An Introduction to Prolog

Helen Pain and Robert Dale

October 30, 2002

Contents
1 Introduction

2 Prolog Basics

2.1 Whatis Prolog?
2.2 Main concepts L. e e e e
2.3 An example Prolog program oo Lo
2.4 Facts, Questions and Variableso 0 L.
241 Facts oL
2.4.2 Questions e
243 Variables.
2.5 Prolog Terminology and Syntax
2.6 Expressing Relationshipsin Prolog
2.7 Unifying Terms L
2.8 Conjunctionso
2.8.1 Asking Questions that Contain Conjunctions
2.8.2 Using Variables in Conjunctions
2.9 Summary e
2.10 Exerciseso e e e

3 How Prolog Works

3.1 Introduction
3.2 Running, Consulting and Editing Prolog Programs
3.2.1 Starting Prolog

o O © ©

11
11
11
12
13
15
16
17
17
18
18
19

3.2.2 ConsultingaFile o oo

3.2.3 Seeing What’s in the Database
3.24 Getting Out of Prologo oo
3.2.5 Writing and Modifying Programs
4 Rules
4.1 Introduction Lo
4.2 Rules. . . o . e
4.2.1 Expressing Rulesin Prolog
4.2.2 Returning to the 'Drinks’ Example
423 Recursion e
4.2.4 Getting multiple answers Lo
4.3 Summaryo e e e
4.4 EXercises e e
4.5 Practical 1o
4.5.1 Getting Started Lo
4.5.2 Running Prolog
45.3 Gettingout of Prolog o Lo
4.5.4 Editing the Program 0 L.
4.5.5 Testing the Program
4.5.6 More Thingsto Add
457 Harder Things. oL
4.6 Practical 2: Writing a Program to Find Who is Where
4.6.1 Complicating the Program

5 Backtracking

5.1
2.2
9.3
5.4

Getting more than one answer

Representing Prolog’s behaviour using trees

Summary

Exercises

6 Built-in System Predicates

6.1

Introduction L .

26
26
26
26
28
30
32
34
34
36
36
36
38
39
39
40
40
42
43

44
44
45
49
51

53

6.2 The Example Program o L. 93
6.3 Asking the Database Some Questions 53
6.4 Using Rules 55
6.5 Adding Built-in or System Predicates for User Interaction 55
6.6 Looking for Multiple Responses Y4
6.7 Dealing with Arithmetic Operators 58
6.8 Summary e 61
6.9 Practical 3: consulting a simple database L. 63
6.9.1 The Basic books Program 63
6.9.2 The books Program—Simple Interactive Version 63
6.9.3 Writing your own Database 66
Lists 67
7.1 Introduction L 67
7.2 'The books3 Program o 67
7.2.1 The Example Database 67
72.2 TheRules o 67
723 Howlt Works 67
7.2.4 The member Predicate 70
7.2.5 The prlist Predicate 70
7.3 Lists e 70
7.3.1 Basics 70
7.4 Manipulating Lists oL Lo 71
7.4.1 Matching Listso oL 71
7.4.2 Constructing and Destructing Lists 72
7.5 Summary . .o oL oL e e 74
7.6 EXercises e e e 74
7.7 Practical 4: Simple Sentence Generation 7
Manipulating lists 80
8.1 Imtroduction Lo 80
8.2 The predicate member/2 80
8.2.1 Building the predicate 0oL 80

82.2 Cleaning Up e 81

8.2.3 Recursion in List Processing 0oL 82

8.2.4 And/Or Trees for Recursive Predicates 82

8.3 Other List Processing Predicates 83
8.3.1 Printing a list of elementso L 83

8.3.2 Checking that no element of a list of letters is a consonant 84

8.4 More List Processing Predicates 85
8.4.1 Finding the maximum of a list of numbers 85

8.4.2 Building new list structureso oL 85

8.5 Exercises e 86

9 How Programs Work 91
9.1 Tracingo 91
9.2 The Byrd Box Model of Execution 91
9.3 Debugging using the Tracer 95
94 Loading Files L 97
9.5 Some common mistakes L Lo 98
9.6 Summary e e 99

10 Further list processing predicates 100
10.1 Changing one sentence into another: the predicate alter/2. 100
10.2 Deleting the first occurrence of an element from a list: the predicate delete/2 103
10.3 Reversing a list: the predicates rev/2 and rev/3 104
10.4 Joining two lists together: the predicates append/3 105
10.5 EXercises o o oo e e e e 106
10.6 Practical 5: List Processingo . 112
10.6.1 Introduction Lo Lo 112

10.6.2 Basic List Processing Lo oo 112

10.6.3 More Advanced List Processing 114

11 Parsing in Prolog 116
11.1 Introduction L 116
11.2 Simple English Syntax oo 116

11.3 The Parse Tree e
11.4 Prolog Grammar Ruleso oo
11.5 Using the Grammar Rules 0.
11.6 How to Extract a Parse Tree
11.7 Adding Arbitrary Prolog Goals
11.8 Practical 6: Definite Clause Grammars
11.8.1 Introduction
11.8.2 The Basic Grammar oo
11.8.3 Structure Building oo oo
11.8.4 Adding Number Agreement
11.8.5 Extending the Coverage of the Grammar

12 Input/Output

12.1 Basic input/output facilities Lo L
12.2 File input/output L.
12.3 Tramslating atoms and stringso oL
12.4 Practicall 7: Input/Output
12.4.1 Introduction
12.4.2 Basic Terminal Input/Output
12.4.3 File Input/Output
12.4.4 Atoms and Strings

13 Morphology: A List Processing Application

13.1 Summary L e e e e e
13.2 Prolog Practical 8: Morphology: An Exercise in List Processing
13.2.1 Introduction
13.2.2 Basic Operations on Atoms and Strings
13.2.3 Morphological Processing

14 Top-down design: The Missionaries and Cannibals Problem

14.1 The Problem
14.2 Viewing the Problem as State Space Search
14.3 A Prolog Program to Solve the Problem

126
126
129
132
134
134
134
135
136

138
142
143
143
143
143

14.4 Problem Solution L
14.5 Where We Are So Far o
14.6 Prolog Practical 9: The Missionaries and Cannibals Problem
14.6.1 Introduction Lo Lo
14.6.2 Making it Worko Lo
14.6.3 Adding a Commentary L L.

15 Eliza in Prolog
15.1 Implementing Eliza oo
15.2 Some Comments on Prolog Layout

15.3 Prolog Practical 10: Eliza 0o

16 Problem Solving in Prolog: The Monkey and the Bananas

16.1 The Problem
16.2 The General Approach to a Solution
16.3 Representational Considerations
16.4 Doing All Thisin Prolog
16.5 Using Strips in Another Domain oL
16.6 Prolog Practical 11: A Simple Version of STRIPS

16.6.1 Basics e e e

16.6.2 Extensionso

17 Answers
17.1 Chapter 2 e e
17.2 Chapter 4 e
17.3 Chapter 5 L e
17.4 Chapter 7 e
17.5 Chapter 8 L e
17.6 Chapter 10 e

155
155
156
158

160
160
160
160
163
166
167
167
167

1 Introduction

What This Course is About

This course is an introduction to the programming language Prolog. By the end of the course
you should be able:

e to understand and run Prolog programs;
e to edit and modify Prolog programs; and

e to write simple Prolog programs.

The course assumes no previous knowledge of programming: even if you have previous
programming experience in other programming languages, you will find that Prolog is quite
different from conventional programming languages.

Access to the Computer

You can access the computer from a variety of different terminals around the university
(see the AIl Systems notes). In general, however, you will be using those in the School of
Informatics. Those used by the AIl course are situated in the undergraduate terminal room
(cl) on the first floor at 80 South Bridge.

Practical sessions take place at various times in the week: you will have already been assigned
to one of the practical groups. Demonstrators will be available during these sessions to help
you with any problems that arise.

You can also use the terminals in C1 outside of your practical session during working hours
(9am-5pm), as long as no other class is having a practical session. Outside of these hours
you can get access with a key and your smart card (see the course secretary in the ITO
office, 80 South Bridge, to get a key).

Terminals are also available elsewhere (at George Square Library, Appleton Tower, Pollock
Halls, and JcMmB). Also see the Systems page for further information.

The Rest of These Notes

These notes are organized in sections which correspond to material covered in the lectures,
plus some additional topics and exercises.

The contents of each of the sections are as follows:

Section 2: This section contains an introductory overview to Prolog. We describe the
main concepts in Prolog, and show an example Prolog program. We also introduce
the concepts of facts, questions and variables; the conventions embodied in Prolog
syntax; Prolog relations and unification of terms, and how Prolog queries can contain
conjunctions.

Section 3: We review the basic things you need to know in order to use Prolog under Unix.

Section 4: The bulk of the section looks at the notion of rules in Prolog. Recursion is also
introduced in this section.

Section 5: This section discusses in detail the use of backtracking in Prolog’s search
strategy.

Section 6: This section concentrates on Prolog built-in system predicates. To motivate
the use of these, we introduce a new example. It also describes how arithmetic operators
work in Prolog.

Section 7: This section focusses on the use of lists as a basic data structure in Prolog
programming. We modify the example introduced in the previous section to show how
lists can be used.

Section 8: In this section, we look more closely at list manipulation, and discuss a num-
ber of useful list processing predicates.

Section 9: This section explains how we can find out how Prolog programs work by tracing
them.

Section 10: Further list processing predicates are described in this section.

The material from here on is optional for AI1Ah.

Section 11: In this section of these notes, we show how Prolog can be used to parse sen-
tences in a natural language such as English, using dcg’s.

Section 12: Basic input/output facilities provided by Prolog are described in this section.

Section 13: Further input/output facilites are described in relation to an application to
morphology.

Section 14: Top-down design is illustrated through a problem solving example: Mission-
aries and Cannibals.

Section 15: An example of how to implement a simple Eliza program is described.
Section 16: This section describes a further problem solving example: the Monkey and
the Bananas problem.

Answers: Answers to exercises in the earlier sections are given in the final section.

As you proceed through this course, you will find that you hear a lot of jargon; you will
gradually come to understand what you need.

2 Prolog Basics

2.1 What is Prolog?

Prolog is a language; more precisely, it is a computer language or programming lan-
guage. Programming languages are to be distinguished from natural languages such as
English and French; however, as with natural languages, there are many different program-
ming languages (for example, Prolog, Basic, and Fortran), and there are different dialects of
each of these.

Computer languages such as Prolog are described as high-level languages: they are closer
to natural language than the lower-level languages that the computer itself uses (these
are usually known as machine code and assembler).

The basic mode in which you use Prolog is highly interactive. You ask Prolog a question,
this is interpreted by the computer, and a response is provided. There is a program that is
responsible for interpreting Prolog, called the Prolog interpreter.

Prolog is a one of a family of languages called logic programming languages, which are
based on logic. A Prolog program is a series of logical statements or assertions which are
evaluated by the Prolog interpreter.

2.2 Main concepts

Some of the main Prolog concepts that you will be introduced to are:

e facts;

e (uestions;

e logical variables;

e matching (or ‘unification’);
e conjunctions; and

e rules.

Each of these is described in more detail below.

2.3 An example Prolog program

Figure 1 shows an example of a Prolog program, along with some of the dialogue that might
take place between the user and the Prolog interpreter. Alongside (on the right) comments
tell you what each line ‘means’; each comment begins with a ‘%’.

7- listing.

hates (heather, whisky).
likes(alan, coffee).
likes(alan, whisky).
likes(heather, gin).

likes(heather, coffee).

drinks(alan, beer).
drinks (heather, lager).

yes
?- likes(alan, coffee).

yes

7- drinks(heather, lager).

yes
?- drinks(alan, lager).

no

lists the program

heather hates whisky

alan likes coffee
alan likes whisky
heather likes gin
heather likes coffee

alan drinks beer

heather drinks lager

is

it
is

it
is

it

it

is
it

is
it

is

true

true
true

true
true

that

that
that

that
that

alan likes coffee?

alan likes coffee
heather drinks lager?

heather drinks lager
alan drinks lager?

not true that alan drinks lager

Figure 1: An interaction with the Prolog interpreter

10

drinks (alan, beer).

[N/

predicate arguments

Figure 2: The structure of a fact

2.4 Facts, Questions and Variables
2.4.1 Facts

A fact asserts some property of an object, or states some relation between two (or more)
objects; it states that something is known to be true.

A fact is made up of a predicate (which states the relation or property) and a number of
arguments (which are the objects): see Figure 2.

A fact can contain any number of arguments; so, for example:

drinks(alan,beer,export,lorimers). has four arguments
likes(alan,coffee). has two arguments
listing. has no arguments

A Prolog program may have any number of facts. When a program is given to the Prolog
interpreter (loaded into Prolog, or consulted), the set of facts that are part of the program
represent all that is known to be true. They are really a set of logical assertions. Together
they are often referred to as the database. They have no real ‘meaning’, however: the
person writing the program defines their own interpretation of what they mean. Whilst it
might seem silly to interpret

drinks (beer,alan)

as beer drinks alan, there is nothing to stop us using this interpretation— it’s all the same
to Prolog. What is important is to be consistent, so we have to keep arguments that are
meant to refer to the same objects in the same argument slots.

2.4.2 Questions

If a question is asked by the user, the Prolog interpreter looks at the database of facts' that
it has to see if there is enough information to answer it. Given the example program we saw
in Figure 1, we might ask questions like the following:

! The database can also contain rules, as we will see later.

11

e What does Heather drink?

e Does Alan like coffee?

e Who drinks whisky?

The Prolog interpreter doesn’t understand English, however, so we have to re-express these
questions in Prolog itself. Taking the second of these questions as an example, we ask:

?7- likes(alan, coffee).

and the Prolog interpreter replies:

yes

The Prolog interpreter matches the question to each fact (or assertion) in the database, as
follows:

1.
2.

3.

First, Prolog finds a fact that matches the predicate in the question.
If this match succeeds, Prolog then matches the first argument to the predicate.

If this match succeeds, Prolog matches the second argument, and so on for the rest of
the arguments.

. If the match fails at any point, Prolog looks for the next assertion that the predicate

matches and tries again to match the arguments.

. If the predicate and all the arguments are successfully matched, the process stops and

the interpreter prints yes, meaning ‘there is a match—I can show this to be true’. The
goal of finding a match has been satisfied.

. If there is no match at all then no is printed, meaning ‘there is no match’: the goal of

finding a match cannot be satisfied.

2.4.3 Variables

Suppose the question we want to ask is What does Heather like?; some way has to be found
of asking the ‘what’. The goal is to find some ‘what’ such that Heather likes it; anything
that satisfies the question will do. In Prolog the question becomes:

?7- likes(heather,What).

Note that the ‘What’ begins with a capital letter. This is to indicate that it is a variable.
It performs a similar function to the word thing in English, or z in algebra (a mathematical
language). It can represent any object; its meaning can vary, and so it is called a variable.

The other arguments encountered until now represent particular people or specific objects:

12

alan
heather
whisky
gin
coffee
lager
beer

These do not change: they always represent the same object, and so are called constants.

Both variables and constants are examples of structures called atoms. They cannot be
broken down into smaller objects that mean anything to Prolog.

When a match succeeds, any variables are given the value of any constant that they match
to. This matching process is one of the very powerful facilities that comes free with Prolog;
the Prolog interpreter does this matching automatically and remembers what is matched to
what.

When a variable has no value, we refer to it as an uninstantiated variable. When it gets
given a value by the matching process, it is referred to as an instantiated variable.

So, above, if we match
?- likes(heather, What).

to
likes(heather, gin).

then we say that What has become instantiated to gin. The Prolog interpreter prints out
the values of any variables that have become instantiated in the process of matching:

What = gin
Note that the same variable can appear in different questions and provide different answers.
This is because the variable names only apply to each question: this is referred to as the
scope of the variable. In Prolog, the scope of the variables is said to be local, that is, they
only have the same value in a limited (local) environment. All the variables in the same
question with the same name become instantiated at the same time to the same value.
2.5 Prolog Terminology and Syntax

Prolog programs consist of three kinds of clauses:

e facts
e questions

e rules

13

Terms:

e 3 constant is a term
e 3 variable is a term

e a compound term is a term
Constants:

e an atom is a constant
e an integer is a constant

e a real number is a constant
Atoms are made up of:

letters

digits

the underscore

SymbOlS (+, _, *, /, \, A, <, >7 =; ~7 :’ * ?’ @7 #7 $’ &)

A quoted string is an atom.

Constants are used to refer to objects. Constants begin with lower case letters. Note that
all predicate names are constants—don’t use a variable for a predicate:

X(jane, jim).

Certain conventions are used when writing Prolog—in other words, Prolog, like other lan-
guages, has a syntax:

e All predicates start with a lower case letter.

e All variables begin with an upper case letter.?

e The format of each fact or assertion is:

a predicate followed by any number of arguments;
— the arguments are separated by commas and enclosed by round brackets;

— there is no space between the predicate and the opening bracket; and

a full stop follows the enclosing round bracket.

This is shown diagrammatically in Figure 3.

2Later, you will discover other ways of writing variables.

14

predicate(argi Secondarg, anotherarg)

relatlonshlp variable fU” stop

constants

Figure 3: The elements of a fact

e The predicate can be a string like son_of, drinks, likes, and so on.

e The arguments can be constants, variables, or even other assertions.

The Prolog interpreter prints the characters ‘| ?-’ to indicate that it is waiting for the user
to ask a question or to set a goal to be solved; we refer to these characters as the Prolog
prompt.

2.6 Expressing Relationships in Prolog
Suppose I want to say:
the capital of paris is France
In Prolog we might write this as:
has_capital(france, paris).

where we are expressing a relationship has_capital between 2 arguments, france and
paris. Note that the full stop is used to terminate the clause, and that objects are referred
to with words beginning with lower case letters. We can express a relationship with more
than two things:

ate(robert,curry,breakfast) .
Or one argument relations (usually called predicates):

ate_curry_for_breakfast(robert).
robert_ate_for_breakfast(curry).
robert_ate_curry(breakfast).

Or 0-argument relations:

15

robert_ate_curry_for_breakfast.

It is all a matter of how you choose to represent the relationships, which will depend on
what you want to do with them.

2.7 Unifying Terms

The process of matching is also referred to as unification. When two terms match we say
that they unify. It is by the process of matching or unification that variables get instantiated.
Unification is a two-way matching process. It operates on any pair of Prolog terms. For
example, unifying loves(john, X) and loves(Y, mary) results in loves(john, mary).
There is a predicate defined for us in Prolog that allows us to test whether or not two things
unify. Because it is provided by the system it is known as a system predicate. It is the
infix predicate =/2. Note that infix means that it is placed between the two things that are
being unified, and the /2 is known as the arity of the predicate, and indicates how many
arguments the predicate has. So, the predicate =/2 takes two arguments and tries to unify
them.

For example, we can unify the following sets of terms, resulting in the outcomes shown.
Some comments are given in () after each match.

Pairs of terms Outcome

la. ?- fred=X. X=fred vyes
(the variable X unifies with the constant fred)

1b. 7- c=letter(c). no
(a constant cannot unify with a one argument predicate)

1lc. 7- f(tee)=£(S). S=tee yes
(the predicate names are the same; the variable S unifies with
the constant tee)

1d. 7- father(john,tom)=father(tom,Who) . no
(the constants john and tom cannot unify)

le. ?- centre(a,X,c)=centre(Y,b,c). Y=a X=b yes
(the constant a unifies with variable Y, constant b with X)

1f. 7- colour(N,N)=colour(green,X). N=green X=green yes
(variable N unifies with constant green; variables N and X
match, so X becomes instantiated to green also)\footnote{A
variable will always unify with another variable. We refer to them then
as shared variables. If one then unifies with a constant or term, the
other shares that value also.}

1g. ?- first(sue,dave,bob)=first(N,dave,N). no

16

1h.

1i.

(variable N unifies with constant sue, bit it then will not
match in the 3rd argument with another constant bob)

?7- drink(beer(lorimers,eighty) ,Pub)=drink(What,mathers) .
What=beer (lorimers,eighty) Pub=mathers
(the first argument here is a term, which will unify with the

variable What)

?- havecar(metro)=havecar(Yes). Yes=metro
(variable Yes and constant metro unify)

?- f(X,Y,z)=f(z,a,Z). X=z Y=a Z=z yes
(X unifies with z in the first argument; Y with a in the 2nd and
Z with z in the 3rd.)

2.8 Conjunctions

2.8.1 Asking Questions that Contain Conjunctions

Earlier we saw how to ask Prolog simple questions. Suppose we wanted to ask more complex
questions like the following:

Is it true that both Alan and Heather like coffee?
Is there anything that Heather hates but Alan likes?

To answer these questions, we have to break them down into simpler questions, and ask each
of them, one after the other. In Prolog we do this as follows:

| ?- (questionl), (question2).

So, for example, we might write:

| ?7- likes(heather, coffee), likes(alan, coffee).

yes
| ?- likes(heather, gin), likes(alan, whisky).

yes
| ?- likes(alan, beer), likes(heather, beer).

Prolog takes each subgoal in the query (one at a time, going from left to right) and an
attempt is made to satisfy it. As each subgoal succeeds, the next is tried. If all the subgoals

17

succeed, then the question as a whole succeeds. If at any point one of the subgoals fails,
then the whole question fails.

The comma in the query here is read as and, and is referred to as the conjunction (the
subgoals being conjoined subgoals). So, if we have two assertions together that we want
to show to be true, then they each must be true. In logic, this is equivalent to saying that:

A and B is true if A is true and B is true.

2.8.2 Using Variables in Conjunctions

As with simpler questions, variables can appear in conjunctions too. However, if a variable
appears more than once in a series of conjoined goals it will always match to the same value:
i.e., if the variable What is instantiated to beer in one subgoal it will also be instantiated to
beer in all other subgoals in the same question.

| ?- likes(heather, What), likes(alan, What).
X = coffee 7
yes

| 7- likes(alan, Something), hates(heather, Something).

Something = whisky 7
yes

Variables with different names may or may not share the same instantiations, depending on
what they match to:

| ?- drinks(alan, X), likes(heather, S).

X = beer
S = gin 7
yes

| ?- drinks(X, Y), hates(X, Y).

no

Note that a query can contain any number of conjoined goals.?

2.9 Summary

The basic mode of operation of Prolog is thus as follows.

1. We provide Prolog with a question.

3This is why when you forget the full stop and go on to the next line it doesn’t matter: you might have
wanted to have a lot of subgoals that would not all fit on one line.

18

2. Prolog matches the question with assertions in a database,

e looking for exact matches of predicates and constants; and

e looking for variables to match to anything (including other variables).

In the next sections, we look at how Prolog works, then go on to introduce the notions of
rules and backtracking.

2.10 Exercises

Question 2.1 The predicate =/2 takes 2 arguments and tries to unify them. For each of
the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

2.1a ?7- Pear = apple.

2.1b ?- car = beetle.

2.1c ?7- likes(beer (murphys),john) = likes(Who,What).
2.1d 7- £(1) = F.

2.1e ?- name (Family) = smith.

2.1f 7- times(2,2) = Four.

2.1g 7- 5%3 = 15.

2.1h 7- £(X,Y) = £(P,P).

2.1i 7- alX,y) = a(y,2).

2.1j ?7- a(X,y) = a(z,X).

4 Answers to all exercises are given in the final chapter of these notes.

19

Question 2.2 The following Prolog program is consulted by the Prolog interpreter.

vertical(seg(point(X,Y),point(X,Y1))).
horizontal (seg(point(X,Y),point(X1,Y))).

What will be the outcome of each of the following queries?

2.2a 7- vertical(seg(point(1,1),point(1,2))).
2.2b 7- vertical(seg(point(1,1),point(2,Y))).
2.2c 7- horizontal(seg(point(1,1),point(2,Y))).
2.2d ?7- vertical(seg(point(2,3),P)).

2.2e ?7- vertical(S), horizontal(S).

Question 2.3 The following Prolog program is consulted by the Prolog interpreter.

parent (pat,jim) .
parent (pam,bob) .
parent (bob,ann) .
parent (bob,pat) .
parent (tom,1liz) .
parent (tom,bob) .

What will be the outcome of each of the following queries?

2.3a 7- parent(bob,pat).
2.3b ?7- parent(liz,pat).
2.3c 7- parent(tom,ben).
2.3d 7- parent(Pam,Liz).
2.3e 7- parent(P,C) ,parent(P,C2).

Question 2.4 The following Prolog program is consulted by the Prolog interpreter.

colour(bl,red).
colour(b2,blue).
colour(b3,yellow) .

20

shape (b1, square) .
shape(b2,circle).
shape (b3, square) .
size(bl,small).
size(b2,small).
size(b3,large).

What will be the outcome of each of the following queries?

2.4a

7- shape(b3,8).

?7- size(W,small).

?7- colour(R,blue).

?- shape(Y,square),colour(Y,blue).

7- size(X,large),colour(X,yellow).

7- shape (BlockA,square) ,shape (BlockB,square) .

?- size(b2,S),shape(b2,5).

?- colour(bl,Shape),size(X,small),shape(Y,circle).

Question 2.5 The following Prolog program is consulted by the Prolog interpreter.

film(res_dogs,dir(tarantino) ,stars(keitel,roth),1992).
film(sleepless,dir(ephron) ,stars(ryan,hanks),1993).
film(bambi,dir (disney) ,stars(bambi,thumper),1942).
film(jur_park,dir(spielberg) ,stars(neill,dern),1993).

What will be the outcome of each of the following queries?

2.5a

2.5b

?- film(res_dogs,D,S$,1992).

?- film(F,dir(D),stars(Who,hanks),Y).

?7- film(What,Who,stars(thumper),b1942).

21

2.5d Write the query that would answer the question:
"Who directed Jurassic Park (jur_park)?”

and give the outcome of the query.

2.5e Write the query that would answer the question:
”What film did hanks appear in in 1993 and who was the other star?”

and give the outcome of the query.

22

3 How Prolog Works

3.1 Introduction

This section deals with the basics of running Prolog programs.

3.2 Running, Consulting and Editing Prolog Programs
3.2.1 Starting Prolog

Giving the command prolog to Unix will get you into Prolog:
snoopy[18] : prolog
You'll see something like this:

SICStus 3 #5: Tue Aug 26 10:14:51 BST 1997
| -

This tells you that the dialect of Prolog that you are using is SICStus Prolog.

3.2.2 Consulting a File

When you get the | 7- prompt, type in the name of the file you want to load into the Prolog
database (i.e., the file to be consulted):

| ?- consult(family).
{consulting family...}
{filel consulted, 20 msec 1015 bytes}

yes
| 7-

or use the following abbreviated form instead (but don’t do both):
| 7- [familyl.

You will now have the contents of the file family in Prolog’s database. The Prolog interpreter
will know everything that is in this file.

23

3.2.3 Seeing What’s in the Database

You can see what facts and rules (i.e., what clauses) Prolog knows about at any point by
listing the contents of the prolog database:

| 7- listing.

Instead of listing the whole program, you can just list parts of it by using the predicate
listing and the name of the predicate to be listed:

| ?- listing(parent).

parent (A, B) :-
father (A, B).

parent (A, B) :-
mother (A, B).

yes

3.2.4 Getting Out of Prolog

Type halt to get out of Prolog:

| ?7- halt.

snoopy [19] :

3.2.5 Writing and Modifying Programs

We can write new programs or alter existing ones using the editor emacs. We can add some
new clauses to the file family; then if we go back into Prolog, and consult this file, the new
clauses will be known by the Prolog interpreter.

