SDL-2000 Tutorial

Prof. J. Fischer
Dr. E. Holz

Humboldt-Universitat zu Berlin

SAM 2000 Workshop Grenoble

SAM 2000, Grenoble

SDL-2000

IS a major revision of SDL

— removal of outdated concepts
— alignment of existing concepts
— introduction of new concepts

Is completely based on object-orientation
has a new formal semantics

Is accompanied by a new standard Z.109
SDL-UML-Profil

© Humboldt-Universitét zu Berlin

Eckhardt Holz
This is a print-out of an animated Powerpoint presentation, therfore some slides may have overlapping content.
Please contact
 holz@informatik.hu-berlin.de
for further information on this tutorial

SAM 2000, Grenoble

Differences to SDL-92

document structure of standard has been reorganized

SDL-2000 is case-sensitive
— two spellings for keywords all uppercase or all lowercase

— removed keywords
all, axioms, constant, endgenerator,endnewtype, endrefinement,
endservice, error, fpar, generator, imported, literal, map, newtype,
noequal, ordering, refinement, returns, reveal, reverse, service,
signalroute, view, viewed

new keywords in SDL-2000

abstract, aggregation, association, break, choice, composition,
continue, endexceptionhandler, endmethod, endobject, endvalue,
exception, exceptionhandler, handle, method, object, onexception,
ordered, private, protected, public, raise, value

© Humboldt-Universitét zu Berlin 0

SAM 2000, Grenoble

not available constructs in SDL-2000
signal routes by non-delaying channels
view expression (import concept, “global” variables)
generators by parameterized types
block substructures by nested agents
channel substructures
signal refinement
axiomatic definition of data
macro diagrams
services (agents and state aggregations)

© Humboldt-Universitét zu Berlin 0

SAM 2000, Grenoble

SDL-2000 Specification
Structure

asic2
Dependencies between

specification components
| MySystem

use Basic2; System specification
use Special:
system MySystem

package Basicl Package specification(s)

()
(...) Referenced definition(s) 0

block A

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Agents

basic specification concept

model active components of a system

an agent instance is an extended finite
communicating state machine that has
— its own identity

— its own signal input queue

— its own life cycle

— a reactive behaviour specification

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Agent Declaration

three main parts

— attributes
parameters, variables, procedures

— behaviour
implicit or explicit state machine

— internal structure
contained agents and communication paths

each of the parts may be optional

© Humboldt-Universitét zu Berlin 0

SAM 2000, Grenoble

eclaration of
cal variables

block B

del i Natural, |\ eference to agent’s
¢ Character;

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

block B

dcl i Natural, B
¢ Character;

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

De-Composition of Agents

structural decomposition into internal
agents implies also decomposition of
behaviour

container of an agent determines
scheduling semantics of its contents
— concurrent agents: block

— alternating agents: process

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

process A block B

dcl i Natural, |\
¢ Character; ¢ Character;
(B)

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Block Agent

all contained agents execute concurrently
with each other and with the agents state
machine

— multiple threads of control

— concurrent execution of multiple transitions
— transitions execute with run-to-completion

contained agents may be
— blocks or processes

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

block B

dcl i Natural, k
¢ Character;

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Process Agent

all contained agents execute alternating

with each other and with the agents state

machine

— at most one transition is executed at any point
in time

— selection is non-determined

— transitions execute in run-to-completion

contained agents
— may be of kind process only

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

process B

dcl i Natural,
¢ Character;

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

System Agent

a system is one special (block) agent
— must be the outermost agent
— defines the border to the environment

— can define communication primitives
exchanged with the environment

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Variables in Agents

variables

— store data local to an agent

— owned by agents state machine

private variables, visible only to

— agents state machine

local variables, visible to

— agents state machine

— contained agents

public (exported) variables

— visibility controlled by remote declaration

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

read/write access under A
control of state machine B, del p Pd,|

block B

-1 dcl i Natural,
¢ Character;

