
LAMBDA CALCULI WITH TYPESHenk BarendregtCatholic University Nijmegen
To appear inHandbook of Logic in Computer Science, Volume II,Edited byS. Abramsky, D.M. Gabbay and T.S.E. MaibaumOxford University PressComments are welcome. Author's address:Faculty of Mathematics and Computer ScienceToernooiveld 16525 ED NijmegenThe NetherlandsE-mail: henk@cs.kun.nl

Lambda Calculi with TypesH.P. BarendregtContents1 Introduction : 42 Type-free lambda calculus : 72.1 The system : 72.2 Lambda de�nability : 142.3 Reduction : 203 Curry versus Church typing : 343.1 The system �!-Curry : 343.2 The system �!-Church : 424 Typing �a la Curry : 464.1 The systems : 474.2 Subject reduction and conversion : : : : : : : : : : : : : : : 574.3 Strong normalization : 614.4 Decidability of type assignment : : : : : : : : : : : : : : : : 675 Typing �a la Church : 765.1 The cube of typed lambda calculi : : : : : : : : : : : : : : : 775.2 Pure type systems : 965.3 Strong normalization for the �-cube : : : : : : : : : : : : : 1145.4 Representing logics and data-types : : : : : : : : : : : : : : 1325.5 Pure type systems not satisfying normalization : : : : : : : 163References : 184
1

2 H.P. Barendregt
Dedication This work is dedicated toNol and Riet Pragerthe musician/philosopher and the poet.

Lambda Calculi with Types 3
AcknowledgementsTwo persons have been quite in
uential on the form and contents of thischapter. First of all, Mariangiola Dezani-Ciancaglini clari�ed to me theessential di�erences between the Curry and the Church typing systems.She provided a wealth of information on these systems (not all of whichhas been incorporated in this chapter; see the forthcoming Barendregt andDekkers (to appear) for more on the subject). Secondly, Bert van BenthemJutting introduced me to the notion of type dependency as presented inthe systems AUTOMATH and related calculi like the calculus of construc-tions. His intimate knowledge of these calculi|obtained after extensivemathematical texts in them|has been rather useful. In fact it helped meto introduce a �ne structure of the calculus of constructions, the so called�-cube. Contributions of other individuals|often important ones|will beclear form the contents of this chapter.The following persons gave interesting input or feedback for the con-tents of this chapter: Ste�en van Bakel, Erik Barendsen, Stefano Berardi,Val Breazu-Tannen, Dick (N.G.) de Bruijn, Adriana Compagnoni, MarioCoppo, Thierry Coquand, Wil Dekkers, Ken-etsu Fujita, Herman Geu-vers, Jean-Yves Girard, Susumu Hayashi, Leen Helmink, Kees Hemerik,Roger Hindley, Furio Honsell, Martin Hyland, Johan de Iongh, Bart Jacobs,Hidetaka Kondoh, Giuseppe Longo, Sophie Malecki, Gregory Mints, Al-bert Meyer, Reinhard Muskens, Mark-Jan Nederhof, Rob Nederpelt, AndyPitts, Randy Pollack, Andre Scedrov, Richard Statman, Marco Swaen, JanTerlouw, Hans Tonino, Yoshihito Toyama, Anne Troelstra and Roel de Vri-jer.Financial support came from several sources. First of all Oxford Uni-versity Press gave the necessary momentum to write this chapter. TheResearch Institute for Declarative Systems at the Department of ComputerScience of the Catholic University Nijmegen provided the daily environ-ment where I had many discussions with my colleagues and Ph.D. stu-dents. The EC Stimulation Project ST2J-0374-C (EDB) lambda calcul typ�e

4 H.P. Barendregthelped me to meet many of the persons mentioned above, notably Berardiand Dezani-Ciancaglini. Nippon Telephon and Telegraph (NTT) made itpossible to meet Fujita and Toyama. The most essential support came fromPhilips Research Laboratories Eindhoven where I had extensive discussionswith van Benthem Jutting leading to the de�nition of the �-cube.Finally I would thank Mari�elle van der Zandt and Jane Spurr for typingand editing the never ending manuscript and Wil Dekkers for proofreadingand suggesting improvements. Erik Barendsen was my guru for TEX. Usehas been made of the macros of Paul Taylor for commutative diagrams andprooftrees. Erik Barendsen, Wil Dekkers and Herman Geuvers helped mewith the production of the �nal manuscript.Nijmegen, December 20, 1991 Henk Barendregt1 IntroductionThe lambda calculus was originally conceived by Church (1932;1933) aspart of a general theory of functions and logic, intended as a foundationfor mathematics. Although the full system turned out to be inconsistent,as shown in Kleene and Rosser(1936), the subsystem dealing with func-tions only became a successful model for the computable functions. Thissystem is called now the lambda calculus. Books on this subject e.g. areChurch(1941), Curry and Feys (1988), Curry et al.(1958; 1972), Barendregt[1984), Hindley and Seldin(1986) and Krivine(1990).In Kleene and Rosser (1936) it is proved that all recursive functions canbe represented in the lambda calculus. On the other hand, in Turing(1937)it is shown that exactly the functions computable by a Turing machine canbe represented in the lambda calculus. Representing computable functionsas �-terms, i.e. as expressions in the lambda calculus, gives rise to so-calledfunctional programming. See Barendregt(1990) for an introduction andreferences.The lambda calculus, as treated in the references cited above, is usu-ally referred to as a type-free theory. This is so, because every expression(considered as a function) may be applied to every other expression (con-sidered as an argument). For example, the identity function I = �x:x maybe applied to any argument x to give as result that same x. In particularI may be applied to itself.There are also typed versions of the lambda calculus. These are intro-duced essentially in Curry (1934) (for the so-called combinatory logic, a

Lambda Calculi with Types 5variant of the lambda calculus) and in Church (1940). Types are usuallyobjects of a syntactic nature and may be assigned to lambda terms. If Mis such a term and, a type A is assigned to M , then we say `M has typeA' or `M in A'; the notation used for this is M : A. For example in mostsystems with types one has I : (A!A), that is, the identity I may get astype A!A. This means that if x being an argument of I is of type A, thenalso the value Ix is of type A. In general A!B is the type of functionsfrom A to B.Although the analogy is not perfect, the type assigned to a term may becompared to the dimension of a physical entity. These dimensions preventus from wrong operations like adding 3 volts to 2 amp�eres. In a similarway types assigned to lambda terms provide a partial speci�cation of thealgorithms that are represented and are useful for showing partial correct-ness.Types may also be used to improve the e�ciency of compilation ofterms representing functional algorithms. If for example it is known (bylooking at types) that a subexpression of a term (representing a functionalprogram) is purely arithmetical, then fast evaluation is possible. This isbecause the expression then can be executed by the ALU of the machineand not in the slower way in which symbolic expressions are evaluated ingeneral.The two original papers of Curry and Church introducing typed versionsof the lambda calculus give rise to two di�erent families of systems. In thetyped lambda calculi �a la Curry terms are those of the type-free theory.Each term has a set of possible types. This set may be empty, be a singletonor consist of several (possibly in�nitely many) elements. In the systems �ala Church the terms are annotated versions of the type-free terms. Eachterm has a type that is usually unique (up to an equivalence relation) andthat is derivable from the way the term is annotated.The Curry and Church approaches to typed lambda calculus correspondto two paradigms in programming. In the �rst of these a program may bewritten without typing at all. Then a compiler should check whether atype can be assigned to the program. This will be the case if the programis correct. A well-known example of such a language is ML, see Milner(1984). The style of typing is called `implicit typing'. The other paradigmin programming is called `explicit typing' and corresponds to the Churchversion of typed lambda calculi. Here a program should be written togetherwith its type. For these languages type-checking is usually easier, since notypes have to be constructed. Examples of such languages are ALGOL68 and PASCAL. Some authors designate the Curry systems as `lambdacalculi with type assignment' and the Church systems as `systems of typedlambda calculus'.Within each of the two paradigms there are several versions of typedlambda calculus. In many important systems, especially those �a la Church,

6 H.P. Barendregtit is the case that terms that do have a type always possess a normalform. By the unsolvability of the halting problem this implies that not allcomputable functions can be represented by a typed term, see Barendregt(1990), theorem 4.2.15. This is not so bad as it sounds, because in orderto �nd such computable functions that cannot be represented, one has tostand on one's head. For example in �2, the second-order typed lambdacalculus, only those partial recursive functions cannot be represented thathappen to be total, but not provably so in mathematical analysis (second-order arithmetic).Considering terms and types as programs and their speci�cations is notthe only possibility. A type A can also be viewed as a proposition and aterm M in A as a proof of this proposition. This so-called propositions-as-types interpretation is independently due to de Bruijn (1970) and Howard(1980) (both papers were conceived in 1968). Hints in this direction weregiven in Curry and Feys (1958) and in L�auchli (1970). Several systems ofproof checking are based on this interpretation of propositions-as-types andof proofs-as-terms. See e.g. de Bruijn (1980) for a survey of the so-calledAUTOMATH proof checking system. Normalization of terms correspondsin the formulas-as-types interpretation to normalisation of proofs in thesense of Prawitz (1965). Normal proofs often give useful proof theoreticinformation, see e.g. Schwichtenberg (1977). In this chapter several typedlambda calculi will be introduced, both �a la Curry and �a la Church. Sincein the last two decades several dozens of systems have appeared, we willmake a selection guided by the following methodology.Only the simplest versions of a system will be consid-ered. That is, only with �-reduction, but not with e.g.�-reduction. The Church systems will have types built upusing only ! and �, not using e.g. � or �. The Currysystems will have types built up using only !, \ and �.(For this reason we will not consider systems of constructive type theoryas developed e.g. in Martin-L�of (1984), since in these theories � plays anessential role.) It will be seen that there are already many interestingsystems in this simple form. Understanding these will be helpful for theunderstanding of more complicated systems. No semantics of the typedlambda calculi will be given in this chapter. The reason is that, especiallyfor the Church systems, the notion of model is still subject to intensiveinvestigation. Lambek and Scott (1986) and Mitchell (1990), a chapteron typed lambda calculus in another handbook, do treat semantics butonly for one of the systems given in the present chapter. For the Churchsystems several proposals for notions of semantics have been proposed.These have been neatly uni�ed using �bred categories in Jacobs (1991). See

Lambda Calculi with Types 7also Pavlovi�c (1990). For the semantics of the Curry systems see Hindley(1982), (1983) and Coppo (1985). A later volume of this handbook willcontain a chapter on the semantics of typed lambda calculi.Barendregt and Hemerik (1990) and Barendregt (1991) are introductoryversions of this chapter. Books including material on typed lambda calculusare Girard et al. (1989) (treats among other things semantics of the Churchversion of �2), Hindley and Seldin (1986) (Curry and Church versions of�!), Krivine (1990) (Curry versions of �2 and �\), Lambek and Scott(1986) (categorical semantics of �!) and the forthcoming Barendregt andDekkers (199-) and Nerode and Odifreddi (199-).Section 2 of this chapter is an introduction to type-free lambda-calculusand may be skipped if the reader is familiar with this subject. Section 3explains in more detail the Curry and Church approach to lambda calculiwith types. Section 4 is about the Curry systems and Section 5 is aboutthe Church systems. These two sections can be read independently of eachother.2 Type-free lambda calculusThe introduction of the type-free lambda calculus is necessary in order tode�ne the system of Curry type assignment on top of it. Moreover, al-though the Church style typed lambda calculi can be introduced directly,it is nevertheless useful to have some knowledge of the type-free lambdacalculus. Therefore this section is devoted to this theory. For more infor-mation see Hindley and Seldin [1986] or Barendregt [1984].2.1 The systemIn this chapter the type-free lambda calculus will be called `�-calculus' orsimply �. We start with an informal description.Application and abstractionThe �-calculus has two basic operations. The �rst one is application. Theexpression F:A(usually written as FA) denotes the data F considered as algorithm appliedto A considered as input. The theory � is type-free: it is allowed to considerexpressions like FF , that is, F applied to itself. This will be useful tosimulate recursion.The other basic operation is abstraction. If M �M [x] is an expressioncontaining (`depending on') x, then �x:M [x] denotes the intuitive map

8 H.P. Barendregtx 7!M [x];i.e. to x one assigns M [x]. The variable x does not need to occur actuallyin M . In that case �x:M [x] is a constant function with value M .Application and abstraction work together in the following intuitiveformula: (�x:x2 + 1)3 = 32 + 1 (= 10):That is, (�x:x2 + 1)3 denotes the function x 7! x2 + 1 applied to theargument 3 giving 32 + 1 (which is 10). In general we have(�x:M [x])N =M [N]:This last equation is preferably written as(�x:M)N =M [x := N]; (�)where [x := N] denotes substitution of N for x. This equation is called�-conversion. It is remarkable that although it is the only essential axiomof the �-calculus, the resulting theory is rather involved.Free and bound variablesAbstraction is said to bind the free variable x in M . For example, we saythat �x:yx has x as bound and y as free variable. Substitution [x := N] isonly performed in the free occurrences of x:yx(�x:x)[x := N] = yN (�x:x):In integral calculus there is a similar variable binding. In R ba f(x; y)dx thevariable x is bound and y is free. It does not make sense to substitute 7 forx, obtaining R ab f(7; y)d7; but substitution for y does make sense, obtainingR ab f(x; 7)dx.For reasons of hygiene it will always be assumed that the bound vari-ables that occur in a certain expression are di�erent from the free ones.This can be ful�lled by renaming bound variables. For example, �x:x be-comes �y:y. Indeed, these expressions act the same way:(�x:x)a = a = (�y:y)aand in fact they denote the same intended algorithm. Therefore expressionsthat di�er only in the names of bound variables are identi�ed. Equationslike �x:x � �y:y are usually called �-conversion.

Lambda Calculi with Types 9Functions of several argumentsFunctions of several arguments can be obtained by iteration of application.The idea is due to Sch�on�nkel (1924) but is often called `currying', afterH.B. Curry who introduced it independently. Intuitively, if f(x; y) dependson two arguments, one can de�neFx = �y:f(x; y)F = �x:Fx:Then (Fx)y = Fxy = f(x; y): (1)This last equation shows that it is convenient to use association to the leftfor iterated application:FM1 : : :Mn denotes (::((FM1)M2) : : :Mn):The equation (1) then becomesFxy = f(x; y):Dually, iterated abstraction uses association to the right:�x1 � � �xn:f(x1; : : : ; xn) denotes �x1:(�x2:(: : : (�xn:f(x1; : : : ; xn))::)):Then we have for F de�ned aboveF = �xy:f(x; y)and (1) becomes (�xy:f(x; y))xy = f(x; y):For n arguments we have(�x1 : : :xn:f(x1; : : : ; xn))x1 : : :xn = f(x1; : : : ; xn);by using (�) n times. This last equation becomes in convenient vectornotation (�~x:f(~x))~x = f(~x);more generally one has (�~x:f(~x)) ~N = f(~N):Now we give the formal description of the �-calculus.