In general, when writing prolog programs or altering existing ones, you should do the fol-
lowing:

e Write the clauses out on paper first.

e Get into the editor.

e Add to or change the text of the program.
e Go into Prolog.

e Consult the file containing the program.

e List the contents of the database.

e Test the program.

e Work out any changes you need to make.

24

e Exit Prolog and start again.

Although it may seem a waste of time to work out the clauses on paper first, if you don’t
do this you may degenerate into hacking away at the program without having a clear idea
of what is really going on.

25

4 Rules

4.1 Introduction
In previous sections, we looked at a simple Prolog program, and introduced facts (or as-

sertions), questions, variables, syntax and conjunctions. In this section, we go on to
discuss rules.

4.2 Rules

4.2.1 Expressing Rules in Prolog

As we saw earlier, from the information that the Prolog interpreter has it can answer the
question:

| ?- drinks(alan, beer).

yes

If you had the same information—that is, that Alan drinks beer—and were asked the question
Does Alan like beer?, you would probably answer Yes. Knowing that Alan drinks beer allows
you to infer that Alan likes beer (on the grounds that people don’t usually drink things that
they don’t like). To see whether or not the Prolog interpreter is able to make the same
inference—i.e., to see if it is able to reason that If Alan drinks beer, then he must like it—the
question we must ask is:

| ?- likes(alan, beer).
The Prolog interpreter would reply:
no

meaning ‘I cannot prove that Alan likes beer’. To allow Prolog to make the same inferences as
we do, we have to provide the information about the relationship between liking and drinking
explicitly; i.e., we have to find some way of encoding the rule that would be expressed in
English as

If someone drinks beer then we can infer that that person likes beer.
or
We can say that someone likes beer if we know can prove that they drink it.

In Prolog this becomes:

26

likes(Person, beer):- % a Person likes beer if ...
drinks(Person, beer). % ... that Person drinks beer

Some things to note here:
e The first predicate-argument structure here is what you are trying to show to be true
(to prove), in the same way as you would try to satisfy any other assertion.
e The ‘:-’ is read as if.
e Whatever comes after the if and before the full stop is what has to be satisfied for the

whole rule to succeed.

In the present example, there is one subgoal to satisfy. So, to satisfy the goal 1ikes (Person, beer),
the subgoal drinks (Person, beer) must be satified.

The whole structure is generally referred to as a rule. A rule is one type of clause, just as a
fact or assertion is also a clause; in particular, a rule is a clause with a head (the left-hand
side of the ‘:-’) and a body (everything to the right-hand side). There can be any number
of subgoals in the body of the clause.

A fact or assertion is then a clause with no body.

Restrictions on the form of a rule:

e Only one goal may appear in the head.

e Any number of goals may appear in the body, separated by commas.
So, we can’t have:

happy(fred), powerful(fred):-
rich(fred).

We can have more than one goal in the body of a rule:
A man is happy if he is rich and famous.
can be expressed in Prolog as:

happy (Person) : -
man (Person) ,
rich(Person),
famous (Person) .

Here we have three conjoined subgoals.

To express:

27

Someone is happy if they are healthy, wealthy or wise.
in Prolog, we first rewrite it as

Someone is happy if they are healthy or
Someone is happy if they are wealthy or
Someone is happy if they are wise.

Then:

happy (Person) : -
healthy(Person) .

happy (Person) : -
wealthy(Person) .

happy (Person) : -
wise(Person) .

So the query ”is someone happy” translates as 7?- happy(Someone) . and will succeed if
any of the thrre rules succeed i.e. if either healthy(Someone) . or wealthy(Someone) . or
wise((Someone) . can be proved. We may want to be more specific:

A woman is happy if she is healthy, wealthy or wise.

In Prolog this becomes:

happy(Person) : -

healthy(Person), woman(Person).
happy (Person) : -

wealthy(Person), woman(Person).
happy (Person) : -

wise(Person), woman(Person).

Here we have to check in every rules that Someone is a woman. We could have avoided this
by using another rule in additional to the one above:

happy_woman(P) : -
woman (P) ,happy (P) .

4.2.2 Returning to the ’Drinks’ Example

If you want to write some conjunction of goals and use it generally (that is, you want to be
able to vary what the variables match to), then it would be more convenient to write a rule
for it (with all the conjoined subgoals as its body) than to keep rewriting all the conjoined
goals separately each time.

If, for example, you wanted to know about the drinks that two people both like, we could
write a rule bothlike (Person, Other, Drink) that is satisfied if both Person and Other
like the same Drink:

28

bothlike(Person , Other, Drink):- % Person and Other bothlike Drink if
likes(Person, Drink), % .. Person likes Drink and
likes(Other, Drink). % .. Other likes Drink

We would have to add this to the file in which we keep the rest of the clauses about what
people like and drink. We would use an editor to do this, and then go back into Prolog and
consult the amended file. The following goal (or query) could then be tried:

| ?- bothlike(alan, heather, S).

This would match to the head of the rule, with Person instantiated to alan (we will write
this as alan/Person), heather/Other and S/Drink.5 The first subgoal to satisfy will then
be:

likes(alan, Drink)
which will match with S/coffee. The next subgoal to satisfy is then
likes(heather, coffee)

which succeeds. There are no more subgoals, so bothlike(alan, heather, S) succeeds
with S instantiated to coffee.

| ?- bothlike(alan, heather, S).

S = coffee 7

You may also have noticed that, by this rule, if we asked what two people both like coffee
we would also find out that both Alan and Alan like coffee! Whilst this may seem silly (it
is not quite what we intended), it is perfectly sensible logically.

| ?- bothlike(A, B, coffee).

A = alan
B = alan 7
yes

If we want to also say that we don’t want to have both people being the same person, then
we have to explicitly state that they are not the same person. This means that we have to say
that the variables that match to the first two arguments of bothlike (Person, Other, Drink)
must not be instantiated to the same value; in other words, Person must not be the same
as Other. We add a subgoal to the rule in order to say this:

5Note that neither X nor S have a value at this point, but that they will share the same value as soon as
one or the other of them becomes instantiated by matching.

29

bothlike(Person , Other, Drink):- 9% Person and Other bothlike Drink if

likes(Person, Drink), % .. Person likes Drink and
likes(Other, Drink). % .. Other likes Drink and
Per\==0ther. % .. Person and Other are not the same

For the remainder of this section, however, we will leave this clause with the possibility of
Person and Other being the same.

4.2.3 Recursion

Suppose we decide that, given two people A and B, A likes B if A and B both like the same
drink. So we are saying:

some person likes some other person if
the first person likes some drink and
the other person likes the same drink.

We can express this in Prolog as follows:

likes (Person, Other):- % Person likes Other if ..
likes(Person, Drink), % .. Person likes Drink and
likes(0Other, Drink). % .. Other likes Drink.

This program is recursive, that is, it calls itself. Some recursive statements:

e An ancestor is a parent or a parent’s ancestor.

e A string of characters is a single character or a single character followed by a string of
characters.

An example recursive program:

talks_about(A,B) :-
knows (A,B) .

talks_about (P,R) : -
knows (P,Q),
talks_about(Q,R) .

In English:

You talk about someone if you know them or you know someone who talks about
them.

Given the database:

30

talks_about(A,B) :-
knows (A,B) .

talks_about (P,R) : -
knows (P,Q),
talks_about(Q,R) .

knows (bill, jane) .

knows (jane,pat) .

knows (jane,fred) .

knows (fred,bill).

and the goal:
| ?- talks_about(X,Y).

what do we get? Try this for yourself and see.

Another example: Given the database:

1. has_flu(X):- infected(X).
has_flu(X):- kisses(X,Y), has_flu(Y).

N

infected(john) .

kisses(sue, john).
kisses(john,ann).
kisses(sally,ann).
kisses(fred,sue).

~N O O W

the outcome of each of the following queries is given, together with some explanation. Note
that the above predicates are numbered for ease of reference.

a. 7- has_flu(john). yes

(rule 1:has_flu(john):-infected(john).
subgoal infected(john) matches 3.
all subgoals succeed, rule 1 succeeds)

b. ?- has_flu(sue). yes

(rule 1:has_flu(sue):-infected(sue).
fails.
rule 2: has_flu(sue):- kisses(sue,Y) ,has_flu(Y).
subgoal kisses(sue,Y) matches 4, Y=john
subgoal has_flu(john)
rule 1:has_flu(john):-infected(john).
subgoal infected(john) matches 3.
all subgoals succeed, rule 1 succeeds
all subgoals succeed, rule 2 succeeds)

31

c. ?- has_flu(sally). no

(rule 1:has_flu(sally):-infected(sally).
fails.
rule 2: has_flu(sally):- kisses(sally,Y),has_flu(Y).
subgoal kisses(sally,Y) matches 6, Y=ann
subgoal has_flu(ann)
rule 1:has_flu(ann):-infected(ann).
fails
rule 2:has_flu(ann):-kisses(ann,Y2) ,has_flu(Y2).
subgoal kisses(ann,Y2)
fails)

d. ?7- has_flu(fred). yes

(rule 1:has_flu(fred):-infected(fred) .
fails.
rule 2: has_flu(fred):- kisses(fred,Y) ,has_flu(Y).
subgoal kisses(fred,Y) matches 7, Y=sue
subgoal has_flu(sue)
rule 1:has_flu(sue):-infected(sue).
fails.
rule 2: has_flu(sue) :- kisses(sue,Y1) ,has_flu(Y1l).
subgoal kisses(sue,Y1) matches 4, Yi=john
subgoal has_flu(john)
rule 1:has_flu(john):-infected(john).
subgoal infected(john) matches 3.
all subgoals succeed, rule 1 succeeds
all subgoals succeed, rule 2 succeeds
all subgoals succeed, rule 2 succeeds)

4.2.4 Getting multiple answers

Returning to our previous example, the entire program that results from adding the recursive
likes/2 rule is shown in Figure 4; here are some examples of queries and responses given this
database:

| ?7- likes(alan, beer).

yes
| ?- likes(alan, heather).

yes
| ?- likes(alan, alan).

yes
| 7-

32

drinks(alan, beer).

drinks (heather, lager).

likes(alan, coffee).

likes(alan, whisky).

likes (heather, gin).

hates (heather, whisky).

likes(heather, coffee).

bothlike(Person, Other, Drink):-
likes(Person, Drink),
likes(Other, Drink).

likes(Person, beer):-
drinks (Person, beer).

likes(Person, Other):-

likes(Person, Drink),
likes(Other, Drink).

Figure 4: The complete program so far

Consider the query What are all the things that Alan likes?. In Prolog we would ask this by
saying:

| ?- likes(alan, What).
and in response we would get:

What = coffee 7 ;
The question mark here is Prolog’s way of saying ‘what do you want me to do next?’. If we
just type return, Prolog will say yes and return us to the Prolog prompt. However, if we
type a semi-colon before we hit the return key, the Prolog interpreter will look for the next
solution and print that:

What = whisky 7 ;

We can keep asking for more answers:

What = beer 7 ;
What = alan 7 ;
What = heather
yes

If we decide that this is enough we can stop here.

33

4.3 Summary

The behaviour we have just seen, where Prolog can provide us with more than one answer
to a query, raises some interesting questions:

How does Prolog get these solutions?

What order does it get them in?

What are we really doing (or what is the Prolog interpreter doing) when we ask it to
find the next solution?

Does it matter what order the clauses are in?

These are all questions that will be answered in the next section where we will be looking
at backtracking in Prolog, and the use of trees to represent what the Prolog interpreter is
doing.

4.4 Exercises

Question 4.1 The following Prolog program is consulted by the Prolog interpreter.

big(bear).

big(elephant).

small(cat).

brown(bear) .

black(cat).

grey (elephant) .
dark(Animal) : - black(Animal).
dark(Animal) : - brown(Animal).

What will be the outcome of each of the following queries?

4.1a 7- dark(X), big(X).

4.1b ?- big(X), grey(Y).

4.1c ?- dark(D), small(D).

4.14 ?7- big(Animal), black(Animal).
4.1e ?7- small(P), black(P), dark(P).

Question 4.2 The following Prolog program is consulted by the Prolog interpreter.

knows (A,B) : -
friends(A, B).

34

knows(A,B) : -
friends(A, C),
knows (C, B).

friends(john, alice).
friends(alice, tom).
friends(sue, john).
friends(sue, clive).
friends(fred, tom).
friends(tom, sue).

State whether the following queries succeed or fail. If a query fails, explain why.

4.2a ?7- knows(alice, john).
4.2b ?- knows(clive, sue).
4.2c ?7- knows(alice, fred).
4.2d ?7- knows(sue, john).

35

4.5 Practical 1

4.5.1 Getting Started

1. Log on and check that you have the file famtree.pl:
2. Copy it if you haven’t:
snoopy[14] cp /home/infteach/prolog/code/famtree.pl family

This makes a copy of the file famtree.pl in your area and calls it family.

4.5.2 Running Prolog
1. Give the command prolog to get into Prolog:
snoopy [15] prolog
You'll see something like the following:

snoopy[15] prolog

SICStus 3 #5: Tue Aug 26 10:14:51 BST 1997
| 7=

2. When you get the ‘| 7=’ prompt, type in the name of the file to be loaded into the
Prolog database (i.e., the file to be consulted):

| ?- consult(family).
{consulting /hame/helen/family.pl...}
{/hame/helen/family.pl consulted, 10 msec 1552 bytes}

yes
| ?-

or use the abbreviation for this instead (but don’t do both):
| 7- [familyl.

You will now have the contents of the family file in the Prolog database. The Prolog
interpreter will know everything that is in this file.

3. Look to see all the facts and rules (i.e., clauses) that Prolog knows about at the moment
by typing listing:

| ?- listing.

Don’t forget the full stop.

36

4. Instead of listing the whole program, just list parts of it by using the predicate listing
and the name of the predicate to be listed:

| 7- listing(parent).

parent (A, B) :-
father (A, B).

parent (A, B) :-
mother(A, B).

yes
| ?- listing(son).

son(A, B) :-
parent (B, A),
male(A).

yes

| ?- listing(daughter).

daughter(A, B) :-
parent (B, A),
female(A).

yes
| 7=

5. Now try the following goals, typing each in response to the ‘| ?-’ prompt. Guess
what you think will happen. See if it does. If it doesn’t quite do as you expect, can
you see why?

| ?- mother (mary,fred).

| ?- father(tom,sue).

| ?- father(cecil,fred).
| 7- male(jim).

| ?- father(tom,Who).

| ?- mother (Mother,fred).
| ?- mother(X,Y).

| ?- parent(fred,cecil).
| ?- daughter(jane,Who).

| ?7- son(What,How).

37

| ?- son(cecil,jane).

6. Try seeing if there is more than one match for some of the above goals: by typing *;’,
you ask Prolog to look for another solution.

| ?- mother (mary, S).

S = tom 7 ;

S = jane 7 ;
S = fred 7 ;
no

| 7-

‘no’ here means ‘no more solutions’.

Try this with other goals.

7. Think of some goals of your own for Prolog to satisfy. For example, how would you
ask the following?

e Is Tom the father of Jim and of Sue?
e Who is the father of Cecil and the son of Mary?
e Is there anyone who has a son and is themself the son of someone?

e Do Jane and Fred have the same mother?

A clue: remember the conjunction. You can ask if goal A is true and if goal B is true
by typing

A, B.

8. Think how you would write rules for sister, brother, aunt and uncle.
4.5.3 Getting out of Prolog
Type halt to get out of Prolog:
| ?- halt.

You’ll see that you get the unix prompt again:

| ?- halt.

snoopy [16]

38

4.5.4 Editing the Program

We can alter the file family by using the editor ue (Emacs).

We can add some new clauses to the file. Then if we go back into Prolog and consult this
file, the new clauses will be known by the Prolog interpreter.

Because we have made the changes in the file itself, we can save them to be used again, and
we can also change them easily (for example, if we make a mistake in writing the clauses).
1. Get into the editor by typing the following:
snoopy[16] emacs family
2. Add some more people to the database.

3. We could also add the grandparent rule. You can put this anywhere in the file you
like.

grandparent (Grandparent, Grandchild):-
parent (Grandparent, Parent),

parent (Parent, Grandchild).

4. Save the file by typing CONTROL-X, CONTROL-C, or select save from the emacs menu.

You are now back at Unix command level.

4.5.5 Testing the Program
1. Look at the file to see your latest version.
snoopy[17] more family

2. Get into Prolog, and consult your new version of family.

3. Try out some goals that make use of the new clauses you’ve added. If you spot any
errors, you will need to edit the file again to alter it.

snoopy [19] prolog
SICStus 2.1 #9: Mon Jul 11 10:16:09 BST 1994
| ?- consult(family).

{consulting /usr/local/dai/docs/dai/teaching/modules/1-prolog/code/famtree.pl..

{/usr/local/dai/docs/dai/teaching/modules/1-prolog/code/famtree.pl
consulted, 10 msec 2784 bytes}

yes
| ?- listing.

39

-3

4.5.6 More Things to Add

Try adding brother/sister and aunt/uncle clauses:

write them out on paper first;
get into the editor;

add to or change the text;

get back into Prolog;

consult the file;

list the database;

test the new clauses;

look for any changes needed; and

start again.

4.5.7 Harder Things

If you get this far, and are quite happy, then try something harder.

1.

2.

How would you add facts and rules (i.e., clauses) to the database to give information
about people’s ages, and to be able to answer questions like Is Fred older than Jim?
or How old is Sue?

Some hints:
e You could have a clause called age with two arguments, one for a person’s name
and the other for that person’s age; for example:

age(fred,30).
age (mary,72) .

e You can compare ages using ‘>’, which means ‘is greater than’. X > Y is true (the
goal succeeds) if whatever matches to X is greater that whatever matches to Y.

So, if X becomes instantiated to 72 and Y to 30, then the goal X > Y would succeed.
Try:

| 7- age(cecil,X), age(mary,Y), Y>X.

(you have to add some ages to the database first).

There might be a rule
is_older(01dPerson, YoungPerson)

which is true when the 01dPerson is older than the YoungPerson.

The whole rule, if we were comparing Mary and Cecil’s ages, would be

40

Mary is older than Cecil if
we know Mary’s age and
we know Cecil’s age and
Mary’s age is greater than Cecil’s age.

Try to write this rule in Prolog.

. We could have different rules for cases where we don’t know everyone’s age, but we
know that if Fred is the parent of Cecil then Fred must be older than Cecil. See if you
can write the corresponding Prolog rule.

. We might try to write a rule that looks like this:

Mary is older than Cecil if
Mary is older than someone and
that someone is older than Cecil.

We are getting into more hairy ground here with clauses that have subgoals with the
same name as themselves. If a clause calls a clause of the same name (i.e., if it has
itself as a subgoal), we say that it is recursive.

41

4.6 Practical 2: Writing a Program to Find Who is Where

This practical is about writing a program to incorporate information about the location of
people and their phone numbers. Your program should be able to answer questions like
Where is Fred? and What is Fred’s phone number? (given in appropriate Prolog terms, of
course). Your program will also know about people visiting others and how to contact them.

1. Write predicates to incorporate the following information:

Helen has room F5.
Frank has room E6.
Paul has room F9.
Han has room E6.
Robert has room F9.
Dave has room E10.
Henry has room E12.
Janet has room E11.
Graeme has room E13.

For each fact, use a predicate room with two arguments: the first argument will be the
person, and the second the room number.

2. Use MicroEmacs (ue) to put these clauses into a file on your area. Check that there
are no errors. Then go into Prolog and consult this file.

3. Test the program by asking questions such as:

Which is Dave’s room?
Who has room F9?

You have to rephrase the questions in Prolog, of course.

4. Add some more clauses to store the telephone number for each room. Use a predicate
phone with two arguments (hereafter referred to as phone/2): the first argument should
be the room number and the second should be the extension number. The extensions
are as follows:

Room Tel No.
E10 231
E12 233
E11 244
E13 237
F5 242
F9 239
E6 247

5. Again, use the editor to edit your original file, then go back into Prolog and consult
the file and test it. Ask questions like:

42

Which room has extension 2397
What is room E6’s extension?

6. Add a rule that will allow you to find out a person’s phone number, if you know their
room number and the phone number for that room. Use a predicate ring/2, whose
first argument should be the person and second argument their phone number. So, a
declarative reading for the rule you have to write might be something like

P can be rung at number N if P is in room R and room R has number N.

7. Again, edit the file, consult it and test it.

4.6.1 Complicating the Program

Suppose there are other people we know about, but instead of knowing their room numbers,
we know whether or not they are visiting the office of someone else we know about. In this
section, we’ll incorporate this kind of information into the program.

1. To find out where someone is, first you would check to see if you have their room
number, and if not, you would then check to see if they are visiting someone else and
you have that person’s room number.

Add the following information, using a predicate visiting/2:

Alan is visiting Helen.
Liam is visiting Paul.
Jane is visiting Alan.

Also, add a rule that tells you how to find people: you can find person P if they are
in their room, or (if that fails) you can find person P if they are visiting person Q and
you can find person Q.

Use a predicate £ind/2, the first argument being the person you want to find and the
second being the room that they are found in (even if it is the room of the person they
are visiting).

2. Edit the program, run it and test it by asking the following questions and some others
of your own:

Who is Alan visiting?
Where can you find Dave?

Where can you find Jane?
Who is in room F9?

3. If you alter the predicate ring, so that it has the subgoal of find(Person,Room)
instead of room(Person,Room), you should be able to get the phone number you need
to know in order to contact any person, even if they are visiting somebody else (or
even if they are visiting someone who is already visiting someone!).

Do this and test it: find everyone’s phone numbers.

43

5 Backtracking

This section deals with Prolog’s search strategy, explaining how the Prolog interpreter back-
tracks to get more than one solution to a problem. The idea of using trees to represent the
way that the Prolog interpreter searches for solutions is also introduced.

5.1 Getting more than one answer

The version of the drinks program that we will use below is shown in Figure 5. The clauses
are numbered here to make it easier to refer to them later. Note that we are using a more
general version of clause 9 here than that introduced earlier: we have substituted a variable
for the occurences of beer in the corresponding rule.

Given this database, the question What are all the things that Alan likes? will cause the
following answers to be generated:

| ?- likes(alan, What).

What = coffee 7 ;
What = whisky 7 ;
What = beer 7 ;
What = alan 7 ;
What = heather 7 ;

After this solution we get no more; instead, the program seems to stop working, and we hear
nothing back from Prolog. In some implementations of Prolog, we will be presented with an
error message like the following:

%%h% Local stack overflow - forced to abort %%

In sicstus Prolog, the program doesn’t come back at all. To restore things to normal, you
have to type a Control-C character (hold down the key marked CONTROL or CTRL, and press
the ‘c’ key while the CONTROL key is depressed).

Prolog will then respond with

~C
Prolog interruption (h for help)?

At this point, you should type a to abort the program. Prolog will respond with

{ Execution aborted }
| 7-

Why this problem occurs will become clear below; for the moment, we will focus on how the
Prolog interpreter gets all these solutions to the question.

44

drinks(alan, beer).
drinks(heather, lager).
likes(alan, coffee).
likes(alan, whisky).
likes(heather, gin).
hates(heather, whisky).
likes(heather, coffee).
bothlike(Person, Other, X):-
likes(Person, X),
likes(Other, X).
9. likes(Person, Drink):-
drinks(Person, Drink).
10. 1likes(Person, Other):-
likes(Person, Drink),
likes(0Other, Drink).

O NSOt WD

Figure 5: The complete drinks program

5.2 Representing Prolog’s behaviour using trees

The first solution to the query used above comes from the first match of 1ikes(alan, What)
with likes(alan, coffee), so we have the instantiation What/coffee.

If we take all the clauses in the database in order, this is the first clause to match (clause 3
in the table above). We can represent this as a tree with the root node being the top level
goal (likes(alan, What)) and its daughter nodes being either:

e subgoals that must be satisfied for this top level goal to succeed;
e an indication of success (shown as () where this goal can succeed directly; or

e an indication of failure (shown as @) where there is no match that can made, either
directly or if other subgoals are satisfied.

The arcs of the tree will be labelled with the number of the matching clause, and alongside
will be written any instantiations that are made in the process of matching. Our first solution
is thus as shown in Figure 6.

If we want to find other solutions, what we are doing (in effect) is failing the match that we
have just found and saying ‘Look for the next one’. Whenever a match is made, the clause
that matches is noted and any instantiations are also noted by the interpreter. If we say
‘Go back and redo that match’ (by typing ;’) then the search for a solution continues from
where it left off. All instantiations made by this last match (that has now been made to fail)
are forgotten. So here, the Prolog interpreter ‘forgets’ What/coffee, then looks for the next
clause (after clause 3) that will match.

This will be clause number 4, with What/whisky (What instantiated to whisky); this is shown
in Figure 7.

45

| ?- likes(alan, What).

What/coffee

O

What = coffee

Figure 6: The first solution

| ?- likes(alan, What).

What/whisky
What/coffee

® O

What = coffee What = whisky

Figure 7: The second solution

46

| ?- likes(alan, What).

What/coffee drinks(alan, What)

® What/whisky

What = coffee
1 | What/beer

® O

What = whisky What = beer

Figure 8: The third solution

With game playing programs, we can draw a tree to show all the possible or potential paths
to a solution (all the legal moves); here, we use a slightly different kind of tree here to show
the solutions to the query.

After the match with clause 4, there are no more simple assertions that match. The next
match is with clause 9: in this clause, alan matches Person and What matches Drink. This
is a rule, however, so now we have to prove the subgoal in the right-hand side of the rule.

We represent the subgoal explicitly in the tree, and look for matches for it. This sub-
goal is treated as if it is a completely new goal, so a match is attempted for the subgoal
drinks(alan, What).

Prolog will look through the clauses in the database from the beginning until a match is
found; in the present case, we get a match with clause 1. So, the subgoal drinks(alan, What)
succeeds with What/beer. Since all of its subgoals have been satisfied, 1ikes(alan, What)
also succeeds. The corresponding tree is shown in Figure 8.

On redoing after this match, the interpreter will look for another match for drinks (alan, What)
first, forgetting the match of What to beer.

There is no other match for this goal, so Prolog will go back further up the tree and see if it
can redo the previous goal. This means looking for another match for 1ikes(alan, What)
after clause 9.

There is a match in clause 10. However, to satisfy clause 10, two new subgoals must be
satisfied first. These are 1ikes(alan, Drink) and likes(What, Drink).

Note here that because What in the goal matches to Other in clause 10, both variables will
share the same value. The variable called Drink in the rule is a new one, so the Prolog
interpreter generates some new name for it. This will eventually get a value on matching,
but will not be passed back to the top level goal (simply because it doesn’t appear in it).

47

| ?- likes(alan, What).

3
What/coffee

What = coffee

9

drinks(alan, What) 10
What/whisky

4

1| What/beer

X
What = whisky likes (What, Drink)

®

What = beer _ . .
likes(alan, Drink)

3| What/alan
3 |Drink/coffee

Drink:C>= coffee WhatC>= alan

Figure 9: The fourth solution

Because there are now conjoined subgoals to match (1ikes (alan, Drink) and likes(What, Drink)),
these are both drawn in the tree and joined together to indicate that they both have to be
satisfied before the goal above them (their parent) can be satisfied; see Figure 9.