© Humboldt-Universitét zu Berlin

&

SAM 2000, Grenoble

dcl p Pid%

process B

dcl i Natural,
¢ Character; S ———

process B2

B
EA

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Remote Variables

read-access to variables owned by an
other agent

— short-hand notation for signal interchanges
— provision by exported-declaration

— visible by remote-dedclaration

— access with import-operation
— update (by owner) with export-operation

© Humboldt-Universitét zu Berlin @

SAM 2000, Grenoble

block Container remote n Natural ; 5

block A block B

dcl my_n Natural; ed n Natural , k
acter ;

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

General Communication

communication is based on signal exchange
a signal carries
= kind of signal (signal name)f
user data |

© Humboldt-Universitét zu Berlin

11

SAM 2000, Grenoble

communication requires a complete path
from sender to receiver consisting of

— gates

— channels

— connections

path may be defined
— explicitly
— or implicitly derived

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

channel

— uni- or bi-directional communication path
between two endpoints
e gate, agent, connection, state machine

— safe and reliable (no loss, no re-ordering,...)
— delaying or non-delaying transmission
— name and signallists are optional

© Humboldt-Universitét zu Berlin

&

12

SAM 2000, Grenoble

channel aChannel nodelay
from blockl to block2
with sigl, sig2;
from block2 to blockl
with sigl, sig3;

endchannel;
channel nodelay
from block1 to block2;
from block2 to block1;
endchannel;

aChannel
blockl block2
[sigl,sig3] [sigl,sig2]

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

gate

— potential named endpoint for a channel at an
agent, agent type or a state machine

— uni- or bi-directional

— possibly constrained by set of signals or by
interface

connection
— joining/splitting of channels at implicit gate

© Humboldt-Universitét zu Berlin @

13

SAM 2000, Grenoble

block B;
block B

dcl i Natural ,
¢ Character ;
state B referenced ;

cl block B2 referenced ;

channel c1 from env to this ;
from this to env
endchannel ;
channel c2 from this to B2;
from B2 to this ;
endchannel ;
channel c3 from env
to B2
endchannel ;
channel c4 from env to this ;
endchannel ;
endblock B;

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

implicit signal lists on gates and channels
implicit gates

— introduced for connections

—introduced for unconnected channel endpoints
— signal lists derived from channel signal lists
implicit channels

—introduced for unconnected gates

— gates have to have matching constraints

© Humboldt-Universitét zu Berlin @

SAM 2000, Grenoble

system aSystem

block B1 block b2
dcl i Natural, dcl i Natural, AN
¢ Character; ¢ Character;

c

Implicit channel fuconuecieellgat

Implicit gate Implicit gate

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Advanced Communication

two-way communication
— implicitly mapped onto signal exchange
— remote variables

* read access to variables of other agents
* no containment relation required

— remote procedures
» execution of a procedure by a different agent

© Humboldt-Universitét zu Berlin 6

15

SAM 2000, Grenoble

Simple State Machines

behaviour of an agent
— is specified by a state machine
two main constituents:

— states

* particular condition in which an agent may
consume a signal

— transitions

» sequence of activities triggered by the
consumption of a signal

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

State Transition

a state machine is always either
—in a state waiting for a signal

— or performing a transition

a transition results in

— entering a new state or

— stopping the agent

© Humboldt-Universitét zu Berlin

16

SAM 2000, Grenoble

start of behaviour
state

start ;

nextstate Statel;
Statel state Statel,

input Sigl;
nextstate State2;
input Sig2;
nextstate Statel;
endstate ;

input of signal

transition

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Transition Triggers

the first signal of input queue is removed by an
input that identifies the signal

if there is no input for the first signal, it is
discarded

during an input data carried by a signal may be
copied onto local variables

reference to originating agent can be obtained by
implicit expression sender

© Humboldt-Universitét zu Berlin Q

17

SAM 2000, Grenoble

dcl xNaturaI, k

y Natural;

Statel Statel

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

consumption of signals Statel

can be deferred until a

new state is entered Sig2 m

— signals saved in this state
— valid until a new state is

entered State?

