Probar tautologías por contradiccion usando árboles Lógica Matemática Otoño de 2012 Sección 101

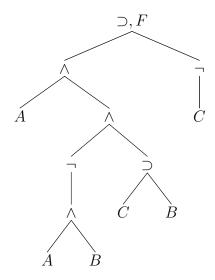
José de Jesús Lavalle Martínez 15 de octubre de 2012

Resumen

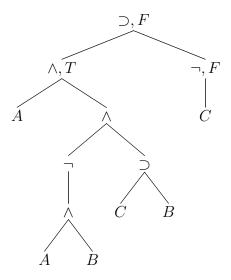
Documento para aprender a demostrar por contradicción si una fórmula es una tautología usando árboles sintáctico-semánticos. De paso como dibujar árboles en IATEX.

Para poder dibujar árboles tendrá que usar el paquete synttree mediante el comando \usepackage{synttree}.

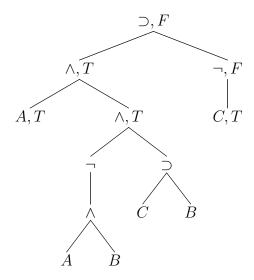
Suponer que la fórmula $(A \wedge ((\neg (A \wedge B)) \wedge (C \supset B))) \supset \neg C$ es falsa.



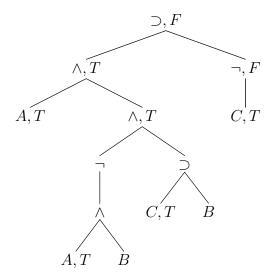
Para que la \supset sea falsa, el antecedente $A \land ((\neg (A \land B)) \land (C \supset B))$ (hijo izquierdo) debe ser verdadero y el consecuente $\neg C$ (hijo derecho) falso.



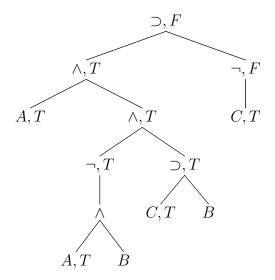
Para que la conjunción sea verdadera sus dos hijos deben ser verdaderos A y $\neg(A \land B) \land (C \supset B)$, para que la negación sea falsa su único hijo C debe ser verdadero.



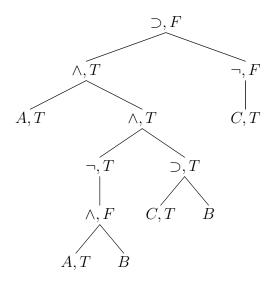
Como A y C son atómicos (hojas) propagamos a todas las hojas sus valores de verdad.



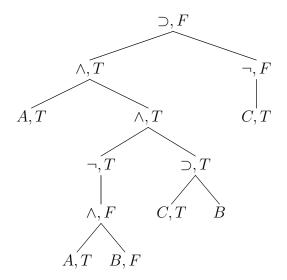
Para que la conjunción sea verdadera sus dos hijos, $\neg(A \land B)$ y $C \supset B,$ deben ser verdaderos.



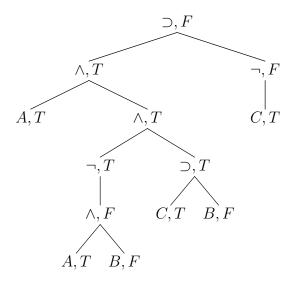
Para que la negación sea verdadera su único hijo $A \wedge B$ debe ser falso.



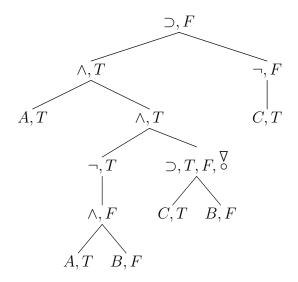
Para que la conjunción sea falsa, como el valor de A es verdadero, nos obliga a que B sea falsa.



Como B es atómico (hoja), podemos propagar sus valor de verdad.

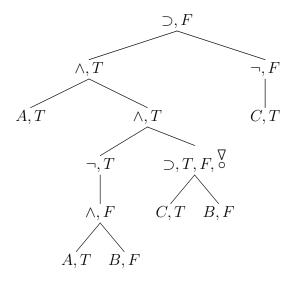


Pero que C sea verdadera y B falsa contradice que $C\supset B$ es verdadera.



Lo cual implica que es imposible falsificar la fórmula $(A \wedge ((\neg (A \wedge B)) \wedge (C \supset B))) \supset \neg C$, por lo tanto es una tautología.

Figura 1: Árbol sintáctico-semántico para la fórmula $(A \land ((\neg (A \land B)) \land (C \supset B))) \supset_2 (\neg C)$, con la leyenda en la parte superior de la figura.



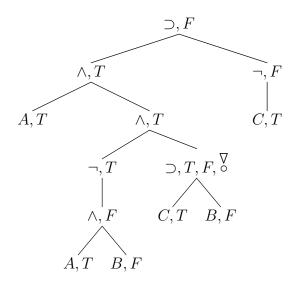


Figura 2: Árbol sintáctico-semántico para la fórmula $(A \land ((\neg (A \land B)) \land (C \supset B))) \supset_3 (\neg C)$, con la leyenda en la parte inferior de la figura.