10 H.P. BarendregtDe�nition 2.1.1. The set of �-terms, notation �, is built up from anin�nite set of variables V = fv; v0; v00; : : :g using application and (function)abstraction: x 2 V) x 2 �;M;N 2 �) (MN) 2 �;M 2 �; x2 V) (�xM) 2 �:Using abstract syntax one may write the following.V ::= v j V 0� ::= V j (��) j (�V �)Example 2.1.2. The following are �-terms:v;(vv00);(�v(vv00));((�v(vv00))v0);((�v0((�v(vv00))v0))v000):Convention 2.1.3.1. x; y; z; : : : denote arbitrary variables;M;N;L; : : : denote arbitrary �-terms.2. As already mentioned informally, the followingabbreviations are used:FM1 : : :Mn stands for (::((FM1)M2) : : :Mn)and �x1 � � �xn:M stands for (�x1(�x2(: : : (�xn(M))::))):3. Outermost parentheses are not written.Using this convention, the examples in 2.1.2 now may be written as follows:x;xz;�x:xz;(�x:xz)y;(�y:(�x:xz)y)w:Note that �x:yx is (�x(yx)) and not ((�xy)x).

Lambda Calculi with Types 11Notation 2.1.4. M � N denotes thatM and N are the same term or canbe obtained from each other by renaming bound variables. For example,(�x:x)z � (�x:x)z;(�x:x)z � (�y:y)z;(�x:x)z 6� (�x:y)z:De�nition 2.1.5.1. The set of free variables of M , (notation FV (M)), is de�ned induc-tively as follows: FV (x) = fxg;FV (MN) = FV (M) [FV (N);FV (�x:M) = FV (M)� fxg:2. M is a closed �-term (or combinator) if FV (M) = ;. The set ofclosed �-terms is denoted by �0.3. The result of substitution of N for (the free occurrences of) x in M ,notation M [x := N], is de�ned as follows: Below x 6� y.x[x := N] � N ;y[x := N] � y;(PQ)[x := N] � (P [x := N])(Q[x := N]);(�y:P)[x := N] � �y:(P [x := N]); provided y 6� x;(�x:P)[x := N] � (�x:P):In the �-term y(�xy:xyz)y and z occur as free variables; x and y occur as bound variables. Theterm �xy:xxy is closed.Names of bound variables will be always chosen such that they di�erfrom the free ones in a term. So one writes y(�xy0 :xy0z) for y(�xy:xyz).This so-called `variable convention' makes it possible to use substitutionfor the �-calculus without a proviso on free and bound variables.Proposition 2.1.6 (Substitution lemma). Let M;N;L 2 �. Supposex 6� y and x =2 FV (L). ThenM [x := N][y := L] �M [y := L][x := N [y := L]]:Proof. By induction on the structure of M .Now we introduce the �-calculus as a formal theory of equations between�-terms.

12 H.P. BarendregtDe�nition 2.1.7.1. The principal axiom scheme of the �-calculus is(�x:M)N =M [x := N] (�)for allM;N 2 �. This is called �-conversion.2. There are also the `logical' axioms and rules:M =M ;M = N) N =M ;M = N;N = L) M = L;M =M 0) MZ =M 0Z;M =M 0) ZM = ZM 0;M =M 0) �x:M = �x:M 0: (�)3. If M = N is provable in the �-calculus, then we write � `M = N orsometimes just M = N .Remarks 2.1.8.1. We have identi�ed terms that di�er only in the names of bound vari-ables. An alternative is to add to the �-calculus the following axiomscheme of �-conversion.�x:M = �y:M [x := y]; (�)provided that y does not occur in M . The axiom (�) above wasoriginally the second axiom; hence its name. We prefer our version ofthe theory in which the identi�cations are made on a syntactic level.These identi�cations are done in our mind and not on paper.2. Even if initially terms are written according to the variable conven-tion, �-conversion (or its alternative) is necessary when rewritingterms. Consider e.g. ! � �x:xx and 1 � �yz:yz. Then!1 � (�x:xx)(�yz:yz)= (�yz:yz)(�yz:yz)= �z:(�yz:yz)z� �z:(�yz0:yz0)z

Lambda Calculi with Types 13= �zz0:zz0� �yz:yz� 1:3. For implementations of the �-calculus the machine has to deal withthis so called �-conversion. A good way of doing this is provided bythe `name-free notation' of N.G. de Bruijn, see Barendregt (1984),Appendix C. In this notation �x(�y:xy) is denoted by �(�21), the 2denoting a variable bound `two lambdas above'.The following result provides one way to represent recursion in the �-calculus.Theorem 2.1.9 (Fixed point theorem).1. 8F9XFX = X:(This means that for allF2� there is anX2� such that � ` FX = X:)2. There is a �xed point combinatorY � �f:(�x:f(xx))(�x:f(xx))such that 8F F (YF) = YF:Proof. 1. De�ne W � �x:F (xx) and X � WW . ThenX � WW � (�x:F (xx))W = F (WW) � FX:2. By the proof of (1). Note thatYF = (�x:F (xx))(�x:F (xx))� X:Corollary 2.1.10. Given a term C � C[f; x] possibly containing the dis-played free variables, then9F8X FX = C[F;X]:Here C[F;X] is of course the substitution result C[f := F][x := X]:Proof. Indeed, we can construct F by supposing it has the required prop-erty and calculating back:8X FX = C[F;X](Fx = C[F; x](F = �x:C[F; x](F = (�fx:C[f; x])F(F � Y(�fx:C[f; x]):This also holds for more arguments: 9F8~x F~x = C[F;~x]:

14 H.P. BarendregtAs an application, terms F and G can be constructed such that for allterms X and Y FX = XF;GXY = Y G(Y XG):2.2 Lambda de�nabilityIn the lambda calculus one can de�ne numerals and represent numericfunctions on them.De�nition 2.2.1.1. Fn(M) with n 2 N (the set of natural numbers) and F;M 2 �, isde�ned inductively as follows:F 0(M) � M ;Fn+1(M) � F (Fn(M)):2. The Church numerals c0; c1; c2; : : : are de�ned bycn � �fx:fn(x):Proposition 2.2.2 (J. B. Rosser). De�neA+ � �xypq:xp(ypq);A� � �xyz:x(yz);Aexp � �xy:yx:Then one has for all n;m 2N1. A+cncm = cn+m:2. A�cncm = cn:m:3. Aexpcncm = c(nm); except for m = 0 (Rosser starts at 1).Proof. We need the following lemma.

Lambda Calculi with Types 15Lemma 2.2.3.1. (cnx)m(y) = xn�m(y);2. (cn)m(x) = c(nm)(x); for m > 0.Proof. 1. By induction on m. If m = 0, then LHS = y = RHS. Assume(1) is correct for m (Induction Hypothesis: IH). Then(cnx)m+1(y) = cnx((cnx)m(y))=IH cnx(xn�m(y))= xn(xn�m(y))� xn+n�m(y)� xn�(m+1)(y):2. By induction on m > 0. If m = 1, then LHS � cnx � RHS. If (2) iscorrect for m, thencm+1n (x) = cn(cmn (x))=IH cn(c(nm)(x))= �y:(c(nm)(x))n(y)=(1) �y:xnm�n(y)= c(nm+1)x:Now the proof of the proposition.1. By induction on m.2. Use the lemma (1).3. By the lemma (2) we have for m > 0Aexpcncm = cmcn = �x:cnm(x) = �x:c(nm)x = c(nm);since �x:Mx =M if M = �y:M 0[y] and x =2 FV (M). Indeed,�x:Mx = �x:(�y:M 0[y])x= �x:M 0[x]� �y:M 0[y]= M:We have seen that the functions plus, times and exponentiation on Ncan be represented in the �-calculus using Church's numerals. We will showthat all computable (recursive) functions can be represented.

16 H.P. BarendregtBoolean truth values and a conditional can be represented in the �-calculus.De�nition 2.2.4 (Booleans, conditional).1. true � �xy:x; false � �xy:y:2. If B is a Boolean, i.e. a term that is either true, or false, thenif B then P else Qcan be represented by BPQ. Indeed, truePQ = P and falsePQ =Q.De�nition 2.2.5 (Pairing). For M;N 2 � write[M;N] � �z:zMN:Then [M;N] true=M[M;N] false= Nand hence [M;N] can serve as an ordered pair.De�nition 2.2.6.1. A numeric function is a map f : Np!N for some p.2. A numeric function f with p arguments is called �-de�nable if onehas for some combinator FFcn1 : : :cnp = cf(n1;:::;np) (1)for all n1; : : : ; np 2 N. If (1) holds, then f is said to be �-de�ned byF .De�nition 2.2.7.1. The initial functions are the numeric functions U ir ; S+; Z de�ned by:U ir(x1; : : : ; xr) = xi; 1 � i � r;S+(n) = n + 1;Z(n) = 0:2. Let P (n) be a numeric relation. As usual�m:P (m)denotes the least number m such that P (m) holds if there is such anumber; otherwise it is unde�ned.As we know from Chapter 2 in this handbook, the class R of recur-sive functions is the smallest class of numeric functions that contains all

Lambda Calculi with Types 17initial functions and is closed under composition, primitive recursion andminimalization. So R is an inductively de�ned class. The proof that all re-cursive functions are �-de�nable is by a corresponding induction argument.The result is originally due to Kleene (1936).Lemma 2.2.8. The initial functions are �-de�nable.Proof. Take as de�ning termsUip � �x1 � � �xp:xi;S+ � �xyz:y(xyz) (= A+c1);Z � �x:c0:Lemma 2.2.9. The �-de�nable functions are closed under composition.Proof. Let g; h1; : : : ; hm be �-de�ned byG;H1; : : : ;Hm respectively. Thenf(~n) = g(h1(~n); : : : ; hm(~n))is �-de�ned by F � �~x:G(H1~x) : : : (Hm~x):Lemma 2.2.10. The �-de�nable functions are closed under primitive re-cursion.Proof. Let f be de�ned byf(0; ~n) = g(~n)f(k + 1; ~n) = h(f(k; ~n); k; ~n)where g; h are �-de�ned by G;H respectively. We have to show that f is �-de�nable. For notational simplicity we assume that there are no parameters~n (hence G = cf(0).) The proof for general ~n is similar.If k is not an argument of h, then we have the scheme of iteration.Iteration can be represented easily in the �-calculus, because the Churchnumerals are iterators. The construction of the representation of f is done

18 H.P. Barendregtin two steps. First primitive recursion is reduced to iteration using orderedpairs; then iteration is represented. Here are the details. ConsiderT � �p:[S+(ptrue);H(pfalse)(ptrue)]:Then for all k one hasT ([ck; cf(k)]) = [fS+ck;Hcf(k)ck]= [ck+1; cf(k+1)]:By induction on k it follows that[ck; cf(k)] = T k[c0; cf(0)]:Therefore cf(k) = ckT [c0; cf(0)] false;and f can be �-de�ned byF � �k:kT [c0; G] false:Lemma 2.2.11. The �-de�nable functions are closed under minimaliza-tion.Proof. Let f be de�ned by f(~n) = �m[g(~n;m) = 0], where ~n = n1; : : : ; nkand g is �-de�ned by G. We have to show that f is �-de�nable. De�nezero � �n:n(true false)true:Then zero c0 = true,zero cn+1 = false.By Corollary 2.1.10 there is a term H such thatH~ny = if (zero(G~ny)) then y else H~n(S+y):Set F = �~n:H~xc0. Then F �-de�nes f :Fc~x = Hc~nc0= c0; if Gc~nc0 = c0;= Hc~nc1 else;= c1; if Gc~nc1 = c0;= Hc~nc2 else;= c2; if : : := : : :Here c~n stands for cn1 : : :cnk:Theorem 2.2.12. All recursive functions are �-de�nable.

Lambda Calculi with Types 19Proof. By 2.2.8-2.2.11.The converse also holds. The idea is that if a function is �-de�nable,then its graph is recursively enumerable because equations derivable in the�-calculus can be enumerated. It then follows that the function is recur-sive. So for numeric functions we have f is recursive i� f is �-de�nable.Moreover also for partial functions a notion of �-de�nability exists and onehas is partial recursive i� is �-de�nable. The notions �-de�nable andrecursive both are intended to be formalizations of the intuitive concept ofcomputability. Another formalization was proposed by Turing in the formof Turing computable. The equivalence of the notions recursive, �-de�nableand Turing computable (for the latter see besides the original Turing, 1937,e.g., Davis 1958) Davis provides some evidence for the Church{Turing the-sis that states that `recursive' is the proper formalization of the intuitivenotion `computable'.We end this subsection with some undecidability results. First weneed the coding of �-terms. Remember that the collection of variablesis fv; v0; v00; : : :g.De�nition 2.2.13.1. Notation. v(0) = v; v(n+1) = v(n)0.2. Let h ; i be a recursive coding of pairs of natural numbers as a naturalnumber. De�ne](v(n)) = h0; ni;](MN) = h2; h](M);](N)ii;](�x:M) = h3; h](x);](M)ii:3. Notation pMq = c]M :De�nition 2.2.14. Let A � �.1. A is closed under = ifM 2A; � `M = N) N 2A:2. A is non-trivial if A 6= ; and A 6= �:3. A is recursive if]A = f]M jM 2Ag is recursive.The following result due to Scott is quite useful for proving undecidabilityresults.

20 H.P. BarendregtTheorem 2.2.15. Let A � � be non-trivial and closed under =. Then Ais not recursive.Proof. (J. Terlouw) De�neB = fM jMpMq 2Ag:Suppose A is recursive; then by the e�ectiveness of the coding also B isrecursive (indeed, n 2]B , h2; hn;]cnii 2]A). It follows that there is anF 2 �0 with M 2 B , FpMq = c0;M =2 B , FpMq = c1:Let M0 2A;M1 =2A. We can �nd a G 2� such thatM 2 B , GpMq =M1 =2A;M =2 B , GpMq =M0 2A:[Take Gx = if zero(Fx) thenM1 elseM0, with zero de�ned in the proofof 2.2.11.] In particularG 2 B , GpGq =2A ,Def G =2 B;G =2 B , GpGq2A ,Def G 2 B;a contradiction.The following application shows that the lambda calculus is not a de-cidable theory.Corollary 2.2.16 (Church). The setfM jM = truegis not recursive.Proof. Note that the set is closed under = and is nontrivial.2.3 ReductionThere is a certain asymmetry in the basic scheme (�). The statement(�x:x2 + 1)3 = 10can be interpreted as `10 is the result of computing (�x:x2 + 1)3', but notvice versa. This computational aspect will be expressed by writing(�x:x2 + 1)3 !! 10which reads `(�x:x2 + 1)3 reduces to 10'.