— avoids implicit discard
state Statel,;

input Sig1l;
nextstate State2;
save Sigl;
endstate ;

© Humboldt-Universitét zu Berlin

18

SAM 2000, Grenoble

input of selected signals can be preferred
or constrained
— priority input

« transition will be selected even if the signal
is not the first in the queue

— enabling condition

« transition will be selected only in case the
attached condition is true (otherwise save)

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

prioritized inpu
Statel

state Statel;
priority input Sig2;
nextstate Statel;
input Sigl;
nextstate State2

endstate ;
input sigl;
provided x>5

Sigl < nextstate State2;
endstate ;
<x>5>

© Humboldt-Universitét zu Berlin

19

SAM 2000, Grenoble

transitions may also be triggered without
an (explicit) signal
— continuous signal

« transition will be selected if attached condition is
true and no other transition can be selected
i.e. queue is empty or all other signals are saved

— non-deterministic transition

« transition will be selected non-deterministically and
independent from any other transition

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

deterministic inpu
Statel

state Statel;
input none ;
nextstate Statel;
input Sig1l;
nextstate State2;

endstate ;
State3 state State2;

<X>5> provided x>5

i nextstate State2;
State?

endstate ;
© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Transition Actions

output

— generation and addressing of signals
(identification of receiver or communication path)

task
— sequence of simple or compound statements
— informal text

decision
— branching a transition into a series of alternative paths

© Humboldt-Universitét zu Berlin 0

SAM 2000, Grenoble

state Statel;
input Sig1(x);
task { y:=X+5;
if(y>10)
y:=y-10;}
nextstate State2;
input Sig2(x);
decision (x>0);
true: nextstate Statel;
false: nextstate State2;
_enddecision
endstate;

Decision

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Algorithmic Notation

statement lists provide a means for a
concise textual notation of algorithms

applicable in

—tasks

— procedure definition
— operation definition

programming-language like syntax

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

compound statements
if-statements

w {
SISO SRS for(dcl P Pid :=self, not(P=null);
loop-statements dcl i Natural:=0,,i+1)
break-statements { P:=create Proc;

exception-statements if(newP=null) break;
else output Sig(P,i) to parent;

task

output, export, return, }
create,set/reset, raise,
call, assignment

© Humboldt-Universitét zu Berlin Q

22

SAM 2000, Grenoble

Create and Stop

performance of a create-request action
results in the existence of a new agent
instance in the indicated agent set

— creators implicit offspring expression refers to
new createe

— createe’s implicit parent expression refers to
creator

initial internal structure will be created too

© Humboldt-Universitét zu Berlin @

SAM 2000, Grenoble

block container (1,1)
block B
dcl i Natural,, block A(1,1);

___cCharacter; | parent _/'

create |

A State2
© Humboldt-Universitét zu Berlin

23

SAM 2000, Grenoble

create request can also be based on a

new instance will either be created in

— existing instance set based on that type and
defined in the same agent as the creator

— or implicit instance set based on that type and
located in the same agent as the creator

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

system MySystem
o

block container block A(1,1):

State? State?2
© Humboldt-Universitét zu Berlin

24

SAM 2000, Grenoble

the execution of a stop results in entering
a special
— no further execution of transitions

— if agent contains no further agent instances,
it will cease to exist

— otherwise
it will the access to the agents variables

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Object-Orientation in SDL

structural typing concepts allow to define the
properties of a set of specification elements
kinds of structural types

— agent type

— state type

— signal (type)

— procedures (type)

— data types and interfaces

© Humboldt-Universitét zu Berlin

25

SAM 2000, Grenoble

type concept corresponds to class concept
in other OO languages and notations

— inheritance

— virtuality

— abstraction

— instance definition & creation

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

inheritance allows the definition of a type
basing on another (super-) type of the
same kind

