash \phi_2 \text{ true}}{\Delta, \Gamma \vdash \phi_1 \supset \phi_2 \text{ true}} \] \hspace{1cm} (31.1p)

\[\Delta, \Gamma \vdash \phi_1 \text{ true} \quad \Delta, \Gamma \vdash \phi_2 \text{ false} \]
\[\frac{\Delta, \Gamma \vdash \phi_1 \supset \phi_2 \text{ false}}{\Delta, \Gamma \vdash \phi_1 \supset \phi_2 \text{ false}} \] \hspace{1cm} (31.1q)

31.1.2 Proofs and Refutations

The dynamics of classical proofs is most easily explained by introducing a notation for the derivations of each of the judgement forms of classical logic:

1. \(p : \phi \), stating that \(p \) is a proof of \(\phi \);
2. \(k \div \phi \), stating that \(k \) is a refutation of \(\phi \);
3. \(k \# p \), stating that \(k \) and \(p \) are contradictory.

We will consider hypothetical judgements of the form

\[\Delta, x_1 : \psi_1, \ldots, x_n : \psi_n \vdash J, \]
\[\frac{u_1 \div \phi_1, \ldots, u_m \div \phi_m}{\Delta, \Gamma} \]
in which we have labelled the truth and falsity assumptions with variables.

A contradiction arises whenever a proposition is both true and false:

\[
\Delta \Gamma \vdash k \div \phi, \Delta \Gamma \vdash p : \phi \\
\longrightarrow \\
\Delta \Gamma \vdash k \# p
\]

(31.2a)

Truth and falsity are defined symmetrically in terms of contradiction:

\[
\Delta, u \div \phi \Gamma \vdash k \# p \\
\Delta \Gamma \vdash \text{ccr}(u \div \phi, k \# p) : \phi
\]

(31.2b)

\[
\Delta \Gamma, x : \phi \vdash k \# p \\
\Delta \Gamma \vdash \text{ccp}(x : \phi, k \# p) \div \phi
\]

(31.2c)

Reflexivity corresponds to the use of a variable hypothesis:

\[
\Delta, u \div \phi \Gamma \vdash u \div \phi
\]

(31.2d)

\[
\Delta \Gamma, x : \phi \vdash x : \phi
\]

(31.2e)

The other structure properties are admissible.

Truth is trivially true, and cannot be refuted.

\[
\Delta \Gamma \vdash \langle \rangle : \top
\]

(31.2f)

A conjunction is true if both conjuncts are true, and is false if either conjunct is false.

\[
\Delta \Gamma \vdash p_1 : \phi_1, \Delta \Gamma \vdash p_2 : \phi_2 \\
\Delta \Gamma \vdash \langle p_1, p_2 \rangle : \phi_1 \land \phi_2
\]

(31.2g)

\[
\Delta \Gamma \vdash k_1 \div \phi_1 \\
\Delta \Gamma \vdash \text{fst}; k_1 \div \phi_1 \land \phi_2
\]

(31.2h)

\[
\Delta \Gamma \vdash k_2 \div \phi_2 \\
\Delta \Gamma \vdash \text{snd}; k_2 \div \phi_1 \land \phi_2
\]

(31.2i)

Falsity is trivially false, and cannot be proved.

\[
\Delta \Gamma \vdash \text{abort} \div \bot
\]

(31.2j)

A disjunction is true if either disjunct is true, and is false if both disjuncts are false.

\[
\Delta \Gamma \vdash p_1 : \phi_1 \\
\Delta \Gamma \vdash \text{inl}(p_1) : \phi_1 \lor \phi_2
\]

(31.2k)
31.2 Deriving Elimination Forms

\[\Delta \Gamma \vdash p_2 : \phi_2\]
\[\Delta \Gamma \vdash \text{inr}(p_2) : \phi_1 \lor \phi_2\]
\[\Delta \Gamma \vdash k_1 \div \phi_1 \quad \Delta \Gamma \vdash k_2 \div \phi_2\]
\[\Delta \Gamma \vdash \text{case}(k_1; k_2) \div \phi_1 \lor \phi_2\]

(31.2l)

Negation inverts the sense of each judgement:

\[\Delta \Gamma \vdash k \div \phi\]
\[\Delta \Gamma \vdash \text{not}(k) : \neg \phi\]
\[\Delta \Gamma \vdash p : \phi\]
\[\Delta \Gamma \vdash \text{not}(p) \div \neg \phi\]

(31.2n)

(31.2o)

An implication is true if its conclusion is true whenever the assumption is true, and is false if its conclusion is false yet its assumption is true.

\[\Delta \Gamma, x : \phi_1 \vdash p_2 : \phi_2\]
\[\Delta \Gamma \vdash \lambda (x : \phi_1, p_2) : \phi_1 \supset \phi_2\]
\[\Delta \Gamma \vdash p_1 : \phi_1 \quad \Delta \Gamma \vdash k_2 \div \phi_2\]
\[\Delta \Gamma \vdash \text{app}(p_1); k_2 \div \phi_1 \supset \phi_2\]

(31.2p)

(31.2q)

31.2 Deriving Elimination Forms

The price of achieving a symmetry between truth and falsity in classical logic is that we must very often rely on the principle of indirect proof: to show that a proposition is true, we often must derive a contradiction from the assumption of its falsity. For example, a proof of

\[(\phi \land (\psi \land \theta)) \supset (\theta \land \phi)\]

in classical logic has the form

\[\lambda (w : \phi \land (\psi \land \theta)). \text{ccr}(u \div \theta \land \phi.k \# w)),\]

where \(k\) is the refutation

\[\text{fst}; \text{ccp}(x : \phi. \text{snd}; \text{ccp}(y : \psi \land \theta. \text{snd}; \text{ccp}(z : \theta. u \# (z, x)) \# y) \# w).\]

And yet in constructive logic this proposition has a direct proof that avoids the circumlocutions of proof by contradiction:

\[\lambda (w : \phi \land (\psi \land \theta)). \text{andI}(\text{andE[r]}(\text{andE[r]}(w)); \text{andE[1]}(w))).\]
31.2 Deriving Elimination Forms

But this proof cannot be expressed (as is) in classical logic, because classical logic lacks the elimination forms of constructive logic.

However, we may package the use of indirect proof into a slightly more palatable form by deriving the elimination rules of constructive logic. For example, the rule

\[
\frac{\Delta, \phi \vdash \phi \land \psi \text{ true}}{\Delta \vdash \phi \text{ true}}
\]

is derivable in classical logic:

\[
\begin{align*}
\frac{\Delta, \phi \text{ false} \vdash \phi \text{ false}}{\Delta, \phi \text{ false} \vdash \phi \land \psi \text{ false}} & \quad \frac{\Delta, \phi \text{ false} \vdash \phi \land \psi \text{ true}}{\Delta, \phi \text{ false} \vdash \#} \\
\frac{\Delta, \phi \text{ false} \vdash \phi \land \psi \text{ false}}{\Delta \vdash \phi \text{ true}} & \quad \frac{\Delta, \phi \text{ false} \vdash \phi \land \psi \text{ true}}{\Delta \vdash \phi \text{ true}}
\end{align*}
\]

The other elimination forms are derivable in a similar manner, in each case relying on indirect proof to construct a proof of the truth of a proposition from a derivation of a contradiction from the assumption of its falsity.

The derivations of the elimination forms of constructive logic are most easily exhibited using proof and refutation expressions, as follows:

\[
\begin{align*}
\text{falseE}[\phi](p) &= \text{ccr}(u \div \phi . \text{abort} \ # p) \\
\text{andE[1]}(p) &= \text{ccr}(u \div \phi . \text{fst}; u \ # p) \\
\text{andE[x]}(p) &= \text{ccr}(u \div \psi . \text{snd}; u \ # p) \\
\text{impE}(p_1; p_2) &= \text{ccr}(u \div \psi . \text{app}(p_2); u \ # p_1) \\
\text{orE}[\phi; \psi](p_1; x . p_2; y . p) &= \text{ccr}(u \div \gamma . \text{case}(\text{ccp}(x : \phi . u \ # p_2); \text{ccp}(y : \psi . u \ # p)) \ # p_1)
\end{align*}
\]

It is straightforward to check that the expected elimination rules hold. For example, the rule

\[
\frac{\Delta \vdash p_1 : \phi \supset \psi \quad \Delta \vdash p_2 : \phi}{\Delta \vdash \text{impE}(p_1; p_2) : \psi}
\]

is derivable using the definition of \(\text{impE}(p_1; p_2)\) given above. By suppressing proof terms, we may derive the corresponding provability rule

\[
\frac{\Delta \vdash \phi \supset \psi \text{ true} \quad \Delta \vdash \phi \text{ true}}{\Delta \vdash \psi \text{ true}}
\]
31.3 Proof Dynamics

The dynamics of classical logic arises from the simplification of the contradiction between a proof and a refutation of a proposition. To make this explicit we will define a transition system whose states are contradictions $k \# p$ consisting of a proof, p, and a refutation, k, of the same proposition. The steps of the computation consist of simplifications of the contradictory state based on the form of p and k.

The truth and falsity rules for the connectives play off one another in a pleasing manner:

\[
\begin{align*}
\text{fst}(k \# (p_1, p_2)) & \to k \# p_1 \\
\text{snd}(k \# (p_1, p_2)) & \to k \# p_2 \\
\text{case}(k_1; k_2) \# \text{inl}(p_1) & \to k_1 \# p_1 \\
\text{case}(k_1; k_2) \# \text{inr}(p_2) & \to k_2 \# p_2 \\
\text{not}(p) \# \text{not}(k) & \to k \# p \\
\text{app}(p_1); k \# \lambda x. p_2 & \to k \# [p_1/x]p_2
\end{align*}
\]

The rules of indirect proof give rise to the following transitions:

\[
\begin{align*}
\text{ccp}(x : \phi. k_1 \# p_1) \# p_2 & \to [p_2/x]k_1 \# [p_2/x]p_1 \\
k_1 \# \text{ccr}(u \div \phi. k_2 \# p_2) & \to [k_1/u]k_2 \# [k_1/u]p_2
\end{align*}
\]

The first of these defines the behavior of the refutation of ϕ that proceeds by contradicting the assumption that ϕ is true. This refutation is activated by presenting it with a proof of ϕ, which is then substituted for the assumption in the new state. Thus, “ccp” stands for “call with current proof.” The second transition defines the behavior of the proof of ϕ that proceeds by contradicting the assumption that ϕ is false. This proof is activated by presenting it with a refutation of ϕ, which is then substituted for the assumption in the new state. Thus, “ccr” stands for “call with current refutation.”

A canonical proof is any proof other than an indirect proof, and a canonical refutation is any refutation other than an indirect refutation. We write p canonical to mean that p is a canonical proof, and k canonical to mean that k is a canonical refutation. To initiate computation we postulate that halt is a canonical refutation of any proposition. The initial and final states of computational are defined as follows:

\[
\text{halt} \# p \text{ initial} \tag{31.6a}
\]
Theorem 31.1 (Preservation). If \(k \div \phi, p : \phi, \) and \(k \# p \mapsto k' \# p' \), then \(k' \div \phi \) and \(p' : \phi \).

Proof. By rule induction on the dynamics of classical logic. \qed

Theorem 31.2 (Progress). If \(k \div \phi \) and \(p : \phi \), then either \(k \# p \) \textit{final}, or \(k \# p \mapsto k' \# p' \).

Proof. By rule induction on the statics of classical logic. \qed

Rules (31.5g) to (31.5h) overlap in that there are two possible transitions for a state of the form

\[
\text{ccp}(x : \phi.k_1 \# p_1) \# \text{ccr}(u \div \phi.k_2 \# p_2),
\]

one to the state \([p/x]k_1 \# [p/x]p_1\), where \(p \) is \(\text{ccr}(u \div \phi.k_2 \# p_2) \), and one to the state \([k/u]k_2 \# [k/u]p_2\), where \(k \) is \(\text{ccp}(x : \phi.k_1 \# p_1) \).

This shows that the dynamics of classical logic is \textit{non-deterministic}. But this means that it is difficult to predict the outcome of a computation, since it could be radically different in the case of the overlapping state just described. To avoid this one may impose a priority ordering among the two cases, preferring one transition over the other when there is a choice. Preferring the first corresponds to a “lazy” dynamics for proofs, because we pass the unevaluated proof, \(p \), to the refutation on the left, which is thereby activated. Preferring the second corresponds to an “eager” dynamics for proofs, in which we pass the unevaluated refutation, \(k \), to the proof, which is thereby activated.

31.4 Law of the Excluded Middle

The law of the excluded middle is derivable in classical logic:

\[
\begin{align*}
\phi \lor \neg \phi & \quad \text{false, } \phi \text{ true} \vdash \phi \text{ true} \\
\phi \lor \neg \phi & \quad \text{false, } \phi \text{ true} \vdash \phi \lor \neg \phi \text{ true} \\
\phi \lor \neg \phi & \quad \text{false, } \phi \text{ true} \vdash \phi \lor \neg \phi \text{ false} \\
\phi \lor \neg \phi & \quad \text{false, } \phi \text{ true} \vdash \# \\
\phi \lor \neg \phi & \quad \text{false} \vdash \phi \lor \neg \phi \text{ false} \\
\phi \lor \neg \phi & \quad \text{false} \vdash \neg \phi \text{ true} \\
\phi \lor \neg \phi & \quad \text{false} \vdash \phi \lor \neg \phi \text{ true} \\
\phi \lor \neg \phi & \quad \text{false} \vdash \phi \lor \neg \phi \text{ false} \\
\phi \lor \neg \phi & \quad \text{false} \vdash \# \\
\phi \lor \neg \phi & \quad \text{false} \vdash \phi \lor \neg \phi \text{ true} \\
\phi \lor \neg \phi & \quad \text{false} \vdash \phi \lor \neg \phi \text{ false} \\
\phi \lor \neg \phi & \quad \text{false} \vdash \# \\
\phi \lor \neg \phi & \quad \text{false} \vdash \phi \lor \neg \phi \text{ true}
\end{align*}
\]
When written out using explicit proofs and refutations, we obtain the proof term $p_0 : \phi \lor \neg \phi$:

$$ccr(u \div \phi \lor \neg \phi. u \# \text{inr}(\text{not}(ccp(x : \phi. u \# \text{inl}(x))))).$$

To understand the computational meaning of this proof, let us juxtapose it with a refutation, $k \div \phi \lor \neg \phi$, and simplify it using the dynamics given in Section 31.3 on page 280. The first step is the transition

$$k \# ccr(u \div \phi \lor \neg \phi. u \# \text{inr}(\text{not}(ccp(x : \phi. u \# \text{inl}(x))))))$$

$$\mapsto$$

$$k \# \text{inr}(\text{not}(ccp(x : \phi. k \# \text{inl}(x))))),$$

wherein we have replicated k so that it occurs in two places in the result state. By virtue of its type the refutation k must have the form $\text{case}(k_1; k_2)$, where $k_1 \div \phi$ and $k_2 \div \neg \phi$. Continuing the reduction, we obtain:

$$\text{case}(k_1; k_2) \# \text{inr}(\text{not}(ccp(x : \phi. \text{case}(k_1; k_2) \# \text{inl}(x))))))$$

$$\mapsto$$

$$k_2 \# \text{not}(ccp(x : \phi. \text{case}(k_1; k_2) \# \text{inl}(x)))).$$

By virtue of its type k_2 must have the form $\text{not}(p_2)$, where $p_2 : \phi$, and hence the transition proceeds as follows:

$$\text{not}(p_2) \# \text{not}(ccp(x : \phi. \text{case}(k_1; k_2) \# \text{inl}(x)))))$$

$$\mapsto$$

$$ccp(x : \phi. \text{case}(k_1; k_2) \# \text{inl}(x)) \# p_2.$$

Observe that p_2 is a valid proof of ϕ! Proceeding, we obtain

$$ccp(x : \phi. \text{case}(k_1; k_2) \# \text{inl}(x)) \# p_2$$

$$\mapsto$$

$$\text{case}(k_1; k_2) \# \text{inl}(p_2)$$

$$\mapsto$$

$$k_2 \# p_2$$

The first of these two steps is the crux of the matter: the refutation, $k = \text{case}(k_1; k_2)$, which was replicated at the outset of the derivation, is reused, but with a different argument. At the first use, the refutation, k, which
is provided by the context of use of the law of the excluded middle, is presented with a proof \(\text{inr}(p_1) \) of \(\phi \vee \neg \phi \). That is, the proof behaves as though the right disjunct of the law is true, which is to say that \(\phi \) is false. If the context is such that it inspects this proof, it can only be by providing the proof, \(p_2 \), of \(\phi \) that refutes the claim that \(\phi \) is false. Should this occur, the proof of the law of the excluded middle backtracks the context, providing instead the proof \(\text{inl}(p_2) \) to \(k \), which then passes \(p_2 \) to \(k_2 \) without further incident. The proof of the law of the excluded middle baldly asserts \(\neg \phi \) true, regardless of the form of \(\phi \). Then, if caught in its lie by the context providing a proof of \(\phi \), changes its mind and asserts to the original context, \(k \), after all! No further reversion is possible, because the context has itself provided a proof, \(p_2 \), of \(\phi \).

The law of the excluded middle illustrates that classical proofs are to be thought of as interactions between proofs and refutations, which is to say interactions between a proof and the context in which it is used. In programming terms this corresponds to an abstract machine with an explicit control stack, or continuation, representing the context of evaluation of an expression. That expression may access the context (stack, continuation) to effect backtracking as necessary to maintain the perfect symmetry between truth and falsity. The penalty is that a closed proof of a disjunction no longer need reveal which disjunct it proves, for as we have just seen, it may, on further inspection, change its mind!

31.5 Exercises
Part XI

Subtyping
Chapter 32

Subtyping

A subtype relation is a pre-order (reflexive and transitive relation) on types that validates the subsumption principle:

if σ is a subtype of τ, then a value of type σ may be provided whenever a value of type τ is required.

The subsumption principle relaxes the strictures of a type system to permit values of one type to be treated as values of another.

Experience shows that the subsumption principle, while useful as a general guide, can be tricky to apply correctly in practice. The key to getting it right is the principle of introduction and elimination. To determine whether a candidate subtyping relationship is sensible, it suffices to consider whether every introductory form of the subtype can be safely manipulated by every eliminatory form of the supertype. A subtyping principle makes sense only if it passes this test; the proof of the type safety theorem for a given subtyping relation ensures that this is the case.

A good way to get a subtyping principle wrong is to think of a type merely as a set of values (generated by introductory forms), and to consider whether every value of the subtype can also be considered to be a value of the supertype. The intuition behind this approach is to think of subtyping as akin to the subset relation in ordinary mathematics. But this can lead to serious errors, because it fails to take account of the operations (eliminatory forms) that one can perform on values of the supertype. It is not enough to think only of the introductory forms; one must also think of the eliminatory forms. Subtyping is a matter of behavior, rather than containment.
32.1 Subsumption

A subtyping judgement has the form $\sigma <: \tau$, and states that σ is a subtype of τ. At a minimum we demand that the following structural rules of subtyping be admissible:

$$
\frac{\tau <: \tau}{\rho <: \sigma \quad \sigma <: \tau}
\frac{\rho <: \tau}{\rho <: \tau}
$$ \hspace{1cm} (32.1a)

In practice we either tacitly include these rules as primitive, or prove that they are admissible for a given set of subtyping rules.

The point of a subtyping relation is to enlarge the set of well-typed programs, which is achieved by the subsumption rule:

$$
\frac{\Gamma \vdash e : \sigma \quad \sigma <: \tau}{\Gamma \vdash e : \tau}
$$ \hspace{1cm} (32.2)

In contrast to most other typing rules, the rule of subsumption is not syntax-directed, because it does not constrain the form of e. That is, the subsumption rule may be applied to any form of expression. In particular, to show that $e : \tau$, we have two choices: either apply the rule appropriate to the particular form of e, or apply the subsumption rule, checking that $e : \sigma$ and $\sigma <: \tau$.

32.2 Varieties of Subtyping

In this section we will informally explore several different forms of subtyping for various extensions of $\mathcal{L}\{\rightarrow\}$. In Section 32.4 on page 296 we will examine some of these in more detail from the point of view of type safety.

32.2.1 Numeric Types

For languages with numeric types, our mathematical experience suggests subtyping relationships among them. For example, in a language with types int, rat, and real, representing, respectively, the integers, the rationals, and the reals, it is tempting to postulate the subtyping relationships

$$\text{int} <: \text{rat} <: \text{real}$$

by analogy with the set containments

$$\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$$
But are these subtyping relationships sensible? The answer depends on the representations and interpretations of these types! Even in mathematics, the containments just mentioned are usually not quite true—or are true only in a somewhat generalized sense. For example, the set of rational numbers may be considered to consist of ordered pairs \((m, n)\), with \(n \neq 0\) and \(\gcd(m, n) = 1\), representing the ratio \(m/n\). The set \(\mathbb{Z}\) of integers may be isomorphically embedded within \(\mathbb{Q}\) by identifying \(n \in \mathbb{Z}\) with the ratio \(n/1\). Similarly, the real numbers are often represented as convergent sequences of rationals, so that strictly speaking the rationals are not a subset of the reals, but rather may be embedded in them by choosing a canonical representative (a particular convergent sequence) of each rational.

For mathematical purposes it is entirely reasonable to overlook fine distinctions such as that between \(\mathbb{Z}\) and its embedding within \(\mathbb{Q}\). This is justified because the operations on rationals restrict to the embedding in the expected manner: if we add two integers thought of as rationals in the canonical way, then the result is the rational associated with their sum. And similarly for the other operations, provided that we take some care in defining them to ensure that it all works out properly. For the purposes of computing, however, one cannot be quite so cavalier, because we must also take account of algorithmic efficiency and the finiteness of machine representations. Often what are called “real numbers” in a programming language are, in fact, finite precision floating point numbers, a small subset of the rational numbers. Not every rational can be exactly represented as a floating point number, nor does floating point arithmetic restrict to rational arithmetic, even when its arguments are exactly represented as floating point numbers.

32.2.2 Product Types

Product types give rise to a form of subtyping based on the subsumption principle. The only elimination form applicable to a value of product type is a projection. Under mild assumptions about the dynamics of projections, we may consider one product type to be a subtype of another by considering whether the projections applicable to the supertype may be validly applied to values of the subtype.

Consider a context in which a value of type \(\tau = \prod_{j \in J} \tau_j\) is required. The statics of finite products (Rules (14.3)) ensures that the only operation we may perform on a value of type \(\tau\), other than to bind it to a variable, is to take the \(j\)th projection from it for some \(j \in J\) to obtain a value of type \(\tau_j\).
Now suppose that \(e \) is of type \(\sigma \). If the projection \(e \cdot j \) is to be well-formed, then \(\sigma \) must be a finite product type \(\prod_{i \in I} \sigma_i \) such that \(j \in I \). Moreover, for this to be of type \(\tau_j \), it is enough to require that \(\sigma_j = \tau_j \). Since \(j \in J \) is arbitrary, we arrive at the following subtyping rule for finite product types:

\[
J \subseteq I \quad \implies \quad \prod_{i \in I} \tau_i <: \prod_{j \in J} \tau_j .
\] (32.3)

It is sufficient, but not necessary, to require that \(\sigma_j = \tau_j \) for each \(j \in J \); we will consider a more liberal form of this rule in Section 32.3 on page 292.

The argument for Rule (32.3) is based on a dynamics in which we may evaluate \(e \cdot j \) regardless of the actual form of \(e \), provided only that it has a field indexed by \(j \in J \). Is this a reasonable assumption?

One common case is that \(I \) and \(J \) are initial segments of the natural numbers, say \(I = [0..m - 1] \) and \(J = [0..n - 1] \), so that the product types may be thought of as \(m \)- and \(n \)-tuples, respectively. The containment \(I \subseteq J \) amounts to requiring that \(m \geq n \), which is to say that a tuple type is regarded as a subtype of all of its prefixes. When specialized to this case, Rule (32.3) may be stated in the form

\[
m \geq n \quad (\tau_1, \ldots, \tau_m) <: (\tau_1, \ldots, \tau_n) .
\] (32.4)

One way to justify this rule is to consider elements of the subtype to be consecutive sequences of values of type \(\tau_0, \ldots, \tau_{m-1} \) from which we may calculate the \(j \)th projection for any \(0 \leq j < n \leq m \), regardless of whether or not \(m \) is strictly bigger than \(n \).

Another common case is when \(I \) and \(J \) are finite sets of symbols, so that projections are based on the field name, rather than its position. When specialized to this case, Rule (32.3) takes the following form:

\[
m \geq n \quad (l_1 : \tau_1, \ldots, l_m : \tau_m) <: (l_1 : \tau_1, \ldots, l_n : \tau_n) .
\] (32.5)

Here we are taking advantage of the implicit identification of labeled tuple types up to reordering of fields, so that the rule states that any field of the supertype must be present in the subtype with the same type.

When using symbolic labels for the components of a tuple, it is perhaps slightly less clear that Rule (32.5) is well-justified. After all, how are we to find field \(l_i \), where \(0 \leq i < n \), in a labeled tuple that may have additional fields anywhere within it? The trouble is that the label does not reveal the position of the field within the tuple, precisely because of subtyping. One
way to achieve this is to associate with a labeled tuple a dictionary mapping labels to positions within the tuple, which the projection operation uses to find the appropriate component of the record. Since the labels are fixed statically, this may be done in constant time using a perfect hashing function mapping labels to natural numbers, so that the cost of a projection remains constant. Another method is to use coercions that a value of the subtype to a value of the supertype whenever subsumption is used. In the case of labeled tuples this means creating a new labeled tuple containing only the fields of the supertype, copied from those of the subtype, so that the type specifies exactly the fields present in the value. This allows for more efficient implementation (for example, by a simple offset calculation), but is not compatible with languages that permit mutation (in-place modification) of fields because it destroys sharing.

32.2.3 Sum Types

By an argument dual to the one given for finite product types we may derive a related subtyping rule for finite sum types. If a value of type $\sum_{j \in J} \tau_j$ is required, the statics of sums (Rules (15.3)) ensures that the only non-trivial operation that we may perform on that value is a J-indexed case analysis. If we provide a value of type $\sum_{i \in I} \sigma_i$ instead, no difficulty will arise so long as $I \subseteq J$ and each σ_i is equal to τ_i. If the containment is strict, some cases cannot arise, but this does not disrupt safety. This leads to the following subtyping rule for finite sums:

$$\frac{I \subseteq J}{\sum_{i \in I} \tau_i <: \sum_{j \in J} \tau_j}.$$ (32.6)

Note well the reversal of the containment as compared to Rule (32.3).

When I and J are initial segments of the natural numbers, we obtain the following special case of Rule (32.6):

$$\frac{m \leq n}{[l_1 : \tau_1, \ldots, l_m : \tau_m] <: [l_1 : \tau_1, \ldots, l_n : \tau_n]}.$$ (32.7)

One may also consider a form of width subtyping for unlabeled n-ary sums, by considering any prefix of an n-ary sum to be a subtype of that sum. Here again the elimination form for the supertype, namely an n-ary case analysis, is prepared to handle any value of the subtype, which is enough to ensure type safety.
32.3 Variance

In addition to basic subtyping principles such as those considered in Section 32.2 on page 288, it is also important to consider the effect of subtyping on type constructors. A type constructor is said to be covariant in an argument if subtyping in that argument is preserved by the constructor. It is said to be contravariant if subtyping in that argument is reversed by the constructor. It is said to be invariant in an argument if subtyping for the constructed type is not affected by subtyping in that argument.

32.3.1 Product Types

Finite product types are covariant in each field. For if \(e \) is of type \(\prod_{i \in I} \sigma_i \), and the projection \(e \cdot j \) is expected to be of type \(\tau_j \), then it is sufficient to require that \(j \in I \) and \(\sigma_j <: \tau_j \). This is summarized by the following rule:

\[
(\forall i \in I) \sigma_i <: \tau_i \\
\prod_{i \in I} \sigma_i <: \prod_{i \in I} \tau_i
\]
(32.8)

It is implicit in this rule that the dynamics of projection must not be sensitive to the precise type of any of the fields of a value of finite product type.

When specialized to \(n \)-tuples, Rule (32.8) reads as follows:

\[
\sigma_1 <: \tau_1 \quad \ldots \quad \sigma_n <: \tau_n \\
\langle \sigma_1, \ldots, \sigma_n \rangle <: \langle \tau_1, \ldots, \tau_n \rangle
\]
(32.9)

When specialized to symbolic labels, the covariance principle for finite products may be re-stated as follows:

\[
\sigma_1 <: \tau_1 \quad \ldots \quad \sigma_n <: \tau_n \\
\langle l_1 : \sigma_1, \ldots, l_n : \sigma_n \rangle <: \langle l_1 : \tau_1, \ldots, l_n : \tau_n \rangle
\]
(32.10)

32.3.2 Sum Types

Finite sum types are also covariant, because each branch of a case analysis on a value of the supertype expects a value of the corresponding summand, for which it is sufficient to provide a value of the corresponding subtype summand:

\[
(\forall i \in I) \sigma_i <: \tau_i \\
\sum_{i \in I} \sigma_i <: \sum_{i \in I} \tau_i
\]
(32.11)
32.3 Variance

When specialized to symbolic labels as index sets, we obtain the following formulation of the covariance principle for sum types:

\[
\sigma_1 <: \tau_1 \quad \ldots \quad \sigma_n <: \tau_n \\
[l_1 : \sigma_1, \ldots, l_n : \sigma_n] <: [l_1 : \tau_1, \ldots, l_n : \tau_n] .
\]

(32.12)

A case analysis on a value of the supertype is prepared, in the \(i\)th branch, to accept a value of type \(\tau_i\). By the premises of the rule, it is sufficient to provide a value of type \(\sigma_i\) instead.

32.3.3 Function Types

The variance of the function type constructor is a bit more subtle. Let us consider first the variance of the function type in its range. Suppose that \(e : \sigma \rightarrow \tau\). This means that if \(e_1 : \sigma\), then \(e(e_1) : \tau\). If \(\tau <: \tau'\), then \(e(e_1) : \tau'\) as well. This suggests the following covariance principle for function types:

\[
\tau <: \tau' \\
\sigma \rightarrow \tau <: \sigma \rightarrow \tau'
\]

(32.13)

Every function that delivers a value of type \(\tau\) must also deliver a value of type \(\tau'\), provided that \(\tau <: \tau'\). Thus the function type constructor is covariant in its range.

Now let us consider the variance of the function type in its domain. Suppose again that \(e : \sigma \rightarrow \tau\). This means that \(e\) may be applied to any value of type \(\sigma\), and hence, by the subsumption principle, it may be applied to any value of any subtype, \(\sigma'\), of \(\sigma\). In either case it will deliver a value of type \(\tau\). Consequently, we may just as well think of \(e\) as having type \(\sigma' \rightarrow \tau\).

\[
\sigma' <: \sigma \\
\sigma \rightarrow \tau <: \sigma' \rightarrow \tau
\]

(32.14)

The function type is contravariant in its domain position. Note well the reversal of the subtyping relation in the premise as compared to the conclusion of the rule!

Combining these rules we obtain the following general principle of contra- and co-variance for function types:

\[
\sigma' <: \sigma \\
\tau <: \tau' \\
\sigma \rightarrow \tau <: \sigma' \rightarrow \tau
\]

(32.15)

Beware of the reversal of the ordering in the domain!
32.3.4 Recursive Types

The variance principle for recursive types is rather subtle, and has been the source of errors in language design. To gain some intuition, consider the type of labeled binary trees with natural numbers at each node,

\[\mu t. [\text{empty: unit, binode: } \langle \text{data: nat, lft: } t, \text{rht: } t \rangle] \]

and the type of “bare” binary trees, without labels on the nodes,

\[\mu t. [\text{empty: unit, binode: } \langle \text{lft: } t, \text{rht: } t \rangle] \]

Is either a subtype of the other? Intuitively, one might expect the type of labeled binary trees to be a
subtype of the type of bare binary trees, since any use of a bare binary tree can simply ignore the presence of the label.

Now consider the type of bare “two-three” trees with two sorts of nodes, those with two children, and those with three:

\[\mu t. [\text{empty: unit, binode: } \langle \text{lft: } t, \text{rht: } t \rangle, \text{trinode: } \langle \text{lft: } t, \text{mid: } t, \text{rht: } t \rangle] \]

What subtype relationships should hold between this type and the preceding two tree types? Intuitively the type of bare two-three trees should be a
supertype of the type of bare binary trees, since any use of a two-three tree must proceed by three-way case analysis, which covers both forms of binary tree.

To capture the pattern illustrated by these examples, we must formulate a subtyping rule for recursive types. It is tempting to consider the following rule:

\[
\frac{\text{t type } \vdash \sigma <: \tau}{\mu t. \sigma <: \mu t. \tau}
\] \hspace{1cm} (32.16)

That is, to determine whether one recursive type is a subtype of the other, we simply compare their bodies, with the bound variable treated as a parameter. Notice that by reflexivity of subtyping, we have \(t <: t \), and hence we may use this fact in the derivation of \(\sigma <: \tau \).

Rule (32.16) validates the intuitively plausible subtyping between labeled binary tree and bare binary trees just described. To derive this reduces to checking the subtyping relationship

\[\langle \text{data: nat, lft: } t, \text{rht: } t \rangle <: \langle \text{lft: } t, \text{rht: } t \rangle, \]

generically in \(t \), which is evidently the case.
Unfortunately, Rule (32.16) also underwrites incorrect subtyping relationships, as well as some correct ones. As an example of what goes wrong, consider the recursive types

\[\sigma = \mu t. \langle a : t \to \text{nat}, b : t \to \text{int} \rangle \]

and

\[\tau = \mu t. \langle a : t \to \text{int}, b : t \to \text{int} \rangle. \]

We assume for the sake of the example that \text{nat} < : \text{int}, so that by using Rule (32.16) we may derive \(\sigma < : \tau \), which we will show to be incorrect. Let \(e : \sigma \) be the expression

\[\text{fold}(\langle a = \lambda (x : \sigma).4), b = \lambda (x : \sigma).q((\text{unfold}(x) \cdot a)(x))\rangle), \]

where \(q : \text{nat} \to \text{nat} \) is the discrete square root function. Since \(\sigma < : \tau \), it follows that \(e : \tau \) as well, and hence

\[\text{unfold}(e) : \langle a : \tau \to \text{int}, b : \tau \to \text{int} \rangle. \]

Now let \(e' : \tau \) be the expression

\[\text{fold}(\langle a = \lambda (x : \tau)\cdot4), b = \lambda (x : \tau).0\rangle). \]

(The important point about \(e' \) is that the \(a \) method returns a negative number; the \(b \) method is of no significance.) To finish the proof, observe that

\[(\text{unfold}(e) \cdot b)(e') \mapsto^* q(-4), \]

which is a stuck state. We have derived a well-typed program that “gets stuck”, refuting type safety!

Rule (32.16) is therefore incorrect. But what has gone wrong? The error lies in the choice of a single parameter to stand for both recursive types, which does not correctly model self-reference. In effect we are regarding two distinct recursive types as equal while checking their bodies for a subtyping relationship. But this is clearly wrong! It fails to take account of the self-referential nature of recursive types. On the left side the bound variable stands for the subtype, whereas on the right the bound variable stands for the super-type. Confusing them leads to the unsoundness just illustrated.

As is often the case with self-reference, the solution is to assume what we are trying to prove, and check that this assumption can be maintained
by examining the bodies of the recursive types. To do so we maintain a finite set, \(\Psi \), of hypotheses of the form
\[
s_1 <: t_1, \ldots, s_n <: t_n,
\]
which is used to state the rule of subsumption for recursive types:
\[
\frac{\Psi, s <: t \vdash \sigma <: \tau}{\Psi \vdash \mu s . \sigma <: \mu t . \tau}. \tag{32.17}
\]
That is, to check whether \(\mu s . \sigma <: \mu t . \tau \), we assume that \(s <: t \), since \(s \) and \(t \) stand for the respective recursive types, and check that \(\sigma <: \tau \) under this assumption.

We tacitly include the rule of reflexivity for subtyping assumptions,
\[
\frac{\Psi, s <: t \vdash s <: t}{\Psi \vdash s <: t}. \tag{32.18}
\]
Using reflexivity in conjunction with Rule (32.17), we may verify the subtypings among the tree types sketched above. Moreover, it is instructive to check that the unsound subtyping is not derivable using this rule. The reason is that the assumption of the subtyping relation is at odds with the contravariance of the function type in its domain.

32.4 Safety for Subtyping

Proving safety for a language with subtyping is considerably more delicate than for languages without. The rule of subsumption means that the static type of an expression reveals only partial information about the underlying value. This changes the proof of the preservation and progress theorems, and requires some care in stating and proving the auxiliary lemmas required for the proof.

As a representative case we will sketch the proof of safety for a language with subtyping for product types. The subtyping relation is defined by Rules (32.3) and (32.8). We assume that the statics includes subsumption, Rule (32.2).

Lemma 32.1 (Structurality).

1. The tuple subtyping relation is reflexive and transitive.
2. The typing judgement \(\Gamma \vdash e : \tau \) is closed under weakening and substitution.

Proof.
32.4 Safety for Subtyping

1. Reflexivity is proved by induction on the structure of types. Transitivity is proved by induction on the derivations of the judgements $\rho <: \sigma$ and $\sigma <: \tau$ to obtain a derivation of $\rho <: \tau$.

2. By induction on Rules (14.3), augmented by Rule (32.2).

Lemma 32.2 (Inversion).

1. If $e \cdot j : \tau$, then $e : \prod_{i \in I} \tau_i$, $j \in I$, and $\tau_j <: \tau$.

2. If $\langle e_i \rangle_{i \in I} : \tau$, then $\prod_{i \in I} \sigma_i <: \tau$ where $e_i : \sigma_i$ for each $i \in I$.

3. If $\sigma <: \prod_{j \in J} \tau_j$, then $\sigma = \prod_{i \in I} \sigma_i$ for some I and some types σ_i for $i \in I$.

4. If $\prod_{i \in I} \sigma_i <: \prod_{j \in J} \tau_j$, then $I \subseteq J$ and $\sigma_j <: \tau_j$ for each $j \in J$.

Proof. By induction on the subtyping and typing rules, paying special attention to Rule (32.2).

Theorem 32.3 (Preservation). If $e : \tau$ and $e \mapsto e'$, then $e' : \tau$.

Proof. By induction on Rules (14.4). For example, consider Rule (14.4d), so that $e = \langle e_i \rangle_{i \in I} \cdot k$, $e' = e_k$. By Lemma 32.2 we have that $\langle e_i \rangle_{i \in I} : \prod_{j \in J} \tau_j$, $k \in J$, and $\tau_k <: \tau$. By another application of Lemma 32.2 for each $i \in I$ there exists σ_i such that $e_i : \sigma_i$ and $\prod_{i \in I} \sigma_i <: \prod_{j \in J} \tau_j$. By Lemma 32.2 again, we have $J \subseteq I$ and $\sigma_j <: \tau_j$ for each $j \in J$. But then $e_k : \tau_k$, as desired. The remaining cases are similar.

Lemma 32.4 (Canonical Forms). If e val and $e : \prod_{j \in J} \tau_j$, then e is of the form $\langle e_i \rangle_{i \in I}$, where $J \subseteq I$, and $e_j : \tau_j$ for each $j \in J$.

Proof. By induction on Rules (14.3) augmented by Rule (32.2).

Theorem 32.5 (Progress). If $e : \tau$, then either e val or there exists e' such that $e \mapsto e'$.

Proof. By induction on Rules (14.3) augmented by Rule (32.2). The rule of subsumption is handled by appeal to the inductive hypothesis on the premise of the rule. Rule (14.4d) follows from Lemma 32.4.

To account for recursive subtyping in addition to finite product subtyping, the following inversion lemma is required.
Lemma 32.6.

1. If \(\Psi, s <: t \vdash \sigma' <: \tau' \) and \(\Psi, \sigma <: \tau \), then \(\Psi, [\sigma/s] \sigma' <: [\tau/t] \tau' \).

2. If \(\Psi \vdash \sigma <: \mu t . \sigma' \), then \(\sigma = \mu s . \sigma' \) and \(\Psi, s <: t \vdash \sigma' <: \tau' \).

3. If \(\Psi \vdash \mu s . \sigma <: \mu t . \tau \), then \(\Psi \vdash [\mu s . \sigma/s] \sigma <: [\mu t . \tau/t] \tau \).

4. The subtyping relation is reflexive and transitive, and closed under weakening.

Proof.

1. By induction on the derivation of the first premise. Wherever the assumption is used, replace it by \(\sigma <: \tau \), and propagate forward.

2. By induction on the derivation of \(\sigma <: \mu t . \tau \).

3. Follows immediately from the preceding two properties of subtyping.

4. Reflexivity is proved by construction. Weakening is proved by an easy induction on subtyping derivations. Transitivity is proved by induction on the sizes of the types involved. For example, suppose we have \(\Psi \vdash \mu r . \rho <: \mu s . \sigma \) because \(\Psi, r <: s \vdash \rho <: \sigma \), and \(\Psi \vdash \mu s . \sigma <: \mu t . \tau \) because and \(\Psi, s <: t \vdash \sigma <: \tau \). We may assume without loss of generality that \(s \) does not occur free in either \(\rho \) or \(\tau \). By weakening we have \(\Psi, r <: s, s <: t \vdash \rho <: \sigma \) and \(\Psi, r <: s, s <: t \vdash \sigma <: \tau \). Therefore by induction we have \(\Psi, r <: s, s <: t \vdash \rho <: \tau \). But since \(\Psi, r <: t \vdash r <: t \) and \(\Psi, r <: t \vdash t <: t \), we have by the first property above that \(\Psi, r <: t \vdash \rho <: \tau \), from which the result follows immediately.

The remainder of the proof of type safety in the presence of recursive subtyping proceeds along lines similar to that for product subtyping.

32.5 Exercises
Chapter 33

Singleton and Dependent Kinds

The expression \(\texttt{let } e_1 : \tau \texttt{ be } x \texttt{ in } e_2\) is a form of abbreviation mechanism by which we may bind \(e_1\) to the variable \(x\) for use within \(e_2\). In the presence of function types this expression is definable as the application \(\lambda (x : \tau . e_2) (e_1)\), which accomplishes the same thing. It is natural to consider an analogous form of \texttt{let} expression which permits a type expression to be bound to a type variable within a specified scope. The expression \(\texttt{let } t \texttt{ be } \tau \texttt{ in } e\) binds \(t\) to \(\tau\) within \(e\), so that one may write expressions such as

\[
\texttt{let } t \texttt{ be } \texttt{nat} \times \texttt{nat} \texttt{ in } \lambda (x : t . s(x \cdot 1)).
\]

For this expression to be type-correct the type variable \(t\) must be synonymous with the type \(\texttt{nat} \times \texttt{nat}\), for otherwise the body of the \(\lambda\)-abstraction is not type correct.

Following the pattern of the expression-level \texttt{let}, we might guess that \texttt{lettype} is an abbreviation for the polymorphic instantiation \(\Lambda (t . e) [\tau]\), which binds \(t\) to \(\tau\) within \(e\). This does, indeed, capture the dynamics of type abbreviation, but it fails to validate the intended statics. The difficulty is that, according to this interpretation of \texttt{lettype}, the expression \(e\) is type-checked in the absence of any knowledge of the binding of \(t\), rather than in the knowledge that \(t\) is synomous with \(\tau\). Thus, in the above example, the expression \(s(x \cdot 1)\) fails to type check, unless the binding of \(t\) were exposed.

The proposed definition of \texttt{lettype} in terms of type abstraction and type application fails. Lacking any other idea, one might argue that type abbreviation ought to be considered as a primitive concept, rather than a derived notion. The expression \(\texttt{let } t \texttt{ be } \tau \texttt{ in } e\) would be taken as a primitive
form of expression whose statics is given by the following rule:

\[
\frac{\Gamma \vdash [\tau/t]e : \tau'}{
\Gamma \vdash \text{let } t \text{ be } \tau \text{ in } e : \tau'}
\]

(33.1)

This would address the problem of supporting type abbreviations, but it does so in a rather \textit{ad hoc} manner. One might hope for a more principled solution that arises naturally from the type structure of the language.

Our methodology of identifying language constructs with type structure suggests that we ask not how to support type abbreviations, but rather what form of type structure gives rise to type abbreviations? And what else does this type structure suggest? By following this methodology we are led to the concept of \textit{singleton kinds}, which not only account for type abbreviations but also play a crucial role in the design of module systems.

33.1 Informal Overview

The central organizing principle of type theory is \textit{compositionality}. To ensure that a program may be decomposed into separable parts, we ensure that the composition of a program from constituent parts is mediated by the types of those parts. Put in other terms, the only thing that one portion of a program “knows” about another is its type. For example, the formation rule for addition of natural numbers depends only on the type of its arguments (both must have type \textit{nat}), and not on their specific form or value. But in the case of a type abbreviation of the form \texttt{let } t \texttt{ be } \tau \texttt{ in } e, the principle of compositionality dictates that the only thing that \textit{e} “knows” about the type variable \textit{t} is its kind, namely \texttt{Type}, and not its binding, namely \textit{\tau}. This is accurately captured by the proposed representation of type abbreviation as the combination of type abstraction and type application, but, as we have just seen, this is not the intended meaning of the construct!

We could, as suggested in the introduction, abandon the core principles of type theory, and introduce type abbreviations as a primitive notion. But there is no need to do so. Instead we can simply note that what is needed is for the kind of \textit{t} to capture its identity. This may be achieved through the notion of a \textit{singleton kind}. Informally, the kind \texttt{Eqv}(\tau) is the kind of types that are definitionally equivalent to \textit{\tau}. That is, up to definitional equality, this kind has only one inhabitant, namely \textit{\tau}. Consequently, if \textit{u :: Eqv(\tau)} is a variable of singleton kind, then within its scope, the variable \textit{u} is synonymous with \textit{\tau}. Thus we may represent \texttt{let } t \texttt{ be } \tau \texttt{ in } e by
Λ (t :: Eqv (τ) . e) [τ], which correctly propagates the identity of t, namely τ, to e during type checking.