So, the first subgoal to be matched from clause 10 is likes(alan, Drink), which suc-
ceeds with D/coffee (as the first call of likes(alan, What)). The second subgoal now
becomes likes (What, coffee). The first match to this new subgoal will be What/alan. So
likes (What,coffee) succeeds with What/alan.

It may not make to much sense in English to say Alan likes himself if he and himself both
like coffee, but logically it is fine.

If we redo once more, we go back to the last goal that succeeded, and redo it (that is, we
fail the last goal and look for the next match). In the present case, this means we forget
What/alan and look for another solution to likes (What, coffee).

This will match to clause 7 with What/heather, as shown in Figure 10.

Things get messier from here on. The last goal to succeed was likes(What,coffee) with
What/heather (from clause 7); we try and redo this. The next clause that may give a solution
to likes (What,coffee) is clause 9, which could be paraphrased here as What likes coffee if
What drinks coffee. So, likes (What, coffee) succeeds if subgoal drinks(What, coffee)
succeeds. This fails altogether and we redo again.

Next we try the match with clause 10, meaning that What likes coffee if What likes SomeD
and coffee likes SomeD.® We get a first match to this with What/alan and Somedrink/coffee;
so the second subgoal 1ikes (D, SomeD) is now instantiated to likes(coffee, coffee).

6We will introduce new variables names from here on to make it easier to see what is happening.

48

| ?- likes(alan, What).

3
What/coffee

What = coffee

likes(What, Drink)

What/whisky

® L O
What = whisky What = heather

What = beer
likes(alan, Drink)
3 |Drink/coffee

Drink = coffee

Figure 10: The fifth solution

Clauses 1 to 8 fail, and clause 9 is tried: 1ikes(coffee, coffee) ifdrinks(coffee, coffee).
This fails, so clause 10 is tried again.

likes(coffee, coffee) if likes(coffee, D2) and likes(coffee, D2)

This means we try again on likes(coffee, D2); again, clauses 1-9 all fail, and so we try
clause 10:

likes(coffee, D2) if 1ikes(coffee, D3) and likes(D2, D3)

Our new subgoal is likes (coffee, D3), which again fails to match clauses 1-9, and so once
more we have clause 10:

likes (coffee, D3) if 1likes(coffee, D4) and 1likes(D3, D4)

which creates a new subgoal ...

As you may have realised by now, we are never going to get a solution to this, and the
program will keep on trying to find new subgoals to match for clause 10, which each in turn
call clause 10, and so on. We have an infinite loop here.

5.3 Summary
You should have some idea now about how different solutions to a goal are achieved, and

how we can use tree to represent ‘getting all the solutions’. We will call this particular kind
of tree an augmented AND/OR tree, referred to hereafter as an AND/OR tree.

49

?- likes(alan, What).

likes(What, D)

What = alan
likes (What, SomeD) likes(D, SomeD)

X What/alan

What = heather SomeD/coffee 10

O likes(D, D2) likes(SomeD, D)

A

likes(D, D3) likes (D2, D3)

A

likes(D, D4) likes (D3, D4)

Figure 11: The infinite loop

a0

In the next section, we will use a different example that includes a simple database and
clauses to help us answer questions about the contents of the database. Over the next few
sections, we’ll extend the program in various ways to make it easier to use.

5.4 Exercises

For each of the following programs, say if the query given fails or succeeds. Give any bindings
made as a consequence.

Question 5.1

a:-b,c.
b.
c:-d.
d:-e.

Question 5.2

B H o0 T T o p
|
[=]

Question 5.3

do(X):-a(X),b(X).
a(X):-c(X),dX).

a(X):-e(X).
b(X):-f(X).
b(X):-c(X).
b(X):-d(X).
c(1).
c(3).
da(3).
a(2).
e(2).
£(1).
5.3a ?7- do(1).

51

5.3b

5.3c

5.3d

?7- do(2).

?7- do(3).

?7- do(A).

52

6 Built-in System Predicates

6.1 Introduction

In this section, we introduce a new example. This is a simple program that represents
knowledge about books, their publishers and the shops that stock these publishers. Over
the next sections, this program will be extended in a number of ways to make it easier to
use. In order to do so, we’ll make use of system predicates or built-in predicates.

6.2 The Example Program

The program shown in Figure 12 will be referred to as books1, and will be the simplest
version of the program that we will use.

The program contains a number of different predicates:”

e The predicate stocks/2 has two arguments: the first represents the name of a book-
shop, and the second the name of a publisher stocked by that shop.

e The first argument of book/2 is a book title, and the second is the book’s publisher.

e The open/1 and closed/1 predicates indicate whether particular shops are open or
closed.

6.3 Asking the Database Some Questions

We can ask Prolog questions about this database. The sort of questions we might want to
ask, in English, are things like:

e Which shop stocks Virago?
e Who publishes ET Rides Again?
e Where can I buy I Claudius?

In Prolog, the first two of these questions would be:

| ?- stocks(Shop, virago).

| ?- book(et_rides_again, Publisher).

The third question is a little more complicated. To answer Where can I buy I Claudius?, we
need to answer a number of questions as follows:

"Note: a predicate is a collection of clauses with the same predicate name and the same number of
arguments; the number of arguments of a predicate is the arity of the predicate.

23

stocks(james_thin, sfipubs).
stocks(james_thin, virago).
stocks(james_thin, penguin).
stocks (menzies, sfipubs).
stocks(menzies, sams).

stocks (better_books, penguin).
stocks (better_books, virago).
stocks (edinbooks, sfipubs).
stocks (edinbooks, virago).
stocks(edinbooks, sams).

book(son_of_et, sfipubs).

book(et, sfipubs).

book (i_was_a_teenage_robot, sfipubs).
book(et_rides_again, sfipubs).
book(biggles_and_wendy, virago) .

book (freda_the_fire_engine, virago).
book(dict_of_computing, penguin).
book(i_claudius, penguin).

book (of _mice_and_men, penguin).

book (cookbook, sams).

open(menzies) .

open (better_books) .
open (edinbooks) .
closed(james_thin).

Figure 12: The books1 program

o4

e Who publishes I Claudius?
e What shop stocks this publisher?

e Is this shop open?
To do this in Prolog, we need a conjunction of goals:
| 7- book(i_claudius, Publisher), stocks(Shop, Publisher), open(Shop).
and in this case the answer would be:

Publisher = penguin,
Shop = better_books 7?7

Note that the first instantiation of Shop would be james_thin, but this would fail in the
attempt to match the third goal; the Prolog interpreter would then backtrack and redo
the second goal, instantiating Shop to better_books, after which open(better_books)
succeeds.

6.4 Using Rules

If questions about where books can be purchased are to be asked often, it is sensible to write
a rule to save repetition:

canbuy(Book, Shop) :-
book (Book, Publisher),
stocks (Shop, Publisher),
open (Shop) .

We can now ask simply:

| ?- canbuy(i_claudius,Shop).
Shop = better_books 7
yes

| 7=

6.5 Adding Built-in or System Predicates for User Interaction

We can now go on to make the program more interesting and interactive by using a number
of predicates provided by the system. These come for free and do not have to be defined by
the user. They are called system predicates or built-in predicates. One example of a
system predicate that we have already encountered is the predicate 1isting/0.

95

| 7- go.

What book would you like to buy?

|: et.

You can buy et at menxzies.

Would you like another book?

|: yes.

What book would you like to buy?

| : noddy_and_big_ears.

I don’t know where you can buy that book, sorry.
Would you like another book?

|: yes.

What book would you like to buy?

|: biggles_and_wendy.

You can buy biggles_and_wendy at better_books.
Would you like another book?

|: no.

I hope I was of some help to you. Have a nice day.
yes | 7-

Figure 13: An interactive session with the books program

| ?- listing.

This shows all clauses currently in the Prolog database. listing/1, on the other hand,
takes a predicate name as argument and lists all the clauses with that predicate name: so,
for example

| 7- listing(book).

shows all the clauses that have the predicate name book.

The Prolog interpreter prints out the values of all variables appearing in the top level goal,
but does not print the values of any other variables which are instantiated during the process
of satisfying the top level goal. The printing of variables and their values is really just a side-
effect of the matching process; it would be better if we had explicit control of the printing of
variable values. The system predicate write/1 gives us this control. There is also a system
predicate read/1 which allows a value to be given to a variable by being typed in by a
user. Both these predicates take a single argument that can be instantiated to any term:
that is, a variable, a constant, a number or any other atom, or a clause. Atoms include
characters enclosed in single quotes, such as ‘What book would you like?; this permits strings
of characters commencing with capital letters and containing spaces to be written out.

So if we wanted another user to use the books program, we could make it interact with the
user, having the program ask questions and read the user’s responses. The dialogue might
go something like that shown in Figure 13 (program output is printed here in italics).

To carry out this dialogue, we need to augment the program by adding a predicate that:

e asks the user what book they would like;

26

e reads the reply;
e finds where the book can be bought; and

o tells the user.
We might call this predicate askbook, and it might look something like the following:

askbook: -
write(’What book would you like to buy?’), nl,
read(Book), nl,
canbuy (Book, Shop),
write(’You can buy ’),
write(Book),
write(’ at ?),
write(Shop),
write(’.?).

The system predicates used here are write/1, read/1, and n1/0. nl/0 has the effect of
printing a new line.

When the read/1 predicate is called, the interpreter prints a new prompt, ‘| :’, and waits
for the user to type a term terminated by a full stop. The value of the variable argument
of read/1 becomes instantiated to the term the user types. This provides a way to input
values to a program.

If the book whose name was input does not exist or cannot be bought—that is, if the
canbuy/2 predicate fails—the Prolog interpreter will attempt to backtrack through nl, read,
and write. These predicates cannot be re-satisfied (or redone), so an attempt will then be
made to redo the predicate askbook/2. If there were no other askbooks/2 clause, the whole
program would fail here. However, we can add a second clause that simply writes a message
to the user (telling them that the book is unknown) and succeeds:

askbook: -
write(’I don’’t know where you can buy that book, sorry.’).

Note the use of the double single quote here to allow us to print a single quote as part of a
string that is itself delimited by single quotes.

6.6 Looking for Multiple Responses
We could extend the program further, allowing the user to ask about more books. This can

be done by putting askbook/0 as a subgoal to another clause go/0; the predicate go/0
then becomes the top level predicate, and will do the following:

e call askbook/0, asking the user which book they want and responding accordingly;
e offer to find another book;

e check the user’s reply;

o7

go:-
askbook, nl,
write(’Would you like another book?’), nl,
read(Reply), nl,
check(Reply), nl.

check(Reply) : -
Reply = yes,
go.

check(Reply) : -
write(’I hope I was of some help to you. Have a nice day.’).

Figure 14: The Prolog code to allow repeated requests

e if the user types yes, then go/0 will be called again;

e if anything else is typed in response, the program stops.

The corresponding Prolog code looks like that shown in Figure 14.

6.7 Dealing with Arithmetic Operators

Arithmetic operators are another type of system predicate. The operators then enable us to
do arithmetic in Prolog are:

+ - * / add minus times divide

There is also a system predicate that the results of applying these operators, called is/2.
All of the arithmetic operators can be used as infix (between arguments) or as prefix (like a
predicate), for example:

e.g.

7- X is 3+7.
X=10

?- B is +(2,99).
B=101

?7- B is 8 + 3.

B=11

28

Note that you need to put spaces either side of is/2:

Dis7+2.
no

?7- 3 1is 2 + 1.
yes

?7- 4 is 4.
yes

7- 4 =4,
yes

Note also that = and is mean different things: = means will unify with whereas is/2
means evaluates to.

-4 =3+1.
no

?- 4 is 3 + 1.
yes

Prolog must be able to evaluate the right hand side of is/2: If there are variables on the
right hand side that are uninstantiated then it will fail.

?7- S is H+2.

**x* Error: uninstantiated variable in arithmetic expression: _68

no

7- X is 3+3.
X=6

yes

| 7- S is X+3.

**x* Error: uninstantiated variable in arithmetic expression: _68
no

?7- X is 3+3,Y is X+2.
X=6

Y=8
yes

29

Expressions can be complex, in the same way as ordinary arithmetic expressions.

| ?- Sum is 4+3-6+2.
Sum=3
yes

| ?- Sum is 3%4.
Sum=12
yes

| ?- Ans is 3%4-5.
Ans=7
yes

The left hand side is never evaluated:

| 7- 3+4 is 7.
no

| ?7- 3+4 is 3+4.
no

| 7- P is 5/8.
P=0.625
yes

Comparisons of the sort </2(less than), >/2(greater than), >=/2(greater than or equal to),
=</2(less than or equal to) and \==/2(not equal to) can also be made:

| ?7- 4>3.
yes

| 7—- 3>4.
no

| ?- 5<10.
yes

| ?- 5<3+8.
yes

| ?7- 5%6>9+10.
yes

| ?7- 5>=5.
yes

60

| 7- 8=<186.

yes
| 7- 4\==8.
yes
| 7- 4\==4.
no

| ?7- 3-1+6%4-2<7*8+8-10.
yes

Note that system predicates cannot be traced 2:

| ?7- trace,3-1+6%4<7*8+8-10.
yes

Prefix notation can also be used instead of the more common infix notation:

I - <(+(_(391)9*(6,4)),+(*(7)8),_(8110)))-
yes

| ?— T iS +(_(331)3*(6:4))-
T=26
yes

I ?7- P is +(*(7,8),_(8,10))-

P=54
yes
| 7- 26<54.
yes

6.8 Summary

Whilst this extended program (which will be called books2) is an improvement on the basic
program we started out with, it is still a little limiting in a number of respects:

1. There is little flexibility in the set of responses that can be given to the question
Would you like another book?. In particular, note that responses other than yes have
the following effects:

e |: y. fails to match.

8see later section on Tracing and Debugging

61

e |: Yes. is a variable, and so becomes bound to yes and succeeds.

e |: No. also becomes bound to yes and succeeds.

2. In each case, the canbuy/2 predicate only finds the first solution, rather than offering
all possible solutions to the query.

In the next section we consider how these limitations can be avoided by introducing data
structures called lists that can be used to represent a collection of objects (for example, all
the possible shops that a particular book can be bought from).

62

6.9 Practical 3: consulting a simple database

6.9.1 The Basic books Program

We start by using the first version of the books program. More complicated versions of this
program will be used later.

1. Copy the file that contains the books program from the /home/infteach/prolog/code
area.

cp /home/infteach/prolog/code/booksl.pl booksl
2. Start Prolog and consult the file:
consult (books1).

3. List the contents of the database and see if you can work out what sort of questions
you could ask. A complete listing is provided in Figure 15.

4. Work out how to ask the following questions:

(a) Which publisher publishes ET?
(b) Which shop stocks Penguin books?
) Where can you buy I Claudius?

)

(c

(d) Is there any publisher who publishes both Freda the Fire Engine and Biggles and
Wendy?
(e) Are there two shops who both stock Of Mice and Men and Biggles and Wendy?

5. Try a few questions of your own. Test the program fully to see exactly how it works,
and where it fails.

6.9.2 The books Program—Simple Interactive Version

Once you are quite happy and sure of what is going on with the first version of the books
program, you should explore the next version.

1. Get out of Prolog. Copy the file that contains the interactive version:
cp /home/infteach/prolog/code/books2.pl books2

2. Get back into Prolog again and then consult your new file.

This is a more complicated program; a partial listing is provided in Figure 16. Try
and see what it does and how it works by asking some questions.

63

stocks (james_thin,sfipubs).
stocks(james_thin,virago) .
stocks(james_thin,penguin).
stocks (menzies,sfipubs).
stocks(menzies,sams).

stocks (better_books,penguin) .
stocks (better_books,virago) .
stocks (edinbooks,sfipubs) .
stocks (edinbooks,virago) .
stocks (edinbooks,sams) .

book(son_of_et,sfipubs).
book(et,sfipubs).
book(i_was_a_teenage_robot,sfipubs).
book(et_rides_again,sfipubs).
book(biggles_and_wendy,virago) .
book(freda_the_fire_engine,virago).
book(dict_of_computing,penguin).
book(i_claudius,penguin).

book (of _mice_and_men,penguin).

book (cookbook,sams) .

open(menzies) .
open(better_books) .
open(edinbooks) .
closed(james_thin).

canbuy (Book, Shop):-
book (Book, Publisher),
stocks (Shop, Publisher),
open (Shop) .

Figure 15: The books program, first version

64

stocks(james_thin,sfipubs).

stocks(james_thin,virago) .

stocks(edinbooks,sams) .

book(son_of_et,sfipubs).
book(et,sfipubs) .

book (cookbook,sams) .

open(menzies) .
open(better_books) .

open(edinbooks) .
closed(james_thin).

canbuy (Book, Shop) : -

go:-

book (Book,Pub) ,
stocks (Shop,Pub),
open(Shop) .

askbook, nl,

write(’Would you like another book?’), nl,
read (Reply), nl,

check(Reply), nl.

askbook: -

write(’What book would you like to buy?’), nl,
read(Book), nl,

canbuy (Book, Shop),

write(’You can buy ’),

write (Book),

write(’ at),

write(Shop),

write(’.”).

askbook: -

write(’I don’’t know where you can buy that book, sorry.?’).

check (Reply) : -

Reply = yes,
go.

check(Reply) : -

write(’I hope I was of some help to you. Have a nice day.’).

Figure 16: The second version of the books program

65

6.9.3 Writing your own Database

Once you have made sure you know exactly what is going on in the books2 program (and
you might want to play a little with the read and write predicates to check this), then write
a database of your own.

Extend it in the same way the books program was extended, so that someone else can use
it.
For example, you could put your timetable in it, and allow the user to query when you are

free. You might want to include information about time and place of lectures, tutorials and
practicals.

Test it on your neighbour. Explain how it works and then let them try it.

66

7 Lists

7.1 Introduction

In this section, we introduce a third version of the books program. This version will collect
together all solutions to the canbuy(Book, Shop) goal and then print out the list of open
shops.

In order to understand how this program works, this section is largely devoted to presenting
the list data structure.

7.2 The books3 Program
7.2.1 The Example Database

The basic database that the books3 program uses is as before, and repeated in Figure 17.

7.2.2 The Rules

This version of the program uses the same predicates as before, as shown in Figure 18. Note,
however, that the askbook/0 and canbuy/2 clauses do more in this version of the program:
we have added subgoals that use the new predicates prlist/1, possible/2, and filter/2,
and changed the behaviour of canbuy/2 and check/1 a little.?

7.2.3 How It Works

The basic structure of the books3 program is as follows:

e ask what book the user wants;
e see where it can be bought:

— find out its publisher;

— see which shops stock this publisher (make a list of these);

— make a new list of the open shops that stock that publisher; and
— print out the list.

e ask the user if she would like another book:

— if the reply is positive, do the whole thing again;

— otherwise, stop.

9The possible/2 and filter/2 predicates will not be discussed here.

67

stocks(james_thin, sfipubs).
stocks(james_thin, virago).
stocks(james_thin, penguin).
stocks (menzies, sfipubs).
stocks(menzies, sams).

stocks (better_books, penguin).
stocks (better_books, virago).
stocks (edinbooks, sfipubs).
stocks (edinbooks, virago).
stocks(edinbooks, sams).

book(son_of_et, sfipubs).

book(et, sfipubs).

book (i_was_a_teenage_robot, sfipubs).
book(et_rides_again, sfipubs).
book(biggles_and_wendy, virago) .

book (freda_the_fire_engine, virago).
book(dict_of_computing, penguin).
book(i_claudius, penguin).

book (of _mice_and_men, penguin).

book (cookbook, sams).

open(menzies) .

open (better_books) .
open (edinbooks) .
closed(james_thin).

Figure 17: The books3 database

68

go:-
askbook, nl,
write(’Would you like another book?’), nl,
read(Reply), nl,
check(Reply), nl.

askbook: -
write(’What book would you like to buy?’), nl,
read(Book), nl,
canbuy (Book, Shops),
write(’You can buy),
write(Book),
write(’ at ?),
prlist (Shops),
write(’.?).

askbook: -
write(’I don’’t know where you can buy that book, sorry.’).

canbuy (Book, OpenShops):-
book (Book, Publisher),
possible(Publisher, List0fShops),
filter (List0OfShops, OpenShops).

check(Reply) : -
member (Reply, [’Yes’,yes,’Y’,y]),

go.

check(Reply) : -
write(’I hope I was of some help to you. Have a nice day.’).

Figure 18: The rules used in the books3

69

7.2.4 The member Predicate

In our new rules, notice that check/1 includes the goal
member (Reply, [’Yes’,yes,’Y’,y]l)

The member/2 predicate is used here to check whether the Reply is one of a list of possibilities.
More generally, member/2 tests whether an element is a member of a list; the Prolog code
for member is as follows:

member (X, [X]|_1).

member (X, [_|Rest]):-
member (X,Rest) .

10

7.2.5 The prlist Predicate

The prlist/1 predicate prints out each element of a list on a separate line. The Prolog code
is as follows:

prlist([]1).

prlist([Head|Rest]):-
nl, write(Head),
prlist(Rest).

7.3 Lists
7.3.1 Basics

If we need to put a number of items together in one structure, perhaps in order to manipulate
them as a single structure, we can build a data structure called a list. An example would
be a list of all the shops in the books program:

[better_books, menzies, edinbooks, james_thin]
A list is defined as follows:

A list is an ordered sequence of elements.

10Note the use here of the variable _. This is referred to as the anonymous variable and is used in place of
a named variable (such as A or _73) in cases where there is no further need to refer to this variable at any
point later in the clause. In this case, once we have matched the head of the list to the element in the first
argument, we no longer need the rest of the list, so use _ to denote it.

70

List Head Tail

[a, b, ¢, d] a [b, ¢, d]

[a] a (1

1 fails fails

[[the, cat], sat] [the, cat] [sat]

[the, cat] the [cat]

[the, [cat, sat]] the [[cat, sat]]

[the, [cat, sat], down] the [[cat, sat], down]
[x, v, z] X [y, z]

Figure 19: Some lists and their heads and tails

Lists can be used to represent practically any kind of structure. In fact, lists are such a
general data structure that computing languages have been built based entirely upon them;
this is true of the language Lisp, for example.

A list can be either
e an empty list, written as ‘[1’; or

e a list containing one or more elements, each separated by commas and all enclosed in
square brackets (‘[’ and ‘1’).

Here are some examples of lists:
o [1]
e [a, bl

e [a, X, j]

7.4 Manipulating Lists

A list can be manipulated by splitting it into its head and its tail. The head of the list is
the first element of the list, and the tail of the list is the rest of the list. Further examples
of lists, together with their heads and tails, are shown in Figure 19.

In order to split lists into their heads and tails, we use a list destructor. This is represented
by the character ‘|’. So, the list with head X and tail Y is represented as

[xX1yY]

7.4.1 Matching Lists
By using the list destructor together with Prolog’s unification (Prolog’s matching mecha-

nism), we can easily split any list in order to access any of its elements (or to transform lists
in some way, or build new ones).

71

If we match the two lists
[x]Y]
and

[the, little, dog]

then X is instantiated to the, and and Y is instantiated to [little, dogl. Some other
examples of attempts to unify lists are shown in Figure 20

Element order is important:

e [foo,bar,baz] is not the same as [baz,bar,foo]

7.4.2 Constructing and Destructing Lists

The basic approach:

e To take a list apart, split the list into the first element and the rest of the list.

e To construct a list from an element and a list, insert the element at the front of the
list.

List Destruction:

[AIB] = [1,2,3,4]

A=1
B = [2,3,4]

The first element is the head of the list; the remainder is the tail of the list.

List Construction:

e Take a variable bound to a list: for example
01dList = [happy,sadl

e Add the new element to the front:
NewList = [grumpy|OldList]

Bigger Chunks:

e You can always directly access any number of elements at the head of a list.

72

[john, june,A] = [X,Y,tom]. A=tom X=john Y=june yes
(simple match of variables and constants)

[HIT] = [c,b,a]. H=c T=[b,al yes
(splits list into head and tail)

(HIT] = [I. no
(the empty list cannot be split by the list destructor ’|’)
(Al[B,C]1] = [c,b,al. A=c B=b C=a yes

([Al[B,C]] same thing as [A,B,C])

[a,X] = [X,b]. no
(X cannot unify with two different constants a and b)

[sue, [dick,wendy] ,P] = [P,Q,R]. P = sue, Q = [dick,wendy],
(P and R share) R = sue yes

[X1Y] = [a(b,c),b,c]. X = a(b,c), Y = [b,c] yes

[[X],Y] = [a,b]. no

(constant ’a’ cannot match to list [X])

[alX] = [A,B,y] A =a, X = [B,yl yes
[fred|[]] = [X]. X = fred yes
([fred|[]] same as [fred])

[a,b,X,c] = [a,b,Y]. no

(different length lists)
[HIT] = [tom,dick,mary,fred]. H= tom T = [dick,mary,fred]

[[sue,tom],[10,9]1] = [names,ages]. no
(constants don’t match lists)

Figure 20: Some examples of list matching

yes

73

e To add grumpy and elated to 01dList:
NewList = [grumpy, elated|0ldList]

e To remove three elements: suppose 01dList is bound to a list of three or more elements,
then

0l1dList = [One,Two,Three|Remainder]

7.5 Summary

In the next section, we go on to look at list manipulation in more detail.

7.6 Exercises

Question 7.1 How many elements are there in each of the following list structures?

e.g. the length of [foo,bar,baz] is 3
the length of [foo,1,[a(X)],[1],[foo,bar]l] is 5

7.1a [a, [a, [a, [a]1]1]]

7.1b [1,2,3,1,2,3,1,2,3]
7.1c [a(X),b(Y,Z),c,X]
7.1d [[sum(1,2)], [sum(3,4)], [sum(4,6)]]

7.1e lc,[d, [x]1],[f(s)], [r,h,a(t)], [[[al]l]]

Question 7.2 The predicate = takes 2 arguments and tries to unify them. For each of the
following:

e specify whether the query submitted to Prolog succeeds or fails;
e if it succeeds, specify what is assigned to any variables;

e if it fails, explain why it fails.

e.g. ?- [HIT] = [1,2,3]. yes H=1, T=[2,3].
?7- [a, b] = [c, A]. no because a and c are constants

and constants cannot unify
with each other.

74

?7- [A,john,C] = [jim,B,tom]. yes A=jim, B=john, C=tom.
7.2a 7- [A,B,C,D] = [a,b,c].
7.2b ?- bar([1,2,3]) = bar(A).

7.2c 7- [X,[11 = [X].

7.2d 7- [X,Y|Z] [a,b,c,d].

7.2e 7- [1,X,X] [A,A,2].

7.2f ?- likes(Y,a) = likes(X,Y).
7.2g 7= [foo(a,b),a,b] = [X|Y].
7.2h ?7- [b,Y] = [Y,al.

7.2i 7- [H|T]

[red,blue,b(X,Y)].
7.2j 7= [1,[a,b],2] = [[A,B],X,Y].
7.2k 7- test(a,L) = test(E,[b,c,d]).
7.21 ?- [[a,[b]],Cc] = [C,D].

7.2m ?- [fred|T]=[H| [sue, johnl].

Question 7.3 Imagine that this program is consulted by the Prolog interpreter:

foo (1, [1).
foo([HIT], [XIY]):-

H =X,
foo(T,Y).