— addition of new structural elements
— addition of new behavioural elements
— redefinition of virtual elements

single inheritance supported by all types
multiple inheritance supported by interface

© Humboldt-Universitét zu Berlin e

26

SAM 2000, Grenoble

block type B

dcl i Natural; k

block type Bnew
inherits B addin g

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Type References and
Relations

UML-like class symbols can be used to
refer to type definitions and diagrams
partial specification:

— type name

— type attributes

— type behaviour properties

multiple references are allowed

— must all be consistent with type definition

© Humboldt-Universitét zu Berlin

&

27

SAM 2000, Grenoble

relations between types can be depicted
by
— associations (binary relations)
* no predefined semantics implied
— specialization

* must be consistent wit a specialization in the type
definition (inherits-clause)

© Humboldt-Universitét zu Berlin e

SAM 2000, Grenoble

B
signal s1
signal s2

=

| onew
EINEN

signal s3
signal s4

© Humboldt-Universitét zu Berlin

28

SAM 2000, Grenoble

type definitions for an element can be
given in

— the scope unit where the entity can be given
— any surrounding scope unit or

— any type definition for such a scope unit

— a package

instances of such a type can be defined
— where the type is visible and
—the element is allowed

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

Context Dependencies

types may refer to instances and types in
their defining context

— definition of instances may be limited to the same
scope unit (e.g. in case of instance references)

types may refer to instances and types in
their instantiation context

— formal context parameters in defining context

— actual context parameters in instantiation context

© Humboldt-Universitét zu Berlin Q

29

SAM 2000, Grenoble

Sig2 <
e

State?2
© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Context Parameter Kinds

block (type), process (type)
composite state type
procedure, remote procedure
signal

data type, interface, exception

variable, remote variable, timer, synonym

gate

© Humboldt-Universitét zu Berlin

4

30

SAM 2000, Grenoble

Abstract and Virtual Types

types marked with the keyword abstract do
not directly have instances

— pure classification

— used as super-type in an inheritance hierarchy
virtual types local to another type may be
redefined in a specialisation of that type

— must be contained in a type definition

— redefinition can be constrained

system type can not be abstract or virtual

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

block type B
* |2 is instance set of

virtual type B2

block type Bnew

inherits B
¢ |2 is instance set of

redefined type B2

block type Bnew?2 5 is inst Cof
. . o IS INStance set O
inherits Bnew finalised type B2

e * no further redefinition allowed
finalized B2
© Humboldt-Universitét zu Berlin e

31

SAM 2000, Grenoble

redefinition/finalisation must be
— subtype of original virtual type or

— subtype of virtuality constraint
(virtual block type B atleast Base)

references to a virtual or redefined type refer
to the most recent redefinition

finalised types can not be redefined further

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

Advanced State Machines

exceptions are used to denote and handle
unexpected or exceptional behaviour
— exception: the type of cause

— exception handler:behaviour to occur after an
exception (handle-clauses)

— onexception: attaches exception handler to a
behaviour unit

— raise: forces a transition to throw an exception

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

exception comerro exception handlerj

Statel

Statel andle transition

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

exception handlers can be attached to all kinds
of behaviour by an onexception:
» complete state machine, state,
* input transition, transition/algorithm action
terminator, connect,
single procedure, single operation
single remote procedure
» exception handler, handle transition
in case of an exception the most local active
exception handler will be selected

© Humboldt-Universitét zu Berlin Q

33

SAM 2000, Grenoble

Procedures

procedures are a means to group and name
recurrent behaviour

notation corresponds to agent state machine
— local states, inputs and transitions

— local variables, parameters

procedures are a type

exceptions raise but not handled in a
procedure are mentioned explicitly

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

Remote Procedures

an agent can make its procedures available
for other agents

—remote procedures

— realized by two-way communication between
caller and server

after a call to a remote procedure the caller
Is blocked until he receives the procedure
return from the server

