
 ISO STANDARDIZED DESCRIPTION TECHNIQUE E S T E L L E

 S. BUDKOWSKI * , P. DEMBINSKI * , M.DIAZ **

 *BULL S.A. , CORPORATE NETWORKING AND COMMUNICATION (DRCG)
 DISTRIBUTED SYSTEM ARCHITECTURE AND STANDARDS (ARS)

 68, route de Versailles, F-78430 LOUVECIENNES, FRANCE
 phone:(33.1) 39 02 45 59

**LAAS/CNRS , 7, Av. du Colonel-Roche, F-31077 TOULOUSE CEDEX
 phone: (33) 61 33 62 56

ABSTRACT

Estelle is a Formal Description Technique, defined within ISO
(International Organization for Standardization) for
specification of distributed, concurrent processing systems. In
particular, Estelle can be used to describe the services and
protocols of the layers of Open Systems Interconnection (OSI)
architecture defined by ISO. Its present ISO status is Draft
International Standard (DIS 9074). The International Standard
status is expected before the end of 1988. The paper (based on
[36] and [37]) outlines basic concepts as well as syntactic and
semantic aspects of this description technique.

Keywords : Estelle, Formal Description Technique, FDT, Distributed
Systems, Concurent Systems, Specification Language, Comunication
Protocols and Services, Open System Intrconnection, OSI

RESUME

Estelle est une technique de description formelle définie à l'ISO
(International Organization for Standardization) pour la
spécification de systèmes concurrents distribués. En particulier
Estelle est bien adapté pour la description des services et des
protocoles tels qu'ils sont définis dans l'architecture en couche
du modèle OSI d'interconnexion des systèmes ouverts de l'ISO. Son
statut actuel à l'ISO est celui de standard international
provisoire (Draft International Standard - DIS 9074). Le statut
définitif de Standard International est prévu pour la fin de
l'année 1988. Ce papier (fondé sur les publications [36] et [37])
retrace les concepts de base ainsi que les aspects syntaxiques et
sémantiques de cette technique de description.

Mots-clefs : Estelle, Technique de description formelle, FDT,
Systèmes distribués, Systèmes concurrents, Langage de
specification, Protocoles et services de communication,
Interconnexion des systemes ouverts, OSI

0. INTRODUCTION

Estelle is a formal description technique (FDT) for specifying
distributed, concurrent information processing systems with a
particular application in mind, namely that of communication
protocols and services.

The development of Estelle was initiated within the International
Organization for Standardization (ISO) in 1981
(ISO/TC97/SC21/WG1/FDT subgroup B chaired by Richard TENNEY). It
is presently ISO Draft International Standard (DIS) (the
International Standard status is expected before the end of 1988).
Its formal syntax and semantics are described in ISO 9074 [18]
which is available from the ANSI Secretariat and from national
standard organizations participating in ISO.

Estelle is a second generation of formal description techniques as
it reflects the experience gained from experiments in using
predecessor description techniques (see [1], [2], [3], [4] and
[31]).Estelle also reflects collaboration with CCITT which defined
SDL (Specification and Descriptions Language - [5]) with which
Estelle has some notions in common.

Estelle can be briefly described as a technique based on an
extended state transition model i.e., a model of a
nondeterministic automaton extended by means of Pascal language.
More precisely, Estelle may be viewed as a set of extentions to
ISO Pascal [29], level 0, which models a specified system as a
hierarchical structure of automata which :

 - may run in parallel, and

 - may communicate by exchanging messages and/or by sharing (in a
restricted way) some variables,

Estelle permits to separate the description of the communication
interfaces between components of a specified system from the
description of the internal behavior of each such component.

This paper (based on [36] and [37]) presents the Estelle language
by describing its principal concepts (section 1), the syntactic
(section 2) and the semantic aspects (section 3), and by
illustrating its use through examples (section 4).

1. A BRIEF OVERVIEW OF ESTELLE PRINCIPAL CONCEPTS

1.1. Modules and module instances

A distributed system specified in Estelle is composed of several
communicating components. Each component is specified in Estelle
by a module definition . Since in a system there may be more than
one component defined (textually) by the same module definition,
it is appropriate to call system's components module instances .
Further on, the term module will be used rather than module

instance unless it can lead to a confusion.

The internal structure and behavior of a module are either defined
explicitely or left for further refinement. The module definition
consists of the set of actions (transitions) of a state transition
system (see Section 2.2.3) the module may perform and/or the
definitions of its submodules (children modules - see Section 1.2)
together with their interconnections (see Section 1.3).

A module is active if its definition includes at least one
transition; otherwise, it is inactive . A module may have one of
the following class attributes

 - systemprocess or process
 - systemactivity or activity

or may be not attributed at all. The modules attributed
"systemprocess" or "systemactivity" are called system modules.

In Estelle a particular care is taken to specify the communication
interface of a module. Such an interface is defined using three
concepts:

 - interaction points
 - channels
 - interactions

Each module has a number of input/output access points called
interaction points . There are two categories of interaction
points: external and internal . To each interaction point a channel
is associated which defines two sets of interactions. These two
sets consist of interactions which can go out or come in,
respectively, through this interaction point. Interactions are
abstract events (messages) exchanged with the module environment
(through external interaction points) and with children modules
(through internal interaction points).

A module is represented graphically as a box (rectangle) with
points on its boundary (external interaction points) and/or inside
of it (internal interaction points). The module name and its
class, the name of interaction points and their associated
interactions (going in or out) may be added as in Fig.1.

Data

P-ack,N-ack

Entity
process

Request Response

p2

p3

p1

Fig. 1

1.2. Structuring

A module definition in Estelle may include definitions of other
modules. This applied repeatedly, leads to a hierarchical tree
structure of module definitions. Estelle provides means to create
instances of child modules defined within the module definition.
Note that a number of instances of the same module may change
dynamically since thay may be created and destroyed.