[Note: this program tests if two lists unify by testing if the heads unify then recursing on
the tails]

What will be the outcome of each of the following queries?

7.3a2 7?- foo([a,b,c], A).

7.3b ?- foo([c,a,t], [c,u,t]).

75

7.3c

7.3d

7.3e

?- foo(X, [b,o0,0]).
?- foo([plL]l, [Fl[a,bl]l).

?- foo([X,Y], [d,o0,gl).

76

7.7 Practical 4: Simple Sentence Generation

1. The program shown in Figure 21 is stored in the file
/home/infteach/prolog/code/sentl

Copy it to your area.
2. Get into Prolog. Consult the file sent1 (or whatever you have called it in your area):
| ?- consult(sentl).
List it. Predict what the result will be if you type the following goal:

| ?- sentence.
Play around with it and check you understand how it works.

3. Using the editor, modify the program to be as shown in Figure 22. It’s a good idea to
copy the file and alter the copy; that way you still have the original in case something
goes wrong.

What is the outcome of the following goal?
| ?- sentence(S).

Explain how this solution is achieved. With the same goal, redo to find all solutions.

Trace through how this works by typing:
| ?7- trace, sentence(S).
and then stepping through the program by pressing (RETURN) in response to each ‘?’.

4. The make subgoal of the sentence clause, and the make clause itself, are actually
redundant in this example. Instead of unifying X and [N1,V1,N2] in the make clause,
it can be done in the head of the sentence clause itself, as shown in Figure 23.

Edit your program to be the same as this version, and test it out. Trace it as before
to see how it works.

5. In these examples, lists of items are printed. Write a higher level clause go that uses
the sentence clause and another predicate, prlist. The prlist predicate should
write out all items in the list that is unified with the variable S in the solution of the
goal sentence(S).

Modify your version of prlist to deal with embedded lists; so, for example, you should
see behaviour like the following:

| ?- prlist([a,b,[c,d],e,[f,[g]],h]).
abcdefgh

yes

7

sentence:-
noun(N1), write(’ ’), write(N1),
verb(V1), write(’ ?’), write(V1),
noun(N2), write(’ ’), write(N2).

noun(fred) .
noun(beer) .
noun(doris).
noun(gin).

verb(likes).
verb(drinks).

Figure 21: A simple sentence generator

sentence (X) : -
noun(N1),
verb(V1),
noun(N2),
make ([N1,V1,N2],X).

make (Anything,Anything) .
noun(fred) .
noun(beer) .
noun(doris).

noun(gin).

verb(likes).
verb(drinks) .

Figure 22: A revised sentence generator

78

sentence ([N1,V1,N2]):-
noun(N1),
verb(V1l),
noun(N2) .

noun(fred).
noun (beer) .
noun(doris).
noun(gin) .

verb(likes).
verb(drinks).

Figure 23: A further revised sentence generator

Hint: to prlist a list, prlist the head of the list then prlist the tail of the list (i.e.,
instead of recursing on the tail alone, recurse on both the head and the tail of the list).

6. Expand the vocabulary of the program and experiment with it further.

79

8 Manipulating lists

8.1 Introduction

In this section we will look more closely at manipulating lists.

8.2 The predicate member/2
8.2.1 Building the predicate

Suppose we have a list of names like the following:
[fred, john, ann, mary].

and we want to know if a given person is in this list.

We first ask if the person has the same name as the head of the list:

e if so, we have succeeded;

e if not, then we see if the person is one of the rest of the list, that is, if the person is in
the tail of the list.

e So, we take the tail of the list and ask if the person has the same name as the head of
this list:

— if so, we have succeeded;
— if not, then we see if the person is in the tail of this list.
— So, we take the tail of the list ...

And so on, until we run out of list and fail to find the person.

So we need to write a set of clauses to test membership of a list. We will call it the member
predicate. It will need two arguments, the item to be looked for and the list to look for it
in. We'll refer to this predicate as member/2.

In this predicate,

e cither the item will be the head of the list;
e or it will be in the tail of the list;

e or there will be no match and it will fail.

So we need to consider these three possibilities, or cases. The first clause we can specify, in
English, as:

X is a member of a list if X is the same as the head of the list.

80

The second clause will be:
X is a member of a list if it is a member of the tail of the list.

Consider how we write these in Prolog. The first argument of the member/2 predicate is the
element to be found, and the second is the list:

member (X, AList):-

But we have to somehow get at the head of this list. We use the list destructor and unification
to do this for us:

member (X, [H|T]):-

So, the first case becomes

member (X, [H|T]):-
X = H.

and the second becomes:
member (X, [HIT]):-
X. \== N

member (X, T).

Note that here member/2 has the subgoal member/2, so by definition it is recursive: it calls
itself.

8.2.2 Cleaning Up

We have some redundancy in these two clauses.

Let’s take the first clause first:

1: member (X, [HI|T]):-
X = H.

We want to test whether or not X and H unify. It is easier to test that by calling them
both the same; that is, by making them the same variable. Note that doing this makes the
subgoal redundant:

1: member (X, [X|T]).

If this succeeds then we never test the second clause. Put another way, if we reach the second
clause, the goal X = H must have failed. So by the time we get to the second clause, we
know that X \== H and so we do not need to test it again. The second clause then becomes:

2: member (X, [H|T]):-
member (X, T).

81

8.2.3 Recursion in List Processing

Any program that calls itself as a subgoal is recursive. A lot of other list processing
programs are recursive. They have the following general pattern:

e split the list;
e do something to the head of the list (test it or process it); and

e recurse on the tail of the list.
Or, in a schematic Prolog form:

recpred([H|T]) : -
test (H),
recpred(T).

In recursive predicates there are usually at least two cases:

1. the base case or boundary condition, which stops the recursion (eventually): this
could be when some condition is true (for example, when the name sought is the head
of the list, or when we are left with the empty list);

2. the recursive case, which has the goal that recurs, often calling subgoals with shorter
and shorter lists (the tail of original list, the tail of the tail of the original list, and so
on) as arguments.

An example of a recursive program we have already encountered is likes/2, in the case
where some person [ikes another if both the person and the other likes the same drink.

8.2.4 And/Or Trees for Recursive Predicates

Here is the predicate member/2 with an example goal and the AND/OR tree to illustrate the
execution of this goal:

First, the member/2 predicate:
member (X, [X|T]).

2: member (X, [H|T]):-
member (X, T).

Suppose we present Prolog with the following goal:
| ?- member(ann, [fred, john, ann, mary]).

The behaviour of Prolog that follows is represented in the AND/OR tree in Figure 24.

82

| ?- member(ann, [fred, john, ann, mary]).

T

member (ann, [john, ann, mary])

1 X

ann#fred member (ann, [ann, mary])

ann## john

O

Figure 24: An AND/OR tree representation of member

8.3 Other List Processing Predicates

8.3.1 Printing a list of elements

Suppose we have a list [a, b, c, d], and we want to print it out. We can define a predicate
prlist/1, which takes a list as its argument and simply uses write/1 to write it out:

prlist(X):-
write(X).

For our example list above, this would produce the output

| ?7- prlist([a, b, c, d]).
[a,b,c,d]

yes

| 7-

However, suppose we want to print each element of the list on a separate line. This means
we have to print the elements one at a time. We can define a recursive procedure to do this:

To prlist a list of elements:

e write the head of the list; and
e prlist the tail of the list.

The Prolog code to do this is as follows:

83

prlist([HIT]):-
write(H), nl,
prlist(T).

We also need to know when to stop, of course. The printing should stop when we have no
more elements to write, i.e., when the list to be prlisted is the empty list. So, we also need
the following clause:

prlist([]1).

The full program is then as follows:

1: prlist([HIT]) :-
write(H), nl,
prlist(T).

2: prlist([]1).

8.3.2 Checking that no element of a list of letters is a consonant

Suppose we want to be able to test each of the elements of a list to check that none of them
are consonants. We can define a predicate no_cons/1, which has the same basic pattern as
before: we test or process the head of the list, and then recurse on the tail of the list. The
empty list provides the base case.

The test we’ll use here is actually whether the element is a vowel, rather than whether it
isn’t a consonant. The code is then as follows; note that we have to include facts that tell
Prolog which characters are vowels.

no_cons([]).

2: no_cons([H|T]) :-
vowel (H),
no_cons(T) .

3: vowel(a).

4: vowel(e).

H: vowel(i).

6: vowel (o).

7 vowel (u) .

Here are some example goals presented to Prolog with this database loaded:
| ?- no_cons([a,e,e,o,u]).

yes
| ?- no_cons([a,r,e]).

no
?_

84

max([H|T], Answer):-
max(T, H, Answer).

max([], Answer, Answer).
max([H|T], Temp, Answer):-

H > Temp,

max(T, H, Answer).
max ([HIT], Temp, Answer):-

max (T, Temp, Answer).

Figure 25: The max predicate

8.4 More List Processing Predicates
8.4.1 Finding the maximum of a list of numbers

The predicate max/2 has two arguments: the first is a list of numbers, and the second is the
maximum of that list. If the predicate is called with the second argument uninstantiated,
then this argument will become instantiated to the maximum of the list; this might be
thought of as returning a single element as the result of processing the complete list.

As before, the head of the list is processed, and the program then recurses on the rest of the
list. The Prolog code is shown in Figure 25.

Note that the predicate max/3 is called by the predicate max/2. The additional middle
argument is the current (temporary) maximum, instantiated each time a higher value is
found as the program recurses down the list. Initially this is set to the head of the list.

max/3 has three cases:

e The first case of max/3 is the base case: if the empty list is being processed, then the
current maximum is the final one.

e In the second case, if the head of the list is greater than the current maximum then it
becomes the new current maximum, and the rest of the list is recursed on.

e In the third case, if the head of the list is not greater than the current maximum then
the current maximum stays the same, and again the rest of the list is recursed on.

8.4.2 Building new list structures

As well as recursing down a list, testing all the elements (as we did in member/2 and
no_cons/1), or returning a single element (as we did in max/2), we may want to process
each element and build a completely new list data structure.

Suppose, for example, we want to generate a sentence. We could simply pattern match for
each word category (to begin with, noun and verb) and write the resulting word: such a
generator might look like that shown in Figure 26.

85

sentence:-
noun(N1), write(’ ?’), write(N1),
verb(V1l), write(’ ’), write(V1),
noun(N2), write(’), write(N2).

noun(fred) .
noun (beer) .
noun(doris).
noun(gin) .

verb(likes).
verb(drinks) .

Figure 26: A simple sentence generator

Note that this code provides no way of saving the sentence generated as a whole. To get
around this, we could make each new word a successive element of a new list. We can do
this in the head of the sentence clause directly:

sentence ([N1,V1,N2]) :-
noun(N1),
verb(V1),
noun(N2) .

In a later section, we will look at the special mechanism Prolog provides for writing grammar
rules.

8.5 Exercises

Question 8.1 The predicate member/2 succeeds if the first argument matches an element
of the list represented by the second argument.

e.g. ?- member(1,[2,3,1,4]). yes
member/2 is defined as: 1. member(E1l,[E1IT]).
2. member(E1l, [H|T]):-
member (E1,T) .

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

86

8.1a 7- member(a,[c,a,bl).
8.1b ?- member(a,[d,o,gl).
8.1c 7- member (one, [one,three,one,four]) .
8.1d ?- member (X, [c,a,t]).

8.1le 7- member(tom,[[jo,alan], [tom,annel]).

8.1f Complete the AND/OR tree below which represents the execution of the query:

?- member(a, [b,r,e,a,d]).

/ \
/1 2\
/ \
a=b member(a, [r,e,a,d])
fails / \
1/ 2\
/ \
a=r member(a, [e,a,d])
fails

Question 8.2 The predicate no_cons/1 succeeds if all elements of the list represented by
the one argument are vowels (as specified by vowel/1).

e.g. ?- no_cons([a,e,i]).
yes

? no_cons([a,b,c]).
no

no_cons/1 is defined as:

. no_cons([1).

. no_cons([H|T]) :-vowel(H) ,no_cons(T).
. vowel(a).

. vowel(e).

. vowel(i).

. vowel (o).

~N O Ok WN -

. vowel(u).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

87

8.2a 7?- no_cons([a,a,e,i]).

8.2b 7?- no_cons([A,e,e]).
8.2c Complete the AND/OR tree below which represents the execution of the query:

?- no_cons([a,e,i]).

/ I\
1/ 21 __\ H/a T/ [e,1i]
/ | \
a=[] vowel(a) no_cons([e,i])
fails | I\
3| 21__\ Hi/e T1/[i]
| | \
succeeds vowel(e)

|
4]

|

succeeds

Question 8.3 The predicate max/2 succeeds if the first argument is a list of numbers and
second argument unifies with the maximum value in that list.

e.g. ?- max([2,4,6,8],M).
M=28
yes

max/2 is defined as:

0. max([H|T] ,Max) :-
max (T,H,Max) .
1. max([HIT],Temp,Max) :-
H>Temp,
max (T,H,Max) .
2. max([H|T],Temp,Max) : -
max (T, Temp,Max) .
3. max([],Finalmax,Finalmax) .

8.3 Complete the AND/OR tree below which represents the execution of the query:

?- max([2,1,4,3],Ans).
|
ol H/2 T/[1,4,3]

88

|
max([1,4,3],2,Ans)

/ \
1/ 2\ H1i/1 Temp/2 T1/[4,3]

/ \
1>2 max([4,3],2,Ans)

fails I\

112\ H2/4 Templ/2 T2/[3]
I \

4>2

succeeds

Question 8.4 The predicate prlist/1 is supposed to write out the elements of a list struc-
ture, regardless of the levels of embedding that are present in the list.

e.g. intended behaviour:
7- prlist([a,b,[c,d,e],f, [gl]).
abcdefg
yes

Instead, the predicate as defined below has the following behaviour:

7- prlist([a,b]).
ab[]
yes

?7- prlist([a,b, [c,d],e]).
abcd[Jel]
yes

prlist/2 is defined as:

1. prlist([HIT]):-
prlist(H),
prlist(T).

2. prlist(X):-
write(X).

Explain why this predicate produces this behaviour (instead of the intended behaviour),
using an AND/OR tree or a trace in your explanation.

Question 8.5 The predicate checkvowels takes a list representing a word, checks each
letter to see whether it is a vowel, and if it is it writes out the vowel.

89

checkvowels ([HIT]) : -

vowel (H),
write(H), nl,
checkvowels(T) .

checkvowels ([HIT]) : -
checkvowels(T) .

checkvowels([]).

vowel(a) .
vowel (e) .
vowel (i) .
vowel (o) .
vowel (u) .

e.g. ?- checkvowels([c,a,t,i]).
a
i
yes

8.5a Using this as a model, write a predicate results/1 that takes a list of names, checks
whether each is a pass (using a predicate that you also must define, pass/1) and writes out
the names if they pass.

For example, the following query:
?7- results([tom,bob,sue, janel).
should give the output:

bob
sue
yes

8.5b Modify this program so that instead of 'writing out’ the name of each person who passes
it should output a list of them. (You may need to read ahead to answer this part).

7- results2([tom,bob,sue, jane] ,Passlist).
Passlist = [bob,suel
yes

90

9 How Programs Work

9.1 Tracing

We can follow through the execution of a goal in Prolog by tracing it. The trace will show:

e which goal is currently being called, with what arguments;

e whether the goal succeeds or has to be redone (i.e., whether another match has to be
looked for);

e whether the goal fails; and

e if the goal succeeds, whether other clauses might also match.
For example, given the predicate no_cons/2, the goal:
| ?- no_cons([a,e,o0]).

can be traced by calling the conjunction of the goal trace and the goal itself; the code for
no_cons/2 and the results of tracing are shown in Figure 27.

Similarly we can trace the goal:
| ?- trace, max([7,3,9,2,6], Max).

giving the code and output as shown in Figure 28.

Some things to note here:

1. The number to the left of the goal indicates the level in the tree from which the goal
is being called (the top level goal being 0). This makes it easier to see which goals are
subgoals of the same clause, and also which are recursive goals.

2. The leftmost number is the number of the goal that is being called: each new goal that
is created is given a number which is incremented for the next new goal. This makes
it easier to see exactly which goal is being called, being redone, failing, or succeeding.

9.2 The Byrd Box Model of Execution

The model on which the tracing is bassed is known as the 'Byrd Box model of Execution’.

A program trace:

| ?- listing(parent).

parent(a, b).
parent(c, d).

91

no_cons([]).

no_cons([H|T]) :-
vowel (H),
no_cons(T).

| ?- trace, no_cons([a,e,o0]).

{The debugger will first creep -- showing everything (trace)}
1 1 Call: no_cons([a,e,o]) ?

Call: vowel(a) ?

Exit: vowel(a) 7

Call: no_cons([e,o0]) ?

Call: vowel(e) 7

Exit: vowel(e) 7

Call: no_cons([o]) 7

Call: vowel(o) ?

Exit: vowel(o) 7

Call: no_cons([]) ?

Exit: no_cons([]) 7

Exit: no_cons([o]) ?

Exit: no_cons([e,o]) ?

P WANNO OO WNN
RN W D D DD WWWw NN

Exit: no_cons([a,e,o]) 7
yes

{trace}
| 7-

Figure 27: Tracing the behaviour of the predicate no_cons

92

max([H|T], Answer):-
max(T, H, Answer).

max([], Answer, Answer).
max ([H|IT], Temp, Answer):-
H > Temp,
max(T, H, Answer).
max([H|T], Temp, Answer):-
max (T, Temp, Answer).

| ?- trace, max([7,3,9,2,6], Max).

{The debugger will first creep -- showing everything (trace)}
1 1 Call: max([7,3,9,2,6],_112) 7

Call: max([3,9,2,6],7,_112) 7

Call: 3>7 7

Fail: 3>7 7

Call: max([9,2,6],7,_112) 7

Call: 9>7 7

Exit: 97 7

Call: max([2,6],9,_112) ?

Call: 2>9 7

Fail: 2>9 7

Call: max([6],9,_112) ?

Call: 6>9 7

Fail: 6>9 7

Call: max([],9,_112) ?

Exit: max([]1,9,9) ?

Exit: max([6],9,9) ?

Exit: max([2,6],9,9) 7

Exit: max([9,2,6],7,9) ?

Exit: max([3,9,2,6]1,7,9) ?

Exit: max([7,3,9,2,6],9) 7

F NDNWOOONNNNOOOOO U DWW WwwN
N WD OO 0o ol D wwwN

Max = 9 7

yes
{trace}
| 7-

Figure 28: Tracing the behaviour of max

93

yes

| ?- trace, parent(X,Y), X = £.
{The debugger will first creep
-- showing everything (trace)}

1 1 Call: parent(_44,_58) 7
Exit: parent(a,b) 7
Call: a=f 7
Fail: a=f 7
Redo: parent(a,b) 7
Exit: parent(c,d) ?
Call: c=f 7
Fail: c=f 7
Redo: parent(c,d) 7
Fail: parent(_44,_58) 7

P R, NN PR NN-
e e e e

no
{trace}

| 7-
e Each box represents one invocation of a procedure.
e Use nested boxes for the bodies of rules.
e Each box has four ports:

Call: used first time we look for a solution
Exit: used if the procedure succeeds
Redo: used when backtracking

Fail: used if we can’t satisfy the goal

Call Exit Call Exit

parent(a,b).
parent(c,d).

Fail Redo Fail Redo

Not all systems provide tracers that use all four ports, i.e. some tracers do not explicitly use
the 'redo’ port, but use 'call’ again when backtracking.

94

9.3 Debugging using the Tracer

spy(predicate_name) Mark any clause with the given predicate_name as “ spyable”. Does
not work for built-in predicates; can take a list of predicates as argument.

debug If a spied predicate is encountered, switch on the tracer.

nodebug Remove all spypoints. The tracer will therefore not be invoked.

nospy (predicate_name) Undo the effect of spy—i.e. remove the spy point.
debugging Shows which predicates are marked for spying plus some other information.
trace Switches on the tracer.

notrace Switches the tracer off. Does not remove spypoints.

Debugging options:

<cr> creep c creep

1 leap s skip

r retry r <i> retry i

d display P print

W write

g ancestors g <n> ancestors n
n nodebug = debugging

+ spy this - nospy this
a abort b break

@ command u unify

< reset printdepth < <n> set printdepth
- reset subterm = <n> set subterm
? help h help

Useful Debugging Options:

creep: This is the single stepping command. Use (RETURN) to creep. The tracer will move
on to the next port.

skip: This moves from the CALL or REDO ports to the EXIT or FAIL ports. If one of the
subgoals has a spypoint then the tracer will ignore it.

leap: Go from the current port to the next port of a spied predicate.
Tracing in SICStus Prolog, given the following program:

son(A, B) :-
parent (B, A),
male(A).
daughter(A, B) :-

95

parent (B, A),
female(A) .

parent(A, B) :-
father(A, B).

parent(A, B) :-
mother (A, B).

male(tom) .
male(jim) .
male(cecil).
male(fred).

female (mary) .
female(jane) .
female(sue) .

father(tom, jim).
father(tom, sue).
father (fred, cecil).

mother (mary, tom).
mother (mary, jane).
mother (mary, fred).

| ?- trace,daughter(X,Y).
{The debugger will first creep -- showing everything (trace)}
1 1 Call: daughter(_51,_67) 7
2 2 Call: parent(_67,_51) 7 s
2 2 Exit: parent(tom,jim) ?
4 2 Call: female(jim) ? g
Ancestors:
1 1 daughter(jim,tom)
Call: female(jim) 7
Fail: female(jim) 7
Redo: parent(tom,jim) 7 s
Exit: parent(tom,sue) 7
4 2 Call: female(sue) 7 g
Ancestors:
1 1 daughter(sue,tom)
4 2 Call: female(sue) 7 s
4 2 Exit: female(sue) 7
1 1 Exit: daughter(sue,tom) ?

NN DD
NN NN

X = sue,
Y = tom 7
yes

96

{trace}
| -

We have ’skipped’ each time that we called parent/2 so we do not see whether it is satisfied
by using the father/2 or mother/2 rule: we only see the outcome of the subgoal. We have
also asked to see the ancestors of the subgoal female(jim) i.e. what it was the immediate
subgoal of.

We might choose to trace a particular predicate such as father/2 by placing a spy point on
it. Whenever we ’leap’ in the tracing thereafter, the tracer will jump to the next call to this
goal.

| 7- spy(father).
{Spypoint placed on user:father/2}
{The debugger will first leap -- showing spypoints (debug)}

yes
{debug}
| 7- daughter(X,Y).

+ 3 3 Call: father(_81,_65) ?
+ 3 3 Exit: father(tom,jim) ?
2 2 Exit: parent(tom,jim) 7
4 2 Call: female(jim) 7 s
4 2 Fail: female(jim) ?
2 2 Redo: parent(tom,jim) 7 1
+ 3 3 Redo: father(tom,jim) 7
+ 3 3 Exit: father(tom,sue) ?
2 2 Exit: parent(tom,sue) 7
4 2 Call: female(sue) ? 1
X = sue,
Y = tom 7
yes
{debug}

9.4 Loading Files

Consult or [| can be used for loading files into the prolog interpreter. If the filename has
punctuation characters in it, remember to enclose it in single quotes. More than one file
may be consulted at once.

e | 7- consult(parents).
{consulting parents...}

{parents consulted, 10 msec 287 bytes}

yes
| 7-

97

e | 7- [parents].

e | 7- consult(’/u/ai/s2/ai2/aifoo/program’).
e | 7- consult(’foo.pl’).

e | 7- consult([foo,baz,’foobaz.pl’]).

e | ?7- [foo,baz].

Avoid splitting predicate definitions between files. For example, if you define part of your
family program in one file and part in another (perhaps you decided to put different families
in different files?) the following may happen:

| ?- consult(filel).
{consulting filel...}
{filel consulted, 10 msec 287 bytes}

yes
| ?- consult(file2).
{consulting file2...}
The procedure parent/2 is being redefined.
01d file: filel
New file: file2
Do you really want to redefine it? (y, n, p, or 7) 7

y redefine this procedure

n don’t redefine this procedure

P redefine this procedure and don’t ask again
?

print this information

(y, n, p, or 7)

9.5 Some common mistakes
1. | ?- member(a, [a,b,c).

x% . | or] expected in list *x
member (a, [a , b, c
** here **

)

Leaving off the closing list bracket causes a syntax error.
2. | ?- parent(a,b) X = f.

** variable follows expression *x*

parent (a , b)

** here *x

X=f

98

Subgoals must be separated by commas.

3. | ?7- parent(a b),X = f.

** atom follows expression *x

parent (a

**x here *x

b)), X=1£f.

Arguments must also be seperated by commas.
4. | 7?- parent(a, b, X = £f.

*k ., or) expected in arguments *x*

parent (a , b, X =f
**% here **

Closing predicate bracket omitted.
5. | 7= parent (a,b).

** bracket follows expression

parent
** here **
(a, b)
| ?-

Extra space between the predicate name and the opening bracket.

9.6 Summary

You should be able to:

e model the behaviour of Prolog programs using the Byrd Box Model
e be able to use the basic functionality of Prolog’s debugging tools

e be able to identify common mistakes in typing Prolog queries

99

10 Further list processing predicates

10.1 Changing one sentence into another: the predicate alter/2

Suppose you want to write a simple predicate that enables you to alter an input sentence to
get a new output sentence (Eliza style). An example of the sort of dialogue produced might
be:

You: you are a computer
Prolog: i am not a computer

You: do you speak french
Prolog: no i speak german

How do we go about this? First we break the task down into steps.

1. Accept the sentence typed in;

2. If there are any you’s change them to #’s
3. and change are to am not

4. and change french to german

5. and change do to no

[this may lead to some obvious problems in other examples, but we will ignore those for now]

The predicate we will use will be called alter/2. It will need two arguments, both of which
will be lists.

An example goal might be:

| 7- alter([do,you,know,french],Rep).

Rep=[no,i,know,german]
How is alter/2 defined? Think of cases to be dealt with:

e the list to be altered

e the empty list
Take the latter:

Alter the empty list to the empty list

alter([1,[1).

100

This will give us the boundary condition and will stop the recursion.

What about the rest of the list to be altered?

e change one word at a time (or leave it if not to be changed)

e build a new list of changed and unchanged words (=reply)

We do this by changing the head of the list and then recursing on the tail, building a new
list as we go and stopping when we run out of list.

1. e Change the head of the input list (represented by the first argument) into another
word and

e let the head of the output list be the same as that word (by matching)

2. e Alter the tail of the input list and
e let the tail of the output list be the same as the altered tail

3. If the end of the input list is reached then there is no more to do.

We now have to deal with changing one word into another. We will define a predicate
change/2 that will take two arguments: the element to be changed, and the element that it
is to be changed to:

change (you,i) .
change (are, [am,not]) .
change (french,german) .

change (X,X) .

As these are all single list elements, any replacement of more than one word will have to be
a sub-list. Note the catchall in the last clause of change/2. This will take care of all the
words that we don’t want changed.

So, the two clauses that make up the predicate alter/2 are:

1: alter([1,[1).

2: alter ([H|T], [X|Y]):-
change (H,X),
alter(T,Y).

If we now put the whole program together with predicates for changing and altering we get
the following:

1: alter([1,[1).