© Humboldt-Universitét zu Berlin Q

34

SAM 2000, Grenoble

remote procedure call may deadlock
— can be prevented by an associated timer,
which
server accepts calls for remote procedures in
any state
— execution may be deferred by save

— execution may be rejected by

exceptions raised by the remote procedure are
raised at client and server side Q

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

block client

(XaX) | [pockcserve

Make Call

set(10,t)
o]
timer t reject

© Humboldt-Universitét zu Berlin

35

SAM 2000, Grenoble

Composite States

composite states are a means to
hierarchically structure state machines

— nesting of states

—agent can be in more than one state at a time

— Harel’s state charts

composite state is itself a sub-state machine

state machine of an agent is in fact a top-
level composite state

© Humboldt-Universitét zu Berlin 0

SAM 2000, Grenoble

Statel

Statel

© Humboldt-Universitét zu Berlin

36

SAM 2000, Grenoble

composite states share agent’s input queue

internal transitions with the same trigger as
external transitions have higher priority

excactly one transition is executed
— possibly concatenated with triggerless transitions

special procedures may be used to define
Initialisation and finalisation

— called implicitly upon entering/leaving a
composite state

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

© Humboldt-Universitét zu Berlin

37

SAM 2000, Grenoble

State Aggregation

state aggregations partition the state
space of an agents state machine

each partition handles a different set of the
input stimuli

excactly one partition is executing a
transition at any point in time

— multiple enabled transitions are executed in
an interleaved manner

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

- Statel
state aggregation st

© Humboldt-Universitét zu Berlin

38

SAM 2000, Grenoble

composite states and state aggregations
can be classified

— composite state type definition

— typebased composite states/state aggregations
concept & notation similar to agent types
Instances are static

— live&die with containing agent

— multiple instances in the same scope must
have different names Q

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Virtual Behaviour Elements

allow the redefinition or replacement of
behaviour elements in a type specialisation

redefinition and finalisation similar to
structural elements

available for

— procedures

— transitions

— exception handle transitions

© Humboldt-Universitét zu Berlin

39

SAM 2000, Grenoble

Interface
pure typing concept used for typed
communication between agents

Interface definition groups and names a
set of

— remote variable
—remote procedure
— signal definitions

gates and channels paths can be typed by
interfaces

© Humboldt-Universitét zu Berlin 6

SAM 2000, Grenoble

contained remote procedures & variables and
signals are defined and visble where interface is
visible

interface can use also existing definitions for
such elements

multiple inheritance is available for interfaces

interfaces are used as matching constraints for
implicit channels

© Humboldt-Universitét zu Berlin Q

SAM 2000, Grenoble

interface if1; interface if3
signal sigl; inherits if1,if2;
procedure P;
dcl | Natural;

endinterface;
block type b
signal sig2,sig3; yP
interface if2;
use sig2, sig3;
endinterface;

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Agent Implicit Interface

each agent and agent type introduces an

implicit interface

— same name as agent (type)

contains all

— signals accepted by the agents state machine

— remote variables/procedures provided by
agents state machine

inherits all interfaces on gates connected

to agents state machine

© Humboldt-Universitét zu Berlin Q

41

SAM 2000, Grenoble

block type B

interface B
use sig2,sig4;
endinterface

block type C interface C
inherits B inherits B, if1;
use sig3;
endinterface

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

each (explicit or implicit) interface implies a
specialization of the Pid-type

can be used to refer to agent instances in
— variables, expressions

— output, imports or remote procedure calls

— assignment attempt

dynamic type check tests

— provision of remote variables/procedures

— acceptance of signals

— may raise an exception (InvalidReference)

© Humboldt-Universitét zu Berlin Q

42

SAM 2000, Grenoble

block B
dcl myb2 B2,
mybt BT;

[sigl] [sig2]

(mez)