A proper treatment of singleton kinds requires some additional machinery at the constructor and kind level. First, we must capture the idea that a constructor of singleton kind is \textit{a fortiori} a constructor of kind \textit{Type}, and hence is a type. Otherwise, a variable, u, singleton kind cannot be used as a type, even though it is explicitly defined to be one! This may be captured by introducing a \textit{subkinding} relation, \(\kappa_1 :: \kappa_2 \), which is analogous to subtyping, exception at the kind level. The fundamental axiom of subkinding is Eqv (τ) :: \textit{Type}, stating that every constructor of singleton kind is a type.

Second, we must account for the occurrence of a constructor of kind \textit{Type} within the singleton kind Eqv (τ). This intermixing of the constructor and kind level means that singletons are a form of \textit{dependent kind} in that a kind may depend on a constructor. Another way to say the same thing is that Eqv (τ) represents a \textit{family of kinds} indexed by constructors of kind \textit{Type}. This, in turn, implies that we must generalize the function and product kinds to \textit{dependent functions} and \textit{dependent products}. The dependent function kind, \(\Pi u :: \kappa_1 . \kappa_2 \) classifies functions that, when applied to a constructor \(c_1 :: \kappa_1 \), results in a constructor of kind \([c_1 / u] \kappa_2\). The important point is that the kind of the result is sensitive to the argument, and not just to its kind.\(^1\) The dependent product kind, \(\Sigma u :: \kappa_1 . \kappa_2 \), classifies pairs \(\langle c_1, c_2 \rangle \) such that \(c_1 :: \kappa_1 \), as might be expected, and \(c_2 :: [c_1 / u] \kappa_2 \), in which the kind of the second component is sensitive to the first component itself, and not just its kind.

Third, it is useful to consider singletons not just of kind \textit{Type}, but also of higher kinds. To support this we introduce \textit{higher-kind singletons}, written Eqv (c :: \kappa), where \(\kappa \) is a kind and \(c \) is a constructor of kind \(k \). These are definable in terms of the primitive form of singleton kind by making use of dependent function and product kinds.

\footnote{\textit{As we shall see in the development, the propagation of information as sketched here is managed through the use of singleton kinds.}}
33.1 Informal Overview
Part XII

Symbols
Chapter 34

Symbols

A symbol is an atomic datum with no internal structure. The only way to compute with an unknown symbol is to compare it for identity with one or more known symbols, and branching according to the outcome. We shall make use of symbols for several purposes, including fluid binding, assignable variables, tags for classification of data, and names of communication channels. The common characteristic is that symbols are the indices of some family of operations, and that the types of the operations are conditioned by the type associated to the symbol.

34.1 Statics

We study a small language, called $L\{\text{sym}\}$, for computing with symbols. The syntax of $L\{\text{sym}\}$ is given by the following grammar:

- **Type**

 $\tau ::= \text{sym}(\tau)$

- **Expr**

 $e ::= \text{new}[\tau](a.e)$

 $\text{sym}[a]$

 $\text{match}[t.\tau](e; a.e; r_1, \ldots, r_n)$

- **Rule**

 $r ::= \text{sym?}[a](e)$

In the match expression $\text{match } e\{r_1 | \ldots | r_n\} ow a_0.e_0$ the symbol a_0 is bound within e_0, but the symbols a_1, \ldots, a_n occurring within r_1, \ldots, r_n, respectively, are not bound.

The statics of $L\{\text{sym}\}$ is given by a judgement of the form $\Gamma \vdash_\Sigma e : \tau$, where Σ is a symbol context, or signature, consisting of a finite set of declara-
tions of the form

\[a_1 : \tau_1, \ldots, a_n : \tau_n \]

associating a type to each of a finite set of distinct symbols. This judgement is defined by the following rules:

\[\Gamma \vdash \Sigma, a : \sigma \quad \text{sym} \quad \frac{\Gamma \vdash \Sigma, a : \sigma} {\吴 \vdash \Sigma \text{sym}(a) : \text{sym}(\sigma)} \] (34.1b)

\[\Gamma \vdash \Sigma, a : \sigma \quad \frac{\Gamma \vdash \Sigma e : \sigma \quad \Gamma \vdash \Sigma \text{sym}(a)(e) : \sigma > \tau} {\吴 \vdash \Sigma \text{sym?}(a)(e) : \sigma > \tau} \] (34.1c)

\[\Gamma \vdash \Sigma e : \text{sym}(\sigma) \quad \Gamma \vdash \Sigma a_0 : \sigma / t \cdot \tau \quad \frac{\Gamma \vdash \Sigma r_1 : \sigma_1 > [\sigma_1 / t] \cdot \tau \quad \ldots \quad \Gamma \vdash \Sigma r_n : \sigma_n > [\sigma_n / t] \cdot \tau} {\吴 \vdash \Sigma \text{match}(t, \tau)(e; a_0.e_0; r_1, \ldots, r_n) : [\sigma / t] \cdot \tau} \] (34.1d)

Each of these rules merits careful analysis, as several quite subtle concepts are involved.

Rule (34.1a) gives the statics for the expression \(\text{new}[\tau](a.e) \), which allocates a fresh symbol, \(a \), of type \(\tau \) for use within the expression, \(e \). It is implicit that \(a \) is chosen to not already be declared in \(\Sigma \), ensuring that it is not otherwise in use. This assumption may always be met by suitably renaming the bound name, \(a \), of the \text{new} expression prior to applying the rule. The requirement that the type of the expression be mobile ensures that there is at least one type that cannot depend on \(a \). If symbols are not permitted to escape their scope, then any type may be considered mobile—only those whose values do not threaten safety. (Please see Sections 34.2 on the next page and 34.3 on page 308 for more on this distinction.)

Rule (34.1b) is the introduction rule for the type \(\text{sym}(\sigma) \). It states that if \(a \) is a symbol with associated type \(\sigma \), then \(\text{sym}(a) \) is an expression of type \(\text{sym}(\sigma) \). Rule (34.1c) to (34.1d) is the elimination rules for the type \(\text{sym}(\sigma) \). The expression \(\text{match}(t, \tau)(e; a_0.e_0; r_1, \ldots, r_n) \) discriminates the value of \(e \) according to the rules \(r_1, \ldots, r_n \). If \(e \) evaluates to \(\text{sym}(a_i) \) for some \(1 \leq i \leq n \), then the case expression evaluates to \(e_i \). Otherwise, if \(e \) evaluates to \(\text{sym}(a) \) such that \(a \) is not among the \(a_1, \ldots, a_n \), then the case expression evaluates to \([a/a_0]e_0 \). (The non-matching symbol is passed to \(e_0 \) so that it can be used as the subject of further case analysis.)
The statics of this construct is given in terms of a specified type operator, \(t \cdot \tau \), which serves to propagate the type of a matched symbol to the corresponding branch of the case analysis. At the outset we know that the value, \(\text{sym}[a] \), of \(e \) is a symbol with associated type \(\sigma \), and that each symbol \(a_1, \ldots, a_n \) has associated type \(\sigma_1, \ldots, \sigma_n \), respectively. The type of the case analysis is \([\sigma/t] \cdot \tau \), which propagates the type of the matched symbol into the result of the case analysis. The type of the \(i \)th branch is, however, \([\sigma_i/t] \cdot \tau \). In the case that the symbol \(a \) is the symbol \(a_i \), we acquire the information that \(\sigma \) is \(\sigma_i \), and hence we satisfy the requirement that the overall type be \([\sigma/t] \cdot \tau \). If, however, the symbol \(a \) does not match any branch, then the result of the case analysis is \(e_0 \), which has type \([\sigma/t] \cdot \tau \), as required.

34.2 Ephemeral Dynamics

The ephemeral, or stack-like, dynamics of \(\mathcal{L}\{\text{sym}\} \) consists of a transition judgement of the form \(e \mapsto \rightarrow^\Sigma e' \), where \(\Sigma \) specifies the symbols that may occur in \(e \) and \(e' \). The new construct introduces a new, or fresh, symbol for use within the body of the declaration. The new symbol is added to \(\Sigma \) during evaluation of the body of the new, and de-allocated afterwards. For this to make sense, though, we must ensure that the returned value of the declaration does not depend on the symbol that is about to be de-allocated.

This may be achieved by defining the judgement \(\tau \) mobile to hold only for types whose values cannot contain a symbol. For example, the type \(\text{nat} \) would be mobile, provided that it is given an eager interpretation. The type \(\text{unit} \) is clearly mobile, since its only value is the null tuple, and a product type \(\tau_1 \times \tau_2 \) would be mobile only if it is given an eager dynamics and both \(\tau_1 \) and \(\tau_2 \) are mobile. On the other hand, symbol types are not mobile, nor would be function types, nor any other type whose constructors are evaluated lazily.

The ephemeral dynamics of \(\mathcal{L}\{\text{sym}\} \) consists of two forms of judgement. The judgement \(e \midval_{\Sigma} \) states that \(e \) is a value relative to symbols \(\Sigma \), and the judgement \(e \midrightarrow_{\Sigma} e' \) states that \(e \) transitions to \(e' \) in the presence of the symbols \(\Sigma \).

\[
\begin{align*}
\text{sym}[a] & \midval_{\Sigma,a:\sigma} \quad (34.2a) \\
\frac{}{e \midrightarrow_{\Sigma,a:\sigma} e'} \quad (34.2b)
\end{align*}
\]

\[
\begin{align*}
\text{new}[\sigma](a.e) & \midrightarrow_{\Sigma} \text{new}[\sigma](a.e') \quad (34.2b)
\end{align*}
\]
308 34.3 Persistent Dynamics

\[
\frac{e \text{ val}_\Sigma \quad a \notin e}{\text{new}[\sigma](a.e) \mapsto \sigma \Sigma \ e}
\]

(34.2c)

\[
\frac{e \mapsto e'}{\text{match}[t.\tau](e; a_0.e_0; r_1, \ldots, r_n) \mapsto \Sigma \ e'}
\]

(34.2d)

\[
\frac{\text{match}[t.\tau](\text{sym}[a]; a_0.e_0; \epsilon) \mapsto [a/a_0]e_0}{a = a_1}
\]

(34.2e)

\[
\frac{a \neq a_1}{\text{match}[t.\tau](\text{sym}[a]; a_0.e_0; \text{sym}[a_1](e_1), \ldots) \mapsto \Sigma \ e_1
\]

(34.2f)

\[
\frac{\text{match}[t.\tau](\text{sym}[a]; a_0.e_0; \text{sym}[a_1](e_1), \text{sym}[a_2](e_2), \ldots) \mapsto \Sigma \ e_1}{a \neq a_1}
\]

(34.2g)

The second premise of Rule (34.2c) imposes the requirement that the returned value from the \text{new} is independent of the symbol \(a\). In the statics the definition of mobility must be chosen so as to ensure that this condition is true. For example, the type \text{nat} would be mobile (under an eager dynamics), because numerals do not have symbols embedded within them.

34.3 Persistent Dynamics

The persistent, or heap-like, interpretation specifies that \(\text{new}[\sigma](a.e)\) generates a new symbol that may be used within \(e\), without imposing the requirement that the scope of \(a\) be limited to \(e\). This means that the symbol must continue to be available even after \(e\) returns a value. Consequently, all types may be regarded as mobile under a heap-like dynamics for symbol allocation.

To capture this we consider states of the form \(\nu \Sigma \{\ e\ \}\), where \(\Sigma\) declares a finite set of symbols and their types, and \(e\) is an expression possibly involving the symbols declared in \(\Sigma\). The transition judgement \(\nu \Sigma \{e\} \mapsto \nu \Sigma' \{e'\}\) states that evaluation of \(e\) relative to symbols \(\Sigma\) results in the expression \(e'\) in the extension \(\Sigma'\) of \(\Sigma\). New symbols come into existence during execution, but old symbols are never thrown away, nor are their associated types ever altered.
34.4 Safety

The persistent dynamics of \(L\{\text{sym}\} \) records the active set of symbols using a transition judgement of the form \(\nu \Sigma \{ e \} \rightarrow \nu \Sigma' \{ e' \} \) to ensure that symbols persist beyond their scope of declaration.

\[
\begin{align*}
\text{sym}[a] & \text{ val}_{\Sigma, \sigma} \quad (34.3a) \\
\nu \Sigma \{ \text{new}[\sigma](a.e) \} & \rightarrow \nu \Sigma, a : \sigma \{ e \} \\
\nu \Sigma \{ e \} & \rightarrow \nu \Sigma' \{ e' \} \\
\nu \Sigma \{ \text{match}[t.\tau](e; a_0.e_0;r_1,\ldots,r_n) \} & \rightarrow \nu \Sigma' \{ \text{match}[t.\tau](e'; a_0.e_0;r_1,\ldots,r_n) \} \quad (34.3c) \\
\nu \Sigma \{ \text{match}[t.\tau](\text{sym}[a]; a_0.e_0; \text{sym?}[a_1](e_1),\ldots) \} & \rightarrow \nu \Sigma \{ e_1 \} \\
\nu \Sigma \{ \text{match}[t.\tau](\text{sym}[a]; a_0.e_0; \text{sym?}[a_1](e_1),\text{sym?}[a_2](e_2),\ldots) \} & \rightarrow \nu \Sigma \{ \text{match}[t.\tau](\text{sym}[a]; a_0.e_0; \text{sym?}[a_1](e_1),\text{sym?}[a_2](e_2),\ldots) \} \quad (34.3f)
\end{align*}
\]

The chief difference compared to Rules (34.2) is in Rule (34.3b), which specifies that the set of active symbols is extended, and the body is executed in this extension without restriction.

34.4 Safety

We will focus on the safety of the persistent dynamics. The proof for the ephemeral dynamics is similar, provided that we ensure that if \(\tau \) mobile, then \(a \notin e \) for every symbol \(a \), and every expression \(e : \tau \) such that \(e \text{ val} \).

Theorem 34.1 (Preservation). Suppose that \(\vdash_{\Sigma} e : \tau \) and \(\nu \Sigma \{ e \} \rightarrow \nu \Sigma' \{ e' \} \). Then \(\Sigma' \supseteq \Sigma \) and \(\vdash_{\Sigma'} e' : \tau \).

Proof. By rule induction on Rules (34.3). The most interesting case arises when \(e = \text{sym}[a] \) and \(a = a_i \) for some rule \(\text{sym?}[a_i](e_i) \). By inversion of typing we know that \(\vdash_{\Sigma} e_i : [\sigma_i/\ell]\tau \). We are to show that \(\vdash_{\Sigma'} e_i : [\sigma/\ell]\tau \). Noting that if \(a = a_i \), then by unicity of typing, \(\sigma_i = \sigma \), the result follows immediately. \(\square \)
Lemma 34.2 (Canonical Forms). Suppose that $\vdash_\Sigma e : \sigma$ sym and $e \text{ val}_\Sigma$. Then $e = \text{sym}[a]$ for some a such that $\Sigma = \Sigma', a : \sigma$.

Proof. By rule induction on Rules (34.1), taking account of the definition of values.

Theorem 34.3 (Progress). Suppose that $\vdash_\Sigma e : \tau$. Then either $e \text{ val}_\Sigma$, or $\nu_\Sigma \{ e \} \rightarrow \nu_\Sigma' \{ e' \}$ for some Σ' and e'.

Proof. By rule induction on Rules (34.1). For a case analysis of the form $\text{match}_{t, \tau}(e; a_0.e_0;r_1, \ldots, r_n)$, where $e \text{ val}_\Sigma$, we have by Lemma 34.2 that $e = \text{sym}[a]$ for some symbol a of type σ. Then either $a = a_i$ for some rule $\text{sym?}[a_i](e_i)$, in which case we progress to e_i, or, if no rule matches, we progress to $[a/a_0]e_0$.

34.5 Exercises
Chapter 35

Fluid Binding

Recall from Chapter 11 that under the dynamic scope discipline evaluation is defined for expressions with free variables whose bindings are determined by capture-incurring substitution. Evaluation aborts if the binding of a variable is required in a context in which no binding for it exists. Otherwise, it uses whatever bindings for its free variables happen to be active at the point at which it is evaluated. In essence the bindings of variables are determined as late as possible during execution—just in time for evaluation to proceed. However, we found that as a language design dynamic scoping is deficient in (at least) two respects:

- Bound variables may not always be renamed in an expression without changing its meaning.
- Since the scopes of variables are resolved dynamically, it is difficult to ensure type safety.

These difficulties can be overcome by distinguishing two different concepts, namely static binding of variables, which is defined by substitution, and dynamic, or fluid, binding of symbols, which is defined by storing and retrieving bindings from a table during execution.

35.1 Statics

The language $\mathcal{L}\{\text{fluid}\}$ extends the language $\mathcal{L}\{\text{sym}\}$ defined in Chapter 34 with the following additional constructs:

$$\text{Expr } e ::= \text{put}[a](e_1; e_2) \quad \text{put } e_1 \text{ for } a \text{ in } e_2 \quad \text{binding}$$

$$\text{get}[a] \quad \text{get } a \quad \text{retrieval}$$
35.2 Dynamics

As in Chapter 34, the variable \(a \) ranges over some fixed set of symbols. The expression \(\text{get} \ a \) evaluates to the value of the current binding of \(a \), if it has one, and is stuck otherwise. The expression \(\text{put} \ e_1 \ \text{for} \ a \ \text{in} \ e_2 \) binds the symbol \(a \) to the value \(e_1 \) for the duration of the evaluation of \(e_2 \), at which point the binding of \(a \) reverts to what it was prior to the execution. The symbol \(a \) is not bound by the \(\text{put} \) expression, but is instead a parameter of it.

The statics of \(L\{\text{fluid}\} \) is defined by judgements of the form

\[
\Gamma \vdash \Sigma \ e : \tau,
\]

where \(\Sigma \) is a finite set of declarations of the pairwise distinct symbols \(a_1, \ldots, a_k \) and \(\Gamma \) is, as usual, a finite set of declarations of the pairwise distinct variables \(x_1, \ldots, x_n \).

The statics of \(L\{\text{fluid}\} \) extends that of \(L\{\text{sym}\} \) (see Chapter 34) with the following rules:

\[
\begin{align*}
\Gamma \vdash \Sigma, a : \tau & \quad \text{get} \[a \] : \tau & (35.1a) \\
\Gamma \vdash \Sigma, a : \tau & \quad \Gamma \vdash \Sigma, a : \tau & \quad \text{put} \[a \] (e_1; e_2) : \tau & (35.1b)
\end{align*}
\]

Rule (35.1b) specifies that the symbol \(a \) is a parameter of the expression that must be declared in \(\Sigma \).

35.2 Dynamics

We assume an ephemeral (stack-like) dynamics for symbols, as described in Chapter 34. The dynamics of \(L\{\text{fluid}\} \) maintains an association of values to symbols that changes in a stack-like manner during execution. We define a family of transition judgements of the form \(e \xrightarrow{\mu} \Sigma' \ e' \), where \(\Sigma \) is as in the statics, and \(\mu \) is a finite function mapping some subset of the symbols declared in \(\Sigma \) to values of appropriate type. If \(\mu \) is defined for some symbol \(a \), then it has the form \(\mu' \otimes \langle a : e \rangle \) for some \(\mu' \) and value \(e \). If, on the other hand, \(\mu \) is undefined for some symbol \(a \), we may regard it as having the form \(\mu' \otimes \langle a : _ \rangle \). We will write \(\langle a : _ \rangle \) to stand ambiguously for either \(\langle a : _ \rangle \) or \(\langle a : e \rangle \) for some expression \(e \).

The dynamics of \(L\{\text{fluid}\} \) is given by the following rules:

\[
\begin{align*}
\text{val} & : \Sigma, a : \tau \\
\text{get} \[a \] & : \mu \otimes \langle a : e \rangle \\
& : \Sigma, a : \tau & (35.2a)
\end{align*}
\]
35.3 Type Safety

\[
\begin{array}{c}
e_1 \xrightarrow{\mu} e'_1 \\
\text{put}[a](e_1;e_2) \xrightarrow{\mu} \text{put}[a](e'_1;e_2)
\end{array}
\] \hspace{1cm} (35.2a)

\[
\begin{array}{c}
e_1 \text{val}_{\Sigma,a:T} \quad e_2 \xrightarrow{\mu \otimes (a:_T)} e'_2 \\
\text{put}[a](e_1;e_2) \xrightarrow{\mu \otimes (a:_T)} \text{put}[a](e'_1;e'_2)
\end{array}
\] \hspace{1cm} (35.2b)

\[
\begin{array}{c}
e_1 \text{val}_{\Sigma,a:T} \quad e_2 \text{val}_{\Sigma,a:T} \\
\text{put}[a](e_1;e_2) \xrightarrow{\mu} e_2
\end{array}
\] \hspace{1cm} (35.2c)

Rule (35.2a) specifies that get\([a]\) evaluates to the current binding of \(a\), if any. Rule (35.2b) specifies that the binding for the symbol \(a\) is to be evaluated before the binding is created. Rule (35.2c) evaluates \(e_2\) in an environment in which the symbol \(a\) is bound to the value \(e_1\), regardless of whether or not \(a\) is already bound in the environment. Rule (35.2d) eliminates the fluid binding for \(a\) once evaluation of the extent of the binding has completed.

According to the dynamics defined by Rules (35.2), there is no transition of the form get\([a]\) \(\xrightarrow{\mu} e\) if \(\mu(a) = \bullet\). The judgement \(e \text{ unbound}_\Sigma\) states that execution of \(e\) leads to such a state. It is inductively defined by the following rules:

\[
\begin{array}{c}
\mu(a) = \bullet \\
\text{get}[a] \text{ unbound}_\mu
\end{array}
\] \hspace{1cm} (35.3a)

\[
\begin{array}{c}
e_1 \text{ unbound}_\mu \\
\text{put}[a](e_1;e_2) \text{ unbound}_\mu
\end{array}
\] \hspace{1cm} (35.3b)

\[
\begin{array}{c}
e_1 \text{ val}_\Sigma \quad e_2 \text{ unbound}_\mu \\
\text{put}[a](e_1;e_2) \text{ unbound}_\mu
\end{array}
\] \hspace{1cm} (35.3c)

In addition to these rules we would also have, in a richer language, rules to propagate the unbound symbol error through other language constructs, as described in Chapter 9.

35.3 Type Safety

Define the auxiliary judgement \(\mu : \Sigma\) by the following rules:

\[
\emptyset : \emptyset
\] \hspace{1cm} (35.4a)
35.4 Some Subtleties

$$\vdash_{\Sigma} e : \tau \quad \mu : \Sigma$$

$$\mu \otimes \langle a : e \rangle : \Sigma, a : \tau$$ \hspace{1cm} (35.4b)

$$\mu : \Sigma$$

$$\mu \otimes \langle a : \bullet \rangle : \Sigma, a : \tau$$ \hspace{1cm} (35.4c)

These rules specify that if a symbol is bound to a value, then that value must be of the type associated to the symbol by Σ. No demand is made in the case that the symbol is unbound (equivalently, bound to a “black hole”).

Theorem 35.1 (Preservation). If $e \xrightarrow{\mu}{\Sigma} e'$, where $\mu : \Sigma$ and $\vdash_{\Sigma} e : \tau$, then $\vdash_{\Sigma} e' : \tau$.

Proof. By rule induction on Rules (35.2). Rule (35.2a) is handled by the definition of $\mu : \Sigma$. Rule (35.2b) follows immediately by induction. Rule (35.2d) is handled by inversion of Rules (35.1). Finally, Rule (35.2c) is handled by inversion of Rules (35.1) and induction. \square

Theorem 35.2 (Progress). If $\vdash_{\Sigma} e : \tau$ and $\mu : \Sigma$, then either $e \text{ val}_{\Sigma}$, or $e \text{ unbound}_{\mu}$, or there exists e' such that $e \xrightarrow{\mu}{\Sigma} e'$.

Proof. By induction on Rules (35.1). For Rule (35.1a), we have $\Sigma \vdash a : \tau$ from the premise of the rule, and hence, since $\mu : \Sigma$, we have either $\mu(a) = \bullet$ or $\mu(a) = e$ for some e such that $\vdash_{\Sigma} e : \tau$. In the former case we have $e \text{ unbound}_{\mu}$, and in the latter we have $\text{ get}[a] \xrightarrow{\mu}{\Sigma} e$. For Rule (35.1b), we have by induction that either $e_1 \text{ val}_{\Sigma}$ or $e_1 \text{ unbound}_{\mu}$, or $e_1 \xrightarrow{\mu}{\Sigma} e_1'$. In the latter two cases we may apply Rule (35.2b) or Rule (35.3b), respectively. If $e_1 \text{ val}_{\Sigma}$, we apply induction to obtain that either $e_2 \text{ val}_{\Sigma}$, in which case Rule (35.2d) applies; $e_2 \text{ unbound}_{\mu}$, in which case Rule (35.3b) applies; or $e_2 \xrightarrow{\mu}{\Sigma} e_2'$, in which case Rule (35.2c) applies. \square

35.4 Some Subtleties

Fluid binding in the context of a first-order language is easy to understand. If the expression put e_1 for a in e_2 has a type such as nat, then its execution consists of the evaluation of e_2 to a number in the presence of a binding of a to the value of expression e_1. When execution is completed, the binding of a is dropped (reverted to its state in the surrounding context), and the value

13:08 Draft June 2, 2010
is returned. Since this value is a number, it cannot contain any reference to
a, and so no issue of its binding arises.

But what if the type of $\text{put } e_1 \text{ for } a \text{ in } e_2$ is a function type, so that the returned value is a λ-abstraction? In that case the body of the λ may contain references to the symbol a whose binding is dropped upon return. This raises an important question about the interaction between fluid binding and higher-order functions. For example, consider the expression

$$\text{put } 17 \text{ for } a \text{ in } \lambda (x:\text{nat}. \ x + \text{get } a), \quad (35.5)$$

which has type nat, given that a is a symbol of the same type. Let us assume, for the sake of discussion, that a is unbound at the point at which this expression is evaluated. Doing so binds a to the number 17, and returns the function $\lambda (x:\text{nat}. \ x + \text{get } a)$. This function contains the symbol a, but is returned to a context in which the symbol a is not bound. This means that, for example, application of the expression (35.5) to an argument will incur an error because the symbol a is not bound.

Contrast this with the similar expression

$$\text{let } y \text{ be } 17 \text{ in } \lambda (x:\text{nat}. \ x + y), \quad (35.6)$$

in which we have replaced the fluid-bound symbol, a, by a statically bound variable, y. This expression evaluates to $\lambda (x:\text{nat}. \ x + 17)$, which adds 17 to its argument when applied. There is never any possibility of an unbound symbol arising at execution time, precisely because the identification of scope and extent ensures that the association between a variable and its binding is never violated.

It is hard to say whether either of these two behaviors is “right” or “wrong.” Static binding is an important mechanism for encapsulation of behavior in a program; without static binding, one cannot ensure that the meaning of a variable is unchanged by the context in which it is used. Dynamic binding is used to avoid passing arguments to a function in order to specialize its behavior. Instead we rely on fluid binding to establish the binding of a symbol for the duration of execution of the function, avoiding the need to re-bind the fluids at each call site.

For example, let e stand for the value of expression (35.5), a λ-abstraction whose body is dependent on the binding of the symbol a. This imposes the requirement that the programmer provide a binding for a whenever e is applied to an argument. For example, the expression

$$\text{put } 7 \text{ for } a \text{ in } (e(9))$$
evaluates to 15, and the expression

\[
\text{put 8 for } a \text{ in } (e(\bar{a}))
\]

evaluates to 17. Writing just \(e(\bar{a})\), without a surrounding binding for \(a\), results in a run-time error attempting to retrieve the binding of the unbound symbol \(a\).

The alternative to fluid binding is to add an additional parameter to \(e\) for the binding of the symbol \(a\), so that one would write

\[
e'(7)(\bar{a})
\]

and

\[
e'(+8)(\bar{a}),
\]

respectively, where \(e'\) is the \(\lambda\)-abstraction

\[
\lambda (a:\text{nat}. \lambda (x:\text{nat}. x + a)).
\]

Using additional arguments can be slightly inconvenient, though, when several call sites have the same binding for \(a\). Using fluid binding we may write

\[
\text{put 7 for } a \text{ in } (e(8), e(\bar{a})),
\]

whereas using an additional argument we must write

\[
\langle e'(7)(8), e'(7)(\bar{a}) \rangle.
\]

However, such redundancy can be mitigated by simply factoring out the common part, writing

\[
\text{let } f \text{ be } e'(7) \text{ in } (f(8), f(\bar{a})).
\]

One might argue, then, that it is all a matter of taste. However, a significant drawback of using fluid binding is that the requirement to provide a binding for \(a\) is not apparent in the type of \(e\), whereas the type of \(e'\) reflects the demand for an additional argument. One may argue that the type system should record the dependency of a computation on a specified set of fluid-bound symbols. For example, the expression \(e\) might be given a type of the form \(\text{nat} \rightarrow_{a} \text{nat}\), reflecting the demand that a binding for \(a\) be provided at the call site.
35.5 Fluid References

The foregoing treatment of fluid binding makes explicit the target of a get or put operation in the syntax of the language. It is sometimes useful to defer to execution time the choice of which fluid a get or a put acts on. This may be achieved by introducing references to fluids, which allow the name of a fluid to be represented as a value. References come equipped with analogues of the get and put primitives, but for a dynamically determined symbol.

The syntax of references as an extension to $L\{\text{fluid}\}$ is given by the following grammar:

Type $\tau ::= \text{fluid}(\tau) \quad \tau \text{fluid} \quad \text{fluid}$

Expr $e ::= f[\alpha] \quad f[\alpha] \quad \text{reference}$

getfl(e) \quad getfl e \quad retrieval

putfl($e;e_1;e_2$) \quad putfl e is e_1 in e_2 \quad binding

The expression $f[\alpha]$ is the symbol α considered as a value of type $\text{fluid}(\tau)$. The expressions $\text{getfl}(e)$ and $\text{putfl}(e;e_1;e_2)$ are analogues of the get and put operations for fluid-bound symbols.

The statics of these constructs is given by the following rules:

$$\Gamma \vdash \Sigma, a: \tau \quad f[\alpha]: \text{fluid}(\tau)$$ (35.7a)

$$\Gamma \vdash \Sigma \quad e: \text{fluid}(\tau) \quad \Gamma \vdash \Sigma \quad \text{getfl}(e): \tau$$ (35.7b)

$$\Gamma \vdash \Sigma \quad e: \text{fluid}(\tau) \quad \Gamma \vdash \Sigma \quad e_1: \tau \quad \Gamma \vdash \Sigma \quad e_2: \tau_2$$

$$\Gamma \vdash \Sigma \quad \text{putfl}(e;e_1;e_2): \tau_2$$ (35.7c)

Since we are assuming a stack-like allocation of symbols, references to fluids cannot be considered to be mobile!

The dynamics of references consists of resolving the referent and deferring to the underlying primitives acting on symbols.

$$f[\alpha] \text{ val}_{\Sigma, \alpha: \tau}$$ (35.8a)

$$e \xrightarrow{\mu} e'$$

$$\text{getfl}(e) \xrightarrow{\mu} \text{getfl}(e')$$ (35.8b)
Fluid references are easily definable using the symbol type defined in Chapter 34.

\[
\tau_{\text{fluid}} = \tau_{\text{sym}}
\]

\[
\text{getfl} e = \text{match } e \{ \varepsilon \} \text{ ow } a \text{ get } a
\]

\[
\text{putfl} e \text{ is } e_1 \text{ in } e_2 = \text{match } e \{ \varepsilon \} \text{ ow } a \text{ put } e_1 \text{ for } a \text{ in } e_2.
\]

The match operation serves to introduce the symbol specified by \(e \) so that we may refer to the corresponding fluid binding primitives.

New fluid references may be introduced by writing

\[
\text{newfl } x : \tau_{\text{fluid}} = e_1 \text{ in } e_2,
\]

which stands for the compound expression

\[
\text{new } a : \tau \text{ in (put } e_1 \text{ for } a \text{ in (let } x \text{ be fl[a] in } e_2)).
\]

A new fluid reference is introduced by introducing a fresh symbol, initializing its binding, and passing a reference to it into the scope of the declaration.

35.6 Exercises

1. Formalize *deep binding* and *shallow binding* using the stack machine of Chapter 27.
Chapter 36

Dynamic Classification

Sum types may be used to classify data values by labelling them with a class identifier that determines the type of the associated data item. For example, a sum type of the form $\sum \langle i_0 : \tau_{i_0}, \ldots, i_{n-1} : \tau_{i_{n-1}} \rangle$ consists of n distinct classes of data, with the ith class labelling a value of type τ_i. A value of this type is introduced by the expression $i \cdot e_i$, where $0 \leq i < n$ and $e_i : \tau_i$, and is eliminated by an n-ary case analysis binding the variable x_i to the value of type τ_i labelled with class i.

Sum types are useful in situations where the type of a data item can only be determined at execution time, for example when processing input from an external data source. For example, a data stream from a sensor might consist of several different types of data according to the form of a stimulus. To ensure safe processing the items in the stream are labeled with a class that determines the type of the underlying datum. The items are processed by performing a case analysis on the class, and passing the underlying datum to a handler for items of that class.

A difficulty with using sums for this purpose, however, is that the developer must specify in advance the classes of data that are to be considered. That is, sums support static classification of data based on a fixed collection of classes. While this works well in the vast majority of cases, there are situations where static classification is inadequate, and dynamic classification is required. For example, we may wish to classify data in order to keep it secret from an intermediary in a computation. By creating a fresh class at execution time, two parties engaging in a communication can arrange that they, and only they, are able to compute with a given datum; all others must merely handle it passively without examining its structure or value.
One example of this sort of interaction arises when programming with exceptions, as described in Chapter 28. One may consider the value associated with an exception to be a secret that is shared between the program component that raises the exception and the program component that handles it. To ensure this, exception values are dynamically classified, with the class being known to the raiser and to the handler, but to no others. No intervening handler may intercept the exception value, because it cannot decode the exception value without knowing its class.

Dynamic, as opposed to static, classification of exception values is required to support modularity. For if two different program components happened to use the same, statically determined, class for an exception, then a handler intended for one could inadvertently intercept an exception raised by the other. To ensure that such collisions cannot occur while maintaining modularity, dynamic classification is required. A class declared in a module is generated when that module is initialized, ensuring that each module generates its own classes, regardless of the names that happen to be chosen by the programmer. This ensures that no conflicts—or accidental misinterpretations—can arise across independent components of a program.

36.1 Statics

A classified value consists of a value of some type, \(\tau \), labelled by a symbol of type \(\tau \). To compute with a classified value, we check whether its class is among a specified finite set of known classes (of known types). If so, the underlying value of that type is passed to an expression corresponding to that class. If not, a default expression is evaluated.

The type of classified values, and its associated operations, are codified by the following grammar:

\[
\begin{align*}
\text{Type } \tau & ::= \text{clsfd} \\
\text{Expr } e & ::= \text{in}[\alpha](e) \\
& \quad \quad \quad \quad a \cdot e \quad \text{instance} \\
& \quad \quad \quad \quad \text{match}(e; e_0; r_1, \ldots, r_n) \quad \text{match } e \{ r_1 \mid \ldots \mid r_n \} \circ e_0 \\
& \quad \quad \quad \quad \text{case analysis} \\
\text{Rule } r & ::= \text{in?}[\alpha](x, e) \\
& \quad \quad \quad \quad a \cdot x \Rightarrow e
\end{align*}
\]

The expression \(a \cdot e \) is a classified value with class \(a \) and underlying value \(e \). The expression \(\text{match } e \{ r_1 \mid \ldots \mid r_n \} \circ e_0 \) branches on the class of \(e \) according to rules \(r_1, \ldots, r_n \). Each rule \(r_i \) has the form \(a_i \cdot x_i \Rightarrow e_i \), consisting of a symbol, \(a_i \), representing a candidate class, a variable, \(x_i \), representing the
36.2 Dynamics

associated data value for that class, and an expression, \(e_i \), to be evaluated for a classified value with class \(a_i \). If the class of the analyzed value does not match any of the rules, the default expression, \(e_0 \), is evaluated instead.

The statics of classified values is given by the following rules:

\[
\begin{align*}
\Gamma &\vdash \Sigma, a : \tau \\
\Gamma \vdash \Sigma, \text{in}[a](e) : \text{clsfd}
\end{align*}
\]

\[
\begin{align*}
\Gamma &\vdash \Sigma, e_0 : \tau \\
\Gamma &\vdash \Sigma, r_1 : \sigma_1 > \tau \\
\ldots \\
\Gamma &\vdash \Sigma, r_n : \sigma_n > \tau \\
\Gamma &\vdash \Sigma, \text{match}(e; e_0; r_1, \ldots, r_n) : \tau \\
\Gamma, x : \sigma &\vdash \Sigma, a : \tau \\
\Gamma &\vdash \Sigma, \text{in?}[a](x.e) : \sigma > \tau
\end{align*}
\]

36.2 Dynamics

Since a classified value consists of a symbol designating its class and an associated value, it is essential that symbols be endowed with a heap dynamics (as defined in Chapter 34) so that classified values may be used without restriction.

\[
\begin{align*}
\text{in}[a](e) &\text{ val}_{\Sigma,a: \tau} \\
\nu \Sigma \{ e \} &\mapsto \nu \Sigma' \{ e' \} \\
\nu \Sigma \{ \text{in}[a](e) \} &\mapsto \nu \Sigma' \{ \text{in}[a](e') \} \\
\nu \Sigma \{ e \} &\mapsto \nu \Sigma' \{ e' \} \\
\nu \Sigma \{ \text{match}(e; e_0; r_1, \ldots, r_n) \} &\mapsto \nu \Sigma' \{ \text{match}(e'; e_0; r_1, \ldots, r_n) \} \\
\text{in}[a](e) &\text{ val}_{\Sigma} \\
\nu \Sigma \{ \text{match}(\text{in}[a](e); e_0; e) \} &\mapsto \nu \Sigma \{ e_0 \} \\
\nu \Sigma \{ \text{match}(\text{in}[a](e); e_0; \text{in?}[a](x_1.e_1), \ldots) \} &\mapsto \nu \Sigma \{ [e/x_1]e_1 \} \\
in[a](e) &\text{ val}_{\Sigma} \\
\nu \Sigma \{ \text{match}(\text{in}[a](e); e_0; \text{in?}[a_1](x_1.e_1), \text{in?}[a_2](x_2.e_2), \ldots) \} &\mapsto \nu \Sigma \{ \}\end{align*}
\]

Rule (36.2d) specifies that the default case is evaluated when all rules have been exhausted (that is, the sequence of rules is empty). Rules (36.2e) and (36.2f) specify that each rule is considered in turn, matching the class of the analyzed expression to the class of each of the successive rules of the case analysis.
36.3 Defining Dynamic Classification

Dynamic classification is definable from symbol, product, and existential types. The type \texttt{clsfd} stands for the existential type

\[
\exists (t \times (t \times t)).
\]

The classified value \(a \cdot e\) is defined to be the package

\[
\text{pack } t \text{ with } (a, e) \text{ as } \exists (t \times (t \times t)),
\]

where \(a\) is a symbol of type \(\tau\). Now suppose that the class case expression \(\text{match } e \{ r_1 | \ldots | r_n \} \text{ ow } e'\) has type \(\rho\), where \(r_i\) is the rule \(a_i \cdot x_i \Rightarrow e_i : \tau_i > \rho\). This expression is defined to be

\[
\text{open } e \text{ as } t \text{ with } (x, y) : t \times t \text{ in } (e_{\text{body}}(y)),
\]

where \(e_{\text{body}}\) is an expression to be defined shortly. Case analysis proceeds by opening the package, \(e\), representing the classified value, and decomposing it into a type, \(t\), a symbol, \(x\), of type \(t \times \text{sym}\), and an underlying value, \(y\), of type \(t\). The body of the \texttt{open} analyzes the class \(x\), yielding a function of type \(t \rightarrow \rho\), which is then applied to \(y\) to pass the underlying value to the appropriate branch.

The core of the case analysis, namely the expression \(e_{\text{body}}\), analyzes the encapsulated class, \(x\), of the package. The case analysis is parameterized by the type abstractor \(u \cdot u \rightarrow \rho\), where \(u\) is not free in \(\rho\). The overall type of the case is \([t/u]u \rightarrow \rho = t \rightarrow \rho\), which ensures that the application to \(y\) to the classified value is well-typed. Each branch of the case analysis has type \(\tau_i \rightarrow \rho\). Putting it all together, the expression \(e_{\text{body}}\) is defined to be the symbol match expression

\[
\text{match } x \{ r'_1 | \ldots | r'_n \} \text{ ow } \lambda (_ : t.e_0),
\]
where for each $1 \leq i \leq n$, the rule $r_i' : \tau_i \rightarrow (\tau_i \rightarrow \rho)$ is defined to be
\[
a_i \Rightarrow \lambda \langle x_i : \tau_i. e_i \rangle.
\]
The statics and dynamics of clsfd are derivable from those of symbols using these definitions.

36.4 Classifying Secrets

Dynamic classification may be used to enforce confidentiality and integrity of data values in a program. A value of type clsfd may only be constructed by sealing it with some class, a, and may only be deconstructed by a case analysis that includes a branch for a. By controlling which parties in a multi-party interaction have access to the classifier, a, we may control how classified values are created (ensuring their integrity) and how they are inspected (ensuring their confidentiality). Any party that lacks access to a cannot decipher a value classified by a, nor may it create a classified value with this class. Because classes are dynamically generated symbols, they provide an absolute confidentiality guarantee among parties in a computation.

To make this more precise, let us consider a simple protocol for controlling the integrity and confidentiality of data in a program. First, we allocate a fresh symbol, a, with which we will classify values of a specified type, τ. Then we return two functions, of types $\tau \rightarrow \text{clsfd}$ and $\text{clsfd} \rightarrow \tau \text{opt}$, that, respectively, create a classified value of class a and extract the underlying value classified with class a, if it is indeed classified by a.

\[
\text{newsym } a : \tau \text{ in}
\begin{array}{l}
\lambda \langle \lambda (x : \tau. a \cdot x), \\
\lambda (x : \text{clsfd}. \text{match} x \{ a \cdot y \Rightarrow \text{just}(y) \} \text{own} \rangle \rangle.
\end{array}
\]

When executed, the symbol a is ensured (by α-equivalence) to be fresh, and a pair consisting of a constructor and destructor function associated with class a are returned. Thereafter, the symbol a is out of scope, and therefore can never again be allocated by any subsequent new operation. Moreover, no value of type τ can be classified with class a, nor can any value classified with class a be deconstructed, other than by calling the constructor and destructor functions associated with the class a.

1. Of course, this guarantee is for programs written in conformance with the statics given here. If the abstraction imposed by the type system is violated, no guarantees of confidentiality can be made.
To enforce the integrity of a value of type τ, it is necessary to control how values of this type are introduced. This can be achieved by introducing a dynamic class, a, of type τ to serve as a certificate of integrity of a value of that type. By ensuring that only parties entrusted to create a value of type τ have access to the constructor for the class a, we guarantee the provenance of any value of this class—it can only have been created by a trusted party. We may rely on the integrity of that value insofar as the trusted parties are honest in that they do not violate the integrity constraint which they have been entrusted to ensure.

To enforce the confidentiality of a classified value of class a, only those parties entrusted to recover the underlying data value of type τ are to be given the deconstructor for a. Since only those parties with access to the destructor for a can recover the underlying datum of a classified value of class a, we can be sure that the confidentiality of that datum is respected insofar as the entrusted parties are honest in that they do not disclose the value with which they have been entrusted.

What makes this protocol work is the combination of α-equivalence to ensure the freshness of dynamically allocated classes, and the persistent dynamics for symbol generation given in Chapter 34. This ensures that generated classes are absolutely unguessable secrets. Achieving this in practice amounts to having a central authority that maintains the unicity of classes among all parties that may introduce them. In practice this guarantee is slightly weakening using probabilistic techniques to ensure that the secret is unguessable with high probability, because doing so avoids the need for a central authority.\footnote{At the expense, though, of requiring a source of randomness, which may itself be seen as a kind of central authority for ensuring unicity.}

36.5 Exercises

1. Show how to use dynamic classification to implement a type of returned values for exceptions with the property that the raiser and handler agree on the class of value to be exchanged, and no other parties may raise or handle the agreed-upon exception value.
Part XIII

Storage Effects
Chapter 37

Modernized Algol

Modernized Algol, or MA, is an imperative, block-structured programming language based on the classic language Algol. MA may be seen as an extension to PCF with a new syntactic sort of commands that act on assignable variables (or assignables for short) by retrieving and altering their contents. Assignables are introduced by declaring them for use within a specified scope; this is the essence of block structure. Commands may be combined by sequencing, and may be iterated using recursion.

MA maintains a careful separation between pure expressions, whose meaning does not depend on any assignables, and impure commands, whose meaning is given in terms of assignables. This ensures that the evaluation order for expressions is not constrained by the presence of assignables in the language, and allows for expressions to be manipulated much as in PCF. Commands, on the other hand, have a tightly constrained execution order, because the execution of one may affect the meaning of another.

A distinctive feature of MA is that it adheres to the stack discipline, which means that assignables are allocated on entry to the scope of their declaration, and deallocated on exit, using a conventional stack discipline. This avoids the need for more complex forms of storage management, at the expense of reducing the expressiveness of the language. (Relaxing this restriction is the subject of Chapter 38.)

37.1 Basic Commands

The syntax of $\mathcal{L}\{	ext{nat cmd} \rightarrow\}$ distinguishes pure expressions from impure commands. The expressions include those of $\mathcal{L}\{	ext{nat} \rightarrow\}$ (as described in Chapter 13), augmented with one additional construct, and the commands
are those of a simple imperative programming language based on assignment. The language maintains a sharp distinction between mathematical variables, or just variables, and assignable variables, or just assignables. Variables are introduced by λ-abstraction, and are given meaning by substitution. Assignables are introduced by a declaration, and are given meaning by assignment and retrieval of their contents, which is, for the time being, restricted to natural numbers. Expressions evaluate to values, and have no effect on assignables. Commands are executed for their effect on assignables, and also return a value. Composition of commands not only sequences their execution order, but also passes the value returned by the first to the second before it is executed. The returned value of a command is, for the time being, restricted to the natural numbers. (But see Section 37.3 on page 335 for the general case.)

