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Abstract

This paper presents a tutorial introduction to Estelle, a formal description tech-
nique developed within ISO for specifying OSI. It explains the Estelle description
of the Abracadabra protocol found in Guidelines for the Application of Estelle,
LOTOS, and SDL and then discusses some initial tests that should be performed
for protocols. These tests expose some weaknesses of the Abracadabra protocol as
presented.

1 Introduction

Estelle [ISO, IS9074] and LOTOS [ISO, IS8807] are the two Formal Description Tech-
niques developed within the International Organization for Standardization (known as
“ISO”) Open Systems Interconnection (OSI) project during the 1980’s. Estelle is based
on communicating finite automata, while LOTOS is based on communicating processes.
These were both designed to be used to specify the services and protocols of OSI, but
each has found wider application in specifying more general distributed systems as well.

In deciding to base Estelle on extended finite automata, its designers observed that much
communications software is written with this model at its base. Thus as events are re-
ceived, a dispatch table based on the current state is consulted to determine the actions
to be performed and the state to enter next. Even before formal descriptions were com-
monly regarded as necessary, informal descriptions of protocols usually included a state
diagram and sometimes even a state table to make their descriptions more precise (see
e.g. [Postel, 1980].) Even today when protocols are discussed without formal descriptions
one often finds finite state descriptions (see e.g. [Rose, 1991, page 62] or [Schwartz, 1987,
page 349]). Extensive finite state descriptions appear in various ISO OSI protocols (e.g.
[ISO, IS8073]).

∗Although the author was the editor for Estelle [ISO, IS9074] and remains the maintenance editor
for that International Standard, the views expressed in this paper are strictly personal views and do
not represent an official position of the International Organization for Standardization nor of any of its
members.
†The software to produce figure 3 and to do much of the testing reported in section 5 was contributed

by Tom Blumer of Phoenix Technologies, Ltd.
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Estelle is based on several earlier techniques but also contains several features found in
none of them. A summary of the status of formal description techniques at the time the
work on Estelle began can be found in [Bochmann and Sunshine, 1980].

This paper is a tutorial on Estelle, with some discussion about how one would begin to
experiment with a protocol using Estelle. It is organized into three major portions, the
first giving the fundamental notions underlying Estelle, the second covering a rather com-
plete (and, for a tutorial, complex) protocol expressed in Estelle, explaining the language
features as they are encountered, and the third presenting some analysis of the protocol.

2 Estelle Fundamentals

Specifications in Estelle comprise systems of structured, extended finite automata commu-
nicating through channels. Finite automata are well-established abstract mathematical
models of computation devices. (See [Moore, 1964] for a collection of some early papers
and a bibliography of additional early papers.)

Any interesting protocol uses some data. Even simple protocols may include sequence
numbers that range up to (say) 128. In a finite automaton, each possible value of each
variable must be accounted for in all possible configurations. With a connection that un-
dergoes just four states (e.g., Idle, Opening, Established, Closing) and just two sequence
numbers modulo 128 (one for transmitting and another for receiving), a pure finite au-
tomaton approach would require at least 4 × 128 × 128 = 65536 states. Clearly this is
unacceptable. Estelle, by extending finite automata to include variables, reduces this to
four states and two variables.

One of the key observations to make is that although the finite automaton descriptions
of protocols mentioned above are informative, they are not complete. Without further
information, it is not possible either to check or to implement the protocols. Estelle
provides a way to add this necessary information.

There are three major components to a system described using Estelle: (i) channels, (ii)
extended finite automata, called modules , and (iii) structure of the system. We briefly
describe each of these in turn. We shall examine these in more detail in section 4, where we
shall also introduce the language constructs used to specify these components of Estelle.

2.1 Channels

Channels are thought of as connecting modules. A message (called an interaction) placed
in one end of a channel ends up in an input queue of the module at the other end of
the channel. As discussed below (section 4.6), there are some subtle interactions between
this simple concept and the structuring of modules allowed in Estelle. Channels are
reliable: any message sent is delivered immediately,1 once, unchanged, to the correct

1Since this is a tutorial, we take the liberty of deviating slightly from the truth — the actual mechanism
described in formal semantics of Estelle is quite complicated in order to guarantee certain desirable
properties about the interleaving of interactions that arrive at a module from disparate modules, but
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recipient. Only those kinds of interactions that are named when the channel is declared
are permitted to pass in each direction through a channel.

As interactions are received by a module, they are placed at the end of a queue that can
grow arbitrarily long; thus there is always room to add another interaction. Depending
on the specification, this queue may be associated with only a single channel, or it may
be the module’s common queue, which may be shared by several channels. The queues
are well-behaved: they neither corrupt nor re-order the data in them.

2.2 Extended Finite Automata

As noted above, finite automata are inadequate succinctly to capture all the details of even
most simple protocols. It is thus necessary to extend the notion of a finite automaton.
The first step is to add the ability to store values for variables. These variables can
be used to store data to be sent, sequence numbers of numbered interactions, partially
formed interactions, etc.

Although there are several variants of finite automata in the literature, they differ only in
some of their details. For our purposes we say that an ordinary finite automaton begins in
a specified state and whenever it receives an input it makes a transition from its current
state to the next state, possibly making an output as it does so. The choice of transition
to make is determined by the specification of the automaton. In general, the choice of
transition is non-deterministic, because a well-formed specification of a finite automaton
may allow any of several transitions to be used under a given circumstance. However,
each time there is a choice to be made, randomly one of the allowable choices will be
made.

Estelle modules begin with this same notion and go further by allowing for multiple input
opportunities (interaction points) and by allowing the choice of transition to depend on
the values associated with some of the stored variables. In addition, Estelle modules may
have transitions that do not depend on any inputs (spontaneous transitions), and these
spontaneous transitions may have delays associated with their applicability. This notion
of a delay transition is explained in more detail below in section 4.4.1.

An Estelle module must be able to examine and manipulate the values associated with
its variables. It must also be able to cause outputs to be sent through any interaction
point. Finally, it must also be able to manage the structure and interconnection of the
system of modules.

The selection and firing of a transition form a single atomic act, so intermediate values
assumed by variables, even if exported to other modules, are never available, and possible
alteration of external conditions cannot intervene.

this is too high a level of sophistication to be interesting in a tutorial, so we suppress it. We beg the
indulgence of the cognoscenti .

3



2.3 System Structure

An Estelle specification comprises a collection of systems of nested modules. These may
be written in such a way that they model several independent systems or so that they
model a single, tightly coupled system, or almost any situation between these extremes.

From the outside, it is not possible to tell anything about the internal structure of an
Estelle module by its observed behavior. However any module may contain submodules.
A module and any of its submodules are referred to as parent and child respectively. Nat-
urally, the transitive closures of these two relations give rise to ancestor and descendant .
A parent may create and destroy children modules, so the structure of a system may be
dynamic. A parent is responsible for the connection of channels to its children, both with
each other and to its own internal interaction points.

To facilitate the structuring of modules into submodules there is an attachment mechanism
that causes interactions directed from outside a parent module to be processed by one of
its child modules without intervention by the parent. This mechanism is distinct from
the connection mechanism, but both are forms of binding . They will be discussed below
in section 4.6.