Lambda Calculi with Types 21Apart from this conceptual aspect, reduction is also useful for an ana-lysis of convertibility. The Church{Rosser theorem says that if two termsare convertible, then there is a term to which they both reduce. In manycases the inconvertibility of two terms can be proved by showing that theydo not reduce to a common term.De�nition 2.3.1.1. A binary relation R on � is called compatible (w.r.t. operations) ifM R N) (ZM) R (ZN);(MZ) R (NZ), and(�x:M) R (�x:N):2. A congruence relation on � is a compatible equivalence relation.3. A reduction relation on � is a compatible, re
exive and transitiverelation.De�nition 2.3.2. The binary relations !�,!!� and =� on � are de�nedinductively as follows:1. (a) (�x:M)N !� M [x := N];(b) M !� N) ZM !� ZN; MZ !� NZ and �x:M !� �x:N:2. (a) M !!� M ;(b) M !� N) M !!� N ;(c) M !!� N;N !!� L) M !!� L.3. (a) M !!� N) M =� N ;(b) M =� N) N =� M ;(c) M =� N;N =� L) M =� L:These relations are pronounced as follows:M !!� N : M �-reduces to N ;M !� N : M �-reduces to N in one step;M =� N : M is �-convertible to N:By de�nition!� is compatible. The relation!!� is the re
exive transitiveclosure of !� and therefore a reduction relation. The relation =� is acongruence relation.

22 H.P. BarendregtProposition 2.3.3. M =� N , � `M = N:Proof. (() By induction on the generation of `. ()) By induction oneshows M !� N) � `M = N ;M !!� N) � `M = N ;M =� N) � `M = N:De�nition 2.3.4.1. A �-redex is a term of the form (�x:M)N . In this case M [x := N] isits contractum.2. A �-termM is a �-normal form (�-nf) if it does not have a �-redexas subexpression.3. A termM has a �-normal form ifM =� N and N is a �-nf, for someN .Example 2.3.5. (�x:xx)y is not a �-nf, but has as �-nf the term yy.An immediate property of nf's is the following.Lemma 2.3.6. Let M;M 0; N; L 2 �.1. Suppose M is a �-nf. ThenM !!� N) N �M:2. If M !� M 0, then M [x := N]!� M 0[x := N].Proof. 1. IfM is a �-nf, thenM does not contain a redex. Hence neverM !� N . Therefore ifM !!� N , then this must be because M � N .2. By induction on the generation of !�.

Lambda Calculi with Types 23Theorem 2.3.7 (Church{Rosser theorem). If M !!� N1;M !!� N2,then for some N3 one has N1 !!� N3 and N2 !!� N3; in diagramM		���� @@@@RRN1 N2............RR 	N3The proof is postponed until 2.3.17.Corollary 2.3.8. If M =� N , then there is an L such that M !!� L andN !!� L.Proof. Induction on the generation of =�.Case 1. M =� N because M !!� N . Take L � N .Case 2. M =� N because N =� M . By the IH there is a common�-reduct L1 of N;M: Take L � L1.Case 3. M =� N because M =� N 0; N 0 =� N . ThenM (IH) N 0 (IH) N@@@@RR 		���� @@@@RR 		����L1 CR L2..........RR 	LCorollary 2.3.9.1. If M has N as �-nf, then M !!� N .2. A �-term has at most one �-nf.

24 H.P. BarendregtProof. 1. Suppose M =� N with N in �-nf. By corollary 2.3.8 one hasM !!� L and N !!� L for some L. But then N � L, by Lemma2.3.6, so M !!� N .2. Suppose M has �-nf's N1; N2. Then N1 =� N2 (=� M). By Corol-lary 2.3.8 one has N1 !!� L;N2 !!� L for some L. But thenN1 � L � N2 by Lemma 2.3.6(1).Some consequences.1. The �-calculus is consistent, i.e. � 6` true = false. Otherwise true=� false by Proposition 2.3.3, which is impossible by Corollary 2.3.8since true and false are distinct �-nf's. This is a syntactical consis-tency proof.2.
 � (�x:xx)(�x:xx) has no �-nf. Otherwise
 !!� N with N in�-nf. But
 only reduces to itself and is not in �-nf.3. In order to �nd the �-nf of a term, the various subexpressions ofit may be reduced in di�erent orders. If a �-nf is found, then byCorollary 2.3.9 (2) it is unique. Moreover, one cannot go wrong:every reduction of a term can be continued to the �-nf of that term(if it exists). See also Theorem 2.3.20.Proof of the Church{Rosser theoremThis occupies 2.3.10 - 2.3.17. The idea of the proof is as follows. In orderto prove the theorem, it is su�cient to show the following strip lemma:M	��� �� @@@@ �@@@@RRN1�RR N2	 �.....N3In order to prove this lemma, let M !� N1 be a one step reductionresulting from changing a redex R in M in its contractum R0 in N1. Ifone makes a bookkeeping of what happens with R during the reductionM !! N2, then by reducing all `residuals' of R in N2 the term N3 can befound. In order to do the necessary bookkeeping an extended set � � �

Lambda Calculi with Types 25and reduction � is introduced. The underlining is used in a way similar to`radioactive tracing isotopes' in experimental biology.De�nition 2.3.10 (Underlining).1. � is the set of terms de�ned inductively as follows:x 2 V) x 2 �;M;N 2 �) (MN) 2 �;M 2 �; x2 V) (�x:M) 2 �;M;N 2 �; x2 V) ((�x:M)N)2 �:2. Underlined (one step) reduction (!� and) !!� are de�ned startingwith the contraction rules(�x:M)N!M [x := N];(�x:M)N!M [x := N]:Then ! is extended to the compatible relation !� (also w.r.t. �-abstraction) and !!� is the transitive re
exive closure of !�.3. If M 2 �, then jM j2� is obtained fromM by leaving out all under-linings. For example, j(�x:x)((�x:x)(�x:x))j � I(II):4. Substitution for � is de�ned by adding to the schemes in de�nition2.1.5(3) the following:((�x:M)N)[y := L] � (�x:M [y := L])(N [y := L]):De�nition 2.3.11. A map ':�!� is de�ned inductively as follows:'(x) � x;'(MN) � '(M)'(N); if M;N 2 �;'(�x:M) � �x:'(M);'((�x:M)N) � '(M)[x := '(N)]:In other words, the map ' contracts all redexes that are underlined, fromthe inside to the outside.Notation 2.3.12. If jM j � N or '(M) � N , then this will be denotedby respectively

26 H.P. BarendregtM j j- N or M '- N:Lemma 2.3.13.M 0 �������������� �����������������-- N 0j j? ?j jM � -- N M 0; N 0 2 �;M;N 2 �:Proof. First supposeM !� N . ThenN is obtained by contracting a redexin M and N 0 can be obtained by contracting the corresponding redex inM 0. The general statement follows by transitivity.Lemma 2.3.14. Let M;M 0; N; L 2 � . Then1. Suppose x 6� y and x =2FV (L). ThenM [x := N][y := L] �M [y := L][x := N [y := L]]:2. '(M [x := N]) � '(M)[x := '(N)]:3. M � -- N'? ?''(M) ������������ ���������������-- '(N) M;N 2 �:Proof. 1. By induction on the structure of M .2. By induction on the structure ofM , using (1) in case M � (�y:P)Q.The condition of (1) may be assumed to hold by our convention aboutfree variables.3. By induction on the generation of !!� , using (2).

Lambda Calculi with Types 27Lemma 2.3.15. M	���j j ��� @@@ '@@@RN �������������� �����������������-- L M 2 �;N; L 2 �:Proof. By induction on the structure of M:Lemma 2.3.16 (Strip lemma).M	��� �� @@@@ �@@@@RRN1�RR N2	 �.....N3 M;N1; N2; N3 2 �:Proof. Let N1 be the result of contracting the redex occurrence R �(�x:P)Q in M . Let M 0 2 � be obtained from M by replacing R by R0 �(�x:P)Q. Then jM 0j � M and '(M 0) � N1. By Lemmas 2.3.12, 2.3.13and 2.3.14 we can construct the following diagram which proves the striplemma. M	��� �� HHHHHHH �HHHHHHHjjI@@ j j@@N1 � ' M 0......................�jj..jj� N2	� I@@ j j@@N3 � ' N 02

28 H.P. BarendregtTheorem 2.3.17 (Church-Rosser theorem). IfM !!� N1;M !!� N2,then for some N3 one has N1 !!� N3 and N2 !!� N3.Proof. If M !!� N1, then M � M0 !� M1 !� : : :Mn � N1. Hence theCR property follows from the strip lemma and a simple diagram chase:M	�� @@@@@@@@@@@@RRM1	��RR�.RR�	��RRN1 N2....................................RR 	�	�. . .�	�NormalizationDe�nition 2.3.18. ForM2� the reduction graph ofM , notation G�(M),is the directed multigraph with vertices fN j M !!� Ng and directed by!�. We have a multigraph because contractions of di�erent redexes areconsidered as di�erent edges.Example 2.3.19. G�(I(Ia)) isI(Ia)??Ia?a or simply �??�?�

Lambda Calculi with Types 29A lambda term M is called strongly normalizing i� all reduction se-quences starting with M terminate (or equivalently i� G�(M) is �nite).There are terms that do have an nf, but are not strongly normalizing be-cause they have an in�nite reduction graph. Indeed, let
 � (�x:xx)(�x:xx).Then
!�
!�
!�
!� : : : .Now KI
 =� I; but the left hand side also has an in�nite reduction graph.Therefore a so-called strategy is necessary in order to �nd normal forms.We state the following theorem due to Curry; for a proof see Barendregt(1984), theorem 13.2.2.Theorem 2.3.20 (Normalization theorem). If M has a normal form,then iterated contraction of the leftmost redex (i.e. with its main lambdaleftmost) leads to that normal form.In other words: the leftmost reduction strategy is normalizing .The functional language (pure) Lisp uses an eager or applicative eval-uation strategy, i.e. whenever an expression of the form FA has to beevaluated, A is reduced to normal form �rst, before `calling' F . In the �-calculus this strategy is not normalizing as is shown by the two reductionpaths for KI
 above. There is, however, a variant of the lambda calculus,called the �I-calculus, in which the eager evaluation strategy is normalizing.See Barendregt [1984], Ch 9, and x11.3. In this �I-calculus terms like K,'throwing away'
 in the reduction KI
 !! I, do not exist. The 'ordinary'�-calculus is sometimes referred to as �K-calculus.In several lambda calculi with types one has that typable terms arestrongly normalizing, see subsections 4.3 and 5.3.B�ohm trees and approximationWe end this subsection on reduction by introducing B�ohm trees, a kind of`in�nite normal form'.Lemma 2.3.21. Each M 2 � is either of the following two forms.1. M � �x1 : : :xn:yN1 : : :Nm, with n;m � 0, and y a variable.2. M � �x1 : : :xn:(�y:N0)N1 : : :Nm; with n � 0;m � 1.Proof. By de�nition a �-term is either a variable, or of the form PQ (anapplication) or �x:P (an abstraction).If M is a variable, then M is of the form (1) with n = m = 0.If M is an application, then M � P0P1 : : :Pm with P0 not an applica-tion. Then M is of the form (1) or (2) with n = 0, depending on whetherP0 is a variable (giving (1)) or an abstraction (giving (2)).

30 H.P. BarendregtIfM is an abstraction, then a similar argument shows that M is of theright form.De�nition 2.3.22.1. A �-term M is a head normal form (hnf) if M is of the form (1) inLemma 2.3.21. In that case y is called the head variable of M .2. M has an hnf if M =� N for some N that is an hnf.3. If M is of the form (2) in 2.3.21, then (�y:N0)N1 is called the headredex of M .Lemma 2.3.23. If M =� M 0 andM has hnf M1 � �x1 � � �xn:yN1 : : :Nm;M 0 has hnf M 01 � �x1 � � �xn0:y0N 01 : : :N 0m0 ;then n = n0; y � y0;m = m0 and N1 =� N 01; : : : ; Nm =� N 0m0 .Proof. By the corollary to the Church{Rosser theorem 2.3.8 M1 and M 01have a common reduct L. But then the only possibility is thatL � �x1 � � �xn00 :y00N 001 : : :N 00m00withn = n0 = n0; y = y00 = y0; m = m00 = m0 and N1 =� N 001 =� N 01; : : : :The following de�nitions give the
avour of the notion of B�ohm tree.The de�nitions are not completely correct, because there should be an or-dering in the direct successors of a node. However, this ordering is displayedin the drawings of the trees. For a precise de�nition, covering this order,see Barendregt (1984), Ch.10.De�nition 2.3.24.1. A tree has the form depicted in the following �gure.

Lambda Calculi with Types 31��� @@� ��� @@� ���� @@That is, a tree is a partially ordered set such that(a) there is a root;(b) each node (point) has �nitely many direct successors;(c) the set of predecessors of a node is �nite and is linearly ordered.2. A labeled tree is a tree with symbols at some of its nodes.De�nition 2.3.25. Let M 2 �. The B�ohm tree of M , notation BT (M),is the labeled tree de�ned as follows:BT (M) = �x1 � � �xn: y ; if M has as hnf���� @@@@ �x1 � � �xn:yN1 : : :Nm;BT (N1) : : : BT (Nm)= ?; if M has no hnf.Example 2.3.26.1. BT (�abc:ac(bc)) = �abc: a :�� @@c bc2. BT ((�x:xx)(�x:xx)) = ?:

32 H.P. Barendregt3. BT (Y) = �f: f :f...This is because Y = �f:!f!f with !f � �x:f(xx).Therefore Y = �f:f(!f!f) andBT (Y) = �f: f ;BT (!f!f)now !f!f = f(!f!f) soBT (!f!f) = f = f :BT (!f!f) f...Remark 2.3.27. Note that De�nition 2.3.25 is not an inductive de�nitionof BT (M). The N1; : : : ; Nm in the tail of an hnf of a term may be morecomplicated than the term itself. See again Barendregt (1984), Ch.10.Proposition 2.3.28. BT (M) is well de�ned andM =� N) BT (M) = BT (N):Proof. What is meant is that BT (M) is independent of the choice of thehnf's. This and the second property follow from Lemma 2.3.23.De�nition 2.3.29.1. �? is the extension of the lambda calculus de�ned as follows. One ofthe variables is selected for use as a constant and is given the name?. Two contraction rules are added:�x:?!?;?M!?:

Lambda Calculi with Types 33The resulting reduction relation is called �?- reduction and is de-noted by !!�? .2. A �?- normal form is such that it cannot be �?-reduced3. B�ohm trees for �? are de�ned by requiring that a �?-term�x1 � � �xn:yN1 : : :Nmis only in �?-hnf if y 6� ? or if n = m = 0.Note that if M has a �-nf or �-hnf, then M also has a �?-hnf. This isbecause an hnf �x1 : : :xn:yN1 : : :Nm is also a �?-hnf unless y = ?. Butin that case �x1 : : :xn:yN1 : : :Nm !!�? ? and hence M has a �-hnf.De�nition 2.3.30.1. Let A and B be B�ohm trees of some �?-terms. Then A is included inB, notation A � B, if A results from B by cutting o� some subtrees,leaving an empty node. For example,�ab: a � �ab: a�� @@ �� @@? b a bb2. Let P;Q be �?- terms. Then P approximates Q, notation P � Q, ifBT (P) � BT (Q).3. Let P be a �?-term. The set of approximate normal forms (anf's)of P , is de�ned asA(P) = fQ � P jQ is a �?-nfg:Example 2.3.31. The set of anf's of the �xedpoint operator Y isA(Y) = f?; �f:f?; �f:f2?; : : :g:Without a proof we mention the following `continuity theorem', due toWadsworth (1971).