The hierarchical tree structure of modules (or module instances)
may be depicted as in (Fig.2a) or as in (Fig.2b). The modules are
represented by boxes. The parent/children relationship is
represented by edges or nested boxes, respectively. The root of
the tree (or the largest enclosing box) is the main module
representing the specified system. It is assumed that one (and
only one) instance of main module always exists.

The following five attributing principles must be observed within
a hierarchy of modules :

(1) Every active module must be attributed,
(2) System modules cannot be nested within an attributed module,

(3) Modules attributed "process" or "activity" must be nested within
a system module,

(4) Modules attributed "process" or "systemprocess" may be
substructured only into modules attributed either "process"
or "activity",

(5) Modules attributed "activity" or "systemactivity" may be
substructured only into modules attributed "activity".

Observe that inactive modules can be attributed, that all modules
embodying a system module are inactive and nonattributed, and that
those are the only nonattributed modules within the hierarchy.

The attributing principles play an important role in defining the
behavior of a specified system (see Sections 3.2).

Fig. 2

(a)
A

B C

F G HD E

(b) A

C

H

G

B

F

E

D

Within a specified system, a fixed number of subsystems is
distinguished. Each subsystem is a subtree of modules instances
rooted in a system module instance (i.e., attributed
"systemprocess" or "systemactivity"). In particular, the whole
specified system may form just one subsystem. In such a case, the
specification itself (main module) has the attribute
"systemprocess" or "systemactivity".

1.3. Communication

Module instances within the hierarchy can communicate. Two
communication mechanisms can be used in Estelle:

- message exchange,
 - restricted sharing of variables.

1.3.1. Message exchange

The module instances may exchange messages, called interactions .
A module instance can send interactions to another module instance
through a previously established communication link between their
two interaction points. An interaction received by a module
instance at its interaction point is appended to an unbounded
FIFO queue associated with this interaction point. The FIFO queue
either exclusively belongs to the single interaction point (so
called individual queue) or it is shared with some other
interaction points of a module (so called common queue).

A module instance can always send an interaction. This principle
is sometimes known as non-blocking send (or asynchronous)
communication as opposed to blocking send also known as rendez-
vous (or synchronous) communication .

To specify which modules are able to exchange interactions a so-
called communication links between modules' interaction points,
are specified. A communication link between two interaction points
is composed of exactly one "connect" segment and zero or more
"attach" segments. Each link segment ("connect" or "attach") will
be represented graphically by line segments which bind modules'
interaction points. Fig.3 illustrates this convention.

When an external interaction point of a module is bound to an
external interaction point of its parent module, we say that these
interaction points are attached . In Fig.3 pairs of interaction
points: (1,3),(2,8),(9,11),(10,13) and (17,18) are attached.

Two bound interaction points are said to be connected if both are
external interaction points of two sibling modules (e.g.,
(5,6),(4,7),(1,9) and (2,10) in Fig.3), or one is an internal
interaction point of a module and the other is an external
interaction point of one of its children modules (e.g., (12,14) in
Fig.3), or both are internal or external interaction points of the
same module (e.g., (15,16) and (18,19) in Fig.3).

It has to be noted that, at a given moment,

(1) an interaction point may be connected to at most one
interaction point and it cannot be connected to itself,

(2) an internal interaction point of a module may be only connected
to another internal interaction point of the module or to an
external interaction point of a child module,

(3) an external interaction point of a module may be attached to at
most one external interaction point of its parent module and
to at most one external interaction point of its children
modules,

(4) an external interaction point of a module attached to an
external interaction point of its parent module cannot be
simultaneously connected.

The communication link specifies that two modules instances, whose
interaction points are the end-points of the link, can communicate
by exchanging messages (in both directions) through these linked
interaction points. In Fig.3, for example interaction points 3 and
11 or 8 and 13 are end-points of links between modules D and G,
and F and H, respectively. The points 1,9,2 and 10 are not end-
points.

An interaction sent through an interaction point that is end-

14

A
1

2

18

19

B
D 3
 4

F 6
 8 7

E

17

 5

9

10

C

 15 16

H
 13

G 11
 12

Fig. 3

point of a communication link, directly arrives to the other end-
point of this link and is always accepted by the receiving module,
since the associated queue is unbounded. An interaction sent
through an interaction point that is not end-point of a
communication link, is considered to be lost.

1.3.2 Restricted sharing of variables

Certain variables can be shared between a module and its parent
module. These variables have to be declared as exported variables
by the module. This is the ONLY way variables may be shared. The
simultaneous access to these variables by both the module and its
parent is excluded because the execution of the parent's actions
have always priority (so called parent/children priority principle
of Estelle - see Sections 3.2).

Note that sharing variables is not the only way of communication
between a parent and his own child. They may also communicate by
message exchange (see for example communication links between
interaction points (12,14) and (17,19) in Fig.3).

1.4 Dynamism

Since modules enclosing subsystems are always inactive, the
structure of the subsystems and their communication links, once
initialized, cannot be changed (i.e.,it is static).

For clarity of presentation, the following conventions are assumed
in all figures:

- system modules (subsystem roots) and their communication
links are in bold lines (static system architecture),

 - dotted lines are used for modules enclosing subsystems,
- nonbold lines are reserved for remaining modules and links.

The internal structure of each subsystem and bindings between
interaction points of their submodules may vary (i.e., it is
dynamic). This is because actions of a module instance within a
subsystem may include statements creating and destroying its
children and/or bindings between children interaction points or
bindings between the module instance and its child interaction
points.

1.5 Parallelism and non-determinism

Two kinds of parallelism between modules can be expressed in
Estelle:

- asynchronous parallelism
- synchronous parallelism

Asynchronous parallelism is permitted only between subsystems, or
more precisely, between actions of different modules' instances
belonging to different subsystems.

The synchronous parallelism is permitted only within a subsystem,
or more precisely, between actions of different modules' instances
belonging to the same subsystem.

1.6 Typing

All manipulated objects are strongly typed. Pascal typing system
is extended to purelly Estelle objects such as: modules variables,
interactions, interaction points and (control)state s.