The syntax of $L\{\text{nat cmd} \rightarrow\}$ is given by the following grammar, from which we have omitted repetition of the expression syntax of $L\{\text{nat} \rightarrow\}$ for the sake of brevity.

\[
\begin{align*}
\text{Type } \tau & ::= \text{cmd cmd} \quad \text{command} \\
\text{Expr } e & ::= \text{do}(m) \quad \text{do m} \quad \text{encapsulation} \\
\text{Cmd } m & ::= \text{ret}(e) \quad \text{ret e} \quad \text{return} \\
& \quad \text{bnd}(e; x. m) \quad \text{bnd x} \leftarrow e ; m \quad \text{sequence} \\
& \quad \text{dcl}(e; a. m) \quad \text{dcl a} := e \text{ in } m \quad \text{new assignable} \\
& \quad \text{get}[a] \quad a \quad \text{fetch} \\
& \quad \text{set}[a](e) \quad a := e \quad \text{assign}
\end{align*}
\]

The expression $\text{do}(m)$ consists of the unevaluated command, m, thought of as a value of type cmd. The command, $\text{ret}(e)$, returns the value of the expression e without having any effect on the assignables. The command $\text{bnd}(e; x. m)$ evaluates e to an encapulated command, which is then executed and its returned value is substituted for x prior to executing m. The command $\text{dcl}(e; a. m)$ introduces a new assignable, a, for use within the command, m, whose initial contents is given by the expression, e. The command $\text{get}[a]$ returns the current contents of the assignable, a, and the command $\text{set}[a](e)$ changes the contents of the assignable a to the value of e, and returns that value.

37.1.1 Statics

The statics of $L\{\text{nat cmd} \rightarrow\}$ consists of two forms of judgement:

1. Expression typing: $\Gamma \vdash_{\Sigma} e : \tau$.

13:08
2. Command formation: $\Gamma \vdash_\Sigma m \text{ ok}$.

The context, Γ, specifies the types of variables, as usual, and the signature, Σ, consists of a finite set of assignables. These judgements are inductively defined by the following rules:

$$
\Gamma \vdash_\Sigma m \text{ ok} \quad \Gamma \vdash_\Sigma \text{ do}(m) : \text{ cmd} \quad (37.1a)
$$

$$
\Gamma \vdash_\Sigma e : \text{ nat} \quad \Gamma \vdash_\Sigma \text{ ret}(e) \text{ ok} \quad (37.1b)
$$

$$
\Gamma \vdash_\Sigma e : \text{ cmd} \quad \Gamma, x : \text{ nat} \vdash_\Sigma m \text{ ok} \quad \Gamma \vdash_\Sigma \text{ bnd}(e; x. m) \text{ ok} \quad (37.1c)
$$

$$
\Gamma \vdash_\Sigma e : \text{ nat} \quad \Gamma \vdash_\Sigma, a m \text{ ok} \quad \Gamma \vdash_\Sigma \text{ dcl}(e; a. m) \text{ ok} \quad (37.1d)
$$

$$
\Gamma \vdash_\Sigma, a \text{ get}[a] \text{ ok} \quad (37.1e)
$$

$$
\Gamma \vdash_\Sigma, a e : \text{ nat} \quad \Gamma \vdash_\Sigma, a \text{ set}[a](e) \text{ ok} \quad (37.1f)
$$

Rule (37.1a) is the introductory rule for the type cmd, and Rule (37.1c) is the corresponding eliminatory form. Rule (37.1d) introduces a new assignable for use within a specified command. The name, a, of the assignable is bound by the declaration, and hence may be renamed to satisfy the implicit constraint that it not already be present in Σ. Rule (37.1e) states that the command to retrieve the contents of an assignable, a, returns a natural number. Rule (37.1f) states that we may assign a natural number to an assignable.

37.1.2 Dynamics

The dynamics of $\mathcal{L}\{\text{nat cmd} \rightarrow\}$ is defined in terms of a memory, μ, a finite function assigning a numeral to each of a finite set of assignables.

The dynamics of expressions consists of these two judgement forms:

1. $e \text{ val}_\Sigma$, stating that e is a value relative to Σ.

2. $e \rightarrow^{\Sigma} e'$, stating that the expression e steps to the expression e'.
These judgements are inductively defined by the following rules, together with the rules defining the dynamics of $L\{\text{nat} \rightarrow \}$ (see Chapter 13). It is important, however, that the successor operation be given an *eager*, rather than *lazy*, dynamics so that a closed value of type nat is a numeral.

\[
\text{do}(m) \xrightarrow{\Sigma} \text{val}_\Sigma
\] (37.2a)

Rule (37.2a) states that an encapsulated command is a value.

The dynamics of commands consists of these two judgement forms:

1. \(m \parallel \mu \text{ final}_\Sigma\) stating that the state \(m \parallel \mu\) is fully executed.

2. \(m \parallel \mu \xrightarrow{\Sigma} m' \parallel \mu'\) stating that the state \(m \parallel \mu\) steps to the state \(m' \parallel \mu'\), relative to the set of assignables, \(\Sigma\).

These judgements are inductively defined by the following rules:

\[
\frac{e \xrightarrow{\Sigma} e'}{\text{ret}(e) \parallel \mu \xrightarrow{\Sigma} \text{ret}(e') \parallel \mu} \quad (37.3a)
\]

\[
\frac{e \xrightarrow{\Sigma} e'}{\text{ret}(e) \parallel \mu \xrightarrow{\Sigma} \text{ret}(e') \parallel \mu} \quad (37.3b)
\]

\[
\frac{\text{bnd}(e; x. m) \parallel \mu \xrightarrow{\Sigma} \text{bnd}(e'; x. m) \parallel \mu}{e \xrightarrow{\Sigma} e'} \quad (37.3c)
\]

\[
\frac{\text{val}_\Sigma}{\text{bnd}(\text{do}(\text{ret}(e)); x. m) \parallel \mu \xrightarrow{\Sigma} [e/x]m \parallel \mu} \quad (37.3d)
\]

\[
\frac{m_1 \parallel \mu \xrightarrow{\Sigma} m'_1 \parallel \mu'}{\text{bnd}(\text{do}(m_1); x. m_2) \parallel \mu \xrightarrow{\Sigma} \text{bnd}(\text{do}(m'_1); x. m_2) \parallel \mu'} \quad (37.3e)
\]

\[
\frac{\text{get}[a] \parallel \mu \otimes \langle a : e \rangle \xrightarrow{\Sigma, a} \text{ret}(e) \parallel \mu \otimes \langle a : e \rangle}{e \xrightarrow{\Sigma} e'} \quad (37.3f)
\]

\[
\frac{\text{set}[a](e) \parallel \mu \xrightarrow{\Sigma} \text{set}[a](e') \parallel \mu}{e \xrightarrow{\Sigma} e'} \quad (37.3g)
\]

\[
\frac{\text{set}[a](e) \parallel \mu \otimes \langle a : e \rangle \xrightarrow{\Sigma} \text{ret}(e) \parallel \mu \otimes \langle a : e \rangle}{e \xrightarrow{\Sigma} e'} \quad (37.3h)
\]
37.1 Basic Commands

\[
\begin{align*}
&\vdash_{\Sigma} e \mapsto e' \\
&\quad \text{dcl}(e; a.m) \parallel \mu \mapsto \text{dcl}(e'; a.m') \parallel \mu' \\
&\quad e \text{ val}_{\Sigma} \quad m \parallel \mu \otimes \langle a : e \rangle \mapsto m' \parallel \mu' \otimes \langle a : e' \rangle \\
&\quad \text{dcl}(e; a.m) \parallel \mu \mapsto \text{dcl}(e'; a.m') \parallel \mu' \\
&\quad e \text{ val}_{\Sigma} \quad e' \text{ val}_{\Sigma,a} \\
&\quad \text{dcl}(e; a.\text{ ret}(e')) \parallel \mu \mapsto \text{ ret}(e') \parallel \mu
\end{align*}
\]

(37.3i)

(37.3j)

(37.3k)

Rule (37.3a) specifies that a ret command is final if its argument is a value. Rules (37.3c) to (37.3d) specify the dynamics of sequential composition. The expression, \(e\), must, by virtue of the type system, evaluate to an encapsulated command, which is to be executed to determine its return value, which is then substituted into \(m\) before executing it.

Rules (37.3i) to (37.3k) define the concept of block structure in a programming language. Declarations adhere to the stack discipline in that an assignable is allocated for the duration of evaluation of the body of the declaration, and deallocated after evaluation of the body is complete. Therefore the lifetime of an assignable can be identified with its scope, and hence we may visualize the dynamic lifetimes of assignables as being nested inside one another, in the same manner as their static scopes are nested inside one another. This stack-like behavior of assignables is a characteristic feature of what are known as Algol-like languages.

37.1.3 Safety

The judgement \(m \parallel \mu \text{ ok}_{\Sigma}\) is defined by the rule

\[
\vdash_{\Sigma} m \text{ ok} \quad \mu : \Sigma
\]

(37.4)

where the auxiliary judgement \(\mu : \Sigma\) is defined by the rule

\[
\forall a : \sigma \in \Sigma \quad \exists e \quad \mu(a) = e \text{ and } e \text{ val}_{\emptyset} \text{ and } \vdash_{\emptyset} e : \text{nat} \quad \mu : \Sigma
\]

(37.5)

That is, the memory must bind a number to each location in \(\Sigma\).

Theorem 37.1 (Preservation).

1. If \(e \mapsto e'\) and \(\vdash_{\Sigma} e : \tau\), then \(\vdash_{\Sigma} e' : \tau\).
2. If \(m \parallel \mu \rightarrow m' \parallel \mu' \), with \(\Sigma m \ ok \) and \(\mu : \Sigma \), then \(\Sigma m' \ ok \) and \(\mu' : \Sigma \).

Proof. Simultaneously, by induction on Rules (37.2) and (37.3).

Consider Rule (37.3j). Assume that \(\Sigma dcl(e; a.m) \ ok \) and \(\mu : \Sigma \). By inversion of typing we have \(\Sigma e : \text{nat} \) and \(\Sigma, a m \ ok \). Since \(e \ val \Sigma \) and \(\mu \otimes (a : e) : \Sigma, a \), by induction we have \(\Sigma, a m' \ ok \) and \(\mu' \otimes (a : e) : \Sigma, a \), from which the result follows immediately.

Consider Rule (37.3k). Assume that \(\Sigma dcl(e; a.\text{ret}(e')) \ ok \) and \(\mu : \Sigma \). By inversion we have \(\Sigma e : \text{nat} \), \(\Sigma, a \text{ret}(e') \ ok \), and hence that \(\Sigma, a e' : \text{nat} \). But since \(e' \ val \Sigma, a \), we also have \(\Sigma e' : \text{nat} \), as required. \(\Box \)

Theorem 37.2 (Progress).

1. If \(\Sigma e : \tau \), then either \(e \ val \Sigma \), or there exists \(e' \) such that \(e \rightarrow e' \).

2. If \(\Sigma m \ ok \) and \(\mu : \Sigma \), then either \(m \parallel \mu \rightarrow \mu' \) or \(m \parallel \mu \rightarrow m' \parallel \mu' \) for some \(\mu' \) and \(m' \).

Proof. Simultaneously, by induction on Rules (37.1). Consider Rule (37.1d). By the first inductive hypothesis we have either \(e \rightarrow e' \) or \(e \ val \Sigma \). In the former case Rule (37.3i) applies. In the latter, we have by the second inductive hypothesis either \(\Sigma m \ ok \) and \(\mu \otimes (a : e) \rightarrow \Sigma m' \parallel \mu' \otimes (a : e') \). In the former case we apply Rule (37.3k), and in the latter, Rule (37.3j). \(\Box \)

A variant of \(L \{ \text{nat cmd } \rightarrow \} \) treats the operation \(\text{get}[a] \) as a form of expression, rather than as a form of command. This allows us to write expressions such as \(a + b \) for the sum of the contents of assignables \(a \) and \(b \), rather than have to write a command that explicitly fetches the contents of \(a \) and \(b \), returning their sum.

To allow for this we must enrich the dynamics of expressions to allow access to the bindings of the active assignables, writing \(e \rightarrow \mu \rightarrow e' \) to state that one step of evaluation of the expression \(e \) relative to \(\Sigma \) and \(\mu \) results in the expression \(e' \). The definition of this judgement includes the rule

\[
\frac{e \ val \Sigma}{\Sigma, a \text{get}[a] \mu \rightarrow (a : e) \rightarrow e'} \quad \text{(37.6)}
\]

which allows an expression to depend on the contents of an assignable.
37.2 Some Programming Idioms

The language $L\{\text{nat cmd} \rightarrow\}$ is designed to expose the elegant interplay between the execution of an expression for its value and the execution of a command for its effect on assignables. In this section we show how to derive several standard idioms of imperative programming in $L\{\text{nat cmd} \rightarrow\}$.

We define the sequential composition of commands, written $\{x \leftarrow m_1 ; m_2\}$, to stand for the command $\text{bnd } x \leftarrow \text{do } m_1 \,; \, m_2$. This generalizes to an n-ary form by defining

$$\{x_1 \leftarrow m_1 ; \ldots ; x_{n-1} \leftarrow m_{n-1} ; m_n\},$$

to stand for the iterated composition

$$\{x_1 \leftarrow m_1 ; \ldots ; \{x_{n-1} \leftarrow m_{n-1} ; \{x_n \leftarrow m_n ; \text{ret } x_n\}\}\}\}.$$

We sometimes write just $\{m_1 ; m_2\}$ for the composition $\{. \leftarrow m_1 ; m_2\}$ in which the returned value from m_1 is ignored; this generalizes in the obvious way to an n-ary form.

A related idiom, the command $\text{run } e$, executes an encapsulated command and returns its result. It stands for the sequentialization $\text{bnd } x \leftarrow e ; \text{ret } x$.

The conditional command, $\text{if } (m) m_1 \text{ else } m_2$, executes either m_1 or m_2 according to whether the result of executing m is zero or not:

$$\{x \leftarrow m ; \text{run } (\text{ifz } x \{z \Rightarrow \text{do } m_1 \mid s(.) \Rightarrow \text{do } m_2\})\}.$$

The returned value of the conditional is the value returned by the selected command.

The while loop command, $\text{while } (m_1) m_2$, repeatedly executes the command m_2 while the command m_1 yields a non-zero number. It is defined as follows:

$$\text{run } (\text{fix loop: cmd is do } (\text{if } (m_1) \{\text{ret } z\} \text{ else } \{m_2 ; \text{run loop}\})).$$

This command runs the self-referential encapsulated command that, when executed, first executes m_1, branching on the result. If the result is zero, the loop returns zero (arbitrarily). If the result is non-zero, the command m_2 is executed and the loop is repeated.

A procedure is a function of type $\tau \rightarrow \text{cmd}$ that takes an argument of some type, τ, and yields an unexecuted command as result. A procedure call is the
composition of a function application with the activation of the resulting command. If \(e_1 \) is a procedure and \(e_2 \) is its argument, then the procedure call \(\text{call}\ e_1(e_2) \) is defined to be the command \(\text{run}\ (e_1(e_2)) \), which immediately runs the result of applying \(e_1 \) to \(e_2 \).

As an example, here is a procedure of type \(\text{nat} \rightarrow \text{cmd} \) that returns the factorial of its argument:

\[
\lambda x : \text{nat}. \; \text{do} \left\{ \right.
\begin{array}{l}
dcl r := 1 \; \text{in} \\
dcl a := x \; \text{in} \\
\{ \text{whilenz} (\{ a \}) \{ \\
\quad r' \leftarrow r \\
\quad a' \leftarrow a \\
\quad r := (x-a'+1) \times r' \\
\quad a := a'-1 \\
\} \\
\quad r' \leftarrow r \\
\quad \text{ret} (r')
\end{array}
\right.
\]

The loop maintains that invariant that the contents of \(r \) is the factorial of \(x \) minus the contents of \(a \). Initialization makes this invariant true, and it is preserved by each iteration of the loop, so that upon completion of the loop the assignable \(a \) contains 0 and \(r \) contains the factorial of \(x \), as required.

If, as described in Section 37.2 on the preceding page, we admit assignables as forms of expression, this example may be simplified as follows:

\[
\lambda x : \text{nat}. \; \text{do} \left\{ \right.
\begin{array}{l}
dcl r := 1 \; \text{in} \\
dcl a := x \; \text{in} \\
\{ \text{whilenz} (a) \{ \\
\quad r := (x-a+1) \times r \\
\quad a := a-1 \\
\} \\
\quad \text{ret} (r)
\end{array}
\right.
\]

An advantage of this formulation of the language is that the condition governing the \text{while} loop may now be regarded as a form of expression, rather than a form of command.
37.3 Typed Commands and Typed Assignables

So far we have restricted the type of the returned value of a command, and the contents of an assignable, to be \textit{nat}. Can this restriction be relaxed, while adhering to the stack discipline?

The key to admitting other types of returned value and assignable variables is to consider the proof of Theorem 37.1 on page 331. There we relied on the fact that a value of type \textit{nat} is a composition of successors, starting from zero, to ensure that the value is well-typed even in the absence of the locally declared assignable, \textit{a}. The proof breaks down, and indeed the preservation theorem is false, when the return type of a command or the contents type of an assignable is unrestricted.

For example, if we may return values of procedure type, then we may violate safety as follows:

\[
dcl \textit{a} := \text{z in \ ret (} \lambda (x: \textit{nat}. \text{do \{a := x\}}).\]

This command, when executed, allocates a new assignable, \textit{a}, and returns a procedure that, when called, assigns its argument to \textit{a}. But this makes no sense, because the assignable, \textit{a}, is deallocated when the body of the declaration returns, but the returned value still refers to it! If the returned procedure is called, execution will get stuck in the attempt to assign to \textit{a}.

A similar example shows that admitting assignables of arbitrary type is also unsound:

\[
dcl \textit{a} := \text{z in \{b := \lambda (x: \textit{nat}. \text{do \{a := x\}}) ; \text{ret} \textit{z}\}.}\]

Here we assume that \textit{b} is an assignable of type \textit{nat} \rightarrow \textit{nat cmd}. We assign to it a procedure that uses a locally declared assignable, \textit{a}, and then leaves the scope of the declaration. If we then call the procedure stored in \textit{b}, execution will get stuck attempting to assign to the non-existent assignable, \textit{a}, or, even worse, assign to a different assignable that happens to be named \textit{a}!

The critical step in the proof of safety given in Section 37.1.3 on page 331 is to ensure the following \textit{safety condition}:

\[
\text{if } \vdash_{\Sigma, a} \textit{e} : \tau \text{ and } \text{val}_{\Sigma, a} \text{ then } \vdash_{\Sigma} \textit{e} : \tau. \quad (37.7)
\]

When \(\tau = \textit{nat}\), this step is ensured, because \textit{e} must be a numeral. If, on the other hand, \(\tau\) is a procedure type, then \textit{e} may contain uses of the locally declared assignable, \textit{a}, and, indeed, the above counterexamples violate this safety condition.
We say that a type, \(\tau \), is mobile, written \(\tau \)-mobile, if the safety condition (37.7) is valid for all values of that type. The proof of safety given above shows that \(\text{nat} \) is mobile. Obviously, reference types are not mobile, since they involve an assignable. The counterexamples show that procedure types are not mobile. Moreover, simple variations of these examples may be given to show that command types may not be considered mobile either. What about function types other than procedure types? One may think they are mobile, because a pure expression cannot depend on an assignable. While this is indeed the case, the safety condition (37.7) need not be satisfied for such a type. For example, consider the following value of type \(\text{nat} \rightarrow \text{nat} \):

\[
\lambda (x:\text{nat}. (\lambda (z:\text{cmd}) (\text{do} \{a\}))).
\]

Although the assignable \(a \) is not actually needed to compute the result, it nevertheless occurs in the value, in violation of the safety condition.

To account for this generalization, we must rework the statics of \(\mathcal{L}\{\text{nat cmd }\rightarrow\} \) to record the returned type of a command and to record the type of the contents of each assignable. First, we generalize the finite set, \(\Sigma \), of active assignables to assign a type to each active assignable so that \(\Sigma \) has the form of a finite set of assumptions of the form \(a : \tau \), where \(a \) is an assignable. Second, we replace the judgement \(\Gamma \vdash \Sigma m \text{ ok} \) by the more general form \(\Gamma \vdash \Sigma m \sim \tau \), stating that \(m \) is a well-formed command returning a value of type \(\tau \). Third, the type \(\text{cmd} \) must be generalized to \(\text{cmd}(\tau) \) to reflect the return type of the encapsulated command.

The statics given in Section 37.1.1 on page 328 may be generalized to admit typed commands and typed assignables, as follows:

\[
\begin{align*}
\Gamma \vdash \Sigma m \sim \tau \\
\Gamma \vdash \Sigma \text{do}(m) : \text{cmd}(\tau) \quad (37.8a)
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \Sigma e : \tau \quad \tau \text{ mobile} \\
\Gamma \vdash \Sigma \text{ret}(e) \sim \tau \quad (37.8b)
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \Sigma e : \text{cmd}(\tau) \\
\Gamma, x : \tau \vdash \Sigma m \sim \tau' \\
\Gamma \vdash \Sigma \text{bnd}(e; x.m) \sim \tau' \quad (37.8c)
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \Sigma e : \tau \quad \tau \text{ mobile} \\
\Gamma \vdash \Sigma_{a:\tau} m \sim \tau' \\
\Gamma \vdash \Sigma \text{dcl}(e; a.m) \sim \tau' \quad (37.8d)
\end{align*}
\]

\[
\Gamma \vdash \Sigma_{a:\tau} \text{get}[a] \sim \tau \quad (37.8e)
\]
Apart from the generalization to track returned types and content types, the most important change is to require that τ be a mobile type in Rules (37.8b) and (37.8d).

The statement of preservation and progress must be correspondingly generalized to account for types.

Theorem 37.3 (Preservation for Typed Commands).

1. If $e \mapsto e'$ and $\Gamma, e : \tau$, then $\Gamma, e' : \tau$.
2. If $m \parallel \mu \mapsto m' \parallel \mu'$, with $\Gamma, m : \tau$ and $\mu : \Sigma$, then $\Gamma, m' : \tau$ and $\mu' : \Sigma$.

Theorem 37.4 (Progress for Typed Commands).

1. If $\Gamma, e : \tau$, then either $e \mathrel{\textbf{val}}_{\Sigma}$, or there exists e' such that $e \mapsto e'$.
2. If $\Gamma, m : \tau$ and $\mu : \Sigma$, then either $m \parallel \mu \mathrel{\textbf{fin}}_{\Sigma}$ or $m \parallel \mu \mapsto m' \parallel \mu'$ for some μ' and m'.

The proofs of Theorems 37.3 and 37.4 follows very closely the proof of Theorems 37.1 on page 331 and 37.2 on page 332. The main difference is that we appeal to the safety condition for mobility to ensure that the returned value from a declaration does not involve the declared assignable.

37.4 Capabilities and References

The commands a and $a := e$ operate on a statically specified target assignable, a. That is, a must be in scope at the point where the command occurs. Since a is a static parameter of these commands, and not an argument determined at run-time, it would appear, at first glance, that there is no way to operate on an assignable that is not determined until run-time. For example, how can we write a procedure that, for a dynamically specified assignable, adds two to the contents of that assignable?

One way is to use a capability to operate on that assignment. A capability is an encapsulated command that operates on an assignable when it is activated. The get capability, or getter, for an assignable a of type τ is the command $\text{do} \{a\}$ of type τcmd that, when executed, returns the contents of...
338

37.4 Capabilities and References

a. The set capability, or setter, for a is the procedure \(\lambda (x: \tau. \{ a := x \}) \) that, when applied, assigns its argument to \(a \). A general double-increment procedure that operates on any assignable, regardless of whether it is in scope, may be programmed as follows:

\[
\lambda (get:\text{nat cmd.} \ \lambda (set:\text{nat} \rightarrow \text{nat cmd.} \ \{ x \leftarrow get; \ set(s(s(x))) \})).
\]

The procedure is to be called with a getter and a setter for the same assignable. When executed, it invokes the getter to obtain the contents of that assignable, and then invokes the setter to assign its contents to be two more than the value it contained.

Although it is natural to consider the get and set capabilities for an assignable as a pair, it can be useful to separate them to provide limited access to an assignable in a particular context. If only the get capability is passed to a procedure, then its result may depend on the contents of the underlying assignable, but may not alter it. Similarly, if only the set capability is passed, then it may alter the contents of the underlying assignable, but cannot access its current contents. It is also useful to consider other forms of capability than simple getters and setters. For example, one could define an increment and a decrement capability for an assignable, and pass one or both to a procedure to limit how it may influence the value of that assignable. The possibilities are endless.

Returning to the double-increment example, the type does not constrain the caller to provide get and set capabilities that act on the same assignable. One way to ensure this is to introduce a name, or reference, to an assignable as a form of value. A reference may be thought of as a token that provides access to the get and set capabilities of an assignable. Moreover, two references may be tested for equality, so that one may determine at run-time whether they refer to the same underlying assignable.\(^1\)

A reference is a value of type \(\text{ref}(\tau) \), where \(\tau \) is the type of the contents of the assignable to which it refers. A (closed) value of reference type is the name of an assignable thought of as a form of expression. Possessing a reference allows one to perform either a get or a set operation on the underlying assignable. (One may also consider read-only or write-only references, or more complex capabilities for assignables, in a similar manner.)

\(^1\)This can also be achieved using capabilities by using the setter for one to modify the assignable and using the setter for the other to determine whether it changed.
This suggests the following syntax for references:

<table>
<thead>
<tr>
<th>Type</th>
<th>τ :: τ ref assignable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expr</td>
<td>e ::= ref[a] & a reference</td>
</tr>
<tr>
<td>Cmd</td>
<td>m ::= getref(e) @ e contents</td>
</tr>
<tr>
<td></td>
<td>setref($e_1;e_2$) $e_1 := e_2$ update</td>
</tr>
</tbody>
</table>

The statics of references is given by the following rules:

$$
\Gamma \vdash \Sigma, a : \tau \quad \text{ref}[a] : \text{ref}(τ)
$$

(37.9a)

$$
\Gamma \vdash \Sigma, e : \text{ref}(τ) \quad \Gamma \vdash \Sigma \text{getref}(e) \sim \tau
$$

(37.9b)

$$
\Gamma \vdash \Sigma, \Gamma \vdash \Sigma \text{setref}($e_1;e_2$) \sim \tau
$$

(37.9c)

Rule (37.9a) specifies that the name of any active assignable is an expression of type $\text{ref}($$\tau$$)$.

The dynamics is defined to defer to the corresponding operation on the assignable to which a reference refers.

$$
\text{ref}[a] \text{val}_\Sigma
$$

(37.10a)

$$
\text{e} \mapsto \Sigma \text{e}' \quad \text{getref}(e) \parallel \mu \mapsto \Sigma \text{getref}(e') \parallel \mu
$$

(37.10b)

$$
\text{getref}($\text{ref}[$a$]$) \parallel \mu \mapsto \Sigma \text{get}[a] \parallel \mu
$$

(37.10c)

$$
\text{e}_1 \mapsto \Sigma \text{e}'_1 \quad \text{setref}($e_1;e_2$) \parallel \mu \mapsto \Sigma \text{setref}($e'_1;e_2$) \parallel \mu
$$

(37.10d)

$$
\text{setref}($\text{ref}[$a$];e$) \parallel \mu \mapsto \Sigma \text{set}[a](e) \parallel \mu
$$

(37.10e)

A reference to an assignable is a value. The getref and setref operations on references defer to the corresponding operations on assignables once the reference has been determined.
Suprisingly, the addition of references to assignables does not violate the stack discipline, so long as reference types are deemed immobile. This ensures that a reference can never escape the scope of the assignable to which it refers, which is essential to maintaining safety. We leave to the reader the task of proving safety for the extension of $L\{\text{nat cmd} \rightarrow\}$ with reference types.

As an example of programming with references, the double increment procedure given earlier can be coded using references, rather than capabilities, as follows:

$$\lambda (r:\text{nat ref}. \text{do} \{x \leftarrow @r ; r := s(s(x))\}).$$

Since the argument is a reference to an assignable, rather than a get and set capability, it is assured that the body of the procedure acts on a single assignable when performing the get and set operations on the reference.

References and capabilities allow assignables to be treated as values that can be passed as arguments to procedures. This allows us to write programs, such as the double increment procedure, that act on assignables that are not in scope within the body of the procedure. Such expressive power, however, comes at a price: we must carefully consider whether two references refer to the same assignable or not. This phenomenon is called aliasing; it greatly complicates reasoning about program correctness.

Consider, for example, the problem of writing a procedure that, when given two references, x and y, adds twice the contents of y to the contents of x. One way to write this code creates no complications:

$$\lambda (x:\text{nat ref}. \lambda (y:\text{nat ref}. \text{do} \{x' \leftarrow @x ; y' \leftarrow @y ; x := x' + y' + y'\})).$$

Even if x and y refer to the same assignable, the effect will be to set the contents of the assignable referenced by x to twice the contents of the assignable referenced by y.

But now consider the following apparently equivalent implementation of the “same” procedure:

$$\lambda (x:\text{nat ref}. \lambda (y:\text{nat ref}. \text{do} \{x += y ; x += y\}),$$

where $x += y$ is the command

$$\{x' \leftarrow @x ; y' \leftarrow @y ; x := x' + y'\}$$

that adds the contents of y to the contents of x. The second implementation works properly provided that x and y do not refer to the same assignable.
For if they are aliases in that they both refer to the same assignable, \(a \), with contents \(n_0 \), the result is that \(a \) is to set \(4 \times n_0 \), instead of the intended \(3 \times n_0 \).

In this case it is entirely obvious how to avoid the problem: use the first implementation, rather than the second. But the difficulty is not in fixing the problem once it has been uncovered, but rather noticing the problem in the first place! Wherever references (or capabilities) are used, the problems of interference lurk. Avoiding them requires very careful consideration of all possible aliasing relationships among all of the references in play at a given point of a computation. The problem is that the number of possible aliasing relationships among \(n \) references grows at least quadratically in \(n \) (we must consider all possible pairings) and can even be worse when more subtle relationships among three or more variables must be considered. Aliasing is a prime source of errors in imperative programs, and remains a strong argument against using imperative methods whenever possible.

37.5 Exercises
Chapter 38

Mutable Data Structures

In Chapter 37 we considered an imperative programming language that adheres to the stack discipline in that assignables are allocated and deallocated on a last-in, first-out basis. To ensure this we restricted the types of return values from a command, the types of contents of assignables, to be mobile types, ones whose values cannot depend on the stack of assignables. Function and command types are not mobile, nor are reference types, because these types may classify values that refer to an assignable.

A major use of references, however, is to implement mutable data structures whose structure may be changed at execution time. The classic example is a linked list in which the tail of any initial segment of the list may be changed to refer to another list. Crucially, any such alteration is shared among all uses of that list. (This behavior is in contrast to an immutable list, which can never change once created.) The usual way to implement a linked list is to specify that the tail of a list is not another list, but rather a reference to an assignable containing the tail of the list. The list structure is altered by setting the target assignable of the reference.

For this strategy to make sense, references must be mobile, and hence that assignables have indefinite extent—they must persist beyond the scope of their declaration. Assignables with indefinite extent are said to be scope-free, or simply free. In this chapter we consider a variation of Modernized Algol in which all assignables are free, and hence all types are mobile. The dynamics of this variation of Modernized Algol is significantly different from that given in Chapter 37 in that assignables are heap-allocated, rather than stack-allocated.

We also consider a further variation in which the distinction between commands and expressions is eliminated. This facilitates the use of benign

344 38.1 Free Assignables

effects to achieve purely functional behavior using references. An example is a self-adjusting data structure that, externally, is a pure dictionary structure, but which internally makes use of mutation to rebalance itself.

38.1 Free Assignables

To support mutable data structures it is essential that references to assignables be exportable from the scope of their declaration. This amounts to requiring that assignables be allocated **globally**, rather than **locally**, in the sense that the range of validity of an assignable transcends its static scope. For this reason globally allocated assignables are said to be **scope-free**, or just **free**, to distinguish them from the **scoped** assignables considered in Chapter 37.

The statics of free assignables is the same as for scoped assignables, but the dynamics differs considerably. We consider states of the form \(\nu \Sigma \{ m \parallel \mu \} \) consisting of a command, \(m \), executing relative to a memory, \(\mu \), assigning values to the assignables declared in \(\Sigma \). Transitions have the form

\[
\nu \Sigma \{ m \parallel \mu \} \rightarrow \nu \Sigma' \{ m' \parallel \mu' \}
\]

where \(\Sigma' \) may extend \(\Sigma \) with declarations of new assignables. The transition judgement is inductively defined by the following rules:

\[
\frac{\nu \Sigma \{ \text{ret}(e) \parallel \mu \} \text{ final}}{e \text{ val}_{\Sigma}}
\]

(38.1a)

\[
\frac{e \rightarrow e'}{\nu \Sigma \{ \text{ret}(e) \parallel \mu \} \xrightarrow{\Sigma} \nu \Sigma \{ \text{ret}(e') \parallel \mu \}}
\]

(38.1b)

\[
\frac{e \rightarrow e'}{\nu \Sigma \{ \text{bnd}(e;x.m) \parallel \mu \} \xrightarrow{\Sigma} \nu \Sigma \{ e' \parallel \mu \} \text{ m}}
\]

(38.1c)

\[
\frac{e \text{ val}_{\Sigma}}{\nu \Sigma \{ \text{bnd}(\text{do}(\text{ret}(e));x.m) \parallel \mu \} \xrightarrow{\Sigma} \nu \Sigma \{ \text{e/x}m \parallel \mu \}}
\]

(38.1d)

\[
\frac{\nu \Sigma \{ m_1 \parallel \mu \} \xrightarrow{\Sigma} \nu \Sigma' \{ m'_1 \parallel \mu' \}}{\nu \Sigma \{ \text{bnd}(\text{do}(m_1);x.m_2) \parallel \mu \} \xrightarrow{\Sigma} \nu \Sigma' \{ \text{bnd}(\text{do}(m'_1);x.m_2) \parallel \mu' \}}
\]

(38.1e)

\[
\frac{\nu \Sigma, a : \tau \{ \text{get}[a] \parallel \mu \otimes (a:e) \} \xrightarrow{\Sigma} \nu \Sigma, a : \tau \{ \text{ret}(e) \parallel \mu \otimes (a:e) \}}{e \rightarrow e'}
\]

(38.1f)

\[
\frac{\nu \Sigma \{ \text{set}[a](e) \parallel \mu \} \xrightarrow{\Sigma} \nu \Sigma \{ \text{set}[a](e') \parallel \mu \}}
\]

(38.1g)
38.2 Free References

The most important difference is expressed by Rule (38.1j), which allows
assignables to escape their scope of declaration by allocating them globally,
rather than according to a stack discipline. The remaining rules are very
similar to those given in Chapter 37, modified to account for heap alloca-
tion.

38.2 Free References

References to assignables are defined exactly as in Chapter 37 to be val-
ues of type \(\text{ref}(\tau) \), where \(\tau \) is the type of the contents of the underly-
ing assignable. But when all types are mobile, references may appear in
data structures, may be stored assignables of reference type, and may be
returned from commands, without restriction. For example, we may de-
define the command \(\text{newref}[\tau](e) \) to stand for the command

\[
dcl a := e \text{ in } \text{ret}(k\ a),
\]

which allocates and initializes an assignable, and immediately returns a ref-
erence to it. Obviously the sensibility of this example relies on the mobility
of reference types, and the scope-free allocation of assignables.

The statics of the command \(\text{newref}[\tau](e) \) is given by the rule

\[
\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \Sigma \text{newref}[\tau](e) \sim \text{ref}(\tau)}
\]

and its dynamics is given by the rules

\[
\frac{e \rightarrow e'}{\Sigma} \quad \frac{\nu \Sigma \{ \text{newref}[\tau](e) \parallel \mu \} \rightarrow \nu \Sigma \{ \text{newref}[\tau](e') \parallel \mu \}}{\Sigma}
\]

\[
\frac{e \text{ val}_{\Sigma}}{\nu \Sigma \{ \text{newref}[\tau](e) \parallel \mu \} \rightarrow \nu \Sigma, a : \tau \{ \text{ret}(\text{ref}[a]) \parallel \mu \otimes (a:e) \}}
\]
The corresponding dynamics of the getref and setref commands is essentially as in Chapter 37, but adapted to free, rather than scoped, assignables.

\[
\begin{align*}
 &e \mapsto e' \\
 &v \Sigma \{ \text{getref}(e) \parallel \mu \} \mapsto v \Sigma \{ \text{getref}(e') \parallel \mu \} \tag{38.5a}
\end{align*}
\]

\[
\begin{align*}
 &v \Sigma \{ \text{getref}({\text{ref}\[a\]}) \parallel \mu \} \mapsto v \Sigma \{ \text{get}[a] \parallel \mu \} \\
 &e_1 \mapsto e_1' \\
 &v \Sigma \{ \text{setref}(e_1; e_2) \parallel \mu \} \mapsto v \Sigma \{ \text{setref}(e_1'; e_2) \parallel \mu \} \tag{38.5c}
\end{align*}
\]

\[
\begin{align*}
 &v \Sigma \{ \text{setref}({\text{ref}\[a\]}; e_2) \parallel \mu \} \mapsto v \Sigma \{ \text{set}[a](e_2) \parallel \mu \} \tag{38.5d}
\end{align*}
\]

Observe that the evaluation of expressions cannot alter or extend the memory, only commands may do this.

38.3 Safety

The safety theorem for the language with free assignables and free references is surprisingly tricky. The main difficulty is that the memory can exhibit cyclic dependencies in that the contents of an assignable may contain a use of that very assignable. For example, consider the following procedure, \(e\), of type \(\text{nat} \rightarrow \text{nat cmd}\):

\[
\lambda (x:\text{nat}. \text{if}z x \{ z \Rightarrow \text{do} \{ \text{ret}(1) \} \mid s(x') \Rightarrow \text{do} \{ f \leftarrow a ; y \leftarrow \text{call} f(x') ; \text{ret}(x \ast y) \} \}).
\]

Let \(\mu\) be a memory of the form \(\mu' \otimes (a : e)\) in which the contents of \(a\) contains, via the body of the procedure, a reference to \(a\) itself. Indeed, if the procedure \(e\) is called with a non-zero argument, it will “call itself” by indirect reference through \(a\)! (We will see in Section 38.4 on page 348 that such a situation can arise by executing a closed program—the memory need not be “preloaded” for such cycles to arise.)

The possibility of cyclic dependencies means that some care in the definition of the judgement \(\mu : \Sigma\) is required. Whereas in Chapter 37 this judgement was defined to mean that each assignable declared in \(\Sigma\) is assigned a natural number by \(\mu\), we must now take into account the possibility that the contents of each assignable might refer, directly or indirectly, to that assignable.
With this in mind we define the well-formed states by the following rule:

\[
\begin{align*}
\vdash_{\Sigma} m &\sim \tau & \vdash_{\Sigma} \mu: \Sigma \\
\nu \Sigma \{ m \parallel \mu \} &\text{ok}
\end{align*}
\] (38.6)

The first premise of the rule states that the command \(m \) is well-formed relative to \(\Sigma \). The second premise states that the memory, \(\mu \), conforms to \(\Sigma \), relative to the whole of \(\Sigma \). The latter judgement is defined for general \(\Sigma' \) as follows:

\[
\forall a : \sigma \in \Sigma \exists e, \mu(a) = e \text{ and } \vdash_{\Sigma'} e: \sigma \\
\vdash_{\Sigma'} \mu: \Sigma
\] (38.7)

This definition ensures that cyclic dependencies are permissible without threatening type safety.

Theorem 38.1 (Preservation).

1. If \(\vdash_{\Sigma} e: \tau \) and \(e \mapsto_{\Sigma} e' \), then \(\vdash_{\Sigma} e': \tau \).

2. If \(\nu \Sigma \{ m \parallel \mu \} \text{ ok and } \nu \Sigma \{ m \parallel \mu \} \mapsto_{\Sigma} \nu \Sigma' \{ m' \parallel \mu' \} \), then \(\nu \Sigma' \{ m' \parallel \mu' \} \text{ ok.} \)

Proof. Simultaneously, by induction on transition. We prove the following stronger form of the second statement:

If \(\nu \Sigma \{ m \parallel \mu \} \mapsto_{\Sigma} \nu \Sigma' \{ m' \parallel \mu' \} \), where \(\vdash_{\Sigma} m \sim \tau \), \(\vdash_{\Sigma} \mu: \Sigma \),

then \(\Sigma' \) extends \(\Sigma \), and \(\vdash_{\Sigma'} m' \sim \tau \), and \(\vdash_{\Sigma'} \mu': \Sigma' \).

Consider, for example, the transition

\[
\nu \Sigma \{ \text{dcl}(e; a).m \parallel \mu \} \mapsto_{\Sigma} \nu \Sigma, a : \sigma \{ m \parallel \mu \otimes \langle a: e \rangle \}
\]

where \(e \text{ val}_{\Sigma} \). By assumption and inversion of Rule (37.8d) we have \(\sigma \) such that \(\vdash_{\Sigma} e: \sigma, \vdash_{\Sigma, a: \sigma} m \sim \tau \), and \(\vdash_{\Sigma} \mu: \Sigma \). But since extension of \(\Sigma \) with a fresh assignable does not affect typing, we also have \(\vdash_{\Sigma, a: \sigma} \mu : \Sigma \) and \(\vdash_{\Sigma, a: \sigma} e: \sigma \), from which it follows by Rule (38.7) that \(\vdash_{\Sigma, a: \sigma} \mu \otimes \langle a: e \rangle : \Sigma, a : \sigma \).

The other cases follow a similar pattern, and are left as an exercise for the reader.

\[\square \]

Theorem 38.2 (Progress).

1. If \(\vdash_{\Sigma} e: \tau \), then either \(e \text{ val}_{\Sigma} \) or there exists \(e' \) such that \(e \mapsto_{\Sigma} e' \).

2. If \(\nu \Sigma \{ m \parallel \mu \} \text{ ok then either } \nu \Sigma \{ m \parallel \mu \} \text{ final or } \nu \Sigma \{ m \parallel \mu \} \mapsto_{\Sigma} \nu \Sigma' \{ m' \parallel \mu' \} \) for some \(\Sigma', \mu', m' \).
38.4 Integrating Commands and Expressions

Proof. Simultaneously, by induction on typing. For the second statement we prove the stronger form

\[\text{if } \vdash \Sigma m \sim \tau \text{ and } \vdash \Sigma \mu : \Sigma, \text{ then either } \nu \Sigma \{ m \parallel \mu \} \text{ final, or } \nu \Sigma \{ m \parallel \mu \} \rightarrow \nu \Sigma' \{ m' \parallel \mu' \} \text{ for some } \Sigma', \mu', \text{ and } m'. \]

Consider, for example, the typing rule

\[
\frac{\Gamma \vdash e : \sigma \quad \Gamma \vdash \Sigma.a \cdot m \sim \tau}{\Gamma \vdash \Sigma \text{dcl}(e; a \cdot m) \sim \tau}
\]

We have by the first inductive hypothesis that either \(e \text{ val}_\Sigma \) or \(e \rightarrow e' \) for some \(e' \). In the latter case we have by Rule (38.1i)

\[\nu \Sigma \{ \text{dcl}(e; a \cdot m) \parallel \mu \} \rightarrow \nu \Sigma \{ \text{dcl}(e'; a \cdot m) \parallel \mu \}. \]

In the former case we have by Rule (38.1j) that

\[\nu \Sigma \{ \text{dcl}(e; a \cdot m) \parallel \mu \} \rightarrow \nu \Sigma, a : \sigma \{ m \parallel \mu \otimes (a : e) \}. \]

As another example, consider the typing rule

\[
\frac{\Gamma \vdash \Sigma.a \cdot \text{get}[a] \sim \tau}{\Gamma \vdash \Sigma.a \cdot \text{get}[a] \sim \tau}
\]

By assumption \(\vdash \Sigma.a \cdot \mu : \Sigma, a : \tau, \) and hence there exists \(e \text{ val}_{\Sigma.a \cdot \tau} \) such that \(\mu = \mu' \otimes (a : e) \) and \(\vdash \Sigma.a \cdot e : \tau. \) By Rule (38.1f)

\[\nu \Sigma, a : \tau \{ \text{get}[a] \parallel \mu' \otimes (a : e) \} \rightarrow \nu \Sigma, a : \tau \{ \text{ret}(e) \parallel \mu' \otimes (a : e) \}, \]

as required. The other cases are handled similarly.

\[\square \]

38.4 Integrating Commands and Expressions

Having taken the decision to consider all types mobile, it is natural to consider a further simplification, eliminating the distinction between commands and expressions. Once consolidated, we may equivalently consider that every expression is a form of command, or that every command is a form of expression. Before analyzing its advantages and disadvantages, let us first briefly review the definition of the integral formulation of mutable data structures.
The statics is obtained by regarding all commands as forms of expression. The following typing rules are illustrative:

\[
\frac{\Gamma \vdash \Sigma \ e : \tau}{\Gamma \vdash \Sigma \ \text{do}(e) : \text{cmd}(\tau)} \quad (38.8a)
\]

\[
\frac{\Gamma \vdash \Sigma \ e_1 : \text{cmd}(\tau_1) \quad \Gamma, x : \tau_1 \vdash \Sigma \ e_2 : \tau_2}{\Gamma \vdash \Sigma \ \text{bnd}(e_1; x, e_2) : \tau_2} \quad (38.8b)
\]

\[
\frac{\Gamma \vdash \Sigma \ e_1 : \tau_1 \quad \Gamma \vdash \Sigma_{\sigma:\tau_1} \ e_2 : \tau_2}{\Gamma \vdash \Sigma \ \text{dcl}(e_1; \sigma, e_2) : \tau_2} \quad (38.8c)
\]

\[
\frac{\Gamma \vdash \Sigma_{\alpha:\tau} \ \text{get}[a] : \tau}{\Gamma \vdash \Sigma_{\alpha:\tau} \ e : \tau \quad (38.8d)}
\]

\[
\frac{\Gamma \vdash \Sigma_{\alpha:\tau} \ e : \tau}{\Gamma \vdash \Sigma_{\alpha:\tau} \ \text{set}[a](e) : \tau} \quad (38.8e)
\]

The rules for references are left as an exercise for the reader. The command \text{ret}(e) is dropped, as it serves no purpose, but the introductory and eliminatory forms for the encapsulated command type are retained.

