
In Proc. Hawai’i International Conference on System Sciences: Emerging Technologies Track. Vol III, pp. 316–307. Jan.
1998.

The Architecture of Secure Systems

Jim Alves-Foss
Laboratory for Applied Logic

Department of Computer Science
University of Idaho
jimaf@cs.uidaho.edu

Abstract

Secure system design, verification and validation is of-
ten a daunting task, involving the merger of various pro-
tection mechanisms in conjunction with system security
policy and configurations. This paper presents a generic
approach to secure system development that can be read-
ily applied to a wide range of secure systems. Use of this
approach, based on separability, will greatly simplify the
developer’s overall design, verification and validation ef-
fort.

1 Introduction

In this paper we discuss a generic approach to the de-
sign, verification and validation of secure systems. This
approach, based on Rushby’s separability model [7, 8],
provides a standard methodology that can be used by
system designers and verifiers in the implementation of
a wide range of secure systems. This approach will as-
sist in greatly simplifying the system design, verification
and validation effort by providing a proven template
from which to build the system. It is the ease and se-
curity of this approach that will provide the greatest
benefit to users of the approach. It is important to un-
derstand that this approach will not work in all cases,
but works in a wide range of common situations, and in
those situations it is beneficial.

The material in this paper progresses as follows. Section
2 presents the general system model and discusses how
it can be applied to new and existing systems. Section
3 presents a formal model of the high-level system spec-
ification and discusses the verification and validation of
the system. Section 4 then presents an exemplary se-
cure system design using the technique presented in this
paper.

2 System Model

In the early 1980’s, John Rushby presented the separa-
bility concept for secure system design and implemen-
tation [7, 8]. The basic idea behind this concept is to

model the behavior of a secure system as if it were a
physically distributed system. In a distributed system,
we have well-defined lines of communication between
the individual machines. If we can develop a separa-
tion kernel for a secure system such that it provides an
execution environment similar to that of a distributed
system, then we can simplify system design, develop-
ment, verification and validation.

A separation kernel provides mechanisms for the exis-
tence of several virtual machines on one hardware plat-
form. Communication between the virtual machines
is limited to well-defined communication paths con-
trolled by the kernel. There exist no other mechanisms
for inter-machine communication. In [7, 8], Rushby
presents a set of criteria necessary for proof of sepa-
rability. In [1] we proved that a system modeled on
the separation kernel concept satisfies the restrictive-
ness security policy [3, 4]. Given that these criteria are
met, and the proof mentioned above, we can be assured
that any system based on the separation kernel model
is secure. A more general system can be built from a
combination of separation kernels and truly distributed
components.

In the remainder of this section we discuss a specific
approach to satisfying the requirements of secure dis-
tributed systems from both the design and the verifi-
cation and validation point of view. A system designed
using this approach will be provably secure, and will not
fall victim to the poor design practices found in ad hoc
solutions.

2.1 Secure Distributed System Design

A distributed system consists of a collection of separate
components connected through a well defined communi-
cation medium. Without the medium, each component
is completely isolated from the others and unable to
share information or resources with them. Such a dis-
joint system is, by default, secure. This is the basis of
the concept of separability. If each subject in the com-

1

puter is relegated to a separate execution domain, then
at a high level of abstraction, the model of computation
is precisely that of a distributed system.

Thus, when designing a secure system, we can view the
system as a collection of distributed components. This
may be the result of truly distributed components on a
network and/or multi-compartment single components.
If a single component is to handle multiple security re-
gions, then it will need to provide a separation kernel
for those regions.

With any combination of multi-level components and
distributed components, we can design a system such
as that depicted in Figure ??. The regions depicted in
the figure demonstrate separate security regions with a
strict information flow-control policy between regions.
Each region is labeled with a specific set of security
labels, and the system security policy is used to spec-
ify authorized information flow between regions. A re-
gion with one label is considered single-level, while a
region with many levels is multi-level. We denote the
communication path between regions as a shared net-
work, although in an actual implementations this can
be a LAN, WAN, internal communication buffer or any
combination of these. The only constraint we have on
the shared network is that is be a secure network. This
means that either all components attached to the net-
work implement the separability policy, or that they
are unable to send or receive messages interpretable by
those implementing the separability policy. This can be
implemented via a secure kernel for internal communi-
cation and cryptography for any communication over an
external network.