34 H.P. BarendregtProposition 2.3.32. Let F;M 2 � be given. Then8P 2A(FM) 9Q 2A(M) P 2A(FQ):See Barendregt (1984), proposition 14.3.19, for the proof and a topo-logical explanation of the result.3 Curry versus Church typingIn this section the system �! of simply typed lambda calculus will beintroduced. Attention is focused on the di�erence between typing �a laCurry and �a la Church by introducing �! in both ways. Several othersystems of typed lambda calculus exist both in a Curry and a Churchversion. However, this is not so for all systems. For example, for theCurry system �\ (the system of intersection types, introduced in 4.1) itis not clear how to de�ne a Church version. And for the Church system�C (calculus of constructions) it is not clear how to de�ne a Curry version.For the systems that exist in both styles there is a clear relation betweenthe two versions, as will be explained for �!.3.1 The system �!-CurryOriginally the implicit typing paradigm was introduced in Curry (1934)for the theory of combinators. In Curry and Feys (1958), Curry et al.(1972) the theory was modi�ed in a natural way to the lambda calculusassigning elements of a given set Tof types to type free lambda terms. Forthis reason these calculi �a la Curry are sometimes called systems of typeassignment. If the type � 2T is assigned to the term M 2 � one writes` M : �, often with a subscript under ` to denote the particular system.Usually a set of assumptions � is needed to derive a type assignment andone writes � ` M : � (pronounce this as `� yields M in �'). A particularCurry type assignment system depends on two parameters, the set Tandthe rules of type assignment. As an example we now introduce the system�!-Curry.De�nition 3.1.1. The set of types of �!, notation Type(�!), is induc-tively de�ned as follows. We write T= Type(�!).�; �0; : : :2T (type variables);�; � 2T) (�!�) 2T (function space types).Such de�nitions will occur more often and it is convenient to use thefollowing abstract syntax to form T:

Lambda Calculi with Types 35T=VjT!Twith Vde�ned by V= � jV0 (type variables).Notation 3.1.2.1. If �1; : : : ; �n 2Tthen �1!�2!� � �!�nstands for (�1!(�2!� � �!(�n�1!�n)::));that is, we use association to the right.2. �; �;
; : : : denote arbitrary type variables.De�nition 3.1.3 (�!-Curry).1. A statement is of the form M : � with M 2 � and � 2 T. Thisstatement is pronounced as `M 2 �'. The type � is the predicate andthe term M is the subject of the statement.2. A declaration is a statement with as subject a (term) variable.3. A basis is a set of declarations with distinct variables as subjects.De�nition 3.1.4. A statementM : � is derivable from a basis � , notation� `�!-Curry M : �(or � `�! M : �or �`M : �if there is no danger for confusion) if � ` M : � can be produced by thefollowing rules.

36 H.P. Barendregt�!-Curry (version 0)(x:�) 2 �) � ` x : �;� `M : (�!�); � ` N : �) � ` (MN) : � ;�; x:� `M : �) � ` (�x:M) : (�!�):Here �; x:� stands for � [fx:�g. If � = fx1:�1; : : : ; xn:�ng (or � = ?)then instead of � `M : � one writes x1:�1; : : : ; xn:�n `M : � (or `M : �).Pronounce ` as `yields'.The rules given in De�nition 3.1.3 are usually notated as follows:�!-Curry (version 1)(axiom) � ` x : �, if (x:�) 2 �;(!-elimination) � `M : (�!�) � ` N : � ;� ` (MN) : �(!-introduction) �; x:� `M : � :� ` (�x:M) : (�!�)Another notation for these rules is the natural deduction formulation.�!-Curry (version 2)Elimination rule Introduction rulex : �...M : (�!�) N : �MN : � M : �(�x:M) : (�!�)In this version the axiom of version 0 or 1 is considered as implicit and isnot notated. The notation x : �...M : �

Lambda Calculi with Types 37means that from the assumption x:� (together with a set � of other state-ments) one can deriveM : � . The introduction rule in the table states thatfrom this one may infer that (�x:M) : (�!�) is derivable even without theassumption x:� (but still using �). This process is called cancellation of anassumption and is indicated by striking through the statement (x:�).Examples 3.1.5.1. Using version 1 of the system, the derivationx:�; y:� ` x : �x:� ` (�y:x) : (�!�)` (�xy:x) : (�!�!�)shows that ` (�xy:x) : (�!�!�) for all �; � 2T.A natural deduction derivation (for version 2 of the system) of thesame type assignment is x:� 2 y:� 1x:� 1(�y:x) : (�!�) 2(�xy:x) : (�!�!�)The indices 1 and 2 are bookkeeping devices that indicate at whichapplication of a rule a particular assumption is being cancelled.A more explicit way of dealing with cancellations of statements isthe `
ag-notation' used by Fitch (1952) and in the languages AU-TOMATH of de Bruijn (1980). In this notation the above derivationbecomes as follows.y:�x:�(�xy:x) : (�!�!�)(�y:x) : (�!�)x:�

38 H.P. BarendregtAs one sees, the bookkeeping of cancellations is very explicit; on theother hand it is less obvious how a statement is derived from previousstatements.2. Similarly one can show for all � 2T` (�x:x) : (�!�):3. An example with a non-empty basis is the followingy:� ` (�x:x)y : �:In the rest of this chapter we usually will introduce systems of typedlambda calculi in the style of version 1 of �!-Curry.Pragmatics of constantsIn applications of typed lambda calculi often one needs constants. Forexample in programming one may want a type constant nat and termconstants 0 and suc representing the set of natural numbers, zero and thesuccessor function. The way to do this is to take a type variable and twoterm variables and give these the names nat, 0 and suc. Then one formsas basis �0 = f0:nat; suc:(nat!nat)g:This �0 will be treated as a so called `initial basis'. That is, only bases� will be considered that are extensions of �0. Moreover one promises notto bind the variables in �0 by changing e.g.0:nat, suc:(nat!nat) `M : �into ` (�0�suc:M) : (nat!(nat!nat)!�):(If one does not keep the promise no harm is done, since then 0 and sucbecome ordinary bound variables.)The programming language ML, see Milner [1984], is essentially �!-Curry extended with a constant Y and type assignment Y : ((�!�)!�)for all �.Properties of �!-CurrySeveral properties of type assignment in �! are valid. The �rst one anal-yses how much of a basis is necessary in order to derive a type assignment.

Lambda Calculi with Types 39Properties of �!-CurrySeveral properties of type assignment in �! are valid. The �rst one anal-yses how much of a basis is necessary in order to derive a type assignment.De�nition 3.1.6. Let � = fx1:�1; : : : ; xn:�ng be a basis.1. Write dom(�) = fx1; : : : ; xng; �i = �(xi). That is, � is consideredas a partial function.2. Let V0 be a set of variables. Then � � V0 = fx:� j x2V0 & � = �(x)g.3. For �; � 2Tsubstitution of � for � in � is denoted by �[� := �].Proposition 3.1.7 (Basis lemma for �!-Curry).Let � be a basis.1. If �0 � � is another basis, then� `M : �) �0 `M : �:2. � `M : �) FV (M) � dom �.3. � `M : �) � � FV (M) `M : �.Proof. 1. By induction on the derivation of M : �. Since such proofswill occur frequently we will spell it out in this simple situation inorder to be briefer later on.Case 1. M : � is x:� and is element of �. Then also x:� 2 �0 and hence�0 `M : �.Case 2. M : � is (M1M2) : � and follows directly fromM1 : (�!�) andM2 : � for some � . By the IH one has �0 ` M1 : (�!�) and�0 `M2 : � . Hence �0 ` (M1M2) : �.Case 3. M : � is (�x:M1) : (�1!�2) and follows directly from �; x:�1 `M1 : �2. By the variable convention it may be assumed thatthe bound variable x does not occur in dom �0. Then �0; x:�1 isalso a basis which extends �; x:�1. Therefore by the IH one has�0; x:�1 `M1 : �2 and so �0 ` (�x:M1) : (�1!�2).2. By induction on the derivation ofM : �. We only treat the case thatM : � is (�x:M1) : (�1!�2) and follows directly from �; x:�1 `M1 :�2. Let y 2FV (�x:M1), then y 2FV (M1) and y 6� x. By the IH onehas y2dom(�; x:�1) and therefore y2 dom �.3. By induction on the derivation of M : �. We only treat the casethat M : � is (M1M2) : � and follows directly fromM1 : (�!�) and

40 H.P. BarendregtM2 : � for some � . By the IH one has � � FV (M1) `M1 : (�!�) and� � FV (M2) ` M2 : � . By (1) it follows that � � FV (M1M2) ` M1 :(�!�)and � � FV (M1M2) ` M2 : � and hence � � FV (M1M2) `(M1M2) : �:The second property analyses how terms of a certain form get typed. Itis useful among other things to show that certain terms have no types.Proposition 3.1.8 (Generation lemma for �!-Curry).1. � ` x : �) (x:�) 2 �:2. � `MN : �) 9� [� `M : (�!�) & � ` N : �]:3. � ` �x:M : �) 9�; � [�; x:� `M : � & � � (�!�)].Proof. By induction on the length of derivation.Proposition 3.1.9 (Typability of subterms in �!-Curry). Let M 0be a subterm of M . Then � ` M : �) �0 ` M 0 : �0 for some �0 and �0.The moral is: ifM has a type, i.e. � `M : � for some � and �, then everysubterm has a type as well.Proof. By induction on the generation of M .Proposition 3.1.10 (Substitution lemma for �!-Curry).1. � `M : �) �[� := �] `M : �[� := �]:2. Suppose �; x:� `M : � and � ` N : �. Then � `M [x := N] : � .Proof. 1. By induction on the derivation of M : �.2. By induction on the generation of �; x:� `M : � .The following result states that the set of M 2 � having a certain typein �! is closed under reduction.

Lambda Calculi with Types 41Proposition 3.1.11 (Subject reduction theorem for �!-Curry).Suppose M !!� M 0. Then� `M : �) � `M 0 : �:Proof. Induction on the generation of !!� using Propositions 3.1.8 and3.1.10. We treat the prime case, namely that M � (�x:P)Q and M 0 �P [x := Q]. Well, if � ` (�x:P)Q : �;then it follows by the generation lemma 3.1.8 that for some � one has� ` (�x:P) : (�!�) and � ` Q : �:Hence once more by Proposition 3.1.8 that�; x:� ` P : � and � ` Q : �and therefore by the substitution lemma 3.1.10� ` P [x := Q] : �:Terms having a type are not closed under expansion. For example` I : (�!�); but 6` KI(�x:xx) : (�!�):See Exercise 3.1.13. One even has the following stronger failure of subjectexpansion, as is observed in van Bakel (1991).Observation 3.1.12. There areM;M 02� and �; �02Tsuch thatM 0 !!�M and `M : �;`M 0 : �0;but 6`M 0 : �:Proof. Take M � �xy:y;M 0 � SK, � � �!(�!�)and �0 � (�!�)!(�!�); do Exercise 3.1.13.Exercises 3.1.13.� Let I = �x:x;K = �xy:x and S = �xyz:xz(yx).� Show that for all �; �; � 2Tone has` S : (�!�!�)!(�!�)!(�!�)` SK : (�!�)!�!�;` KI : (�!�!�)� Show that 6` SK : (�!�!�).� Show that �x:xx and KI(�x:xx) have no type in �!.

42 H.P. Barendregt3.2 The system �!-ChurchBefore we give the formal de�nition, let us explain right away what is thedi�erence between the Church and Curry versions of the system �!. Onehas `Curry (�x:x) : (�!�);but on the other hand `Church (�x:�:x) : (�!�):That is, the term �x:x is annotated in the Church system by `:�'. Theintuitive meaning is that �x:�:x takes the argument x from the type (set)�. This explicit mention of types in a term makes it possible to decidewhether a term has a certain type. For some Curry systems this questionis undecidable.De�nition 3.2.1. Let T be some set of types. The set of T-annotated�-terms (also called pseudoterms), notation �T, is de�ned as follows:�T= V j �T�Tj �x:T�THere V denotes the set of term variables.The same syntactic conventions for �Tare used as for �. For example�x1:�1 � � �xn:�n:M � (�x1:�1(�x2:�2 : : : (�xn:�n(M))):This term may also be abbreviated as�~x:~�:M:Several systems of typed lambda calculi �a la Church consist of a choice ofthe set of types Tand of an assignment of types � 2Tto terms M 2 �T.However, as will be seen in Section 5, this is not the case in all systems �ala Church. In systems with so-called (term) dependent types the sets ofterms and types are de�ned simultaneously. Anyway, for �!-Church theseparate de�nition of the types and terms is possible and one has as choiceof types the same set T= Type (�!) as for �!-Curry.De�nition 3.2.2. The typed lambda calculus �!-Church is de�ned asfollows:1. The set of types T= Type (�!) is de�ned byT=VjT!T:

Lambda Calculi with Types 432. A statement is of the form M : � with M 2�Tand � 2T.3. A basis is again a set of statements with only distinct variables assubjects.De�nition 3.2.3. A statement M : � is derivable from the basis �, nota-tion � `M : �, if M : � can be produced using the following rules.�!-Church(axiom) � ` x : �, if (x:�) 2 �;(!-elimination) � `M : (�!�) � ` N : � ;� ` (MN) : �(!-introduction) �; x:� `M : � :� ` (�x:�:M) : (�!�)As before, derivations can be given in several styles. We will not needto be explicit about this.De�nition3.2.4. The set of (legal) �!-terms, notation �(�!), is de�nedby �(�!) = fM 2 �Tj 9�; � � `M : �g:In order to refer speci�cally to �!-Church, one uses the notation� `�!Church M : �:If there is little danger of ambiguity one uses also `�!;`Church or just `.Examples 3.2.5. In �!-Church one has1. ` (�x:�:x) : (�!�);2. ` (�x:��y:�:x) : (�!�!�);3. x:� ` (�y:�:x) : (�!�):As for the type-free theory one can de�ne reduction and conversion on theset of pseudoterms �T.