A parent module is separate from its children modules; they do not share variables, except
that a parent has access to those variables of a child module that the child chooses to
export. In part to prevent possible race conditions that might occur because of this
sharing, a parent/child priority is imposed, whereby a child is prevented from making a
transition if any of its parent’s transitions is enabled.

Some modules may have only initialization transitions that serve to create and bind
children. After that they must necessarily remain dormant, because they have no other
transitions. Such a module is called inactive. By contrast, a module that does have
transitions in addition to its initialization is called active.

A major use of inactive modules is to set up the overall structure of the system being
specified. If all the antecedents of a module are inactive, then the module cannot be
removed nor its bindings altered after it is created. Such a module may be designated a
system module (unless one of its antecedents has already been designated to be a system
module). Because of parent/child priority, a system’s descendants are sometimes thought
of as being tightly coupled, while systems themselves are only loosely coupled. Systems
may communicate only by exchanging interactions through channels.

Sibling modules may either run in a synchronous parallel fashion or in an interleaved
parallel fashion. The choice is indicated by the attribute of the parent, which must be
either a process or an activity , respectively. The children of an activity must themselves
all be activities, while the children of a process may be either processes or activities. As
the default is to inherit this attribute from the parent, it is necessary to ensure that any
active module has an attributed ancestor. Systems themselves are thus either system
activities or system processes.

There is no guarantee of fairness in Estelle semantics, so that if two sibling activities are
always able to make a transition, one of them may always fire and the other never fire.
Similarly, if two transitions with the same priority are always simultaneously enabled,
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one of them may always fire and the other one may never fire. It is therefore the task
of the specifier to guarantee that the system specified performs as required even in these
extreme cases.

3 Abracadabra Example

To make the discussion of Estelle more concrete, we shall make use of an example. Our
example will be a version of the alternating bit protocol [Bartlett et al., 1969], a data
transfer protocol that uses a single-bit sequence number (that alternates between 0 and 1,
hence the name). This is often used as a didactic protocol (see e.g.[Merlin, 1979], [Blumer
and Tenney, 1982] and [Tarnay, 1991]). It is interesting to note that its original published
description is a pair of symmetric finite automata. By itself, however, it is too simple
to exhibit many interesting features of modern protocols, so we use a version that adds
retransmission on timeouts and simple connection and disconnection procedures. The
resultant protocol is described fully in Guidelines for the Application of Estelle, LOTOS,
and SDL [ISO, TR10167, clause 10], where it is called “Abracadabra”. Although it is
simpler than most actual protocols, it is nevertheless complex enough to be interesting.
An updated version of this protocol and description appears in [Turner, 1993].

3.1 Abracadabra Service

In many respects Abracadabra is like a data link or a transport protocol: it provides a
reliable, connection-oriented service between a pair of users. A full data link or transport
protocol would have to handle addressing, communication failures, multiplexing, man-
agement functions, etc., but the structure of its specification could easily follow that of
the Abracadabra specification below. The difference in specification would mainly be a
difference in amount not in kind.

A simple service diagram for Abracadabra is shown in figure 1. This diagram shows
only the most fundamental uses of the protocol: a simple connection, data transfer,
and disconnection. In such diagrams, time increases from top to bottom. Note that
only connection is a confirmed service, meaning that the user who initiated the ConReq
ultimately receives an explicit ConConf as a response. For the other services, the user
simply trusts that the appropriate actions take place.

There are many things that the service diagram does not show. For example, not shown is
the fact that the service is completely symmetric. In the interest of simplicity, the service
diagram also ignores less likely occurrences, like two ConReq’s being issued simultaneously
by the two Users. Rather than burden the reader with increasingly complex service
diagrams, it is common to put much of the information about abnormal and unusual
behavior into the protocol description.
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Figure 1: Abracadabra Service Diagram
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3.2 Abracadabra Protocol

The protocol to implement the Abracadabra service is relatively straightforward. We
assume that there are two users, A and B, and that each of them communicates with an
Abracadabra protocol entity (which we will call a Station) that implements the service.
These two stations are considered to be peers. They communicate by sending Protocol
Data Units (PDU s) through a full-duplex, unreliable communications medium that may
lose or delay messages. However, we assume the medium will never corrupt, reorder,
duplicate, or originate messages. This system is shown in figure 2.

User A requests a connection with User B by initiating a ConReq. Station A sends a CR
(Connect Request) PDU to Station B. When this arrives, Station B issues a ConInd to
User B, who (assuming a willingness to connect) replies with a ConResp to Station B.
Station B sends a CC (Connect Confirm) back to Station A, which issues a ConConf to
User A. After this, either user may send data. A user’s DatReq is conveyed as part of a
DT (DaTa) PDU, and a DisCon is conveyed as a DR (Disconnect Request) PDU.

If everything always worked as desired, this would be the end of it!

However, even the connection phase of the exchange can become complicated. What is to
happen if the CR is lost due to a fault in the communications medium? What if the CC
is lost? What if User B is not willing to accept the connection. What if User A decides
to abandon the connection before it has been completed? What if User A tries to send
data before being informed that the connection exits?

Furthermore, the User trusts that data are transferred without requiring an explicit con-
firmation, but the communications medium is not assumed reliable, so the Stations must
arrange some kind of confirmation between themselves and recovery mechanisms for the
cases where messages are lost by the medium.

Rather than explain the full protocol in English, it will be more instructive to describe it
in Estelle, with English explanations. This is done in the next section. We remark that
the Estelle description closely follows the English description of [ISO, TR10167], both in
content and in order.

4 Estelle Specification

To express the portions of an Estelle specification that rely on traditional programming
(e.g., manipulation of variables and flow of control), Estelle uses a language that is based
on level 0 ISO Pascal [ISO, IS7185]. Estelle enhances Pascal in various ways. The integers
and real numbers of Estelle are the usual mathematical ones; implementation details
like a maximum largest integer and precision of real numbers are not considered. Also,
functions are allowed to return arbitrary types.2 The goto statement is restricted to make
it act like a return. Since ordinary file input and output are not part of communications
specification, all those features of Pascal that relate to I/O were removed from Estelle.
Finally, the keyword specification was substituted for program.

2But note that the syntax of an expression was not changed, so the returned value of a function can
be used in only very simple ways.
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Figure 2: Simple Abracadabra System

8



Other language constructs were created to deal with the aspects of OSI specification.
These will be discussed as needed in going through the Abracadabra protocol specification.

The version of the Abracadabra protocol given here was taken with only a few cosmetic
changes from [ISO, TR10167, clause 10.3.4]. The entire description is appended to this
paper.

4.1 Global Parameters

We begin with the beginning of the specification.3 One of the interesting things to note
is that the two communicating systems are completely symmetric: there is but one de-
scription of them and two instantiations. This is in contrast to the original description of
the simpler alternating bit protocol in [Bartlett et al., 1969] where two different automata
are given.

1 specification Abracadabra;

2
3 default individual queue;

4 timescale seconds;

Line 1 merely names the specification, much like the program statement of a Pascal
program. There is no semantic meaning attached to the identifier Abracadabra except to
preclude its use elsewhere in the specification.