2.2 Secure Distributed System Verification
and Validation

The verification and validation of system security in-
volves several issues, each of which is still an active area
of research and thus can only be partially addressed in
this paper. The composition of choices from these re-
search areas drives the overall system verification and
validation effort.

• Policy. A secure system can only be designed if
there exists a well-defined system security policy.
This policy can be formally or informally stated,
but it must specify the permissible and forbidden
actions of the system. For the purposes of this pa-
per, we limit those actions to communication or
information-flow between regions. The main ques-
tions that must be answered are:

1. Do we mandate specific information flow re-
strictions between certain regions or is that

left to the discretion of the users?

2. How do we map specific users into security re-
gions? A user may have several job functions
each requiring access to different security re-
gions.

• Formal Security Model. Given the specified pol-
icy, it is essential to define a formal security model
that satisfies the policy and which can be used in
the verification and validation of the specification
and implementation of the system. There are sev-
eral formal policies that have been discussed in the
literature, the ones most applicable to the design
approach of this paper are separability [5] and re-
strictiveness [3, 4]. Both of these policies focus on
the concept of information flow. Specifically, they
model how processes in different regions should not
interfere with each other’s operations. One bene-
fit of both separability and restrictiveness is that
they are composable security properties. In other
words, a system design developed from the connec-
tion of components that satisfy these properties is
also guaranteed to satisfy the same property. This
is not necessarily true for all formal security mod-
els.

• Verification and Validation. Now that we have a
policy and formal security model, it is essential
to verify that the system satisfies the model. In
general this involves multiple levels of verification:
showing that the system specification and design
satisfy the policy and showing that the implemen-
tation satisfies the design. For example, in [1] we
developed a high-level specification of a secure sys-
tem based on an early version of the approach dis-
cussed in this paper. We then proved that the spec-
ification satisfied the restrictiveness security model.
Although formal verification proofs may seem ex-
cessive to some, the approaches discussed in this
paper apply to systematic testing and validation as
well.

3 Formalism

This section presents an approach to the formal spec-
ification, verification and validation of secure systems
modeled on the approach outlined in Section 2. In gen-
eral we follow a standard top-down divide and conquer
approach to system development. We decompose com-
ponents of the system into constituent components un-
til we reach a clear security boundary. For single-level
components, beyond this boundary we are no longer
faced with security verification and validation but rather

Single-
Level A

Shared Network

Single-
Level B

Multi-
Level

{A,B,D,G}

Single-
Level B

Multi-
Level
{A,B}

Figure 1: Simple Secure System Layout

with more traditional concerns such as performance and
functionality. The approach we use decouples the these
traditional concerns from security concerns, thus we
can simplify our efforts by looking at only the security
boundaries and the true security-critical components of
the system.

Each execution environment is classified as either a
single-level process or as a multi-level process. Although
we claim that the existence of the separation kernel
should permit the implementation of multi-level execu-
tion environments as a collection of single-level virtual
machines, we provide the ability to model independent
multi-level execution environments to permit flexibility
in the model. A single-level process processes informa-
tion within a single security compartment. All informa-
tion received, transmitted or manipulated by this pro-
cess is categorized within the same security compart-
ment. Such a device can be implemented using stan-
dard off-the-shelf components and software engineering
technologies. It is assumed that the operation within
the component is untrusted with respect to security
management. A multi-level process handles informa-
tion within a set of security compartments and guaran-
tees the information flow and access control restrictions
between those compartments. Such a component needs
to be designed and analyzed carefully and should have
some level of certification that it satisfies the multi-level
security constraints of the component.

Our distributed system can be created using instances

of these processing elements. Our design, verification
and validation efforts should ensure that these elements
do not communicate or otherwise interfere with each
other. Given this assurance we know that security is
maintained between these elements. Now we need to
add a communication facility to enable these indepen-
dent elements to share information. The communication
facility must ensure the security and integrity of the in-
formation passing between processing elements. To do
this, we must explicitly state what constraints we are
putting on the communicating elements and the net-
work. The following sections detail the major generic
components we use in secure system specification.