101

| ?7- trace,alter([i,like,your,shirt],P).
{The debugger will first creep -- showing everything (trace)}
1 1 Call: alter([i,like,your,shirt],_99) ?
2 2 Call: change(i,_237) 7
2 2 Exit: change(i,you) ?
3 2 (Call: alter([like,your,shirt],_238) 7
4 3 Call: change(like,_505) ?
4 3 Exit: change(like,like) 7
5 3 Call: alter([your,shirt],_506) ?
6 4 Call: change(your,_772) 7
6 4 Exit: change(your,my) 7
7 4 Call: alter([shirt],_773) ?
Call: change(shirt,_1038) 7
Exit: change(shirt,shirt) 7
Call: alter([],_1039) 7
Exit: alter([],[]1) 7
7 4 Exit: alter([shirt], [shirt]) 7
5 3 Exit: alter([your,shirt], [my,shirt]) 7
3 2 Exit: alter([like,your,shirt],[like,my,shirt]) 7
1 1 Exit: alter([i,like,your,shirt], [you,like,my,shirt]) ?

8 5
8 5
9 5
9 5

P = [you,like,my,shirt] ?
yes

(the trace is indented for additional clarity)

Figure 29: Tracing the behaviour of the predicate alter/2

2: alter([HIT], [X|Y]):-
change (H,X),
alter(T,Y).

change (i,you) .
change (me,you) .
change (your ,my) .

change (their,our).

AN R T

change (X,X).

An example trace of the program is given below in Figure 29.

We now will consider a few more examples of list processing predicates, looking at some of
the general techniques used in them.

102

10.2 Deleting the first occurrence of an element from a list: the
predicate delete/2

What do we mean? The predicate delete/3 will need 3 arguments:

e the element E to be deleted
e the list L from which it is to be deleted

e the new list Newl which has the item deleted
We assume we know the first 2 and want to build the third, so the goal might be:
?- delete(a,[c,a,m,e,1],Ans).
So we would expect the result:

Ans=[c,m,e,1]
Yes

What do we do? We want to look at each element of the list L in turn to see if it is the
element to be deleted, so need to access the head of L recursively (as in member/2). This
means breaking L into a Head HL and a tail TL (using matching). We want to process the
whole list and to build a new list at the same time.

The two cases we need to consider are:

1. when the head of the list that we are looking at is the one we want to delete

2. when it is not
In the first case we then need to save the rest of the list:
deleting the element E from the list with head E and tail TL will give the list TL
In prolog:
delete(E, [E|TL],TL).

In the second case we need to save the head as well as the rest of the list (we don’t want to
delete all the other elements):

deleting the element E from the list with head HL and tail TL will give the list
with head HL and tail NL if deleting E from the list TL gives the list NL

delete(E, [HL|TL], [HL|NL]) :-
delete(E,TL,NL).

103

| ?7- trace,delete(a,[c,a,p],Nlist).
| 7- delete(a,[c,a,p],Nlist).
1 1 Call: delete(a,[c,a,p],_100) 7
2 2 Call: delete(a,[a,p]l,_241) 7
2 2 Exit: delete(a,[a,pl,[pl) 7
1 1 Exit: delete(a,[c,a,pl,[c,p]) 7

Nlist = [c,p] 7

yes

Figure 30: Tracing the behaviour of the predicate delete/3

So, the complete program is:

delete(E, [E|TL],TL).

delete(E, [HL|TL], [HL|NL]) : -
delete(E,TL,NL).

And example goals would be:

| ?7- delete(a,[c,a,p],Nlist).

Nlist=[c,p]
yes

| ?7- delete(e, [f,e,e,d],Ans).

Ans=[f,e,d]
yes

An example trace of this is shown in Figure 30.

Note: we can use this also to help build a predicate for deleting ALL the elements E in the
list L - consider what changes we need to the first clause......

10.3 Reversing a list: the predicates rev/2 and rev/3

We are going to write a predicate to reverse a list here. The predicate will be rev/3. For
convenience it can be called by a simpler predicate rev/2.

| 7- listing(rev).

104

| ?- rev([a,b,c],Revl).
1 1 Call: rev([a,b,c],_86) 7
2 2 Call: rev([a,b,c],[],_86) 7
3 3 Call: rev([b,c],[al,_86) ?
4 4 Call: rev([c],[b,a]l,_86) ?
5 5 Call: rev([],[c,b,al,_86) ?
5 5 Exit: rev([],[c,b,al,[c,b,a]) ?
4 4 Exit: rev([c],[b,al,[c,b,a]) ?
3 3 Exit: rev([b,c],[al,[c,b,al) 7
2 2 Exit: rev([a,b,c],[],[c,b,al) ?
1 1 Exit: rev([a,b,c],[c,b,al) ?

Revl = [c,b,a] 7

yes
Figure 31: Tracing the behaviour of the predicate rev/3
1: rev(L,Revl) :-
rev(L, [],Revl).
1: rev([],L,L).
2: rev([H|List] ,Acc,Revl) :-

rev(List, [H|Acc],Revl).

We 'pour’ each element into the accumulator one at a time, so that the new list builds up
with each successive head at the front (and the first head being in first is now last).

When all are ’poured in” we copy the accumulator list across to the answer.

An example trace of rev/3 is shown in Figure 31.

10.4 Joining two lists together: the predicates append/3

The predicate append/3 enables us to join two lists together into one list.

| 7- listing(append).

1: append([1,L,L).
2: append ([H|L],M, [HIN]) :-
append (L,M,N).

1. The list L is the same as the list L appended to the empty list.

105

| ?7- append([al, [b],Newl).
1 1 Call: append([al,[b]l,_88) 7
2 2 Call: append([],[bl,_224) 7
2 2 Exit: append([],[bl,[b]) ?
1 1 Exit: append([a],[b],[a,b]) 7

Newl=[a,b]
yes

Figure 32: Tracing the behaviour of the predicate append/3

| ?- append([1,2]1,[3,4],X).
1 1 Call: append([1,2],[3,4],_128) 7
2 2 (Call: append([2],[3,4],_264) 7
3 3 Call: append([]1,[3,4]1,_363) 7
3 3 Exit: append([],I[3,4]1,[3,4]1) ?
2 2 Exit: append([2],[3,4],[2,3,4]1) 7
1 1 Exit: append([1,2],[3,4],[1,2,3,4]) 7

X=[1,2,3,4]
yes

Figure 33: A further example of the behaviour of the predicate append/3

2. The list with head H and tail N is the same as the list with head H and tail L. appended
to the list M if the list N is the list L appended to the list M.

An example trace of append/3 is shown in Figure 32.
A further trace of append/3 using a different goal is shown in Figure 33.

An example trace of using append/3 with different instantiation patterns in the goal is shown
in Figure 34.

What about
?7- append(F, [3,4],[1,2,3,4]).
F=[1,2]
yes
10.5 Exercises

Question 10.1 The predicate delete/3 succeeds if deleting the element represented by the
first argument, from the list represented by the second argument, results in a list represented

106

| ?- append([1,2],R,[1,2,3,4]).
1 1 Call: append([1,2],_96,[1,2,3,4]) ?
2 2 Call: append([2],_96,[2,3,4]) 7
3 3 Call: append([],_96,[3,41) 7
3 3 Exit: append([],[3,4],[3,4]) 7
2 2 Exit: append([2],[3,41,[2,3,4]) 7
1 1 Exit: append([1,2],[3,4],[1,2,3,4]) 7

R=[3,4]
yes

Figure 34: A trace of a different calling pattern of the predicate append/3

by the third argument.

e.g. 7- delete(a,[a,p,p,1,el,A).
A=[p,p,1,el
yes
delete/3 is defined as:
1. delete(El,[E1IT],T).

2. delete(El,[HIT], [HINT]):-
delete(E1,T,NT).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;
e if it succeeds, specify what is assigned to any variables.

10.1a 7?- delete(X, [pat, john,paul],Ans).

10.1b ?- delete(A,L,[t,0,p]).

10.1¢c ?7- delete(a,[c,a,b],Ans).

10.1d ?7- delete(e,[d,o0,g]l,P).

10.1e 7- delete(e,[f,e,e,t],Ans).

Question 10.2 The predicate deleteall /3 succeeds if deleting all occurrences of the element
represented by the first argument from the list represented by the second argument results
in a list represented by the third argument.

107

e.g. ?7- delete(p, [a,p,p,1,e]l,A). A=[a,l,el yes
deleteall/3 is defined as: 1. deleteall(El1l,[]1,[1).
2. deleteall(El, [E1|T],NT):-
deleteall (E1,T,NT).

3. deleteall(E1l, [HIT], [HINT]):-
deleteall(E1l,T,NT).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.2a ?7- deleteall(e,[f,e,e,t],Ans).

10.2b 7- deleteall(p,[d,o0,gl,.X).

10.2¢ Complete the AND/OR, tree below which represents the execution of the query:

?7- deleteall(e,[f,e,e,t],Ans).

/ | \
1/ |2 3 \ Ans/[fINT]
/ | \
[O=[f,e,e,t] e=f deleteall(e, [e,e,t],NT)
fails fails / \
/ \
1/ 2\ NT/NT2
/ \
[1=le,e,t] deleteall(e, [e,t],NT2)
fails

10.2d Suppose that the predicate deleteall/3 is defined incorrectly as:
1. delall(E,[]1,[1).
2. delall(E,[E|T],Y):-
delall(E,T,Y).
3. delall(E,[HIT],Y):-
delall(E,T,[HI|Y]).

resulting in the behaviour:

i. 7?- delall(e,[f,e,e,t],Ans).
no

However, the following query succeeds, as intended:

108

ii. ?- delall(a,[a,a,a],Ans).
Ans=[]
yes

Explain why the program does not give the intended answer to query i. using an AND/OR
tree or a trace to illustrate your answer.

Question 10.3 The predicate repall/4 succeeds if replacing all occurrences of the element
represented by the first argument, by the element represented by the second argument, in the
list represented by the third argument, results in a list represented by the fourth argument.

e.g. ?7- repall(p,b,[a,p,p,l,el,A).
A=[a,b,b,1,e]
yes

repall/4 is defined as:

1. repall(El,Rel,[1,[1).

2. repall(El,Rel, [E1|T], [Rel|NT]):-
repall(E1l,Rel,T,NT).

3. repall(El,Rel, [H|T], [HINT]):-
repall(E1,Rel,T,NT).

For each of the following:
e specify whether the query submitted to Prolog succeeds or fails;
e if it succeeds, specify what is assigned to any variables.

10.3a ?7- repall(e,a,[f,e,a,t],Ans).

10.3b ?- repall(P,r,[s,o,u,p]l,Ans).

Question 10.4 The predicate whowants/3 has three arguments. The first is intended to
represent a type of food; the second a list of people; and the third another list, representing
those people on the 2nd argument list who want the type of food specifed in the 1st argument
(where want /2 is defined separately, with two arguments representing who wants what food).

e.g. 7- whowants(beans, [jo,tom,ann] ,Who) .
Who = [jo,ann]
yes

1. whowants(Food, [Name |Rest], [Name|Others]) : -
wants (Name,Food) ,
whowants (Food,Rest,Others) .

109

2. whowants(Food, [Name|Rest] ,Others) :-
whowants (Food,Rest,Others) .
3. whowants(Food, [1,[]).

. wants(jo,chips).

. wants(jo,beans) .

. wants(jo,eggs) .

. wants(ann,beans) .

. wants(ann,bacon) .

. wants(tom,eggs) .
10. wants(tom,chips) .
11. wants(rick,bacon).

O 00 N O O b

10.4a Give either the AND/OR tree or a trace which represents the execution of the query:
7- whowants(beans, [jo,tom,ann] ,Who) .
For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.4b ?- whowants(chips, [ann,rick],Ans).
10.4c ?7- whowants(bacon, [tom,ann],A).

10.4d ?7- whowants(eggs,Diners,Ans).

10.4e Using whowants/3 as a model, write a predicate overage/3 that takes an age limit
and a list of names, checks the age of each person named (using a predicate age/2) and
returns a list of names of those people who are over the age limit.

For example, the query below should give the output shown:

7- overage(18, [sally,alice,bill],Ans).
Ans=[alice,bill]
yes
where:
age(sally,15).
age (mark,26) .
age(bill,20).
age(alice,37).

10.4f If the predicate whowants/3 had been (incorrectly) defined as:

110

1. whowants(Food, [Name|Rest], [Name|Others]) :-
wants (Name,Food),
whowants (Food,Rest,Others) .

2. whowants(Food, [Name|Rest] ,0thers) : -
whowants (Food,Rest ,0thers) .

(i.e. no 3rd clause) predict the outcome of the query in 4c.
?- whowants(bacon, [tom,ann],A).

and explain why this is the case, using an AND/OR tree or a trace in your explanation.

Question 10.5 The predicate deletefirst/3 is supposed to succeed if deleting the element
represented by the first argument, from the list represented by the second argument, results
in a list represented by the third argument, as delete/3 defined as above (B.)

e.g. intended behaviour:
?- deletefirst(i,[b,i,b,s],A).
A=[b,b,s]
yes

Instead, it produces the following behaviour:
?- deletefirst(i,[b,i,b,s],A).
A=[s]
yes

?- deletefirst(a,[b,a,1,1],X).
no

deletefirst/3 is defined as:
1. deletefirst(E1l,[E1|T],T).

2. deletefirst(El, [H|T],NT):-
deletefirst(E1l,T, [HINT]) .

Explain why this predicate produces this behaviour (instead of the intended behaviour),
using an AND/OR tree or a trace in your explanation.

111

10.6 Practical 5: List Processing

10.6.1 Introduction

This practical covers a lot of ground. You should attempt to get through at least the Basics
section, and only go on to the material in the More Advanced List Processing once you are
happy with the basics.

10.6.2 Basic List Processing

1. Copy the file /home/infteach/prolog/code/useful.pl, the contents of which are
shown below, to your area. Get into Prolog and consult your copy of the file. List it
and try and work out what the predicates are supposed to be used for.

(a) member (X, [X|_1).
member (X, [_IT]) :-
member (X,T) .

(b) no_cons([1).
no_cons([H|T]) : -
vowel (H) ,
no_cons(T) .

vowel(a).
vowel(e).
vowel(i).
vowel (o).
vowel (u) .

(c) prlist([]).
prlist([HIT]):-
prlist(H),
nl,
prlist(T).

prlist(X):-
write(X).
(d) all_over_21([1).
all_over_21([H|T]) :-
21 < H,
all_over_21(T).

(e) max([H|T],Answer) : -
max(T,H, Answer) .

112

max ([],Answer,Answer).
max([HIT] ,Temp, Answer) : -

H > Temp,

max (T ,H,Answer) .
max ([H|T] ,Temp, Answer) : -

H =< Temp,

max (T, Temp, Answer) .

(f) last(X, [XI).
last (X, [HIT]):-
last(X,T).

(g) write_type([]).

write_type([H|T]) :-
vowel (H) ,
write(vowel),
nl,
write_type(T).

write_type([H|T]):-
write(consonant),
nl,
write_type(T).

(h) rev(List,Revl):-
revlist(List, [],Revl).

revlist([H|L],Acc,Answer) : -
revlist (L, [H|Acc],Answer).
revlist ([],Answer,Answer) .

(i) append([],Answer,Answer) .
append ([X|L1]1,L2, [XIL3]):-
append(L1,L2,L3).

2. Work out what the result of each of the following goals should be. Type each and test
it.

(a) | ?- member(a,[c,a,b,b,a,g,el).

(b) | ?- member (X, [t,o,p]l).

(c) | ?- no_cons([a,e,e,i]).

(d) | ?- no_cons([a,d,el).

(e) | ?- prlist([a,simple,list]).

(f) | ?- prlist([a, [more,embedded], [nested, [1ist]]]).
(g) | ?- all_over_21([32,36,97,25]).

(h) | ?- all_over_21([26,7,18]).

(i) | ?- max([7,3,8,2,16],A).

(j) | ?- last([which,is,the,last,word],Last).
(k) | ?- write_type([a,v,0,w,e,1]).

113

) | ?- rev([ann,saw,john] ,R).

(m) | ?- rev([1,2,3,4,5],Somelist).

(n) | ?- append([the,dog], [chased,tom],Ans).
)|

(o

3. Now try and write predicates to do the following:

(1

7- append(Who, [chased,the,dog], [the,cat,chased,the,dog]).

(a) next_to where X is the element next to Y in the list [A,...,X,Y,...,Z]; for
example

| ?- nexto(a,Y,[c,a,t]).
Y=1¢t

| ?- nexto(Y,a,[c,a,t]).
Y=c¢

(b) nth where E1 is the Nth element of a list; for example
| ?- nth(5, [w,0,r,s,e,n],E1).
El = e
| ?- nth(N, [f,r,e,d]l,r).
N =2

(c) delall where all elements of the list that match the first argument are deleted
to produce a new list; for example

| ?- delall(a,[b,a,n,a,n,al,C).

C = [b,n,n]

(d) replall where all elements of the list that match the first argument are replaced
by the second argument to produce a new list: for example

| ?- replall(a,the,[a,cat,bit,a,dog],X).

X = [the,cat,bit,the,dog]

10.6.3 More Advanced List Processing

Once you are happy with all the material covered above, you can try writing some more
complex list processing predicates. Try defining the following set and list utilities.

1. subset(X,Y) where set X is a subset of set Y (i.e., every element that is a member of
X is a member of Y).

2. equal(X,Y) if X and Y are the same set (i.e., if both X and Y have the same elements,
although not necessarily in the same order).

3. union(A,B,C) where set C is the union of set A and B (i.e., C contains all the elements
of A and all the elements of B).

114

. intersection(A,B,C) where set C is the intersection of sets A and B (i.e., C contains
only those elements which are members of both A and B).

. difference(A,B,C) where set C contains those members of set A which do not occur
in set B.

. subst(A,B,C,D) where list D is list C with element A substituted for all occurrences of
element B.

115

11 Parsing in Prolog

11.1 Introduction

In this section, we introduce the facilities that Prolog provides for parsing. This is done
through the idea of a parse tree as applied to a simple model for the construction of English
sentences.

We describe Prolog’s inbuilt mechanism for encoding a parser via grammar rules. We
then explain how to extract the parse tree and show how to extend a parser using arbitrary
Prolog code.

11.2 Simple English Syntax

First, what do we want the parser to do? We would like to know that a sentence is correct
according to the (recognised) laws of English grammar: so, The ball runs fast is syntactically
correct while The man goes pub is not, since the verb go (usually) does not take a direct
object.

Secondly, we may want to build up some structure which describes the sentence—so it would
be worth returning, as a result of the parse, an expression which represents the syntactic
structure of the successfully parsed sentence.

Of course, we are not going to try to extract the meaning of the sentence so we will not
consider attempting to build any semantic structures.

The components of this simple syntax will be such categories as sentences, nouns, verbs etc.
Here is a (top down) description:

Unit: sentence

Constructed from: noun phrase followed by a verb phrase

Unit: noun phrase

Constructed from: proper noun or determiner followed by a noun

Unit: verb phrase

Constructed from: verb or verb followed by noun phrase
Unit: determiner

Examples: a, the

Unit: noun

Examples: man, cake

Unit: verb

Examples: ate

116

sentence

(5)
/\

nounphrase verbphrase
(np) (vp)
determiner noun verb nounphrase
(det) (up)
h man ¢ determiner noun
the ate (de t)
the cake

Figure 35: A parse tree

11.3 The Parse Tree

Figure 35 shows the parse tree for the sentence the man ate the cake with some common
abbreviations in brackets.

We must remember that many sentences are ambiguous—i.e., they result in different parse
trees.

11.4 Prolog Grammar Rules

In the earlier section, we saw the beginnings of a parser which used list processing techniques
to build up a string of words corresponding to a sentence. In this section, we describe Prolog’s
inbuilt mechanism for building grammar rules.

Prolog, as a convenience, will do most of the tedious work for you. This is how we can define
the simple grammar which is accepted ‘as is’ by Prolog.

sentence -—> noun_phrase, verb_phrase.
noun_phrase --> determiner, noun.
verb_phrase --> verb, noun_phrase.
determiner ~ --> [a].

determiner ~ --> [the].

noun -—> [man].

noun -—> [cake].

verb -—> [ate].

117

It is very easy to extend if we want to include adjectives.

noun_phrase --> determiner, adjectives, noun.
adjectives -—> adjective.

adjectives - adjective, adjectives.
adjective -—> [young].

This formulation is sometimes known as a Definite Clause Grammar (DCG).

We might later think about the ordering of these rules and whether they really capture the
way we use adjectives in general conversation, but we won’t pursue this here.

We could have interpreted these rules in English as follows:

Predicate noun_phrase/1
noun_phrase(X) means that: X is a sequence of words
forming a noun_phrase

In which case, we could have used the predicate append/3 to implement this:

noun_phrase (X) : -
append(Y,Z,X),
det (Y),
noun(Z) .

det ([thel).
noun([cat]).
noun([dog]) .

append ([1,L,L).
append ([H|L1],L2, [HIL3]) : -
append(L1,L2,L3).

7- noun_phrase([the,cat]).
yes

Instead, our definition for noun_phrase/2 is:
noun_phrase(X,Y) is true if:
there is a noun phrase at the beginning of sequence X
and the part of the sequence left after the nounphrase is Y.
In Prolog we could write this as:
noun_phrase (X,Y) : -
det(X,2),

noun(Z,Y) .

118

det([thel|S],S).
noun([doglS],S).

?7- noun_phrase([the,dog,bit,the,cat], [bit,the,cat]).
yes

Essentially, the Prolog Grammar Rule formulation is syntactic sugaring. This means that
Prolog enables you to write in:

sentence -—> noun_phrase, verb_phrase.

and Prolog turns this into:

sentence(S,S0):-
noun_phrase(S,S1),
verb_phrase(S1,50).

and

adjective --> [young].

into

adjective(A,A0):-
'C’(A,young,A0).

where ’C?’/3 is a built in Prolog predicate which is defined as if:

'C’([H|T],H,T).

11.5 Using the Grammar Rules

Set a goal of the form

sentence([the,man,ate,a,cake],|])

and not as

sentence.

or

sentence([the,man,ate,a,cake])

119

11.6 How to Extract a Parse Tree

We can add an extra argument which can be used to return a result.

sentence([[np,NP],[vp,VP]]) --> noun_phrase(NP), verb_phrase(VP).
noun_phrase([[det,Det],[noun,Noun|]}-> determiner(Det), noun(Noun).
determiner(the) --> [the].

and so on

What we have done above is declare predicates sentence/3, noun_phrase/3, verb_phrase/3,
determiner/3, and so on. The explicit argument is the first and the two others are added
when the clause is read in by Prolog. Basically, Prolog expands a grammar rule with n
arguments into a corresponding clause with n 4+ 2 arguments.

So what structure is returned from solving the goal?

sentence(Structure,[the,man,ate,a,cake],[])

The result is:

[np,[[det,the],[noun,man]]],[vp,|...

Not too easy to read!

We can improve on this representation if we are allowed to use Prolog terms as arguments.
For example, in foo(happy(fred),12) the term happy(fred) is one of the arguments of
foo/2. Such a term is known as a compound term.

With the help of compound terms, we could tidy up our representation of sentence structure
to something akin to:

sentence([np([det(the),noun(man)]),vp(]...

11.7 Adding Arbitrary Prolog Goals

Grammar rules are simply expanded to Prolog goals. We can also insert arbitrary Prolog
subgoals on the right hand side of a grammar rule, but we must tell Prolog that we do not
want them expanded. This is done with the help of braces—i.e., ‘{’ and ‘}’.

For example, here is a grammar rule which parses a single character input as an ASCII code
and succeeds if the character represents a digit. It also returns the digit found.

digit(D) -->
X],
{ X >=48,

120

X =< 37,
D is X-48 }.

The grammar rule looks for a character at the head of a list of input characters and succeeds
if the Prolog subgoals

{ X >=48,
X =< 57,
D is X-48 }.

succeed. Note that we assume we are working with AsciI codes for the characters and that
the Asci1 code for “0” is 48 and for “9” is 57. Also note the strange way of signifying “equal
to or less than” as “=<”.

See further details on the use of Definite Clause Grammars in the Natural Language notes.

121

11.8 Practical 6: Definite Clause Grammars

11.8.1 Introduction

This practical is intended to give you some experience in writing Definite Clause Grammars.
You are asked to extend a basic grammar in various ways.

11.8.2 The Basic Grammar

1. Copy the file /home/infteach/prolog/code/grammarl.pl, the contents of which are
shown in Figure 36, to your area. Get into Prolog and consult your copy of the file.

Note here that the symbols vt and vi are being used to mean transitive verb and
intransitive verb respectively. A transitive verbs is one which takes an object noun
phrase; an intransitive verb is one which does not take an object noun phrase.

2. You might find it interesting to do a listing of the grammar; you will see from this
that Prolog adds extra arguments in the conversion from the definite clause grammar

formalism to normal Prolog clauses.

| ?7- [grammari].
{consulting grammarl.pl...}
{grammar consulted, 50 msec 2650 bytes}

yes
| ?- listing.

n(A, B) :-

’C’ (A, dog, B).
n(A, B) :-

’C’(A, cat, B).

s(A, B) :-
np(A, C),
vp(C, B).

yes
| 7-

3. To test the grammar, you have to provide calls to s with two arguments, since you are
calling the translated form. The first argument is the list of words whose sentencehood
you want to check, and the second argument is the empty list:

| 7- s([a,cat,chases,a,dogl,[]).

yes
| 7-

122

s --> np,vp.

np --> det, n.
np --> pn.

vp --> vt, np.
vp --> vi.

det --> [every].
det --> [a].

vt --> [chases].
vi --> [miaows].

n --> [dog].
n --> [cat].

pn --> [fido].
pn ——> [tigger].

Figure 36: A simple Definite Clause Grammar

Note that you can also use this grammar to randomly generate sentences by providing
a variable as the first argument to s:

| ?- s(Sentence, []).

Sentence = [every,dog,chases,every,dog]l 7 ;

Sentence = [every,dog,chases,every,cat] 7 ;

Sentence = [every,dog,chases,a,dog]l 7 ;

Test the grammar with the following sentences and make sure you understand its
behaviour; before trying each sentence, try to work out what Prolog will do and why.

the dogs miaow

the cat miaows

fido chases a cat
every dog chases
tigger miaows a dog
a tigger miaows

Try other random sentences.

123

11.8.3 Structure Building

A string of words is in the language defined by a grammar if a tree corresponding to the
structure of the string can be built. Parsing a sentence in Prolog consists in building such
a tree implicitly. We can make this tree explicit using another facility provided by the pDca
notation: grammar symbols may be given arguments, in exactly the same way as Prolog
goals. To build the tree, we associate with each non-terminal symbol an argument which
represents its structure, as in the following example:

s([s, [NP,VP]1]) --> np(NP), vp(VP).

For this exercise, you should augment the grammar given in Figure 36 with structure-building
arguments. You should achieve the following result.

| ?- s(ParseTree, [tigger,miaows],[]).
ParseTree = [s,[[np,[[pn, [tigger]]]], [vp, [[verb, [miaows]]1]111] ? ;

no
| ?-

So, for each node n in the tree, the result should contain a list whose first element is the
name of the node, and whose second element is a list of elements that correspond to the
nodes that are daughters of n. Each terminal node should be represented by the word that
lies at that terminal node.

Note that, since we are adding an additional arguement to each predicate, calls to s must now
contain this new argument; it appears before the arguments required by the DCG translation
process.