The default queueing discipline given at the specification level, as in line 3 , applies to each
interaction point in each module that does not have its own queueing discipline explicitly
given. If no specification-wide default is given, then each interaction point must have an
explicit discipline. The two choices are common queue and individual queue. There
may be at most one common queue in each module, but there may be many individual
queues.

The timescale, line 4 , is intended to work with delay transitions (see section 4.4.1), but
it is technically a comment, with no semantic meaning. However, as an aside, we note
that the formal meaning of an Estelle specification may be thought of as a tree of global
instantaneous descriptions, where paths through the tree represent possible execution
sequences. Outside constraints remove branches from this tree, and the time scale can
provide such a constraint.

6 const

7 N = any integer; { number of transmission attempts }

8 P = any integer; { delay amount for timers }

Two constant parameters characterize any instance of the Abracadabra protocol. The
first of these, N, the maximum number of times a PDU may be sent before the Station
gives up, is specified in line 7 . The second, P, the amount of time (in seconds, subject to
the discussion of timescale above) between retransmission attempts, is given in line 8 .

Although the specification here forces the values ultimately associated with N and P to be

3The line numbers in italics at the beginning of the lines are not part of the specification itself, but
are added to facilitate talking about the specification.
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integers, Estelle does not have a way to restrict the value of these constants here, so they
could even take negative values. However in line 580 , where the body of the specification is
initialized, the transition cannot fire unless N and P are both positive. This unfortunately
large distance between the declarations and the checking of their values is one of the costs
of basing Estelle on Pascal. Again in passing we note that the formal semantics of Estelle
require that some value be assigned to each constant that is declared using any, so that
the specification actually determines a collection of specifications, one for each possible
value of N and P.

Lines 7 and 8 both contain comments. These may be inserted at any place that a space
could be inserted into the text. The alternate forms available in Pascal, using (* for {
and *) for }, are also acceptable in Estelle.

Also in keeping with Pascal conventions, the representation (upper- versus lower-case,
font, etc.) of a character is insignificant except within character-string constants, and
spacing on the page, while potentially helpful to human readers, is of no importance to
the meaning of the specification.

10 type

11 SeqType = 0..1; { sequence number type }

12 UserDataType = ...;

In addition to ordinary Pascal types, Estelle allows an unspecified type, designated by
three dots (...), as in line 12 . Just as for unspecified constants, this gives rise to a
collection of specifications, one for each possible type. The type ... is usually used
to designate something that has no real bearing on the functioning of the protocol,4 and
frequently its use is combined with functions declared to be primitive as a way of leaving
implementation details out of the specification. Thus a buffer might be declared to be
of type ... and the routines to insert and extract information from the buffer might be
declared primitive.

4.2 Channels

22 channel USAP(user, provider);

23 by user:

24 ConReq;

25 ConResp;

26 DatReq(UserData : UserDataType);

27 DisReq;

28 by provider:

29 ConInd;

30 ConConf;

31 DatInd(UserData : UserDataType);

32 DisInd;

The channel declaration, lines 22–32 , gives the name of the channel, USAP, together with

4It is always somewhat amusing that the user’s data have nothing to do with the protocol; yet this is
as it should be.
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the names associated with the two roles associated with the channel. When two modules
are connected through a USAP channel, one must assume the role of user, and the other the
role of provider. The user can initiate ConReq, ConResp, DatReq and DisReq interactions
that will be received by the provider, and the provider can initiate ConInd, ConConf,
DatInd, DisInd interactions that will be received by the user. The DatReq and DatInd

interactions each have a parameter called UserData, which is of type UserDataType.

The USAP channel declaration should be compared with the service diagram in figure 1 as
these two contain some of the same information. Both indicate the direction (i.e., which
side is the initiator and which the recipient) of each interaction. The channel declaration
provides additional information, because it shows which interactions admit parameters.
In particular the DatReq and DatInd interactions each carry UserData. However, a service
diagram provides information that is not contained in a channel declaration, because it
shows causal relationships.

34 channel PeerCode(peer, coder);

35 by peer, coder:

36 CR;

37 CC;

38 DT(Seq : SeqType; UserData : UserDataType);

39 AK(Seq : SeqType);

40 DR;

41 DC;

The PeerCode channel is symmetric, and either role may initiate and receive any of its
interactions. We have already discussed the CR, CC, DT, and DR PDUs. The other two (AK
and DR) are used to indicate receipt of the DT and DR, respectively. Note that the DT and
AK PDUs carry sequence numbers.

4.3 Module Headers

49 module User systemprocess;

50 ip U : USAP(user);

51 end;

Modules are described in two parts, commonly referred to as a header and a body . The
header conveys the information available outside the module, while the body describes
actions of the module. lines 49–51 specify the header of the User module. The module
is declared to be a systemprocess. It has only one interaction point, U, which may be
connected to a USAP channel playing the role of the user. As no queueing discipline is
given for the interaction point, it defaults to individual queue, as specified in line 3 .
Similar module headers are given for the other systems in the specification: Cms (the
communications medium) at lines 56–58 and Abra at lines 63–66 .

53 body UserBody for User;

54 external;

The body UserBody for the User module is given elsewhere (not in this document).
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Similarly, lines 60–61 specify that the body for Cms is given elsewhere.

4.4 Station Body

68 body AbraBody for Abra;

69
70 module Station process;

71 ip USER : USAP(provider);

72 PEER : PeerCode(peer);

73 end;

Simply nesting the definition of the Station module within the body for Abra makes
Station a child of Abra. It is important to note that unlike Pascal, any variables that
may be defined for a module body are not inherited by its children; i.e., the scope of a
variable is restricted to the module in which it is declared.

75 body StationBody for Station;

There may be more than one body for a module header; which body should be used is
decided when the module is instantiated (see section 4.7). In this specification, however,
there is at most one body given for any module.

To help follow the specification of the Station, a finite state diagram of the Abracadabra
Protocol is shown in figure 3.

77 state

78 CLOSED, CRSENT, CRRECV, ESTAB, DRSENT;

The Station module has five states. This state is sometimes referred to as the control
state to distinguish it from the total state of the module, which includes the values of the
variables, contents of the queues, etc. In the Station, as often happens, the control state
corresponds to the progress of the connection as seen by the Station.

80 stateset

81 CRignore = [CRRECV];

82 CCignore = [CLOSED, CRRECV, DRSENT];

83 DTignore = [CLOSED, CRSENT, CRRECV, DRSENT];

84 AKignore = [CLOSED, CRSENT, CRRECV, DRSENT];

85 DCignore = [CLOSED, CRSENT, CRRECV];

86
87 ConReqIgnore = [CRSENT, CRRECV, ESTAB, DRSENT];

88 ConRespIgnore = [CLOSED, CRSENT, ESTAB, DRSENT];

89 DatReqIgnore = [CLOSED, CRSENT, CRRECV, DRSENT];

90 DisReqIgnore = [CLOSED, DRSENT];

Estelle permits the definition of a set of states, called a stateset. This is used as a
convenience to collapse several actual transitions into one text that is more succinct and
easier to read. For example, a transition that is specified as applying to AKignore (see
line 414 ) may fire if the control state of the module is any of the states listed in line 84 .
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Figure 3: Abracadabra Station Automaton
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As used here, each state set is intended to list the various control states in which a specific
interaction is to be ignored. This is accomplished by a series of transitions ({ 30 } – { 38 })
that simply consume the interaction to be ignored and make no other changes.