44 H.P. BarendregtDe�nition3.2.6. On �Tthe binary relations one-step �-reduction,many-step �-reduction and �-convertibility , notations !� , !!� and =� respec-tively, are generated by the contraction rule(�x:�:M)N ! M [x := N] (�)For example one has (�x:�:x)(�y:�:yy) !� �y:�:yy:Without a proof we mention that the Church{Rosser theorem 2.3.7 for!!� also holds on �T. The proof is similar to that for �; see Barendregtand Dekkers (to appear) for the details. The following results for �!-Church are essentially the same as Propositions 3.1.7 - 3.1.11 for �!-Curry.Therefore proofs are omitted.Proposition 3.2.7 (Basis lemma for �!-Church). Let � be a basis.1. If �0 � � is another basis, then � `M : �) �0 `M : �.2. � `M : �) FV (M) � dom (�).3. � `M : �) � � FV (M) `M : �:Proposition 3.2.8 (Generation lemma for �!-Church).1. � ` x : �) (x:�) 2 �.2. � `MN : �) 9� [� `M : (�!�) and � ` N : �]3. � ` (�x:�:M) : �) 9� [� = (�!�) and �; x:� `M : �]:Proposition 3.2.9 (Typability of subterms in �!-Church). If Mhas a type, then every subterm of M has a type as well.Proposition 3.2.10 (Substitution lemma for �!-Church).1. � `M : �) �[� := �] `M [� := �] : �[� := �]:2. Suppose �; x:� `M : � and � ` N : �. Then � `M [x := N] : �:Proposition 3.2.11 (Subject reduction theorem for �!-Church).Let M !!� M 0. Then � `M : �) � `M 0 : �:This proposition implies that the set of legal expressions is closed underreduction. It is not closed under expansion or conversion. Take for example

Lambda Calculi with Types 45I =� KI
 annotated with the appropriate types; it follows from proposition3.2.9 that KI
 has no type. On the other hand convertible legal terms havethe same type with respect to a given basis.Proposition 3.2.12 (Uniqueness of types lemma for �!-Church).1. Suppose � `M : � and � `M : �0. Then � � �0.2. Suppose � `M : �; � `M 0 : �0 and M =� M 0. Then � � �0.Proof. 1. Induction on the structure of M .2. By the Church{Rosser theorem for �T, the subject reduction theorem3.2.11 and (1).As observed in 3.1.12 this proposition does not hold for �!-Curry.Original version of �!Church de�ned his �! in a slightly di�erent, but essentially equivalent,way. He de�ned the set of (legal) terms directly and not as a subset of thepseudoterms �T. Each variable carries its own type. The set of terms oftype �, notation ��(�!) or simply ��, is de�ned inductively as follows.Let V be the set of variables.� 2T; x 2 V) x� 2 ��;M 2 ��!� ; N 2 ��) (MN) 2 �� ;M 2 ��) (�x� :M)2 ��!� :Then Church's de�nition of legal terms was�(�!) = [�2T��(�!):The following example shows that our version is equivalent to the originalone.Example 3.2.13. The statement in �!-Churchx:� ` (�y:�:x) : (�!�)becomes in the original system of Church(�y� :x�) 2 ��!�:It turns out that this original notation is not convenient for more compli-cated typed lambda calculi. The problem arises if types themselves becomesubject to reduction. Then one would expect that

46 H.P. Barendregt� !!� �) x� !!� x�) �x� :x� !!� �x�:x� :However, in the last term it is not clear how to interpret the bindinge�ect of �x� (is x� bound by it?). Therefore we will use the notation ofde�nition 3.2.1.Relating the Curry and Church systemsFor typed lambda calculi that can be described both �a la Curry and �a laChurch, there is often a simple relation between the two versions. This willbe explained for �!.De�nition 3.2.14. There is a `forgetful' map j � j : �T!� de�ned asfollows: jxj � x;jMN j � jM jjN j;j�x:�:M j � �x:jM j:The map j � j just erases all type ornamentations of a term in �T. Thefollowing result states that ornamented legal terms in the Church version`project' to legal terms in the Curry version of �!; conversely, legal termsin �!-Curry can be `lifted' to legal terms in �!-Church.Proposition 3.2.15.1. Let M 2�T. Then� `Church M : �) � `Curry jM j : �:2. Let M 2�. Then� `Curry M : �) 9M 0 2 �T[� `Church M 0 : � & jM 0j �M]:Proof. (1), (2). By induction on the given derivation.Corollary 3.2.16. In particular, for a type � 2Tone has� is inhabited in �!-Curry , � inhabited in �!-Church.Proof. Immediate.

Lambda Calculi with Types 474 Typing �a la Curry4.1 The systemsIn this subsection the main systems for assigning types to type-free lambdaterms will be introduced. The systems to be discussed are �!, �2, �� and�\. Moreover, there are also two extra derivation rules EQ and A that canbe added to each of these systems. In Figure 1 the systems are representedin a diagram.bbbbbbb��������! �2���\ +EQ+AFig. 1. The systems �a la CurryThe systems �2, �� and �\ are all extensions of �!-Curry. Severalstronger systems can be de�ned by forming combinations like �2� or ��\.However, such systems will not be studied in this chapter.Now we will �rst describe the rules EQ and A and then the systems �2,�� and �\.De�nition 4.1.1.1. The equality rule, notation EQ is the ruleM : � M =� NN : �2. The approximation rule, notation A, consists of the following tworules. These rules are de�ned for �? introduced in De�nition 2.3.29.The constant ? plays a special role in the rule A.

48 H.P. BarendregtRule A � ` P : � for all P 2A(M) ;� `M : � :� ` ? : �See 2.3.30 for the de�nition of A(M). Note that in these rules therequirements M =� N and P 2 A(M) are not statements, but are, so tospeak, side conditions. The last rule states that ? has any type.Notation 4.1.2.1. ��+ is �� extended by rule EQ.2. ��A is �� extended by rule A.So for example �2+ = �2 + EQ and ��A = �� +A.Examples 4.1.3.1. One has `�!+ (�pq:(�r:p)(qp)) : (�!�!�)since �pq:(�r:p)(qp) = �pq:p. Note, however, that this statement isin general not provable in �! itself. The term has in �! only typesof the form �!(�!�)!�, as follows form the generation lemma.2. Let Y be the �xed point operator �f:(�x:f(xx))(�x:f(xx)). Then`�!A Y : ((�!�)!�);Indeed, the approximants of Y aref?; �f:f?; : : : ; �f:fn?; : : :gand these all have type ((�!�)!�). Again, this statement is notderivable in �! itself. (In �! all typable terms have a normal formas will be proved in Section 4.2)Now it will be shown that the rule EQ follows from the rule A. So ingeneral one has ��A+ = ��A.

Lambda Calculi with Types 49Proposition 4.1.4. In all systems of type assignment �{A one has thefollowing.1. � `M : � and P 2A(M)) � ` P : �:2. Let BT (M) = BT (M 0). Then� `M : �) � `M 0 : �3. Let M =� M 0. Then� `M : �) � `M 0 : �:Proof. 1. If P is an approximation of M , then P results from BT (M)by replacing some subtrees by ? and writing the result as a �-term.Now ? may assume arbitrary types, by one of the rules A. ThereforeP has the same type as M . [Example. Let M � Y, the �xedpointcombinator and let P � �f:f(f?) be an approximant. We have` Y : (�!�)!�. By choosing � as type for ?, one obtains ` P :(�!�)!�:]2. Suppose BT (M) = BT (M 0); then A(M) = A(M 0). Hence� `M : �) 8P 2A(M) = A(M 0) � ` P : �, by (1),) � `M 0 : �; by rule A3. IfM =� M 0 , then BT (M) = BT (M 0), by proposition 2.3.28. Hencethe result follows from (2).The system �2The system �2 was introduced independently in Girard (1972) and Reynolds(1974). In these papers the system was introduced in the Church paradigm.Girard's motivation to introduce �2 was based on proof theory. He ex-tended the dialectica translation of G�odel, see Troelstra (1973), to analysis,thereby relating provability in second-order arithmetic to expressibility in�2. Reynolds' motivation to introduce �2 came from programming. Hewanted to capture the notion of explicit polymophism.Other names for �2 are� polymorphic typed lambda calculus� second-order typed lambda calculus� second-order polymorphic typed lambda calculus� system F .Usually these names refer to �2-Church. In this section we will introducethe Curry version of �2, leaving the Church version to Section 5.1.

50 H.P. BarendregtThe idea of polymorphism is that in �!(�x:x) : (�!�)for arbitrary �. So one stipulates in �2(�x:x) : (8�:(�!�))to indicate that �x:x has all types �!�:As will be seen later, the mechanism is rather powerful.De�nition 4.1.5. The set of types of �2, notation T= Type(�2), is de-�ned by the following abstract grammar:T=Vj T!Tj 8VTNotation 4.1.6.1. 8�1 � � ��n:� stands for (8�1(8�2 : : : (8�n(�)) : : :)):2. 8 binds more strongly than !:So 8��!� � (8��)!� ; but 8�:�!� � 8�(�!�):De�nition 4.1.7. Type assignment in �2-Curry is de�ned by the follow-ing natural deduction system:
�2 (start rule) (x:�) 2 � ;� ` x : �(!-elimination) � `M : (�!�) � ` N : � ;� ` (MN) : �(!-introduction) �; x : � `M : � ;� ` (�x:M) : (�!�)(8-elimination) � `M : (8�:�) ;� `M : (�[� := �])(8-introduction) � `M : � ; � =2 FV (�):� `M : (8�:�)

Lambda Calculi with Types 51Examples 4.1.8. In �2-Curry one has the following.1: ` (�x:x) : (8�:�!�);2: ` (�xy:y) : (8��:�!�!�);3: ` (�fx:fnx) : (8�:(�!�)!�!�);4: ` (�x:xx) : (8�:8��!�);5: ` (�x:xx) : (8�:8��!(�!�));6: ` (�x:xx) : (8��)!(8��):Example (3) shows that the Church numerals cn � �fx:fnx have type8�:(�!�)!�!�. This type is sometimes called `polynat'. One reason forthe strength of �2 is that the Church numerals may not only be used asiterators for functions of a �xed type �!�, but also for iteration on �!�for arbitrary �. This makes it possible to represent in �2 the term R forprimitive recursion of G�odel's T and many other computable functions, seesubsection 5.4.In subsection 4.3 it will be shown that only strongly normalizing termshave a type in �2.The system ��The system �� is that of recursive types. These come together with anequivalence relation � on them. The type assignment rules are such thatif M : � and � � �0, then M : �0. A typical example of a recursive type isa �0 such that �0 � �0!�0: (1)This �0 can be used to type arbitrary elements M 2 �. For examplex:�0 ` x : �0!�0x:�0 ` xx : �0` �x:xx : �0!�0` �x:xx : �0` (�x:xx)(�x:xx) : �0A proof in natural deduction notation of the last statement is the following:x : �01x : �0!�0 x : �0(xx) : �0 1(�x:xx) : �0!�0(�x:xx) : �0!�0 (�x:xx) : �0(�x:xx)(�x:xx) : �0In fact, equation (1) is like a recursive domain equation D �= [D!D] thatenables us to interpret elements of �. In order to construct a type �0

52 H.P. Barendregtsatisfying (1), there is an operator � such that putting �0 � ��:�!�implies (1).De�nition 4.1.9.1. The set of types of ��, notation T= Type(��), is de�ned by thefollowing abstract grammar.T=VjT!Tj �V:T2. Let � 2 T . The tree of �, notation T (�), is de�ned as follows:T (�) = �; if � a is type variable;T (�!�) = ! ;�� @@T (�) T (�)T (��:�) = ?; if � � ��1 : : :��n:�for some n � 0;= T (�[� := ��:�]); else.3. For �; � 2Tone de�nes��� , T (�) = T (�):Examples 4.1.10.1. If � � ��:�!
, thenT (�) = ! = ! :�� @@ �� @@T (�)
 !
�� @@!
�� @@: : :
2. If � � (��:�!
)!����:�, then

Lambda Calculi with Types 53T (�) = ! :�� @@! ?�� @@!
�� @@: : :
3. (��:�!
) � (��(�!
)!
):4. ��:� � �[� := ��:�] for all �, even if � � �~�:�:De�nition 4.1.11. The type assignment system �� is de�ned by the nat-ural deduction system shown in the following �gure.�� (start rule) (x:�) 2 � ;� ` x : �(!-elimination) � `M : (�!�) � ` N : � ;� ` (MN) : �(!-introduction) �; x:� `M : � ;� ` (�x:M) : (�!�)(�-rule) � `M : � � � � :� `M : �The following result is taken from Coppo(1985).Proposition 4.1.12.Let � be an arbitrary type of ��. Then one can derive in ��1. ` Y : (�!�)!�;2. `
 : �:Proof. 1. Let � � ��:�!�. Then � � �!�:Then the following is a derivation for

54 H.P. BarendregtY � �f:(�x:f(xx))(�x:f(xx)) : (�!�)!�:f : �!�2 x : �1x : �!� x : �xx : �f(xx) : � 1�x:f(xx) : �!��x:f(xx) : �!� �x:f(xx) : �(�x:f(xx))(�x:f(xx)) : � 2Y � �f:(�x:f(xx))(�x:f(xx)) : (�!�)!�2. Note that YI!!�
 and prove and use the subject reduction theoremfor ��; or show `
 : � directly.The System �\The system �\ of intersection types is sometimes called the Torino system,since the initial work on this system was done in that city, for example byCoppo, Dezani and Venneri [1981], Barendregt, Coppo and Dezani [1983],Coppo, Dezani, Honsell and Longo [1984], Dezani and Margaria [1987] andCoppo, Dezani and Zacchi [1987]. See also Hindley [1982].The system makes it possible to state that a variable x has two types� and � at the same time. This kind of polymorphism is to be con-trasted to that which is present in �2. In that system the polymorphism isparametrized. For example the type assignment(�x:x) : (8�:�!�)states that �x:x has type �!� uniformly in �. The assignment x : � \ �states only that x has both type � and type � .De�nition 4.1.13.1. The set of types of �\, notation T= Type(�\), is de�ned as follows:T=VjT!TjT\T2. One of the type variables will be selected as a constant and is notatedas !.In order to de�ne the rules of type assignment, it is necessary to introducea preorder on T.

Lambda Calculi with Types 55De�nition 4.1.14.1. The relation � is de�ned on Tby the following axioms and rules:� � �;� � �; � � �) � � �� � !;! � !!!;(�!�) \ (�!�) � (�!(� \ �));� \ � � �; � \ � � � ;� � �; � � �) � � � \ �;� � �0; � � � 0) �0!� � �!� 0:2. � � � , � � � & � � �:For example one has ! � (!!!);((�!�) \ (�0!�)) � ((� \ �0)!�):De�nition 4.1.15. The system of type assignment �\ is de�ned by thefollowing axioms and rules:
�\ (start rule) (x:�) 2 � ;� ` x : �(!-elimination) � `M : (�!�) � ` N : � ;� ` (MN) : �(!-introduction) �; x:� `M : � ;� ` (�x:M) : (�!�)(\-elimination) � `M : (� \ �) ;� `M : � � `M : �(\-introduction) � `M : � � `M : � ;� `M : (� \ �)(!-introduction) ;� `M : !(�-rule) � `M : � � � � :� `M : �

56 H.P. BarendregtExamples 4.1.16. In �\ one has1. ` �x:xx : ((�!�) \ �)!�2. `
 : !3. ` (�pq:(�r:p)(qp)) : (�!(�!�)):Proof. 1. The following derivation proves the statement:x : (�!�) \ �1x : �!� x : �(xx) : � 1(�x:xx) : ((�!�) \ �)!�2. Obvious. In fact it can be shown that M has no head normal formi� only ! is a type for M , see Barendregt, et al. (1983).3. q:�2 p:�3 r:!1 1(�r:p) : (!!�) (qp) : !(�r:p)(qp) : � 2(�q:(�r:p)(qp)) : (�!�) 3(�pq:(�r:p)(qp)) : (�!(�!�))In van Bakel (1990) it is observed that assignment (3) in Example 4.1.16is not possible in �!:Also for �\ there are some variants for the system. For example onecan delete the rule (axiom) that assigns ! to any term. In van Bakel (1990)several of these variants are studied; see theorem 4.3.12.Combining the systems �a la CurryThe system �2; �� and �\ are all extensions of �!. An extension �2�\including all these systems and moreover cartesian products and directsums is studied in MacQueen et al. (1984).