Also notice that, in the example above, we have typed a ; to see if Prolog can offer any
more parses. When more than one parse is available, we say that the string is syntactically
ambiguous.

11.8.4 Adding Number Agreement

Above, we saw how an extra argument was added to the non-terminal symbols of a grammar
to build a syntactic structure. Any number of arguments may be added in this way. The
DCG translator just passes through the argument structure and adds the two string handling
arguments at the end.

This aspect of DCGs can be used to improve the coverage of a grammar. For instance, we
can add an argument whose values range over {singular, plural} to represent the feature
number. By introducing the appropriate values for this feature in the lexicon and then
percolating them up and identifying the values on say, subject and verb phrase, we can
guarantee number agreement. Here’s an example:

noun([n, [dogll,plural) --> [dogs].

124

np([np, [Det, Noun]],Num) --> det(Det,Num), noun(Noun,Num).
s (s (NP,VP)) -=> np(NP,Num), vp(VP,Num).

For this part of the exercise, you should augment all of the appropriate rules in the grammar
to take account of number agreement information, so that your grammar should rule out
sentences like the following:

the dogs miaows
the cat miaow
fido chase a cat

every dogs chases a cat

ol o=

tigger chases a dogs

To make this work, you will have to attend to the following:

e Note that, in English, the subject noun phrase and the verb phrase in a sentence must
agree in number; similarly, in a noun phrase, the determiner and noun must agree in
number. However, the number of the object noun phrase in a sentence is not relevant
to the grammaticality of the sentence as a whole.

e Eack lexical rule (the rules that have words as their right hand sides) will need to be
augmented with number information, which will then percolate up via unification to
higher level nodes in the trees.

11.8.5 Extending the Coverage of the Grammar

You should now try to extend the coverage of the grammar to include the following phe-
nomena. In each case you will have to add at least one new grammar rule and some lexical
rules.

Relative clauses as in A cat that chases Tigger miaows. You should incorporate number
agreement arguments to rule out sentences like *A cat that chase Tigger miaows.

Prepositional phrases as in

A cat with a hangup chases Tigger.
A cat with a hangover miaows in discomfort.

Note here that prepositional phrases may appear to be attached to either noun phrases,
as in the first case, or to verb phrases, as in the second case.

Your grammar should provide two parses for the sentence A cat chases the dog with a
mousetrap.

Ultimately your grammar should build structure for these syntactic constructions, but you
may find it easier in the first instance to add the additional grammar rules required to the
version of the grammar that doesn’t build structure.

125

12 Input/Output

12.1 Basic input/output facilities

Prolog provides the system predicates reading and writeing for reading and writing atoms:

| ?7- read(X).
|: 2.

X =27

yes

| ?7- read(X).

|: ’This is just a few words between single quotes’.
X = This is just a few words between single quotes 7
yes

| ?- write(foo).

foo

yes

| ?- write(’Where *did* you buy that jacket?’).
Where *did* you buy that jacket?

yes
| 7-

We might start with a basic program that computes the cube of a number:

cube(N,C) :-
C is N * N * N.

Using the program:
| ?- cube(l, X).
X=17

yes
| ?- cube(5, Y).

Y =125 7

yes
| ?- cube(12, Z).

Z = 1728 7

126

yes
| 7-

We can them make modification so that the program will read the numbers itself:

cube :-
read(X),
process (X) .

process(stop) :—- !.

process(N) :-
C is N * N * N,
write(C), ttyflush,
cube.

| ?- cube.
[: 2.

8

|: 5.

125
|: 1728.
864813056
|: stop.

yes
| 7-

We might think that this could be simplified:

cube :-
read(stop) .

cube :-
read(N),
Cis N * N x N,
write(C), ttyflush,
cube.

However, we get the following behaviour:

127

What happens is that read cannot be redone, so when the first read in the first cube rule
is called, the number ’34’ is input. It failes to match to ’stop’, so this rule fails and the next
cube rule is tried. This calls read and waits for a further input, ’2’, which it then ’cubes’
and writes out: the first value input has been lost. We can illustrate this by tracing the
program.

| ?- trace, cube.
1 1 Call: cube 7
2 2 Call: read(stop) 7

|: 34.
2 2 Fail: read(stop) 7
2 2 Call: read(_165) ?
|: 2.
2 2 Exit: read(2) 7
3 2 Call: _170 is 2x2x2 7
3 2 Exit: 8 is 2x2%2 7
4 2 Call: write(8) ?
8 4 2 Exit: write(8) ?
5 2 Call: ttyflush ?
5 2 Exit: ttyflush 7
6 2 Call: cube 7
7 3 Call: read(stop) 7
|: stop.
7 3 Exit: read(stop) 7
6 2 Exit: cube 7
1 1 Exit: cube ?
yes

e get(X) unifies X with next non blank printable character (in AscII code) from current
input stream

e get0(X) unifies X with next character (in Ascir) from current input stream
e put (X) puts a character on to the current output stream; X must be bound to a legal

ASCII code

For example:

| 7- get0(C).
[:

C=107

yes

| ?- get0(C).
[: £

128

c=1027
yes
| 7- get0(C).

C=467
yes

| ?- get(C).
l:y

Cc=1217
yes

| 7- put(87).
W

yes

| ?- put(32).

yes

| ?- put(10).

yes
| 7-

12.2 File input/output

A wee program:

double(X, Y):-
Y is 2x*X.

test:-
read(X),
double(X,Y),
write(Y),
nl.

129

| ?- test.
[: 2.

4

yes

| 7-

We might want to put this into a test loop, for testing a number of values.

double(X, Y):-
Y is 2x*X.

test: -
read(X),
\+(X = -1),
double(X,Y),
write(Y),
nl,
test.

test.

Rather than keep having to type in the test values, we might want to store then in a file,
and read them into the program each time an input is called for.

go:-
see(datafile),
test,
seen,
write(’0Okay, all done.’).

double(X, Y):-
Y is 2x*X.

test: -
read(X),
\+(X = -1),
double(X,Y),
write(Y),
nl,
test.

test.

So if the contents of the file were:
3.
54 .

-1.

130

and we ran the program, we would get:

| 7- go.

6

108

Okay, all done.
yes

| 7-

The useful predicates here for reading in from a file are:

e see/l
e seen/0

e seeing/1

where see/1 specifies which file to read from (’datafile’ in the above example); seen/0 closes
this file and returns to the default input from the terminal, and seeing/1 enables the user
to find out where the input is coming from at any time.

We might also want to consider writing the output from our testing to a file:

go:-
tell(resultsfile),

see(datafile),

test,

seen,

told,

write(’0Okay, all done.’).

double(X, Y):-
Y is 2x*X.

test: -
read(X),
\+(X = -1),
double(X,Y),
write(Y),
nl,
test.

test.
The system predicates provided here are:

e tell/1

e told/0

131

e telling/1

where tell/1 specifies the file to write to; told/0 closes this file and returns to the default
keyboard output, and telling/1 allows the user to query where the output is being sent to
at any time.

Instead of defining an arbitrary character to indicate when we have read all the values we
need from a file, we can use the pre-defined end_of_file marker.

go:-
tell(resultsfile),
see(datafile),
test,
seen,
told,
write(’0Okay, all done.’).

double(X, Y):-
Y is 2x*X.

test: -
read(X),
\+(X = end_of_file),
double(X,Y),
write(Y),
nl,

test.

test.

12.3 Translating atoms and strings

The name predicate defines the relation that holds between an atom and the list of characters
that make it up.

| ?- name(cat,Y).
Y = [99,97,116] ?

yes
| ?- name(X,[98,101,114,116]).

X = bert 7

yes
| 7=

At least one of name’s arguments must be instantiated. It can be used to avoid AScCII codes:

132

| 7- [98,101,114,116] = "bert".

yes

| ?_ [X] =||au.
X=97 7

yes

| 7=

This will be used in the later section on Morphology.

133

12.4 Practicall 7: Input/Output

12.4.1 Introduction

This practical is intended to give you some experience in using Prolog’s built-in input/output
predicates. From the notes above you should have some understanding of the operation of
each of the following predicates:

Predicate Behaviour

read/1 read a term from the current input stream

write/1 write a term to the current output stream

nl/0 write a newline to the current output stream

tab/1 write a specified number of spaces to the current output stream
put/1 write a specified ASCII character to the current output stream
get/1 read a printable AScCII character from the current input stream
get0/1 read an ASCII character from the current input stream

see/1 make the specified file be the current input stream

seeing/1 determine the current input stream

seen/0 close the current input stream and reset it to user
ttyflush/0 flush the output buffer

tell/1 make the specified file be the current output stream
telling/1 determine the current output stream

to0ld/0 close the current output stream and reset it to user

name/2 arg 1 (an atom) is made of the AscII characters listed in arg 2

In this practical, you will use some of these predicates to write a number of programs that
make use of input and output. More information on each of these predicates can be found
in the sicstus manual.

There is a lot of material here: you should not expect to complete all the exercises during
the practical, but see how far you can get.

12.4.2 Basic Terminal Input/Output

1. Write a predicate echo/0 that reads a number from the terminal and writes it out
again. Your program should keep going until it reads the number 0. So, for example,
you should see behaviour like the following:

I
I
3
I
4
I
5

?- echo.

: 3.

: 4.

134

|: 1278.
1278

yes
| 7=

Note that each number typed in must be terminated by a full stop.

2. Modify this program so that it prints a prompt for input, and prints a response message,
along the following lines:

| ?- echo.

Give me a number: 4.
Your number was 4.

Give me a number: 129.
Your number was 129.
Give me a number: O.
Okay, see you later.

yes
| 7-

Note that you will have to use ttyflush to print the prompt in the way it is done
here; alternatively, you might look at what the manual has to say about the built-in

predicate prompt/2.

3. Write a predicate 1imit/1 which takes a number as argument, and then reads numbers
typed at the terminal, for each number saying whether it is greater than, equal to, or
less than the number provided as argument. The program should stop when it reads
a 0. The program’s behaviour should be something like the following:

| ?- 1limit(41).
Give me a number: 28.
Your number was below the limit.
Give me a number: 41.
Your number was the same as the limit.
Give me a number: 71891.
Your number was above the limit.
Give me a number: O.
Okay, see you later.
yes
| 7=

12.4.3 File Input/Output

1. Write a predicate called numberfile/1 that takes as argument the name of a file. The
named file should be one you have already constructed, containing a number terminated
by a full stop on each line, like the following:

1.
1898.
34.

135

1891238912398.
12.

18.

0.

The last number in the file should be a 0; this is how you will terminate the reading
process.
The predicate should open the file and read numbers from the file one at a time, writing

them out to the screen, until it reads the 0. It should then close this input stream.

2. Augment the program above so that it will write out any number it finds, including
0. To do this, you should modify the program so that it terminates on reaching the
end_of_file marker.

3. Write a predicate findnumber/2 that takes as arguments a number and the name of a
file. The predicate should open the file and read numbers from the file one at a time,
doing nothing until it finds a number that matches the first argument; it should then
announce this fact and continue with the rest of the file.

4. Modify the echo predicate you defined earlier so that it now takes two arguments, the
first the name of an input file and the second the name of an output file.

The predicate should open the input file and read numbers from the file one at a time,
writing them out to the output file. Use the end_of_file marker to terminate the
process, at which point you should make sure you reset both the input and output
streams to user.

5. Modify echo again, this time to read the names of the input and output files from the
terminal. You should print appropriate prompts in each case.

6. Modify the predicate 1imit you defined earlier, to read input from a file and to write
the numbers out to different places as follows:

e if the number is the same as the limit, announce this on the terminal,
e if the number is less than the limit, write it to a file called lower; and

o if the number is greater than the limit, write it to a file called higher.

Once done, check the contents of the two files to make sure your program did what it
should have done.

12.4.4 Atoms and Strings

To do these problems, you will need to make use of the built-in predicate name/2.

1. Define a predicate starts/2 that takes as arguments an atom and a character, and
checks whether the atom starts with the character. So, your predicate should behave
in the following manner:

136

| ?- starts(foo,f).

yes
| 7- starts(baz,g).

no
| 7-

2. Define a predicate called plural/2 which will convert nouns into their plural forms:
for example

| ?- plural(cake,X).

X = cakes
yes
| ?- plural(xylophone, X).

X = xylophones
yes

| 7-

3. Modify plural so that it reads words from a file and writes the output to the screen.

137

13 Morphology: A List Processing Application

Most natural languages show a regularity in the way words decompose into units of meaning:
for example, in English most plurals are formed by adding the letter s. This suggests a
possible economy for NLP systems: instead of storing every form (singular, plural, etc.) of
each word, we can store just the base form plus some rules for building the derived forms.
Question: how would we do this in Prolog?

We are going to look at:

e Turning atoms into strings and back again.
e Using append to concatenate strings.

e Adding exceptions to general rules.

Just to remind you about lists:

[1] = [11[]]

[1, 2] = [11[2]]

(1, 2, 31 = [11[2,3]]
= [1][2]1[3]]1]
= [1,2][3]]

and about using the predicate append:

append ([1,L,L).
append ([H|T], L1, [H|L2]):-
append(T, L1, L2).

Given the goal:
7- append([a,b], [c,d], L).
the following trace results:

| ?- trace, append([a,b], [c,d],L).
{The debugger will first creep
-- showing everything (trace)}
1 1 Call: append([a,b]l,[c,d],_84) 7
Call: append([b],[c,d],_238) 7
Call: append([],[c,d],_345) 7
Exit: append([], [c,d], [c,d]) 7
Exit: append([b], [c,d], [b,c,d]) ?
Exit: append([a,b],[c,d],[a,b,c,d]) 7

=N W WwN
=N W W N

L = [a,b,c,d] 7
yes
{trace}

| 7-

138

So now we have name which gives us a way of converting an atom into a list of characters,

and append which gives us a way of concatenating lists. So, we have a way of concatenating
atoms:

| ?- name(black,L1), name(bird,L2),
append(L1,L2,L3), name(Word,L3).

L1 = [98,108,97,99,107],
L2 = [98,105,114,100],
L3 = [98,108,97,99,107,98,105,114,100],

Word = blackbird 7

yes
| 7-

If we then think about the simple plural rule in English:

To make the plural form of a singular noun, add an s.

for example:

Singular Noun Plural Noun

terminal terminals
tree trees
cube cubes

How can we perform this mapping in Prolog? We could define a predicate
plural(SingularNoun, PluralNoun)

with the following behaviour:
| ?- plural(cube, Plural).

Plural = cubes ?

yes
| ?- plural(keyboard, Plural).
Plural = keyboards ?

yes
| ?7-

How do we do this?

% plural(Sing, Plu)

139

plural(Sing, Plu):-
name (Sing, SingChs),
name(s, EndChs),
append (SingChs, EndChs, PluChs),
name (P1lu, PluChs).

Tracing an example:

| ?- trace, plural(cube, Plural).

Call: plural(cube,_58) 7

Call: name(cube,_210) 7

Exit: name(cube, [99,117,98,101]) 7

Call: name(s,_216) 7

Exit: name(s,[115]) ?

Call: append([99,117,98,101]1,[115],_223) 7

Call: append([117,98,101]1,[115],_706) 7

Call: append([98,101],[115],_814) 7

Call: append([101],[115],_.921) 7

Call: append([],[115],_1027) 7

Exit: append([],[115],[115]) ?

Exit: append([101],[115],[101,115]) 7

Exit: append([98,101],[115],[98,101,115]) ?

Exit: append([117,98,101],[115],[117,98,101,115]) 7
Exit: append([99,117,98,101],[115],[99,117,98,101,115]) ?
Call: name(_58,[99,117,98,101,115]) 7

Exit: name(cubes,[99,117,98,101,115]) 7

Exit: plural(cube,cubes) 7

Plural = cubes 7
yes

There are other morphological transformations in English: for example, we generally add ed
to get the past tense of verbs:

Present Tense Past Tense

collect collected
screen screened
attend attended

We can build a more general procedure

% generate_morph(BaseForm, Suffix, DerivedForm)
generate_morph(BaseForm, Suffix, DerivedForm):-
name (BaseForm, BaseFormChs),

name (Suffix, SuffixChs),

140

append (BaseFormChs, SuffixChs, DerivedFormChs),
name (DerivedForm, DerivedFormChs) .

A problem: there are exceptions to the morphological rules we have seen.

For example:

e To make the plural of a word like knife, we not only add an s but we change the fto
a v.

e To make the past tense of a word like create, we add only a d, instead of ed.

How do we deal with this? First, we define a predicate morph/3: this is just append/3 under
another name.

morph([], Suffix, Suffix).
morph([H|T], Suffix, [H|L2]):-
morph(T, Suffix, L2).

We call this inside generate_morph:

% generate_morph(BaseForm, Suffix, DerivedForm)
generate_morph(BaseForm, Suffix, DerivedForm):-
name (BaseForm, BaseFormChs),
name (Suffix, SuffixChs),

morph (BaseFormChs, SuffixChs, DerivedFormChs),
name (DerivedForm, DerivedFormChs) .

A few other things you should remember about strings:
| 7- X = "fe".

X = [102,101] 7

yes

| 7- X = "s",
X = [115] 7
yes

| 7- X = "ves".

X = [118,101,115] 7
yes
| 7- X = "e".

141

X = [101] 7
yes
| 7= X = "ed".

X = [101,100] 7
yes
| 7-

Note that the exceptions we indicated are also rules: there are classes of words that have
this behaviour (in other words, they are not irregular forms).

So, we can add special base cases for these more specific rules:

morph([102,101], [115], [118,101,115]).
morph([101], [101,100], [101,100]).
morph([], Suffix, Suffix).

morph([H|T], Suffix, [H|L2]):-
morph(T, Suffix, L2).

But we don’t need to use ASCII codes explicitly:

morph("fe", "S", "ves") i
morph("e" "ed" "ed") i
morph([], Suffix, Suffix).

morph([H|T], Suffix, [HIL2]):-
morph(T, Suffix, L2).
13.1 Summary

e Understand how to use name to turn atoms into strings and back again.
e Understand how to use append to concatenate strings.

e Understand how to add exceptions to general rules.

142

13.2 Prolog Practical 8: Morphology: An Exercise in List Pro-
cessing

13.2.1 Introduction

This practical is intended to give you some practice in using list processing. The practical is
built around the use of the built-in predicate name/2 and the generate_morph/3 predicate
explained above.

13.2.2 Basic Operations on Atoms and Strings

The exercises in this practical are carried over from the previous practical. To do these
problems, you will need to make use of the built-in predicate name/2.

1. Define a predicate starts/2 that takes as arguments an atom and a character, and
checks whether the atom starts with the character. So, your predicate should behave
in the following manner:

| ?7- starts(foo,f).

yes
| ?7- starts(baz,g).

no
| ?-

2. Define a predicate called plural/2 which will convert nouns into their plural forms:
for example

| ?- plural(cake,X).

X = cakes

yes

| ?- plural(xylophone, X).
X = xylophones

yes

| 7-

3. Modify plural so that it reads words from a file and writes the output to the screen.

13.2.3 Morphological Processing

Figure 37 shows the basic elements required for morphological processing.

This is used as follows:

143

generate_morph(BaseForm, Suffix, DerivedForm):-
name (BaseForm, BaseFormChs),
name (Suffix, SuffixChs),
morph(BaseFormChs, SuffixChs, DerivedFormChs),
name (DerivedForm, DerivedFormChs) .

morph(":fe", "S", Ilvesll) .
morph(llell s Iledll s Iledll) .
morph([], Suffix, Suffix).

morph([H|T], Suffix, [H|L2]):-
morph(T, Suffix, L2).

Figure 37: Predicates for morphological processing

| ?- generate_morph(knife,s,W).
W = knives 7

yes
| 7- generate_morph(terminal,s,W).

W = terminals 7

yes
| 7- generate_morph(attempt,ed,W).

W = attempted 7

yes
| ?- generate_morph(inundate,ed,W).

W = inundated 7

yes
| 7=

For this part of the practical, you have to extend this program in various ways.

1. First, make sure you understand thoroughly how the program works. To do this you
should type it in and trace its behaviour.

2. The program as it stands includes, effectively, a rule that pluralises words ending in -fe
by changing the f to a v before adding the s. There are other rules required for other
plurals. Add additional clauses to obtain the following behaviour from your program:

| 7- generate_morph(box,s,W).

144

W = boxes 7

yes
| ?- generate_morph(fox,s,W).

W = foxes 7

yes
| ?- generate_morph(spy,s,W).

W = spies 7

yes
| 7- generate_morph(fly,s,W).

W = flies 7

yes
| 7=

3. Think about how would you extend the program above so it also deals with the fol-
lowing case:

| ?- generate_morph(ox,s,W).
W = oxen 7

yes
| 7-

You don’t have to implement this: the objective is to understand the nature of the
problem.

4. Finally, add clauses to your program so that it produces the following behaviour:
| ?- generate_morph(slow,ly,W).
W = slowly 7

yes
| 7- generate_morph(full,ly,W).

W = fully ?

yes
| 7=

145

14 Top-down design: The Missionaries and Cannibals
Problem

14.1 The Problem

Given the following ...

e Three missionaries and three cannibals are trying to cross a river: they want to get
from the left bank to the right bank.

e There is one boat, which can take two people at most.

e If the cannibals outnumber the missionaries on a bank, then the missionaries get eaten.
We’ll assume that the boat being at a bank counts as it being on the bank.

...we want to find the schedule of crossings that will get all six across safely.

We’ll use this problem to demonstrate the top-down design of a solution.

14.2 Viewing the Problem as State Space Search
In abstract terms:

e We can represent the states as follows:

Initial State |MMMCCCB|—

Goal State | —|MMMCCCB

e We can represent the possible moves as follows:

M— | < M
MM — | < MM
MC — | < MC
CC — | < CC
C— | < C

A strategy for solving the problem, given a current state:

e Try each move in turn.

— Check if it is a safe move to make.

— If it is not, try another move.

e If there are no more moves to try, go back to where we had a choice of moves and try
again.

e Once we’ve made a move, check to see if we are at the goal state; if not, repeat the
process.

146

14.3 A Prolog Program to Solve the Problem

What we have to do:

1. Choose a representation.
2. Decide on the algorithm to be used.
3. Choose predicates to represent each step.

4. Work out the detail in a top-down fashion.

Choosing a Representation: How will we represent the situation on each side of the
river?

Some possibilities:

e Use a list of the entities that are on that side of the river:
[m,m,m,c,c,c,b]
e Use separate terms for each type of entity:

missionaries(3)
cannibals (3)

e Use one term with three arguments:
leftside(3,3,1)
e Use a list with three elements:
[3,3,1]
where

— missionaries = {0,1,2,3}
— cannibals = {0,1,2,3}
— boat = {0,1}

We’ll use the last of these; so:

Initial state: Left = [3,3,1]
Right = 1[0,0,0]
Goal state: Left = [0,0,0]
Right = 1[3,3,1]

147

14.4 Problem Solution

The general idea is to make moves from one bank to the other until we reach the goal state.

To make a move from one bank to the other:

1. Make a move and get the new states of the banks.

2. Check if the new states of the banks are safe (i.e., make sure the missionaries won'’t
get eaten); if they are not, repeat Step 1 for a different move.

3. Repeat the entire process until we reach the goal state.

We have to choose some predicates to represent these steps, then work top-down.

The Top Level Predicate: The main predicate gofrom/2:

e make a move and get the new states of the banks

e if safe(Left) and safe(Right) then gofrom the new states.
In Prolog:

gofrom(Left, Right):-
applymove (Left, Right, NewLeft, NewRight),
safe(Left),
safe(Right),
gofrom(NewLeft, NewRight).

We need to check if the goal state has been reached:
gofrom([0,0,0],[3,3,1]).

Remember we have to put this before the recursive gofrom/2 clause.

Applying a Move The predicate applymove/4 gives us new states of the two banks by
applying a move.

e If the boat is already on the left bank, the pattern when called will be:
applymove([M1,C1,1], [M2,C2,0]1, ...)
e If the boat is on the right, the pattern will be:

applymove([M1,C1,0], [M2,C2,1]1, ...)

To save having to do two sets of clauses, one for each side, we can check which side the boat
is on then apply the same operator:

148

e If the boat is on the left:

applymove (Left, Right, NewLeft, NewRight):-
boathere (Left),
moveload(Left, Right, NewLeft, NewRight).

e [f the boat is on the right:

applymove (Left, Right, NewLeft, NewRight):-
boathere(Right),
moveload(Right, Left, NewRight, NewLeft).

This uses the same boathere/1 and moveload/4. boathere/1 is defined very simply:

boathere([M,C,1]).

Moving a Load Now we need to define the predicate moveload/4.

The algorithm:

e select a move (move/1)
e check if it is possible (possibletomove/2)

e make the move (performmove/5)
So:

moveload(Source, Target, NewSource, NewTarget):-
move (BoatLoad) ,
possibletomove (Source, BoatLoad),
performthemove (Source, Target,
BoatLoad, NewSource, NewTarget).

Note that we use Source and Target since we may be moving from the left bank to the

right, or from the right bank to the left.

Choosing a Move We have five possibilities for boatloads: one missionary, two mission-

aries, one missionary and one cannibal, two cannibals, or one cannibal.

How do we represent the moves?

e we could represent the possible moves as a list, and repeatedly select elements from

this list; or

e we could represent each move as a separate clause and choose each clause in turn.

With the latter, we can use Prolog’s backtracking: get a move, then if it fails, backtrack and

get another move.

move/1 is called with its argument uninstantiated:

149

move (Boatload)
This matches to potential moves and instantiates Boatload in the process. For example:
move([1,1,1]).

means one missionary, one cannibal, and one boat.

You have to define the other moves yourself.

Checking Whether a Move is Possible Defining possibletomove/2:

e Suppose the current state of the Source is [2,0,1].
e Suppose the move selected is move ([1,1,1]).

This move is not possible, since there are no cannibals to move.

So, there must be, at the most, the number of missionaries, cannibals and boats in the move
as in the Source state.

possibletomove ([M,C,B], [MoveM,MoveC,MoveB]):-

M >= MoveM,
C >= MoveC,
B >= MoveB.

We’ve selected a move and checked if it is possible. Now we have to perform the move.

Performing the Chosen Move We want to define performthemove/5.

What we have to do:

e we are given the current Source and Target banks
e we know the move to be made

e we want to find out the new states of the Source and Target banks after the move.

performthemove (Source, Target,
Move, NewSource, NewTarget)

The definition is as follows:

performthemove ([SM,SC,SB], [TM,TC,TB], [MM,MC,MB],
[NSM,NSC,NSB] , [NTM,NTC,NTB]) : -
NSM is SM - MM,
NSC is SC - MC,
NSB is SB - MB,

NTM is SM + MM,
NTC is SC + MC,
NTB is SB + MB.

150

Safe States We still have to define safe/1, which determines whether a state is safe.
A state is safe provided there are not more cannibals than missionaries, or if there are no
missionaries in that state (then it doesn’t matter how many cannibals there are). So:

safe([2,3,1])

should be false, since there are two missionaries and three cannibals.

You have to define this predicate. safe/1 should succeed if the state is safe, and fail if it is
not.

The Problem of Looping We don’t want to waste effort visiting states already tried.

e How do we know if we’ve tried a state before? We keep a list of all the states visited.

e Do we need to remember the whole state? No: The left (or right) bank alone will do.