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Data Types

two main kinds of data types
—value types

conversion possible

data type definition specifies

— data elements and structure

— operators and for data manipulation

package Predefined contains a set of
general data type definitions @

© Humboldt-Universitét zu Berlin

43

SAM 2000, Grenoble

value types correspond to the newtype
concept of SDL-92

— behaviour of operators defined by algorithms
or transition actions (functional description)

— constructors:
— literals
— structs
— choices

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

object types define references to values
— references are local to agents

definition similar to value types

— conversion possible

polymorphic assignments

© Humboldt-Universitét zu Berlin

44

SAM 2000, Grenoble

further properties of data types:

inheritance
context parameters

methods allow operation-calls in programming-
language like dot-notation

local data types, constants, exceptions

visibility of data elements can be controlled

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

© Humboldt-Universitét zu Berlin

45

SAM 2000, Grenoble

object type NatList inherits List<Natural>;
dcl myList NatList;
myList:=Make(5); myList.add(2);

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Package Predefined

» Boolean, Integer, Natural, Real,
Character, Duration, Time
. » Charstring, Bit, Bitstring,
simple types _
 Octet, Octetstring

e Time, Duration, Pid

* String, Powerset, Bag,
* Array, Vector

data templates

* OutOfRange, InvalidReference,
* NoMatchingAnswer, UndefinedVariable,
» UndefinedField, Invalidindex,

« DivisionByZero, Empty e

exceptions

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Data assignments

value types object types

references local to agent

polymorphic assignments
for specialised types

virtual methods
assignment attempts

strong type check

assignment restrictions
for specialised types

object creation value extraction

© Humboldt-Universitét zu Berlin @

SAM 2000, Grenoble

value type Charstrin :
L)% pr‘égefined */ 9 dcl val_var Charstring,

endvalue type ref_var object Charstring;

ref_var := Make('Hello world") | creates a reference to an
object

val_var := ref _var value extraction

creates a refererence and copies
ref_var := val_var the value into the object (clone)

val_var := 'foo' value assignment

ref_var:=Null,
val_var := ref var

© Humboldt-Universitét zu Berlin Q

exception: InvalidReference

a7

SAM 2000, Grenoble

object type MyStruct;
struct n Natural;

y Boolean optional ;
endobject type ;

object type MyStructl

inherits MyStruct adding
¢ Character;

endobject type ;

object type MyStruct2
inherits MyStruct adding

s Charstring
endobject type ;

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

dcl m MyStruct,
ml MyStructl,
m2 MyStruct2;
[~

ml:= (. 5, true,’c
m2:= (. 5,,’ABC’)
m:=ml;
m:=m2; m2:=Nu
ml:=m:;

m2:=m;

each data type (obejct or value) implicitly inherits

from

— operators equal and clone
— methods copy and is_equal

each object type has additionally the operations

— Make and Null

each struct type has for each file the methods
— <field>Modlify, <field>Extract,
— <field>Present (optional fields only)

© Humboldt-Universitét zu Berlin

¢

48

SAM 2000, Grenoble

Development of Real-Time
Systems with SDL

executable SDL spec non-SDL

application

5 - components
virtual SDL machine
target platform

© Humboldt-Universitét zu Berlin

SAM 2000, Grenoble

Further Information
tutorial slides and author contact

www.informatik.hu-berlin.de/Institut/struktur/systemanalyse/
{fischer|holz}@informatik.hu-berlin.de

ITU standards and recommendations

— www.itu.ch or www.itu.int/itudoc/itu-t/approved/z/index.html

SDL Forum Society

— www.sdl-forum.org

conferences and workshops
— bi-annual SDL Forum - next Copenhagen 2001

© Humboldt-Universitét zu Berlin

49

SAM 2000, Grenoble

block type Telephone

Telephone: -
Terminal G

\ et

block type FaxPhone
inherits Telephone

[data] [data]

© Humboldt-Universitét zu Berlin

process type FaxCodec

50