Lambda Calculi with Types 57Basic PropertiesThe Curry systems �!, �2, �� and �\ enjoy several properties. Themost immediate ones, valid for all four systems, will be presented now. Insubsection 4.2 it will be shown that subject reduction holds for all systems.Some other properties like strong normalization are valid for only some ofthese systems and will be presented in subsections 4.2, 4.3 and 4.4.In the following ` refers to one of the Curry systems �!, �2, �� and�\. The following three properties are proved in the same way as is donein section 3.1 for �!.Proposition 4.1.17 (Basis lemma for the Curry systems). Let � bea basis.1. If �0 � � is another basis, then � `M : �) �0 `M : �:2. � `M : �) FV (M) � dom(�).3. � `M : �) � � FV (M) `M : �:Proposition 4.1.18 (Subterm lemma for the Curry systems). LetM 0 be a subterm of M . Then� `M : �) �0 `M 0 : �0 for some �0 and �0:The moral is: If M has a type, then every subterm has a type as well.Proposition 4.1.19 (Substitution lemma for the Curry systems).1. � `M : �) �[� := �] `M : �[� := �].2. Suppose �; x:� `M : � and � ` N : �. Then� `M [x := N] : �:Exercise 4.1.20. Show that for each of the systems �!, �2, �� and �\one has 6` K : (�!�) in that system.4.2 Subject reduction and conversionIn this subsection it will be shown that for the main systems of type as-signment �a la Curry, viz. �!, �2, �� and �\ with or without the extrarules A and EQ, the subject reduction theorem holds. That is,� `M : � and M !!� M 0) � `M 0 : �:

58 H.P. BarendregtSubject conversion or closure under the rule EQ is stronger and states that� `M : � and M =� M 0) � `M 0 : �:This property holds only for the systems including �\ or rule A (or triviallyif rule EQ is included).Subject reductionWe start with proving the subject reduction theorem for all the systems.For �! this was already done in 3.1.11. In order to prove the result for�2 some de�nitions and lemmas are needed. This is because for exampleProposition 3.1.8 is not valid for �2. So for the time being we focus on �2and T= Type(�2).De�nition 4.2.1.1. Write � > � if either � � 8�:�; for some �;or � � 8�:�1 and � � �1[� := �] for some � 2T:2. � is the re
exive and transitive closure of >.3. A map o :T!T is de�ned by�o = �; if � is a type variable;(�!�)o = �!� ;(8�:�)o = �o:Note that there are exactly two deduction rules for �2 in which thesubject does not change: the 8 introduction and elimination rules. Severalof these rules may be applied consecutively, obtainingM : �......M : �The de�nition of � is such that in this case � � � . Also one has thefollowing.

Lambda Calculi with Types 59Lemma 4.2.2. Let � � � and suppose no free type variable in � occursin �. Then � `M : �) � `M : �Proof. Suppose � ` M : � and � � � . Then � � �1 > � � � > �n � � forsome �1; : : : ; �n. By possibly renaming some variables it may be assumedthat for 1 � i < n one has�i+1 � 8�:�i) � =2 FV (�)By de�nition of the relation > and the rules of �2 it follows that for alli < n one has � `M : �i) � ` M : �i+1. Therefore � `M : �n � � .Lemma 4.2.3 (Generation lemma for �2-Curry).1. � ` x : �) 9�0 � � (x:�0) 2 �.2. � ` (MN) : �) 9�9� 0 � � [� `M : �!� 0 and � ` N : �].3. � ` (�x:M) : �) 9�; � [�; x:� `M : � and �!� � �]:Proof. By induction on derivations.Lemma 4.2.4.1. Given �; � there exists a � 0 such that (�[� := �])o � �o[� := � 0]:2. �1 � �2) 9~� 9~� �o2 � �o1[~� := ~�]:3. (�!�) � (�0!�0)) 9~� 9~� �0!�0 � (�!�)[~� := ~�]:Proof. 1. Induction on the structure of �:2. It su�ces to show this for �1 > �2:Case 1. �2 � 8�:�1. Then �o2 � �o1:Case 2. �1 � 8�:� and �2 � �[� := �]:Then by (1) one has �o2 � �o[� := � 0] � �o1[� := � 0].3. By (2) we have(�0!�0) � (�0!�0)o � (�!�)o[~� := ~�] � (�!�)[~� := ~�]:Theorem 4.2.5 (Subject reduction theorem for �2-Curry).Let M !!� M 0. Then for �2-Curry one has � `M : �) � `M 0 : �:

60 H.P. BarendregtProof. Induction on the derivation of M !!� M 0. We will treat only thecase that M � (�x:P)Q and M 0 � P [x := Q]. Now� ` ((�x:P)Q) : �) 9�9�0 � � [� ` (�x:P) : (�!�0)& � ` Q : �]) 9�09�00 � � [�; x:�0 ` P : �00& �0!�00 � �!�0& � ` Q : �]by Lemma 4.2.4 (3) it follows that(�!�0) � (�0!�00)[~� := ~�]and hence by Lemma 4.1.19 (1)) �; x:� ` P : �0; � ` Q : � and �0 � �;) � ` P [x := Q] : �0 and �0 � �; by Lemma 4.1.19 (2)) � ` P [x := Q] : �; by Lemma 4.2.2.In Mitchell (1988) a semantic proof of the subject reduction theorem for�2 is given.The proof of the subject reduction theorem for �� is somewhat easierthan for �2.Theorem 4.2.6 (Subject reduction theorem for ��).Let M !!� M 0. Then for �� one has� `M : �) � `M 0 : �:Proof. As for �2, but using the relation � instead of �.The subject reduction theorem holds also for �\. This system is evenclosed under the rule EQ as we will see soon.Subject conversionFor the systems �\ and �{A we will see that the subject conversion theoremholds. It is interesting to understand the reason why �\ is closed under�-expansion. This is not so for �!; �2 and ��. Let M � (�x:P)Q andM 0 � P [x := Q]. Suppose � `�\ M 0 : � in order to show that � `�\ M : �.Now Q occurs n � 0 times in M 0 , each occurrence having type �i, say,for 1 � i � n. De�ne � � �1 \ � � � \ �n if n > 0 and � � ! if n = 0.Then � ` Q : � and �; x : � ` P : �. Hence � ` (�x:P) : (�!�) and� ` (�x:P)Q : �:

Lambda Calculi with Types 61In �!, �2 and �� it may not be possible to �nd a common type for thedi�erent occurrences of Q. Note also that the type ! is essential in casex =2 FV (P).Theorem 4.2.7 (Subject conversion theorem for �\). LetM =� M 0.Then for �\ one has � `M : �) � `M 0 : �:Proof. See Barendregt et al. (1983), corollary 3.8.Exercise 4.2.8. Let M � �pq:(�r:p)(qp):� Show that although M =� �pq:p : (�!�!�) in �!, the term M does nothave �!�!� as type in �!, �2 or ��.� Give a derivation in �\ of `M : (�!�!�):4.3 Strong normalizationRemember that a lambda term M is called strongly normalizing i� all re-duction sequences starting with M terminate. For example KIK is stronglynormalizing, while KI
 not. In this subsection it will be examined in whichsystems of type assignment �a la Curry one has that the terms that do havea type are strongly normalizing. This will be the case for �! and �2 but ofcourse not for �� and �\ (since in the latter systems all terms are typable).However, there is a variant �\� of �\ such that one even hasM is strongly normalizing , M is typable in �\�:Turing proved that all terms typable in �! are normalizing; this proofwas only �rst published in Gandy (1980). As was discussed in Section2, normalization of terms does not imply in general strong normalization.However, for �! and several other systems one does have strong normal-ization of typable terms. Methods of proving strong normalization from(weak) normalization due to Nederpelt (1973) and Gandy (1980) are de-scribed in Klop (1980).Also in Tait (1967) it is proved that all terms typable in �! are nor-malizing. This proof uses the so called method of `computable terms' andwas already presented in the unpublished `Stanford Report' by Howard etal. [1963]. In fact, using Tait's method one can also prove strong normal-ization and applies to other systems as well, in particular to G�odel's T ; seeTroelstra [1973].

62 H.P. BarendregtGirard (1972) gave an `impredicative twist' to Tait's method in order toshow normalization for terms typable in (the Church version of) �2 and inthe system �! to be discussed in Section 5. Girard's proof was reformulatedin Tait (1975) and we follow the general
avour of that paper.We start with the proof of SN for �!:De�nition 4.3.1.1. SN = fM 2 � jM is strongly normalizingg.2. Let A;B � �. De�ne A!B a subset of � byA!B = fF 2 � j 8a 2A Fa2Bg:3. For every �2 Type(�!) a set [[�]] � � is de�ned as follows:[[�]] = SN, where � is a type variable;[[�!�]] = [[�]]![[�]]:De�nition 4.3.2.1. A subset X � SN is called saturated if(a) 8n � 0 8R1; : : : ; Rn 2 SN x~R2X,where x is any term variable;(b) 8n � 0 8R1; : : : ; Rn 2 SN8Q 2 SNP [x := Q]~R2X) (�x:P)Q~R2X:2. SAT = fX � � j X is saturatedg.Lemma 4.3.3.1. SN 2 SAT.2. A;B 2 SAT) A!B 2 SAT.3. Let fAigi2I be a collection of members of SAT, then Ti2I Ai2 SAT.4. For all �2 Type(�!) one has [[�]]2 SAT.Proof. 1. One has SN � SN and satis�es condition (a) in the de�nitionof saturation. As to condition (b), supposeP [x := Q]~R2 SN and Q; ~R2 SN (1)We claim that also (�x:P)Q~R2 SN (2)Indeed, reductions inside P;Q or the ~R must terminate since theseterms are SN by assumption (P [x := Q] is a subterm of a term in

Lambda Calculi with Types 63SN, by (1), hence itself SN; but then P is SN); so after �nitely manysteps reducing the term in (2) we obtain (�x:P 0)Q0 ~R0 with P !!� P 0etcetera. Then the contraction of (�x:P 0)Q0 ~R0 givesP 0[x := Q0] ~R0: (3)This is a reduct of P [x := Q]~R and since this term is SN also (3) andthe term (�x:P)Q are SN.2. Suppose A;B 2 SAT. Then by de�nition x 2 A for all variables x.Therefore F 2A!B) Fx 2B) Fx 2 SN) F 2 SN:So indeed A!B � SN. As to condition 1 of saturation, let ~R 2 SN.We must show for a variable x that x~R 2A!B. This means8Q 2A x~RQ 2B;which is true since A � SN and B is saturated.3. Similarly.4. By induction on the generation of �, using (1) and (2).De�nition 4.3.4.1. A valuation in � is a map �:V!�, where V is the set of term vari-ables.2. Let � be a valuation in �. Then[[M]]� =M [x1 := �(x1); : : : ; xn := �(xn)];where ~x = x1; : : : ; xn is the set of free variables in M .3. Let � be a valuation in �. Then � satis�es M : �, notation � �M : �,if [[M]]� 2 [[�]]:

64 H.P. BarendregtIf � is a basis, then � satis�es �, notation � � �, if � � x : � for all(x:�) 2 �:4. A basis � satis�es M : �, notation � �M : �; if8� [� � �) � �M : �]:Proposition 4.3.5 (Soundness).� ` �!M : �) � �M : �:Proof. By induction on the derivation of M : �:Case 1. � `M : � with M � x follows from (x:�) 2 �.Then trivially � � x : �.Case 2. � `M : � with M �M1M2 is a direct consequence of � `M1 :�!� and � `M2 : � .Suppose � � � in order to show � �M1M2 : �. Then � �M1 : �!�and � �M2 : �; i.e. [[M1]]� 2 [[�!�]] = [[�]]![[�]] and [[M2]]� 2 [[�]].But then [[M1M2]]� = [[M1]]�[[M2]]� 2 [[�]]; i.e. � �M1M2 : �:Case 3. � ` M : � with M � �x:M 0 and � � �1!�2 is a direct conse-quence of �; x:�1 `M 0 : �2.By the IH one has �; x : �1 �M 0 : �2 (1)Suppose � � � in order to show � � �x:M 0 : �1!�2. That is, wemust show [[�x:M 0]]�N 2 [[�2]] for all N 2 [[�1]]:So suppose that N 2 [[�1]]. Then �(x := N) � �; x : �1, and hence[[M 0]]�(x:=N) 2 [[�2]];by (1). Since[[�x:M 0]]�N � (�x:M 0)[~y := �(~y)]N!� M 0[~y := �(~y); x := N]� [[M 0]]�(x:=N);it follows from the saturation of [[�2]] that [[�x:M 0]]�N 2 [[�2]]:Theorem 4.3.6 (Strong normalization for �!-Curry). Suppose� `�! M : �. Then M is strongly normalizing.