The dynamics of the integral formulation of mutation is defined as a transition system between states of the form \nu \Sigma \{ e \parallel \mu \}, where \nu is an expression involving the assignables declared in \Sigma, and \mu is a memory providing values for each of these assignables. It is a straightforward exercise to reformulate Rules (38.1) to eliminate the mode distinction between commands and expressions. Rules (38.5) may similarly be adapted to the integral setting.

The modal and integral formulations of references have complementary strengths and weaknesses. The chief virtue of the modal formulation is that the use of assignment is confined to commands, leaving expressions as pure computations. One consequence is that typing judgements for expressions retain their force even in the presence of references to free assignables, so that the type \text{unit} \to \text{unit} contains only the identity and the divergent functions, and the type \text{nat} \to \text{nat} consists solely of partial functions on the natural numbers. By contrast the integral formulation enjoys none of these properties. Any expression may alter or allocate new assignables, and the semantics of typing assertions is therefore significantly weakened compared to the modal formulation. In particular, the type \text{unit} \to \text{unit} contains infinitely many distinct functions, and the type \text{nat} \to \text{nat} contains procedures that in no way represent partial functions (for example, those whose returned value depends on previous returned values).
While the modal separation of pure expressions from impure commands may seem like an unalloyed good, it is important to recognize that the situation is not nearly so simple. The modal approach impedes the use of mutable storage to implement purely functional behavior. For example, a self-adjusting tree, such as a splay tree, uses in-place mutation to provide an efficient implementation of what is otherwise a purely functional dictionary structure mapping keys to values. The use of mutation is an example of a benign effect, a use of mutation that is not semantically visible to the client of an abstraction, but allows for more efficient execution time. In the modal formulation any use of assignment confines the programmer to the command sub-language, with no possibility of escape: there is no way to restore the purity of an impure computation!

Many other examples arise in practice. For example, suppose that we wish to instrument an otherwise pure functional program with code to collect execution statistics for profiling. In the integral setting it is a simple matter to allocate free assignables that contain profiling information collected by assignments that update their contents at critical points in the program. In the modal setting, however, we must globally restructure the program to transform it from a pure expression to an impure command. Another example is provided by the technique of backpatching for implementing recursion using a free assignable, which we now describe in more detail.

In the integral formulation we may implement the factorial function using backpatching as follows:

```plaintext
dcl a := \lambda n:nat.0 in
  { f ← \lambda n:nat.ifz(n, 1, n'.n * a(n'))
    ; _ ← a := f
    ; f
  }
```

wherein we have used the concrete syntax for commands introduced in Chapter 37. Observe that the assignable a is used as an expression standing for its contents (that is, it stands for the abstract syntax get[a]).

This expression returns a function of type nat → nat that is obtained by (a) allocating a free assignable initialized arbitrarily (and immaterially) with a function of this type, (b) defining a \(\lambda\)-abstraction in which each “recursive call” consists of retrieving and applying the function stored in that assignable, (c) assigning this function to the assignable, and (d) returning that function. The result is a value of function type that uses an assignable “under the hood” in a manner not visible to its clients.
In contrast the modal formulation forces us to make explicit the reliance on private state.

\[
dcl a := \lambda n: \text{nat}. \text{do}\{\text{ret 0}\} \text{ in}\n \{f \leftarrow \text{ret } (\lambda n: \text{nat} \ldots)\n ; _ \leftarrow a := f\n ; \text{ret } f\n \}\n\]

where the elided procedure body is as follows:

\[
\text{ifz}(n, \text{do}\{\text{ret 1}\}, n'. \text{do}\{f \leftarrow a; x \leftarrow \text{run}(f(n')); \text{ret } (n*x)\}).
\]

Each branch of the conditional test returns a command. In the case that the argument is zero, the command simply returns the value 1. Otherwise, it fetches the contents of the assignable, calls it on the predecessor, and returns the result of multiplying this by the argument.

The modal implementation of factorial is a command (not an expression) of type \(\text{nat} \rightarrow (\text{nat cmd})\), which exposes two properties of the backpatching implementation:

1. The command that builds the recursive factorial function is impure, because it allocates and assigns to the assignable used to implement backpatching.

2. The body of the factorial function is impure, because it accesses the assignable to effect the recursive call.

As a result the factorial function (so implemented) may no longer be used as a function, but must instead be called as a procedure. For example, to compute the factorial of \(n\), we must write

\[
\{f \leftarrow \text{fact}; x \leftarrow \text{run}(f(n)); \text{return } x\}
\]

where \text{fact} stands for the command implementing factorial given above. The factorial procedure is bound to a variable, which is then applied to yield an encapsulated command that, when activated, computes the desired result.

These examples illustrate that exposing the reliance on effects in the type system is both a boon and a bane. Under the integral formulation a “boring” type such as unit \(\rightarrow\) unit can have very “interesting” behavior—for example, it may depend on or alter the contents of an assignable, or may allocate new assignables. Under the modal formulation a value of such a
boring type is indeed boring: it can only be the identity or the divergent function. An interesting function must have an interesting type such as \texttt{unit \(\rightarrow\) unit cmd}, which makes clear that the body of the function engenders storage effects. On the other hand, as the example of backpatching makes clear, the integral formulation allows one to think of types as descriptions of \textit{behavior}, rather than descriptions of \textit{implementation}. The factorial function, whether implemented using backpatching or not, is a pure function of type \texttt{nat \(\rightarrow\) nat}. The reliance on assignment is an implementation detail that remains hidden from the caller. The modal formulation, however, exposes the reliance on effects in both the definition and implementation of the factorial function, and hence forces it to be treated as an imperative procedure, rather than a pure function.

38.5 Exercises
Part XIV

Laziness
Chapter 39

Lazy Evaluation

Lazy evaluation refers to a variety of concepts that seek to avoid evaluation of an expression unless its value is needed, and to share the results of evaluation of an expression among all uses of its, so that no expression need be evaluated more than once. Within this broad mandate, various forms of laziness are considered.

One is the call-by-need evaluation strategy for functions. This is a refinement of the call-by-name evaluation order in which arguments are passed unevaluated to functions so that it is only evaluated if needed, and, if so, the value is shared among all occurrences of the argument in the body of the function.

Another is the lazy evaluation strategy for data structures, including formation of pairs, injections into summands, and recursive folding. The decisions of whether to evaluate the components of a pair, or the argument to an injection or fold, are independent of one another, and of the decision whether to pass arguments to functions in unevaluated form.

Another aspect of laziness is the use of general recursion to define self-referential computations, including recursive functions. The role of laziness in this setting is to defer evaluation of any self-reference until it is actually required for a computation.

Traditionally, languages are classified into one of two categories. Lazy languages use a call-by-need interpretation of function application, impose a lazy evaluation strategy for data structures, and allow unrestricted use of general recursion. Strict languages take the opposite positions: call-by-value for function application, eager evaluation of data structures, and limitations on general recursion (typically, to functions). More recently, however, language designers have come to realize that it is not whole languages that
should be lazy or strict, but rather that the type system should distinguish lazy and strict evaluation order. In its most basic form this only requires the introduction of a type whose values are suspended computations that are evaluated by-need. (A more sophisticated approach is the subject of Chapter 40.)

39.1 Need Dynamics

The distinguishing feature of call-by-need is the use of memoization to record the value of an expression whenever it is computed so that, should the value of that expression ever be required again, the stored value can be returned without recomputing it. This is achieved by augmenting the computation state with a memo table that associates an expression (not necessarily a value) to each of a finite set of symbols. The symbols serve as names of the expressions to which they are associated by the memo table. Whenever the value of a name is required, the associated expression is evaluated and its value is both stored in the memo table under the same name and returned as the value of that name. This ensures that any subsequent evaluation of the same name returns the new value without recomputing it.

Another perspective on call-by-need is that it uses names to mediate sharing among multiple occurrences of a sub-expression within a larger expression. Ordinary substitution often replicates an expression, generating one copy for each occurrence of the target of the substitution. Under call-by-need each expression is given a name which serves as a proxy for it. In particular, expression names are substituted for variables so that all occurrences have the same name and hence refer to the same copy of the expression to which it is associated. In this way we economize on both the time required to evaluate the expression, which would be needlessly repeated under call-by-name, and the space required to store it during computation, which would be replicated under call-by-name.

The need dynamics for \(L\{\text{nat} \rightarrow \} \) is based on a transition system with states of the form \(\nu \Sigma \{ e \mid \mu \} \), where \(\Sigma \) is a finite set of hypotheses \(a_1 : \tau_1, \ldots, a_n : \tau_n \) associating types to names, \(e \) is an expression that may involve the names in \(\Sigma \), and \(\mu \) maps each name declared in \(\Sigma \) to either an expression or a special symbol, \(\bullet \), called the black hole. (The role of the black hole will be made clear below.)

The call-by-need dynamics consists of the following two forms of judgement:

1. \(e \ \text{val}_{\Sigma} \), stating that \(e \) is a value that may involve the names in \(a \).
2. \(\nu \Sigma \{ \{ e , \mu \} \rightarrow \nu \Sigma' \{ \{ e' , \mu' \} \} \), stating that one step of evaluation of the expression \(e \) relative to memo table \(\mu \) with the names declared in \(\Sigma \) results in the expression \(e' \) relative to the memo table \(\mu' \) with names declared in \(\Sigma' \).

The dynamics is defined so that the collection of active names grows monotonically, and so that the type of a name never changes. The memo table may be altered destructively during execution to reflect progress in the evaluation of the expression associated with a given name.

The judgement \(e \ val_\Sigma \) is defined by the following rules:

\[
\begin{align*}
\overline{z \ val_\Sigma} & \quad (39.1a) \\
\overline{s(a) \ val_{\Sigma,a:nat}} & \quad (39.1b) \\
\overline{\text{lam}[\tau](x.e) \ val_\Sigma} & \quad (39.1c)
\end{align*}
\]

Rules (39.1a) through (39.1c) specify that \(z \) is a value, any expression of the form \(s(a) \), where \(a \) is a name, is a value, and that any \(\lambda \)-abstraction, possibly containing names, is a value. It is important that names themselves are not values, rather they stand for (possibly unevaluated) expressions as specified by the memo table.

The initial and final states of evaluation are defined as follows:

\[
\begin{align*}
\overline{\nu \emptyset \{ \{ e , \emptyset \} \} \ initial} & \quad (39.2a) \\
\overline{e \ val_\Sigma} & \quad \nu \Sigma \{ \{ e , \mu \} \} \ final (39.2b)
\end{align*}
\]

Rule (39.2a) specifies that an initial state consists of an expression evaluated relative to an empty memo table. Rule (39.2b) specifies that a final state has the form \(\nu \Sigma \{ \{ e , \mu \} \} \), where \(e \) is a value relative to \(\Sigma \).

The transition judgement for the call-by-need dynamics of \(L\{\text{nat} \rightarrow \} \) is defined by the following rules:

\[
\begin{align*}
\overline{e \ val_{\Sigma,a:\tau}} & \quad \nu \Sigma,a:\tau \{ \{ a , \mu \otimes \langle a : e \rangle \} \rightarrow \nu \Sigma,a:\tau \{ \{ e , \mu \otimes \langle a : e \rangle \} \} (39.3a)
\end{align*}
\]
39.1 Need Dynamics

\[
\nu \Sigma, a : \tau \{ e \parallel \mu \otimes \langle a : \bullet \rangle \} \mapsto \nu \Sigma', a : \tau \{ e' \parallel \mu' \otimes \langle a : \bullet \rangle \} \\
(39.3a)
\]

\[
\nu \Sigma, a : \tau \{ a \parallel \mu \otimes \langle a : e \rangle \} \mapsto \nu \Sigma', a : \tau \{ a \parallel \mu' \otimes \langle a : e' \rangle \}
(39.3b)
\]

\[
\nu \Sigma \{ s(e) \parallel \mu \} \mapsto \nu \Sigma, a : \text{nat} \{ s(a) \parallel \mu \otimes \langle a : e \rangle \}
(39.3c)
\]

\[
\nu \Sigma \{ e \parallel \mu \} \mapsto \nu \Sigma' \{ e' \parallel \mu' \}
(39.3d)
\]

\[
\nu \Sigma \{ \text{ifz}(e; e_0; x. e_1) \parallel \mu \} \mapsto \nu \Sigma' \{ \text{ifz}(e'; e_0; x. e_1) \parallel \mu' \}
(39.3e)
\]

\[
\nu \Sigma \{ \text{ifz}(z ; e_0; x. e_1) \parallel \mu \} \mapsto \nu \Sigma \{ e_0 \parallel \mu \}
(39.3f)
\]

\[
\nu \Sigma, a : \text{nat} \{ \text{ifz}(s(a); e_0; x. e_1) \parallel \mu \otimes \langle a : e \rangle \}
\mapsto \nu \Sigma, a : \text{nat} \{ [a/x]e_1 \parallel \mu \otimes \langle a : e \rangle \}
\]

\[
\nu \Sigma \{ e_1 \parallel \mu \} \mapsto \nu \Sigma' \{ e'_1 \parallel \mu' \}
(39.3g)
\]

\[
\nu \Sigma \{ \text{ap}(e_1; e_2) \parallel \mu \} \mapsto \nu \Sigma' \{ \text{ap}(e'_1; e_2) \parallel \mu' \}
(39.3h)
\]

\[
\nu \Sigma \{ \text{fix}[\tau](x. e) \parallel \mu \} \mapsto \nu \Sigma, a : \tau \{ a \parallel \mu \otimes \langle a : [a/x]e \rangle \}
(39.3i)
\]

Rule (39.3a) governs a name whose associated expression is a value; the value of the name is the value associated to that name in the memo table. Rule (39.3b) specifies that if the expression associated to a name is not a value, then it is evaluated “in place” until such time as Rule (39.3a) applies. This is achieved by switching the focus of evaluation to the associated expression, while at the same time associating the black hole to that name. The black hole represents the absence of a value for that name, so that any attempt to access it during evaluation of its associated expression cannot make progress. This signals a circular dependency that, if not caught using
a black hole, would initiate an infinite regress. We may therefore think of
the black hole as catching a particular form of non-termination that arises
when the value of an expression associated to a name depends on the name
itself.

Rule (39.3c) specifies that evaluation of $s(e)$ allocates a fresh name, a,
for the expression e, and yields the value $s(a)$. The value of e is not deter-
mined until such time as the predecessor is required in a subsequent com-
putation. This implements a lazy dynamics for the successor. Rule (39.3f),
which governs a conditional branch on a successor, substitutes the name, a,
for the variable, x, when computing the predecessor of a non-zero number,
ensuring that all occurrences of x share the same predecessor computation.

Rule (39.3g) specifies that the value of the function position of an appli-
cation must be determined before the application can be executed. Rule (39.3h)
specifies that to evaluate an application of a λ-abstraction we allocate a
fresh name for the argument, and substitute this name for the parameter of
the function. The argument is evaluated only if it is needed in the subse-
quent computation, and then that value is shared among all occurrences of
the parameter in the body of the function.

General recursion is implemented by Rule (39.3i). Recall from Chap-
ter 13 that the expression $\text{fix}[\tau](x.e)$ stands for the solution of the recur-
sion equation $x = e$, where x may occur within e. Rule (39.3i) computes
this solution by associating a fresh name, a, with the body, e, substituting
a for x within e to effect the self-reference. It is this substitution that per-
mits a named expression to depend on its own name. For example, the
expression $\text{fix} x: \tau \text{is } x$ associates the expression a to a in the memo table,
and returns a. The next step of evaluation is stuck, because it seeks to eval-
uate a with a bound to the black hole. In contrast an expression such as
$\text{fix} f: \sigma \rightarrow \tau \text{is } \lambda (x: \sigma.e)$ does not get stuck, because the self-reference is
“hidden” within the λ-abstraction, and hence need not be evaluated to de-
termine the value of the binding.

39.2 Safety

We write $\Sigma; \Gamma \vdash e : \tau$ to mean that e has type τ under the assumptions Σ and
Γ as defined by Rules (13.1). That is, we regard the names Σ as variables for
the purposes of the statics.

The judgement $\nu \Sigma \{ e \parallel \mu \} \text{ ok}$ is defined by the following rules:

\[
\frac{\Sigma \vdash e : \tau \quad \Sigma \vdash \mu : \Sigma}{\nu \Sigma \{ e \parallel \mu \} \text{ ok}} \quad (39.4a)
\]
∀a : τ ∈ Σ μ(a) = e ≠ • \implies Σ' ⊢ e : τ
\tag{39.4b}

Rule (39.4b) permits self-reference through the memo table by allowing the expression associated to a name, a, to contain a, or, more generally, to contain a name whose associated expression contains a, and so on through any finite chain of such dependencies. Moreover, a name that is bound to the “black hole” is deemed to be of any type.

Theorem 39.1 (Preservation). Suppose that \(ν Σ \{ e \parallel µ \} \mapsto→ ν Σ' \{ e' \parallel µ' \} \). If \(ν Σ \{ e \parallel µ \} \) ok, then \(ν Σ' \{ e' \parallel µ' \} \) ok.

Proof. We prove by induction on Rules (39.3) that if \(ν Σ \{ e \parallel µ \} \mapsto→ ν Σ' \{ e' \parallel µ' \} \) and \(Σ ⊢ µ : Σ \) and \(Σ ⊢ e : τ \), then \(Σ' ⊃ Σ \) and \(Σ' ⊢ µ' : Σ' \) and \(Σ' ⊢ e' : τ \).

Consider Rule (39.3b), for which we have \(e = e' = a, µ = µ_0 \otimes \langle a : e_0 \rangle, µ' = µ_0' \otimes \langle a : e_0' \rangle \), and

\(ν Σ, a : τ \{ e_0 \parallel µ_0 \otimes \langle a : • \rangle \} \mapsto→ ν Σ', a : τ \{ e_0' \parallel µ_0' \otimes \langle a : • \rangle \} \).

Assume that \(Σ, a : τ ⊢ µ : Σ, a : τ \). It follows that \(Σ, a : τ ⊢ e_0 : τ \) and \(Σ, a : τ ⊢ µ_0 : Σ \), and hence that

\(Σ, a : τ ⊢ µ_0 \otimes \langle a : • \rangle : Σ, a : τ \).

We have by induction that \(Σ' ⊃ Σ \) and \(Σ', a : τ ⊢ e_0' : τ' \) and

\(Σ', a : τ ⊢ µ_0 \otimes \langle a : • \rangle : Σ, a : τ \).

But then

\(Σ', a : τ ⊢ µ' : Σ', a : τ \),

which suffices for the result.

Consider Rule (39.3g), so that \(e \) is the application \(\text{ap}(e_1; e_2) \) and

\(ν Σ \{ e_1 \parallel µ \} \mapsto→ ν Σ' \{ e_1' \parallel µ' \} \).

Suppose that \(Σ ⊢ µ : Σ \) and \(Σ ⊢ e : τ \). By inversion of typing \(Σ ⊢ e_1 : τ_2 \rightarrow τ \) for some type \(τ_2 \) such that \(Σ ⊢ e_2 : τ_2 \). By induction \(Σ' ⊃ Σ \) and

\(Σ' ⊢ µ' : Σ' \) and \(Σ' ⊢ e_1' : τ_2 \rightarrow τ \). By weakening we have \(Σ' ⊢ e_2 : τ_2 \), so that \(Σ' \vdash \text{ap}(e_1'; e_2) : τ \), which is enough for the result.

\(\square \)
The statement of the progress theorem allows for the possibility of encountering a black hole, representing a checkable form of non-termination. The judgement \(\nu \Sigma \{ e \parallel \mu \} \) loops, stating that \(e \) diverges by virtue of encountering the black hole, is defined by the following rules:

\[
\begin{align*}
\nu \Sigma, a : \tau \{ a \parallel \mu \otimes \langle a : b \rangle \} &\text{ loops} \\
\nu \Sigma, a : \tau \{ e \parallel \mu \otimes \langle a : b \rangle \} &\text{ loops} \\
\nu \Sigma, a : \tau \{ a \parallel \mu \otimes \langle a : e \rangle \} &\text{ loops} \\
\nu \Sigma \{ e \parallel \mu \} &\text{ loops} \\
\nu \Sigma \{ \text{ifz}(e; e_0; x.e_1) \parallel \mu \} &\text{ loops} \\
\nu \Sigma \{ e_1 \parallel \mu \} &\text{ loops} \\
\nu \Sigma \{ \text{ap}(e_1; e_2) \parallel \mu \} &\text{ loops}
\end{align*}
\]

Theorem 39.2 (Progress). If \(\nu \Sigma \{ e \parallel \mu \} \) ok, then either \(\nu \Sigma \{ e \parallel \mu \} \) final, or \(\nu \Sigma \{ e \parallel \mu \} \) loops, or there exists \(\mu' \) and \(e' \) such that \(\nu \Sigma \{ e \parallel \mu \} \mapsto \nu \Sigma' \{ e' \parallel \mu' \} \).

Proof. We proceed by induction on the derivations of \(\Sigma \vdash e : \tau \) and \(\Sigma \vdash \mu : \Sigma \) implicit in the derivation of \(\nu \Sigma \{ e \parallel \mu \} \) ok.

Consider Rule (13.1a), where the variable, \(a \), is declared in \(\Sigma \). Thus \(\Sigma = \Sigma_0, a : \tau \) and \(\Sigma \vdash \mu : \Sigma \). It follows that \(\mu = \mu_0 \otimes \langle a : e_0 \rangle \) with \(\Sigma \vdash \mu_0 : \Sigma_0 \) and \(\Sigma \vdash e_0 : \tau \). Note that \(\Sigma \vdash \mu_0 \otimes \langle a : b \rangle : \Sigma \). Applying induction to the derivation of \(\Sigma \vdash e_0 : \tau \), we consider three cases:

1. \(\nu \Sigma \{ e_0 \parallel \mu_0 \otimes \langle a : b \rangle \} \) final. By inversion of Rule (39.2b) we have \(e_0 \text{ val}_\Sigma \), and hence by Rule (39.3a) we obtain \(\nu \Sigma \{ a \parallel \mu \} \mapsto \nu \Sigma \{ e_0 \parallel \mu \} \).

2. \(\nu \Sigma \{ e_0 \parallel \mu_0 \otimes \langle a : b \rangle \} \) loops. By applying Rule (39.5b) we obtain \(\nu \Sigma \{ a \parallel \mu \} \) loops.

3. \(\nu \Sigma \{ e_0 \parallel \mu_0 \otimes \langle a : b \rangle \} \mapsto \nu \Sigma' \{ e'_0 \parallel \mu'_0 \otimes \langle a : b \rangle \} \). By applying Rule (39.3b) we obtain

\[
\nu \Sigma \{ a \parallel \mu \otimes \langle a : e_0 \rangle \} \mapsto \nu \Sigma' \{ a \parallel \mu' \otimes \langle a : e'_0 \rangle \}.
\]

\[\square\]
39.3 Lazy Data Structures

The call-by-need dynamics extends to product, sum, and recursive types in a straightforward manner. For example, the need dynamics of lazy product types is given by the following rules:

\[
\text{pair}(a_1; a_2) \xrightarrow{\text{val}}_{\Sigma, a_1 : \tau_1, a_2 : \tau_2}
\]

\[
\begin{align*}
&\nu \Sigma \{ \text{pair}(e_1; e_2) \parallel \mu \} \\
\rightarrow &\nu \Sigma \{ e \parallel \mu \} \mapsto \nu \Sigma' \{ e' \parallel \mu' \}
\end{align*}
\]

\[
\begin{align*}
&\nu \Sigma \{ \text{proj}[1](e) \parallel \mu \} \\
\rightarrow &\nu \Sigma \{ e \parallel \mu \} \text{ loops}
\end{align*}
\]

A pair is considered a value only if its arguments are names (Rule (39.6a)), which are introduced when the pair is created (Rule (39.6b)). The first and second projections evaluate to one or the other name in the pair, inducing a demand for the value of that component (Rules (39.6e) and (39.6h)).

Using similar techniques we may give a need dynamics to sums and recursive types. We leave the formalization of these as an exercise for the reader.
39.4 Suspensions

Another way to introduce laziness is to consolidate the machinery of the by-need dynamics into a single type whose values are possibly unevaluated, memoized computations. The type of suspensions of type \(\tau \), written \(\tau \text{ susp} \), has as introductory form \(\text{susp } x : \tau \text{ is } e \) representing the suspended, possibly self-referential, computation, \(e \), of type \(\tau \), and as eliminatory form the operation \(\text{force}(e) \) that evaluates the suspended computation presented by \(e \), records the value in a memo table, and returns that value as result.

Using suspension types we may construct other lazy types according to our needs in a particular program. For example, the type of lazy pairs with components of type \(\tau_1 \) and \(\tau_2 \) is expressible as the type

\[
\tau_1 \text{ susp} \times \tau_2 \text{ susp}
\]

and the type of call-by-need functions with domain \(\tau_1 \) and range \(\tau_2 \) is expressible as the type

\[
\tau_1 \text{ susp} \rightarrow \tau_2.
\]

We may also express more complex combinations of eagerness and laziness, such as the type of “lazy lists” consisting of computations that, when forced, evaluate either to the empty list, or a non-empty list consisting of a natural number and another lazy list:

\[
\mu t. (\text{unit} + (\text{nat} \times t)) \text{ susp}.
\]

This type should be contrasted with the type

\[
\mu t. (\text{unit} + (\text{nat} \times t \text{ susp}))
\]

whose values are the empty list and a pair consisting of a natural number and a computation of another such value.

The syntax of suspensions is given by the following grammar:

\[
\begin{align*}
\text{Type} & \quad \tau ::= \text{susp}(\tau) \quad \tau \text{ susp} \quad \text{suspension} \\
\text{Expr} & \quad e ::= \text{susp}[\tau](x.e) \quad \text{susp } x : \tau \text{ is } e \quad \text{delay} \\
& \quad \quad \quad \quad \text{force}(e) \quad \text{force} \\
& \quad \quad \quad \quad \text{susp } [a] \quad \text{susp } [a] \quad \text{self-reference}
\end{align*}
\]

Suspensions are self-referential; the bound variable, \(x \), refers to the suspension itself. The expression \(\text{susp } [a] \) is a reference to the suspension named \(a \).
The statics of the suspension type is given as a judgement of the form
\[\Sigma \Gamma \vdash e : \tau, \] where \(\Sigma \) assigns types to the names of suspensions. It is defined
by the following rules:

\[
\Sigma \Gamma, x : \text{susp}(\tau) \vdash e : \tau \] \hspace{1cm} (39.7a)

\[
\Sigma \Gamma \vdash \text{susp}[\tau](x.e) : \text{susp}(\tau) \] \hspace{1cm} (39.7b)

\[
\Sigma \Gamma \vdash e : \text{susp}(\tau) \]

\[
\Sigma \Gamma \vdash \text{force}(e) : \tau \] \hspace{1cm} (39.7c)

Rule (39.7a) checks that the expression, \(e \), has type \(\tau \) under the assumption
that \(x \), which stands for the suspension itself, has type \(\text{susp}(\tau) \).

The by-need dynamics of suspensions is defined by the following rules:

\[
\text{susp}[\tau] \text{ val}_{\Sigma, a : \tau} \] \hspace{1cm} (39.8a)

\[
\left\{ \begin{array}{l}
\nu \Sigma \{ \text{susp}[\tau](x.e) \parallel \mu \} \\
\nu \Sigma, a : \tau \{ \text{susp}[\tau] \parallel \mu \otimes \langle a : x \rangle e \}
\end{array} \right\} \] \hspace{1cm} (39.8b)

\[
\nu \Sigma \{ e \parallel \mu \} \mapsto \nu \Sigma' \{ e' \parallel \mu' \} \] \hspace{1cm} (39.8c)

\[
\nu \Sigma, a : \tau \{ \text{force}(\text{susp}[\tau]) \parallel \mu \otimes \langle a : e \rangle \} \] \hspace{1cm} (39.8d)

\[
\nu \Sigma' : a : \tau \{ e' \parallel \mu' \otimes \langle a : e \rangle \} \] \hspace{1cm} (39.8e)

Rule (39.8a) specifies that a reference to a suspension is a value. Rule (39.8b)
specifies that evaluation of a delayed computation consists of allocating
a fresh name for it in the memo table, and returning a reference to that suspension. Rules (39.8c) to (39.8e) specify that demanding the value of a suspension forces evaluation of the suspended computation, which is then stored in the memo table and returned as result.

39.5 Exercises
Chapter 40

Polarization

Up to this point we have frequently encountered arbitrary choices in the dynamics of various language constructs. For example, when specifying the dynamics of pairs, we must choose, rather arbitrarily, between the lazy dynamics, in which all pairs are values regardless of the value status of their components, and the eager dynamics, in which a pair is a value only if its components are both values. We could even consider a half-eager (or, if you are a pessimist, half-lazy) dynamics, in which a pair is a value only if, say, the first component is a value, but without regard to the second. Although the latter choice seems rather arbitrary, it is no less so than the choice between a fully lazy or a fully eager dynamics.

Similar questions arise with sums (all injections are values, or only injections of values are values), recursive types (all folds are values, or only folds whose arguments are values), and function types (functions should be called by-name or by-value). Whole languages are built around adherence to one policy or another. For example, Haskell decrees that products, sums, and recursive types are to be lazy, and functions are to be called by name, whereas ML decrees the exact opposite policy. Not only are these choices arbitrary, but it is also unclear why they should be linked. For example, one could very sensibly decree that products, sums, and recursive types are lazy, yet impose a call-by-value discipline on functions. Or one could have eager products, sums, and recursive types, yet insist on call-by-name. It is not at all clear which of these points in the space of choices is right; each language has its adherents, each has its drawbacks, and each has its advantages.

Are we therefore stuck in a tarpit of subjectivity? No! The way out is to recognize that these distinctions should not be imposed by the language
designer, but rather are choices that are to be made by the programmer. This is achieved by recognizing that differences in dynamics reflect fundamental type distinctions that are being obscured by languages that impose one policy or another. We can have both eager and lazy pairs in the same language by simply distinguishing them as two distinct types, and similarly we can have both eager and lazy sums in the same language, and both by-name and by-value function spaces, by providing sufficient type distinctions as to make the choice available to the programmer.

In this chapter we will introduce polarization to distinguish types based on whether their elements are defined by their values (the positive types) or by their behavior (the negative types). Put in other terms, positive types are “eager” (determined by their values), whereas negative types are “lazy” (determined by their behavior). Since positive types are defined by their values, they are eliminated by pattern matching against these values. Similarly, since negative types are defined by their behavior under a range of experiments, they are eliminated by performing an experiment on them.

To make these symmetries explicit we formalize polarization using a technique called focusing, or focalization.\(^1\) A focused presentation of a programming language distinguishes three general forms of expression, (positive and negative) values, (positive and negative) continuations, and (neutral) computations. Besides exposing the symmetries in a polarized type system, focusing also clarifies the design of the control machine introduced in Chapter 27. In a focused framework stacks are just continuations, and states are just computations; there is no need for any ad hoc apparatus to explain the flow of control in a program.

40.1 Polarization

Polarization consists of distinguishing positive from negative types according to the following two principles:

1. A positive type is defined by its introduction rules, which specify the values of that type in terms of other values. The elimination rules are inversions that specify a computation by pattern matching on values of that type.

2. A negative type is defined by its elimination rules, which specify the observations that may be performed on elements of that type. The

\(^1\)More precisely, we employ a weak form of focusing, rather than the stricter forms considered elsewhere in the literature.
introduction rules specify the values of that type by specifying how they respond to observations.

Based on this characterization we can anticipate that the type of natural numbers would be positive, since it is defined by zero and successor, whereas function types would be negative, since they are characterized by their behavior when applied, and not by their internal structure.

The language $L^\pm\{\text{nat} \rightarrow\}$ is a polarized formulation of $L\{\text{nat} \rightarrow\}$ in which the syntax of types is given by the following grammar:

$$
\begin{align*}
\text{PType } \tau^+ &::= \text{dn}(\tau^-) & \downarrow \tau^- & \text{suspension} \\
& \quad \text{nat} & \text{nat} & \text{naturals} \\
\text{NType } \tau^- &::= \text{up}(\tau^+) & \uparrow \tau^+ & \text{inclusion} \\
& \quad \text{parr}(\tau_1^+; \tau_2^-) & \tau_1^+ \rightarrow \tau_2^- & \text{partial function}
\end{align*}
$$

The types $\downarrow \tau^-$ and $\uparrow \tau^+$ effect a polarity shift from negative to positive and positive to negative, respectively. Intuitively, the shifted type $\uparrow \tau^+$ is just the inclusion of positive into negative values, whereas the shifted type $\downarrow \tau^-$ represents the type of suspended computations of negative type.

The domain of the negative function type is required to be positive, but its range is negative. This allows us to form right-iterated function types

$$\tau_1^+ \rightarrow (\tau_2^+ \rightarrow (\cdots (\tau_n^+ \rightarrow \tau_n^-)))$$

directly, but to form a left-iterated function type requires shifting,

$$\downarrow (\tau_1^+ \rightarrow \tau_2^-) \rightarrow \tau^-,$$

to turn the negative function type into a positive type. Conversely, shifting is needed to define a function whose range is positive, $\tau_1^+ \rightarrow \uparrow \tau_2^+$.

40.2 Focusing

The syntax of $L^\pm\{\text{nat} \rightarrow\}$ is motivated by the polarization of its types. For each polarity we have a sort of values and a sort of continuations with
which we may create (neutral) computations.

\[
\begin{align*}
\text{PVal} & \quad v^+ ::= \quad z & z & \quad \text{zero} \\
& \quad s(v^+) & s(v^+) & \quad \text{successor} \\
& \quad \text{del}^{-}(e) & \text{del}^{-}(e) & \quad \text{delay} \\
\text{PCont} & \quad k^+ ::= \quad \text{ifz}(e_0; x.e_1) & \text{ifz}(e_0; x.e_1) & \quad \text{conditional} \\
& \quad \text{force}^{-}(k^-) & \text{force}^{-}(k^-) & \quad \text{evaluate} \\
\text{NVal} & \quad v^- ::= \quad \text{lam}[(\tau^+)](x.e) & \lambda (x: \tau^+, e) & \quad \text{abstraction} \\
& \quad \text{del}^{+}(v^+) & \text{del}^{+}(v^+) & \quad \text{inclusion} \\
& \quad \text{fix}(x.v^-) & \text{fix}x\text{is}v^- & \quad \text{recursion} \\
\text{NCont} & \quad k^- ::= \quad \text{ap}(v^-; k^-) & \text{ap}(v^-; k^-) & \quad \text{application} \\
& \quad \text{force}^{+}(x.e) & \text{force}^{+}(x.e) & \quad \text{evaluate} \\
\text{Comp} & \quad e ::= \quad \text{ret}(v^-) & \text{ret}(v^-) & \quad \text{return} \\
& \quad \text{cut}^{+}(v^+; k^+) & v^+ \triangleright k^+ & \quad \text{cut} \\
& \quad \text{cut}^{-}(v^-; k^-) & v^- \triangleright k^- & \quad \text{cut}
\end{align*}
\]

The positive values include the numerals, and the negative values include functions. In addition we may delay a computation of a negative value to form a positive value using \(\text{del}^{-}(e)\), and we may consider a positive value to be a negative value using \(\text{del}^{+}(v^+)\). The positive continuations include the conditional branch, \(\text{sans}\) argument, and the negative continuations include application sites for functions consisting of a positive argument value and a continuation for the negative result. In addition we include positive continuations to force the computation of a suspended negative value, and to extract an included positive value. Computations, which correspond to machine states, consist of returned negative values (these are final states), states passing a positive value to a positive continuation, and states passing a negative value to a negative continuation. General recursion appears as a form of negative value; the recursion is unrolled when it is made the subject of an observation.

40.3 Statics

The statics of \(L^\pm\{\text{nat} \rightarrow \}\) consists of a collection of rules for deriving judgements of the following forms:

- Positive values: \(\Gamma \vdash v^+ : \tau^+\).
- Positive continuations: \(\Gamma \vdash k^+ : \tau^+ > \gamma^-\).
- Negative values: \(\Gamma \vdash v^- : \tau^-\).
40.3 Statics

- Negative continuations: $\Gamma \vdash k^\gamma : \tau^- > \gamma^-$.
- Computations: $\Gamma \vdash e : \gamma^-$.

Throughout Γ is a finite set of hypotheses of the form

$$x_1 : \tau^+_1, \ldots, x_n : \tau^+_n,$$

for some $n \geq 0$, and γ^- is any negative type.

The typing rules for continuations specify both an argument type (on which values they act) and a result type (of the computation resulting from the action on a value). The typing rules for computations specify that the outcome of a computation is a negative type. All typing judgements specify that variables range over positive types. (These restrictions may always be met by appropriate use of shifting.)

The statics of positive values consists of the following rules:

$$\Gamma, x : \tau^+ \vdash x : \tau^+ \quad (40.1a)$$
$$\Gamma \vdash z : \text{nat} \quad (40.1b)$$
$$\Gamma \vdash n^+ : \text{nat}$$
$$\Gamma \vdash s(n^+) : \text{nat} \quad (40.1c)$$
$$\Gamma \vdash e : \tau^-$$
$$\Gamma \vdash \text{del}^-(e) : \downarrow \tau^- \quad (40.1d)$$

Rule (40.1a) specifies that variables range over positive values. Rules (40.1b) and (40.1c) specify that the values of type nat are just the numerals. Rule (40.1d) specifies that a suspended computation (necessarily of negative type) is a positive value.

The statics of positive continuations consists of the following rules:

$$\Gamma \vdash e_0 : \gamma^- \quad \Gamma, x : \text{nat} \vdash e_1 : \gamma^-$$
$$\Gamma \vdash \text{ifz}(e_0; x. e_1) : \text{nat} > \gamma^- \quad (40.2a)$$
$$\Gamma \vdash k^- : \tau^- > \gamma^-$$
$$\Gamma \vdash \text{force}^-(k^-) : \downarrow \tau^- > \gamma^- \quad (40.2b)$$

Rule (40.2a) governs the continuation that chooses between two computations according to whether a natural number is zero or non-zero. Rule (40.2b) specifies the continuation that forces a delayed computation with the specified negative continuation.
The statics of negative values is defined by these rules:

\[
\begin{align*}
\Gamma, x : \tau_1^+ & \vdash e : \tau_2^- \\
\Gamma & \vdash \lambda (x : \tau_1^+, e) : \tau_1^+ \rightarrow \tau_2^-
\end{align*}
\] (40.3a)

\[
\Gamma \vdash v^+ : \tau^+ \\
\Gamma \vdash \text{del}^+(v^+) : \uparrow \tau^+
\] (40.3b)

\[
\Gamma, x : \downarrow \tau^- \vdash v^- : \tau^- \\
\Gamma \vdash \text{fix} x \text{ is } v^- : \tau^-
\] (40.3c)

Rule (40.3a) specifies the statics of a \(\lambda\)-abstraction whose argument is a positive value, and whose result is a computation of negative type. Rule (40.3b) specifies the inclusion of positive values as negative values. Rule (40.3c) specifies that negative types admit general recursion.

The statics of negative continuations is defined by these rules:

\[
\begin{align*}
\Gamma \vdash v_1^+ : \tau_1^+ & \quad \Gamma \vdash k_2^- : \tau_2^- > \gamma^- \\
\Gamma & \vdash \text{ap}(v_1^+; k_2^-) : \tau_1^+ \rightarrow \tau_2^- > \gamma^-
\end{align*}
\] (40.4a)

\[
\Gamma, x : \tau^+ \vdash e : \gamma^- \\
\Gamma \vdash \text{force}^+(x.e) : \uparrow \tau^+ > \gamma^-
\] (40.4b)

Rule (40.4a) is the continuation representing the application of a function to the positive argument, \(v_1^+\), and executing the body with negative continuation, \(k_2^-\). Rule (40.4b) specifies the continuation that passes a positive value, viewed as a negative value, to a computation.

The statics of computations is given by these rules:

\[
\begin{align*}
\Gamma \vdash v^- : \tau^- \\
\Gamma \vdash \text{ret}(v^-) : \tau
\end{align*}
\] (40.5a)

\[
\begin{align*}
\Gamma \vdash v^+ : \tau^+ & \quad \Gamma \vdash k^+ : \tau^+ > \gamma^- \\
\Gamma & \vdash v^+ \triangleright k^+ : \gamma^-
\end{align*}
\] (40.5b)

\[
\begin{align*}
\Gamma \vdash v^- : \tau^- & \quad \Gamma \vdash k^- : \tau^- > \gamma^- \\
\Gamma & \vdash v^- \triangleright k^- : \gamma^-
\end{align*}
\] (40.5c)

Rule (40.5a) specifies the basic form of computation that simply returns the negative value \(v^-\). Rules (40.5b) and (40.5c) specify computations that pass a value to a continuation of appropriate polarity.
40.4 Dynamics

The dynamics of $\mathcal{L}^{\pm}\{\text{nat}\rightarrow\}$ is given by a transition system $e \rightarrow e'$ specifying the steps of computation. The rules are all axioms; no premises are required because the continuation is used to manage pending computations.

The dynamics consists of the following rules:

\begin{align*}
\text{reset}(e) & \triangleright ifz(e_0; x.e_1) \mapsto e_0 \tag{40.6a} \\
\text{s}(v^+) & \triangleright ifz(e_0; x.e_1) \mapsto [v^+/x]e_1 \tag{40.6b} \\
\text{del}^-(e) & \triangleright \text{force}^-(k^-) \mapsto e; k^- \tag{40.6c} \\
\lambda (x:\tau^+.e) & \triangleright \text{ap}(v^+; k^-) \mapsto [v^+/x]e; k^- \tag{40.6d} \\
\text{del}^+(v^+) & \triangleright \text{force}^+(v_.e) \mapsto [v^+/x]e \tag{40.6e} \\
\text{fixfixis}v^- & \triangleright k^- \mapsto [\text{del}^-(\text{fixfixis}v^-)/x]v^- \triangleright k^- \tag{40.6f}
\end{align*}

These rules specify the interaction between values and continuations.

Rules (40.6) make use of two forms of substitution, $[v^+/x]e$ and $[v^+/x]v^-$, which are defined as in Chapter 3. They also employ a new form of composition, written $e; k^-_0$, which composes a computation with a continuation by attaching k^-_0 to the end of the computation specified by e. This composition is defined mutually recursive with the compositions $k^+; k^-_0$ and $k^-; k^-_0$, which essentially concatenate continuations (stacks).

\begin{align*}
\text{reset}(e) ; k^-_0 & = v^- \triangleright k^-_0 \tag{40.7a} \\
k^- ; k^-_0 & = k^-_1 \tag{40.7b} \\
(v^- \triangleright k^-) ; k^-_0 & = v^- \triangleright k^-_1 \tag{40.7c} \\
k^+ ; k^-_0 & = k^+_1 \tag{40.7c} \\
(v^+ \triangleright k^+) ; k^-_0 & = v^+ \triangleright k^+_1 \tag{40.7c} \\
e_0 ; k^- & = e'_0 \quad x \mid e_1 ; k^- = e'_1 \tag{40.7d} \\
ifz(e_0; x.e_1) ; k^- & = ifz(e'_0; x.e'_1) \tag{40.7d} \\
k^- ; k^-_0 & = k^-_1 \tag{40.7e} \\
\text{force}^-(k^-) ; k^-_0 & = \text{force}^-(k^-_1) \tag{40.7e} \\
k^- ; k^-_0 & = k^-_1 \tag{40.7f} \\
ap(v^+; k^-) ; k^-_0 & = ap(v^+; k^-_1) \tag{40.7f}
\end{align*}
\[x \mid e; k_0 = e' \]
\[\text{force}^+(x.e); k_0 = \text{force}^+(x.e') \] \hspace{1cm} (40.7g)

Rules (40.7d) and (40.7g) make use of the generic hypothetical judgement defined in Chapter 4 to express that the composition is defined uniformly in the bound variable.

40.5 Safety

The proof of preservation for \(\mathcal{L}^\pm \{ \text{nat} \rightarrow \} \) reduces to the proof of the typing properties of substitution and composition.

Lemma 40.1 (Substitution). *Suppose that \(\Gamma \vdash v^+ : \sigma^+ \).*

1. If \(\Gamma, x : \sigma^+ \vdash e : \gamma^- \), then \(\Gamma \vdash [v^+/x]e : \gamma^- \).
2. If \(\Gamma, x : \sigma^+ \vdash v^- : \tau^- \), then \(\Gamma \vdash [v^+/x]v^- : \tau^- \).
3. If \(\Gamma, x : \sigma^+ \vdash k^+ : \tau^+ > \gamma^- \), then \(\Gamma \vdash [v^+/x]k^+ : \tau^+ > \gamma^- \).
4. If \(\Gamma, x : \sigma^+ \vdash v^+_1 : \tau^+ \), then \(\Gamma \vdash [v^+/x]v^+_1 : \tau^+ \).
5. If \(\Gamma, x : \sigma^+ \vdash k^- : \tau^- > \gamma^- \), then \(\Gamma \vdash [v^+/x]k^- : \tau^- > \gamma^- \).

Proof. Simultaneously, by induction on the derivation of the typing of the target of the substitution.

Lemma 40.2 (Composition).

1. If \(\Gamma \vdash e : \tau^- \) and \(\Gamma \vdash k^- : \tau^- > \gamma^- \), then \(\Gamma \vdash e; k^- : \tau^- > \gamma^- \).
2. If \(\Gamma \vdash k^+_0 : \tau^+ > \gamma^- \), and \(\Gamma \vdash k^+_1 : \gamma^- > \gamma^- \), then \(\Gamma \vdash k^+_0 ; k^+_1 : \tau^+ > \gamma^- \).
3. If \(\Gamma \vdash k^-_0 : \tau^- > \gamma^- \), and \(\Gamma \vdash k^-_1 : \gamma^- > \gamma^- \), then \(\Gamma \vdash k^-_0 ; k^-_1 : \tau^- > \gamma^- \).