1.7. Module internal behevior representation

The internal dynamic behavior of an Estelle module is
characterized in terms of a nondeterministic state transition
system, i.e., by defining the set of states, the initial state and
the next-state relation. A state is, in general, a complex
structure composed of many components such as: value of the
control state, values of variables, contents of FIFO queues
associated with interaction points and a status of the module
internal structure (submodule instances, bindings between
interaction points, etc.). An initial state of a module instance
is defined by an initialization part of the module definition. The
next-state-relation of a module instance is defined by a set of
transitions declared within a transition part of the module
definition. Each transition definition contains necessary
conditions enabling the transition execution, and an action to be
performed when it is executed. An action may change the module
instance state described above and may output interactions to the
module environment. To define transitions' actions the Pascal
compound statements are used.

The execution of a transition by a module instance is considered
to be an atomic operation. It means that once a transition's
execution is started, it cannot be interupted, and conceptually,
one cannot observe intermediate results.

The well known model of finite state automaton (FSA) is a
particuliar case of a state transition system. Hence, a FSA may be
described in Estelle (see Section 4.1).

1.8 Global behavior representation

To describe the behavior of a complete system specified in
Estelle, the operational style (operational semantics) has been
used. This global semantics are described in more detail in Sec.3
(see also [8],[10] and [18]).

2. HIGHLIGHTS ON THE SYNTAX OF ESTELLE

2.1. Channels and interaction points

Channels in Estelle are "abstract" objects whose definitions
specify sets of interactions (messages). The interaction points,
through which interactions go out and come in, refer (in their
declarations) to channels in a specific way. By such a reference a
particular interaction point has a precisely defined set of
interactions that can be respectively sent and received through
this point (in a way the interaction points are typed).

Consider, for example, the following channel definition

channel CHANNEL_ID(ROLE1, ROLE2);

by ROLE1:
 m1; m2; ... ; mN;

by ROLE2:
 n1; n2; ... ; nK;

where m1,..,mN, n1,..,nK are interaction declarations. Each
interaction declaration consists of a name (interaction-
identifier) and possibly some typed parameters. Thus, an
interaction declaration

 REQUEST(x: integer; y: boolean)

specifies in fact a class of interactions (an interaction type)
with a common name REQUEST. Each of the interactions in the class
is obtained by a substitution of actual parameters (values) for
formal parameters x and y. Therefore,

 REQUEST(1,true) and REQUEST(3,false)

are both interactions in the class specified by the interaction
declaration of the above form. In absence of parameters the
interaction-identifier represents itself.

Now, an interaction point p1 may be declared as follows

 p1 : CHANNEL_ID(ROLE1)

and another interaction point p2,

 p2 : CHANNEL_ID(ROLE2)

In the first case, the set of interactions which can be sent via
p1 contains all interactions specified for ROLE1 in the channel
definition (i.e., the interactions declared by m1,m2,..,mN), and
the set of interactions which can be received contains all
interactions specified for ROLE2 (i.e., the interactions declared
by n1,n2,..,nK).

In the second case we have, as it is easy to guess, an exact

opposite assignment of sent and received interactions, i.e., those
interactions which could be previously sent via p1 can now be
received via p2 and vice versa.

We say that interaction points p1 and p2 above play opposite roles
(or have opposite types). Two interaction points both referring
to the same channel and the same role-identifier are said to play
the same role (or have the same type).

Two interaction points that are linked (connected) must play
opposite roles since the exchange of interactions takes place
between them (any interaction sent via one interaction point is
received via the second and vice versa). Two interaction points
that are attached must play the same role since the aim of
attaching them is to "replace" one of them by the second.

Finally, to specify whether the interaction point p1 does or does
not share its queue with other interaction points we respectively
write

 p1 : CHANNEL_ID(ROLE1) common queue
or
 p1 : CHANNEL_ID(ROLE1) individual queue

2.2. Modules

A module is specified in Estelle by a pair which consist of

 - a module header definition, and
 - a module body definition.

A module header definition specifies the module type whose values
are modules with the same external visibility, i.e., with the same
interaction points and exported variables, and the same class
attribute.

The definition of a module header begins with the keyword "module"
followed by its name and optionally by: a class attribute
("systemprocess", "process", "systemactivity" or "activity"), a
list of formal parameters, and declarations of interaction points
(after the keyword "ip") and exported variables (after the keyword
"export"). The definition finishes with the keyword "end". The
actual values of the formal parameters are assigned when a module
of the module header type is created (initialized). The following
is an example of a module header definition:

module A systemprocess (n : integer);
 ip p : T(S) individual queue ;
 p1 : U(S) common queue ;
 p2 : W(K) common queue ;
 export X,Y : integer; Z : boolean
end ;

Observe that by the above definition the same queue is associated
with (is shared by) the interaction points p1 and p2 which means

that any interaction received through p1 or p2 will be appended to
the (common) queue.

At least one module body definition is declared for each module
header definition. A module body definition begins with the
keyword "body" followed by: the body name, a reference to the
module header name with which the body is associated, and either a
body definition followed by the keyword "end" or the keyword
"external". For example, the following two bodies may be
associated with the module header A:

body B for A; "body definition" end ;

body C for A; external ;

In fact, at a conceptual level, two modules have been defined:
one of which may be identified by the pair (A,B), and the second -
by the pair (A,C). The modules thus defined have the same external
visibility (same interaction points p,p1,p2 and same exported
variables X,Y,Z) and the same class attribute (systemprocess). But
their behaviors, defined by the body definitions may be
different. This means that modules may have different behaviors
and the same external visibility. A body defined as "external"
does not denote any specific behavior of the module. It indicates
that either the module body definition already exists elsewhere or
will be provided later in the process of specification refinement.
The "external" bodies nicely serve to allow describing an overall
system architecture without detailed description of the system
components. This feature is illustrated in Section 4.2.