92 var

93 Sending : boolean;

94 SendSeq, RecvSeq : SeqType;

95 OldSendSeq : SeqType;

96 CRRetranRemaining : integer;

97 DTRetranRemaining : integer;

98 DRRetranRemaining : integer;

99 OldData : UserDataType;

100 DTorAK : boolean;

Variables are defined in the same way they are in Pascal. The meanings of most of the
variables above should be obvious when they are used. However, two of these variables
are of special interest because they represent a conscious trade off between more control
states and values of variables.

Consider DTorAK. Once the Station has established a connection, its response to a CR

depends on whether or not it has previously received a DT or an AK. If not, it responds by
sending a CC; if so, it enters the error phase. This is discussed in more detail below when
considering transitions { 17 } and { 18 }. The specifier could attempt to deal with this by
creating two control states, say ESTAB1 and ESTAB2, that behave like ESTAB except for
their handling of a CR. It was felt that it would be clearer to indicate the special case
by a flag than to create an essentially redundant state. Similarly, ESTAB could have been
split into two states to reflect whether or not it was free to accept a new message to send.
Instead, the flag Sending was used. These are matters of intent and style, decisions based
what information it is important to convey and how best to express it.

102 procedure InitVar;

103 begin

104 Sending := false;
...

114 end;

Procedures and functions in Estelle are used just like procedures and functions in Pascal.

Functions are assumed to be demonstrably pure and thus to have no side effects. This
is accomplished by allowing them to alter only local variables, to have neither var pa-
rameters nor parameters containing pointers, and to invoke only pure procedures and
functions. Procedures are not presumed to be pure unless they are declared with the key-
word pure. Unlike pure functions, pure procedures are allowed var parameters. Except
for procedures and functions that are primitive, which have global scope, the scope of
a procedure or function is restricted to the module body in which it is defined and does
not include the descendants of that module. Procedures and functions may not reference
the non-Pascal objects such as modules, interaction points, states, interactions etc. intro-
duced into Estelle. The intent of this restriction is to make those operations that affect
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the underlying finite automaton more visible by ensuring that they remain in the bodies
of transitions.

116 initialize

117 to CLOSED

118 begin { 1 }

119 { Variables are initialized when leaving

120 CLOSED state, since the protocol module

121 may cycle through CLOSED repeatedly. }

122 end;

The initialization transition, indicated by the keyword initialize in line 116 may ini-
tialize the control state and any variables of the module. In the one shown here, only the
state is initialized, but a comment informs the reader that variables are initialized when
the automaton leaves the CLOSED state, since the reader presumably expected to see them
initialized here.

The format of the initialization section is the same as that of the transition section, which
will be discussed immediately below, but only those portions of a transition that make
sense are permitted (namely, a provided-clause and a to-clause).

4.4.1 Connection Phase

124 trans

125
126 { *** Connection Phase *** }

127
128 { user requests connection }

129 from CLOSED to CRSENT

130 when USER.ConReq

131 begin { 2 }

132 { initialize module variables whenever

133 leaving CLOSED }

134 InitVar;

135 output PEER.CR;

136 CRRetranRemaining := N-1;

137 end;

Here we come to the first transition of the Station automaton, indicated by the keyword
trans. A transition comprises two parts: the enabling condition and the actions. The
enabling condition specifies the conditions that must be met before the transition may be
fired. Note that even when these conditions have been met, however, the transition may
not fire for a number of reasons, including parent/child priority and non-determinism.
The actions indicate what will happen as a result of firing the transition.

Line 129 indicates that the transition may take place only when the control state is
CLOSED and that after the transition fires, the control state will be CRSENT. The transition
may fire only when the head of the queue associated with the USER interaction point is a
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ConReq. Except for scoping rules as discussed below (section 4.4.2) and the nesting rules
(section 4.4.2), the order of the clauses — from, to, when, etc. — is immaterial to the
meaning of the specification.

The actions of this transition are given in lines 131–137 . First, since the control state will
leave CLOSED, the procedure InitVar is invoked to initialize the variables of the module
as was promised in the comment in lines 119–121 . Next a CR destined for the peer Station
module is output through the PEER interaction point. The retransmission timer for CRs is
initialized to N-1, because at most N transmissions of a CR are allowed, and one has just
been made.

139 { other user accepted connection }

140 from CRSENT to ESTAB

141 when PEER.CC

142 begin { 3 }

143 output USER.ConConf;

144 CRRetranRemaining := -1;

145 end;

The system that sends the CR is usually referred to as the initiator , and the system that
receives it is usually referred to as the responder . Transition { 2 } begins the attempt to
establish a connection from the initiator’s side. Transition { 3 } completes the connection
establishment on the initiator’s side, if all went well: it informs the user by outputting
a ConConf through the USER, and it cancels the possible retransmission of CRs by setting
CRRetranRemaining to -1. The effect of this is reflected in transitions { 7 } and { 8 }.

147 { colliding CRs }

148 from CRSENT to ESTAB

149 when PEER.CR

150 begin { 4 }

151 output USER.ConConf;

152 CRRetranRemaining := -1;

153 end;

Transition { 4 } is to take care of the case when the two users decide to try to open a
connection at the same time.5 Instead of receiving a CC, the initiator receives a CR, which
is treated exactly as though it were a CC. This corresponds to the service diagram shown
in figure 4.

155 { other user rejected connection }

156 from CRSENT to CLOSED

157 when PEER.DR

158 begin { 5 }

159 output USER.DisInd;

160 CRRetranRemaining := -1;

161 end;

Of course it is always possible for the responding user to refuse the connection. If so,

5Apologies to Albert Einstein.
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Figure 4: Simultaneous Connection Request Service Diagram

transition { 5 } handles the case: the initiating user is sent a DisInd and the CR retrans-
mission timer is effectively turned off.

163 { sender requests disconnection }

164 from CRSENT to DRSENT

165 when USER.DisReq

166 begin { 6 }

167 output PEER.DR;

168 CRRetranRemaining := -1;

169 DRRetranRemaining := N-1;

170 end;

The initiating user may become impatient and decide to cancel the connection before
being informed that it was open. When the Station is in the CRSENT state, this DisReq

causes it to send a DR to the other Station, to indicate that it should close the connection
that was previously requested, shut off possible retransmissions of the now irrelevant CR

and set up for possible retransmissions of the DR.