Proof. Simultaneously, by induction on the derivations of the first premises of each clause of the lemma.

Theorem 40.3 (Preservation). *If \(\Gamma \vdash e : \gamma^- \) and \(e \rightarrow e' \), then \(\Gamma \vdash e' : \gamma^- \).*

Proof. By induction on transition, appealing to inversion for typing and Lemmas 40.1 and 40.2.

The progress theorem reduces to the characterization of the values of each type. Focusing makes the required properties evident, since it defines directly the values of each type.

Theorem 40.4 (Progress). *If \(\Gamma \vdash e : \gamma^- \), then either \(e = \text{ret}(v^-) \) for some \(v^- \), or there exists \(e' \) such that \(e \rightarrow e' \).*

13:08 DRAFT JUNE 2, 2010
40.6 Definability

The syntax of $L^\pm\{\text{nat} \to \}$ exposes the symmetries between positive and negative types, and hence between eager and lazy computation. It is not, however, especially convenient for writing programs because it requires that each computation in a program be expressed in the stilted form of a value juxtaposed with a continuation. It would be useful to have a more natural syntax that is translatable into the present language.

But the question of what is a natural syntax begs the very question that motivated the language in the first place!

Editorial Notes

This chapter under construction.

40.7 Exercises
Part XV

Parallelism
Chapter 41

Nested Parallelism

Parallel computation seeks to reduce the running times of programs by allowing many computations to be carried out simultaneously. For example, if one wishes to add two numbers, each given by a complex computation, we may consider evaluating the addends simultaneously, then computing their sum. The ability to exploit parallelism is limited by the dependencies among parts of a program. Obviously, if one computation depends on the result of another, then we have no choice but to execute them sequentially so that we may propagate the result of the first to the second. Consequently, the fewer dependencies among sub-computations, the greater the opportunities for parallelism. This argues for functional models of computation, because the possibility of mutation of shared assignables imposes sequentialization constraints on imperative code.

In this chapter we discuss nested parallelism in which we nest parallel computations within one another in a hierarchical manner. Nested parallelism is sometimes called fork-join parallelism to emphasize the hierarchical structure arising from forking two (or more) parallel computations, then joining these computations to combine their results before proceeding. We will consider two forms of dynamics for nested parallelism. The first is a structural dynamics in which a single transition on a compound expression may involve multiple transitions on its constituent expressions. The second is a cost dynamics (introduced in Chapter 10) that focuses attention on the sequential and parallel complexity (also known as the work and depth) of a parallel program by associating a series-parallel graph with each computation.
41.1 Binary Fork-Join

We begin with a parallel language whose sole source of parallelism is the simultaneous evaluation of two variable bindings. This is modelled by a construct of the form

\[
\text{letpar } x_1 = e_1 \text{ and } x_2 = e_2 \text{ in } e,
\]

in which we bind two variables, \(x_1 \) and \(x_2 \), to two expressions, \(e_1 \) and \(e_2 \), respectively, for use within a single expression, \(e \). This represents a simple fork-join primitive in which \(e_1 \) and \(e_2 \) may be evaluated independently of one another, with their results combined by the expression \(e \). Some other forms of parallelism may be defined in terms of this primitive. For example, a parallel pair construct might be defined as the expression

\[
\text{letpar } x_1 = e_1 \text{ and } x_2 = e_2 \text{ in } \langle x_1, x_2 \rangle,
\]

which evaluates the components of the pair in parallel, then constructs the pair itself from these values.

The abstract syntax of the parallel binding construct is given by the abstract binding tree

\[
\text{letpar}(e_1; e_2; x_1.x_2.e),
\]

which makes clear that the variables \(x_1 \) and \(x_2 \) are bound only within \(e \), and not within their bindings. This ensures that evaluation of \(e_1 \) is independent of evaluation of \(e_2 \), and vice versa. The typing rule for an expression of this form is given as follows:

\[
\frac{
\Gamma \vdash e_1: \tau_1 \quad \Gamma \vdash e_2: \tau_2
}{
\Gamma \vdash \text{letpar}(e_1; e_2; x_1.x_2.e): \tau}
\] (41.1)

Although we emphasize the case of binary parallelism, it should be clear that this construct easily generalizes to \(n \)-way parallelism for any static value of \(n \). One may also define an \(n \)-way parallel let construct from the binary parallel let by cascading binary splits. (For a treatment of \(n \)-way parallelism for a dynamic value of \(n \), see Section 41.3 on page 386.)

We will give both a sequential and a parallel dynamics of the parallel let construct. The definition of the sequential dynamics as a transition judgement of the form \(e \mapsto_{\text{seq}} e' \) is entirely straightforward:

\[
\frac{
e_1 \mapsto e'_1}{\text{letpar}(e_1; e_2; x_1.x_2.e) \mapsto_{\text{seq}} \text{letpar}(e'_1; e_2; x_1.x_2.e)} \quad (41.2a)
\]

\[
\frac{
e_1 \text{ val} \quad e_2 \mapsto e'_2}{\text{letpar}(e_1; e_2; x_1.x_2.e) \mapsto_{\text{seq}} \text{letpar}(e_1; e'_2; x_1.x_2.e)} \quad (41.2b)
\]
41.1 Binary Fork-Join

\[
\begin{align*}
&\text{letpar}(e_1; e_2; x_1, x_2. e) \mapsto_{\text{seq}} [e_1, e_2/x_1, x_2]e
\end{align*}
\]

(41.2c)

The parallel dynamics is given by a transition judgement of the form \(e \mapsto_{\text{par}} e' \), defined as follows:

\[
\begin{align*}
&\text{letpar}(e_1; e_2; x_1, x_2. e) \mapsto_{\text{par}} \text{letpar}(e'_1; e'_2; x_1, x_2. e) \\
&\text{letpar}(e_1; e_2; x_1, x_2. e) \mapsto_{\text{par}} \text{letpar}(e'_1; e_2; x_1, x_2. e) \\
&\text{letpar}(e_1; e_2; x_1, x_2. e) \mapsto_{\text{par}} \text{letpar}(e_1; e'_2; x_1, x_2. e) \\
&\text{letpar}(e_1; e_2; x_1, x_2. e) \mapsto_{\text{par}} [e_1, e_2/x_1, x_2]e
\end{align*}
\]

(41.3a)

(41.3b)

(41.3c)

(41.3d)

The parallel dynamics is idealized in that it abstracts away from any limitations on parallelism that would necessarily be imposed in practice by the availability of computing resources.

An important advantage of the present approach is captured by the **implicit parallelism theorem**, which states that the sequential and the parallel dynamics coincide. This means that one need never be concerned with the **semantics** of a parallel program (its meaning is determined by the sequential dynamics), but only with its **performance**. Since the sequential dynamics is deterministic (every expression has at most one value), the implicit parallelism theorem implies that the parallel dynamics is also deterministic. This clearly distinguishes **parallelism**, which is deterministic, from **concurrency**, which is non-deterministic (see Chapters 43 and 44 for more on concurrency).

A proof of the implicit parallelism theorem may be given by giving an evaluation dynamics, \(e \downarrow v \), in the style of Chapter 10, and showing that

\[
\begin{align*}
&\text{letpar}(e_1; e_2; x_1, x_2. e) \downarrow v \\
&\text{letpar}(e_1; e_2; x_1, x_2. e) \downarrow v \\
&\text{letpar}(e_1; e_2; x_1, x_2. e) \downarrow v \\
&\text{letpar}(e_1; e_2; x_1, x_2. e) \downarrow v
\end{align*}
\]

(41.4)

It is easy to show that the sequential dynamics agrees with the evaluation dynamics by a straightforward extension of the proof of Theorem 10.2 on page 85.
Lemma 41.1. $e \mapsto^*_v v$ if $\downarrow e \Downarrow v$.

Proof. It suffices to show that if $e \mapsto^*_v v_1$ and $e_2 \mapsto^*_v v_2$ and $[v_1, v_2/x_1, x_2]e \mapsto^*_v v$, then

$$\text{letpar } x_1 = e_1 \text{ and } x_2 = e_2 \text{ in } e \mapsto^*_v v.$$

We leave the details of the proof as an exercise for the reader.

By a similar argument we may show that the parallel dynamics also agrees with the evaluation dynamics, and hence with the sequential dynamics.

Lemma 41.2. $e \mapsto^*_v v$ if $\downarrow e \Downarrow v$.

Proof. It suffices to show that if $e \mapsto^*_v v_1$ and $e_2 \mapsto^*_v v_2$ and $[v_1, v_2/x_1, x_2]e \mapsto^*_v v$, then

$$\text{letpar } x_1 = e_1 \text{ and } x_2 = e_2 \text{ in } e \mapsto^*_v v.$$

The proof of the first is by a straightforward induction on the parallel dynamics. The proof of the second proceeds by simultaneous induction on the derivations of $e_1 \mapsto^*_v v_1$ and $e_2 \mapsto^*_v v_2$. If $e_1 = v_1$ with $v_1 \text{ val}$ and $e_1 = v_2$ with $v_2 \text{ val}$, then the result follows immediately from the third premise. If $e_1 = v_2$ but $e_1 \mapsto^*_v v_1$, then by induction we have that $\text{letpar } x_1 = e_1 \text{ and } x_2 = v_2$ in $e \mapsto^*_v v$, and hence the result follows by an application of Rule (41.3b). The symmetric case follows similarly by an application of Rule (41.3c), and in case both e_1 and e_2 take a step, the result follows by induction and Rule (41.3a).

Theorem 41.3 (Implicit Parallelism). The sequential and parallel dynamics co-incide: for all $v \text{ val}$, $e \mapsto^*_v v$ if $e \mapsto^*_v v$.

Proof. By Lemmas 41.1 and 41.2.

Theorem 41.3 states that parallelism is implicit in that the use of a parallel evaluation strategy does not affect the semantics of a program, but only its efficiency. The program means the same thing under a parallel execution strategy as it does under a sequential one. Correctness concerns are factored out, focusing attention on time (and space) complexity of a parallel execution strategy.
41.2 Cost Dynamics

In this section we define a parallel cost dynamics that assigns a cost graph to the evaluation of an expression. Cost graphs are defined by the following grammar:

\[
\text{Cost} \quad c \quad ::= \quad 0 \quad \text{zero cost} \\
1 \quad \text{unit cost} \\
c_1 \otimes c_2 \quad \text{parallel combination} \\
c_1 \oplus c_2 \quad \text{sequential combination}
\]

A cost graph is a form of series-parallel directed acyclic graph, with a designated source node and sink node. For 0 the graph consists of one node and no edges, with the source and sink both being the node itself. For 1 the graph consists of two nodes and one edge directed from the source to the sink. For \(c_1 \otimes c_2 \), if \(g_1 \) and \(g_2 \) are the graphs of \(c_1 \) and \(c_2 \), respectively, then the graph has two additional nodes, a source node with two edges to the source nodes of \(g_1 \) and \(g_2 \), and a sink node, with edges from the sink nodes of \(g_1 \) and \(g_2 \) to it. Finally, for \(c_1 \oplus c_2 \), where \(g_1 \) and \(g_2 \) are the graphs of \(c_1 \) and \(c_2 \), the graph has as source node the source of \(g_1 \), as sink node the sink of \(g_2 \), and an edge from the sink of \(g_1 \) to the source of \(g_2 \).

The intuition behind a cost graph is that nodes represent subcomputations of an overall computation, and edges represent sequentiality constraints stating that one computation depends on the result of another, and hence cannot be started before the one on which it depends completes. The product of two graphs represents parallelism opportunities in which there are no sequentiality constraints between the two computations. The assignment of source and sink nodes reflects the overhead of forking two parallel computations and joining them after they have both completed.

We associate with each cost graph two numeric measures, the work, \(\text{wk}(c) \), and the depth, \(\text{dp}(c) \). The work is defined by the following equations:

\[
\text{wk}(c) = \begin{cases}
0 & \text{if } c = 0 \\
1 & \text{if } c = 1 \\
\text{wk}(c_1) + \text{wk}(c_2) & \text{if } c = c_1 \otimes c_2 \\
\text{wk}(c_1) + \text{wk}(c_2) & \text{if } c = c_1 \oplus c_2
\end{cases}
\]
The depth is defined by the following equations:

\[
dp(c) = \begin{cases}
0 & \text{if } c = 0 \\
1 & \text{if } c = 1 \\
\max(dp(c_1), dp(c_2)) & \text{if } c = c_1 \otimes c_2 \\
dp(c_1) + dp(c_2) & \text{if } c = c_1 \oplus c_2
\end{cases} \tag{41.6}
\]

Informally, the work of a cost graph determines the total number of computation steps represented by the cost graph, and thus corresponds to the *sequential complexity* of the computation. The depth of the cost graph determines the *critical path length*, the length of the longest dependency chain within the computation, which imposes a lower bound on the *parallel complexity* of a computation. The critical path length is the least number of sequential steps that can be taken, even if we have unlimited parallelism available to us, because of steps that can be taken only after the completion of another.

In Chapter 10 we introduced *cost dynamics* as a means of assigning time complexity to evaluation. The proof of Theorem 10.7 on page 88 shows that \(e \Downarrow^k v \text{ iff } e \rightarrow^k v \). That is, the step complexity of an evaluation of \(e \) to a value \(v \) is just the number of transitions required to derive \(e \rightarrow^* v \). Here we use cost graphs as the measure of complexity, then relate these cost graphs to the structural dynamics given in Section 41.1 on page 380.

The judgement \(e \Downarrow^c v \), where \(e \) is a closed expression, \(v \) is a closed value, and \(c \) is a cost graph specifies the cost dynamics. By definition we arrange that \(e \Downarrow^0 e \) when \(e \text{ val} \). The cost assignment for \(\text{let} \) is given by the following rule:

\[
\frac{e_1 \Downarrow^{c_1} v_1 \quad e_2 \Downarrow^{c_2} v_2 \\ [v_1, v_2/x_1, x_2]e \Downarrow^c v}{\text{letpar}(e_1; e_2; x_1 \cdot x_2 \cdot e) \Downarrow^{(c_1 \otimes c_2) \otimes 1 \otimes c} v} \tag{41.7}
\]

The cost assignment specifies that, under ideal conditions, \(e_1 \) and \(e_2 \) are to be evaluated in parallel, and that their results are to be propagated to \(e \). The cost of fork and join is implicit in the parallel combination of costs, and assign unit cost to the substitution because we expect it to be implemented in practice by a constant-time mechanism for updating an environment. The cost dynamics of other language constructs is specified in a similar manner, using only sequential combination so as to isolate the source of parallelism to the \(\text{let} \) construct.

Two simple facts about the cost dynamics are important to keep in mind. First, the cost assignment does not influence the outcome.

Lemma 41.4. \(e \Downarrow v \text{ iff } e \Downarrow^c v \text{ for some } c \).
41.2 Cost Dynamics

Proof. From right to left, erase the cost assignments to obtain an evaluation derivation. From left to right, decorate the evaluation derivations with costs as determined by the rules defining the cost dynamics.

Second, the cost of evaluating an expression is uniquely determined.

Lemma 41.5. If $e \Downarrow^c v$ and $e \Downarrow^{c'} v$, then c is c'.

Proof. A routine induction on the derivation of $e \Downarrow^c v$. □

The link between the cost dynamics and the structural dynamics given in the preceding section is established by the following theorem, which states that the work cost is the sequential complexity, and the depth cost is the parallel complexity, of the computation.

Theorem 41.6. If $e \Downarrow^c v$, then $e \mapsto_w^\text{seq} v$ and $e \mapsto_d^\text{par} v$, where $w = wk(c)$ and $d = dp(c)$. Conversely, if $e \mapsto_w^\text{seq} v$ or $e \mapsto_d^\text{par} v$, where v val, then $e \Downarrow^c v$ with $wk(c) = w$ and $dp(c) = d$.

Proof. The first part is proved by induction on the derivation of $e \Downarrow^c v$, the interesting case being Rule (41.7). By induction we have $e_1 \mapsto_w^\text{seq} v_1$, $e_2 \mapsto_w^\text{seq} v_2$, and $[v_1, v_2/x_1, x_2]e \mapsto_w^\text{seq} v$, where $w_1 = wk(c_1)$, $w_2 = wk(c_2)$, and $w = wk(c)$. By pasting together derivations we obtain a derivation

\[
\text{letpar}(e_1; e_2; x_1 . x_2 . e) \mapsto_{\text{seq}} \text{letpar}(v_1; e_2; x_1 . x_2 . e) \\
\mapsto_{\text{seq}} \text{letpar}(v_1; v_2; x_1 . x_2 . e) \\
\mapsto_{\text{seq}} [v_1, v_2/x_1, x_2]e \\
\mapsto_{\text{seq}} v.
\]

Noting that $wk((c_1 \otimes c_2) \oplus 1 \oplus c) = w_1 + w_2 + 1 + w$ completes the proof. Similarly, we have by induction that $e_1 \mapsto_{\text{par}}^d v_1$, $e_2 \mapsto_{\text{par}}^d v_2$, and $e \mapsto_{\text{par}}^d v$, where $d_1 = dp(c_1)$, $d_2 = dp(c_2)$, and $d = dp(c)$. Assume, without loss of generality, that $d_1 \leq d_2$ (otherwise simply swap the roles of d_1 and d_2 in what follows). We may paste together derivations as follows:

\[
\text{letpar}(e_1; e_2; x_1 . x_2 . e) \mapsto_{\text{par}}^d \text{letpar}(v_1; e_2; x_1 . x_2 . e) \\
\mapsto_{\text{par}}^{d_2 - d_1} \text{letpar}(v_1; v_2; x_1 . x_2 . e) \\
\mapsto_{\text{par}} [v_1, v_2/x_1, x_2]e \\
\mapsto_{\text{par}}^d v.
\]

Calculating $dp((c_1 \otimes c_2) \oplus 1 \oplus c) = \max(d_1, d_2) + 1 + d$ completes the proof.
where

\[e \]

is the expression, \(c \), is the same regardless of whether we use the sequential, parallel, or cost dynamics. It suffices to show that if \(e' \Downarrow c' \) and \(e \mapsto_{\text{seq}} e' \), then \(e \Downarrow c \) with \(wk(c) = wk(c') + 1 \), and if \(e' \Downarrow c \) and \(e \mapsto_{\text{par}} e' \), then \(e \Downarrow c \) with \(dp(c) = dp(c') + 1 \). We proceed by induction on the derivation of \(e \mapsto_{\text{seq}} e' \) or \(e \mapsto_{\text{par}} e' \).

Consider Rule (41.2c). We have \(e = \text{letpar}(e_1; e_2; x_1, x_2; e_0) \) with \(e_1 \) val and \(e_2 \) val, and \(e' = [e_1, e_2/x_1, x_2]e_0 \). By definition \(e_1 \Downarrow^0 e_1 \) and \(e_2 \Downarrow^0 e_2 \), since \(e_1 \) and \(e_2 \) are values. By assumption \(e' \Downarrow c' \) and \(e \Downarrow c \) by Rule (41.7). But \(wk([0 \otimes 1] \oplus c') = 1 + wk(c') \), as required. The remaining cases for sequential steps follow a similar pattern.

Consider Rule (41.3a), for which we have \(e = \text{letpar}(e_1; e_2; x_1, x_2; e_0) \), \(e' = \text{letpar}(e'_1; e'_2; x_1, x_2; e_0) \), \(e_1 \mapsto_{\text{par}} e'_1 \) and \(e_2 \mapsto_{\text{par}} e'_2 \). Given that \(e' \Downarrow c' \), we are to show that \(e \Downarrow c \) for some \(c \) such that \(dp(c) = dp(c') + 1 \). By inversion of the rules defining the cost dynamics \(c' = (c'_1 \otimes c'_2) \oplus 1 \oplus c_0 \), where \(e'_1 \Downarrow v_1, e'_2 \Downarrow v_2 \) and \([v_1, v_2/x_1, x_2]e_0 \Downarrow \) \(v \). It follows by induction that \(e_1 \Downarrow c_1 \) \(v_1 \) for some \(c_1 \) such that \(dp(c_1) = dp(c'_1) + 1 \), and that \(e_2 \Downarrow c_2 \) \(v_2 \) for some \(c_2 \) such that \(dp(c_2) = dp(c'_2) + 1 \). But then \(e \Downarrow c \), where \(c = (c_1 \otimes c_2) \oplus 1 \oplus c_0 \). Calculating, we obtain

\[
\begin{align*}
dp(c) &= \max(dp(c'_1) + 1, dp(c'_2) + 1) + 1 + dp(c_0) \\
&= \max(dp(c'_1), dp(c'_2)) + 1 + 1 + dp(c_0) \\
&= dp((c'_1 \otimes c'_2) \oplus 1 \oplus c_0) + 1 \\
&= dp(c') + 1,
\end{align*}
\]

which completes the proof. The remaining cases for parallel steps follow a similar pattern.

\[\square\]

41.3 Multiple Fork-Join

So far we have confined attention to binary fork/join parallelism induced by the parallel \texttt{let} construct. While technically sufficient for many purposes, a more natural programming model admit an unbounded number of parallel tasks to be spawned simultaneously, rather than forcing them to be created by a cascade of binary forks and corresponding joins. Such a model, often called \textit{data parallelism}, ties the source of parallelism to a data structure of unbounded size. The principal example of such a data structure is a \textit{sequence} of values of a specified type. The primitive operations on
sequences provide a natural source of unbounded parallelism. For example, one may consider a parallel map construct that applies a given function to every element of a sequence simultaneously, forming a sequence of the results.

We will consider here a very simple language of sequence operations to illustrate the main ideas.

Type \(\tau ::= \text{seq}(\tau) \)
\(\tau \text{ seq} \)
sequence

Expr \(e ::= \text{seq}(e_0, \ldots, e_{n-1}) \)
\([e_0, \ldots, e_{n-1}] \)
sequence

\(\text{sub}(e_1; e_2) \)
\(e_1 [e_2] \)
element

\(\text{rpl}(e_1; e_2) \)
\(\text{rpl}(e_1; e_2) \)
replicate

\(\text{len}(e) \)
\(\text{len}(e) \)
size

\(\text{idx}(e) \)
\(\text{idx}(e) \)
index

\(\text{map}(e_1; x.e_2) \)
\(<e_2 \mid x \in e_1> \)
apply to elements

\(\text{cat}(e_1; e_2) \)
\(\text{cat}(e_1; e_2) \)
concatenation

The expression \(\text{seq}(e_0, \ldots, e_{n-1}) \) evaluates to an \(n \)-sequence whose elements are given by the expressions \(e_0, \ldots, e_{n-1} \). The operation \(\text{sub}(e_1; e_2) \) retrieves the element of the sequence given by \(e_1 \) at the index given by \(e_2 \). The operation \(\text{rpl}(e_1; e_2) \) creates a sequence whose length is given by \(e_1 \) consisting solely of the element given by \(e_2 \). The operation \(\text{len}(e) \) returns the number of elements in the sequence given by \(e \). The operation \(\text{idx}(e) \) creates a sequence of length \(n \) (given by \(e \)) whose elements are \(0, \ldots, n-1 \). The operation \(\text{map}(e_1; x.e_2) \) computes the sequence whose \(i \)th element is the result of evaluating \(e_2 \) with \(x \) bound to the \(i \)th element of the sequence given by \(e_1 \). The operation \(\text{cat}(e_1; e_2) \) concatenates two sequences of the same type.

The statics of these operations is given by the following typing rules:

\[
\begin{align*}
\Gamma \vdash e_0 : \tau & \quad \ldots \quad \Gamma \vdash e_{n-1} : \tau \\
\Gamma \vdash \text{seq}(e_0, \ldots, e_{n-1}) : \text{seq}(\tau)
\end{align*}
\]
(41.8a)

\[
\begin{align*}
\Gamma \vdash e_1 : \text{seq}(\tau) & \quad \Gamma \vdash e_2 : \text{nat} \\
\Gamma \vdash \text{sub}(e_1; e_2) : \tau
\end{align*}
\]
(41.8b)

\[
\begin{align*}
\Gamma \vdash e_1 : \text{nat} & \quad \Gamma \vdash e_2 : \tau \\
\Gamma \vdash \text{rpl}(e_1; e_2) : \text{seq}(\tau)
\end{align*}
\]
(41.8c)

\[
\begin{align*}
\Gamma \vdash e : \text{seq}(\tau) \\
\Gamma \vdash \text{len}(e) : \text{nat}
\end{align*}
\]
(41.8d)

\[
\begin{align*}
\Gamma \vdash e : \text{nat} \\
\Gamma \vdash \text{idx}(e) : \text{seq}(\text{nat})
\end{align*}
\]
(41.8e)
The cost dynamics of these primitives is given by the following rules:

\[e_0 \Downarrow e_0 \Downarrow e_1 \Downarrow e_2 \Downarrow (v_0, \ldots, v_{n-1}) \]

\[e_1 \Downarrow e_2 \Downarrow (v_0, \ldots, v_{n-1}) \]

\[e_1 \Downarrow e_2 \Downarrow (v_0, \ldots, v_{n-1}) \]

\[e_1 \Downarrow e_2 \Downarrow (v_0, \ldots, v_{n-1}) \]

\[e_1 \Downarrow e_2 \Downarrow (v_0, \ldots, v_{n-1}) \]

\[e_1 \Downarrow e_2 \Downarrow (v_0, \ldots, v_{n-1}) \]

The cost dynamics for sequence operations may be validated by introducing a sequential and parallel cost dynamics and extending the proof of Theorem 41.6 on page 385 to cover this extension.

41.4 Provably Efficient Implementations

Theorem 41.6 on page 385 states that the cost dynamics accurately models the dynamics of the parallel let construct, whether executed sequentially or in parallel. This validates the cost dynamics from the point of view of the dynamics of the language, and permits us to draw conclusions about the asymptotic complexity of a parallel program that abstracts away from the limitations imposed by a concrete implementation. Chief among these is
the restriction to a fixed number, \(p > 0 \), of processors on which to schedule the workload. In addition to limiting the available parallelism this also imposes some synchronization overhead that must be accounted for in order to make accurate predictions of run-time behavior on a concrete parallel platform. A provably efficient implementation is one for which we may establish an asymptotic bound on the actual execution time once these overheads are taken into account.

A provably efficient implementation must take account of the limitations and capabilities of the actual hardware on which the program is to be run. Since we are only interested in asymptotic upper bounds, it is convenient to formulate an abstract machine model, and to show that the primitives of the language can be implemented on this model with guaranteed time (and space) bounds. One popular model is the SMP, or shared-memory multiprocessor, which consists of \(p > 0 \) sequential processors coordinated by an interconnect network that provides constant-time access to shared memory by each of the processors.\(^1\) The multiprocessor is assumed to provide a constant-time\(^2\) synchronization primitive with which control simultaneous access to a memory cell. There are a variety of such primitives, any of which is sufficient to provide a parallel fetch-and-add instruction that allows each processor to obtain the current contents of a memory cell and update it by adding a fixed constant in a single atomic operation—the interconnect serializes any simultaneous accesses by more than one processor.

Building a provably efficient implementation of parallelism involves two major tasks. First, we must show that each of the primitives of the language may be implemented efficiently on the abstract machine model. Second, we must show how to schedule the workload across the processors so as to minimize execution time by maximizing parallelism. When working with a low-level machine model such as an SMP, both tasks involve a fair bit of technical detail to show how to use low-level machine instructions, including a synchronization primitive, to implement the language primitives and to schedule the workload. Collecting these together, we may then give an asymptotic bound on the time complexity of the implementation that relates the abstract cost of the computation to cost of implementing the workload on a \(p \)-way multiprocessor. The prototypical result of this kind is called Brent’s Theorem.

\(^1\)A slightly weaker assumption is that each access may require up to \(\lg p \) time to account for the overhead of synchronization, but we shall neglect this refinement in the present, simplified account.

\(^2\)Or logarithmic time.
Theorem 41.7. If $e \Downarrow^c v$ with $\text{wk}(c) = w$ and $\text{dp}(c) = d$, then e may be evaluated on a p-processor SMP in time $O(\max(w/p, d))$.

The theorem tells us that we can never execute a program in fewer steps than its depth, d, and that, at best, we can divide the work up evenly into w/p rounds of execution by the p processors. Observe that if $p = 1$ then the theorem establishes an upper bound of $O(w)$ steps, the sequential complexity of the computation. Moreover, if d is proportional to w, then the overall time is again $O(w)$, which is to say that we are unable to exploit parallelism in that case.

This motivates the definition of a useful figure of merit, called the parallelizability ratio, which is the ratio, w/d, of work to depth. If $w/d \gg p$, then the program is said to be parallelizable, because then $w/p \gg d$, and we may therefore reduce running time by using p processors at each step. If, on the other hand, the parallelizability ratio is a constant, then d will dominate w/p, and we will have little opportunity to exploit parallelism to reduce running time. It is not known, in general, whether a problem admits a parallelizable solution. The best we can say, on present knowledge, is that there are algorithms for some problems that have a high degree of parallelizability, and there are problems for which no such algorithm is known. It is an open problem in complexity theory to characterize which problems are parallelizable, and which are not.

To illustrate the essential ingredients of the proof of Brent’s Theorem we will consider a dynamics that models the scheduling of work onto p parallel processors, each of which implements the dynamics of $\mathcal{L}\{\text{nat} \rightarrow\}$ as described in Chapter 13. The dynamics consists of two transition relations defined on states of the form

$$
\nu x_1 : \tau_1, \ldots, x_n : \tau_n \{ \langle x_1 : e_1 \rangle \otimes \ldots \otimes \langle x_n : e_n \rangle \}.
$$

Such a state represents the remaining work of a computation, decomposed into n tasks, with each task binding its value to a variable. Importantly, we do not distinguish states that differ in the order of the variable declarations or variable bindings.

The occurrences of variables in a state determine the dependency ordering among the tasks: if x_i occurs free in x_j, then e_j cannot be evaluated before evaluation of e_i is complete. Such dependencies reflect data flow dependencies among the tasks, and are therefore manifestations of the depth complexity of the program. A closed expression e_i in a state is said to be ready in that state; otherwise, e_i is said to be blocked, awaiting completion of evaluation of the expression on which it depends.
We will consider two forms of state transition, the *local* and the *global*. Local transitions represent the steps of computation of the individual processors, which we will model using the dynamics of $L\{\text{nat} \rightarrow \}$ given in Chapter 13 as a guide. Global transitions represent the scheduling and load-balancing steps that allocate tasks to processors with the intent of maximizing parallelism insofar as possible consistently with the dependency ordering among the tasks.

Local transitions apply only to ready expressions (those with no free variables). The local transitions are illustrated by the following rules:

\[
\begin{align*}
\nu x : \tau \{ \langle x : \text{letpar} \ x_1 = e_1 \ \text{and} \ x_2 = e_2 \ \text{in} \ e \rangle \} & \quad \to_{\text{loc}} \nu x, x_1 : \tau_1, x_2 : \tau_2 \{ \langle x_1 : e_1 \rangle \otimes \langle x_2 : e_2 \rangle \otimes \langle x : e \rangle \}
\end{align*}
\]

(41.10a)

\[
\begin{align*}
\nu x : \tau \{ \langle x : \lambda \ y. (x : e_2) e \rangle \} & \quad \to_{\text{loc}} \nu x : \tau \{ \langle x : [e_2 / y] e \rangle \}
\end{align*}
\]

(41.10b)

\[
\begin{align*}
\nu x : \tau, x_1 : \tau_1 \rightarrow \tau, x_2 : \tau_2 \{ \langle x_1 : e_1 \rangle \otimes \langle x_2 : e_2 \rangle \otimes \langle x : x_1 (x_2) \rangle \} & \quad \to_{\text{loc}}
\end{align*}
\]

(41.10c)

Rule (41.10a) states that if $\text{letpar} \ x_1 = e_1$ and $x_2 = e_2$ in e is ready, then executing it consists of creating two new, independent tasks, one to evaluate e_1 and one to evaluate e_2, and to update the current task, which is in general dependent on the other two, to represent the join point of the parallel binding. Observe that both e_1 and e_2 are ready in the resulting state, whereas e is, in general, not ready. The remaining rules, only two of which are given here, restate the (eager) dynamics of $L\{\text{nat} \rightarrow \}$ in the parallel setting. For example, Rules (41.10b) to (41.10c) express the parallel dynamics of function application.

Global transitions are parameterized by $p \geq 0$, representing the number of processors available for simultaneous execution. Each transition consists of selecting $n \leq p$ ready tasks from the state, applying a local transition to each, then reconstructing the state with the task(s) resulting from the local step.

\[
\begin{align*}
\frac{\nu x : \tau \{ \langle x : e \rangle \} \quad \text{initial}}{\nu x, x : \tau \{ \langle x : e \rangle \}}
\end{align*}
\]

(41.11a)

\[
\begin{align*}
\frac{e \ \text{val}}{\nu \Gamma, x : \tau \{ \langle x : e \rangle \} \quad \text{final}}
\end{align*}
\]

(41.11b)
Rule (41.11c) states that if any \(n \leq p \) tasks are complete, their values may be propagated to the other tasks by substitution. This has the effect of eliminating dependencies on the substituted variables, enabling some tasks for evaluation at the next global transition. Rule (41.11d) combines the results of \(n \leq p \) local steps by consolidating the freshly allocated tasks into the state of the computation. We tacitly assume that the \(\Gamma_i \)'s have pairwise disjoint domains and that no \(x_j \) is in the domain of \(\Gamma_i \); this ensures that the combined context \(\Gamma \Gamma_1 \ldots \Gamma_n \) does not declare any variable more than once. In implementation terms this means that the processors must synchronize memory allocated to ensure that they do not interfere with one another.

The proof of Brent’s Theorem for this high-level dynamics is now obvious. If, at each stage of a computation, there are \(p \) ready tasks, then the computation will complete in \(w/p \) steps, where \(w \) is the work complexity of the program. We may, however, be unable to make full use of all \(p \) processors at any given stage. This would only be because the dependencies among computations, which are reflected in the variable occurrences and in the definition of the depth complexity of the computation, inhibits parallelism to the extent that evaluation cannot complete in fewer than \(d \) rounds. This limitation is significant only to the extent that \(d \) is larger than \(w/p \); otherwise, the overall time is bounded by \(w/p \), making maximal use of all \(p \) processors.

41.5 Exercises
Chapter 42

Futures and Speculation

A future is a computation whose evaluation is initiated in advance of any demand for its value. Like a suspension, a future represents a value that is to be determined later. Unlike a suspension, a future is always evaluated, regardless of whether its value is actually required. In a sequential setting futures are of little interest; a future of type τ is just an expression of type τ. In a parallel setting, however, futures are of interest because they provide a means of initiating a parallel computation whose result is not needed until (presumably) much later, by which time it will have been completed.

The prototypical example of the use of futures is to implementing pipelining, a method for overlapping the stages of a multistage computation to the fullest extent possible. This minimizes the latency caused by one stage waiting for the completion of a previous stage by allowing the two stages to proceed in parallel until such time as an explicit dependency is encountered. Ideally, the computation of the result of an earlier stage is completed by the time a later stage requires it. At worst the later stage must be delayed until the earlier stage completes, incurring what is known as a pipeline stall.

A suspension is a delayed computation whose result may or may not be needed for the overall computation to finish. Speculation is a parallel dynamics for suspensions in which suspended computations are executed in parallel with the main thread of computation without regard to whether the suspension is forced. If the value of the suspension is eventually required, then speculation pays off, but if not, the effort to evaluate it wasted. Speculation is therefore not work-efficient: if the value of the suspension is never needed, more work has been undertaken than is necessary to determine the outcome of the computation. Speculation can be useful in situations where there is an excess of computing resources available, more than can be used
in a guaranteed work-efficient manner. In such situations it cannot hurt to perform extra work as long as resources are used that would otherwise be idle.

Parallel futures, in contrast to speculatively evaluated suspensions, are work efficient in that the overall work done by a computation involving futures is no more than the work required by a sequential execution. Speculative suspensions, in contrast, are work inefficient in that speculative execution may be in vain—the overall computation may involve more steps than the work required to compute the result. For this reason speculation is a risky strategy for exploiting parallelism. It can make good use of available resources, but perhaps only at the expense of doing more work than necessary!

42.1 Futures

The syntax of futures is given by the following grammar:

\[
\text{Type } \tau ::= \text{fut}(\tau) \quad \text{fut} \quad \text{future}
\]

\[
\text{Expr } e ::= \text{fut}(e) \quad \text{fut}(e) \quad \text{future}
\]

\[
\text{ syn}(e) \quad \text{syn}(e) \quad \text{synchronize}
\]

The type \(\tau \text{ fut} \) is the type of futures of type \(\tau \). Futures are introduced by the expression \(\text{fut}(e) \), which schedules \(e \) for evaluation and returns a reference to it. Futures are eliminated by the expression \(\text{syn}(e) \), which synchronizes with the future referred to by \(e \), returning its value.

42.1.1 Statics

The statics of futures is given by the following rules:

\[
\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{fut}(e) : \text{fut}(\tau)} \quad (42.1a)
\]

\[
\frac{\Gamma \vdash e : \text{fut}(\tau)}{\Gamma \vdash \text{syn}(e) : \tau} \quad (42.1b)
\]

These rules are unsurprising, since futures add no new capabilities to the language beyond providing an opportunity for parallel evaluation.
42.2 Suspensions

42.1.2 Sequential Dynamics

The sequential dynamics of futures is easily defined. Futures are evaluated eagerly; synchronization returns the value of the future.

\[
\frac{e \text{ val}}{\text{fut}(e) \text{ val}} \quad (42.2a)
\]

\[
\frac{e \rightarrow e'}{\text{fut}(e) \rightarrow \text{fut}(e')} \quad (42.2b)
\]

\[
\frac{e \rightarrow e'}{\text{syn}(e) \rightarrow \text{syn}(e')} \quad (42.2c)
\]

\[
\frac{e \text{ val}}{\text{syn}(\text{fut}(e)) \rightarrow e} \quad (42.2d)
\]

42.2 Suspensions

The syntax of (non-recursive) suspensions is given by the following grammar:\(^1\)

\[
\begin{align*}
\text{Type} \quad \tau &::= \text{susp}(\tau) &\tau \text{ susp} &\text{suspension} \\
\text{Expr} \quad e &::= \text{susp}(e) &\text{susp}(e) &\text{delay} \\
& &\text{force}(e) &\text{force}(e) &\text{force}
\end{align*}
\]

The type \(\tau\text{susp}\) is the type of suspended computations of type \(\tau\). The introductory form, \(\text{susp}(e)\), delays the computation of \(e\) until forced, and the eliminatory form, \(\text{force}(e)\), forces evaluation of a delayed computation.

42.2.1 Statics

The statics of suspensions is given by the following rules:

\[
\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{susp}(e) : \text{susp}(\tau)} \quad (42.3a)
\]

\[
\frac{\Gamma \vdash e : \text{susp}(\tau)}{\Gamma \vdash \text{force}(e) : \tau} \quad (42.3b)
\]

Thus, the statics for suspensions as given by Rules (42.3) is essentially equivalent to the statics for futures given by Rules (42.1).

\(^1\)We confine ourselves to the non-recursive case to facilitate the comparison with futures.
42.2.2 Sequential Dynamics

The definition of the sequential dynamics of suspensions is similar to that of futures, except that suspended computations are values.

\[
\begin{align*}
\text{susp}(e) & \rightarrow \text{val} \\
\hline
\text{e} & \rightarrow \text{e}' \\
\text{susp}(e) & \rightarrow \text{susp}(e') \\
\hline
\text{force}(\text{susp}(e)) & \rightarrow e
\end{align*}
\]

(42.4a, 42.4b, 42.4c)

Compared with futures, the sole difference is that a suspension is only evaluated when forced, whereas a future is always evaluated, regardless of whether its value is needed.

42.3 Parallel Dynamics

Futures are only interesting insofar as they admit a parallel dynamics that allows the computation of the future to proceed concurrently with some other computation. Suspensions are (as we saw in Chapter 39) useful for reasons other than parallelism, but they also admit a parallel, speculative interpretation. In this section we give a parallel dynamics of futures and suspensions in which the creation, execution, and synchronization of tasks is made explicit. Interestingly, the parallel dynamics of futures and suspensions is identical, except for the termination condition. Whereas futures require all concurrently executing evaluations to be completed before termination, speculatively evaluated suspensions may be abandoned before they are completed. For the sake of concreteness we will give the parallel dynamics of futures, remarking only where alterations must be made for speculative evaluation of suspensions.

The parallel dynamics of futures relies on a modest extension to the language given in Section 42.1 on page 394 to introduce names for tasks. Let \(\Sigma \) be a finite mapping assigning types to names. The expression \(\text{fut}[a] \) is a value referring to the outcome of task \(a \). The statics of this expression is given by the following rule:\(^2\)

\[
\Gamma \vdash_{\Sigma, \tau} \text{fut}[a] : \text{fut(}\tau)
\]

(42.5)

\(^2\)A similar rule governs the analogous construct, \(\text{susp}[a] \), in the case of suspensions.
Rules (42.1) carry over in the obvious way with Σ recording the types of the task names.

States of the parallel dynamics have the form $\nu \Sigma \{ e \parallel \mu \}$, where e is the focus of evaluation, and μ represents the parallel futures (or suspensions) that have been activated thus far in the computation. Formally, μ is a finite mapping assigning expressions to the task names declared in Σ. A state is well-formed according to the following rule:

$$\vdash \Sigma e : \tau \quad (\forall a \in \text{dom}(\Sigma)) \quad \vdash \Sigma \mu(a) : \Sigma(a) \quad \nu \Sigma \{ e \parallel \mu \} \text{ ok} \quad (42.6)$$

As discussed in Chapter 38 this rule admits self-referential and mutually referential futures. A more refined condition could as well be given that avoids circularities; we leave this as an exercise for the reader.

The parallel dynamics is divided into two phases, the local phase, which defines the basic steps of evaluation of an expression, and the global phase, which executes all possible local steps in parallel. The local dynamics is defined by the following rules:

$$\text{fut}[a] \text{ val}_{\Sigma,a;\tau} \quad (42.7a)$$

$$\nu \Sigma \{ \text{fut}(e) \parallel \mu \} \mapsto_{\text{loc}} \nu \Sigma, a : \tau \{ \text{fut}[a] \parallel \mu \otimes \langle a : e \rangle \} \quad (42.7b)$$

$$\nu \Sigma \{ e \parallel \mu \} \mapsto_{\text{loc}} \nu \Sigma', \{ e' \parallel \mu' \} \quad (42.7c)$$

$$\nu \Sigma \{ \text{syn}(e) \parallel \mu \} \mapsto_{\text{loc}} \nu \Sigma', \{ \text{syn}(e') \parallel \mu' \}$$

$$e' \text{ val}_{\Sigma,a;\tau} \quad \left\{ \begin{array}{l} \nu \Sigma, a : \tau \{ \text{syn}(\text{fut}[a]) \parallel \mu \otimes \langle a : e' \rangle \} \\ \mapsto_{\text{loc}} \\ \nu \Sigma, a : \tau \{ e' \parallel \mu \otimes \langle a : e' \rangle \} \end{array} \right\} \quad (42.7d)$$

Rule (42.7b) activates a future named a executing the expression e and returns a reference to it. Rule (42.7d) synchronizes with a future whose value has been determined. Note that a local transition always has the form

$$\nu \Sigma \{ e \parallel \mu \} \mapsto_{\text{loc}} \nu \Sigma, \Sigma' \{ e' \parallel \mu \otimes \mu' \}$$

where Σ' is either empty or declares the type of a single symbol, and μ' is either empty or of the form $\langle a : e' \rangle$ for some expression e'.
A global step of the parallel dynamics consists of at most one local step for the focal expression and one local step for each of up to \(p \) futures, where \(p > 0 \) is a fixed parameter representing the number of processors.

\[
\mu = \mu_0 \otimes \langle a_1 : e_1 \rangle \otimes \cdots \otimes \langle a_n : e_n \rangle \\
\mu'' = \mu_0 \otimes \langle a_1 : e'_1 \rangle \otimes \cdots \otimes \langle a_n : e'_n \rangle \\
\nu \Sigma \{ e || \mu \} \mapsto_{\text{loc}}^{0,1} \nu \Sigma \Sigma' \{ e' || \mu \otimes \mu' \} \\
(\forall 1 \leq i \leq n) \quad \nu \Sigma \{ e_i || \mu \} \mapsto_{\text{loc}}^{\nu \Sigma} \nu \Sigma \Sigma'_i \{ e'_i || \mu \otimes \mu'_i \} \\
\frac{\nu \Sigma \{ e || \mu \} }{\nu \Sigma \Sigma' \Sigma'_1 \ldots \Sigma'_n \{ e' || \mu'' \otimes \mu' \otimes \mu'_1 \otimes \cdots \otimes \mu'_n \}} \tag{42.8a}
\]

Rule (42.8a) allows the focus expression to take either zero or one steps since it may be blocked awaiting the completion of evaluation of a parallel future (or forcing a suspension). The futures allocated by the local steps of execution are consolidated in the result of the global step. We assume without loss of generality that the names of the new futures in each local step are pairwise disjoint so that the combination makes sense. In implementation terms satisfying this disjointness assumption means that the processors must synchronize their access to memory.