The body definition is composed of three parts:

- declaration part
- initialization part
- transition part

2.2.1. Declaration part

The declaration part of a body definition contains usual Pascal
declarations (constants, variables, procedures and functions) and
declaration of specific Estelle objects, namely:

- channels
- modules
- module variables
- state and state-sets
- internal interaction points

Note that a body definition which is being declared may contain
declarations of other modules (headers and bodies). This, applied
repeatedly, leads to a hierarchical tree structure of module
definitions. For example, the body definition B declared below
contains definitions of modules (A1,B1) and (A1,B2). These are
children modules of the module (A,B), where the detailed
definition of the module header A is that from the previous
section. The hierarchy of the module definitions is depicted in

Fig.4.

module A... end ;
body B for A;

 module A1 process ;
 ip p1 : T1(R1) individual queue ;
 p2 : T1(R2) individual queue ;
 p' : T(S) individual queue ;
 end ;
 body B1 for A1; "body definition" end ;
 body B2 for A1; "body definition" end ;

end ;

Module variables serve as references to module instances of a
certain module type. For example, within the body B the
declaration

modvar X,Y,Z : A1

may occur which says that X,Y and Z are variables of the module
type specified by the module header named A1.

A module instance may be created or destroyed by statements
referencing module variables (init and release statements, see
Sections 2.2.2 and 2.2.3).

The internal behavior of each module (instance) is defined in
terms of a state transition system (see Sec. 1.7). whose control

Fig. 4

(A,B) p

(A1,B1) p’ p1

 p2

(A1,B2) p’ p1

 p2

states are defined by enumeration of their names. For example,

state IDLE, WAIT,OPEN, CLOSED

declares four control states IDLE,WAIT,OPEN and CLOSED.

A group of control states are sometimes referenced using a group
name which may be introduced by a stateset declaration. For
example,

stateset IDWA = (IDLE, WAIT)

The internal interaction points may be declared to allow
communication between a module and its children modules. They are
declared in the same way as the external interaction points within
a module header.

2.2.2. Initialization part

The initialization part of a module body, indicated by the keyword
"initialize", specifies the values of some variables of the module
with which every newly created instance of this module begins its
execution. In particular, local variables and the control variable
"state" may have their values assigned. Also, some module
variables may be initialized which means that the module's
children can be created. Creation of children module instances
during initialization defines their "initial architecture"

To initialize Pascal variables, Pascal statements are used (for
example, X := 5) and to initialize the "state" variable to a
control state, for example IDLE, we write to IDLE.

The initialization of a module variable results in creation of a
new module instance of the variable's type. The variable is then a
reference to the newly created instance. To this end the init
statement is used. In the initialization part, bindings may also
be created between interaction points by the use of connect and
attach statements . Assume the following is the initialization part
of the module (A,B) from the previous section :

initialize
 begin
 init X with B1;
 init Y with B2;
 init Z with B1;
 connect X.p1 to Y.p2;
 connect Y.p1 to Z.p2;
 attach p to X.p';
 end ;

The above initialization part creates three module instances
referenced by the module variables X, Y and Z, respectively. All
these instances have the same external visibility defined by the
module header A1 (since the module variables X,Y and Z have been
declared as being of module type A1). The module instances
(referenced by) X and Z are both instances of the same

module(A1,B1) and module instance (referenced by) Y is an instance
of the module (A1,B2). The concrete hierarchy of module instances
of Fig.5 corresponds to the hierarchical "pattern" of module
definitions from Fig.4.

The initialization also establishes bindings between appropriate
interaction points of the three newly created module instances .
These bindings are also presented in Fig.5. Recall that two
interaction points must play opposite roles in order to be
connected (because the exchange of interactions is made via these
points), and must play the same role in order to be attached
(because the interaction point of a child replaces that of the
parent).

2.2.3. Transition part

The transition part describes, in detail, the internal behaviors
of modules. It is composed of a collection of transitions
declarations. Each transition begins with the keyword "trans". A
transition may be either simple or nested . A nested transition is
a short hand notation for a collection of simple transitions (see
below). The following is an example of a nested transition:

 P

V instance of (A,B)

 p’ p1

X instance of (A1,B1)

 p2

 p’ p1

Z instance of (A1,B1)

 p2

 p’ p1

Y instance of (A1,B2)

 p2

Fig. 5

trans when N.NI(p)
 from IDLE to WAIT
 provided p.present
 begin
 keep_copy(p,saved);
 output U.UC
 end ;
 provided otherwise
 begin
 output N.NR
 end ;
 from IDLE to SAME
 begin
 end ;

Below we give the expansion of the above nested transition into
simple transitions:

trans when N.NI(p)
 from IDLE to WAIT
 provided p.present
 begin
 keep_copy(p,saved);
 output U.UC
 end ;
trans when N.NI(p)
 from IDLE to WAIT
 provided not(p.present)
 begin
 output N.NR
 end ;
trans when N.NI(p)
 from IDLE to SAME
 begin
 end ;

One can see that in the above expanded form there is exactly one
"begin-end" block associated with each keyword "trans". This
characterizes simple transitions. Algorithms to verify that nested
transitions are well-formed so they may be expanded properly, say
by a compiler, are proposed and analyzed in [24]. Similar
algorithms are parts of existing Estelle compilers.

Each simple transition declaration is composed of two parts :

- the transition condition;
- the transition action.

The transition condition is composed of one or more clauses of the
following categories:

- from -clause (from A1,..,An, where Ai is a control state or
control state-set identifier);

- when-clause (when p.m, where p is an interaction
point and m an interaction);

- provided -clause (provided B, where B is a boolean

expression);
- priority -clause (priority n, where n is a non-negative

constant);
- delay -clause (delay (E1,E2), where E1 and E2 are non-negative

integer expressions).

Some clauses may be omitted and at most one of each category may
appear in the condition of a simple transition. Presence of a
when-clause excludes a delay-clause and vice versa. Transitions
with a when-clause in their conditions are called input
transitions . Transitions without a when-clause are called
spontaneous . A spontaneous transition with a delay-clause is
called a delay transition .