172 { retransmission timer for CR fires }

173 from CRSENT to same

174 provided CRRetranRemaining > 0

175 delay (P)

176 begin { 7 }

177 CRRetranRemaining :=

178 CRRetranRemaining - 1;

179 output PEER.CR;

180 end;

Transition { 7 } has no when-clause; its availability to fire does not depend on the receipt
of any input, and so it is called a spontaneous transition. Such transitions are available to
fire whenever the enabling conditions of the transition are true. In many cases, however,
it is desirable to associate timing parameters with spontaneous transitions. These are
indicated by the presence of a delay-clause, such as that in line 175 . The delay-clause
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may have two arguments t0 and t1. The corresponding condition may be regarded as
true provided the other parts of the enabling conditions have been true continuously for
at least t0 time units; it must be regarded as true if the other parts of the enabling
conditions remain true for t1 time units. The difference is this: between times t0 and
t1 the choice is not determined by the specification: the transition may fire or not; the
decision is left to the implementor. After time t1, the transition must fire unless some
other transition is also available, in which case the usual Estelle rules of non-determinism
apply. In other words, if it is the only one available transition, it must fire. One possible
use for such a scheme is when a protocol uses “piggy-backed” acknowledgments, where
acknowledgments accompany data, if any are available. An acknowledgment may be
required to wait t0 time to allow data to accumulate, but if none have appeared by time
t1, then the acknowledgment will be sent without data.

Two special conventions exist for delay-clauses. If t1 may be arbitrarily long, meaning
“forever”, it may be indicated as an asterisk (*). A transition that is marked delay(0,*)

may fire at any time that the other conditions are met, but it need not fire. One use of
this might be to indicate that a connection that becomes unused may remain open or be
closed, with the decision left to the implementor. The other special convention is used
where t0 and t1 are the same. The form delay(t) is used to indicate that t= t0 = t1.

It is not possible to use a delay-clause in a transition with a when-clause.

The conditions in lines 173–175 together with the actions in lines 176–180 and the ini-
tialization in line 136 allow the Station to retransmit at most N − 1 CRs, with a delay of
P time units (presumably seconds, according to line 4 ) between them.

182 { terminate retransmission of CR }

183 from CRSENT to DRSENT

184 provided CRRetranRemaining = 0

185 delay (P) { allow time for last CR }

186 begin { 8 }

187 { enter error phase }

188 output USER.DisInd;

189 output PEER.DR;

190 CRRetranRemaining := -1;

191 DRRetranRemaining := N-1;

192 end;

After N attempts to send a CR with no appropriate reply, the initiating Station gives up:
it sends its user a DisInd and tries to tear down the connection, in case the responding
Station actually thought one existed. It is important to realize that although the initiating
Station received no CC, the responding Station may have sent several and may believe that
a connection has been established.

The obverse situation of the responder is handled by transitions { 9 } – { 12 }. Note that
CCs are not retransmitted. The initiator will resend CRs if necessary, and each one received
will result in a CC’s being sent in reply (line 208 and line 284 ).
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4.4.2 Data Transfer Phase

226 { *** Data Transfer Phase *** }

227
228 { send data in DT PDU }

229 from ESTAB to same

230 when USER.DatReq

231 provided not Sending

232 begin { 13 }

233 OldData := UserData;

234 output PEER.DT(SendSeq, OldData);

235 OldSendSeq := SendSeq;

236 SendSeq := (SendSeq + 1) mod 2;

237 Sending := true;

238 { turn on retransmission timer }

239 DTRetranRemaining := N-1;

240 end;

Transition { 13 } is responsible for sending data. Line 229 indicates that after it fires, the
control state will remain ESTAB. It cannot fire if Sending is true. However, the user may
nevertheless place data to be sent into the queue associated with the USER interaction
point during that time. When Sending eventually becomes true, the data will be sent.

The identifier UserData is defined in line 26 as the parameter of the DatReq interaction.
The presence of DatReq in line 230 opens a region that extends through the end of the
transition in which the identifier UserData is defined. Its value is the value that was
associated with it when the interaction was sent by the user. It must be copied (line 233 )
because the value will be needed after the transition has executed if it is necessary to
retransmit the PDU. Similarly, OldSendSeq will be used if it is necessary to retransmit
the PDU. SendSeq is then updated to the other bit, to be used for comparison with the
acknowledgment.

242 { receive ack with correct sequence number in AK PDU }

243 from ESTAB to same

244 when PEER.AK

245 provided Seq = SendSeq

246 begin { 14 }

247 Sending := false;

248 { turn off retransmission timer }

249 DTRetranRemaining := -1;

250 DTorAK := true;

251 end;

In line 245 , the parameter of the AK interaction, Seq, is compared with SendSeq. Because
of the scoping rule discussed above, this is one of those cases where the order of the
enabling clauses is important: if the provided-clause preceded the when-clause, Seq would
be undefined. The convention for acknowledgment used here is a common one; the peer
Station acknowledges receipt of a PDU by sending the sequence number of the next PDU
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it expects to receive.

The data have successfully been sent, so the Sending flag is turned off. This allows the
next PDU to be sent as soon as there is one. The DT retransmit counter is set to -1

so that no more retransmissions of the PDU may be made. As discussed in section 4.4,
DTorAK is set to true to control the reaction of the Station to receiving another CR. The
actual effect of this may be observed in transitions { 17 } and { 18 }.

253 { receive acknowledgement with incorrect sequence number }

254 from ESTAB to DRSENT

255 when PEER.AK

256 provided Seq <> SendSeq

257 begin { 15 }

258 { enter error phase }

259 output USER.DisInd;

260 output PEER.DR;

261 DTorAK := true;

262 DTRetranRemaining := -1;

263 DRRetranRemaining := N-1;

264 end;

Transition { 15 } takes care of the case where the AK has the wrong sequence number by
entering the error phase. Note that there are two outputs made in this transition, one to
the user to indicate that the connection will be broken and the other to the peer to break
the connection. Since an AK has been received, DTorAK is set to true. Note, however,
that the control state after this transition fires will be DRSENT, and the only transitions
that test DTorAK are from ESTAB. Figure 3 shows that the only transition from DRSENT to
a different control state is a transition to CLOSED, and whenever the control state leaves
CLOSED, DTorAK is reset to false in InitVar. Thus line 261 could be removed from the
specification without changing its behavior.6

266 { receive data in DT PDU }

267 from ESTAB to same

268 when PEER.DT

269 begin { 16 }

270 if Seq = RecvSeq then

271 begin

272 output USER.DatInd(UserData);

273 RecvSeq := (RecvSeq + 1) mod 2;

274 end;

275 { send AK with next expected sequence number }

276 output PEER.AK(RecvSeq);

277 DTorAK := true;

278 end;

Transition { 16 } handles receipt of data. If the sequence number in the PDU is the

6But should it be?
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expected one, then the data are presented to the user because this is the first time they
have been received and the sequence number is advanced to the next one. Even if the
sequence number is not the expected one, the PDU is acknowledged in case previous
acknowledgments were lost. As in transition { 14 }, DTorAK is set to true.

280 from ESTAB to same

281 when PEER.CR

282 provided not DTorAK

283 begin { 17 }

284 output PEER.CC;

285 end;

286
287 from ESTAB to DRSENT

288 when PEER.CR

289 provided DTorAK

290 begin { 18 }

291 { enter error phase }
...

296 end;

Transitions { 17 } and { 18 } select the actions to perform if a CR is received. Presumably
if a DT or an AK has already been received, then the peer Station must be in the ESTAB

state, so it should not be sending CRs any more. Thus a CR represents a protocol error.
On the other hand, if neither a DT nor an AK has yet been received, then the peer Station
may retransmit several CRs until it receives a CC in response.

298 from ESTAB to DRSENT

299 when PEER.CC

300 begin { 19 }

301 { enter error phase }
...