The initial state of a computation, whether for futures or suspensions, is defined by the rule

\[
\nu \otimes \{ e || \varnothing \} \text{ initial} \tag{42.9}
\]

Final states differ according to whether we are considering futures or suspensions. In the case of futures a state is final iff both the focus and all parallel futures have completed evaluation:

\[
\nu \Sigma \{ e || \mu \} \text{ final} \\
(\forall a \in \text{dom}(\Sigma)) \quad \mu(a) \text{ val}_\Sigma \\
\frac{e \text{ val}_\Sigma \mu \text{ val}_\Sigma}{\mu \text{ val}_\Sigma} \tag{42.10a}
\]

In the case of suspensions a state is final iff the focus is a value:

\[
\nu \Sigma \{ e || \mu \} \text{ final} \\
\frac{e \text{ val}_\Sigma}{\mu \text{ val}_\Sigma} \tag{42.11}
\]

This corresponds to the speculative nature of the parallel evaluation of suspensions whose outcome may not be needed to determine the final outcome of the program.
42.4 Applications of Futures

Pipelining provides a good example of the use of parallel futures. Consider a situation in which a producer builds a list whose elements represent units of work, and a consumer that traverses the work list and acts on each element of that list. The elements of the work list can be thought of as “instructions” to the consumer, which maps a function over that list to carry out those instructions. An obvious sequential implementation first builds the work list, then traverses it to perform the work indicated by the list. This is fine as long as the elements of the list can be produced quickly, but if each element requires a substantial amount of computation, it would be preferable to overlap production of the next list element with execution of the previous unit of work. This can be easily programmed using futures.

Let \(\text{flist} \) be the recursive type \(\mu \text{t}. \text{unit} + (\text{nat} \times \text{t fut}) \), whose elements are \(\text{nil} \), defined to be \(\text{fold}(\lambda \cdot \langle \rangle) \), and \(\text{cons}(e_1,e_2) \), defined to be \(\text{fold}(\lambda \cdot \langle e_1, \text{fut}(e_2) \rangle) \). The producer is a recursive function that generates a value of type \(\text{flist} \):

\[
\text{fix produce} : (\text{nat} \to \text{nat opt}) \to \text{nat} \to \text{flist} \quad \text{is} \\
\lambda f. \lambda i. \\
\text{case } f(i) \{ \\
\text{null } \Rightarrow \text{nil} \\
| \text{just } x \Rightarrow \text{cons}(x, \text{fut (produce } f \text{ (i+1)))} \\
\}
\]

On each iteration the producer generates a parallel future to produce the tail. This computation proceeds after the producer returns so that it overlap subsequent computation.

The consumer folds an operation over the work list as follows:

\[
\text{fix consume} : ((\text{nat} \times \text{nat}) \to \text{nat}) \to \text{nat} \to \text{flist} \to \text{nat} \quad \text{is} \\
\lambda g. \lambda a. \lambda xs. \\
\text{case } xs \{ \\
\text{nil } \Rightarrow a \\
\text{cons } (x, xs) \Rightarrow \text{consume } g \ (g \ (x, a)) \ (\text{syn } xs) \\
\}
\]

The consumer synchronizes with the tail of the work list just at the point where it makes a recursive call and hence requires the head element of the tail to continue processing. At this point the consumer will block, if necessary, to await computation of the tail before continuing the recursion.
Another application of futures is to provide more control over parallelism in a language with suspensions. Rather than evaluate suspensions speculatively, which is not work efficient, we may instead add futures to the language in addition to suspensions. One application of futures in such a setting is called a spark. A spark is a computation that is executed in parallel with another purely for its effect on suspensions. The spark traverses a data structure, forcing the suspensions within so that their values are computed and stored, but otherwise yielding no useful result. The idea is that the spark forces the suspensions that will be needed by the main computation, but taking advantage of parallelism in the hope that their values will have been computed by the time the main computation requires them.

The sequential dynamics of the spark expression \(\text{spark}(e_1; e_2) \) is simply to evaluate \(e_1 \) before evaluating \(e_2 \). This is useful in the context of a by-need dynamics for suspensions, since evaluation of \(e_1 \) will record the values of some suspensions in the memo table for subsequent use by the computation \(e_2 \). The parallel dynamics specifies, in addition, that \(e_1 \) and \(e_2 \) are to be evaluated in parallel. The behavior of sparks is captured by the definition of \(\text{spark}(e_1; e_2) \) in terms of futures:

\[
\text{let } __ \text{ be fut}(e_1) \text{ in } e_2.
\]

Evaluation of \(e_1 \) commences immediately, but its value, if any, is abandoned. This encoding does not allow for evaluation of \(e_1 \) to be abandoned as soon as \(e_2 \) reaches a value, but this scenario is not expected to arise for the intended mode of use of sparks. The expression \(e_1 \) should be a quick traversal that does nothing other than force the suspensions in some data structure, exiting as soon as this is complete. Presumably this computation takes less time than it takes for \(e_2 \) to perform its work before forcing the suspensions that were forced by \(e_2 \), otherwise there is little to be gained from the use of sparks in the first place!

As an example, consider the type \(\text{strm} \) of streams of numbers defined by the recursive type \(\mu t. (\text{unit} + (\text{nat} \times t)) \text{ susp} \). Elements of this type are suspended computations that, when forced, either signals the end of stream, or produces a number and another such stream. Suppose that \(s \) is such a stream, and assume that we know, for reasons of its construction, that it is finite. We wish to compute \(\text{map}(f)(s) \) for some function \(f \), and to overlap this computation with the production of the stream elements. We will make use of a function \(\text{mapforce} \) that forces successive elements of the input stream, but yields no useful output. The computation \(\text{spark}(\text{mapforce}(s); \text{map}(f)(s)) \) forces the elements of the stream in parallel with the computation of \(\text{map}(f)(s) \), with the intention that all
suspensions in \(s \) are forced before their values are required by the main computation.

Finally, note that it is easy to encode binary nested parallelism using futures. This may be accomplished by defining \(\text{letpar}(e_1; e_2; x_1.x_2.e) \) to stand for the expression

\[
\text{let } x'_1 \text{ be } \text{fut}(e_1) \text{ in let } x_2 \text{ be } e_2 \text{ in let } x_1 \text{ be } \text{syn}(x'_1) \text{ in } e
\]

The order of bindings is important to ensure that evaluation of \(e_2 \) proceeds in parallel with evaluation of \(e_1 \). Observe that evaluation of \(e \) cannot, in any case, proceed until both are complete.

42.5 Exercises
Part XVI

Concurrency
Chapter 43

Process Calculus

So far we have mainly studied the statics and dynamics of programs in isolation, without regard to their interaction with the world. But to extend this analysis to even the most rudimentary forms of input and output requires that we consider external agents that interact with the program. After all, the whole purpose of a computer is to interact with a person!

To extend our investigations to interactive systems, we begin with the study of process calculi, which are abstract formalisms that capture the essence of interaction among independent agents. There are many process calculi, differing in technical details and in emphasis. We will consider a variant of the π-calculus. The development will proceed in stages, starting with simple action models, then extending to interacting concurrent processes, and finally to synchronous and asynchronous communication.

Our presentation of the π-calculus differs from that in the literature in several respects. Most significantly, we maintain a distinction between processes and events. The basic form of process is one that awaits the arrival of one of several events. Other forms of process include parallel composition and the declaration of a communication channel. The two basic forms of event are the receipt of a message on a channel, and the ability to send a message to a receiver on a channel. Events are combined using a non-deterministic choice operator that signals the arrival any one of a specified collection of events.

43.1 Actions and Events

Our treatment of concurrent interaction is based on the notion of an event, which specifies the set of actions that a process is prepared to undertake in
concert with another process. Two processes interact by undertaking two complementary actions, which may be thought of as a read and a write on a common channel. The processes synchronize on these complementary actions, after which they may proceed independently to interact with other processes.

To begin with we will focus on sequential processes, which simply await the arrival of one of several possible actions, known as an event.

\[
\begin{align*}
\text{Proc} & \quad P ::= \text{await}(E) \quad \$ E \quad \text{synchronize} \\
\text{Evt} & \quad E ::= \text{null} \quad 0 \quad \text{nullary choice} \\
& \quad \text{choice}(E_1; E_2) \quad E_1 + E_2 \quad \text{binary choice} \\
& \quad \text{rcv}[a](P) \quad ?a; P \quad \text{receive} \\
& \quad \text{snd}[a](P) \quad !a; P \quad \text{send}
\end{align*}
\]

The variables \(a, b, \) and \(c\) range over channels, which serve as synchronization sites between processes.

We will not distinguish between events that differ only up to structural congruence, which is defined to be the strongest equivalence relation closed under these rules:

\[
\begin{align*}
E \equiv E' & \quad \text{if } E \equiv E' \\
\$ E \equiv \$ E' & \quad \text{if } E \equiv E' \\
E_1 \equiv E'_1 \quad E_2 \equiv E'_2 & \quad \text{if } E_1 + E_2 \equiv E'_1 + E'_2 \\
P \equiv P' & \quad \text{if } ?a; P \equiv ?a; P' \\
!a; P \equiv !a; P' & \quad \text{if } P \equiv P' \\
E + 0 \equiv E & \quad \text{if } E \equiv E' \\
E_1 + E_2 \equiv E_2 + E_1 & \quad \text{if } E_1 \equiv E_1' \quad E_2 \equiv E_2' \\
E_1 + (E_2 + E_3) & \equiv (E_1 + E_2) + E_3
\end{align*}
\]

The importance of imposing structural congruence on sequential processes is that it enables us to think of an event as having the form of a finite sum of send or receive events, with the sum of zero events being the null event, 0.
An illustrative example of Robin Milner’s is a simple vending machine that may take in a 2p coin, then optionally either permit selection of a cup of tea, or take another 2p coin, then permit selection of a cup of coffee.

\[V = \$ (\text{?2p}; \$ (!\text{tea}; V + \text{?2p}; \$ (!\text{cof}; V))) \]

As the example indicates, we tacitly permit recursive definitions of processes, with the understanding that a defined identifier may always be replaced with its definition wherever it occurs.

Because the computation occurring within a process is suppressed, sequential processes have no dynamics on their own, but only through their interaction with other processes. For the vending machine to operate there must be another process (you!) who initiates the events expected by the machine, causing both your state (the coins in your pocket) and its state (as just described) to change as a result.

43.2 Synchronous Interaction

Processes become interesting when they are allowed to interact with one another to achieve a common goal. To account for interaction we enrich the language of processes with *concurrent composition*:

[\[
\text{Proc } P ::= \text{ await}(E) \quad $ E \quad \text{synchronize}\n\]

[stop \quad 1 \quad \text{nullary composition}\n]

[par(P_1; P_2) \quad P_1 \parallel P_2 \quad \text{parallel composition}\n]

The process 1 represents the inert process, and the process \(P_1 \parallel P_2 \) represents the concurrent composition of \(P_1 \) and \(P_2 \). One may identify 1 with \($0 \), the process that awaits the event that will never occur, but we prefer to treat the inert process as a primitive concept.

We will identify processes up to structural congruence, which is defined to be the strongest equivalence relation closed under these rules:

[\[
\overline{\text{P } \parallel 1} \equiv \text{P} \quad \text{(43.2a)}\n\]

[\[
\overline{\text{P_1 } \parallel \text{P_2}} \equiv \overline{\text{P_2 } \parallel \text{P_1}} \quad \text{(43.2b)}\n\]

[\[
\overline{\text{P_1 } \parallel (\text{P_2 } \parallel \text{P_3})} \equiv (\overline{\text{P_1 } \parallel \text{P_2}}) \parallel \text{P_3} \quad \text{(43.2c)}\n\]
43.2 Synchronous Interaction

\[
\begin{align*}
P_1 & \equiv P_1' \quad P_2 \equiv P_2' \\
\frac{P_1 \parallel P_2 \equiv P_1' \parallel P_2'}{P_1 \parallel P_2} & \text{(43.2d)}
\end{align*}
\]

Up to structural congruence every process has the form

\[
\$ E_1 \parallel \ldots \parallel E_n \$
\]

for some \(n \geq 0 \), it being understood that when \(n = 0 \) this stands for the null process, \(1 \).

Interaction between processes consists of synchronization of two complementary events. The dynamics of interaction is defined by an action-indexed family of transition judgements, \(P \xrightarrow{\alpha} P' \), where \(\alpha \) is an action as specified by the following grammar:

\[
\text{Act } \alpha ::= \text{rcv}[a] \quad ?a \quad \text{receive} \\
\quad \text{snd}[a] \quad !a \quad \text{send} \\
\quad \text{sil} \quad \epsilon \quad \text{silent}
\]

The action label on a transition specifies the effect of an execution step on the environment in which it occurs. The receive action, \(?a\), and the send action, \(!a\), are complementary. Two concurrent processes may interact whenever they announce complementary actions, resulting in a silent transition, which is labelled by the silent action, \(\text{sil} \).

The dynamics of interaction is defined by the following rules:

\[
\frac{}{\$(!a; P + E) \xrightarrow{!a} P \}$} & \text{(43.3a)}
\]

\[
\frac{}{\$(?a; P + E) \xrightarrow{?a} P \}$} & \text{(43.3b)}
\]

\[
\frac{P_1 \xrightarrow{\alpha} P_1'}{P_1 \parallel P_2 \xrightarrow{\alpha} P_1' \parallel P_2} & \text{(43.3c)}
\]

\[
\frac{P_1 \xrightarrow{\alpha} P_1' \quad P_2 \xrightarrow{?\alpha} P_2'}{P_1 \parallel P_2 \xrightarrow{\alpha} P_1' \parallel P_2'} & \text{(43.3d)}
\]

Rules (43.3a) and (43.3b) specify that any of the events on which a process is synchronizing may occur. Rule (43.3d) synchronizes two processes that take complementary actions.
43.3 Replication

As an example, let us consider the interaction of the vending machine, \(V \), with the user process, \(U \), defined as follows:

\[
U = \$!2p;\$!2p;\$?cof;1.
\]

Here is a trace of the interaction between \(V \) and \(U \):

\[
\begin{align*}
V \parallel U & \mapsto \rightarrow $!tea; \ V + \ ?2p;\$!cof; \ V \parallel \$!2p;\$?cof;1 \\
& \mapsto \$!cof; \ V \parallel \$?cof;1 \\
& \mapsto V
\end{align*}
\]

These steps are justified, respectively, by the following pairs of labelled transitions:

\[
\begin{align*}
U \overset{!2p}{\rightarrow} U' &= \$!2p;\$?cof;1 \\
V \overset{?2p}{\rightarrow} V' &= ($!tea; \ V + \ ?2p;\$!cof; \ V)
\end{align*}
\]

\[
\begin{align*}
U' \overset{!2p}{\rightarrow} U'' &= \$?cof;1 \\
V' \overset{?2p}{\rightarrow} V'' &= \$!cof; \ V
\end{align*}
\]

\[
\begin{align*}
U'' \overset{?cof}{\rightarrow} 1 \\
V'' \overset{!cof}{\rightarrow} V
\end{align*}
\]

We have suppressed uses of structural congruence in the above derivations to avoid clutter, but it is important to see its role in managing the non-deterministic choice of events by a process.

43.3 Replication

Some presentations of process calculus forego reliance on defining equations for processes in favor of a replication construct, which we write \(* \ P\). This process stands for as many concurrently executing copies of \(P \) as one may require, which may be modeled by the structural congruence

\[
* P \equiv P \parallel * P.
\]
43.3 Replication

Taking this as a principle of structural congruence hides the overhead of process creation, and gives no hint as to how often it can or should be applied. One could alternatively build replication into the dynamics to model the details of replication more closely:

\[*P \mapsto P \parallel */P. \]

Since the application of this rule is unconstrained, it may be applied at any time to effect a new copy of the replicated process \(P \).

So far we have been using recursive process definitions to define processes that interact repeatedly according to some protocol. Rather than take recursive definition as a primitive notion, we may instead use replication to model repetition. This may be achieved by introducing an “activator” process that is contacted to effect the replication. Consider the recursive definition \(X = P(X) \), where \(P \) is a process expression involving occurrences of the process variable, \(X \), to refer to itself. This may be simulated by defining the activator process

\[A = *\$(?a;P(\$(!a;1))), \]

in which we have replaced occurrences of \(X \) within \(P \) by an initiator process that signals the event \(a \) to the activator. Observe that the activator, \(A \), is structurally congruent to the process \(A' \parallel A \), where \(A' \) is the process

\[\$(?a;P(\$(!a;1))). \]

To start process \(P \) we concurrently compose the activator, \(A \), with an initiator process, \(\$(!a;1) \). Observe that

\[A \parallel \$(!a;1) \mapsto A \parallel P(!a;1), \]

which starts the process \(P \) while maintaining a running copy of the activator, \(A \).

As an example, let us consider Milner’s vending machine written using replication, rather than using recursive process definition:

\[
\begin{align*}
V_0 &= \$(!v;1) \\
V_1 &= *\$(?v;V_2) \\
V_2 &= \$(?2p;\$(!tea;V_0+?2p;\$(!cof;V_0)))
\end{align*}
\]

The process \(V_1 \) is a replicated server that awaits a signal on channel \(v \) to create another instance of the vending machine. The recursive calls are replaced by signals along \(v \) to re-start the machine. The original machine, \(V_0 \), is simulated by the concurrent composition \(V_0 \parallel V_1 \).
43.4 Synchronous Communication

Synchronous interaction consists of two processes agreeing to undertake complementary actions. Synchronous communication generalizes synchronous interaction to permit two processes to exchange channels as part of their interaction. This allows the communication topology of the collection of processes to evolve as processes synchronize. For the sake of convenience we will allow any finite number of channels (including zero) to be passed along a given channel during communication.

To account for this the syntax of events is enriched according to the following grammar:

\[\text{Evt } E ::= \text{snd} [a] (b_1,\ldots,b_k) (P) \quad !a(b_1,\ldots,b_k); P \quad \text{send}\]
\[\text{rcv} [a] (b_1,\ldots,b_k) . P \quad ?a(b_1,\ldots,b_k). P \quad \text{receive}\]

The event \(?a(b_1,\ldots,b_k). P \) binds the symbols \(b_1,\ldots,b_k \) within the process \(P \).

The syntax of actions is generalized along similar lines, with both the send and receive actions specifying the data communicated by the action.

\[\text{Act } a ::= \text{snd} [a] (b_1,\ldots,b_k) \quad !a(b_1,\ldots,b_k) \quad \text{send}\]
\[\text{rcv} [a] (b_1,\ldots,b_k) \quad ?a(b_1,\ldots,b_k) \quad \text{receive}\]

The action \(!a(b_1,\ldots,b_k) \) represents a write, or send, of channels \(b_1,\ldots,b_k \) along a channel \(a \). The action \(?a(b_1,\ldots,b_k) \) represents a read, or receive, along channel \(a \) of channels \(b_1,\ldots,b_k \).

Communication consists of agreeing on complementary events, and passing a packet of channels from the sender to the receiver.

\[\$ (!a(b_1,\ldots,b_k); P + E) \xrightarrow{!a(b_1,\ldots,b_k)} P \] \hspace{1cm} (43.7a)

\[\$ (?a(b_1,\ldots,b_k). P + E) \xrightarrow{?a(b_1,\ldots,b_k)} P \] \hspace{1cm} (43.7b)

\[P_1 \xrightarrow{!a(b_1,\ldots,b_k)} P'_1 \quad P_2 \xrightarrow{?a(b_1,\ldots,b_k)} P'_2 \quad P_1 \parallel P_2 \rightarrow P'_1 \parallel P'_2 \] \hspace{1cm} (43.7c)

Communication introduces an asymmetry between the two parties to the interaction: the receiver continues with the channels passed by the sender.
Rule (43.7b) uses α-equivalence to "guess" the channel names that are to be sent along the channel a. The choice of names becomes important in Rule (43.7c), where the channels sent must match the channels received for the interaction to occur.

43.5 Private Channels

Channel-passing as part of communication is most interesting when combined with the ability to introduce new channels. For then processes may, by their communication, create new patterns of interaction as a computation evolves. The language of processes is further enriched with a means of introducing a new channel:

\[
\text{Proc } P ::= \text{new}(a.P) \quad \nu(a.P) \quad \text{new channel}
\]

As the syntax suggests, the channel name a is bound within the process P. We sometimes write $\nu(a_1, \ldots, a_k.P)$ for the process $\nu(a_1 \ldots \nu(a_k.P))$.

Structural congruence is extended with the following rules:

\[
\begin{align*}
P =_\alpha P' & \quad \frac{P \equiv P'}{\nu(a.P) \equiv \nu(a.P')} \\
\end{align*}
\]

(43.8a)

(43.8b)

(43.8c)

The last rule, called scope extrusion, is not strictly necessary at this stage, but will be important in the treatment of communication in the next section.

The dynamics is extended with one additional rule permitting steps to take place within the scope of a binder.

\[
\begin{align*}
P & \xrightarrow{\alpha} P' \quad a \notin \alpha \\
\nu(a.P) & \xrightarrow{\alpha} \nu(a.P')
\end{align*}
\]

(43.9)

No process may interact with $\nu(a.P)$ along the newly-allocated channel, for to do so would require knowledge of the private channel, a, which is chosen, by the magic of α-equivalence, to be distinct from all other channels in the system.

As an example, let us consider again the definition of the vending machine using replication, rather than recursion. The channel, v, used to initialize the machine should be considered private to the machine itself, and
not be made available to a user process. This is naturally expressed by the process expression $\nu(v \cdot V_0 \parallel V_1)$, where V_0 and V_1 are as defined above using the designated channel, v. This process correctly simulates the original machine, V, because it precludes interaction with a user process on channel v. If U is a user process, the interaction begins as follows:

$$\nu(v \cdot V_0 \parallel V_1) \parallel U \rightarrow \nu(v \cdot V_2) \parallel U \equiv \nu(v \cdot V_2 \parallel U)$$

The interaction continues as before, albeit within the scope of the binder, provided that v has been chosen (by structural congruence) to be apart from U, ensuring that it is private to the internal workings of the machine.

As another example of the use of private channels, let us define a mutable cell server that, when contacted on a dedicated channel, creates a new mutable cell and returns a channel with which to access it. The cell is willing to respond to either a send or a receive on this channel, according to whether some other process wishes to set or get the current contents of the cell.

The cell server, when contacted on channel r providing an initial contents and a response channel, creates a new cell server process and a new channel on which to contact it.

$$R(r) = \$ (?)r(x, k \cdot \nu(l \cdot C(x, l) \parallel \$ (!k(l) ; R(r))))$$

The cell server, when provided an initial value, x, and a response channel, k, allocates a new channel that serves as the name of the newly allocated cell, then creates a new cell server named l with initial contents x, and sends the channel l back to the caller along the response channel, k. The server then returns to listening on channel r for another request to create a cell.

The cell server $C(x, l)$ is a process that may either send x along l and continue as $C(x, l)$, or receive a new value, x', on l, and continue as $C(x', l)$. The server is defined by the following recursive process equation:

$$C(x, l) = \$ (?)l(x' \cdot C(x', l)) + !l(x) \cdot C(x, l))$$

The contents of the cell is maintained by the recursion, much as hardware gates maintain their contents by recursion.

43.6 Asynchronous Communication

In Section 43.4 on page 411 we introduced synchronous message passing in which two processes may rendezvous if one is awaiting a receive on a chan-
nel and the other is awaiting a send on the same channel. Both the sender and the receiver are informed of the rendezvous (by passing the message to the receiver and activating the continuation process of the sender), and both abandon any other communication choices that they may have active at the point of synchronization. The key concept of synchronous message passing is that the intent to send on a channel is a form of event that may be chosen to achieve synchronization with a receiving process. A send event may be chosen only if there is a corresponding receiver ready to receive the message, which implies that the sender blocks execution until a rendezvous is possible, after which both the sender and receiver continue execution.

While it is evident that the receiver must suspend execution until communication with another process has been effected, it is less evident that the sender must do so. Instead, one could consider an asynchronous form of communication in which the sender simply sends a message and continues executing, without concern for whether a receiver is ready to receive it. If the sender wishes to be informed of the receipt of a message, it must arrange for the receiver to acknowledge acceptance of the sent message. This can be achieved by passing an acknowledgement channel from the sender to the receiver on which the receiver can send to signal successful receipt of the associated message. The sender then receives on this channel to ensure that its message has been received by another process.

The asynchronous π-calculus is obtained by removing the synchronous send event, \(!a(b); P \), and adding a new form of process, the asynchronous send process, written \(!a(b) \), which has no continuation after the send. The syntax of the asynchronous π-calculus is obtained by adding one additional form of process, and eliminating the send form of event:

\[
\begin{align*}
\text{Proc} & \quad P ::= \quad \text{snd}[a](b_1, \ldots, b_k) \quad !a(b_1, \ldots, b_k) \quad \text{send} \\
\text{Event} & \quad E ::= \quad \text{null} \quad 0 \quad \text{null} \\
& \quad rcv[a](b_1, \ldots, b_k.P) \quad ?a(b_1, \ldots, b_k.P) \quad \text{receive} \\
& \quad \text{choice}(E_1; E_2) \quad E_1 + E_2 \quad \text{choice}
\end{align*}
\]

Thus, up to structural congruence, an event is a choice of zero or more read events along specified channels.

The dynamics for the asynchronous π-calculus is defined by omitting Rule (43.7a), and adding the following rule for the asynchronous send process:

\[
!a(b_1, \ldots, b_k) \xrightarrow{!a(b_1, \ldots, b_k)} 1
\]

(43.10)
One may regard the pending asynchronous write as a kind of buffer in which the message is held until a receiver is chosen.

43.7 A Sort Discipline

In this section we consider a simple type discipline for processes based on assigning sorts to channels specifying both the number of channels, and the sort of each channel, that are to be communicated along the channel. A sort, η, has the form (η_1, \ldots, η_k), where $k \geq 0$. A channel of this sort carries $k \geq 0$ channels of sorts η_1, \ldots, η_k, respectively. Thus, a channel that is used purely for synchronization would have sort (\cdot), and a channel that carries two such channels would have sort (\cdot, \cdot). To track the sorts of channels, the syntax of the new channel operation is enriched to $\text{new}[\eta](a. P)$, where η is the arity of the channel a bound within P. A signature, Σ, is a finite mapping assigning sorts to channels, written $a_1 : \eta_1, \ldots, a_k : \eta_k$. We write $\Sigma \vdash a : \eta$ to indicate that a is declared to be of sort η in Σ.

The judgements $\vdash_{\Sigma} P \text{ proc}$ and $\vdash_{\Sigma} E \text{ event}$ are simultaneously inductively defined by the following rules:

\[
\begin{align*}
\vdash_{\Sigma} \text{stop proc} & \quad (43.11a) \\
\vdash_{\Sigma} P_1 \text{ proc} & \vdash_{\Sigma} P_2 \text{ proc} \quad \Rightarrow \quad \vdash_{\Sigma} \text{par}(P_1; P_2) \text{ proc} & \quad (43.11b) \\
\vdash_{\Sigma} E \text{ event} & \quad \Rightarrow \quad \vdash_{\Sigma} \text{await}(E) \text{ proc} & \quad (43.11c) \\
\vdash_{\Sigma} P \text{ proc} & \quad \Rightarrow \quad \vdash_{\Sigma} \text{repl}(P) \text{ proc} & \quad (43.11d) \\
\vdash_{\Sigma, a:\eta} P \text{ proc} & \quad \Rightarrow \quad \vdash_{\Sigma} \text{new}[\eta](a. P) \text{ proc} & \quad (43.11e) \\
\vdash_{\Sigma} \text{null event} & \quad (43.11f) \\
\vdash_{\Sigma} E_1 \text{ event} & \vdash_{\Sigma} E_2 \text{ event} \quad \Rightarrow \quad \vdash_{\Sigma} \text{choice}(E_1; E_2) \text{ event} & \quad (43.11g) \\
\Sigma \vdash a : (\eta_1, \ldots, \eta_k) & \quad \Sigma \vdash b_1 : \eta_1 \quad \ldots \quad \Sigma \vdash b_k : \eta_k \quad \Rightarrow \quad \vdash_{\Sigma} P \text{ proc} & \quad (43.11h) \\
\vdash_{\Sigma} \text{snd}[a][b_1, \ldots, b_k](P) \text{ event} & \quad \text{JUNE 2, 2010 DRAFT 13:08}
\end{align*}
\]
Rule (43.11e) enriches the signature with the new channel for the purposes of ensuring that the scope of the declaration is well-formed. Rules (43.11h) and (43.11i) specify the formation of send and receive events, respectively. In both rules the channel \(a \) must be declared in \(\Sigma \) to accept \(k \geq 0 \) channels with sorts \(\eta_1, \ldots, \eta_k \). In the case of a send event the transmitted channels \(b_1, \ldots, b_k \) must be available with these sorts, whereas in the case of a receive event the channels \(b_1, \ldots, b_k \) are freshly bound within the body of the event.

With this sort discipline in mind, we may correspondingly enrich the dynamics to record the sorts of the channels involved. The transition judgement \(P \xrightarrow{\alpha} P' \) is defined for actions \(\alpha \) such that \(\vdash \Sigma \alpha \) action. This latter judgement is inductively defined by the following rules:

\[
\begin{align*}
\vdash \Sigma \xrightarrow{\alpha} P' \\
\vdash \Sigma, \alpha : (\eta_1, \ldots, \eta_k) \quad \vdash \Sigma, \alpha : b_1 : \eta_1 \quad \ldots \quad \vdash \Sigma, \alpha : b_k : \eta_k \\
\vdash \Sigma \xrightarrow{\text{snd}[a]} (b_1, \ldots, b_k) \quad \alpha \text{ action} \\
\vdash \Sigma \xrightarrow{\text{rcv}[a]} (b_1, \ldots, b_k) \quad \alpha \text{ action}
\end{align*}
\]

The dynamics of processes may then be enriched to account for the scopes of channels. For example, the following transition rule governs channel allocation:

\[
\begin{align*}
P &\xrightarrow{\alpha} P' \\
\Sigma, \alpha : (b_1 : \eta_1, \ldots, b_k : \eta_k) &\vdash \Sigma \xrightarrow{\text{snd}[a]} (b_1, \ldots, b_k) \quad \alpha \text{ action} \\
\Sigma, \alpha : (b_1 : \eta_1, \ldots, b_k : \eta_k) &\vdash \Sigma \xrightarrow{\text{rcv}[a]} (b_1, \ldots, b_k) \quad \alpha \text{ action}
\end{align*}
\]

\(P \xrightarrow{\alpha} P' \)

\(\Sigma, \alpha : (b_1 : \eta_1, \ldots, b_k : \eta_k) \)

\(\xrightarrow{\text{snd}[a]} (b_1, \ldots, b_k) \quad \alpha \text{ action} \\
\xrightarrow{\text{rcv}[a]} (b_1, \ldots, b_k) \quad \alpha \text{ action} \\
\Sigma, \alpha : (b_1 : \eta_1, \ldots, b_k : \eta_k) \)

\(\vdash \Sigma \xrightarrow{\alpha} P' \)

\(\vdash \Sigma, \alpha : (b_1 : \eta_1, \ldots, b_k : \eta_k) \)

\(\xrightarrow{\text{snd}[a]} (b_1, \ldots, b_k) \quad \alpha \text{ action} \\
\xrightarrow{\text{rcv}[a]} (b_1, \ldots, b_k) \quad \alpha \text{ action} \\
\Sigma, \alpha : (b_1 : \eta_1, \ldots, b_k : \eta_k) \)

We tacitly assume that \(\vdash \Sigma \alpha \) action, which ensures that \(a \not\in \alpha \) since we tacitly assume that \(a \) is not already declared in \(\Sigma \) (renaming as necessary to ensure that this is the case). The remaining transitions are similarly augmented with a signature to record the sorts of the channels involved.

It is straightforward to prove that well-formedness is preserved by transition.

Theorem 43.1 (Preservation). For every action \(\alpha \) such that \(\vdash \Sigma \alpha \) action, if \(P \xrightarrow{\alpha} P' \) and \(\vdash \Sigma P \) proc, then \(\vdash \Sigma P' \) proc.

However, there is no analogue of the progress theorem for this sort discipline. For example, the process \(\$? a (.1) \) has no transition, but is well-formed provided that \(a \) has sort \(() \).
In this chapter we apply the ideas from Chapter 43 to the dynamics of a language with mutable cells and with concurrency. The unifying theme is the use of labelled transition systems to model the effects that execution of one process may have on another. In the case of mutable storage we may regard each free assignable (mutable cell) as a process that manages a single piece of state. The main computation has the effect of sending messages to the assignables requesting or altering the contents of one of them. A new assignable is allocated by creating a new process to manage that piece of storage. Concurrent interaction among user-defined processes is based on message-passing on shared channels, essentially as outlined in Chapter 43. One process may have the effect of sending a message to, or receiving a message from, another process along a specified channel. Any process with access to that channel may receive or send a message along it. Message-passing synchronizes the two processes by atomically passing a data item (a value of a type associated to the channel) from one to the other.
44.1 Framework

The syntax of \(\mathcal{L} \{ \text{conc} \} \) is given by the following grammar:

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Production</th>
<th>Type</th>
<th>Expression</th>
<th>Communication</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>(\tau ::= \text{cmd}(\tau))</td>
<td>(\tau) cmd</td>
<td>computation</td>
<td>(\text{do}(m))</td>
<td>(\text{do} m)</td>
</tr>
<tr>
<td>Expr</td>
<td>(e ::= \text{do}(m))</td>
<td>(e)</td>
<td>(m)</td>
<td>(\text{ret} e)</td>
<td>(\text{ret} e)</td>
</tr>
<tr>
<td>Comm</td>
<td>(m ::= \text{bnd}(\tau; x. m))</td>
<td>(m)</td>
<td>suspended command</td>
<td>(\text{bnd} x \leftarrow e ; m)</td>
<td>sequence</td>
</tr>
<tr>
<td>Proc</td>
<td>(p ::= \text{stop})</td>
<td>(p)</td>
<td>nullary composition</td>
<td>(\text{proc}a)</td>
<td>({ a : m })</td>
</tr>
<tr>
<td></td>
<td>(\text{par}(p_1; p_2))</td>
<td>(p_1 \parallel p_2)</td>
<td>parallel composition</td>
<td>(\text{new}[\tau](a. p))</td>
<td>(\nu(a: \tau, p))</td>
</tr>
<tr>
<td></td>
<td>(\text{send}a)</td>
<td>(! a(e))</td>
<td>send</td>
<td>(\text{recv}[a](x. p))</td>
<td>(? a(x. p))</td>
</tr>
</tbody>
</table>

The basic form of process is \(\{ a : m \} \), consisting of a single command, \(m \), labelled with an identifier, \(a \). We may also form the parallel composition of processes, and generate a new symbol for use within a process, much as in Chapter 43. In addition we have two additional forms of processes, the asynchronous send process, and a process that receives on a single, specified channel.

As always, we identify syntactic objects up to \(\alpha \)-equivalence, so that bound names may always be chosen so as to satisfy any finitary constraint on their occurrence. As in Chapter 43, we also identify processes up to structural congruence, which specifies that parallel composition is commutative and associative, and that new symbol generation may have its scope expanded to encompass any parallel process, subject only to avoidance of capture.

In the succeeding sections of this chapter, the language \(\mathcal{L} \{ \text{conc} \} \) will be extended to model various forms of computational phenomena. In each case we will enrich the language with new forms of command, representing primitive capabilities of the language, and new forms of process, used to model the context in which commands are executed. In this respect it is misleading to think of processes as having to do with concurrent execution and synchronization! Rather, what processes provide is a simple, uniform means of describing the context in which a command is executed.

Let \(\Sigma \) range over finite sets of judgements of the form \(a : \tau \), where \(a \) is a symbol and \(\tau \) is a type, such that no symbol is the subject of more than one such judgement in \(\Sigma \). We define the judgement \(p \ \text{proc} \) by the following
44.1 Framework

Rules:

\[
\begin{align*}
\Gamma \vdash \Sigma \ 1 \ proc & \quad (44.1a) \\
\Gamma \vdash \Sigma_{a: \tau} \ m \sim \tau & \quad (44.1b) \\
\Gamma \vdash \Sigma \ \{a : m\} \ proc & \\
\Gamma \vdash \Sigma \ p_1 \ proc \quad \Sigma \vdash p_2 \ proc & \quad (44.1c) \\
\Gamma \vdash \Sigma_{a: \tau} \ p \ proc & \\
\Gamma \vdash \Sigma \ \nu(a: \tau \cdot p) \ proc & \\
\Gamma \vdash \Sigma_{a: \tau} \ e : \tau & \quad (44.1d) \\
\Gamma \vdash \Sigma_{a: \tau} \ e \ val_{\Sigma_{a: \tau}} & \\
\Gamma, x : \tau \vdash \Sigma_{a: \tau} \ p \ proc & \quad (44.1e) \\
\Gamma \vdash \Sigma_{a: \tau} \ ?a(x \cdot p) \ proc & \quad (44.1f)
\end{align*}
\]

Rule (44.1b) specifies that a process of the form \(\{a : m\}\) is well-formed if \(m\) is a command yielding a value of some type \(\tau\).

Actions are essentially as defined in Chapter 43, except that the argument of a send or receive is always a closed value of the type associated to the channel. There is no need of multiple arguments, since we can just as well send a single tuple of values.

\[
\begin{align*}
\vdash \Sigma_{a: \tau} e : \tau & \quad e \ val_{\Sigma_{a: \tau}} & \quad (44.2a) \\
\vdash \Sigma_{a: \tau} !a(e) \ action & \\
\vdash \Sigma_{a: \tau} e : \tau & \quad e \ val_{\Sigma_{a: \tau}} & \quad (44.2b)
\end{align*}
\]

Structural congruence of processes, written \(p_1 \equiv_{\Sigma} p_2\) is defined much as in Chapter 43 to be compatible with command and expression structural equivalence, including \(\alpha\)-equivalence, and to permit extrusion of the scopes of names. The dynamics of \(L\{conc\}\) is defined by a labelled transition system \(p \xrightarrow{a} p'\), where \(\vdash_{\Sigma} a \ action\), and where we tacitly identify processes up to structural congruence. The transition relation is defined by these rules:

\[
\begin{align*}
\vdash_{\Sigma} e \ val_{\Sigma} & \\
\vdash_{\Sigma} \{a : \text{ret} e\} & \xrightarrow{c} !a(e) & \quad (44.3a) \\
\vdash_{\Sigma} e \xrightarrow{\Sigma} e' & \\
\vdash_{\Sigma} \{a : \text{ret} e\} & \xrightarrow{c_{e'}} \{a : \text{ret} e'\} & \quad (44.3b)
\end{align*}
\]
44.2 Character Input/Output

Character input and output are readily modeled in \(L \{ \text{conc} \} \) by considering input and output ports to be channels on which we may transmit characters.

\[\text{Comm } m ::= \text{getc()} \text{ getc()} \text{ get character} \\
\text{putc}(e) \text{ putc}(e) \text{ put character} \]
44.3 Mutable Cells

The statics assumes that we have a type `char` of characters:

\[\Gamma \vdash_{\Sigma} \text{getc()} \sim \text{char} \quad (44.4a) \]

\[\Gamma \vdash_{\Sigma} e : \text{char} \]

\[\Gamma \vdash_{\Sigma} \text{putc}(e) \sim \text{unit} \quad (44.4b) \]

Given two distinguished ports, `stdin` and `stdout`, the dynamics of character input/output may be given by the following rules:

\[\{a : \text{getc()}\} \xrightarrow{\text{?stdin}(c)} \{a : \text{ret } c\} \quad (44.5a) \]

\[\{a : \text{putc}(c)\} \xrightarrow{\text{!stdout}(c)} \{a : \text{ret } ()\} \quad (44.5b) \]

44.3 Mutable Cells

A mutable cell as introduced in Chapter 38 may be modeled as a process that responds to messages to get or set its contents. The process `cell[a]⟨e⟩`, or `⟨a : e⟩` for short, behaves according to the following rules:

\[e \text{ val}_{\Sigma} \]

\[\langle a : e \rangle \xrightarrow{\text{!}_{a}(e)} \langle a : e \rangle \quad (44.6a) \]

\[e \text{ val}_{\Sigma} \quad e' \text{ val}_{\Sigma} \]

\[\langle a : e \rangle \xrightarrow{\text{?}_{a}(e')} \langle a : e' \rangle \quad (44.6b) \]

That is, a cell at `a` offers to send its current contents, or receive new contents, on channel `a`. The typing rule for a cell is given as follows:

\[\vdash_{\Sigma,a : \tau} e : \tau \quad e \text{ val}_{\Sigma,a : \tau} \]

\[\vdash_{\Sigma,a : \tau} \langle a : e \rangle \text{ proc} \quad (44.7) \]

The dynamics of mutable cells given in Chapter 38 may be specified as an interaction between a program and several cell processes.

\[e \text{ val} \]

\[\{a : \text{ref } e\} \rightarrow v(b : \tau. \{a : \text{ret } (& b)\} \parallel \langle b : e\rangle \quad (44.8a) \]
Rule (44.8a) allocates a new channel, a, to serve as the location of the cell, returning that channel to the calling process and creating a new cell process at location a with initial contents e. Rule (44.8b) synchronizes with the cell at location a by requesting its current contents on channel a. Rule (44.8c) synchronizes with the cell at location a by requesting that it set its current contents to e'.

It is instructive to reconsider the proof of type safety for reference cells given in Chapter 38. Whereas in Chapter 38 the execution state for a command, m, has the form $m \parallel \mu$, where μ is a memory mapping locations to values, here the execution state for m is a process that, up to structural congruence, has the form

$$v(a_1 : \tau_1 \ldots v(a_k : \tau_k, \langle a_1 : e_1 \rangle \parallel \ldots \parallel \langle a_k : e_k \rangle \parallel \{a : m\})). \tag{44.9}$$

The memory has been decomposed into a set of active locations, a_1, \ldots, a_k, and a set of processes $\langle a_1 : e_1 \rangle, \ldots, \langle a_k : e_k \rangle$ governing the active locations.

It is an invariant of the dynamics that each active location is governed by exactly one process. The statics of processes, including that of cells, ensures that if a process of the form (44.9) is well-formed, then for each $1 \leq i \leq k$,

$$a_1 : \tau_1, \ldots, a_k : \tau_k \vdash e_i : \tau_i.$$

As discussed in Chapter 38 this condition is necessary for type preservation, because memories may contain cyclic references. The statics of processes does not, however, ensure progress, for the simple reason that the statics of processes cannot guarantee that there is a cell server for every active location. But this is clearly an invariant of the dynamics of mutable references, and this, together with the statics of processes, is sufficient to ensure progress.

44.4 Asynchronous Communication

In this section we will introduce the means of creating and synchronizing processes based on the primitives studied in Chapter 43. These consist of
mechanisms for creating a new process, for allocating a new channel, and for communicating data values between processes sharing a channel.

Type τ ::=	chan(τ)	τ chan channel
Expr $e ::=	ch[a]	channel
	never[τ]	never nullary choice
	or($e_1;e_2$)	e_1 or e_2 binary choice
	rcv(e)	rcv(e) receive
	wrap($e;x.m$)	e as x in m wrap
Cmd $m ::=	spawn(m)	fork
	newch[τ]	newch[τ] new channel
	send($e_1;e_2$)	send
	sync(e)	sync(e) synchronize

The type τ chan is the type of channels carrying values of type τ, and the type τ event is the type of events yielding a value of type τ. The only value of type τ chan is a reference to a channel, ch[a], of type τ. There are four forms of event, corresponding to those of the asynchronous process calculus described in Chapter 43. The receive event does not, however, provide a continuation, but rather is a pure event that, when chosen, returns a value to the choice point. There are four new commands, to spawn a process, to allocate a new channel, to send a value on a channel, and to synchronize with an event.

The typing rules for the above forms of expression are as follows:

$$\Gamma \vdash \Sigma, a : \tau \quad \text{ch}[a] : \tau \text{ chan}$$ \hspace{1cm} (44.10a)

$$\Gamma \vdash \Sigma \quad \text{never} : \tau \text{ event}$$ \hspace{1cm} (44.10b)

$$\begin{align*}
\Gamma \vdash \Sigma e_1 &: \tau \text{ event} & \Gamma \vdash \Sigma e_2 &: \tau \text{ event} \\
\Gamma \vdash \Sigma e_1 \text{ or } e_2 &: \tau \text{ event}
\end{align*}$$ \hspace{1cm} (44.10c)

$$\Gamma \vdash \Sigma e &: \tau \text{ chan}$$ \hspace{1cm} (44.10d)

$$\Gamma \vdash \Sigma \text{rcv}(e) &: \tau \text{ event}$$

$$\begin{align*}
\Gamma \vdash \Sigma e &: \tau \text{ event} & \Gamma, x : \tau \vdash \Sigma m \sim \tau' \\
\Gamma \vdash \Sigma e \text{ as } x \text{ in } m &: \tau' \text{ event}
\end{align*}$$ \hspace{1cm} (44.10e)

Rule (44.10c) requires that both events in a choice return the same type to ensure that the type of the overall event is well-defined.
The typing rules for the new forms of command are as follows:

\[
\begin{align*}
\Gamma \vdash e : \tau \text{cmd} & \quad \text{(44.11a)} \\
\Gamma \vdash \text{spawn}(e) \sim \tau \text{chan} & \\
\Gamma \vdash \text{newch}[\tau] \sim \tau \text{chan} & \quad \text{(44.11b)} \\
\Gamma \vdash e_1 : \tau \text{chan} & \quad \Gamma \vdash e_2 : \tau \\
\Gamma \vdash \text{send}(e_1; e_2) \sim \text{unit} & \quad \text{(44.11c)} \\
\Gamma \vdash e : \tau \text{event} & \quad \Gamma \vdash \text{sync}(e) \sim \tau & \quad \text{(44.11d)}
\end{align*}
\]

Rule (44.11d) specifies that synchronization with an event of type \(\tau\) returns a value of that type.