A from -clause is said to be satisfied in a module state if the
current value of the module's control variable "state" is among
those listed by the from-clause. For example, if IDLE is the
current control state of a module, then all three of the following
from- clauses are satisfied:

from IDLE,
from IDLE, OPEN, CLOSE,
from IDWA,

(recall that IDWA=(IDLE,WAIT)).

The " when p.m" clause is satisfied in a module state if the
interaction m is at the head of the queue associated with the
interaction point p.

The " provided B" clause is satisfied in a module state if the
boolean expression B evaluates to "true" in that state.

A transition is said to be enabled in a module state if the
" from ", " when" and " provided " clauses, if present in the
transition condition, are satisfied in this state.

A transition is said to be firable (or ready-to-fire) in a module
state and at a given moment of time if:

(a) it is enabled in the state, and if it is a delay transition, with
its delay clause "delay(E1,E2)", then it must have remained
enabled for at least E1 time units, and

(b) it has the highest priority among transitions satisfying (a),
where "higher priority" corresponds to "smaller nonnegative
integer".

In summary, the condition of a transition decides whether the
transition is firable (or ready-to-fire) in a module state (and at
a given moment of time if it concerns a delay transition). The
action of one of those firable transitions eventually executes and
the module will reach a new state.

The transition action is composed of two parts:

- a to -clause (to A, where A is a control state identifier),

- a transition block, i.e., a sequence of Pascal statements
(with specific Estelle extensions and restrictions) between
" begin " and " end " keywords.

The " to -clause" (e.g. to OPEN) specifies the next control state
(OPEN) which will be attained once the transition is fired. If
omitted the next state is the same as the current state.

The Pascal extensions consist of additional statements which make
it possible to create and destroy module instances, to create and
destroy bindings between interaction points, and to send
interactions.

The "create" statements are those described previously (init ,
connect , attach). The statements for the "destroy" counterparts
are:

release X;
disconnect p;
disconnect X;
detach p;

In the " disconnect " and " detach " statements (similarly in " attach "
and " connect " statements) p may refer to either an interaction
point of the module issuing the statement (i.e., p is an
iteraction-point-identifier) or to an interaction point of one of
its children modules. In this second case the interaction point is
accessed by the form "X.p1" (" detach X.p1" or " disconnect X.p1")
which means that the statement concerns the interaction point
named p1 of the module currently referenced by the module variable
X.

The " release X" statement destroys the module referenced by the
module variable X and all its descendant modules.

The " disconnect p" statement disconnects the interaction point p
from the interaction point to which it was connected , and
" disconnect X" disconnects all the interaction points of the
children module referenced by X.

The " detach p" statement detaches the interaction point p from the
interaction point it was attached to.

If two interaction points p1 and p2 are connected (attached), then
the result of " disconnect p1" (" detach p1") is the same as that
of " disconnect p2" (" detach p2").

The ability to execute these statements within a transition gives
the possibility to change dynamically the hierarchical tree
structure of modules as well as the communication links between
them.

There is also a special statement output which allows a module to
send an interaction via a specified interaction point. For
example, the statement " output p1.m" sends the interaction m via
the interaction point p1.

As we explained earlier (see Sec.2.3), if p1 and p2 are the two
end-points of a communication link, then the " output p1.m"
statement leads to appending interaction m in the queue
associated with the interaction point p2.

The restrictions to Pascal [29] adopted in Estelle are mainly the
following:

- all declared functions are "pure" i.e., without side
effects,

- pointers may be used only in purely Pascal constructs,
- conformant arrays cannot be used,
- file type cannot be used,
- goto statements and labels are restricted in use,
- read and write statements cannot be used.

2.3. Specification module

All modules defined as described in the preceding sections are
textually embodied in a principal module called "specification"
module. This unique module is defined as follows :

 specification SPEC-NAME [system-class];
 [default-option]
 [time-option]
 "body definition"
 end .

where the system-class attribute is either " systemprocess " or
" systemactivity ", and the default-option is either " individual
queue " or " common queue " (the parts in square brackets are
optional).

The intent behind defining "common" or "individual" queue in a
specification module definition is to give the default assignment
of queues to those interaction points of the specification for
which this assignment is omitted in their declarations.

The time-option defines the unit of time (milisecond, second,
etc.) applicable to the specification. A non-negative integer
expression within a delay-clause indicates the number of units the
execution of a transition must (or may) be delayed.

The above specification definition is considered semantically
equivalent to the following module definition (module header and
module body declarations):

 module ANY-NAME [system-class];
 end ;

 body SPEC_NAME for ANY-NAME;
 "body definition"
 end ;

where ANY_NAME may be chosen arbitrarily and "body definition"
takes into account the default-option.

Note that the specification module has neither interaction points
nor exported variables. This means that an Estelle specification
is not itself a module which communicates with other modules. In
practice, a specification body often constitutes a general
"framework" for an open system being defined, i.e., it provides a
global context necessary for the system definition and
initialization.

3. AN OVERVIEW OF THE ESTELLE SEMANTICS

As said earlier, the semantics of Estelle is operational. This
means that a, so called, next-state-relation is defined over the
set of the system global states which here are called global
situations . The next-state-relation (or rather next-situation-
relation) specifies all possible situations that may be directly
achieved from a given situation. The overall behavior of a system
(a system defined by an Estelle specification) is then
characterized by the set of all sequences of global situations
which can be generated (by the next-situation-relation) from a
certain initial situation.

3.1. Global situations

Each global situation of the transitions system is composed of
current information on :

- the hierarchical structure of module instances within the
specified system SP, the structure of bindings established
between their interaction points, and the local state of
each module instance. All this information is included in a,
so called, global instantaneous description of SP (in short
gid(SP)).

- the transitions that are in "parallel (synchronous)
execution" within each subsystem; the set of these
transitions for i-th subsystem is denoted by Ai (i=1,..,n,
where n is the number of subsystems).