3.1 Specification of Components

All specifications in this paper are written in LOTOS
[6], a formal specification language of the ISO. In gen-
eral, all LOTOS specifications consist of a collection of
process specifications parameterized by gates and val-
ues. These specifications can be combined, invoked and
recursively defined. Communication and synchroniza-
tion between processes occurs through events at the
gates. An event occurs at a gate when all processes
using that gate are ready to proceed. An event at a
gate is denoted by the name of the gate. For example if
we have a gate, g, the term g denotes some event at g,
g!v denotes that the specific data value, v, is to occur
at g while g?x:Type denotes that some value of type
Type is to occur at g, and that this value is stored in
the local variable x. The symbol [] denotes alternation,

PROCESS SingleLevelSecureProcess

[networkIn, networkOut]

(id: ProcessId,

label : SecLabel) : noexit :=

(

(* send data messages *)

(choice x: DMessage []

[(label IsLabelOf x) and (id IsSourceOf x)] ->

networkOut ! x ;

exit

)

[] (* Receive data messages for this processor *)

networkIn ? x: DMessage

[(id IsDestinationOf x) and

(Label(x) IsValidReceiptFor label)];

exit

) >>

SingleLevelSecureProcess

[networkIn, networkOut]

(id,label)

ENDPROC

Figure 2: Secure Single-Level Process Interface Speci-
fication

or choice of actions and ; denotes sequential ordering.
In addition, processes p1 and p2 can proceed in parallel
completely synchronized with events at gates g1 and g2,
denoted by p1 |[g1,g2]| p2; completely synchronized
with events at all gates, denoted by p1 || p2; or un-
synchronized and thus independent, denoted by p1 |||
p2. In addition, actions may be guarded, denoted by
[guard expression] -> action and phases of execu-
tion may by sequentially composed, denoted by phase1
>> phase2 .

In addition to the process specification notation, LO-
TOS has a useful data abstraction specification style.
Due to space limitations, we are unable to show any
of the data type specification in this paper. A copy of
this paper with an appendix showing the full LOTOS
specification is available from the author.

3.2 System Components

In this section we present the specification of the secure
processes (both single and multi-level) and the secure
network that combines them. These three components
are used as the basis of the all of our system specifica-
tions. To generalize the composition as much as possi-
ble, we have specified network input and output events
over separate synchronization gates. A network that
has input and output on the same port can invoke this
device with the same gate name for each parameter.

Secure Single-Level Process. Figure 2 defines the
external interface for a single-level secure process. In

this case, the process is connected to two external gates
defining the network, and is parameterized by a unique
process identifier and a security label; specific imple-
mentations may provide additional networks. This in-
terface specifies that the process may perform one of
two events:

• The event of sending a message. The only con-
straints on the message sent are that the source
address in the message corresponds to the sending
process and that the security label of the message
is that of the sending process. This is denoted in
LOTOS using the networkOut !x notation. The
choice operation and the expression in brackets
preceding this operation denote a parameterized
composition of message transmission. The notation
states that the process may send any data message,
x, as long as the security label and source address
of x are correct.

• The event of receiving a message. The constraints
on this event are that the message was destined
for this process, and that the security label of the
incoming message is consistent with the security
policy and the label of the recipient process. This
is checked via the IsValidReceipt function, which
may be a simple equality check, or otherwise a dom-
inance check. This is denoted in LOTOS using the
networkIn ?x: DMessage. This process will ac-
cept any of these messages provided they satisfy
the expression in the brackets following the input
command.

In sending a message, we are only concerned about
labeling the message from the process appropriately.
However, when receiving a message we must check that
the message is destined for this process and that the
security policy permits messages to this process from
the source (based on the security labels of the message
and the destination). Note that a simple implementa-
tion of such a security policy would be equality of se-
curity labels; otherwise there is the additional burden
of showing that the IsValidReceipt function satisfies
the security policy, and that the policy is sound. The
use of the equality test maps to the separability secu-
rity model while the dominates relationship maps to the
restrictiveness security model.