Lambda Calculi with Types 65Proof. Suppose � ` M : �. Then � � M : �. De�ne �o(x) = x for allx. Then �o � � (since x 2 [[�]] holds because [[�]] is saturated). Therefore�o �M : �, hence M � [[M]]�o 2 [[�]] � SN.The proof of SN for �! has been given in such a way that a simplegeneralization of the method proves the result for �2. This generalizationwill be given now.De�nition 4.3.7.1. A valuation in SAT is a map� :V!SATwhere V is the set of type variables.2. Given a valuation � in SAT one de�nes for every �2Type(�2) a set[[�]]� � � as follows:[[�]]� = �(�); where � 2V;[[�!�]]� = [[�]]�![[�]]�;[[8�:�]]� = TX2SAT[[�]]�(�:=X)Lemma 4.3.8. Given a valuation � in SAT and a � in Type(�2), then[[�]]� 2 SAT.Proof. As for Lemma 4.3.3(4) using also that SAT is closed under arbi-trary intersections.De�nition 4.3.9.1. Let � be a valuation in � and � be a valuation in SAT. Then�; � �M : � , [[M]]� 2 [[�]]�:2. For such �; � one writes�; � � � , �; � � x : � for all x:� in �:3. � �M : � , 8�; � [�; � � �) �; � �M : �]:Proposition 4.3.10. � `�2 M : �) � �M : �:

66 H.P. BarendregtProof. As for Proposition 4.3.5 by induction on the derivation of � `M :�. There are two new cases corresponding to the 8-rules.Case 4. � ` M : � with � � �0[� := �] is a direct consequence of� `M : 8�:�0. By the IH one has� �M : 8�:�0: (1)Now suppose �; � � � in order to show that �; � � M : �0[� := �].By (1) one has[[M]]� 2 [[8�:�0]]� = \X2SAT[[�0]](�:=X):Hence [[M]]� 2 [[�0]]�(�:=[[�]]�):We are done since [[�0]]�(�:=[[�]]�) = [[�0[� := �]]]�as can be proved by induction on �02 Type(�2) (some care isneeded in case �0 � 8�:�0):Case 5. � `M : � with � � 8�:�0 and � =2 FV (�) is a direct consequenceof � `M : �0. By the IH one has� �M : �0: (2)Suppose �; � � � in order to show �; � � 8�:�0. Since � =2 FV (�)one has for all X2 SAT that also �; �(� := X) � �: Therefore[[M]]� 2 [[�0]]�(�:=X) for all X 2 SAT;by (2), hence [[M]]� 2 [[8�:�0]]�;i.e. �; � �M : 8�:�0:Theorem 4.3.11 (Strong normalization for �2-Curry).� `�2 M : �)M is strongly normalizing.Proof. Similar to the proof of Theorem 4.3.6Although the proof of SN for �2 follows the same pattern as for �!,there is an essential di�erence. The proof of SN(�!) can be formalized in

Lambda Calculi with Types 67Peano arithmetic. However, as was shown in Girard (1972), the proof ofSN(�2) cannot even be formalized in the rather strong system A2 of `math-ematical analysis' (second order arithmetic); see also Girard et al. (1989).The reason is that SN(�2) implies (within Peano arithmetic) the consis-tency of A2 and hence G�odel's second incompleteness theorem applies. Anattempt to formalize the given proof of SN(�2) breaks down at the pointtrying to formalize the predicate `M 2 [[�]]�'. The problem is that SAT is athird-order predicate.The property SN does not hold for the systems �� and �\. This is ob-vious, since all lambda terms can be typed in these two systems. However,there is a restriction of �\ that does satisfy SN.Let �\� be the system �\ without the type constant !. The followingresult is an interesting characterization of strongly normalizing terms.Theorem 4.3.12 (van Bakel; Krivine).M can be typed in �\� , M is strongly normalizing.Proof. See van Bakel (1990), theorem 3.4.11 or Krivine (1990), p. 65.4.4 Decidability of type assignmentFor the various systems of type assignment several questions may be asked.Note that for � = fx1:�1; : : : ; xn:�ng one has� `M : � , ` (�x1:�1 : : : �xn:�n:M) : (�1! : : :!�n!�);therefore in the following one has taken � = ?. Typical questions are1. Given M and �, does one have `M : �?2. Given M , does there exists a � such that `M : �?3. Given �, does there exists an M such that `M : �?These three problems are called type checking, typability and inhabitationrespectively and are denoted by M : �?, M : ? and ? : �.In this subsection the decidability of these three problems will be ex-amined for the various systems. The results can be summarized as follows:

68 H.P. BarendregtDecidability of type checking, typability and inhabitationM : �? M : ? ? : ��! yes yes yes�2 ?? ?? no�� yes yes, always yes, always�\ no yes, always ??�!+ no no yes�2+ no no no��+ no yes, always yes, always�!A no no yes, always�2A no no yes, always��A no yes, always yes, always�\A no yes, always yes, alwaysRemarks 4.4.1. The system �\+ is the same as �\ and therefore it isnot mentioned. The two question marks for �2 indicate|to quote RobinMilner|`embarrassing open problems'. For partial results concerning �2and related systems see Pfenning (1988), Giannini and Ronchi (1988), Hen-glein (1990), and Kfoury et al. (1990). In 4.4.10 it will be shown that for �2the decidability of type checking implies that of typability. It is generallybelieved that both problems are undecidable for �2.Sometimes a question is trivially decidable, simply because the propertyalways holds. Then we write `yes, always'. For example in �\ every termM has ! as type. For this reason it is more interesting to ask whethertermsM are typable in a weaker system �\�. However, by theorem 4.3.12this question is equivalent to the strong normalization of M and henceundecidable.We �rst will show the decidability of the three questions for �!. Thisoccupies 4.4.2 - 4.4.13 and in these items Tstands for Type(�!) and ` for`�!-Curry.De�nition 4.4.2.1. A substitutor is an operation � :T!Tsuch that �(�!�) � �(�)!�(�):2. We write �� for �(�):3. Usually a substitution � has a �nite support, that is, for all but�nitely many type variables � one has �� � � (the support of �being sup(�) = f� j �� 6� �g):

Lambda Calculi with Types 69In that case we write�(�) = �[�1 := ��1; : : : ; �n := ��n];where f�1; : : : ; �ng is the support of �. We also write� = [�1 := ��1; : : : ; �n := ��n]:De�nition 4.4.3.1. Let �; �2T . A uni�er for � and � is a substitutor � such that �� � ��:2. The substitutor � is a most general uni�er for � and � if(a) �� � ��(b) ��1 � ��1) 9 �2 �1 � �2 � �:3. Let E = f�1 = �1; : : : ; �n = �ng be a �nite set of equations betweentypes. The equations do not need to be valid. A uni�er for E isa substitutor � such that ��1 � ��1 & � � � & ��n � ��n: In that caseone writes � j= E. Similarly one de�nes the notion of a most generaluni�er for E.Examples 4.4.4. The types �!(�!�) and (
!
)!� have a uni�er. Forexample � = [� :=
!
; � := �!(
!
)] or �1 = [� :=
!
; � := "!",� := "!"!(
!
)]. The uni�er � is most general, �1 is not.De�nition 4.4.5. � is a variant of � if for some �1 and �2 one has� = ��1 and � = ��2 :Example 4.4.6. �!�!� is a variant of
!�!� but not of �!�!�:Note that if �1 and �2 are both most general uni�ers of say � and � ,then ��1 and ��2 are variants of each other and similarly for � .The following result due to Robinson (1965) states that uni�ers can beconstructed e�ectively.Theorem 4.4.7 (Uni�cation theorem).1. There is a recursive function U having (after coding) as input a pairof types and as output either a substitutor or fail such that� and � have a uni�er) U (�; �) is a most general uni�er

70 H.P. Barendregtfor � and � ;� and � have no uni�er) U (�; �) = fail:2. There is (after coding) a recursive function U having as input �nitesets of equations between types and as output either a substitutor orfail such thatE has a uni�er) U (E) is a most general uni�er for E;E has no uni�er) U (E) = fail:Proof. Note that �1!�2 � �1!�2 holds i� �1 � �1 and �2 � �2 hold.1. De�ne U (�; �) by the following recursive loop, using case distinction.U (�; �) = [� := �]; if � =2 FV(�),= Id; the identity, if � = �,= fail; else;U (�1!�2; �) = U (�; �1!�2);U (�1!�2; �1!�2) = U (�U(�2;�2)1 ; �U(�2;�2)1) � U (�2; �2);where this last expression is considered to be fail if one of its parts is.Let #var(�; �) =`the number of variables in �!� ' and #!(�; �)=`thenumber of arrows in �!� '. By induction on (#var(�; �);#!(�; �))ordered lexicographically one can show that U (�; �) is always de�ned.Moreover U satis�es the speci�cation.2. If E = f�1 = �1; : : : ; �n = �ng, then de�ne U (E) = U (�; �); where� = �1!� � �!�n and � = �1!� � �!�n.See Section 7 in Klop's chapter in this handbook for more on uni�cation.The following theorem is essentially due to Wand (1987) and simpli�es theproof of the decidability of type checking and typability for �!.Proposition 4.4.8. For every basis �, term M 2 � and � 2T such thatFV(M) � dom(�) there is a �nite set of equations E = E(�;M; �) suchthat for all substitutors � one has� j= E(�;M; �)) �� `M : ��; (1)

Lambda Calculi with Types 71�� `M : ��) �1 j= E(�;M; �); (2)for some �1 such that � and �1 have the samee�ect on the type variables in � and �.Proof. De�ne E(�;M; �) by induction on the structure of M :E(�; x; �) = f� = �(x)g;E(�;MN; �) = E(�;M; �!�) [E(�; N; �);where � is a fresh variable;E(�; �x:M; �) = E(� [fx:�g;M; �) [f�!� = �g;where �; � are fresh.By induction onM one can show (using the generation lemma (3.1.8)) that(1) and (2) hold.De�nition 4.4.9.1. Let M 2�. Then (�; �) is a principal pair (pp) for M if(1) � `M : �.(2) �0 `M : �0) 9� [�� � �0 & �� � �0].Here fx1:�1; : : :g� = fx1:��1; : : :g:2. Let M 2� be closed. Then � is a principal type (pt) for M if(1) `M : �(2) `M : �0) 9� [�� � �0].Note that if (�; �) is a pp forM , then every variant (�0; �0) of (�; �), inthe obvious sense, is also a pp for M . Conversely if (�; �) and (�0; �0) arepp's for M , then (�0; �0) is a variant of (�; �). Similarly for closed termsand pt's. Moreover, if (�; �) is a pp for M , then FV(M) = dom(�).The following result is independently due to Curry (1969), Hindley(1969) and Milner (1978). It shows that for �! the problems of typechecking and typability are decidable.Theorem 4.4.10 (Principal type theorem for �!-Curry).1. There exists (after coding) a recursive function pp such that one hasM has a type) pp(M) = (�; �), where (�; �) is a pp for M ;

72 H.P. BarendregtM has no type) pp(M) = fail:2. There exists (after coding) a recursive function pt such that for closedterms M one hasM has a type) pt(M) = �, where � is a pt for M ;M has no type) pt(M) = fail:Proof. 1. Let FV(M) = fx1; : : : ; xng and set �0 = fx1:�1; : : : ; xn:�ngand �0 = �. Note thatM has a type , 9� 9� � `M : �, 9 � ��0 `M : ��0, 9 � � j= E(�0;M; �0):De�ne pp(M) = (��0; ��0); if U (E(�0;M; �0)) = �;= fail; if U (E(�0;M; �0)) = fail.Then pp(M) satis�es the requirements. Indeed, ifM has a type, thenU (E(�0;M; �0)) = � is de�ned and ��0 `M : ��0 by (1) in proposition4.4.8. To show that (��0; ��0) is a pp, suppose that also �0 ` M : �0.Let e� = �0 � FV(M); write e� = ��00 and �0 = ��00 . Then also��00 `M : ��00 . Hence by (2) in proposition 4.4.8 for some �1 (actingthe same as �0 on �0, �0) one has �1 j= E(�0;M; �0). Since � is amost general uni�er (proposition 4.4.7) one has �1 = �2 � � for some�2. Now indeed (��0)�2 = ��10 = ��00 = e� � �0and (��0)�2 = ��10 = ��00 = �0:If M has no type, then :9 � � j= E(�0;M; �0) henceU (�0;M; �0) = fail = pp(M):2. Let M be closed and pp(M) = (�; �). Then � = ; and we can putpt(M) = �.

Lambda Calculi with Types 73Corollary 4.4.11. Type checking and typability for �! are decidable.Proof. As to type checking, let M and � be given. Then`M : � () 9� [� = pt(M)�]:This is decidable (as can be seen using an algorithm|pattern matching|similar to the one in Theorem 4.4.7).As to the question of typability, let M be given. Then M has a type i�pt(M) 6= fail.Theorem 4.4.12. The inhabitation problem for �!, i.e.9M 2 � `�! M : �is a decidable property of �.Proof. One has by Corollary 3.2.16 that� inhabited in �!-Curry () � inhabited in �!-Church() � provable in PROP;where PROP is the minimal intuitionistic proposition calculus with only! as connective and � is considered as an element of PROP, see Section5.4. Using �nite Kripke models it can be shown that the last statement isdecidable. Therefore the �rst statement is decidable too.Without a proof we mention the following result of Hindley (1969).Theorem 4.4.13 (Second principal type theorem for �!-Curry).Every type � 2Tthere exists a basis � and termM 2� such that (�; �) isa pp for M.Now we consider �2. The situation is as follows. The question whethertype checking and typability are decidable is open. However, one has thefollowing result by Malecki (1989).Proposition 4.4.14. In �2 the problem of typability can be reduced tothat of type checking. In particularf(M : �) j `�2 M : �g is decidable) fM j 9� `�2 M : �g is decidable.Proof. One has 9� `M : � , ` (�xy:y)M : (�!�):The implication) is obvious, since ` (�xy:y) : (�!�!�) for all �. Theimplication(follows from Proposition 4.1.18.Theorem 4.4.15. The inhabitation problem for �2 is undecidable.

74 H.P. BarendregtProof. As for �! one can show that� inhabited in �2-Curry () � inhabited in �2-Church() � provable in PROP2;where PROP2 is the constructive second-order proposition calculus. InL�ob (1976) it is proved that this last property is undecidable.Proposition 4.4.16. For �� one has the following:1. Type checking is decidable.2. Typability is trivially decidable: every �-term has a type.3. The inhabitation problem for �� is trivially decidable: all types areinhabited.Proof. 1. See Coppo and Cardone (to appear) who use the samemethodas for �! and the fact that T (�) = T (�) is decidable.2. Let �0 = ��:�!�. Then every M 2 � has type �0; see the examplebefore 4.1.3. All types are inhabited by
, see 4.1.12 (2).Lemma 4.4.17. Let �� be a system of type assignment that satis�essubject conversion, i.e.� `�� M : � &M =� N) � `�� N : �:1. Suppose some closed terms have type �!�, others not.Then the problem of type checking is undecidable.2. Suppose some terms have a type, other terms not.Then the problem of typability is undecidable.Proof. 1. If the set f(M;�) j `M : �g is decidable, then so isfM j `M : �!�g. But this set is by assumption closed under = andnon-trivial, contradicting Scott's theorem 2.2.15.2. Similarly.

Lambda Calculi with Types 75Proposition 4.4.18. For �\ one has the following:1. Type checking problem is undecidable.2. Typability is trivially decidable: all terms have a type.Proof. 1. Lemma 4.4.17(1) applies by 4.2.7, the fact that ` I : �!�and Exercise 4.1.20.2. For allM one has M : !:It is not known whether inhabitation in �\ is decidable.Lemma 4.4.19. Let �� be one of the systems �a la Curry. Then1. � `��+ M : � , 9M 0 [M !!� M 0 & � `�� M 0 : �].2. � is inhabited in ��+ , � is inhabited in ��.Proof. 1. (() Trivial, since M !!� M 0 implies M =� M 0. ()) Byinduction on the derivation of M : �. The only interesting case iswhen the last applied rule is an application of rule EQ. So let it beM1 : � M1 =MM : � :The induction hypothesis says that for some M 01 with M1 !!� M 01one has � ` ��M 01 : �. By the Church{Rosser theorem 2.3.7M 01 andM have a common reduct, sayM 0. But then by the subject reductiontheorem one has � `�� M 0 : � and we are done.2. By (1).Proposition 4.4.20. For the systems ��+ one has the following:1. Type checking is undecidable.2. Typability is undecidable for �!+ and �2+, but trivially decidablefor ��+ and �\+:3. The status of the inhabitation problem for ��+ is the same as for��.Proof. 1. By de�nition subject conversion holds for the systems ��+.In all systems I : �!�. From Lemma 4.4.19(1) and Exercise 4.1.20it follows that Lemma 4.4.17(1) applies.2. By Theorems 4.3.6 and 4.3.11 terms without an nf have no type in�! or �2. Hence by Lemma 4.4.19(1) these terms have no type in

76 H.P. Barendregt�!+ or �2+. Since for these systems there are terms having a typelemma 4.4.17(2) applies.In ��+ and �\+ all terms have a type.3. By Lemma 4.4.19(2).Lemma 4.4.21. Let M be a term in nf. Then`��A M : �) `�� M : �:Proof. By induction on the given derivation, using that M 2A(M).Proposition 4.4.22. For the systems �� A the situation is as follows:1. The problem of type checking is undecidable for the systems �!A,�2A, ��A and �\A.2. The problem of typability is undecidable for the system �!A and�2A but trivially decidable for the systems ��A and �\A (all termsare typable).3. The problem of inhabitation is trivially decidable for all four systemsincluding rule A (all types are inhabited).Proof. 1. By Lemma 4.4.21 and Exercise 4.1.20 one has 6` K : �!�.Hence 4.4.17(1) applies.2. Similarly.3. The inhabitation problem becomes trivial: in all four systems one has`
 : �for all types �. This follows from Example 4.1.3(2) and the facts thatYI =�
 and �� A is closed under the rule EQ.The results concerning decidability of type checking, typability and in-habitation are summarised in the table at the beginning of this subsection.