306 end;

307 when PEER.DC

308 begin { 20 }

309 { enter error phase }
...

314 end;

Here use is made of the Estelle’s transition nesting facility, which allows the specifier to
telescope transitions.

Repeating the keyword when in line 307 causes the enabling clauses preceding the when

in line 299 to apply to transition { 20 } in addition to the effect they have on transition
{ 19 }. Thus transition { 20 }, like transition { 19 } may fire only if the control state is
ESTAB, and if it fires, the control state will become DRSENT. This facility is not unique to
the when-clause. Any of the enabling clauses may be handled in this way. If any clause
in the series of enabling clauses of a transition (say T0) is repeated immediately following
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the body of the transition (thus indicating the enabling clauses of the next transition,
T1), then the clauses of T0 before that repeated clause apply to the successor transition
T1. Making use of this facility is one way to write well-structured specifications. In the
case only of a sequence of nested provided-clauses, a special form, provided otherwise,
may be used at the end of the sequence to represent the negation of the conditions of the
other provided-clauses. For example, in

from S1 provided C1 to T1 begin - - - end;
provided C2 to T2 begin - - - end;
provided C3 to T3 begin - - - end;
provided otherwise to T4 begin - - - end

provided otherwise means (not (C1 or C2 or C3)).

Using the keyword trans between two transitions prevents nesting; the presence of trans
prevents the enabling clauses of the transition before it from applying to those of the
transition after it.

Like transition { 18 }, transitions { 19 } and { 20 } represent reactions to protocol errors.

The handling of retransmissions of DT PDUs in transitions { 21 } and { 22 } is very similar
to the handling of retransmissions of CR PDUs in transitions { 7 } and { 8 }.

4.4.3 Disconnection Phase

338 { *** Disconnection Phase *** }

339
340 { receive disconnect request from user }

341 from ESTAB to DRSENT

342 when USER.DisReq

343 begin { 23 }

344 output PEER.DR;

345 DTRetranRemaining := -1;

346 DRRetranRemaining := N-1;

347 end;

The user indicates that the connection should be broken by issuing a DisReq. This is
handled in transition { 23 }. It has the effect of an abrupt disconnection: because the DT

retransmission counter is reset to -1, if the last message sent on behalf of the user was
not received, it will be lost, and the user will not be informed of this. This is unique to
the last message; for other messages, transition { 22 } presents the user with a DisInd if
it was unable to deliver the message.

349 { receive DC }

350 from DRSENT to CLOSED

351 when PEER.DC

352 begin { 24 }

353 DRRetranRemaining := -1;

354 end;
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If all goes as planned, the DR sent on line 344 will be cause a DC to be sent in reply. As
disconnection is not a confirmed service, the user is not informed that the disconnection
took place, so the Station simply resets the DR retransmission counter and returns to the
CLOSED state. An argument similar to that regarding line 261 could be made here as well;
line 353 is unnecessary.

356 { receive DR }

357 from DRSENT to CLOSED

358 when PEER.DR

359 begin { 25 }

360 DRRetranRemaining := -1;

361 end;

If a DR is received instead of a DC, presumably both users decided to end the connection
at the same time. The Station treats the DR just as it did the DC in transition { 24 }.

363 { receive DR }

364 from ESTAB to CLOSED

365 when PEER.DR

366 begin { 26 }

367 output USER.DisInd;

368 output PEER.DC;

369 DTRetranRemaining := -1;

370 end;

On the other side, when a DR arrives, the user is informed via a DisInd, the peer Station
is sent a DC, and the connection is abruptly broken.

372 { reply to retransmitted DR }

373 from CLOSED to same

374 when PEER.DR

375 begin { 27 }

376 output PEER.DC;

377 end;

If the DC was not received by the peer, it will retransmit the DR after this Station has
entered the CLOSED state. Transition { 27 } takes care of replying to such a DR.

Transitions { 28 } and { 29 } take care of retransmitting the DR if necessary. The are
similar to transitions { 7 } and { 8 } or transitions { 21 } and { 22 }, except that if the DR

retransmission counter reaches zero there is no point in entering the disconnection phase
again, so the Station merely goes to the CLOSED state.

Transitions { 30 } to { 38 } are to take care of possible interactions that should either not
arise or should be ignored. The arrival of an interaction for which no transition is appli-
cable is sometimes called an unspecified reception. The presence of such an unexpected
interaction at the head of a queue causes the queue to remain blocked until something
(e.g., the arrival of an interaction in another queue or the firing of a spontaneous transi-
tion) changes the state of the automaton. Unspecified reception often is the result of a
service violation. For example, if the user could be relied on not to make a DisReq when
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Figure 5: Communications Medium Service Diagram

there is no connection, then transition { 38 } would be unnecessary. Protocol specifiers
take differing attitudes toward this situation: some would leave out those transitions that
should not arise if the other modules behave as expected; others, recognizing the foibles
of human beings and their systems, explicitly deal with these unspecified receptions. This
completes the specification of the Station.

4.5 TransCode

It is now time to confess that we have purposely hidden the actual structure to be used
in this specification. The ISO OSI Reference Model [ISO, IS7498, clause 5.3] defines
communication between peer-entities in such a way that one would not expect two peer
Station modules to exchange PDUs directly. Entities at layer N make use of the services
provided by layer (N − 1). The actual communication in this case is thus between the
Abra module and the Cms communications medium module. The PDUs of the Station
are to be wrapped in a UnitReq which is delivered as a UnitInd. The service of the
Communications Medium is shown in figure 5.

We introduce a module named TransCode to deal with this. Like the Station, it is a
child of Abra. Its functions are to accept a PDU from the Station and wrap it into a
UnitReq that it presents to the Cms, and vice-versa, to accept a UnitInd from the Cms
and unwrap it and present it to the Station as an appropriate PDU. This behavior allows
each Station module to maintain the fiction that it communicates directly with its peer.

449 module TransCode process;

450 ip Up : PeerCode(coder);

451 Down : MSAP(user);

452 end;

The TransCode module has two interaction points, Up and Down. Up will be connected
to the Station while Down will ultimately be connected to the communications medium.
There are a dozen transitions, six to deal with encoding the six PDU types (see line 14 )
into UnitReq PDUs and six to deal with decoding them.
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The TransCode module is so simple that it has no control state, so the transitions have
neither a from- nor a to-clause. Alternatively, one could supply a single state, say S,
initialize the control state to S, and add from S to S to each transition. This seems
artificial and unnecessary, so Estelle does not insist on it. Other than that, there is
nothing new about Estelle in the specification of the TransCode module body, so we do
not deal with it further.

The actual structure of the system is that found in figure 6.

4.6 Binding

This new structure does add a level of complexity. The inner structure of the Abra module
is not supposed to be known to the rest of the specification. Thus the User module will
be connected to the Abra module, but the interactions that the User generates should
be handled by the Station module. This is cared for by an operation in Estelle called
attach. After a parent module attaches one of its external interaction points to the external
interaction point of a child, the interactions that arrive at the parent’s interaction point
are transparently7 passed to the child’s interaction point. If the attachment is broken
by a detach operation, any unprocessed interactions that were passed to the child as a
consequence of the attach operation are returned to the parent.8 In the other direction,
an interaction that is output through an interaction point that has been attached will
transparently be forwarded to the appropriate recipient.