The dynamics is given by rules reminiscent of those for the process calculus. First, we must define structural congruence of events to ensure that the ordering of events is immaterial, and to ensure that event wrappers are reducible to a standard form as described in Lemma 44.1 on the facing page below. The judgement \(e_1 \equiv e_2\), where \(\Gamma \vdash e_1 : \tau \text{event}\), \(\Gamma \vdash e_2 : \tau \text{event}\), \(e_1 \text{val}_\Sigma\), and \(e_2 \text{val}_\Sigma\), states that event values \(e_1\) and \(e_2\) are structurally equivalent. It is defined to be the strongest congruence closed under these rules:

\[
\begin{align*}
\Gamma \vdash e : \tau \text{event} & \quad \text{never or } e \equiv e & \quad \text{(44.12a)} \\
\Gamma \vdash e_1 \text{ or } e_2 \equiv e_2 \text{ or } e_1 & \quad \text{(44.12b)} \\
\Gamma \vdash e_1 \text{ or } (e_2 \text{ or } e_3) \equiv (e_1 \text{ or } e_2) \text{ or } e_3 & \quad \text{(44.12c)} \\
\Gamma \vdash \text{never as } x \text{ in } m \equiv \text{never} & \quad \text{(44.12d)} \\
\Gamma \vdash \text{rcv}(a) \text{ as } x \text{ in ret } x \equiv \text{rcv}(a) & \quad \text{(44.12e)} \\
\Gamma \vdash (e_1 \text{ or } e_2) \text{ as } x \text{ in } m \equiv (e_1 \text{ as } x \text{ in } m) \text{ or } (e_2 \text{ as } x \text{ in } m) & \quad \text{(44.12f)} \\
\Gamma \vdash (e \text{ as } x_1 \text{ in } m_1) \text{ as } x_2 \text{ in } m_2 \equiv e \text{ as } x_1 \text{ in bnd } x_2 \leftarrow \text{do } m_1 ; m_2 & \quad \text{(44.12g)}
\end{align*}
\]

Rules (44.12d) to (44.12g) specify how to normalize events that are sequenced with a command.

The following normal form is crucial for the dynamic semantics:
Lemma 44.1. If $\vdash_{\Sigma} e : \tau$ event and $e \equiv_{\Sigma} e_1 \lor \ldots \lor e_k$, for some $k \geq 0$ such that the expression e_i is of the form $rcv(b_i)$ as $x_i \in m_i$ for each $1 \leq i \leq k$.

Proof. A simple induction on Rules (44.10). \square

Now, identifying processes and events up to structural congruence, the dynamics is defined by the following labelled transitions:\footnote{The obvious rules for the evaluation of event expressions are omitted here for the sake of concision.}

\begin{align*}
\{a : \text{spawn}(\text{do } m)\} & \xrightarrow{\Sigma} v(b : \tau.\{a : \text{ret (ch}\{b\})\} || \{b : m\}) \quad (44.13a) \\
\{a : \text{newch}[\tau]\} & \xrightarrow{\Sigma} v(b : \tau.\{a : \text{ret (ch}\{b\})\}) \quad (44.13b) \\
\{a : \text{send(ch}\{b\}; e\}) & \xrightarrow{\Sigma, b : \tau} ! b(e) || \{a : \text{ret (}}
\{a : \text{sync((rcv(b) as x in m) or } e\}) \xrightarrow{\Sigma, b : \tau} ? b(x.\{a : m\}) \quad (44.13d)
\end{align*}

Rule (44.13a) allocates a fresh channel on which the result of executing the spawned command will be transmitted. Another process may synchronize on the termination of the spawned process by reading from this channel. Rule (44.13b) allocates a new channel and returns a reference to it. Rule (44.13c) performs an asynchronous send in parallel with returning a trivial value to the calling process. Rule (44.13d) non-deterministically chooses a read event, and commits to it reading on that channel. The wrapper is executed once a value is received on that channel.

Theorem 44.2 (Preservation). If $\vdash_{\Sigma} p \text{ proc and } p \xrightarrow{\Sigma} p'$, then $\vdash_{\Sigma} p' \text{ proc}$.

Proof. Straightforward induction on the dynamic semantics given by Rules (44.13). \square

There is no analogue of the progress theorem, since the statics of processes does not guarantee that a process does not get stuck waiting for a message that will never arrive.
44.5 Exercises
Part XVII

Modularity
Chapter 45

Separate Compilation and Linking

45.1 Linking and Substitution

45.2 Exercises
Chapter 46

Basic Modules
Chapter 47

Parameterized Modules
Part XVIII

Equivalence
Chapter 48

Equational Reasoning for T

The beauty of functional programming is that equality of expressions in a functional language corresponds very closely to familiar patterns of mathematical reasoning. For example, in the language $L\{\text{nat} \rightarrow \}$ of Chapter 12 in which we can express addition as the function plus, the expressions

$$\lambda (x:\text{nat}.\lambda (y:\text{nat}.\text{plus}(x)(y)))$$

and

$$\lambda (x:\text{nat}.\lambda (y:\text{nat}.\text{plus}(y)(x)))$$

are equal. In other words, the addition function as programmed in $L\{\text{nat} \rightarrow \}$ is commutative.

This may seem to be obviously true, but why, precisely, is it so? More importantly, what do we even mean when we say that two expressions of a programming language are equal in this sense? It is intuitively obvious that these two expressions are not definitionally equivalent, because they cannot be shown equivalent by symbolic execution. One may say that these two expressions are definitionally inequivalent because they describe different algorithms: one proceeds by recursion on x, the other by recursion on y. On the other hand, the two expressions are interchangeable in any complete computation of a natural number, because the only use we can make of them is to apply them to arguments and compute the result. We say that two functions are extensionally equivalent if they give equal results for equal arguments—in particular, they agree on all possible arguments. Since their behavior on arguments is all that matters for calculating observable results, we may expect that extensionally equivalent functions are equal in the sense of being interchangeable in all complete programs. Thinking of
the programs in which these functions occur as *observations* of their behavior, we say that the these functions are *observationally equivalent*. The main result of this chapter is that observational and extensional equivalence coincide for a variant of $\mathcal{L}\{\text{nat} \rightarrow\}$ in which the successor is evaluated eagerly, so that a value of type nat is a numeral.

48.1 Observational Equivalence

When are two expressions equal? Whenever we cannot tell them apart! This may seem tautological, but it is not, because it depends on what we consider to be a means of telling expressions apart. What “experiment” are we permitted to perform on expressions in order to distinguish them? What counts as an observation that, if different for two expressions, is a sure sign that they are different?

If we permit ourselves to consider the syntactic details of the expressions, then very few expressions could be considered equal. For example, if it is deemed significant that an expression contains, say, more than one function application, or that it has an occurrence of λ-abstraction, then very few expressions would come out as equivalent. But such considerations seem silly, because they conflict with the intuition that the significance of an expression lies in its contribution to the *outcome* of a computation, and not to the process of obtaining that outcome. In short, if two expressions make the same contribution to the outcome of a complete program, then they ought to be regarded as equal.

We must fix what we mean by a complete program. Two considerations inform the definition. First, the dynamics of $\mathcal{L}\{\text{nat} \rightarrow\}$ is given only for expressions without free variables, so a complete program should clearly be a *closed* expression. Second, the outcome of a computation should be *observable*, so that it is evident whether the outcome of two computations differs or not. We define a *complete program* to be a closed expression of type nat, and define the *observable behavior* of the program to be the numeral to which it evaluates.

An *experiment* on, or *observation* about, an expression is any means of using that expression within a complete program. We define an *expression context* to be an expression with a “hole” in it serving as a placeholder for another expression. The hole is permitted to occur anywhere, including within the scope of a binder. The bound variables within whose scope the hole lies are said to be *exposed* (to capture) by the expression context. These variables may be assumed, without loss of generality, to be distinct from...
one another. A program context is a closed expression context of type \(\text{nat} \)—that is, it is a complete program with a hole in it. The meta-variable \(C \) stands for any expression context.

Replacement is the process of filling a hole in an expression context, \(C \), with an expression, \(e \), which is written \(C\{e\} \). Importantly, the free variables of \(e \) that are exposed by \(C \) are captured by replacement (which is why replacement is not a form of substitution, which is defined so as to avoid capture). If \(C \) is a program context, then \(C\{e\} \) is a complete program iff all free variables of \(e \) are captured by the replacement. For example, if \(C = \lambda (x:\text{nat}.\circ) \), and \(e = x + x \), then

\[
C\{e\} = \lambda (x:\text{nat}.x + x).
\]

The free occurrences of \(x \) in \(e \) are captured by the \(\lambda \)-abstraction as a result of the replacement of the hole in \(C \) by \(e \).

We sometimes write \(C\{\circ\} \) to emphasize the occurrence of the hole in \(C \). Expression contexts are closed under composition in that if \(C_1 \) and \(C_2 \) are expression contexts, then so is

\[
C\{\circ\} := C_1\{C_2\{\circ\}\},
\]

and we have \(C\{e\} = C_1\{C_2\{e\}\} \). The trivial, or identity, expression context is the “bare hole”, written \(\circ \), for which \(\circ\{e\} = e \).

The statics of expressions of \(\mathcal{L}\{\text{nat} \to}\) is extended to expression contexts by defining the typing judgement \(C : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma' \triangleright \tau') \) so that if \(\Gamma \vdash e : \tau \), then \(\Gamma' \vdash C\{e\} : \tau' \). This judgement may be inductively defined by a collection of rules derived from the statics of \(\mathcal{L}\{\text{nat} \to}\) (see Rules (12.1)). Some representative rules are as follows:

\[
\frac{}{\circ : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma \triangleright \tau)} \tag{48.1a}
\]

\[
\frac{C : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma' \triangleright \text{nat}) \quad s(C) : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma' \triangleright \text{nat})}{s(C) : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma' \triangleright \text{nat})} \tag{48.1b}
\]

\[
\frac{C : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma' \triangleright \text{nat}) \quad \Gamma' \vdash e_0 : \tau' \quad \Gamma', x : \text{nat}, y : \tau' \vdash e_1 : \tau'}{\text{natrec} C \{z \Rightarrow e_0 \mid s(x) \text{ with } y \Rightarrow e_1\} : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma' \triangleright \tau')} \tag{48.1c}
\]

\[
\frac{\Gamma' \vdash e : \text{nat} \quad \Gamma' \vdash e_0 : \tau' \quad \Gamma', x : \text{nat}, y : \tau' \vdash e_1 : \tau'}{\text{natrec} e \{z \Rightarrow C_0 \mid s(x) \text{ with } y \Rightarrow e_1\} : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma' \triangleright \tau')} \tag{48.1d}
\]
Lemma 48.1. If \(C : (\Gamma \triangleright \tau) \leadsto (\Gamma' \triangleright \tau') \), then \(\Gamma' \subseteq \Gamma \), and if \(\Gamma \vdash e : \tau \), then \(\Gamma' \vdash C \{ e \} : \tau' \).

Observe that the trivial context consisting only of a “hole” acts as the identity under replacement. Moreover, contexts are closed under composition in the following sense.

Lemma 48.2. If \(C : (\Gamma \triangleright \tau) \leadsto (\Gamma' \triangleright \tau') \), and \(C' : (\Gamma' \triangleright \tau'') \leadsto (\Gamma'' \triangleright \tau''') \), then \(C' \{ C \cdot \} : (\Gamma \triangleright \tau) \leadsto (\Gamma'' \triangleright \tau''') \).

Lemma 48.3. If \(C : (\Gamma \triangleright \tau) \leadsto (\Gamma' \triangleright \tau') \) and \(x \notin \text{dom}(\Gamma) \), then \(C : (\Gamma, x : \sigma \triangleright \tau) \leadsto (\Gamma', x : \sigma \triangleright \tau') \).

Proof. By induction on Rules (48.1).

A complete program is a closed expression of type nat.

Definition 48.1. We say that two complete programs, \(e \) and \(e' \), are Kleene equivalent, written \(e \simeq e' \), iff there exists \(n \geq 0 \) such that \(e \mapsto^* \pi \) and \(e' \mapsto^* \pi \).

Kleene equivalence is evidently reflexive and symmetric; transitivity follows from determinacy of evaluation. Closure under converse evaluation also follows directly from determinacy. It is obviously consistent in that \(\emptyset \neq \top \).

Definition 48.2. Suppose that \(\Gamma \vdash e : \tau \) and \(\Gamma \vdash e' : \tau \) are two expressions of the same type. We say that \(e \) and \(e' \) are observationally equivalent, written \(e \simeq_{\text{obs}} e' : \tau \mid \Gamma \), iff \(C \{ e \} \simeq C \{ e' \} \) for every program context \(C : (\Gamma \triangleright \tau) \leadsto (\emptyset \triangleright \text{nat}) \).

In other words, for all possible experiments, the outcome of an experiment on \(e \) is the same as the outcome on \(e' \). This is obviously an equivalence relation.
48.1 Observational Equivalence

A family of equivalence relations $e_1 \mathcal{E} e_2 : \tau \mid \Gamma$ is a congruence iff it is preserved by all contexts. That is,

$$\text{if } e \mathcal{E} e' : \tau \mid \Gamma, \text{ then } C\{e\} \mathcal{E} C\{e'\} : \tau' \mid \Gamma'$$

for every expression context $C : (\Gamma \triangleright \tau) \sim (\Gamma' \triangleright \tau')$. Such a family of relations is consistent iff $e \mathcal{E} e' : \text{nat} \mid \emptyset$ implies $e \simeq e'$.

Theorem 48.4. Observational equivalence is the coarsest consistent congruence on expressions.

Proof. Consistency follows directly from the definition by noting that the trivial context is a program context. Observational equivalence is obviously an equivalence relation. To show that it is a congruence, we need only observe that type-correct composition of a program context with an arbitrary expression context is again a program context. Finally, it is the coarsest such equivalence relation, for if $e \mathcal{E} e' : \tau \mid \Gamma$ for some consistent congruence \mathcal{E}, and if $C : (\Gamma \triangleright \tau) \sim (\emptyset \triangleright \text{nat})$, then by congruence $C\{e\} \mathcal{E} C\{e'\} : \text{nat} \mid \emptyset$, and hence by consistency $C\{e\} \simeq C\{e'\}$.

A closing substitution, γ, for the typing context $\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n$ is a finite function assigning closed expressions $e_1 : \tau_1, \ldots, e_n : \tau_n$ to x_1, \ldots, x_n, respectively. We write $\hat{\gamma}(e)$ for the substitution $[e_1, \ldots, e_n / x_1, \ldots, x_n]e$, and write $\gamma : \Gamma$ to mean that if $x : \tau$ occurs in Γ, then there exists a closed expression, e, such that $\gamma(x) = e$ and $e : \tau$. We write $\gamma \simeq \gamma' : \Gamma$, where $\gamma : \Gamma$ and $\gamma' : \Gamma$, to express that $\gamma(x) \cong \gamma'(x) : \Gamma(x)$ for each x declared in Γ.

Lemma 48.5. If $e \equiv e' : \tau \mid \Gamma$ and $\gamma : \Gamma$, then $\hat{\gamma}(e) \equiv \hat{\gamma}(e') : \tau$. Moreover, if $\gamma \equiv \gamma' : \Gamma$, then $\hat{\gamma}(e) \equiv \hat{\gamma'}(e) : \tau$ and $\hat{\gamma}(e') \equiv \hat{\gamma'}(e') : \tau$.

Proof. Let $C : (\emptyset \triangleright \tau) \sim (\emptyset \triangleright \text{nat})$ be a program context; we are to show that $C\{\hat{\gamma}(e)\} \simeq C\{\hat{\gamma}(e')\}$. Since C has no free variables, this is equivalent to showing that $\hat{\gamma}(C\{e\}) \simeq \hat{\gamma}(C\{e'\})$. Let D be the context

$$\lambda (x_1 : \tau_1, \ldots, x_n : \tau_n. C\{\circ\})(e_1) \ldots (e_n),$$

where $\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n$ and $\gamma(x_1) = e_1, \ldots, \gamma(x_n) = e_n$. By Lemma 48.3 on the preceding page we have $C : (\Gamma \triangleright \tau) \sim (\Gamma \triangleright \text{nat})$, from which it follows directly that $D : (\Gamma \triangleright \tau) \sim (\emptyset \triangleright \text{nat})$. Since $e \equiv e' : \tau \mid \Gamma$, we have $D\{e\} \simeq D\{e'\}$. But by construction $D\{e\} \simeq \hat{\gamma}(C\{e\})$, and $D\{e'\} \simeq \hat{\gamma}(C\{e'\})$, so $\hat{\gamma}(C\{e\}) \simeq \hat{\gamma}(C\{e'\})$. Since C is arbitrary, it follows that $\hat{\gamma}(e) \equiv \hat{\gamma}(e') : \tau$.
48.2 Extensional Equivalence

Defining \(D' \) similarly to \(D \), but based on \(\gamma' \), rather than \(\gamma \), we may also show that \(D'\{e\} \simeq D'\{e'\} \), and hence \(\hat{\gamma}'(e) \equiv \hat{\gamma}'(e') : \tau \). Now if \(\gamma \equiv \gamma' : \Gamma \), then by congruence we have \(D\{e\} \equiv D'\{e\} : \text{nat} \), and \(D\{e'\} \equiv D'\{e'\} : \text{nat} \). It follows that \(D\{e'\} \simeq D'\{e'\} : \text{nat} \), and so, by consistency of observational equivalence, we have \(D\{e'\} \simeq D'\{e'\} \), which is to say that \(\hat{\gamma}(e) \equiv \hat{\gamma}'(e') : \tau \).

Theorem 48.4 on the preceding page licenses the principle of proof by coinduction: to show that \(e \equiv e' : \tau [\Gamma] \), it is enough to exhibit a consistent congruence, \(\mathcal{E} \), such that \(e \mathcal{E} e' : \tau [\Gamma] \). It can be difficult to construct such a relation. In the next section we will provide a general method for doing so that exploits types.

48.2 Extensional Equivalence

The key to simplifying reasoning about observational equivalence is to exploit types. Informally, we may classify the uses of expressions of a type into two broad categories, the passive and the active uses. The passive uses are those that merely manipulate expressions without actually inspecting them. For example, we may pass an expression of type \(\tau \) to a function that merely returns it. The active uses are those that operate on the expression itself; these are the elimination forms associated with the type of that expression. For the purposes of distinguishing two expressions, it is only the active uses that matter; the passive uses merely manipulate expressions at arm’s length, affording no opportunities to distinguish one from another.

This leads to the definition of extensional equivalence alluded to in the introduction.

Definition 48.3. Extensional equivalence is a family of relations \(e \sim e' : \tau \) between closed expressions of type \(\tau \). It is defined by induction on \(\tau \) as follows:

\[
e \sim e' : \text{nat} \quad \text{iff} \quad e \simeq e'
\]

\[
e \sim e' : \tau_1 \rightarrow \tau_2 \quad \text{iff} \quad \text{if } e_1 \sim e'_1 : \tau_1, \text{ then } e(e_1) \sim e'(e'_1) : \tau_2
\]

The definition of extensional equivalence at type \(\text{nat} \) licenses the following principle of proof by \(\text{nat}-\text{induction} \). To show that \(\mathcal{E} (e, e') \) whenever \(e \sim e' : \text{nat} \), it is enough to show that

1. \(\mathcal{E} (\bar{0}, \bar{0}) \), and
48.3 Extensional and Observational Equivalence Coincide

In this section we prove the coincidence of observational and extensional equivalence.

Lemma 48.6 (Converse Evaluation). Suppose that \(e \sim e' : \tau \). If \(d \mapsto e \), then \(d \sim e' : \tau \), and if \(d' \mapsto e' \), then \(e \sim d' : \tau \).

Proof. By induction on the structure of \(\tau \). If \(\tau = \text{nat} \), then the result follows from the closure of Kleene equivalence under converse evaluation. If \(\tau = \tau_1 \rightarrow \tau_2 \), then suppose that \(e \sim e' : \tau \), and \(d \mapsto e \). To show that \(d \sim e' : \tau \), we assume \(e_1 \sim e'_1 : \tau_1 \) and show \(d(e_1) \sim e'(e'_1) : \tau_2 \). It follows from the assumption that \(e(e_1) \sim e'(e'_1) : \tau_2 \). Noting that \(d(e_1) \mapsto e(e_1) \), the result follows by induction. \(\square \)

Lemma 48.7 (Consistency). If \(e \sim e' : \text{nat} \), then \(e \simeq e' \).

Proof. Immediate, from Definition 48.3 on the preceding page. \(\square \)

Theorem 48.8 (Reflexivity). If \(\Gamma \vdash e : \tau \), then \(e \sim e : \tau [\Gamma] \).

Proof. We are to show that if \(\Gamma \vdash e : \tau \) and \(\gamma \sim \gamma' : \Gamma \), then \(\gamma(e) \sim \gamma'(e) : \tau \).

The proof proceeds by induction on typing derivations; we consider a few representative cases.

Consider the case of Rule (11.4a), in which \(\tau = \tau_1 \rightarrow \tau_2 \) and \(e = \lambda (x : \tau_1). e_2 \). Since \(e \) is a value, we are to show that

\[
\lambda (x : \tau_1. \gamma(e_2)) \sim \lambda (x : \tau_1. \gamma'(e_2)) : \tau_1 \rightarrow \tau_2.
\]

Assume that \(e_1 \sim e'_1 : \tau_1 \); we are to show that \([e_1/x] \gamma(e_2) \sim [e'_1/x] \gamma'(e_2) : \tau_2 \). Let \(\gamma_2 = \gamma[x \mapsto e_1] \) and \(\gamma'_2 = \gamma'[x \mapsto e'_1] \), and observe that \(\gamma_2 \sim \gamma'_2 : \tau_2 \).
Extensional and Observational Equivalence

\(\Gamma, x : \tau_1. \) Therefore, by induction we have \(\hat{\gamma}_2(e_2) \sim \hat{\gamma}_2'(e_2) : \tau_2, \) from which the result follows directly.

Now consider the case of Rule (12.1d), for which we are to show that

\[
\text{natrec} (\hat{\gamma}(e); \hat{\gamma}(e_0); x \cdot y \cdot \hat{\gamma}(e_1)) \sim \text{natrec} (\hat{\gamma}'(e); \hat{\gamma}'(e_0); x \cdot y \cdot \hat{\gamma}'(e_1)) : \tau.
\]

By the induction hypothesis applied to the first premise of Rule (12.1d), we have

\[
\hat{\gamma}(e) \sim \hat{\gamma}'(e) : \text{nat}.
\]

We proceed by \(\text{nat} \)-induction. It suffices to show that

\[
\text{natrec} (z; \hat{\gamma}(e_0); x \cdot y \cdot \hat{\gamma}(e_1)) \sim \text{natrec} (z; \hat{\gamma}'(e_0); x \cdot y \cdot \hat{\gamma}'(e_1)) : \tau, \tag{48.2}
\]

and that

\[
\text{natrec} (s(n); \hat{\gamma}(e_0); x \cdot y \cdot \hat{\gamma}(e_1)) \sim \text{natrec} (s(n); \hat{\gamma}'(e_0); x \cdot y \cdot \hat{\gamma}'(e_1)) : \tau, \tag{48.3}
\]

assuming

\[
\text{natrec} (\overline{n}; \hat{\gamma}(e_0); x \cdot y \cdot \hat{\gamma}(e_1)) \sim \text{natrec} (\overline{n}; \hat{\gamma}'(e_0); x \cdot y \cdot \hat{\gamma}'(e_1)) : \tau. \tag{48.4}
\]

To show (48.2), by Lemma 48.6 on the preceding page it is enough to show that \(\hat{\gamma}(e_0) \sim \hat{\gamma}'(e_0) : \tau. \) This is assured by the outer inductive hypothesis applied to the second premise of Rule (12.1d).

To show (48.3), define

\[
\delta = \gamma[x \mapsto \overline{n}[y \mapsto \text{natrec}(\overline{n}; \hat{\gamma}(e_0); x \cdot y \cdot \hat{\gamma}(e_1))]]
\]

and

\[
\delta' = \gamma'[x \mapsto \overline{n}[y \mapsto \text{natrec}(\overline{n}; \hat{\gamma}'(e_0); x \cdot y \cdot \hat{\gamma}'(e_1))]].
\]

By (48.4) we have \(\delta \sim \delta' : \Gamma, x : \text{nat}, y : \tau. \) Consequently, by the outer inductive hypothesis applied to the third premise of Rule (12.1d), and Lemma 48.6 on the previous page, the required follows.

Corollary 48.9 (Termination). If \(e : \tau, \) then there exists \(e' \text{ val} \) such that \(e \mapsto^* e'. \)

Symmetry and transitivity of extensional equivalence are easily established by induction on types; extensional equivalence is therefore an equivalence relation.

Lemma 48.10 (Congruence). If \(C_0 : (\Gamma \vdash \tau) \leadsto (\Gamma_0 \vdash \tau_0), \) and \(e \sim e' : \tau \mid \Gamma, \) then \(C_0 \{ e \} \sim C_0 \{ e' \} : \tau_0 \mid \Gamma_0. \)
Proof. By induction on the derivation of the typing of C_0. We consider a representative case in which $C_0 = \lambda (x : \tau_1. C_2)$ so that $C_0 : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma_0 \triangleright \tau_1 \triangleright \tau_2)$ and $C_2 : (\Gamma \triangleright \tau) \rightsquigarrow (\Gamma_0, x : \tau_1 \triangleright \tau_2)$. Assuming $e \sim e' : \tau [\Gamma]$, we are to show that $C_0 \{ e \} \sim C_0 \{ e' \} : \tau_1 \rightarrow \tau_2 [\Gamma_0]$.

We know, by induction, that $C_2 \{ e \} \sim C_2 \{ e' \} : \tau_2 [\Gamma_0, x : \tau_1]$. Suppose that $\gamma_0 \sim \gamma'_0 : \Gamma_0$, and that $e_1 \sim e'_1 : \tau_1$. Let $\gamma_1 = \gamma_0[x \mapsto e_1]$, $\gamma'_1 = \gamma'_0[x \mapsto e'_1]$, and observe that $\gamma_1 \sim \gamma'_1 : \Gamma_0, x : \tau_1$. By Definition 48.3 on page 444 it is enough to show that $\hat{\gamma}_1(C_2 \{ e \}) \sim \hat{\gamma}'_1(C_2 \{ e' \}) : \tau_2$, which follows immediately from the inductive hypothesis.

\[\lambda (x : \tau_1. C_2 \{ e \}) \sim \lambda (x : \tau_1. C_2 \{ e' \}) : \tau_1 \rightarrow \tau_2 [\Gamma_0]. \]

Theorem 48.11. If $e \sim e' : \tau [\Gamma]$, then $e \cong e' : \tau [\Gamma]$.

Proof. By Lemmas 48.7 on page 445 and 48.10 on the facing page, and Theorem 48.4 on page 443.

Corollary 48.12. If $e : \text{nat}$, then $e \cong \pi : \text{nat}$, for some $n \geq 0$.

Proof. By Theorem 48.8 on page 445 we have $e \sim e : \tau$. Hence for some $n \geq 0$, we have $e \sim \pi : \text{nat}$, and so by Theorem 48.11, $e \cong \pi : \text{nat}$.

Lemma 48.13. For closed expressions $e : \tau$ and $e' : \tau$, if $e \cong e' : \tau$, then $e \sim e' : \tau$.

Proof. We proceed by induction on the structure of τ. If $\tau = \text{nat}$, consider the empty context to obtain $e \simeq e'$, and hence $e \sim e' : \text{nat}$. If $\tau = \tau_1 \rightarrow \tau_2$, then we are to show that whenever $e_1 \sim e'_1 : \tau_1$, we have $e(e_1) \sim e'(e'_1) : \tau_2$. By Theorem 48.11 we have $e_1 \cong e'_1 : \tau_1$, and hence by congruence of observational equivalence it follows that $e(e_1) \cong e'(e'_1) : \tau_2$, from which the result follows by induction.

Theorem 48.14. If $e \cong e' : \tau [\Gamma]$, then $e \sim e' : \tau [\Gamma]$.
48.4 Some Laws of Equivalence

Proof. Assume that $e \equiv e' : \tau [\Gamma]$, and that $\gamma \sim \gamma' : \Gamma$. By Theorem 48.11 on the previous page we have $\gamma \equiv \gamma' : \Gamma$, so by Lemma 48.5 on page 443 $\hat{\gamma}(e) \equiv \hat{\gamma'}(e') : \tau$. Therefore, by Lemma 48.13 on the previous page, $\hat{\gamma}(e) \sim \hat{\gamma'}(e') : \tau$. □

Corollary 48.15. $e \equiv e' : \tau [\Gamma]$ iff $e \sim e' : \tau [\Gamma]$.

Theorem 48.16. If $\Gamma \vdash e \equiv e' : \tau$, then $e \sim e' : \tau [\Gamma]$, and hence $e \equiv e' : \tau [\Gamma]$.

Proof. By an argument similar to that used in the proof of Theorem 48.8 on page 445 and Lemma 48.10 on page 446, then appealing to Theorem 48.11 on the preceding page. □

Corollary 48.17. If $e \equiv e' : \text{nat}$, then there exists $n \geq 0$ such that $e \mapsto^* \overline{n}$ and $e' \mapsto^* \overline{n}$.

Proof. By Theorem 48.16 we have $e \sim e' : \text{nat}$ and hence $e \simeq e'$.

48.4 Some Laws of Equivalence

In this section we summarize some useful principles of observational equivalence for $\mathcal{L}\{\text{nat} \rightarrow\}$. For the most part these may be proved as laws of extensional equivalence, and then transferred to observational equivalence by appeal to Corollary 48.15. The laws are presented as inference rules with the meaning that if all of the premises are true judgements about observational equivalence, then so are the conclusions. In other words each rule is admissible as a principle of observational equivalence.

48.4.1 General Laws

Extensional equivalence is indeed an equivalence relation: it is reflexive, symmetric, and transitive.

\[
\begin{align*}
\frac{e \equiv e : \tau [\Gamma]}{e \equiv e : \tau [\Gamma]} \quad & (48.5a) \\
\frac{e' \equiv e : \tau [\Gamma]}{e \equiv e' : \tau [\Gamma]} \quad & (48.5b) \\
\frac{e \equiv e' : \tau [\Gamma] \quad e' \equiv e'' : \tau [\Gamma]}{e \equiv e'' : \tau [\Gamma]} \quad & (48.5c)
\end{align*}
\]
48.4 Some Laws of Equivalence

Reflexivity is an instance of a more general principle, that all definitional equivalences are observational equivalences.

\[\Gamma \vdash e \equiv e' : \tau \]

This is called the principle of symbolic evaluation.

Observational equivalence is a congruence: we may replace equals by equals anywhere in an expression.

\[e \equiv e' : \tau \vdash C : (\Gamma \triangleright \tau) \leadsto (\Gamma' \triangleright \tau') \]

\[C \{e\} \equiv C \{e'\} : \tau'[\Gamma'] \]

(48.7a)

Equivalence is stable under substitution for free variables, and substituting equivalent expressions in an expression gives equivalent results.

\[\Gamma \vdash e : \tau \quad e_2 \equiv e_2' : \tau'[\Gamma, x : \tau] \]

\[[e/x]e_2 \equiv [e/x]e_2' : \tau'[\Gamma] \]

(48.8a)

\[e_1 \equiv e_1' : \tau[\Gamma] \quad e_2 \equiv e_2' : \tau'[\Gamma, x : \tau] \]

\[[e_1/x]e_2 \equiv [e_1'/x]e_2' : \tau'[\Gamma] \]

(48.8b)

48.4.2 Extensionality Laws

Two functions are equivalent if they are equivalent on all arguments.

\[e(x) \equiv e'(x) : \tau_2[\Gamma, x : \tau_1] \]

\[e \equiv e' : \tau_1 \rightarrow \tau_2[\Gamma] \]

(48.9)

Consequently, every expression of function type is equivalent to a \(\lambda\)-abstraction:

\[e \equiv \lambda (x : \tau_1. e(x)) : \tau_1 \rightarrow \tau_2[\Gamma] \]

(48.10)

48.4.3 Induction Law

An equation involving a free variable, \(x\), of type \(\text{nat}\) can be proved by induction on \(x\).

\[[\pi/x]e \equiv [\pi/x]e' : \tau[\Gamma] \quad \text{(for every} \ n \ \in \ \mathbb{N}) \]

\[e \equiv e' : \tau[\Gamma, x : \text{nat}] \]

(48.11a)

To apply the induction rule, we proceed by mathematical induction on \(n \in \mathbb{N}\), which reduces to showing:
1. $[z/x]e \cong [z/x]e' : \tau \ [\Gamma]$, and

2. $[s(\pi)/x]e \cong [s(\pi)/x]e' : \tau \ [\Gamma]$, if $[\pi/x]e \cong [\pi/x]e' : \tau \ [\Gamma]$.

48.5 Exercises
Chapter 49

Equational Reasoning for PCF

In this Chapter we develop the theory of observational equivalence for $\mathcal{L}\{\text{nat} \to\}$, with an eager interpretation of the type of natural numbers. The development proceeds long lines similar to those in Chapter 48, but is complicated by the presence of general recursion. The proof depends on the concept of an admissible relation, one that admits the principle of proof by fixed point induction.

49.1 Observational Equivalence

The definition of observational equivalence, along with the auxiliary notion of Kleene equivalence, are defined similarly to Chapter 48, but modified to account for the possibility of non-termination.

The collection of well-formed $\mathcal{L}\{\text{nat} \to\}$ contexts is inductively defined in a manner directly analogous to that in Chapter 48. Specifically, we define the judgement $C : (\Gamma \triangleright \tau) \leadsto (\Gamma' \triangleright \tau')$ by rules similar to Rules (48.1), modified for $\mathcal{L}\{\text{nat} \to\}$. (We leave the precise definition as an exercise for the reader.) When Γ and Γ' are empty, we write just $C : \tau \leadsto \tau'$.

A complete program is a closed expression of type nat.

Definition 49.1. We say that two complete programs, e and e', are Kleene equivalent, written $e \simeq e'$, iff for every $n \geq 0$, $e \rightharpoonup^* \overline{\pi}$ iff $e' \rightharpoonup^* \overline{\pi}$.

Kleene equivalence is easily seen to be an equivalence relation and to be closed under converse evaluation. Moreover, $\overline{\varnothing} \not\simeq \overline{\top}$, and, if e and e' are both divergent, then $e \simeq e'$.

Observational equivalence is defined as in Chapter 48.
Definition 49.2. We say that \(\Gamma \vdash e : \tau \) and \(\Gamma \vdash e : \tau \) are observationally, or contextually, equivalent iff for every program context \(C : (\Gamma \triangleright \tau) \leadsto (\emptyset \triangleright \text{nat}) \), \(C\{e\} \simeq C\{e'\} \).

Theorem 49.1. Observational equivalence is the coarsest consistent congruence.

Proof. See the proof of Theorem 48.4 on page 443.

Lemma 49.2 (Substitution and Functionality). If \(e \triangleq e' : \tau \ [\Gamma] \) and \(\gamma : \Gamma \), then \(\hat{\gamma}(e) \triangleq \hat{\gamma}(e') : \tau \). Moreover, if \(\gamma \triangleq \gamma' : \Gamma \), then \(\hat{\gamma}(e) \triangleq \hat{\gamma'}(e) : \tau \) and \(\hat{\gamma}(e') \triangleq \hat{\gamma'}(e') : \tau \).

Proof. See Lemma 48.5 on page 443.

49.2 Extensional Equivalence

Definition 49.3. Extensional equivalence, \(e \sim e' : \tau \), between closed expressions of type \(\tau \) is defined by induction on \(\tau \) as follows:

\[
\begin{align*}
 e \sim e' : \text{nat} & \quad \text{iff} \quad e \simeq e' \\
 e \sim e' : \tau_1 \rightarrow \tau_2 & \quad \text{iff} \quad e_1 \sim e'_1 : \tau_1 \text{ implies } e(e_1) \sim e'(e'_1) : \tau_2
\end{align*}
\]

Formally, extensional equivalence is defined as in Chapter 48, except that the definition of Kleene equivalence is altered to account for non-termination. Extensional equivalence is extended to open terms by substitution. Specifically, we define \(e \sim e' : \tau \ [\Gamma] \) to mean that \(\hat{\gamma}(e) \sim \hat{\gamma'}(e') : \tau \) whenever \(\gamma \sim \gamma' : \Gamma \).

Lemma 49.3 (Strictness). If \(e : \tau \) and \(e' : \tau \) are both divergent, then \(e \sim e' : \tau \).

Proof. By induction on the structure of \(\tau \). If \(\tau = \text{nat} \), then the result follows immediately from the definition of Kleene equivalence. If \(\tau = \tau_1 \rightarrow \tau_2 \), then \(e(e_1) \) and \(e'(e'_1) \) diverge, so by induction \(e(e_1) \sim e'(e'_1) : \tau_2 \), as required.

Lemma 49.4 (Converse Evaluation). Suppose that \(e \sim e' : \tau \). If \(d \leftrightarrow e \), then \(d \sim e' : \tau \), and if \(d' \leftrightarrow e' \), then \(e \sim d' : \tau \).
49.3 Extensional and Observational Equivalence Coincide

As a technical convenience, we enrich $L\{\text{nat} \rightarrow\}$ with bounded recursion, with abstract syntax $\text{fix}^m [\tau] (x.e)$ and concrete syntax $\text{fix}^m x : \tau \text{ is } e$, where $m \geq 0$. The statics of bounded recursion is the same as for general recursion:

$$\Gamma, x : \tau \vdash e : \tau \quad \Rightarrow \quad \Gamma \vdash \text{fix}^m [\tau] (x.e) : \tau.$$ (49.1a)

The dynamics of bounded recursion is defined as follows:

$$\text{fix}^0 [\tau] (x.e) \mapsto \text{fix}^0 [\tau] (x.e)$$ (49.2a)

$$\text{fix}^{m+1} [\tau] (x.e) \mapsto [\text{fix}^m [\tau] (x.e) / x]e$$ (49.2b)

If m is positive, the recursive bound is decremented so that subsequent uses of it will be limited to one fewer unrolling. If m reaches zero, the expression steps to itself so that the computation diverges with no result.

The key property of bounded recursion is the principle of fixed point induction, which permits reasoning about a recursive computation by induction on the number of unrollings required to reach a value. The proof relies on compactness, which will be stated and proved in Section 49.4 on page 456 below.

Theorem 49.5 (Fixed Point Induction). Suppose that $x : \tau \vdash e : \tau$. If

$$(\forall m \geq 0) \text{fix}^m x : \tau \text{ is } e \sim \text{fix}^m x : \tau \text{ is } e' : \tau,$$

then $\text{fix} x : \tau \text{ is } e \sim \text{fix} x : \tau \text{ is } e' : \tau$.

Proof. Define an applicative context, A, to be either a hole, \circ, or an application of the form $A(e)$, where A is an applicative context. (The typing judgement $A : \rho \rightsquigarrow \tau$ is a special case of the general typing judgment for contexts.) Define extensional equivalence of applicative contexts, written $A \approx A' : \rho \rightsquigarrow \tau$, by induction on the structure of A as follows:

1. $\circ \approx \circ : \rho \rightsquigarrow \rho$;
2. if $A \approx A' : \rho \rightsquigarrow \tau_2 \rightarrow \tau$ and $e_2 \sim e'_2 : \tau_2$, then $A(e_2) \approx A'(e'_2) : \rho \rightsquigarrow \tau$.

We prove by induction on the structure of τ, if $A \approx A' : \rho \rightsquigarrow \tau$ and

for every $m \geq 0$, $A\{\text{fix}^m x : \rho \text{ is } e\} \sim A'\{\text{fix}^m x : \rho \text{ is } e'\} : \tau$, (49.3)
then
\[A\{\text{fix } x: \rho \text{ is } e\} \sim A'\{\text{fix } x: \rho \text{ is } e'\} : \tau. \] (49.4)

Choosing \(A = A' = \circ \) (so that \(\rho = \tau \)) completes the proof.

If \(\tau = \text{nat} \), then assume that \(A \approx A' : \rho \leadsto \text{nat} \) and (49.3). By Definition 49.3 on page 452, we are to show
\[A\{\text{fix } x: \rho \text{ is } e\} \simeq A\{\text{fix } x: \rho \text{ is } e'\}. \]

By Corollary 49.14 on page 459 there exists \(m \geq 0 \) such that
\[A\{\text{fix } m x: \rho \text{ is } e\} \simeq A\{\text{fix } m x: \rho \text{ is } e'\}. \]

By (49.3) we have
\[A\{\text{fix } m x: \rho \text{ is } e\} \simeq A'\{\text{fix } m x: \rho \text{ is } e'\}. \]

By Corollary 49.14 on page 459
\[A'\{\text{fix } m x: \rho \text{ is } e'\} \simeq A'\{\text{fix } x: \rho \text{ is } e'\}. \]

The result follows by transitivity of Kleene equivalence.

If \(\tau = \tau_1 \rightarrow \tau_2 \), then by Definition 49.3 on page 452, it is enough to show
\[A\{\text{fix } x: \rho \text{ is } e\}(e_1) \sim A'\{\text{fix } x: \rho \text{ is } e'\}(e_1') : \tau_2 \]
whenever \(e_1 \sim e_1' : \tau_1 \). Let \(A_2 = A(e_1) \) and \(A'_2 = A'(e_1') \). It follows from (49.3) that for every \(m \geq 0 \)
\[A_2\{\text{fix } m x: \rho \text{ is } e\} \sim A'_2\{\text{fix } m x: \rho \text{ is } e'\} : \tau_2. \]

Noting that \(A_2 \approx A'_2 : \rho \leadsto \tau_2 \), we have by induction
\[A_2\{\text{fix } x: \rho \text{ is } e\} \sim A'_2\{\text{fix } x: \rho \text{ is } e'\} : \tau_2, \]
as required. \hfill \Box

Lemma 49.6 (Reflexivity). If \(\Gamma \vdash e : \tau \), then \(e \sim e : \tau \mid \Gamma \).

Proof. The proof proceeds along the same lines as the proof of Theorem 48.8 on page 445. The main difference is the treatment of general recursion, which is proved by fixed point induction. Consider Rule (13.1g). Assuming \(\gamma \sim \gamma' : \Gamma \), we are to show that
\[\text{fix } x: \tau \text{ is } \gamma(e) \sim \text{fix } x: \tau \text{ is } \gamma'(e) : \tau. \]
49.3 Extensional and Observational Equivalence . . . 455

By Theorem 49.5 on page 453 it is enough to show that, for every \(m \geq 0 \),

\[
\text{fix}^m x : \tau \text{ is } \hat{\gamma}(e) \sim \text{fix}^m x : \tau \text{ is } \hat{\gamma}'(e) : \tau.
\]

We proceed by an inner induction on \(m \). When \(m = 0 \) the result is immediate, since both sides of the desired equivalence diverge. Assuming the result for \(m \), and applying Lemma 49.4 on page 452, it is enough to show that \(\hat{\gamma}(e_1) \sim \hat{\gamma}'(e_1) : \tau \), where

\[
e_1 = [\text{fix}^m x : \tau \text{ is } \hat{\gamma}(e)/x] \hat{\gamma}(e), \quad \text{and} \\
\]

\[
e'_1 = [\text{fix}^m x : \tau \text{ is } \hat{\gamma}'(e)/x] \hat{\gamma}'(e). \tag{49.5}
\]

But this follows directly from the inner and outer inductive hypotheses. For by the outer inductive hypothesis, if

\[
\text{fix}^m x : \tau \text{ is } \hat{\gamma}(e) \sim \text{fix}^m x : \tau \text{ is } \hat{\gamma}'(e) : \tau,
\]

then

\[
[\text{fix}^m x : \tau \text{ is } \hat{\gamma}(e)/x] \hat{\gamma}(e) \sim [\text{fix}^m x : \tau \text{ is } \hat{\gamma}'(e)/x] \hat{\gamma}'(e) : \tau.
\]

But the hypothesis holds by the inner inductive hypothesis, from which the result follows. \(\square \)

Symmetry and transitivity of eager extensional equivalence are easily established by induction on types, noting that Kleene equivalence is symmetric and transitive. Eager extensional equivalence is therefore an equivalence relation.

Lemma 49.7 (Congruence). If \(C_0 : (\Gamma \triangleright \tau) \leadsto (\Gamma_0 \triangleright \tau_0) \), and \(e \sim e' : \tau [\Gamma] \), then \(C_0\{e\} \sim C_0\{e'\} : \tau_0 [\Gamma_0] \).

Proof. By induction on the derivation of the typing of \(C_0 \), following along similar lines to the proof of Lemma 49.6 on the preceding page. \(\square \)

Logical equivalence is consistent, by definition. Consequently, it is contained in observational equivalence.

Theorem 49.8. If \(e \sim e' : \tau [\Gamma] \), then \(e \cong e' : \tau [\Gamma] \).

Proof. By consistency and congruence of extensional equivalence. \(\square \)

Lemma 49.9. If \(e \cong e' : \tau \), then \(e \sim e' : \tau \).
49.4 Compactness

Proof. By induction on the structure of \(\tau \). If \(\tau = \text{nat} \), then the result is immediate, since the empty expression context is a program context. If \(\tau = \tau_1 \rightarrow \tau_2 \), then suppose that \(e_1 \sim e'_1 : \tau_1 \). We are to show that \(e(e_1) \sim e'(e'_1) : \tau_2 \). By Theorem 49.8 on the preceding page \(e_1 \equiv e'_1 : \tau_1 \), and hence by Lemma 49.2 on page 452 \(e(e_1) \equiv e'(e'_1) : \tau_2 \), from which the result follows by induction.

Theorem 49.10. If \(e \equiv e' : \tau [\Gamma] \), then \(e \sim e' : \tau [\Gamma] \).

Proof. Assume that \(e \equiv e' : \tau [\Gamma] \). Suppose that \(\gamma \sim \gamma' : \Gamma \). By Theorem 49.8 on the preceding page we have \(\hat{\gamma}(e) \equiv \hat{\gamma}'(e') : \tau \).

Therefore by Lemma 49.9 on the preceding page we have

\[\hat{\gamma}(e) \sim \hat{\gamma}'(e') : \tau. \]

Corollary 49.11. \(e \equiv e' : \tau [\Gamma] \) iff \(e \sim e' : \tau [\Gamma] \).

49.4 Compactness

The principle of fixed point induction is derived from a critical property of \(L\{\text{nat} \rightarrow \} \), called compactness. This property states that only finitely many unwindings of a fixed point expression are needed in a complete evaluation of a program. While intuitively obvious (one cannot complete infinitely many recursive calls in a finite computation), it is rather tricky to state and prove rigorously.