Secure Network. The preceding specification is suf-
ficient for single-level process interface specification, but
still requires a definition of the network interface for in-
terprocess communication. We define the network as a

PROCESS SecureReliableNetwork

[networkIn, networkOut]

(messages : Queue):noexit:=

(* send data message to processor *)

[not(IsEmpty(messages))] ->

networkOut ! Head(messages) ;

SecureReliableNetwork

[networkIn, NetworkOut]

(Tail(messages))

[] (* Receive data messages from a processor *)

networkIn ? x: DMessage;

SecureReliableNetwork[networkIn, networkOut]

(Enqueue(x,messages))

ENDPROC

Figure 3: Secure Reliable Network Interface Specifica-
tion

simple queue that does not permit modification of mes-
sages. We may implement such a network in terms of
a an internal communication mechanism inside a sin-
gle machine operating system or as a local network and
a collection of trusted network interfaces. These inter-
faces would be responsible for checking the validity of
messages and assuring that all messages passed on to
the processes are labeled correctly. Such an interface
can be a stand alone hardware device, an implementa-
tion of the interface embedded on the network card or
low-level network software. In any case, the algorithms
and protocols used by these interfaces must be sufficient
to provide the level of security desired. The specifica-
tion in Figure 3 provides an abstract specification of
such a secure network. Notice that this specification
provides reliable in-order transmission of data. This in-
terface specifies that the process may perform one of
two events:

• The event of sending a message. The only con-
straint on the message is that it is the first pending
message on the network queue.

• The event of receiving a message. There are no
constraints on this event, but rather it just places
the incoming message on the end of the queue.

Secure Multi-Level Process. The only remaining
base component for our specification is a multi-level
process interface. These processes are needed to model
devices that must handle information from multiple se-
curity compartments concurrently, where there is no
clear-cut separation between all of the compartments,
or where the multi-level certification was performed in-
dependently. Examples of such components are multi-

PROCESS MultiLevelSecureProcess

[networkIn, networkOut]

(id: ProcessId,

labelSet : SecLabelSet) : noexit :=

(

(* send data messages *)

(choice x: DMessage []

[(Label(x) ISIN labelSet) and

IsSourceOf(id,x)] ->

networkOut ! x ;

exit

)

[] (* Receive data messages for this processor *)

networkIn ? x: DMessage

[IsDestinationOf(id,x) and

IsValidSetReceipt(Label(x),labelSet)];

exit

) >>

MultiLevelSecureProcess[networkIn, networkOut]

(id,labelSet)

ENDPROC

Figure 4: Secure Multi-Level Process Interface Speci-
fication

level file servers, databases, multi-level document pro-
cesses, etc. As with the single-level interface, this inter-
face specifies that the process may perform one of two
events:

• The event of sending a message. The only con-
straints on the message sent are that the source
address in the message corresponds to the sending
process and that the security label of the message
is in the set of valid labels of the sending process.

• The event of receiving a message. The constraints
on this event are that the message was destined
for this process, and that the security label of the
incoming message is consistent with the security
policy and the set of labels of the recipient process.

3.3 Steps to Specifying and Building a Se-
cure System

This section discusses how we can take the given concept
of separability and the components we have presented,
and model a system using these methods. Given this
approach, a system designer can model a secure sys-
tem in a manner that readily makes apparent the por-
tions of the system that needs to be secured. Note that
the specification requires that all entities be specified as
processes, whether they be physical devices, processes,
threads or data objects. This simplifies the specification
process and does not tie us to any particular implemen-
tation. Readers may note that this is similar to the

object-oriented paradigm and can be naturally mapped
to object-oriented implementations.

The first step in the system design is to determine a
top-level interface for your system and the security pol-
icy that it will maintain. We recommend formalizing
the policy using a security model such as restrictiveness
[3, 4] or separability [5]. Following this, we can iterate
the following steps for each level of abstraction in the
specification and design.