Each global situation is denoted by: sit = (gid(SP); A1,...,An)

The global situation is said to be initial if the "gid(SP)" is
initial and all sets Ai are empty. The "gid(SP)" is initial if it

results from the initialization part of the specification SP.

If, in a global situation Ai is empty (Ai = 0), then we say that
the i-th subsystem is in its management phase . During this phase
a new set of transitions for parallel synchronous execution is
selected. Otherwise, i.e., if Ai is non empty (Ai =_/ 0), the i-th
subsystem is executing.

3.2 Next-situation-relation

This relation defines the successive situations of an arbitrary
current situation (gid(SP); A1,..,Ai,..,An).

It is defined in the following manner: for every i = 1,2,..,n,

1) If, in the current situation, Ai is empty (Ai=0), then
the following is a next situation

 (gid(SP); A1, .. , AS(gid(SP)/i), .. , An)

where AS(gid(SP)/i) is the set of transitions selected for
execution by the i-th subsystem,

2) If, in the current situation, Ai is non empty (Ai =_/ 0),
then for each transition t of Ai, the following is a next
situation

 (t(gid(SP)); A1,..,Ai-{t},..,An)

i.e., the new gid(SP) results from execution of the transition t
and t is removed from the set Ai.

Each transformation of a given global situation into a successive
situation expresses the result of either a spontaneous evolution
(case (1)) or an execution (or rather completing the execution) of
a transition selected among those currently executing (case (2)).
As any transition of Ai (for any i) may terminate before any other
(the relative speed of execution of transitions is not known), all
of the successive situations (for each t of Ai and for each i)
have to be considered. These transformations applied to the
initial global situation, define all possible sequences of global
situations (computations).

How the set of transitions (i.e., AS(gid(SP)/i)) is selected for
synchronous or non-deterministic execution within one computation
step of an i-th subsystem, depends always on the parent/children
priority principle and on the way the subsystem's modules are
attributed (see Sec.1.2).

The parent/children priority principle , which extends to the
ancestor/descendent priority principle by transitivity, means
that a ready-to-fire action of a module prohibits the selection of
actions of all its descendent modules.

The role of attributes is best illustrated by two particular
cases. The first when all subsystem's modules are attributed

"process" (the system module is attributed "systemprocess") and
the second when all of them are attributed "activity" (the system
module is attributed "systemactivity").

In the first case all (but at most one per module) ready-to-fire
transitions (actions) that are not in the ancestor/descendent
conflict, are selected (Fig.6a), while in the second case only one
of them (Fig.6b) is selected. Therefore, in fact, there is no
synchronous parallelism within a computation step of a
"systemactivity" subsystem. The subsystems behaves in a non-
deterministic manner. The intermediate selections, between the
above two extremes, are possible due to the fact that a "process"
("systemprocess") module may be substructured in both "processes"
and "activities" (Fig.6c).

(a)

 tB

tD tE tF tG tH

AS(gid(A))= {tB, tG, tH}

D
process

E
process

F
process

G
process

H
process

B
process

C
process

A
systemprocess

(b)

 tB

tD tE tF tG tH

AS(gid(A))= {tB}
or

AS(gid(A))= {tG}
or

AS(gid(A))= {tH}

D
activity

E
activity

F
activity

G
activity

H
activity

B
activity

C
activity

A
systemactivity

(c)

 tB

tD tE tF tG tH

AS(gid(A))= {tB, tG}
or

AS(gid(A))= {tB, tH}

D
process

E
process

F
process

G
activity

H
activity

B
process

C
activity

A
systemprocess

Fig. 6

4. EXAMPLES

The examples below are not specifications of real systems. They
help the reader become familiar with the syntax of Estelle and:

- illustrate how an Estelle module represents a Finite State
Automaton (FSA) and how an introduction of variables and
parameters may shorten the description (Sec.4.1),

- illustrate a way the overall structure of a system can be
specified using "external" parameters which replace explicit
module body definitions (Sec. 4.2),

4.1 Estelle representation of a finite state automaton (FSA)

In the examples below we show how to describe a behavior of a
module in terms of a simple state automaton (specification
Example1) and how to express an equivalent behavior (but in a more
concise way) when we allow some extention to the FSA model
(specification Example2).

The specified system is composed of just one module E. In Fig.7a
we show the module and its interface with the environment, while
Fig.7b depicts the FSA graph representing the module intended
behavior. The Estelle specification is the following:

ak0, ak1

E U

 S

put

dt0, dt1

(a)

s0

s1

s2

s3

U.put
S.dt0

U.put
S.dt1

S.ak0


S.ak1


(b)

ak(p:0..1)

E U

 S

put

dt(p:0..1)

(c)

s0

s1

U.put
S.dt(x) S.ak(p), p=x

x:=1-x

(d)

Fig. 7a, 7b, 7c, 7d

specification Example1;
 default individual queue ;
channel U(R1,R2);
 by R1: put;
channel S(R1,R2);
 by R1: dt0; dt1;
 by R2: ak0; ak1;
module E systemprocess ;
 ip U: U(R2); S: S(R1);
end ;
body E1 for E;
 state s0, s1, s2, s3;
 initialize to s0 begin end ;
 trans when U.put
 from s0 to s1
 begin output S.dt0 end ;
 from s2 to s3
 begin output S.dt1 end ;
 trans when S.ak0
 from s1 to s2
 begin end ;
 trans when S.ak1
 from s3 to s0
 begin end ;
end ;
end .
An equivalent behavior may be represented by the following Estelle
description:

specification Example2;
 default individual queue ;
type T = 0..1;
channel U(R1,R2);
 by R1: put;
channel S(R1,R2);
 by R1: dt(p:T);
 by R2: ak(p:T);
module E systemprocess ;
 ip U: U(R2); S: S(R1);
end ;
body E1 for E;
 state S0, S1;
 var x:T;
 initialize to S0 begin x := 0 end ;
 trans when U.put
 from S0 to S1
 begin output S.dt(x) end ;
 trans when S.ak(p)
 provided p=x
 from S1 to S0
 begin x := 1-x end ;
end ;
end .