4.7 Main Bodies

556 { main body for AbraBody }

557 modvar

558 S : Station;

559 XC : TransCode;

560 initialize

561 begin

562 { instantiate the modules }

563 init S with StationBody;

564 init XC with TransCodeBody;

565
566 { make connections }

567 attach USER to S.USER;

568 connect S.PEER to XC.Up;

569 attach MEDIUM to XC.Down;

570 end;

571 end; { AbraBody }

7No pun intended.
8In some cases, there may be interactions in a queue that resulted from connection operations, and

these will not be returned to the parent, nor will interactions in a common queue that were not received
through the detached interaction point be delivered to the parent.

25



. . . .

. . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

..

..

..

..

..

..

..

..

..

..

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

..

..

..

.

..

..

..

.

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

..

..

..

.

..

..

..

.

System A

User A

Abra A

Station A

TransCode A

. . . .

. . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

..

..

..

..

..

..

..

..

..

..

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

..

..

..

.

..

..

..

.

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

..

..

..

.

..

..

..

.

System B

User B

Abra B

Station B

TransCode B

Communications Medium

Figure 6: Actual Abracadabra System

26



572
573 { main body for Specification Abracadabra }

574 modvar

575 A, B : Abra;

576 UA, UB : User;

577 CM : Cms;

578
579 initialize

580 provided (N > 0) and (P > 0)

581 begin { 1 }

582 init UA with UserBody;

583 init UB with UserBody;

584 init A with AbraBody;

585 init B with AbraBody;

586 init CM with CmsBody;

587 connect UA.U to A.USER;

588 connect UB.U to B.USER;

589 connect A.MEDIUM to CM.CMA;

590 connect B.MEDIUM to CM.CMB;

591 end;

592
593 end. { Specification Abracadabra }

The main body of each module (and of the specification itself) occurs at the end of the
body (or specification). Lines 557–559 and lines 574–577 declare module variables to
be used to instantiate the modules necessary to make the system. The behavior of the
specification begins with the initialization of the main module, which as noted above
(section 4.1) may only fire if both N and P are positive. Lines 582–586 instantiate the
module variables with their bodies. A module may be instantiated with any body that is
defined for it. As a module is instantiated, it is initialized. This may cause other modules
to be instantiated, as in the case of line 584 , which causes the initialization beginning at
line 560 to take place. In turn, this causes the initialization at line 116 to take place.
Thus at the end of the initialization transition of the main body (lines 581–591 ), the entire
system will exist. In this specification there are not transitions outside the initialization
sections that alter the structure in any way, so it is static. Other specifications create
and delete module instances (e.g., when opening or closing a connection) and thus have
a dynamic structure.

When an Abra module is initialized, creates its two children modules, a Station module
S and a TransCode module XC, and in line 568 it connects the PEER interaction point of
the Station to the Up interaction point of the TransCode. And it attaches its own USER

interaction point to the USER interaction point of the Station S. Thus when the User

initiates an interaction, it will appear in the queue of the Station module, not the queue
of the Abra module, even though in line 587 and line 588 the User modules are connected
to the Abra modules, and when the Station module outputs an interaction, it will end up
in the queue of the User module. Similarly, the Down interaction point of the TransCode
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module is attached to the MEDIUM interaction point of the Abra module, so that UnitReq
and UnitInd interactions will be occur between TransCode and Medium modules without
intervention of the Abra modules.

4.8 Other Features

Naturally not all features of Estelle will appear in every specification. Some of those that
do not appear in this specification are discussed briefly below.

• disconnect — to undo the effect of connect. There are no consequences to the
contents of the queue of the interaction point that is disconnected.

• detach — to undo the effect if attach. Any interactions in the queue of the detached
interaction point that were placed there as a consequence of the parent’s prior attach
are returned to the parent by the detach.

• exported variables — to allow a module to share specified variables with its parent.
Siblings may not share variables with each other.

• release and terminate — two ways of deleting a module instance. A module may
delete its children but not itself nor its siblings. Release and termination are recur-
sive; i.e., a module that is being released first releases its children. The interaction
points of a module being released are disconnected or detached, as appropriate. As
a consequence, queues of the parent will receive unprocessed interactions from de-
tached interaction points, as discussed above (section 4.6). The contents of queues
of a module being terminated are simply discarded.

• all, exist, and forone — techniques for dealing with ordinal types or sets of modules.
The all construct permits statements to be iterated over each member of a finite
ordinal type or over each module in a domain. The exist construct tests if there
is a value or module satisfying a given criterion. The forone construct executes a
(compound) statement for a value or module that satisfies a given criterion.

• arrays of interaction points — to handle multiple users or providers, each capable
of the same kinds of interactions.

• priority — to control which transitions may fire when more than one is enabled.

The interested reader may wish to read other tutorials ([Dembinski and Budkowski, 1989],
[Linn, 1987], [Turner, 1993, chapter 2], [ISO/IEC JTC 1/SC 21, N5710]) for further
insights into Estelle and to the Estelle International Standard itself for authoritative
answers to questions.
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5 Testing

Whenever complex software is considered — and communications software is certainly
complex — questions of correctness must arise. One way of increasing reliability of soft-
ware is to specify it formally. For international standards specifying communications
protocols, this is especially important, as the implementations are frequently provided
by vendors from around the world who are not in direct contact with one another but
whose software products must work together. Given the sums of money involved and the
consequences of failure, it is certain that eventually questions of correctness will have to
be considered in courts of law.

There is a large literature concerning conformance of implementations to their specifica-
tions. Specification techniques based on extended finite automata admit generation of
test suites via state space exploration techniques, and Estelle is no exception (see e.g.,
[Favreau and Linn, 1987]). For general overviews of available testing methods, see [Sidhu,
1990], [Miller, 1990] and [Hogrefe, 1991].

In this paper, however, we shall focus on a narrower question: how can one begin to
test a specification? This should take place long before the more formal tests and the
conformance tests are done. Under ideal circumstances this testing goes along with de-
veloping the protocol. We call this early testing to differentiate it from the more formal
tests generally performed later in the development cycle.

Even though the Abracadabra protocol has been presented here as a completed protocol,
we can nevertheless begin to do some testing with it, the kind of testing that is usually
done during and immediately after designing the protocol. We shall discover that it has
some defects that are not well known. Much of this analysis comes from [Blumer and
Parker, 1990].

The first test of an Estelle specification is simply syntactic. Estelle compilers obviously
must spot undeclared identifiers and the usual range of errors detected by compilers. They
can warn of variables that are declared but never referenced, etc.

One of the next things to check for is unspecified receptions (discussed on section 4.4.3).
This is one of the earliest tests partly because it is one of the easiest: one need merely
produce a table of the transitions applicable to each state and input pair. Many tools
produce this information as an option (see e.g., the xref program or the fsm structure
produced by the Phoenix software [Blumer, 1986], or the information file fsm.inf produced
by the NBS (now NIST) compiler [NBS, 1987].)