The proof of compactness (Theorem 49.13 on page 458) makes use of the stack machine for \(L\{\text{nat} \rightarrow \} \) defined in Chapter 27, augmented with the following transitions for bounded recursive expressions:

\[
\frac{k \triangleright \text{fix}^0 x: \tau \text{ is } e \rightarrow k \triangleright \text{fix}^0 x: \tau \text{ is } e}{(49.7a)}
\]

\[
\frac{k \triangleright \text{fix}^{m+1} x: \tau \text{ is } e \rightarrow k \triangleright [\text{fix}^m x: \tau \text{ is } e/x]e}{(49.7b)}
\]

It is straightforward to extend the proof of correctness of the stack machine (Corollary 27.4 on page 241) to account for bounded recursion.
49.4 Compactness

To get a feel for what is involved in the compactness proof, consider first the factorial function, \(f \), in \(\mathcal{L}\{\text{nat} \rightarrow \} \):

\[
\text{fix } f : \text{nat} \rightarrow \text{nat} \text{ is } \lambda (x : \text{nat}. \{ z \Rightarrow s(z) \mid s(x') \Rightarrow x \ast f(x') \}).
\]

Obviously evaluation of \(f(\bar{n}) \) requires \(n \) recursive calls to the function itself. This means that, for a given input, \(n \), we may place a bound, \(m \), on the recursion that is sufficient to ensure termination of the computation. This can be expressed formally using the \(m \)-bounded form of general recursion,

\[
\text{fix}^m f : \text{nat} \rightarrow \text{nat} \text{ is } \lambda (x : \text{nat}. \{ z \Rightarrow s(z) \mid s(x') \Rightarrow x \ast f(x') \}).
\]

Call this expression \(f^{(m)} \). It follows from the definition of \(f \) that if \(f(\bar{n}) \mapsto^* \bar{p} \), then \(f^{(m)}(\bar{n}) \mapsto^* \bar{p} \) for some \(m \geq 0 \) (in fact, \(m = n \) suffices).

When considering expressions of higher type, we cannot expect to get the same result from the bounded recursion as from the unbounded. For example, consider the addition function, \(a \), of type \(\tau = \text{nat} \rightarrow (\text{nat} \rightarrow \text{nat}) \), given by the expression

\[
\text{fix } p : \tau \text{ is } \lambda (x : \text{nat}. \{ z \Rightarrow \text{id} \mid s(x') \Rightarrow s \circ (p(x')) \}),
\]

where \(\text{id} = \lambda (y : \text{nat}. y) \) is the identity, \(e' \circ e = \lambda (x : \tau. e'(e(x))) \) is composition, and \(s = \lambda (x : \text{nat}. s(x)) \) is the successor function. The application \(a(\bar{n}) \) terminates after three transitions, regardless of the value of \(n \), resulting in a \(\lambda \)-abstraction. When \(n \) is positive, the result contains a residual copy of \(a \) itself, which is applied to \(n - 1 \) as a recursive call. The \(m \)-bounded version of \(a \), written \(a^{(m)} \), is also such that \(a^{(m)}(\bar{n}) \) terminates in three steps, provided that \(m > 0 \). But the result is not the same, because the residuals of \(a \) appear as \(a^{(m-1)} \), rather than as \(a \) itself.

Turning now to the proof of compactness, it is helpful to introduce some notation. Suppose that \(x : \tau \vdash e_x : \tau \) for some arbitrary abstractor \(x.e_x \). Define \(f^{(\omega)} = \text{fix } x : \tau \vdash e_x : \tau \), and \(f^{(m)} = \text{fix }^m x : \tau \vdash e_x : \tau \), and observe that \(f^{(\omega)} : \tau \) and \(f^{(m)} : \tau \) for any \(m \geq 0 \).

The following technical lemma governing the stack machine permits the bound on “passive” occurrences of a recursive expression to be raised without affecting the outcome of evaluation.

Lemma 49.12. If \([f^{(m)} / y] k \triangleright [f^{(m)} / y] e \mapsto^* e \triangleleft \bar{\pi} \), where \(e \neq y \), then \([f^{(m+1)} / y] k \triangleright [f^{(m+1)} / y] e \mapsto^* e \triangleleft \bar{\pi} \).

Proof. By induction on the definition of the transition judgement for \(\mathcal{K}\{\text{nat} \rightarrow \} \).
Theorem 49.13 (Compactness). Suppose that \(y : \tau \vdash e : \text{nat} \) where \(y \not\in f^{(\omega)} \). If \([f^{(\omega)}/y]e \mapsto^* \bar{n}\), then there exists \(m \geq 0 \) such that \([f^{(m)}/y]e \mapsto^* \bar{n}\).

Proof. We prove simultaneously the stronger statements that if
\[[f^{(\omega)}/y]k \triangleright [f^{(\omega)}/y]e \mapsto^* e < \bar{n}, \]
then for some \(m \geq 0 \),
\[[f^{(m)}/y]k \triangleright [f^{(m)}/y]e \mapsto^* e < \bar{n}, \]
and
\[[f^{(\omega)}/y]k \triangleleft [f^{(\omega)}/y]e \mapsto^* e < \bar{n} \]
then for some \(m \geq 0 \),
\[[f^{(m)}/y]k \triangleleft [f^{(m)}/y]e \mapsto^* e < \bar{n}. \]
(Note that if \([f^{(\omega)}/y]e \text{ val}\), then \([f^{(m)}/y]e \text{ val}\) for all \(m \geq 0 \).) The result then follows by the correctness of the stack machine (Corollary 27.4 on page 241).

We proceed by induction on transition. Suppose that the initial state is
\[[f^{(\omega)}/y]k \triangleright f^{(\omega)}, \]
which arises when \(e = y \), and the transition sequence is as follows:
\[[f^{(\omega)}/y]k \triangleright f^{(\omega)} \mapsto [f^{(\omega)}/y]k \triangleright [f^{(\omega)}/x]e_x \mapsto^* e < \bar{n}. \]
Noting that \([f^{(\omega)}/x]e_x = [f^{(\omega)}/y][y/x]e_x\), we have by induction that there exists \(m \geq 0 \) such that
\[[f^{(m)}/y]k \triangleright [f^{(m)}/x]e_x \mapsto^* e < \bar{n}. \]
By Lemma 49.12 on the preceding page
\[[f^{(m+1)}/y]k \triangleright [f^{(m)}/x]e_x \mapsto^* e < \bar{n} \]
and we need only observe that
\[[f^{(m+1)}/y]k \triangleright f^{(m+1)} \mapsto [f^{(m+1)}/y]k \triangleright [f^{(m)}/x]e_x \]
to complete the proof. If, on the other hand, the initial step is an unrolling, but \(e \neq y \), then we have for some \(z \not\in f^{(\omega)} \) and \(z \neq y \)
\[[f^{(\omega)}/y]k \triangleright \text{fix}\ z : \tau \is d_\omega \mapsto [f^{(\omega)}/y]k \triangleright [\text{fix}\ z : \tau \is d_\omega / z]d_\omega \mapsto^* e < \bar{n}. \]
where \(d_\omega = [f(\omega)/y]d \). By induction there exists \(m \geq 0 \) such that

\[
[f^{(m)}/y]k \triangleright [\text{fix } z : \text{is } d_m/z]d_m \rightarrow^* e < \bar{n},
\]

where \(d_m = [f^{(m)}/y]d \). But then by Lemma 49.12 on page 457 we have

\[
[f^{(m+1)}/y]k \triangleright [\text{fix } z : \text{is } d_{m+1}/z]d_{m+1} \rightarrow^* e < \bar{n},
\]

where \(d_{m+1} = [f^{(m+1)}/y]d \), from which the result follows directly. \(\square \)

Corollary 49.14. There exists \(m \geq 0 \) such that \([f^{(\omega)}/y]e \simeq [f^{(m)}/y]e\).

Proof. If \([f^{(\omega)}/y]e\) diverges, then taking \(m \) to be zero suffices. Otherwise, apply Theorem 49.13 on the facing page to obtain \(m \), and note that the required Kleene equivalence follows. \(\square \)

49.5 Co-Natural Numbers

In Chapter 13 we considered a variation of \(L\{\text{nat } \rightarrow^* \} \) with the co-natural numbers, \(\text{conat} \), as base type. This is achieved by specifying that \(s(e) \) \text{val} regardless of the form of \(e \), so that the successor does not evaluate its argument. Using general recursion we may define the infinite number, \(\omega \), by \(\text{fix } x : \text{conat is } s(x) \), which consists of an infinite stack of successors. Since the successor is interpreted lazily, \(\omega \) evaluates to a value, namely \(s(\omega) \), its own successor. It follows that the principle of mathematical induction is not valid for the co-natural numbers. For example, the property of being equivalent to a finite numeral is satisfied by zero and is closed under successor, but fails for \(\omega \).

In this section we sketch the modifications to the preceding development for the co-natural numbers. The main difference is that the definition of extensional equivalence at type \(\text{conat} \) must be formulated to account for laziness. Rather than being defined inductively as the strongest relation closed under specified conditions, we define it coinductively as the weakest relation consistent two analogous conditions. We may then show that two expressions are related using the principle of proof by coinduction.

If \(\text{conat} \) is to continue to serve as the observable outcome of a computation, then we must alter the meaning of Kleene equivalence to account for laziness. We adopt the principle that we may observe of a computation only its outermost form: it is either zero or the successor of some other computation. More precisely, we define \(e \simeq e' \) iff (a) if \(e \rightarrow^* z \), then \(e' \rightarrow^* z \), and \text{vice versa}; and (b) if \(e \rightarrow^* s(e_1) \), then \(e' \rightarrow^* s(e_1) \), and \text{vice versa}. Note
well that we do not require anything of \(e_1 \) and \(e'_1 \) in the second clause. This means that \(\bar{1} \simeq \bar{2} \), yet we retain consistency in that \(\bar{0} \not\simeq \bar{1} \).

Corollary 49.14 on the previous page can be proved for the co-natural numbers by essentially the same argument.

The definition of extensional equivalence at type \(\text{conat} \) is defined to be the \textit{weakest} equivalence relation, \(\mathcal{E} \), between closed terms of type \(\text{conat} \) satisfying the following \textit{conat}-consistency conditions: if \(e \mathcal{E} e' : \text{conat} \), then

1. If \(e \mapsto^* z \), then \(e' \mapsto^* z \), and \textit{vice versa}.

2. If \(e \mapsto^* s(e_1) \), then \(e' \mapsto^* s(e'_1) \) with \(e_1 \mathcal{E} e'_1 : \text{conat} \), and \textit{vice versa}.

It is immediate that if \(e \sim e' : \text{conat} \), then \(e \simeq e' \), and so extensional equivalence is consistent. It is also strict in that if \(e \) and \(e' \) are both divergent expressions of type \(\text{conat} \), then \(e \sim e' : \text{conat} \)—simply because the preceding two conditions are vacuously true in this case.

This is an example of the more general principle of \textit{proof by \text{conat}-coinduction}. To show that \(e \sim e' : \text{conat} \), it suffices to exhibit a relation, \(\mathcal{E} \), such that

1. \(e \mathcal{E} e' : \text{conat} \), and

2. \(\mathcal{E} \) satisfies the \textit{conat}-consistency conditions.

If these requirements hold, then \(\mathcal{E} \) is contained in extensional equivalence at type \(\text{conat} \), and hence \(e \sim e' : \text{conat} \), as required.

As an application of \textit{conat}-coinduction, let us consider the proof of Theorem 49.5 on page 453. The overall argument remains as before, but the proof for the type \(\text{conat} \) must be altered as follows. Suppose that \(A \approx A' : \rho \sim \text{conat} \), and let \(a = A\{\text{fix} x : \rho \is e \} \) and \(a' = A'\{\text{fix} x : \rho \is e' \} \). Writing \(a^{(m)} = A\{\text{fix}^m x : \rho \is e \} \) and \(a'^{(m)} = A'\{\text{fix}^m x : \rho \is e' \} \), assume that

\[
\text{for every } m \geq 0, a^{(m)} \sim a'^{(m)} : \text{conat}.
\]

We are to show that

\(a \sim a' : \text{conat} \).

Define the functions \(p_n \) for \(n \geq 0 \) on closed terms of type \(\text{conat} \) by the following equations:

\[
p_0(d) = d
\]

\[
p_{(n+1)}(d) = \begin{cases}
d' & \text{if } p_n(d) \mapsto^* s(d') \\
\text{undefined} & \text{otherwise} \end{cases}
\]
49.6 Exercises

For \(n \geq 0 \), let \(a_n = p_n(a) \) and \(a'_n = p_n(a') \). Correspondingly, let \(a_n^{(m)} = p_n(a^{(m)}) \) and \(a'_n^{(m)} = p_n(a'_n^{(m)}) \). Define \(E \) to be the strongest relation such that \(a_n \ E \ a'_n : \text{concat} \) for all \(n \geq 0 \). We will show that the relation \(E \) satisfies the \text{concat}-consistency conditions, and so it is contained in extensional equivalence. Since \(a \ E \ a' : \text{concat} \) (by construction), the result follows immediately.

To show that \(E \) is \text{concat}-consistent, suppose that \(a_n \ E \ a'_n : \text{concat} \) for some \(n \geq 0 \). We have by Corollary 49.14 on page 459 \(a_n \simeq a_n^{(m)} \), for some \(m \geq 0 \), and hence, by the assumption, \(a_n \simeq a'_n^{(m)} \), and so by Corollary 49.14 on page 459 again, \(a_n^{(m)} \simeq a'_n^{(m)} \). Now if \(a_n \rightarrow^* s(b_n) \), then \(a_n^{(m)} \rightarrow^* s(b_n^{(m)}) \) for some \(b_n^{(m)} \), and hence there exists \(b_n^{(m)}' \) such that \(a_n^{(m)} \rightarrow^* b_n^{(m)}' \), and so there exists \(b_n' \) such that \(a_n' \rightarrow^* s(b_n') \). But \(b_n = p_{n+1}(a) \) and \(b_n' = p_{n+1}(a') \), and we have \(b_n \ E \ b_n' : \text{concat} \) by construction, as required.

49.6 Exercises

1. Call-by-value variant, with recursive functions.
Chapter 50
Parametricity

The motivation for introducing polymorphism was to enable more programs to be written — those that are “generic” in one or more types, such as the composition function given in Chapter 23. Then if a program does not depend on the choice of types, we can code it using polymorphism. Moreover, if we wish to insist that a program can not depend on a choice of types, we demand that it be polymorphic. Thus polymorphism can be used both to expand the collection of programs we may write, and also to limit the collection of programs that are permissible in a given context.

The restrictions imposed by polymorphic typing give rise to the experience that in a polymorphic functional language, if the types are correct, then the program is correct. Roughly speaking, if a function has a polymorphic type, then the strictures of type genericity vastly cut down the set of programs with that type. Thus if you have written a program with this type, it is quite likely to be the one you intended!

The technical foundation for these remarks is called parametricity. The goal of this chapter is to give an account of parametricity for $\mathcal{L}_{\rightarrow \forall}$ under a call-by-name interpretation.

50.1 Overview

We will begin with an informal discussion of parametricity based on a “seat of the pants” understanding of the set of well-formed programs of a type.

Suppose that a function value f has the type $\forall (t.t \rightarrow t)$. What function could it be? When instantiated at a type τ it should evaluate to a function g of type $\tau \rightarrow \tau$ that, when further applied to a value v of type τ returns a value v' of type τ. Since f is polymorphic, g cannot depend on v, so v'
must be \(v \). In other words, \(g \) must be the identity function at type \(\tau \), and \(f \) must therefore be the polymorphic identity.

Suppose that \(f \) is a function of type \(\forall (t.t) \). What function could it be? A moment’s thought reveals that it cannot exist at all! For it must, when instantiated at a type \(\tau \), return a value of that type. But not every type has a value (including this one), so this is an impossible assignment. The only conclusion is that \(\forall (t.t) \) is an empty type.

Let \(N \) be the type of polymorphic Church numerals introduced in Chapter 23, namely \(\forall (t.t \rightarrow (t \rightarrow t) \rightarrow t) \). What are the values of this type? Given any type \(\tau \), and values \(z : \tau \) and \(s : \tau \rightarrow \tau \), the expression

\[
\mu[\tau] (z) (s)
\]

must yield a value of type \(\tau \). Moreover, it must behave uniformly with respect to the choice of \(\tau \). What values could it yield? The only way to build a value of type \(\tau \) is by using the element \(z \) and the function \(s \) passed to it. A moment’s thought reveals that the application must amount to the \(n \)-fold composition

\[
s(s(\ldots s(z) \ldots)).
\]

That is, the elements of \(N \) are in one-to-one correspondence with the natural numbers.

50.2 Observational Equivalence

The definition of observational equivalence given in Chapters 48 and 49 is based on identifying a type of answers that are observable outcomes of complete programs. Values of function type are not regarded as answers, but are treated as “black boxes” with no internal structure, only input-output behavior. In \(\mathcal{L} \rightarrow \forall \), however, there are no (closed) base types! Every type is either a function type or a polymorphic type, and hence no types suitable to serve as observable answers.

One way to manage this difficulty is to augment \(\mathcal{L} \rightarrow \forall \) with a base type of answers to serve as the observable outcomes of a computation. The only requirement is that this type have two elements that can be immediately distinguished from each other by evaluation. We may achieve this by enriching \(\mathcal{L} \rightarrow \forall \) with a base type, \(2 \), containing two constants, \(\texttt{tt} \) and \(\texttt{ff} \), that serve as possible answers for a complete computation. A complete program is a closed expression of type \(2 \).

Kleene equivalence is defined for complete programs by requiring that \(e \simeq e' \) iff either (a) \(e \rightarrow^* \texttt{tt} \) and \(e' \rightarrow^* \texttt{tt} \); or (b) \(e \rightarrow^* \texttt{ff} \) and \(e' \rightarrow^* \texttt{ff} \).
This is obviously an equivalence relation, and it is immediate that $\mathsf{tt} \not\simeq \mathsf{ff}$, since these are two distinct constants. As before, we say that a type-indexed family of equivalence relations between closed expressions of the same type is consistent if it implies Kleene equivalence at the answer type, 2.

To define observational equivalence, we must first define the concept of an expression context for $L\{\to \forall\}$ as an expression with a "hole" in it. More precisely, we may give an inductive definition of the judgement $C : (\Delta; \Gamma \triangleright \tau) \rightsquigarrow (\Delta'; \Gamma' \triangleright \tau')$, which states that C is an expression context that, when filled with an expression $\Delta; \Gamma \vdash e : \tau$ yields an expression $\Delta'; \Gamma' \vdash C\{e\} : \tau$. (We leave the precise definition of this judgement, and the verification of its properties, as an exercise for the reader.)

Definition 50.1. Two expressions of the same type are observationally equivalent, written $e \simeq_{\text{obs}} e'$: τ $[\Delta; \Gamma]$, iff $C\{e\} \simeq C\{e'\}$ whenever $C : (\Delta; \Gamma \triangleright \tau) \rightsquigarrow (\emptyset \triangleright 2)$.

Lemma 50.1. Observation equivalence is the coarsest consistent congruence.

Proof. The composition of a program context with another context is itself a program context. It is consistent by virtue of the empty context being a program context.

Lemma 50.2.

1. If $e \equiv e' : \tau [\Delta; \Gamma]$ and ρ type, then $[\rho/t]e \equiv [\rho/t]e' : [\rho/t] \tau [\Delta; [\rho/t]\Gamma]$.

2. If $e \equiv e' : \tau [\emptyset; \Gamma, x : \sigma]$ and $d : \sigma$, then $[d/x]e \equiv [d/x]e' : \tau [\emptyset; \Gamma]$. Moreover, if $d \equiv d' : \sigma$, then $[d/x]e \equiv [d'/x]e : \tau [\emptyset; \Gamma]$, and similarly for e'.

Proof. 1. Let $C : (\Delta; [\rho/t] \Gamma \triangleright [\rho/t] \tau) \rightsquigarrow (\emptyset \triangleright 2)$ be a program context. We are to show that $C\{[\rho/t]e\} \simeq C\{[\rho/t]e'\}$.

Since C is closed, this is equivalent to $[\rho/t]C\{e\} \simeq [\rho/t]C\{e'\}$.

Let C' be the context $\Lambda(t.C\{\circ\})[\rho]$, and observe that $C' : (\Delta, t; \Gamma \triangleright \tau) \rightsquigarrow (\emptyset \triangleright 2)$.

June 2, 2010

Draft 13:08
Therefore, from the assumption,
\[C'[e] \simeq C'[e']. \]

But \(C'[e] \simeq [\rho/t]C\{e\}, \) and \(C'[e'] \simeq [\rho/t]C\{e'\}, \) from which the result follows.

2. By an argument essentially similar to that for Lemma 48.5 on page 443.

\[
\square
\]

50.3 Logical Equivalence

In this section we introduce a form of logical equivalence that captures the informal concept of parametricity, and also provides a characterization of observational equivalence. This will permit us to derive properties of observational equivalence of polymorphic programs of the kind suggested earlier.

The definition of logical equivalence for \(\mathcal{L}\{\to \forall\} \) is somewhat more complex than for \(\mathcal{L}\{\text{nat} \to \}. \) The main idea is to define logical equivalence for a polymorphic type, \(\forall (t. \tau) \) to satisfy a very strong condition that captures the essence of parametricity. As a first approximation, we might say that two expressions, \(e \) and \(e' \), of this type should be logically equivalent if they are logically equivalent for “all possible” interpretations of the type \(t. \) More precisely, we might require that \(e[\rho] \) be related to \(e'[\rho] \) at type \([\rho/t]\tau \), for any choice of type \(\rho. \) But this runs into two problems, one technical, the other conceptual. The same device will be used to solve both problems.

The technical problem stems from impredicativity. In Chapter 48 logical equivalence is defined by induction on the structure of types. But when polymorphism is impredicative, the type \([\rho/t]\tau \) might well be larger than \(\forall (t. \tau)! \) At the very least we would have to justify the definition of logical equivalence on some other grounds, but no criterion appears to be available. The conceptual problem is that, even if we could make sense of the definition of logical equivalence, it would be too restrictive. For such a definition amounts to saying that the unknown type \(t \) is to be interpreted as logical equivalence at whatever type it turns out to be when instantiated. To obtain useful parametricity results, we shall ask for much more than this. What we shall do is to consider separately instances of \(e \) and \(e' \) by types \(\rho \) and \(\rho' \), and treat the type variable \(t \) as standing for any relation (of some form) between \(\rho \) and \(\rho'. \) One may suspect that this is asking too much: perhaps logical equivalence is the empty relation! Surprisingly, this is not the
case, and indeed it is this very feature of the definition that we shall exploit to derive parametricity results about the language.

To manage both of these problems we will consider a generalization of logical equivalence that is parameterized by a relational interpretation of the free type variables of its classifier. The parameters determine a separate binding for each free type variable in the classifier for each side of the equation, with the discrepancy being mediated by a specified relation between them. This permits us to consider a notion of “equivalence” between two expressions of different type—they are equivalent, modulo a relation between the interpretations of their free type variables.

We will restrict attention to a certain collection of “admissible” binary relations between closed expressions. The conditions are imposed to ensure that logical equivalence and observational equivalence coincide.

Definition 50.2 (Admissibility). A relation R between expressions of types ρ and ρ' is admissible, written $R : \rho \leftrightarrow \rho'$, iff it satisfies two requirements:

1. Respect for observational equivalence: if $R(e, e')$ and $d \equiv e : \rho$ and $d' \equiv e' : \rho'$, then $R(d, d')$.

2. Closure under converse evaluation: if $R(e, e')$, then if $d \mapsto e$, then $R(d, e')$ and if $d' \mapsto e'$, then $R(e, d')$.

The second of these conditions will turn out to be a consequence of the first, but we are not yet in a position to establish this fact.

The judgement $\delta : \Delta$ states that δ is a type substitution that assigns a closed type to each type variable $t \in \Delta$. A type substitution, δ, induces a substitution function, $\hat{\delta}$, on types given by the equation

$$\hat{\delta}(\tau) = [\delta(t_1), \ldots, \delta(t_n)]/\tau,$$

and similarly for expressions. Substitution is extended to contexts pointwise by defining $\hat{\delta}(\Gamma)(x) = \hat{\delta}(\Gamma(x))$ for each $x \in \text{dom}(\Gamma)$.

Let δ and δ' be two type substitutions of closed types to the type variables in Δ. A relation assignment, η, between δ and δ' is an assignment of an admissible relation $\eta(t) : \delta(t) \leftrightarrow \delta'(t)$ to each $t \in \Delta$. The judgement $\eta : \delta \leftrightarrow \delta'$ states that η is a relation assignment between δ and δ'.

Logical equivalence is defined in terms of its generalization, called parametric logical equivalence, written $e \sim e' : \tau \ [\eta : \delta \leftrightarrow \delta']$, defined as follows.
Definition 50.3 (Parametric Logical Equivalence). The relation \(e \sim e' : \tau [\eta : \delta \leftrightarrow \delta'] \) is defined by induction on the structure of \(\tau \) by the following conditions:

\[
\begin{align*}
 e \sim e' & : t [\eta : \delta \leftrightarrow \delta'] \quad \iff \eta(t)(e, e') \\
 e \sim e' & : 2 [\eta : \delta \leftrightarrow \delta'] \quad \iff e \sim e' \\
 e \sim e' & : \tau_1 \rightarrow \tau_2 [\eta : \delta \leftrightarrow \delta'] \quad \iff e_1 \sim e'_1 : \tau_1 [\eta : \delta \leftrightarrow \delta'] \text{ implies } e(e_1) \sim e'(e'_1) : \tau_2 [\eta : \delta \leftrightarrow \delta'] \\
 e \sim e' & : \forall (t, \tau) [\eta : \delta \leftrightarrow \delta'] \quad \iff \text{ for every } \rho, \rho', \text{ and every } R : \rho \leftrightarrow \rho', \\
 & \quad \quad e[\rho] \sim e'[\rho'] : \tau [\eta[t \mapsto R] : \delta[t \mapsto \rho] \leftrightarrow \delta'[t \mapsto \rho']] \\
\end{align*}
\]

Logical equivalence is defined in terms of parametric logical equivalence by considering all possible interpretations of its free type- and expression variables. An expression substitution, \(\gamma \), for a context \(\Gamma \), written \(\gamma : \Gamma \), is an substitution of a closed expression \(\gamma(x) : \Gamma(x) \) to each variable \(x \in \text{dom}(\Gamma) \). An expression substitution, \(\gamma : \Gamma \), induces a substitution function, \(\hat{\gamma} \), defined by the equation

\[
\hat{\gamma}(e) = [\gamma(x_1), \ldots, \gamma(x_n) / x_1, \ldots, x_n]e,
\]

where the domain of \(\Gamma \) consists of the variables \(x_1, \ldots, x_n \).

The relation \(\gamma \sim \gamma' : \Gamma [\eta : \delta \leftrightarrow \delta'] \) is defined to hold iff \(\text{dom}(\gamma) = \text{dom}(\gamma') = \text{dom}(\Gamma) \), and \(\gamma(x) \sim \gamma'(x) : \Gamma(x) [\eta : \delta \leftrightarrow \delta'] \) for every variable, \(x \), in their common domain.

Definition 50.4 (Logical Equivalence). The expressions \(\Delta; \Gamma \vdash e : \tau \) and \(\Delta; \Gamma \vdash e' : \tau \) are logically equivalent, written \(e \sim e' : \tau [\Delta; \Gamma] \) iff for every assignment \(\delta \) and \(\delta' \) of closed types to type variables in \(\Delta \), and every relation assignment \(\eta : \delta \leftrightarrow \delta' \), if \(\gamma \sim \gamma' : \Gamma [\eta : \delta \leftrightarrow \delta'] \) \(\Delta; \Gamma \), then \(\hat{\gamma}(\delta(e)) \sim \hat{\gamma}'(\delta'(e')) : \tau [\eta : \delta \leftrightarrow \delta'] \).

When \(e, e' \), and \(\tau \) are closed, then this definition states that \(e \sim e' : \tau \) iff \(e \sim e' : \tau [\emptyset : \emptyset \leftrightarrow \emptyset] \), so that logical equivalence is indeed a special case of its generalization.

Lemma 50.3 (Closure under Converse Evaluation). Suppose that \(e \sim e' : \tau [\eta : \delta \leftrightarrow \delta'] \). If \(d \rightarrow e \), then \(d \sim e' : \tau \), and if \(d' \rightarrow e' \), then \(e \sim d' : \tau \).

Proof. By induction on the structure of \(\tau \). When \(\tau = t \), the result holds by the definition of admissibility. Otherwise the result follows by induction, making use of the definition of the transition relation for applications and type applications.

\[\square \]

Lemma 50.4 (Respect for Observational Equivalence). Suppose that \(e \sim e' : \tau [\eta : \delta \leftrightarrow \delta'] \). If \(d \cong e : \delta(\tau) \) and \(d' \cong e' : \delta'(\tau) \), then \(d \sim d' : \tau [\eta : \delta \leftrightarrow \delta'] \).
Proof. By induction on the structure of τ, relying on the definition of admissibility, and the congruence property of observational equivalence. For example, if $\tau = \forall (t \cdot \sigma)$, then we are to show that for every $R: \rho \leftrightarrow \rho'$,

$$d[\rho] \sim d'[\rho'] : \sigma[\eta[t \mapsto R] : \delta[t \mapsto \rho] \leftrightarrow \delta'[t \mapsto \rho']].$$

Since observational equivalence is a congruence,

$$d[\rho] \sim = e[\rho] : [\rho/t]\delta'(\sigma),$$

$$d'[\rho] \sim = e'[\rho] : [\rho'/t]\delta'(\sigma).$$

From the assumption it follows that

$$e[\rho] \sim e'[\rho'] : \sigma[\eta[t \mapsto R] : \delta[t \mapsto \rho] \leftrightarrow \delta'[t \mapsto \rho']].$$

from which the result follows by induction. \qed

Corollary 50.5. The relation $e \sim e' : \tau[\eta : \delta \leftrightarrow \delta']$ is an admissible relation between closed types $\hat{\delta}(\tau)$ and $\hat{\delta}'(\tau)$.

Proof. By Lemmas 50.3 on the facing page and 50.4 on the preceding page. \qed

Logical Equivalence respects observational equivalence.

Corollary 50.6. If $e \sim e' : \tau[\Delta; \Gamma]$, and $d \sim = e : \tau[\Delta; \Gamma]$ and $d' \sim = e' : \tau[\Delta; \Gamma]$, then $d \sim d' : \tau[\Delta; \Gamma]$.

Proof. By Lemma 50.2 on page 465 and Corollary 50.5. \qed

Lemma 50.7 (Compositionality). Suppose that

$$e \sim e' : \tau[\eta[t \mapsto R] : \delta[t \mapsto \hat{\delta}(\rho)] \leftrightarrow \delta'[t \mapsto \hat{\delta}'(\rho)]],$$

where $R: \hat{\delta}(\rho) \leftrightarrow \hat{\delta}'(\rho)$ is such that $R(d, d')$ holds iff $d \sim d' : \rho[\eta : \delta \leftrightarrow \delta']$. Then $e \sim e' : [\rho/t]\tau[\eta : \delta \leftrightarrow \delta']$.

Proof. By induction on the structure of τ. When $\tau = t$, the result is immediate from the definition of the relation R. When $\tau = t' \neq t$, the result holds vacuously. When $\tau = \tau_1 \rightarrow \tau_2$ or $\tau = \forall (u. \tau)$, where without loss of generality $u \neq t$ and $u \notin \rho$, the result follows by induction. \qed

Despite the strong conditions on polymorphic types, logical equivalence is not overly restrictive—every expression satisfies its constraints. This result is sometimes called the parametricity theorem.

Theorem 50.8 (Parametricity). If $\Delta; \Gamma \vdash e : \tau$, then $e \sim e : \tau[\Delta; \Gamma]$.

JUNE 2, 2010 DRAFT 13:08
Proof. By rule induction on the statics of \(L \{ \rightarrow \forall \} \) given by Rules (23.2).

We consider two representative cases here.

Rule (23.2d) Suppose \(\delta : \Delta, \delta' : \Delta, \eta : \delta \leftrightarrow \delta' \), and \(\gamma \sim \gamma' : \Gamma [\eta : \delta \leftrightarrow \delta'] \).

By induction we have that for all \(\rho, \rho' \), and \(R : \rho \leftrightarrow \rho' \),

\[
[\rho/t] \hat{\gamma}(\delta(e)) \sim [\rho'/t] \hat{\gamma'}(\delta'(e)) : \tau [\eta_* : \delta_* \leftrightarrow \delta'_*],
\]

where \(\eta_* = \eta[t \mapsto R], \delta_* = \delta[t \mapsto \rho], \) and \(\delta'_* = \delta'[t \mapsto \rho'] \). Since

\[
\Lambda(t. \hat{\gamma}(\delta(e))) [\rho] \mapsto^* [\rho/t] \hat{\gamma}(\delta(e))
\]

and

\[
\Lambda(t. \hat{\gamma'}(\delta'(e))) [\rho'] \mapsto^* [\rho'/t] \hat{\gamma'}(\delta'(e)),
\]

the result follows by Lemma 50.3 on page 468.

Rule (23.2e) Suppose \(\delta : \Delta, \delta' : \Delta, \eta : \delta \leftrightarrow \delta' \), and \(\gamma \sim \gamma' : \Gamma [\eta : \delta \leftrightarrow \delta'] \).

By induction we have

\[
\hat{\gamma}(\delta(e)) \sim \hat{\gamma'}(\delta'(e)) : \forall (t. \tau) [\eta : \delta \leftrightarrow \delta']
\]

Let \(\hat{\rho} = \hat{\delta}(\rho) \) and \(\hat{\rho}' = \hat{\delta'}(\rho) \). Define the relation \(R : \hat{\rho} \leftrightarrow \hat{\rho}' \) by \(R(\hat{d}, \hat{d}') \) iff \(d \sim d' : \rho [\eta : \delta \leftrightarrow \delta'] \). By Corollary 50.5 on the previous page, this relation is admissible.

By the definition of logical equivalence at polymorphic types, we obtain

\[
\hat{\gamma}(\delta(e)) [\hat{\rho}] \sim \hat{\gamma'}(\delta'(e)) [\hat{\rho}'] : \tau [\eta[t \mapsto R] : \delta[t \mapsto \hat{\rho}] \leftrightarrow \delta'[t \mapsto \hat{\rho}']].
\]

By Lemma 50.7 on the preceding page

\[
\hat{\gamma}(\delta(e)) [\hat{\rho}] \sim \hat{\gamma'}(\delta'(e)) [\hat{\rho}'] : [\rho/t] \tau [\eta : \delta \leftrightarrow \delta']
\]

But

\[
\hat{\gamma}(\delta(e)) [\hat{\rho}] = \hat{\gamma}(\delta(e)) [\hat{\delta}(\rho)]
\]

\[
= \hat{\gamma}(\delta[e[\rho]]),
\]

(50.1)

(50.2)

and similarly

\[
\hat{\gamma'}(\delta'(e)) [\hat{\rho}'] = \hat{\gamma'}(\delta'(e)) [\hat{\delta'}(\rho)]
\]

\[
= \hat{\gamma'}(\delta'[e[\rho]]),
\]

(50.3)

(50.4)

from which the result follows.
50.4 Parametricity Properties

Corollary 50.9. If \(e \cong e' : \tau [\Delta; \Gamma] \), then \(e \sim e' : \tau [\Delta; \Gamma] \).

Proof. By Theorem 50.8 on page 469 \(e \sim e : \tau [\Delta; \Gamma] \), and hence by Corollary 50.6 on page 469, \(e \sim e' : \tau [\Delta; \Gamma] \). □

Lemma 50.10 (Congruence). If \(e \sim e' : \tau [\Delta; \Gamma] \) and \(C : (\Delta; \Gamma \triangleright \tau) \leadsto (\Delta'; \Gamma' \triangleright \tau') \), then \(C\{e\} \sim C\{e'\} : \tau [\Delta'; \Gamma'] \).

Proof. By induction on the structure of \(C \), following along very similar lines to the proof of Theorem 50.8 on page 469. □

Lemma 50.11 (Consistency). Logical equivalence is consistent.

Proof. Follows immediately from the definition of logical equivalence. □

Corollary 50.12. If \(e \sim e' : \tau [\Delta; \Gamma] \), then \(e \cong e' : \tau [\Delta; \Gamma] \).

Proof. By Lemma 50.11 Logical equivalence is consistent, and by Lemma 50.10, it is a congruence, and hence is contained in observational equivalence. □

Corollary 50.13. Logical and observational equivalence coincide.

Proof. By Corollaries 50.9 and 50.12. □

If \(d : \tau \) and \(d \mapsto e \), then \(d \sim e : \tau \), and hence by Corollary 50.12, \(d \cong e : \tau \). Therefore if a relation respects observational equivalence, it must also be closed under converse evaluation. This shows that the second condition on admissibility is redundant, though it cannot be omitted at such an early stage.

50.4 Parametricity Properties

The parametricity theorem enables us to deduce properties of expressions of \(\mathcal{L}\{\to \forall\} \) that hold solely because of their type. The stringencies of parametricity ensure that a polymorphic type has very few inhabitants. For example, we may prove that every expression of type \(\forall (t. t \to t) \) behaves like the identity function.

Theorem 50.14. Let \(e : \forall (t. t \to t) \) be arbitrary, and let \(\text{id} \) be \(\Lambda (t. \lambda (x : t. x)) \). Then \(e \cong \text{id} : \forall (t. t \to t) \).
Proof. By Corollary 50.13 on the previous page it is sufficient to show that $e \sim id : \forall(t.t \rightarrow t)$. Let ρ and ρ' be arbitrary closed types, let $R : \rho \leftrightarrow \rho'$ be an admissible relation, and suppose that $e_0 R e'_0$. We are to show

$$e[\rho](e_0) R id[\rho](e'_0),$$

which, given the definition of id, is to say

$$e[\rho](e_0) R e'_0.$$

It suffices to show that $e[\rho](e_0) \equiv e_0 : \rho$, for then the result follows by the admissibility of R and the assumption $e_0 R e'_0$.

By Theorem 50.8 on page 469 we have $e \sim e : \forall(t.t \rightarrow t)$. Let the relation $S : \rho \leftrightarrow \rho$ be defined by $d \ S \ d' \iff d \equiv e_0 : \rho$ and $d' \equiv e_0 : \rho$. This is clearly admissible, and we have $e_0 S e_0$. It follows that

$$e[\rho](e_0) \ S \ e[\rho](e_0),$$

and so, by the definition of the relation S, $e[\rho](e_0) \equiv e_0 : \rho$.

\[\square\]

In Chapter 23 we showed that product, sum, and natural numbers types are all definable in $L\{\rightarrow \forall\}$. The proof of definability in each case consisted of showing that the type and its associated introduction and elimination forms are encodable in $L\{\rightarrow \forall\}$. The encodings are correct in the (weak) sense that the dynamics of these constructs as given in the earlier chapters is derivable from the dynamics of $L\{\rightarrow \forall\}$ via these definitions. By taking advantage of parametricity we may extend these results to obtain a strong correspondence between these types and their encodings.

As a first example, let us consider the representation of the unit type, unit, in $L\{\rightarrow \forall\}$, as defined in Chapter 23 by the following equations:

$$\text{unit} = \forall(r.r \rightarrow r)$$

$$\langle \rangle = \Lambda(r.\lambda(x:r.x))$$

It is easy to see that $\langle \rangle : \text{unit}$ according to these definitions. But this merely says that the type unit is inhabited (has an element). What we would like to know is that, up to observational equivalence, the expression $\langle \rangle$ is the only element of that type. But this is precisely the content of Theorem 50.14 on the previous page! We say that the type unit is strongly definable within $L\{\rightarrow \forall\}$.

13:08 Draft June 2, 2010
Continuing in this vein, let us examine the definition of the binary product type in \(\mathcal{L}\{\to \forall\} \), also given in Chapter 23:

\[
\tau_1 \times \tau_2 = \forall (r. (\tau_1 \to \tau_2 \to r) \to r)
\]

\[
\langle e_1, e_2 \rangle = \Lambda (r. \lambda (x: \tau_1. \lambda (y: \tau_2. x)))
\]

\[
e \cdot 1 = e [\tau_1] (\lambda (x: \tau_1. \lambda (y: \tau_2. x)))
\]

\[
e \cdot r = e [\tau_2] (\lambda (x: \tau_1. \lambda (y: \tau_2. y)))
\]

It is easy to check that \(\langle e_1, e_2 \rangle \cdot 1 \equiv e_1 : \tau_1 \) and \(\langle e_1, e_2 \rangle \cdot r \equiv e_2 : \tau_2 \) by a direct calculation.

We wish to show that the ordered pair, as defined above, is the unique such expression, and hence that Cartesian products are strongly definable in \(\mathcal{L}\{\to \forall\} \). We will make use of a lemma governing the behavior of the elements of the product type whose proof relies on Theorem 50.8 on page 469.

Lemma 50.15. If \(e : \tau_1 \times \tau_2 \), then \(e \equiv \langle e_1, e_2 \rangle : \tau_1 \times \tau_2 \) for some \(e_1 : \tau_1 \) and \(e_2 : \tau_2 \).

Proof. Expanding the definitions of pairing and the product type, and applying Corollary 50.13 on page 471, we let \(\rho \) and \(\rho' \) be arbitrary closed types, and let \(R : \rho \leftrightarrow \rho' \) be an admissible relation between them. Suppose further that

\[
h \sim h' : \tau_1 \to \tau_2 \to t [\eta : \delta \leftrightarrow \delta'],
\]

where \(\eta(t) = R, \delta(t) = \rho, \) and \(\delta'(t) = \rho' \) (and are each undefined on \(t' \neq t \)).

We are to show that for some \(e_1 : \tau_1 \) and \(e_2 : \tau_2 \),

\[
e [\rho] (h) \sim h' (e_1) (e_2) : t [\eta : \delta \leftrightarrow \delta'],
\]

which is to say

\[
e [\rho] (h) \ R h' (e_1) (e_2).
\]

Now by Theorem 50.8 on page 469 we have \(e \sim e : \tau_1 \times \tau_2 \). Define the relation \(S : \rho \leftrightarrow \rho' \) by \(d S d' \) iff the following conditions are satisfied:

1. \(d \equiv h (d_1) (d_2) : \rho \) for some \(d_1 : \tau_1 \) and \(d_2 : \tau_2 \);
2. \(d' \equiv h' (d'_1) (d'_2) : \rho' \) for some \(d'_1 : \tau_1 \) and \(d'_2 : \tau_2 \);
3. \(d \ R d' \).

This is clearly an admissible relation. Noting that

\[
h \sim h' : \tau_1 \to \tau_2 \to t [\eta' : \delta \leftrightarrow \delta'],
\]
where \(\eta'(t) = S \) and is undefined for \(t' \neq t \), we conclude that \(e[\rho] h S e[\rho'] h' \), and hence

\[e[\rho] h R h'(d_1') (d_2') \]

as required.

Now suppose that \(e : \tau_1 \times \tau_2 \) is such that \(e \cdot 1 \cong e_1 : \tau_1 \) and \(e \cdot r \cong e_2 : \tau_2 \). We wish to show that \(e \cong \langle e_1, e_2 \rangle : \tau_1 \times \tau_2 \). From Lemma 50.15 on the previous page it is easy to deduce that \(e \cong \langle e \cdot 1, e \cdot r \rangle : \tau_1 \times \tau_2 \) by congruence and direct calculation. Hence, by congruence we have \(e \cong \langle e_1, e_2 \rangle : \tau_1 \times \tau_2 \).

By a similar line of reasoning we may show that the Church encoding of the natural numbers given in Chapter 23 strongly defines the natural numbers in that the following properties hold:

1. \(\text{natiter} z \{ z \mapsto e_0 \mid s(x) \mapsto e_1 \} \cong e_0 : \rho \).
2. \(\text{natiter} s(e) \{ z \mapsto e_0 \mid s(x) \mapsto e_1 \} \cong [\text{natiter} e \{ z \mapsto e_0 \mid s(x) \mapsto e_1 \} / x] e_1 : \rho \).
3. Suppose that \(x : \text{nat} \vdash r(x) : \rho \). If

 (a) \(r(z) \cong e_0 : \rho \), and
 (b) \(r(s(e)) \cong [r(e) / x] e_1 : \rho \),

 then for every \(e : \text{nat}, r(e) \cong \text{natiter} e \{ z \mapsto e_0 \mid s(x) \mapsto e_1 \} : \rho \).

The first two equations, which constitute weak definability, are easily established by calculation, using the definitions given in Chapter 23. The third property, the unicity of the iterator, is proved using parametricity by showing that every closed expression of type \(\text{nat} \) is observationally equivalent to a numeral \(\pi \). We then argue for unicity of the iterator by mathematical induction on \(n \geq 0 \).

Lemma 50.16. If \(e : \text{nat} \), then either \(e \cong z : \text{nat} \), or there exists \(e' : \text{nat} \) such that \(e \cong s(e') : \text{nat} \). Consequently, there exists \(n \geq 0 \) such that \(e \cong \pi : \text{nat} \).

Proof. By Theorem 50.8 on page 469 we have \(e \sim e : \text{nat} \). Define the relation \(R : \text{nat} \leftrightarrow \text{nat} \) to be the strongest relation such that \(d R d' \) iff either \(d \cong z : \text{nat} \) and \(d' \cong z : \text{nat} \), or \(d \cong s(d_1) : \text{nat} \) and \(d' \cong s(d_1') : \text{nat} \) and \(d_1 R d_1' \). It is easy to see that \(z R z \), and if \(e R e' \), then \(s(e) R s(e') \). Letting \(\text{zero} = z \) and \(\text{succ} = \lambda (x: \text{nat}. s(x)) \), we have

\[e[\text{nat}(\text{zero})(\text{succ})] R e[\text{nat}(\text{zero})(\text{succ})] \]

The result follows by the induction principle arising from the definition of \(R \) as the strongest relation satisfying its defining conditions. \(\Box \)
A straightforward extension of this argument shows that, up to observational equivalence, inductive and coinductive types are strongly definable in $\mathcal{L}\{\rightarrow \forall\}$.

50.5 Exercises
Part XIX

Appendices
Appendix A

Mathematical Preliminaries

A.1 Finite Sets and Maps
A.2 Families of Sets