Note that in the above description two extentions have been made.
The first is the parameter "p" of the enumerated type T = 0..1

which permits to declare two-element classes "dt" and "ak" of
interactions insted of declaring their elements as separate four
interactions (observe that "dt(0)" corresponds to "dt0" in
Example1, etc.). The second extention is the variable "x" of the
same type T. It permits, in a similar way, to replace previous
four control states by only two (observe that in Example2, the
situation of being in the control state "S0" with x=0 corresponds
to to the situation of being in the control state "s0" in
Example1, etc.).

The graphical representation of the module's interface with the
environment and of the module's internal bebavior in Example2, is
shown in Fig.7c and Fig.7d, respectively.

4.2 Specifying the overall structure of a system

The specification below declares and initializes a system which
consists of three subsystems X,Y and Z (i.e., the subsystems are
referenced by module variables X,Y and Z of types: USER,RECEIVER
and NETWORK, respectively). These subsystems exchange some
messages through their interaction points connected as declared in
the initialization part of the specification. The scheme of the
specified EXAMPLE system is presented in Fig.8.

specification EXAMPLE;
 default individual queue ;
 timescale second;
 channel UCH(User,Provider);
 by Provider: DATA_INDICATION;
 channel NCH(User,Provider);
 by User: DATA_INDICATION;
 by Provider: SEND_AK(x: integer);
 module USER systemactivity ;
 ip U: UCH(User);
 end ;
 body USER_BODY for USER; external ;
 module RECEIVER systemactivity ;
 ip U: UCH(Provider); N: NCH(Provider);
 end ;
 body RECEIVER_BODY for RECEIVER; external ;
 module NETWORK systemprocess ;
 ip N: NCH(User);
 end ;
 body NETWORK_BODY for NETWORK; external ;
 modvar X: USER; Y: RECEIVER; Z: NETWORK;
 initialize
 begin
 init X with USER_BODY;
 init Y with RECEIVER_BODY;
 init Z with NETWORK_BODY;
 connect X.U to Y.U;
 connect Y.N to Z.N;
 end ;
end .

5. CONCLUSION

An overview of the most important concepts and facilities of
Estelle has been presented (for more information see
[7],[15],[19],[20],[36],[37] or consult [18]).

The readers interested in real-life application examples may
examine several ISO protocols and services which have been
described in Estelle (see [23], [25], [26], [27], [32], [35],[43],
and overview papers [19] and [28]). It has to be noted that some
of these descriptions make use of earlier versions of Estelle.
Nevertheless, they constitute quite rich material for further
experiments.

It is appropriate to end this presentation emphasizing the
importance of the Estelle supporting tools. Given the size of
existing Estelle specifications, it seems clear that without such
tools real-life specifications cannot efficiently be developed and
reliably implemented. Some of these tools already exist and are
tested. Other are being under development. Their descriptions are
obviously outside of the scope of this paper. Some information is
available in the open literature and in technical reports (e.g.,
[7],[9],[11]-[17],[21],[22],[28],[30],[33],[34],[38] and [40]-
[42]). Within the ESPRIT european SEDOS/ESTELLE/DEMONSTRATOR
project an ESTELLE WORKSTATION integrating all basic Estelle
tools (editor, compiler and simulator) is currently under
development and its evaluation on many real-life applications (in
the domains of Computer Networks, Telecomunication, Space

EXAMPLE

SEND_ACK(x:integer)
DATA_INDICATION

DATA_INDICATION

X: User

 U

 N

Z: Network

 U
Y: Receiver

N

Fig. 8

Protocols and Industrial Control Systems) is also conducted [35].

REFERENCES

[1] ANSART J.P., RAFIQ O., CHARI V., Protocol Description and
Implementation Language (PDIL), Proc. IFIP 2nd Workshop on
Protocol Specification, Verification and Testing, C. SUNSHINE
(ed), North Holland,1982.

[2] AYACHE J.M., COURTIAT J.P., DIAZ M; LC/1, A Specification and
Implementation Language for Protocols, Proc. IFIP 3rd
Workshop on Protocol Specification, Verification and Testing,
H. RUDIN and C.H. WEST (ed), North Holland, 1983.

[3] BOCHMAN G.V., Finite State Description of Communication Protocols,
Computer Networks, Vol.2, p.361-378, Oct. 1978.

[4] TENNEY R.L., BLUMER T.P., A Formal Specification Technique and
Implementation Method for Protocols, Computer Networks,
vol.6, 1982.

[5] CCITT/SGXI Recommendation Z101 to Z104, Functional Specification
and Description Language, 1985.

[6] DIAZ M., SEDOS : Un environnement logiciel pour la conception des
systèmes distribués, Proc. 3ème Congrès "De nouvelles
architectures pour les communications", Paris, October 1986.

[7] COURTIAT J.P., DEMBINSKI P., GROZ R., JARD C., ESTELLE: un langage
pour les algorithmes distribués et les protocoles. Technique
et Science Informatiques, vol. 6, N° 2, 1987.

[8] DEMBINSKI P., Estelle Semantics, (SEDOS Rep. SEDOS/ 054, June
1986), also in [39].

[9] DEMBINSKI P., BUDKOWSKI S., Simulating Estelle Specifications with
Time Parameters, Proc. IFIP WG 6.1 Seventh Conference on
Protocol Specification, Testing, and Verification (eds. H.
Rudin and C.H. West), North-Holland 1987.

[10] COURTIAT J.P., Petri Nets Based Semantics for Estelle, (SEDOS Rep.
SEDOS/109, November 1987), also in [39].

[11] ANSART J.P. et al., Software tools for Estelle, Proc. IFIP 6th
International Workshop on Protocol Specification, Testing and
Verification, Montreal, June 10-13, 1986.