1. Isolate the processes (main components or objects)
of the system. At the level of abstraction discussed
in this paper, we do not specify details of the im-
plementation of these components, but rather treat
them all as abstract processes.

2. For each process, specify the security label (or la-
bels) associated with that process. If labels can
not be assigned at this time, define the method by
which labels are determined and specify the set of
valid labels.

3. For each process, assign an appropriate interface
(multi-level or single-level). A multi-level interface
is required if and only if the object will communi-
cate with other processes at multiple security levels,
or will be responsible for managing data at multiple
security levels.

4. Define the network (or networks) that interconnect
these processes in terms of communication paths;
understanding that a specification of separate net-
works forces a separate network implementation.

5. Define the composite system by connecting all pro-
cesses to their appropriate networks.

Given that the networks are secure and reliable, and
that the components satisfy the given security policy,
the composite system will be secure. This is true only if
the security policies are composable [4]; restrictiveness
and separability are both composable. Our previous
work [1, 2] proves that the type of components discussed
here are secure and that the composition maintains re-
strictiveness; similar work is underway for separability.
Given these existing proofs, the verification and valida-
tion of the composite system is nearly automatic.

Now all we have to do is continue to iterate the pro-
cess until the level of abstraction is detailed enough to
permit system implementation. Note that no further se-
curity consideration is necessary below the single-level
process abstraction beyond appropriate message label-
ing. As for multi-level processes, if they can be imple-
mented using single-level processes we can directly use

PROCESS LoginProcess

[networkIn, networkOut,

filesysIn, filesysOut,

databaseIn, databaseOut]

(IdSet : ProcessIdSet) : noexit :=

(* Perform some internal event to authenticate user *)

(* generate a new process, id and label *)

i;

(choice id:ProcessId,

label: SecLabel []

[not(id IsIn IdSet)] ->

(SingleLevelProcess[networkIn,networkOut,

filesysIn,filesysOut,

databaseIn,databaseOut]

(id, label)

|||

LoginProcess[networkIn,networkOut,

filesysIn,filesysOut,

databaseIn,databaseOut]

(Insert(id,IdSet))

)

)

ENDPROC

Figure 5: Login Process Interface Specification

this method to ensure the security of the multi-level pro-
cess (an example of this type of decomposition appears
in [2]); otherwise other techniques must be used.

4 Exemplary System

In this section we present a simple exemplary secure sys-
tem and demonstrate how to specify it using the tech-
niques outlined in the previous section. The system
consists of multiple user processes running on a single
stand alone system with interprocess communication, a
login process and two shared resources. The first re-
source is the file system, the second a shared database,
both of which are considered multi-level. The login pro-
cess enables users to login at a single level and generates
new single-level user processes for each login. Commu-
nication between processes exists over a shared network;
communication with the shared resources exists over a
separate shared network for each resource. The exter-
nal interface for such a system is trivial, and thus is not
shown here. The security policy we follow is based on
restrictiveness; which requires that processes with secu-
rity labels that are not permitted to communicate under
the security policy will not interfere with each other’s
operations.

4.1 Exemplary System Specification

We define each of the networks as shown in Figure 3,
where the gates for the networks will be dependent on

PROCESS SingleLevelSecureProcess1

[networkIn, networkOut,

filesysIn, filesysOut,

databaseIn, databaseOut]

(id: ProcessId,

label : SecLabel) : noexit :=

(

(* send data messages on network *)

(choice x: DMessage []

[IsLabelOf(label,x) and IsSourceOf(id,x)] ->

networkOut ! x ;

exit

)

[] (* Receive data messages from network *)

networkIn ? x: DMessage

[IsDestinationOf(id,x) and

IsValidReceipt(Label(x),label)];

exit

[] (* send messages to file server *)

(choice x: DMessage []

[IsLabelOf(label,x) and IsSourceOf(id,x)] ->

filesysOut ! x;

exit

)

[] (* Receive data messages from file server *)

filesysIn ? x: DMessage

[IsDestinationOf(id,x) and

IsValidReceipt(Label(x),label)];

exit

[] (* send data messages to database *)

(choice x: DMessage []

[IsLabelOf(label,x) and IsSourceOf(id,x)] ->

databaseOut ! x;

exit

)

[] (* Receive data messages from database *)

databaseIn ? x: DMessage

[IsDestinationOf(id,x) and

IsValidReceipt(Label(x),label)];

exit

) >>

SingleLevelSecureProcess1[networkIn, networkOut,

filesysIn, filesysOut,

databaseIn, databaseOut]

(id,label)

ENDPROC

Figure 6: Example Secure Single-Level Process Inter-
face Specification

the device. This results in our needing 3 pairs of gates
for the system instead of just one. The use of these pairs
is shown in Figures 5-7.