Such a table is found in table 1. This shows the transition number for each possible input
and control state of the finite automaton that underlies the Station module. As can be
seen, there is indeed an unspecified reception in the Abracadabra protocol. If a CR PDU
is received in the state DRSENT, there is no transition to handle it.

It is reasonable to ask if this situation may arise. It does indeed, and in many different
ways. Here is the way shown by Blumer and Parker: Assume User B has attempted to
open a connection and that all N transmissions of a CR have failed, so transition { 8 } fires,
and the control state of Station B is DRSENT. Now User A attempts to open a connection,
so Station A fires transition { 2 } and enters the control state CRSENT. Station B receives
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Transition
Number CLOSED CRSENT CRRECV ESTAB DRSENT
ConReq 2 35 35 35 35
ConResp 36 36 10 36 36
DatReq 37 37 37 13 37
DisReq 38 6 11 23 38
CR 9 4 30 17, 18
CC 31 3 31 19 31
DT 32 32 32 16 32
AK 33 33 33 14, 15 33
DR 27 5 12 26 25
DC 34 34 34 20 24

Table 1: Transition table for Station

the CR from Station A but has no transition to deal with it. Station B will retransmit
its DRs and Station A will retransmit its CRs. Ultimately, Station B will fire transition
{ 29 } and enter the CLOSED state. It processes the CR in its queue, outputting a ConInd

to User B and entering the CRRECV state. One version of this sequence of events is shown
in figure 7.

From this point, there are several possible scenarios, depending on events and their order.
Although investigating these possibilities is actually quite interesting, all we need note
here is that this does represent an error in the protocol specification, one that can be
expected to occur. Blumer and Parker suggest enlarging the set CRignore (line 81 ) to
include the state DRSENT. Transition { 30 } will then discard any CR that arrives in the
state CRignore.

One of the next things to check for is that each of the transitions can be executed. This
entails checking that each state is reachable from an initial state and that there are no
incompatible requirements to executing any transition. For example, it might happen
that every possible way of reaching state S somehow entails setting a variable v to a
negative value, but that to execute the transition in question, v must be positive. In this
case, the transition cannot ever fire.

Technically, like many other things we should like to verify, this is unsolvable (i.e., equiv-
alent to solving the halting problem for Turing Machines). In other words, this cannot
be checked by any automatic procedure; rather each specification requires an individual
proof that each transition may be executed. Such a proof may become extremely compli-
cated, however it may usually be done by demonstrating a series of inputs that will allow
the transition to fire.

In providing such a demonstration, we usually rely on two things: the problem is easily
solvable for the underlying finite automaton using well-known techniques, and automatic
tools can provide irreplaceable help, especially for complex protocols. Thus, in the case
of the Abracadabra protocol we can indeed verify that all transitions are executable.

This question may actually be asked in two different ways: is it possible to execute the
transition at all? and is it possible to execute the transition if the modules interacting
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Figure 7: Unspecified Reception

with this module obey all the constraints placed on them? This latter question may be
more difficult to answer, because the inputs used to show that the transition may fire
must now satisfy additional constraints. On the other hand, there are transitions, e.g.
those dealing with errors, that are not expected to fire under normal conditions, and thus
this question is not one that should be asked about those transitions.

The Abracadabra protocol depends on parameters. These should be checked for reason-
able ranges. The amount of time P that must elapse before retransmission is often critical
to the functioning of a protocol like Abracadabra, so it is one of the things that should be
checked. If P is set to too high a value, throughput may suffer, but if it is set to too low
a value, then unnecessary retransmissions will take place. Indeed, if the product N × P
is too small, no communication can take place at all. Clearly P has to be set to a value
greater than the round-trip across the communications medium. However, the medium
was assumed to be able to delay messages, so there is no value that actually represents
the maximum round-trip. Blumer and Parker show that this can lead to problems.

A delayed CR can cause a disconnection as shown in figure 8. Here both Users start to
open a connection at the same time. Both Station A and Station B send CRs. The CR from
Station B is sufficiently delayed that Station A retransmits its CR. Each of these arrives
at Station B. The first causes B to enter the ESTAB state, and thus the second causes a
CC to be sent (transition { 17 }). Meanwhile, the arrival of the delayed CR causes Station
A to enter the ESTAB state, so when the CC arrives, transition { 19 } fires, breaking the
connection.
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Figure 8: Delayed CR

A similar problem can be demonstrated when an acknowledgment is delayed. Again the
connection is broken.

Another Abracadabra problem, pointed out in [de Saqui-Sannes and Courtiat, 1990],
occurs when one Station acts only as a receiver and all DRs sent to it are lost; it will never
realize that the connection has closed.

Other tests that help ensure that a protocol under development is performing as desired
include simulation. There are several Estelle simulation systems listed in the next section.
One that is particularly unusual is Grope [New and Amer, 1991], which shows the execution
of the protocol in animation.

Using paths through the underlying automaton, one may work backwards from the proto-
col specification and derive a service specification that can be compared with the original
service specification for correctness. Such a study is reported in [Sidhu and Blumer, 1986].

6 Tools

As mentioned above, testing cannot take place without tools. Indeed the available tools
affect how we investigate protocols.9 Besides the tools mentioned above, there are several
tools available for Estelle that have been reported on in the literature, including [Bull S.A.,
1989], [Bull S.A. and Marben S.A., 1989], [Phalippou and Groz, 1989], [Vuong and Chan,

9It is said that to someone with a hammer everything appears to be a nail.
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1989], [Sijelmassi and Strausser, 1991], and [de Saqui-Sannes and Courtiat, 1990].

In addition to commenting on the usefulness of Estelle and the tools that support it,
[Diaz et al., 1990] and [Chamberlain and Amer, 1990] also mention several systems and
protocols in various areas that have been specified in Estelle.

7 Conclusion

This paper has presented a tutorial in Estelle, including a detailed example of its use
based on the Abracadabra protocol. In addition, some of the initial tests to be performed
on a protocol were discussed. When applied to the Abracadabra protocol these exposed
some problems with it.

At present, there is growing use of Estelle. Among the most recent examples of its use (in
progress as this is written) is a proposed informative annex to the Transaction Processing
standard [ISO, DIS10026].
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Quemada, Juan, Mañas, Jose, and Vázquez, Enrique, eds. [1991]. Formal Description
Techniques, III. Amsterdam. Elsevier Science Publishers B.V. (North Holland).

Rose, Marshall T. [1991]. The Simple Book. Englewood Cliffs, New Jersey: Prentice Hall.

Schwartz, Mischa [1987]. Telecommunication Networks: Protocols, Modeling and Analysis.
Reading, Massachusetts: Addison-Wesley.

Sidhu, Deepinder P. [1990]. Protocol testing: The first ten years, the next ten years. In
[Logrippo et al., 1990] pp. 47–68.

Sidhu, Deepinder P. and Blumer, Tom P. [1986]. Verfication of NBS class 4 transport
protocol. IEEE Transactions on Software Engineering, COM-34, 781–789.

Sijelmassi, Rachid and Strausser, Brett [1991]. NIST integrated tool set for Estelle. In
[Quemada et al., 1991] pp. 543–546.

Tarnay, Katie [1991]. Protocol Specification and Testing. Budapest: Akadémiai Kiadó.
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