[12] DIAZ M., VISSERS CH., ANSART J.P., SEDOS, Software
Environment for the Design of Open distributed Systems,
ESPRIT Week, Brussels, Sept. 1985, North Holland 1986 (CEC
Ed.).

[13] User Guide for the NBS Prototype Compiler for Estelle, Rep. N°
ICST/APM 87-1, NBS Institute for Computer Science and
Technology, 1986.

[14] Estelle Development System, Users Manuel, Phoenix Technologies
Ltd. (previously Protocol Development Corporation), 675 Mass.
Ave., Cambridge, MA.,1986.

[15] DIAZ M., ESTELLE, une technique de description formelle de
protocole, 9eme Journees Francophones sur l'Informatique,
Liège, 20-21 Janv., 1987, DUNOD (Ed. A. Danthine), 1987.

[16] S.T. VUONG A.C. LAN, Semi-automatic Implementation of Protocols,
Proc. IEEE INFOCOM 87, San Francisco 1987.

[17] T. KATO, T. HASEGARA, H. HORINCHI, Design of Translator from
Estelle with ASN.1 to ADA ; KDD, Information Processing
Laboratory, 2-1-23 Nakameguro, Meguro-ku, Tokyo 153, 1987.

[18] ISO/TC97/SC21/WG1/DIS9074 Estelle - A formal Description Technique
Based on an Extended State Transition Model, 1987.

[19] LINN R.J., Jr. Tutorial on the Features and Facilities of Estelle,
ICST report, National Bureau of Standards, Gaithersburg, MD
20899, U.S.A. August 1987

[20] BUDKOWSKI S., DEMBINSKI P., ANSART J.P., Estelle, un langage de
specification des systèmes distribués, Proc. 3ème Congrès "De
nouvelles architectures pour les communications", Paris 28-30
October 1986.

[21] RICHIER J.L., RODRIGUEZ C., SIFAKIS J., VOIRON J. Verification in
XESAR of the Sliding Window Protocol, Proc. IFIP WG 6.1
Seventh Conference on Protocol Specification, Testing, and
Verification (eds. H. Rudin and C.H. West), North-Holland
1987.

[22] JARD C., GROZ R., MONIN J.F., VEDA: a Software Simulator for the
Validation of Protocols Specifications, Proc. COMNET'85,
Budapest, North-Holland 1985.

[23] AMER P. D., CECELI F., JUANOLE G., Formal Specification of ISO
Virtual Terminal in Estelle, CIS Dept. Tech. Report 87-12,
University of Delaware, August 1987.

[24] AMER P. D., SRIVAS M., PRIDOR A., Semantic Well-Formedness of
Estelle Specification Transitions, Proc. IFIP WG 6.1 Eighth
Symp. on Protocol Specification, Testing, and Verification,
Atlantic City, June 1988 (North-Holland 1989-to be published)

[25] ISO/TC97/SC6 N4394, Formal Description of ISO 8073 (Transport
Protocole) in Estelle, Information Processing Systems, Open
System Interconnection, 1986.

[26] ISO/TC97/SC6 N4393, Formal Description of Transport Service in
Estelle, Information Processing Systems, 1986.

[27] ISO/TC97/SC6 N4542, Annex 4, Formal Description of Protocole for
Providing the Connectionless-mode Network Service in Estelle,
Information Processing Systems, 1987.

[28] DIAZ M., VISSERS Ch., BUDKOWSKI S., Estelle and LOTOS Software
Environments for the Design of Open Distributed Systems,
Proc. 4th Annual ESPRIT Conference , Brussels, Sept. 28-30,
1987, Noth-Holland, CEC Ed.

[29] ISO International Standard 7185, Programming Language - Pascal,
ISO/TC97/SC6/WG4, 1983.

[30] User Guide for the BULL/MARBEN Estelle to C Compiler, BULL S.A.,
Corporate Networking and Communication (DRCG), Distributed
System Architecture and Standards (ARS), 68,Route de
Versailles, F-78430 LOUVECIENNES, 1988.

[31] VISSERS,C.A., TENNEY R.L., BOCHMAN G.V., Formal Description
Techniques, Proc. IEEE, vol.71, 1983.

[32] MONDAIN-MONVAL, P., Estelle Description of the ISO Session
Protocol, SEDOS Rep. SEDOS/106, Noember 1987, in [39].

[33] DE SAQUI-SANNES, P., COURTIAT J-P., ESTIM: An Interpreter for
the Simulation of Estelle Descriptions, SEDOS Rep. SEDOS/115,
November 1987, in [39].

[34] PAPAPANAGIOTIKAIS, G., AZEMA, P., CHEZALVIEL-PRADIN, B., On a
Prolog Environment for Protocol Analysis, Proc. Conference on
Distributed Computing Systems, Cambridge Ma., May 1986.
__

[35] AYACHE J.M.et al, Presentation of the SEDOS ESTELLE
DEMONSTRATOR project, in [39].

[36] BUDKOWSKI S., DEMBINSKI P., An Introduction to Estelle: A
Specification Language for Distributed Systems, Computer
Network and ISDN Systems Journal, vol.14, Nb.1, 1988

[37] DEMBINSKI P., BUDKOWSKI S., Specification Language ESTELLE,
in [39].

[38] User Guide for BULL simulator/debugger for Estelle, BULL
S.A., Corporate Networking and Communication (DRCG),
Distributed System Architecture and Standards (ARS), 68,Route
de Versailles, F-78430 LOUVECIENNES, 1988.

[39] DIAZ M. et al (ed), The Formal Description Technique Estelle,
North-Holland, 1989 (to be published)

[40] CHARI V. et al, The Estelle Translator, in [39].

[41] CHARI V. et al, An Estelle Simulator/Debugger Tool, in [39].

[42]RICHARD J.L.,CLAES T.,A Genaratorof C-code for Estelle,in [39]

[43] CHARI V., A Transport protocol, in [39].