We define the login process as seen in Figure 5. In this
process we wait for a user to perform some valid login
sequence, which we leave unspecified and denote with
i, then fire off one instance of a single level process
with an unused identifier and continue to run the login
process with the identifier added to the valid identifier
set. Note that we use the ||| notation to denote full
parallel composition of the single level process with the
rest of the system. Since this is a special multi-level
process, we need to verify its implementation separately.
However, all new single-level processes generated from
it can be verified independently.

Each single-level process is defined following the format
of Figure 2, except that we need interface information
for each network, the details are shown in Figure 6.
Note that this example uses the same abstract network
message data type and security checking mechanisms
for each network. If this is not desired, we could make
the change here. Notice that this is still in the form of
the secure single level processor given earlier, and thus
can easily be shown to satisfy our security policy.

Each of the file system and database resources can be
specified as multi-level components as in Figure 4. Fol-
lowing this approach, we require that these components
have unique system-wide identifiers and that the range
of security labels for the devices is well defined.

The final composite system, specified in Figure 6, con-
sists of a simple parallel composition of the login pro-
cess, the networks, file system and database. All single-
level user processes are dynamically added. Notice
that externally we only provide a network access, the
database and file system networks are hidden. This pre-
vents processes outside of the composite system from
accessing these internal shared resources.

4.2 Further Detailed Specification

The preceding specification provides an example of a
high level specification of a system. However, we are in-
terested in a secure development of the multi-level com-
ponents as well as the secure single-level components. In
this section we present an approach to developing a se-
cure single-level component from a standard untrusted
single-level component and a special interface unit, and
an approach to specifying the secure multi-level file sys-
tem. Proofs of the security of these components are
similar to the proofs shown in [1, 2].

PROCESS Composite_System

[networkIn, networkOut] : noexit :=

Hide filesysIn, filesysOut,

databaseIn, databaseOut in

LoginProcess[networkIn,networkOut,

filesysIn,filesysOut,

databaseIn,databaseOut]

({} OF ProcessIdSet)

||

(

FileSystem[filesysIn, filesysOut]

(EmptyFileSys, FileSysId, FileSysLabelSet)

|||

Database[databaseIn, databaseOut]

(EmptyStack, DatabaseId, DatabaseLabelSet)

|||

Network[networkOut, networkIn]

|||

FileSystemNetwork[filesysOut, filesysIn]

|||

DatabaseNetwork[databaseOut, databaseIn]

)

ENDPROC

Figure 7: Composite System Specification

A Secure Single-Level Component. The impor-
tant features of a secure single-level component are how
it processes messages it is sending or receiving. To trust
such a component, it must appropriately label outgoing
messages and correctly filter incoming messages. All
other concerns about a single-level system are opera-
tional and not based on the security of the system. In
other words, we can specify the secure single-level pro-
cess as one consisting of a trusted interface unit and an
untrusted operational component. The trusted inter-
face unit ensures that all communication between the
component and the network(s) are properly labeled and
filtered.

Figure 8 shows the LOTOS specification of an untrusted
single-level process. This process sends and receives
messages as does the trusted single-level process, but
no constraints are placed on the messages sent or re-
ceived. Figure 9 shows the specification of a trusted in-
terface unit that sits between the untrusted single-level
process and the network. This unit ensure that all mes-
sages are appropriately labeled and filtered according
to our security policy. Figure 10 provides the specifi-
cation for the composite system. Here all communica-
tion gates from the untrusted component are explicitly
routed through trusted interface units, effectively isolat-
ing the untrusted component while ensuring the incom-
ing and outgoing messages satisfy the security property.