So:

1. Each time we make a move, add the old left side state to a list of previous left side
states.

2. Before committing ourselves to the next move, after checking the resulting state is
safe, we check if we are looping, i.e., if the new left state is a member of the list of
previously visited left states. If it is not, then we are okay.

You should add the code to do this check.

14.5 Where We Are So Far

go:-
gofrom([3,3,1], [0,0,0], [[3,3,11]1).

gofrom([0,0,0], [3,3,1], PreviousLeftStates).

gofrom(Left, Right, PreviousLeftStates):-
applymove (Left, Right, NewLeft, NewRight),
safe(NewLeft),
safe(NewRight),
\+looping(NewLeft, PreviousLeftStates),
gofrom(NewLeft, NewRight,
[NewLeft|PreviousLeftStates]) .

applymove (Left, Right, NewLeft, NewRight):-
boathere (Left),
moveload(Left, Right, NewLeft, NewRight).

151

applymove (Left, Right, NewLeft, NewRight):-
boathere(Right),
moveload(Right, Left, NewRight, NewLeft).

boathere([Missionaries, Cannibals, 1]).

moveload(Source, Target, NewSource, NewTarget):-
move (BoatLoad) ,
possibletomove(Source, BoatLoad),
performthemove (Source, Target,
BoatLoad, NewSource, NewTarget).

possibletomove([M,C,B], [MoveM,MoveC,MoveB]):-

M >= MoveM,
C >= MoveC,
B >= MoveB.

performthemove ([SourceM, SourceC, SourceB],

[TargetM, TargetC, TargetB],
[MoveM, MoveC, MoveB],
[NewSourceM, NewSourceC, NewSourceB],
[NewTargetM, NewTargetC, NewTargetB]):-

NewSourceM is SourceM - MoveM,

NewSourceC is SourceC - MoveC,

NewSourceB is SourceB - MoveB,

NewTargetM is TargetM + MoveM,

NewTargetC is TargetC + MoveC,

NewTargetB is TargetB + MoveB.

152

14.6 Prolog Practical 9: The Missionaries and Cannibals Problem

14.6.1 Introduction

This practical is based on the Missionaries and Cannibals Problem described above.

In summary, the problem is as follows

e Three missionaries and three cannibals are trying to cross a river: they want to get
from the left bank to the right bank.

e There is one boat, which can take two people at most.

e If the cannibals outnumber the missionaries on a bank, then the missionaries get eaten.
We’ll assume that the boat being at a bank counts as it being on the bank.

We want to find the schedule of crossings that will get all six across safely.

1. Copy the file /home/infteach/prolog/code/mandc.pl into your area.

2. Look at it and try and work out how it works. Work out which predicates calls which
other ones, and what purpose each serves in solving the problem.

3. Go into Prolog and consult the file.

4. Try out some of the individual predicates and see if they work as you thought they
did.

14.6.2 Making it Work

There are three predicate definitions missing: safe/1, move/1 and looping/2. Your task is
to write these missing definitions. Note that:

e In the code, you'll see the form \+looping(NewLeft, PreviousLeftStates). The \+
means ‘not’: if a goal G is true, then \+G will be false, and vice versa. So, when you
write the definition for looping/2, it should check for looping being the case; the goal
\+looping(NewLeft, PreviousLeftStates) will then succeed if there is no looping.

e The file contains the member/2 predicate: you will need to make use of this.

Edit the file and add in the missing clauses, then get into Prolog again, consult the file and
test it.

14.6.3 Adding a Commentary

You should add write statements in sensible places so that the program writes out the
sequence of moves it tries, and the successful set of moves that gives the solution.

153

go:-
gofrom([3,3,1], [0,0,0], [[3,3,111).

gofrom([0,0,0], [3,3,1], PreviousLeftStates).

gofrom(Left, Right, PreviousLeftStates):-
applymove (Left, Right, NewLeft, NewRight),
safe(NewLeft),
safe (NewRight),
\+looping(NewLeft, PreviousLeftStates),
gofrom(NewLeft, NewRight, [NewLeft|PreviousLeftStates]).

applymove (Left, Right, NewLeft, NewRight) :-
boathere(Left),
moveload(Left, Right, NewLeft, NewRight).

applymove (Left, Right, NewLeft, NewRight):-
boathere(Right),
moveload(Right, Left, NewRight, NewLeft).

boathere([Missionaries, Cannibals, 1]).

moveload(Source, Target, NewSource, NewTarget):-
move (BoatLoad),
possibletomove (Source, BoatLoad),
performthemove (Source, Target, BoatLoad, NewSource, NewTarget).

possibletomove ([M,C,B], [MoveM,MoveC,MoveB]):-
M >= MoveM, C >= MoveC, B >= MoveB.

performthemove ([SourceM, SourceC, SourceB],
[TargetM, TargetC, TargetB],
[MoveM, MoveC, MoveB],
[NewSourceM, NewSourceC, NewSourceB],
[NewTargetM, NewTargetC, NewTargetB]):-
NewSourceM is SourceM - MoveM,
MoveC,
NewSourceB is SourceB - MoveB,
NewTargetM is TargetM +
NewTargetC is TargetC + MoveC,
NewTargetB is TargetB + MoveB.

NewSourceC is SourceC

MovelM,

member (X, [X|_1).
member (X, [Y|Z]):-
member (X, Z).

Figure 38: The Code Provided

154

15 Eliza in Prolog

15.1 Implementing Eliza

The general algorithm:

e Read a sentence.
e Perform some transformation on the sentence to produce a response.

e Write out the response.

A Rudimentary Eliza

go:-
read_in(Input),

process (Input) .

process ([W1,W2]) :-
member (W1, [bye, goodbye, quit, halt, chow]),
write(’I hope I was of some help.’), nl.

process (Input) :-
build_response(Input, Output),
reply(Qutput), nl,

go.

build_response(Input, Output):-
rule(Input, Output).

rule([Greeting|Rest], [hi|Rest]):-
member (Greeting, [hi, hello]).

rule([i,hate,X,’.’],

[do, you, really, hate, X, 7]).
rule([X,you,Y,me,’?’],

[why, do, you, ask, if, ’I’, Y, you, 7]).
rule([i,like,X,’.’],

[does, anyone, else, in, your, family, like, X, 7]).
rule([are, you, X,’7?’],

[what, makes, you, think, ’I’, am, X, 7]).
rule([you, are, X, ’.’],

[does, it, please, you, to, believe, ’I’, am, X, 7]).
rule(X,

[please, go, on, ’.°]).

A Consultation

155

| ?- go.
| : Hello there.
Hi there.

| : How are you?
Please go on.

|: Can you help me?
Why do you ask if I help you?

| : Because you’re supposed to.
Please go on.

|: Don’t you like me?
Why do you ask if I like you?

|: You’re not being very helpful.

Please go on.

|: Are you deaf?
What makes you think I am deaf?

|: You don’t help much.
Please go on.

|: Oh, I give up.
Please go on.

| : Bye.
I hope I was of some help.

15.2 Some Comments on Prolog Layout

Program headers:

% Program: practl.pl

% Author: fredcl

% Updated: 9 March 1991

% Purpose: ATl Prolog Practical
% Uses: append/3 from utils.pl

% Defines:
% foo(+,-)
% baz (+,+)

Code:

separate different predicate definitions by at least one blank line

156

General structure:

% Predicate Header Documentation
Head of Clause;:-

Indented Subgoal,

Indented Subgoal,

Head of Clause;:-

Head of Clause;:-

Indented Subgoal;

Indented Subgoal,

% Predicate Header Documentation

e Precede each predicate with some description.

e Use end of line comments to explain what’s happening.
append([], A, A). % The base case

append([A|B], C, [A|D]):- %» The recursive case
append(B, C, D).

157

15.3 Prolog Practical 10: Eliza

This practical is based on the elementary Eliza program described above.

1. Copy the file /home/infteach/prolog/code/elizette.pl into your area.

2. The file contains a lot of code that is concerned with input and output. For your
purposes, however, the important predicates are shown in Figure 39.

Look at the code and make sure you understand how it works.

3. Go into Prolog and consult the file. Experiment a little. An example consultation with
the program is shown in Figure 40.

4. The dialogue contributions that the program is capable of making are not particularly
impressive. Think about ways in which you could extend the coverage of the program,
and try some of these out.

go:-
read_in(Input),
process(Input).
process([W1,W2]) :-
member (W1, [bye, goodbye, quit, halt, chow]),
write(’I hope I was of some help.’), nl.
process (Input) : -

build_response(Input, Output),
reply(Output), nl,

go.

build_response(Input, Output):-
rule(Input, Output).

rule([Greeting|Rest], [hi|Rest]) :-

member (Greeting, [hi, hello]).
rule([i,hate,X,’.’], [do, you, really, hate, X, 7]).
rule([X,you,Y,me,’?’], [why, do, you, ask, if, ’I’, Y, you, 7]).
rule([i,like,X,’.’], [does, anyone, else, in, your, family, like, X, ?7]).

rule([are, you, X,’?’], [what, makes, you, think, ’I’, am, X, 7]).
rule([you, are, X, ’.’], [does, it, please, you, to, believe, ’I’, am, X, 7]).
rule (X, [please, go, on, ’.’°]1).

Figure 39: The basics of a rudimentary Eliza

158

| 7- go.
| : Hello there.
Hi there.

| : How are you?
Please go on.

|: Can you help me?
Why do you ask if I help you?

| : Because you’re supposed to.
Please go on.

|: Don’t you like me?
Why do you ask if I like you?

|: You’re not being very helpful.
Please go on.

|: Are you deaf?
What makes you think I am deaf?

|: You don’t help much.
Please go on.

|: Oh, I give up.
Please go on.

| : Bye.
I hope I was of some help.

yes
| ?-

Figure 40: A sample consultation

159

16 Problem Solving in Prolog: The Monkey and the
Bananas

Here we take a standard example AI problem: modelling problem-solving behaviour. We
look at representing the world as symbolic descriptions, using predicates and arguments for
relations and objects and also for actions. We use operators to represent actions in the
world—a good approach where the search space is potentially infinite, but a finite set of
potential actions and outcomes can be identified.

16.1 The Problem

A hungry monkey is in a cage. Suspended from the roof, just out of his reach, is
a bunch of bananas. In the corner of the cage is a box. After several unsuccessful
attempts to reach the bananas, the monkey walks to the box, pushes it under
the bananas, climbs on to it, picks the bananas and eats them.

How do we write a program that can build a plan which, if executed, would model the
behaviour of the monkey?

16.2 The General Approach to a Solution

We express the actions that can be performed as operators which act on the world and
change its state.

For example:

e the monkey can move objects;
e the monkey can move from place to place;
e the monkey can stand on the floor or climb on the box;

e the monkey can grab bananas.

Operators: this basic techniques we’ll use come from an early A1 program called STRIPS.

e Each operator has outcomes: it affects the state of the world.

e FEach operator can only be applied in certain circumstances: these circumstances are
the preconditions of the operator.

16.3 Representational Considerations

An informal solution would be:

160

The monkey pushes the box under the bananas, climbs on it and grabs the
bananas.

Questions:

e How do we represent the state of the world?
e How do we represent operators?
e Does our representation make it easy to:

— check preconditions;
— alter the state of the world after performing actions; and

— recognise the goal state?

Representing the World: we have:

e a monkey, a box, the bananas, a floor;
e places in the room——call them a, b, and c;
e relations of objects to places:

— the monkey being at location a;
— the monkey being on the floor;
— the bananas hanging;

— the box being at the same place as the bananas.
We use appropriately chosen predicates and arguments:

at (monkey, a)
on(monkey, box)
status(bananas, hanging)

at(box,X), at(bananas,X)
The Initial State of the World:

on(monkey, floor),
on(box, floor),

at (monkey, a),

at(box, b),

at(bananas, c),
status(bananas, hanging)

The Goal State:

161

on(monkey, box),

on(box, floor),

at (monkey, c),

at(box, c¢),

at(bananas, c),
status(bananas, grabbed)

Representing Operators: We make some assumptions about the use of the operators
and what needs to be stated explicitly:

Moving around in the world: only the monkey can move: go(X,Y) —e.g., go(a,b)
Pushing things around: Again, only the monkey does this: push(B,X,Y)—e.g., push(box,a,b)
Climbing on objects: climb_on(X) Note: we don’t allow the monkey to get off the box!

Grabbing objects: grab(X)

Each operator has preconditions and effects on the world:

Operator Preconditions Effects
Delete Add

go(X,Y) at(m,X) at(m,X) at(m,Y)
on(m,fl)

push(B,X,Y) at(m,X) at(m,X) at(m,Y)
at(B,X) at(B,X) at(B,Y)
on(m,fl)
on(B,fl)

climb_on(B) at(m,X) on(m,fl) on(m,B)
at(B,X)
on(m,fl)
on(B,fl)

grab(B) on(m,box) status(B,h) status(B,g)
at (box,X)
at (B,X)

status(B,h)

where:

m = monkey
fl = floor

h = hanging
g = grabbed

162

on(m,fl), on(box,fl), at(m,a), at(box,b),
at(bananas,c), status(bananas, hanging)

!

1

on(m,fl), on(box,fl), at(m,b), at(box,b),
at(bananas,c), status(bananas, hanging)

J
‘push(box,b,c)‘
4
on(m,fl), on(box,fl), at(m,c), at(box,c),
at(bananas,c), status(bananas, hanging)

!

‘ climb_on(box) ‘
4
on(m,box), on(box,fl), at(m,c), at(box,c),
at(bananas,c), status(bananas, hanging)

2

‘ grab (bananas) ‘

J
on(m,box), on(box,fl), at(m,c), at(box,c),
at(bananas,c), status(bananas, grabbed)

How the World Changes

The General Solution

1. Look at the state of the world:

e [s it the goal state? If so, the list of operators so far is the plan to be applied.
e If not, go to Step 2.

2. Pick an operator:

e Check it has not already been applied (i.e., check for looping).
e Check if it can be applied (ie that the preconditions are satisfied).

If either of these checks fails, backtrack to get another operator.
3. Apply the operator:

e Make changes to the world: delete from and add to the world state.
e Add the operator to the list of operators to be applied.
e Go to Step 1.

16.4 Doing All This in Prolog

The top level predicate will be solve/3, whose arguments are the initial state, the goal state,
and the eventual plan.

163

Operators will be represented by the predicate opn/4 whose arguments are

e the operator name and arguments;
e the list of preconditions;
e what to delete from the world state;

e what to add to the world state

The Top Level in Prolog:

% solve(+State, +Goal, -Plan).

% Given starting State and final Goal state,
% returns a Plan consisting of a list of

% operations for transforming State into

% Goal (N.B. operators in plan are in reverse
% order of application).

solve(State, Goal, Plan):-
solve(State, Goal, [], Plan).

The Operators in Prolog:

opn(go(X,Y),
[at (monkey,X), on(monkey,floor)],
[at (monkey,X)],
[at (monkey,Y)]) .

opn(push(B,X,Y),
[at (monkey,X), at(B,X),
on(monkey,floor), on(B,floor)],
[at (monkey,X), at(B,X)],
[at (monkey,Y), at(B,Y)]).

opn(climbon(B),
[at (monkey,X), at(B,X),
on(monkey,floor), on(B,floor)],
[on (monkey,floor)],
[on(monkey,B)]) .

opn(grab(B),
[on (monkey,box), at(box,X),
at(B,X), status(B,hanging)],
[status(B,hanging)],
[status(B,grabbed)]) .

164

The Main Predicate: The work is done by the solve/4 predicate. There are two cases:

e if we’ve reached the goal state; and

e if we haven’t reached the goal state.

The arguments to solve/4 are the current state, the goal state, the sequence of operations
so far, and the final plan.

e If at the goal state, the plan is the sequence of operators so far;

e If not at the goal state:

— select an operator: (match to opn/4)

— check if not a member of list so far (use member)

— check if preconditions hold in world (i.e., preconditions list should be a subset of
world state)

— delete from world state what is no longer true (use dellist)

— add to world state what is now true (use append)

— recurse on solve to get the next state

The Prolog Code for solve/4 is:

solve(State, Goal, Plan, Plan):-
is_subset(Goal, State).

solve(State, Goal, Sofar, Plan):-
opn(0p, Preconditions, Delete, Add),
\+ member (Op, Sofar),
is_subset(Preconditions, State),
delete_list(Delete, State, Remainder),
append (Add, Remainder, NewState),
solve(NewState, Goal, [Op|Sofar], Plan).

Utility Predicates are:

is_subset([H|T], Set):-
member (H, Set),
is_subset(T, Set).

is_subset([1, _).

delete_list([H|T], List, Final):-
remove (H, List, Remainder),
delete_list(T, Remainder, Final).

delete_list([], List, List).

remove (X, [XIT], T).

remove(X, [HIT], [HIR]):-
remove(X, T, R).

165

16.5 Using Strips in Another Domain

The initial state:

a blue

pyramid

a green

cube

a red brick

The goal state:

a red brick

a green
a blue
cube

pyramid

An Operator Definition:

Operator

Effects
Add

Preconditions
Delete

move (Obj,A,B)

on(0bj,A)
clear(Qbj)
clear(B)

on(0bj,A)
clear(B)

on(0bj,B)
clear(A)

166

16.6 Prolog Practical 11: A Simple Version of STRIPS

16.6.1 Basics

The file /home/infteach/prolog/code/simstrips.pl contains a simple version of a STRIPS-
type means-ends analysis program, coded to solve the monkey and bananas problem. This
is the program discussed above. The main predicates are shown in Figure 41; the utility
predicates used are shown in Figure 42.

Copy the file to your area. Have a look at the file and make sure you understand the
structure of the program. Think back to how the program is supposed to work (operators
with preconditions, add and delete lists applied to some world state); try and match this to
the program. Run the program by calling the top level goal

test (P).

The test/1 predicate has a subgoal solve/3. The first argument of solve represents the
initial state of the world; the second represents the goal state to be achieved; and the third
will become instantiated to the plan that, when applied to the initial state, will achieve the
goal state.

16.6.2 Extensions

Consider the blocksworld scenario shown in Figure 43. You might represent this using
predicates like the following:

on(brick, floor), on(cube, brick), on(pyramid, cube),
colour(cube, green), colour(brick, red), colour(pyramid, blue),
clear(pyramid), clear(floor).

Suppose the configuration of objects in Figure 43 is the initial state, and the configuration in
Figure 44 is the desired goal state. When you think that you understand how the simstrips
program works, modify the code to build a plan that will achieve the goal state. You should
express the goal state as the following:

on(X,Y), colour(X,red), colour(Y,green)

or, in English: put the red thing on the green thing.
You will need to change the operators and the initial and goal state repesentations.

Note that you do not need to change the solve/3 predicate or the utilities. Run your
program and test it.

167

test(Plan) : -
solve([on(monkey,floor) ,on(box,floor) ,at(monkey,a),at(box,b),
at (bananas,c),status(bananas,hanging)],
[on(monkey,box) ,on(box,floor) ,at(monkey,c),at(box,c),
at (bananas,c),status(bananas,grabbed)],
Plan).

solve(State, Goal, Plan):-
solve(State, Goal, [], Plan).

solve(State, Goal, Plan, Plan):-
is_subset(Goal, State).

solve(State, Goal, Sofar, Plan):-
opn(0Op, Preconditions, Delete, Add),
\+ member (Op, Sofar),
is_subset(Preconditions, State),
delete_list(Delete, State, Remainder),
append (Add, Remainder, NewState),
solve(NewState, Goal, [Opl|Sofar], Plan).

opn(go(X,Y),
[at (monkey,X), on(monkey,floor)],
[at (monkey,X)],
[at (monkey,Y)]) .

opn(push(B,X,Y),
[at (monkey,X), at(B,X), on(monkey,floor), on(B,floor)],
[at (monkey,X), at(B,X)],
[at (monkey,Y), at(B,Y)]).

opn(climbon(B),
[at (monkey,X), at(B,X), on(monkey,floor), on(B,floor)],
[on (monkey,floor)],
[on (monkey,B)]) .

opn(grab(B),
[on(monkey,box), at(box,X), at(B,X), status(B,hanging)],
[status(B,hanging)],
[status(B,grabbed)]) .

Figure 41: The simstrips program

168

is_subset ([H|T], Set):-
member (H, Set),
is_subset(T, Set).

is_subset([1, _).

delete_list([H|T], List, Final):-
remove (H, List, Remainder),
delete_list(T, Remainder, Final).

delete_list([], List, List).

remove (X, [XIT], T).
remove(X, [HIT], [HIR]):-
remove(X, T, R).

append([H|T], L1, [H|L2]):-
append (T, L1, L2).
append([]1, L, L).

member (X, [X|_1).

member (X, [_[|T]):-
member (X, T).

Figure 42: The utilities used in the simstrips program

a blue
pyramid

a green
cube

a red brick

Figure 43: The initial blocksworld state

169

a red brick

a green

cube a blue

pyramid

Figure 44: The goal state

170

17 Answers

17.1 Chapter 2

Question 2.1 The predicate =/2 takes 2 arguments and tries to unify them

the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

2.1a ?7- Pear = apple.
Pear = apple yes

2.1b ?7- car = beetle.
no
2.1c 7- likes(beer (murphys),john) = likes(Who,What).
What = john, Who = beer (murphys) yes
2.1d 7- £(1) = F.
f(1) = F yes
2.1e ?7- name(Family) = smith.
no
2.1f ?- times(2,2) = Four.
Four = times(2,2) yes
2.1g ?7- 5%3 = 15.
no
2.1h ?7- £f(X,Y) = £(P,P).
X=P Y=P yes
2.1i 7- a(X,y) = a(y,2).
X=yZ-=y yes
2.1j 7- a(X,y) = a(z,X).
no

. For each of

Question 2.2 The following Prolog program is consulted by the Prolog interpreter.

vertical (seg(point(X,Y) ,point(X,Y1))).
horizontal (seg(point(X,Y) ,point(X1,Y))).

What will be the outcome of each of the following queries?

171

2.2a ?7- vertical(seg(point(1,1),point(1,2))).
yes

Note that whilst the constants 1 and 2 match to variables in the program, the Prolog
interpreter only returns the values of any variables in the query — none in this case.

2.2b ?7- vertical(seg(point(1,1),point(2,Y))).
no

The Y in the query is independent of the variable Y in the program. In fact, when the
program is interpreted the variables are renamed anyway to avoid any confusion.

2.2¢c ?7- horizontal(seg(point(1,1),point(2,Y))).
Y=1 yes

2.2d ?7- vertical(seg(point(2,3),P)).
P = point(2,_A) yes

The second argument of point/2, in the second argument of seg, has not been instantiated
by the match, so is returned as a variable.

2.2e ?- vertical(S), horizontal(S).
S = seg(point(_B,_A),point(_B,_A)) yes

Here is an example of renaming of variables: what were X, Y, and Y1 in the program are
renamed _A and _B

Question 2.3 The following Prolog program is consulted by the Prolog interpreter.

parent (pat,jim) .
parent (pam,bob) .
parent (bob,ann) .
parent (bob,pat) .
parent(tom,1iz) .
parent (tom,bob) .

What will be the outcome of each of the following queries?

2.3a ?7- parent(bob,pat) .
yes

2.3b ?7- parent(liz,pat).
no

172

2.3c ?7- parent(tom,ben) .

no
2.3d ?7- parent(Pam,Liz) .

Liz = jim Pam = pat yes
2.3e 7- parent(P,C) ,parent(P,C2).

C=jim C2 = jim P = pat yes

Question 2.4 The following Prolog program is consulted by the Prolog interpreter.

colour(bl,red).
colour(b2,blue).
colour(b3,yellow).
shape (b1,square) .
shape (b2,circle) .
shape (b3, square) .
size(bl,small).
size(b2,small) .
size(b3,large) .

What will be the outcome of each of the following queries?

2.4a 7- shape(b3,S).
S=square yes

2.4b ?- size(W,small).
W=b1 yes
2.4c ?- colour(R,blue).
R=b2 yes
2.44 7- shape(Y,square) ,colour(Y,blue).
no
2.4e 7- size(X,large),colour(X,yellow).
X=c3 yes
2.4f 7- shape(BlockA, square) ,shape(BlockB,square) .

BlockA=bl BlockB=bl yes

2.4g ?7- size(b2,8),shape(b2,5).
no
2.4h ?7- colour(b1l,Shape),size(X,small),shape(Y,circle).

Shape=red X=bl Y=b2 yes

173

Question 2.5 The following Prolog program is consulted by the Prolog interpreter.

film(res_dogs,dir(tarantino) ,stars(keitel,roth),1992).
film(sleepless,dir(ephron),stars(ryan,hanks),1993).
film(bambi,dir(disney) ,stars(bambi,thumper) ,1942).
film(jur_park,dir(spielberg) ,stars(neill,dern),1993).

What will be the outcome of each of the following queries?

2.5a ?7- film(res_dogs,D,S,1992).
D=dir(tarantino) S=stars(keitel,roth) yes

2.5b ?- film(F,dir(D),stars(Who,hanks),Y).
F=sleepless D=ephron Who=ryan Y=1993 yes

2.5c¢ ?- film(What,Who,stars(thumper) ,b1942).
no

2.5d Write the query that would answer the question:
”Who directed Jurassic Park (jur_park)?”
and give the outcome of the query.

?7- film(jur_park,dir(Director),stars(X,Y),Z).
Director=spielberg X=neill Y=dern Z=1993 yes

2.5e Write the query that would answer the question:
”What film did hanks appear in in 1993 and who was the other star?”
and give the outcome of the query.

?- film(Film,D,stars(Other,hanks),1993).

Film=sleepless D=dir(ephron) Other=ryan
[might also try ?7- film(Film,D,stars(hanks,Other),1993).
with outcome no if did not know order of stars]

17.2 Chapter 4

Question 4.1 The following Prolog program is consulted by the Prolog interpreter.

big(bear) .
big(elephant) .
small(cat) .

174

brown(bear) .

black(cat).

grey(elephant) .
dark(Animal) : - black(Animal).
dark(Animal) : - brown(Animal).

What will be the outcome of each of the following queries?

4.1a ?7- dark(X), big(X).
X = bear yes
4.1b 7- big(X), grey(Y).
X = bear Y = elephant yes
4. 1c ?- dark(D), small(D).
D = cat yes
4.1d 7- big(Animal), black(Animal).
no
4. 1e ?- small(P), black(P), dark(P).
P = cat yes

Question 4.2 The following Prolog program is consulted by the Prolog interpreter.

knows(A,B) : -
friends(A, B).

knows (A,B) : -
friends(A, C),
knows(C, B).

friends(john, alice).
friends(alice, tom).
friends(sue, john).
friends(sue, clive).
friends(fred, tom).
friends(tom, sue).

State whether the following queries succeed or fail. If a query fails, explain why.

4.2a 7- knows(alice, john).
yes

4.2b ?- knows(clive, sue).
yes

175

4.2c ?- knows(alice, fred).
no, loops

4.2d ?7- knows(sue, john).

no, relationship not defined
(and cannot change order of arguments).

17.3 Chapter 5

For each of the following programs, say if the query given fails or succeeds. Give any bindings
made as a consequence

Question 5.1

a:-b,c.
b.
c:—d.
d:-e.
7- a.

fails (a if b and c.
b succeeds.
c if d.
d if e.
e fails.
so d fails. so
¢ fails.
so a fails.)