PROCESS SingleLevelProcess

[networkIn, networkOut,

filesysIn, filesysOut,

databaseIn, databaseOut]: noexit :=

(

(* send data messages on a network *)

(choice gate in

[networkOut, filesysOut, databaseOut] []

choice x: DMessage[]

gate ! x;

exit

)

[] (* Receive data messages on a network *)

(choice gate in

[networkIn, filesysIn, databaseIn] []

gate ? x: DMessage;

exit

)

) >>

SingleLevelProcess[networkIn, networkOut,

filesysIn, filesysOut,

databaseIn, databaseOut]

ENDPROC

Figure 8: Untrusted Single-Level Process Interface
Specification

The notation | [net1In, . . .] | is used to force synchro-
nization of the single-level process and the trusted in-
terface unit. Any communication over these gates must
occur with agreement from both components. Such de-
composition greatly reduces system verification efforts
since the only security relevant component is the trusted
interface unit. Proof of the security of this type of com-
ponent is straight-forward [1].

Secure Multi-Level Database. In this section we
define a true multi-level device; although we have made
the operation of the device simple for the sake of clarity.
The device is a simple database process that receives
publish and acquire requests from the connected net-
work. Associated with each request is an object identi-
fier, data for publish requests, and the source id and se-
curity label. For a publish request the database simply
adds it to its records. For an acquire request it searches
through its list of previous requests for a matching pub-
lish with the same identifier as the acquire message. It
will return the first one that has a security label that
satisfies the security policy with respect to a requested
minimum security label and the acquire message secu-
rity label. If a match is found, an appropriate response
is sent, otherwise a default response is sent.

PROCESS TrustedInterfaceUnit

[processIn, processOut,

networkIn, networkOut]

(id: ProcessId,

label : SecLabel) : noexit :=

(

(* pass-on data messages from process *)

processIn ? x : DMessage;

networkOut ! (SetId(SetLabel(x, label),id));

exit

[] (* Receive data messages *)

networkIn ? x: DMessage

[IsDestinationOf(id,x) and

IsValidReceipt(Label(x),label)];

processOut ! x;

exit

) >>

TrustedInterfaceUnit[processIn, processOut,

networkIn, networkOut]

(id, label)

ENDPROC

Figure 9: Trusted Interface Unit Specification

PROCESS SingleLevelSecureComposition

[networkIn, networkOut,

filesysIn, filesysOut,

databaseIn, databaseOut]

(id: ProcessId,

label : SecLabel) : noexit :=

(* define internal gates between single-level *)

(* process and interface units *)

Hide net1In, net1Out, net2In, net2Out,

net3In, net3Out in

SingleLevelProcess[net1In, net1Out,

net2In, net2Out, net3In, net3Out]

|[net1In,net1Out,net2In,net2Out,net3In,net3Out]|

(TrustedInterfaceUnit[net1Out,net1In,

networkIn,networkOut](id,label)

|||

TrustedInterfaceUnit[net2Out,net2In,

filesysIn,filesysOut](id,label)

|||

TrustedInterfaceUnit[net3Out,net3In,

databaseIn,databaseOut](id,label)

)

ENDPROC

Figure 10: Composition of Trusted Interface Units and
Untrusted Process

PROCESS Database

[gateIn, gateOut]

(dataStack : Stack,

id: ProcessId,

labelSet : SecLabelSet) : noexit :=

(* receive publish request *)

gateIn ? x : DMessage

[IsDestinationOf(id,x) and

IsValidSetReceipt(Label(x),labelSet) and

IsPublishRequest(x)];

Database[gateIn, gateOut]

(Push (PublishData(x), dataStack),

id, labelSet)

(* receive acquire request *)

[] gateIn ? x : DMessage

[IsDestinationOf(id, x) and

IsValidSetReceipt(Label(x),labelSet) and

IsAcquireRequest(x)];

gateOut ! GetValidMatch(x, dataStack);

Database[gateIn, gateOut]

(dataStack, id, labelSet)

ENDPROC

Figure 11: Secure Database Process Interface Specifi-
cation

The LOTOS specification of the database is given in
Figure 11. The security of this process depends on the
security of the functions GetValidMatch, which ensures
that only the most recent valid publish message is seen,
and ResponseFor which generates a response from the
match. Note that this response needs to include the
id and security label of the requesting message. The
current state of the system is represented as a stack of
publish requests that is passed as a parameter to the
database after every event is processed. It must be ver-
ified that this process does not violate the information
flow control security policy of the system when com-
puting these and other auxiliary functions. Complete
testing of this specification with the multi-level process
will show that this is an instantiation of the multi-level
interface given in Section 3.1.

An alternate version of the multi-level database re-
quires that requests and responses are of the same level.
Hence, the GetValidMatch function would search for a
previous publish request with the same security label.
Given such functionality, the database becomes a col-
lection of single-level databases connected via a shared
network. The input to this shared network would be
a simple switch that would route all messages to the
appropriate single-level server based on the security la-
bel. A simple approach to implementing this in LOTOS
would be to create internal identifiers for each security
label and associated server and have the switch trans-

late between the generic database id and the internal id.
Diagrammatically, this appears as in Figure 12. The
actual specification, verification and validation of this
subsystem follow the same approach outlined above for
the full system.

5 Conclusion

This paper discussed the concept of separability and
how it can be used in the design and implementation
of secure systems. Although originally presented over
a decade ago, this concept has strong applicability in
the design of modern systems, and can naturally be ap-
plied to object-oriented systems as well as more con-
ventional designs. The approach taken in this paper
demonstrates how we can clearly specify the security of
a system in terms of the separability model. Using the
formal specification approach, we can readily see the se-
curity boundaries of the system and where appropriate
security measures must be implemented and security
testing must occur.

As discussed in this paper, this approach can be used
to specify secure applications such as databases, net-
work services, secure networked or distributed systems,
or secure operating systems. It is this wide range ap-
plicability of this approach that makes it so attractive
for system design. The only portions of the system that
must be verified for security purposes are any true multi-
level components, the labeling and filtering portions of
the single-level components, the network, and the se-
curity policy. This greatly reduces the verification and
validation effort seen by many system developers who
are often unsure what portions of the system and how
much must be validated for security.

If the network is a virtual network implemented inter-
nally within a machine or process, we have to ensure
that no other interprocess communication can occur.
This problem was originally discussed and solutions pre-
sented by Rushby in his original papers [7, 8].

References

[1] J. Alves-Foss. Mechanical Verification of Secure Dis-
tributed System Specifications. PhD thesis, Depart-
ment of Computer Science, University of California,
Davis, 1991.

[2] J. Alves-Foss. Specifying trusted distributed system
components. Journal of Computing and Informa-
tion, 2(1):238–257, 1996.

[3] D. McCullough. Specifications for multi-level secu-
rity and a hook-up property. In Proc. IEEE Sympo-
sium on Security and Privacy, pages 161–166, 1987.

[4] D. McCullough. Noninterference and the compos-
ability of security properties. In Proc. IEEE Sympo-
sium on Security and Privacy, pages 177–187, 1988.

[5] J. McLean. A general theory of composition for trace
sets closed under selective interleaving functions. In
Proc. IEEE Symposium on Research in Security and
Privacy, pages 79–93, 1994.

[6] Information processing systems Open Systems Inter-
connection. LOTOS – A formal decription technique
based on the temportal ordering of observational be-
haviour. International Organization for Standard-
ization, International Standard 8807-02-15 edition,
1989.

[7] J.M Rushby. Design and verification of secure sys-
tems. In Proc. ACM Symposium on Operating Sys-
tem Principles, volume 15, pages 12–21, 1981.

[8] J.M. Rushby. Proof of separability: A verifica-
tion technique for a class of security kernels. Proc.
International Symposium on Programming, Lecture
Notes in Computer Science, 137:352–367, 1982.

GateIn

GateOut

Switch

Level A Level CLevel B

Level D Level E Level F Level G

Secure Multilevel Database

Internal Network

Figure 12: Secure Database Implementation