Question 5.2

a:-b,c.
c:-e.
b:-f,g.
b:-n.
e.

f.

n.

7- a.

succeeds (a if b and c.
b if f and g.

176

f succeeds. g fails.
can’t redo f so f fails.
redo b. b if n.
n succeeds.
b succeeds.
c if e.
e succeeds.
C succeeds.
a succeeds.)

[Unfortunately sicstus prolog gives the same answer to both 5.1 and 5.2
here:

{EXISTENCE ERROR: g: procedure user:g/0 does not exist}
on the assumption that if you have predicates called with no facts for
them then maybe you made an error, and you probably meant to have facts
for e in 5.1 and g in 5.2. Particularly this is unfortunate because the
sicstus interpreter does not go on to prove b if n, but stops to tell
you that g does not exist. I think this is a bad design decision: you
should have got a warning here, as with singleton variables, not an
"existence error".]

Question 5.3

do(X):—a(X),b(X).
a(X):-c(X),dX).

a(X):-e(X).
bX):-f(X).
b(X):-c(X).
b(X):-d(X).
c(1).
c(3).
d(3).
d(2).
e(2).
£f(1).
5.3a ?7- do(1). no

(do(1) if a(l) and b(1)
a(l) if c(1) and d(1)
c(1) succeeds
d(1) fails
redo a(1) if e(1)
e(1) fails
a(1) fails
do(1) fails)

177

5.3b 7- do(2). yes
(do(2) if a(2) and b(2)
a(2) if c(2) and d(2)
c(2) fails
redo a(2) if e(2)
e(2) succeeds
a(2) succeeds
b(2) if £(2)
£(2) fails
redo b(2) if c(2)
c(2) fails
redo b(2) if d(2)
d(2) succeeds
b succeeds
do(2) succeeds)

5.3c 7- do(3). yes
(do(3) if a(3) and b(3)
a(3) if c(3) and d(3)
c(3) succeeds
d(3) succeeds
a(3) succeeds
b(3) if £(3)
f£(3) fails
redo b(3) if c(3)
c(3) succeeds
b(3) succeeds
do(3) succeeds)

5.3d ?7- do(A). A =3 yes
(do(A) if a(A) and b(A)
a(A) if c(A) and d(A)
c(1) succeeds
d(1) fails
redo c(A)
c(3) succeeds
d(3) succeeds
a(3) succeeds
b(3) if £(3)
f(3) fails
redo b(3) if c(3)
c(3) succeeds
b(3) succeeds
do(3) succeeds)

178

17.4 Chapter 7

Question 7.1 How many elements are there in each of the following list structures?

7.1a

7.1b

7.1c

7.1d

7.1e

[Note: extra spaces used to illustrate each element]

[a, [a,[a,[al]l]l]

[1,2,3,1,2,3,1,2,3]

[a(X), b(Y,Z), c, X]

[[sum(1,2)], [sum(3,4)],

lc, [d,[x]1], [£(s)], I[r,h,a(t)],

[sum(4,6)]] =3

[([[a]]]1] =5

Question 7.2 The predicate =/2 takes 2 arguments and tries to unify them. For each of
the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables;

e if it fails, explain why it fails.

7.2a

7.2b

7.2c

7.2d

7.2e

[A,B,C,D] = [a,b,c].

bar([1,2,3]) = bar(A).

x, 011 = [X].
X,Y1Z] = [a,b,c,d].
[1,X,X] = [A,A,2].

likes(Y,a) = likes(X,Y).

[foo(a,b),a,b] = [X|Y].
[b,Y] = [Y,a].

(HIT]

[1,[a,b],2] = [[A,B],X,Y].

[red,blue,b(X,Y)].

no

yes

no

yes

no

yes

yes

no

yes

no

179

lists are different length.
A =1[1,2,3].

lists are different length.
X=a, Y=b, Z=[c,d].

A bound to 1, cannot then
be bound to 2.

X=a, Y=a.
(X and Y share)

X=foo(a,b), Y=[a,b].
Y cannot be bound to b and a.
H=red, T=[blue,b(X,Y)].

lists cannot unify with atoms.

7.2k ?7- test(a,L) = test(E,[b,c,d]). yes E=a, L = [b,c,d]

7.21 ?- [[a,[b]l],C] = [C,D]. yes

(@]
|

- [a, [b]:]’ D =[a,[b]]

7.2m 7- [fred|T]=[H| [sue, john]]. yes H = fred T = [sue, johnl]

Question 7.3 Imagine that this program is consulted by the Prolog interpreter:

foo([1,[1).

foo([HIT], [XIY]):-
H =X,
foo(T,Y).

[Note: this program tests if two lists unify by testing if the heads unify then recursing on
the tails]

What will be the outcome of each of the following queries?

7.3a 7?- foo([a,b,c], A). yes A=[a,b,c].
7.3b ?- foo([c,a,t], [c,u,t]). no

7.3¢ 7= foo(X, [b,o0,0]). yes X=[b,o0,0].
7.3d 7- foo([lplL], [Fl[a,bl]). yes F=p, L=[a,b].
7.3e 7- foo([X,Y], [d,o0,gl). no

17.5 Chapter 8

Question 8.1 The predicate member/2 succeeds if the first argument matches an element
of the list represented by the second argument.

e.g. ?- member(1,[2,3,1,4]). yes
member/2 is defined as: 1. member(El, [E1IT]).
2. member(E1l, [H|T]) :-
member (E1,T) .

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

180

e if it succeeds, specify what is assigned to any variables.

8.1a ?- member(a, [c,a,b]l). yes
8.1b ?- member(a,[d,o,gl). no
8.1c 7- member(one, [one,three,one,four]). yes
8.1d 7- member(X, [c,a,t]). X=c yes
8.1e 7- member(tom,[[jo,alan], [tom,anne]]). no

8.1f Complete the AND/OR, tree below which represents the execution of the query:

Tree:
?- member(a,[b,r,e,a,d]). yes
/ \
1/ 2\
a=b / member(a, [r,e,a,d])
fails / \
1/ \ 2
a=r member(a, [e,a,d])
fails / \
1/ \2
a=e member(a, [a,d])
/
1/
succeeds
Trace:

Call: member(a,[b,r,e,a,d]) 7
Call: member(a,[r,e,a,d]) 7
Call: member(a,[e,a,d]) 7
Call: member(a,[a,d]) ?

Exit: member(a,[a,d]) ?

Exit: member(a, [e,a,d]) 7
Exit: member(a,[r,e,a,d]) ?
Exit: member(a, [b,r,e,a,d]) ?

=N WD D WwN
=N W DN -

yes
Question 8.2 The predicate no_cons/1 succeeds if all elements of the list represented by
the one argument are vowels (as specified by vowel/1).

e.g. ?- no_cons([a,e,i]).
yes

181

? no_cons([a,b,c]).
no

no_cons/1 is defined as:

1. no_cons([1).

2. no_cons([HIT]) :-
vowel (H),
no_cons(T) .

3. vowel(a).
4. vowel(e).
5. vowel(i).
6. vowel(o).
7. vowel(u).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

8.2a 7?- no_cons([a,a,e,i]). yes

8.2b 7?- no_cons([A,e,e]). A=a yes

8.2c Complete the AND/OR tree below which represents the execution of the query:

182

?- no_cons([a,e,i]).

/ I\
1/ 21 __\ H/a
/ | \
a=[] vowel(a) no_cons([e,i])
fails | I\
3| 21 __\ Hi/e
| | \
succeeds vowel(e) no_cons([i])
| I\
4| 21__\

I | \

succeeds vowel (i) mno_cons([])
| |
5| 1]
| |

succeeds succeeds

yes

T/ [e,il

T1/[1i]

H2/i T2/1[]

Question 8.3 The predicate max/2 succeeds if the first argument is a list of numbers and

second argument unifies with the maximum value in that list.

e.g. ?- max([2,4,6,8],M).
M =28
yes

max/2 is defined as:

0. max([H|T],Max) :-
max (T,H,Max) .

1. max([HIT],Temp,Max) :-
H>Temp,
max (T,H,Max) .

2. max([H|T],Temp,Max) : -
max (T, Temp,Max) .

3. max([],Finalmax,Finalmax) .

8.3 Complete the AND/OR tree below which represents the execution of the query:

183

?- max([2,1,4,3],Ans).
|
ol H/2 T/[1,4,3]
|
max([1,4,3],2,Ans)

/ \
1/ 2\ H1/1 Temp/2 T1/[4,3]
/ \
1>2 max([4,3],2,Ans)
fails I\
11--\ H2/4 Templ/2 T2/[3]
| \
4>2 max([3],4,Ans)
succeeds '\
11 2\ H3/3 Temp2/4 T3/[]
| \
3>4 max([],4,Ans)
fails /1\
1/ 2| 3\ Finalmax/4
/ | \
fails fails succeeds
Ans=4
Ans = 4
yes

Question 8.4 The predicate prlist/1 is supposed to write out the elements of a list struc-
ture, regardless of the levels of embedding that are present in the list.

e.g. intended behaviour:
7- prlist([a,b,[c,d,el,f, [gl]).
abcdefg
yes

Instead, the predicate as defined below has the following behaviour:

7- prlist([a,b]).

abl[]

yes

7- prlist([a,b, [c,d],el).
abcd[Je[]

yes

prlist/2 is defined as:

1. prlist([HIT]):-

184

prlist(H),

prlist(T).
2. prlist(X):-

write(X) .

Explain why this predicate produces this behaviour (instead of the intended behaviour),
using an AND/OR tree or a trace in your explanation.

Tree:
7- prlist([a,b]).
/===\
1/ \
prlist(a) prlist([b])
/ | /=—=\
1/ |2 1/ \
fails write(a) prlist(b) prlist([])
/ \ /\
1/ \2 /1 \2
fails write(b) fails write([])
ab[]

The problem here is that whatever its value, the head and tail of the list on each recursion
are prlisted, and when the head is no longer a list it is written. So the empty list also gets
written. An extra clause, prlist([]) is needed to prevent this.

Question 8.5 The predicate checkvowels takes a list representing a word, checks each
letter to see whether it is a vowel, and if it is it writes out the vowel.

checkvowels ([H|T]) : -
vowel (H) ,
write(H), nl,
checkvowels(T) .

checkvowels ([HIT]) : -
checkvowels(T) .

checkvowels([]).

vowel(a) .
vowel (e) .
vowel (1) .
vowel (o) .
vowel(u) .

185

e.g. ?- checkvowels([c,a,t,i]).
a
i
yes

8.5a Using this as a model, write a predicate results/1 that takes a list of names, checks
whether each is a pass (using a predicate that you also must define, pass/1) and writes out
the names if they pass.

For example, the following query:
?7- results([tom,bob,sue, janel).
should give the output:

bob
sue
yes

Solution:

pass (bob) .
pass(sue) .
results([H|T]) :-
pass(H), write(H), nl,
results(T) .
results([HIT]) :-
results(T) .

results([]).

8.5b Modify this program so that instead of 'writing out’ the name of each person who passes
it should output a list of them.

7- results2([tom,bob,sue, jane] ,Passlist).
Passlist = [bob,sue]
yes

results2([H|T], [HIP1]):-
pass(H),
results2(T,P1l).

results2([H|T],P1):-
results2(T,P1).

results2([1,[]).

186

17.6 Chapter 10

Question 10.1 The predicate delete/3 succeeds if deleting the element represented by the
first argument, from the list represented by the second argument, results in a list represented
by the third argument.

e.g. 7- delete(a,[a,p,p,1l,el,A).
A=[p,p,1,el
yes
delete/3 is defined as:
1. delete(E1l,[E1IT],T).

2. delete(E1l, [HIT], [HINT]) :-
delete(E1,T,NT).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.1a ?- delete(X, [pat,john,paul] ,Ans). X = pat Ans = [john,paul] yes

10.1b ?- delete(A,L,[t,o0,p]). A= _A L =[_A,t,o,p] yes
or L = [A,t,o0,p]

10.1c ?- delete(a,[c,a,b]l,Ans). Ans = [c,b] yes
10.1d ?7- delete(e,[d,o0,gl,P). no
10.1e 7- delete(e,[f,e,e,t],Ans). Ans = [f,e,t] yes

Question 10.2 The predicate deleteall /3 succeeds if deleting all occurrences of the element
represented by the first argument from the list represented by the second argument results
in a list represented by the third argument.

e.g. 7- delete(p, [a,p,p,1l,el,A). A=[a,1,e] yes

deleteall/3 is defined as: 1. deleteall(El1l,[]1,[1).
2. deleteall(El, [E1|T],NT):-
deleteall(E1,T,NT).
3. deleteall(El, [HIT], [HINT]) :-
deleteall(E1,T,NT).

For each of the following:

187

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.2a 7- deleteall(e,[f,e,e,t],Ans). Ans = [f,t] yes

10.2b 7- deleteall(p,[d,o0,gl,X). X = [d,o,g] yes

10.2¢ Complete the AND/OR, tree below which represents the execution of the query:

?7- deleteall(e, [f,e,e,t],Ans).

/ | \
1/ |2 3 \ Ans/[fINT]
/ | \
[1=[f,e,e,t] e=f deleteall(e, [e,e,t],NT)
fails fails / \
/ \
1/ 2\ NT/NT2
/ \
[I=[e,e,t] deleteall(e, [e,t],NT2)
fails
Solution:
Tree:
?- deleteall(e, [f,e,e,t],Ans). Ans= [f,t] yes
/ | \
1/ 2 \ 3 Ans/[f|NT] = [f,t]
[I=[f,e,e,t] e=f deleteall(e, [e,e,t] ,NT)
fails fails / I
/ |
1/ 2| NT/NT2 = [t]
[1=[e,e,t] deleteall(e,[e,t], NT2)
fails / \
/ \
/1 \ 2 NT2/NT3 = [t]
[I=[e,t] deleteall(e, [t],NT3)
fails | \
| \
1/ 2| \ 3 NT3/[tINT4] = [t]
[O=[t] e=t deleteall(e,[],NT4)
fails fails |
|
11 NT4/0]
succeeds
Trace:

188

1 Call: deleteall(e,[f,e,e,t],_115) ?
2 Call: deleteall(e,[e,e,t],_288) 7

3 Call: deleteall(e,[e,t],_288) ?

4 Call: deleteall(e,[t],_288) 7

5 Call: deleteall(e,[1,_626) ?

5 Exit: deleteall(e,[1,[]) 7

4 Exit: deleteall(e,[t],[t]) 7

3 Exit: deleteall(e,[e,t],[t]) 7

2 Exit: deleteall(e,[e,e,t],[t]) 7

1 Exit: deleteall(e,[f,e,e,t],[f,t]) 7
[f,t] 7

N W OO WwN -

10.2d Suppose that the predicate deleteall/3 is defined incorrectly as:

1. delall(E,[1,01).

2. delall(E,[EIT],Y):-
delall(E,T,Y).

3. delall(E,[HI|T],Y):-
delall(E,T,[HIY]).

resulting in the behaviour:

i. 7?- delall(e,[f,e,e,t],Ans).
no

However, the following query succeeds, as intended:
ii. ?- delall(a,[a,a,a],Ans).
Ans=[]

yes

Explain why the program does not give the intended answer to query i. using an AND/OR
tree or a trace to illustrate your answer.

-~
|

delall(e, [f,e,e,t],Ans).

Call: delall(e, [f,e,e,t],_95) 7
Call: delall(e,[e,e,t],[f|_95]1) 7
Call: delall(e,[e,t],[fl_95]1) ?
Call: delall(e,[t],[£f1_951) ?
Call: delall(e,[],[t,f]_95]) 7
Fail: delall(e,[],[t,f]_95]) 7
Fail: delall(e, [t],[f]_95]) ?
Call: delall(e,[t],[e,f1_95]1) 7
Call: delall(e,[],[t,e,f[_95]) 7
Fail: delall(e,[],[t,e,f|_95]) 7
Fail: delall(e, [t],[e,f]_95]) 7

+ 4+ + + + + + + o+ + o+
DO OO W N e
DO OO W N e

189

+ 3 3 Fail: delall(e,[e,t]l,[fl_951) ?

+ 3 3 Call: delall(e,[e,t],[e,f|_95]) 7
+4 4 Call: delall(e,[t],[e,f]|_951) ?

+ 5 5 Call: delall(e,[],[t,e,f|_95]) 7

+ 5 5 Fail: delall(e,[]1,[t,e,f]_95]) 7

+ 4 4 Fail: delall(e,[t],[e,f|_95]1) ?

+ 4 4 Call: delall(e,[t],[e,e,f|_95]) 7
+ 5 5 Call: delall(e,[]1,[t,e,e,fl_95]) ?
+ 5 5 Fail: delall(e,[1,[t,e,e,fl_95]) 7
+ 4 4 Fail: delall(e,[t],[e,e,f|_95]) 7
+ 3 3 Fail: delall(e,[e,t]l,[e,f|_95]) 7
+ 2 2 Fail: delall(e, [e,e,t],[f|_95]) 7
+ 1 1 Fail: delall(e,[f,e,e,t],_95) ?

no

{trace}

| ?- delall(a,[a,a,a],Ans).

1 1 Call: delall(a,[a,a,al,_89) ?
Call: delall(a,[a,a]l,_89) 7
Call: delall(a,[a],_89) ?
Call: delall(a,[]1,_.89) ?
Exit: delall(a,[],[]1) 7

Exit: delall(a,[al,[]) ?
Exit: delall(a,[a,a]l,[]) ?
Exit: delall(a,[a,a,al,[]) ?

+ + + + + + 4+
N WO W
N W W

Ans = [] ?
yes

Builds in the body rather than the head of the clause.

Question 10.3 The predicate repall/4 succeeds if replacing all occurrences of the element
represented by the first argument, by the element represented by the second argument, in the
list represented by the third argument, results in a list represented by the fourth argument.

e.g. ?7- repall(p,b,[a,p,p,1l,el,A).
A=[a,b,b,1,e]
yes

repall/4 is defined as:
1. repall(El,Rel, []1,[]).
2. repall(El,Rel, [E1|T], [Rel|NT]):-

repall(E1l,Rel,T,NT).
3. repall(El,Rel, [H|T], [HINT]):-

190

repall(E1,Rel,T,NT).

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

[f,a,a,t] yes

10.3a ?- repall(e,a,[f,e,a,t],Ans). Ans

10.3b ?- repall(P,r,[s,o,u,pl,Ans). Ans [r,o,u,p] P =s yes

Question 10.4 The predicate whowants/3 has three arguments. The first is intended to
represent a type of food; the second a list of people; and the third another list, representing
those people on the 2nd argument list who want the type of food specifed in the 1st argument
(where want /2 is defined separately, with two arguments representing who wants what food).

e.g. ?7- whowants(beans, [jo,tom,ann],Who) .
Who = [jo,ann]
yes

1. whowants(Food, [Name|Rest], [Name|Others]) : -
wants (Name,Food),
whowants (Food,Rest,Others) .

2. whowants(Food, [Name|Rest] ,Others) :-
whowants (Food,Rest,Others) .

3. whowants(Food, [1,[]).

. wants(jo,chips).

. wants(jo,beans).

. wants(jo,eggs) .

. wants(ann,beans) .

. wants(ann,bacon) .

. wants(tom,eggs) .
10. wants(tom,chips) .
11. wants(rick,bacon).

O 00 N O O b

10.4a Give either the AND/OR tree or a trace which represents the execution of the query:

?7- whowants(beans, [jo,tom,ann],Who) .

/\
1/----\ Food/beans Name/jo Rest/[tom,ann] Who/[jo|Others]

/ \

191

wants (jo,beans) whowants(beans, [tom,ann],Others)
| /\
5| 1/ 2\ Namel/tom Restl/[ann]
| / \

succeeds wants(tom,beans) whowants(beans, [ann],Others)
| /\
fails 1/-——-\ Name2/ann Rest2/[] Others/[ann|Othersi]
/ \

wants (ann,beans) whowants(beans,[],0thersl)

| /1N
71 1/ 2| 3\ Othersi1/[]
| / | \

succeeds fails fails succeeds
Othersi=[]

Who=[jo,ann]
yes

| ?- trace, whowants(beans, [jo,tom,ann],Who).

+1 1 Call: whowants(beans,[jo,tom,ann],_75) 7
+ 2 2 Call: wants(jo,beans) 7

+ 2 2 Exit: wants(jo,beans) 7

+ 3 2 Call: whowants(beans, [tom,ann],_681) 7

+ 4 3 Call: wants(tom,beans) 7

+ 4 3 Fail: wants(tom,beans) 7

+ 4 3 Call: whowants(beans, [ann],_681) ?

+ 5 4 Call: wants(ann,beans) 7

+ 5 4 Exit: wants(ann,beans) 7

+ 6 4 Call: whowants(beans,[],_1438) 7

+ 6 4 Exit: whowants(beans,[],[]) ?

+ 4 3 Exit: whowants(beans, [ann],[ann]) ?

+ 3 2 Exit: whowants(beans,[tom,ann],[ann]) ?
+ 1 1 Exit: whowants(beans,[jo,tom,ann],[jo,ann]) ?
Who = [jo,ann] 7

yes

For each of the following:

e specify whether the query submitted to Prolog succeeds or fails;

e if it succeeds, specify what is assigned to any variables.

10.4b 7- whowants(chips, [ann,rick], Ans). Ans = [] yes
10.4c 7?- whowants(bacon, [tom,ann],A). A = [ann].
10.4d ?7- whowants(eggs,Diners,Ans). fails loops

192

| ?- trace,whowants(eggs,Diners,Ans).

+1 1 Call: whowants(eggs,_53,_79) 7

+ 2 2 Call: wants(_677,eggs) 7

+ 2 2 Exit: wants(jo,eggs) 7

+ 3 2 Call: whowants(eggs,_678,_676) 7

+ 4 3 Call: wants(_1232,eggs) 7

+ 4 3 Exit: wants(jo,eggs) 7

+ 5 3 Call: whowants(eggs,_1233,_1231) 7
+6 4 Call: wants(_1787,eggs) 7

+ 6 4 Exit: wants(jo,eggs) 7

+ 7 4 Call: whowants(eggs,_1788,_1786) 7
+ 8 5 Call: wants(_2342,eggs) 7

+ 8 5 Exit: wants(jo,eggs) 7

10.4e Using whowants/3 as a model, write a predicate overage/3 that takes an age limit and
a list of names, checks the age of each person named (using a predicate age/2) and returns
a list of names of those people who are over the age limit.

For example, the query below should give the output shown:

7- overage(18, [sally,alice,bill], Ans).
Ans=[alice,billl]

yes
where:
age(sally,15).
age (mark,26) .
age(bill,20).
age(alice,37).
Solution:

overage (L, [H|T], [HIY]) :-
age (H,X),
XL,
overage(L,T,Y).
overage (L, [H|T],Y) :-
overage(L,T,Y).
overage (L, [1,[]).

10.4f If the predicate whowants/3 had been (incorrectly) defined as:

1. whowants(Food, [Name|Rest], [Name|Others]) : -
wants (Name,Food),
whowants (Food,Rest ,0Others) .

193

2. whowants(Food, [Name|Rest] ,Others) :-
whowants (Food,Rest,Others) .

(i.e. no 3rd clause) predict the outcome of the query in 10.4c.
?- whowants(bacon, [tom,ann],A).

and explain why this is the case, using an AND/OR tree or a trace in your explanation.

| ?- trace, whowants(bacon, [tom,ann],A).

+ 1 1 Call: whowants(bacon, [tom,ann],_69) ?

+ 2 2 Call: wants(tom,bacon) ?

+ 2 2 Fail: wants(tom,bacon) ?

+ 2 2 Call: whowants(bacon,[ann],_69) 7

+ 3 3 Call: wants(ann,bacon) 7

+ 3 3 Exit: wants(ann,bacon) 7

+ 4 3 Call: whowants(bacon,[],_868) ?

+ 4 3 Fail: whowants(bacon,[],_868) ?

+ 3 3 Redo: wants(ann,bacon) 7

+ 3 3 Fail: wants(ann,bacon) 7

+ 3 3 Call: whowants(bacon,[],_69) ?

+ 3 3 Fail: whowants(bacon,[],_69) ?

+ 2 2 Fail: whowants(bacon, [ann],_69) ?

+ 1 1 Fail: whowants(bacon, [tom,ann],_69) ?
no

Fails because there is now no clause to match the empty list.

Question 10.5 The predicate deletefirst/3 is supposed to succeed if deleting the element
represented by the first argument, from the list represented by the second argument, results
in a list represented by the third argument, as delete/3 defined as above (B.)

e.g. intended behaviour:
?- deletefirst(i,[b,i,b,s],A).
A=[b,b,s]
yes

Instead, it produces the following behaviour:
?- deletefirst(i,[b,i,b,s],A).
A=[s]
yes

?7- deletefirst(a,[b,a,1,1],X).
no

194

deletefirst/3 is defined as:

1. deletefirst(E1l,[E1|T],T).
2. deletefirst(El, [H|T],NT):-
deletefirst(E1l,T, [HINT]) .

Explain why this predicate produces this behaviour (instead of the intended behaviour),
using an AND/OR tree or a trace in your explanation.

Solution:
Tree:
?- deletefirst(i,[b,i,b,s],A). A=[s] yes
/ |
/1 [2 El/i
T/[i,b,s]
/ | NT/A H/b
i=b deletefirst(i,[i,b,s],[b|A]).
fails | T/[b,s]
| 1 A/ [s]
i=i
[b,s]1=[blA]
succeeds
Trace:

| ?- deletefirst(i,[b,i,b,s],A).
1 1 Call: deletefirst(i,[b,i,b,s],_103) ?
2 2 Call: deletefirst(i,[i,b,s],[bl_103]) 7
2 2 Exit: deletefirst(i,[i,b,s],[b,s]) ?
1 1 Exit: deletefirst(i,[b,i,b,s],[s]) ?

A=[s] 7 yes

Matches [b—X] from first match of [b—{i,b,s,]] to [b,s] left after matching i to [i,b,s]. - so
only works by coincidence of 2 occurences here.

{trace}
| ?- deletefirst(a,[b,a,1,1],X).

1 1 Call: deletefirst(a,[b,a,1,1],_103) ?
Call: deletefirst(a,[a,1,1],[bl_103]) 7
Call: deletefirst(a,[1,1],[a,bl_103]) 7
Call: deletefirst(a,[1],[1,a,bl_103]) 7
Call: deletefirst(a,[]1,[1,1,a,b]|_103]) 7
Fail: deletefirst(a,[]1,[1,1,a,b]|_103]) 7
Fail: deletefirst(a,[1],[1,a,bl_103]) 7
Fail: deletefirst(a,[1,1],[a,bl_103]) 7

W OO WN
W 0o WN

195

2 2 Fail: deletefirst(a,[a,1l,1],[b|_103]) ?
1 1 Fail: deletefirst(a,[b,a,1,1],_103) ?
no
No match here.

The problem is that the head of the list that is supposed to be constructed is copied onto
the front of the list that is called in the third argument of the recursive call (in the body
of the clause), rather than in the query itself (in the head of the clause). So it gets built
up as the program recurses, the program then fails when it cannot split the empty list. The
variable represented by Ans does not get instantiated normally in this version, but with the
call of:

?- deletefirst(i,[b,i,b,s],Ans)

co-incidentally at one point the program matches [b,s] to [b—Ans], causing Ans to be in-
stantiated to [s].

196