Lambda Calculi with Types 775 Typing �a la ChurchIn this section several systems of typed lambda calculus will be describedin a uniform way. Church versions will be given for the systems �! and �2,already encountered in the Curry style. Then a collection of eight lambda-calculi �a la Church is given, the so called �-cube. Two of the cornerstonesof this cube are essentially �! and �2 and another system is among thefamily of AUTOMATH languages of de Bruijn (1980). The �-cube forms anatural �ne structure of the calculus of constructions of Coquand and Huet(1988) and is organized according to the possible `dependencies' betweenterms and types. This will be done in 5.1.The description method of the systems in the �-cube is generalizedin subsection 5.2, obtaining the so called `pure type systems' (PTSs). Inpreliminary versions of this chapter PTSs were called `generalized typesystems' (GTSs). Several elementary properties of PTS's are derived.In subsection 5.3 it is shown that all terms in the systems of the �-cube are strongly normalizing. However in 5.5 it turns out that this is notgenerally true in PTS's.In subsection 5.4 a cube of eight logical systems will be described. Eachlogical system Li corresponds to one of the systems �i on the �-cube. Onehas for sentences A `Li A) 9M � `�i M : [[A]]where � depends on the similarity type of the language of Li and [[A]] is acanonical interpretation of A in �i. Moreover, the term M can be founduniformly from the proof ofA in Li. The map [[�]] is called the propositions-as-types interpretation. It turns out also that the logical systems can bedescribed as PTSs and that in this way the propositions-as-type interpre-tation becomes a very simple forgetful map from the logical cube into the�-cube.As an application of the propositions-as-types interpretation one canrepresent in a natural way data types in �2. Data types correspond toinductively de�ned sets and these can be naturally represented in second-order predicate logic, one of the systems on the logical cube. Then, bymeans of a map from predicate to proposition logic and by the propositions-as-types interpretation one obtains an interpretation of data types in �2.5.1 The cube of typed lambda calculiIn this subsection we introduce in a uniform way the eight typed lambdacalculi �!, �2, �!, �!, �P, �P2, �P!, and �P!. (The system �P! isoften called �C.) The eight systems form a cube as follows:

78 H.P. Barendregt�! - �P!6 6������� ��������2 - �P26 6�! - �P!������� ��������! - �PFig. 2. The �-cube.where each edge ! represents the inclusion relation �. This cube will bereferred to as the �-cube.The system �! is the simply typed lambda calculus, already encoun-tered in section 3.2. The system �2 is the polymorphic or second ordertyped lambda calculus and is essentially the system F of Girard (1972);the system has been introduced independently in Reynolds (1974). TheCurry version of �2 was already introduced in Section 4.1. The system �!is essentially the system F! of Girard (1972). The system �P reasonablycorresponds to one of the systems in the family of AUTOMATH languages,see de Bruijn (1980). (A more precise formulation of several AUTOMATHsystems can be given as PTSs, see subsection 5.2.) This system �P ap-pears also under the name LF in Harper et al. (1987). The system �P2is studied in Longo and Moggi (1988) under the same name. The system�C = �P! is one of the versions of the calculus of constructions introducedby Coquand and Huet (1988). The system �! is related to a system stud-ied by Renardel de Lavalette (1991). The system �P! seems not to havebeen studied before. (For �! and �P! read: `weak �!' and `weak �P!'respectively.)As we have seen in Section 4, the system �! and �2 can be given also�a la Curry. A Curry version of �! appears in Giannini and Ronchi (1988)and something similar can probably be done for �!. On the other hand, nonatural Curry versions of the systems �P; �P2; �P! and �C seem possible.Now �rst the systems �! and �2 �a la Church will be introduced in theusual way. Also �! and �P will be de�ned. Then the �-cube will be de�ned

Lambda Calculi with Types 79in a uniform way and two of the systems on it turn out to be equivalent to�! and �2.�!-ChurchAlthough this system has been introduced already in subsection 3.2, we willrepeat its de�nition in a stylistic way, setting the example for the de�nitionof the other systems.De�nition 5.1.1. The system �!-Church consists of a set of types T=type(�!), a set of pseudoterms �T, a set of bases, a conversion (andreduction) relation on �Tand a type assignment relation `.The sets Tand �Tare de�ned by an abstract syntax, bases are de�nedexplicitly, the conversion relation is de�ned by a contraction rule and ` isde�ned by a deduction system as follows:1. Types T=VjT!T;2. Pseudoterms �T= V j �T�Tj �V :T:�;3. Bases � = fx1:A1; : : : ; xn:Ang,with all xi distinct and all Ai 2T;4. Contraction rule (�x:A:M)N!�M [x := N];5. Type assignment � `M : A is de�ned as follows.�! (start-rule) (x:A) 2 � ;� ` x:A(!-elimination) � `M : (A!B) � ` N : A ;� ` (MN) : B(!-introduction) �; x:A `M :B :� ` (�x:A:M) : (A!B)Remarks 5.1.2.1. In 1 the character Vdenotes the syntactic category of type variables.Similarly in 2 the character V denotes the category of term vari-ables. In 4 the letter x denotes an arbitrary term variable. In 3 thex1; : : : ; xn are distinct term variables. In 4 and 5 the letters A;Bdenote arbitrary types and M;N arbitrary pseudoterms. The basis�; x:A stands for �[fx:Ag, where it is necessary that x is a variablethat does not occur in �:2. A pseudotermM is called legal if for some � and A one has � `M :A.

80 H.P. BarendregtTypical examples of type assignments in �! are the following. LetA;B 2T. ` (�a:A:a) : (A!A);b:B ` (�a:A:b) : (A!B);b:A ` ((�a:A:a)b) : A;c:A; b:B ` (�a:A:b)c : B;` (�a:A:�b:B:a) : (A!B!A):The system �TType and term constants are not o�cially introduced in this chapter. How-ever, these are useful to make axiomatic extensions of �! in which certainterms and types play a special role. We will simulate constants via vari-ables. For example one may select a type variable 0 and term variables 0; Sand R� for each � in Tas constants: one postulates in an initial contextthe following. 0 : 0;S : 0!0;R� : (�!(�!0!�)!0!�):Further one extends the de�nitional equality by adding to the �-contractionrule the following contraction rule for R�.R�MN0 ! M ;R�MN (Sx) ! N (R�MNx)x:This extension of �! is called �T or G�odel's theory T of primitive recursivefunctionals (`G�odel's T '). The type 0 stands for the natural numbers withelement 0 and successor function S; the R� stand for the recursion operatorcreating recursive functionals of type 0!�: In spite of the name, more thanjust the primitive recursive functions are representable. This is becauserecursion is allowed on higher functionals; see e.g. Barendregt (1984),appendix A.2.1. and Terlouw (1982) for an analysis.�2-ChurchDe�nition 5.1.3. The system �2-Church is de�ned as follows:

Lambda Calculi with Types 811. Types T=VjT!Tj 8VT;2. Pseudoterms �T= V j �T�Tj �TTj �V :T�Tj �V�T;3. Bases � = fx1:A1; : : : ; xn:Ang,with ~x distinct and ~A 2T;4. Contraction rules (�a:A:M)N!�M [a := N](��:M)A!�M [� := A]5. Type assignment � `M : A is de�ned as follows.�2 (start-rule) (x:A) 2 � ;� ` x : A(!-elimination) � `M : (A!B) � ` N : A ;� ` (MN) : B(!-introduction) �; a:A `M : B ;� ` (�a:A:M) : (A!B)(8-elimination) � `M : (8�:A) ;� `MB : A[�: = B] B 2T;(8-introduction) � `M : A ; � =2 FV(�):� ` (��:M) : (8�:A)Typical assignments in �2 are the following:` (�a:�:a) : (�!�);` (���a:�:a) : (8�:�!�);` (���a:�:a)A : (A!A);b:A ` (���a:�:a)Ab : A;fof course the following reduction holds:(���a:�:a)Ab!(�a:A:a)b!b; g` (���a:(8�:�):a((8�:�)!�)a) : (8�:(8�:�)!�);ffor this last example one has to think twice to see that it is correct; asimpler term of the same type is the followingg` (���a:(8�:�):a�) : (8�:(8�:�)!�):Without a proof we mention that the Church{Rosser property holds forreduction on pseudoterms in �2.

82 H.P. BarendregtDependencyTypes and terms are mutually dependent; there areterms depending on terms;terms depending on types;types depending on terms;types depending on types.The �rst two sorts of dependency we have seen already. Indeed, in �!we have F : A!B M : A) FM : B:Here FM is a term depending on a term (e.g. on M). For �2 we sawG : 8�:�!� A a type) GA : A!A:Hence for G = ���a:�:a one has that GA is a term depending on the typeA. In �! and �2 one has also function abstraction for the two dependen-cies. For the two examples above�m:A:Fm : A!B;��:G� : 8�:�!�:Now we shall de�ne two other systems �! and �P with types FA (FMresp) depending on types (respectively terms). We will also have functionabstraction for these dependencies in �! and �P.Types depending on types; the system �!A natural example of a type depending on another type is �!� that de-pends on �. In fact it is natural to de�ne f = �� 2 T:�!� such thatf(�) = �!�. This will be possible in the system �!. Another feature of�! is that types are generated by the system itself and not in the informalmetalanguage. There is a constant � such that � : � corresponds to � 2T.The informal statement �; � 2T) (�!�) 2Tnow becomes the formal �:�; �:� ` (�!�) : �:For the f above we then write f � ��: � :�!�. The question ariseswhere this f lives. Neither on the level of the terms, nor among the types.Therefore a new category K (of kinds) is introducedK = � j K!K:That is K = f�; �!�; �!�!�; : : :g. A constant � will be introduced suchthat k : � corresponds to k 2 K. If ` k : � and ` F : k, then F is called a

Lambda Calculi with Types 83constructor of kind k. We will see that ` (��: � :�!�) : (�!�), i.e. our fis a constructor of kind �!�. Each element of Twill be a constructor ofkind �.Although types and terms of �! can be kept separate, we will considerthem as subsets of one general set T of pseudo expressions. This is apreparation to 5.1.8, 5.1.9 and 5.1.10 in which it is essential that types andterms are being mixed.De�nition 5.1.4 (Types and terms of �!).1. A set of pseudo-expressions T is de�ned as followsT = V j C j T T j �V :T :T j T !Twhere V is an in�nite collection of variables and C of constants.2. Among the constants C two elements are selected and given thenames � and �. These so called sorts � and � are the main rea-son to introduce constants.Because types and terms come from the same set T , the de�nition of astatement is modi�ed accordingly. Bases have to become linearly ordered.The reason is that in �! one wants to derive�:�; x:� ` x : �;�:� ` (�x:�:x) : (�!�)but not x:�; �:� ` x : �;x:� ` (��: � :x) : (�!�)in which � occurs both free and bound.De�nition 5.1.5 (Contexts for �!).1. A statement of �! is of the formM : A with M;A 2 T .2. A context is a �nite linearly ordered set of statements with distinctvariables as subjects. �;�; : : : range over contexts.3. <> denotes the empty context. If � = <x1:A1; : : : ; xn:An> then�; y:B = <x1:A1; : : : ; xn:An; y:B>.De�nition 5.1.6 (Typing rules for �!). The notion � `�! M : A isde�ned by the following axiom and rules. The letter s ranges over f�;�g.

84 H.P. Barendregt
�! (axiom) <> ` � : �;(start-rule) � ` A : s ;�; x:A ` x : A x =2 �;(weakening rule) � ` A : B � ` C : s ;�; x:C ` A : B x =2 �;(type/kind formation) � ` A : s � ` B : s :� ` (A!B) : s(application rule) � ` F : (A!B) � ` a : A ;� ` Fa : B(abstraction rule) �; x:A ` b : B � ` (A!B) : s ;� ` (�x:A:b) : (A!B)(conversion rule) � ` A : B � ` B0 : s B =� B0 :� ` A : B0Example 5.1.7.�:�; �:� `�! (�!�) : �;�:�; �:�; x:(�!�) `�! x : (�!�);�:�; �:� `�! (�x:(�!�):x) : ((�!�)!(�!�)):Write D � ��: � :�!�: Then the following hold.`�! D : (�!�):�:� `�! (�x:D�:x) : D(D�):Types depending on terms; the system �PAn intuitive example of a type depending on a term is An!B with n anatural number. In order to formalize the possibility of such `dependenttypes' in the system �P, the notion of kind is extended such that if A isa type and k is a kind, then A!k is a kind. In particular A!� is a kind.Then if f : A!� and a : A, one has fa : �. This fa is a term dependenttype. Moreover one has function abstraction for this dependency.

Lambda Calculi with Types 85Another idea important for a system with dependent types is the for-mation of cartesian products. Suppose that for each a : A a type Ba isgiven and that there is an element ba : Ba. Then we may want to form thefunction �a:A:bathat should have as type the cartesian product�a:A:Baof the Ba's. Once these product types are allowed, the function space typeof A and B can be written as(A!B) � �a:A:B(� BA; informally);where a is a variable not occurring in B. This is analogous to the fact thata product of equal numbers is a power:nYi=1 bi = bnprovided that bi = b for 1 � i � n. So by using products, the typeconstructor ! can be eliminated.De�nition 5.1.8 (Types and terms of �P).1. The set of pseudo-expressions of �P, notation, T is de�ned as followsT = V j C j T T j �V :T :T j �V :T :Twhere V is the collection of variables and C that of constants. Nodistinction between type- and term-variables is made.2. Among the constants C two elements are called � and �.De�nition 5.1.9 (Assignment rules for �P). Statements and contextsare de�ned as for �! (statements are of the form M :A with M;A 2 T ;contexts are �nite linearly ordered statements).

86 H.P. BarendregtThe notion ` is de�ned by the following axiom and rules. Again the letters ranges over f�;�g:
�P (axiom) <> ` � : �;(start-rule) � ` A : s ;�; x:A ` x : A x =2 �;(weakening rule) � ` A : B � ` C : s ;�; x:C ` A : B x =2 �;(type/kind formation) � ` A : � �; x:A ` B : s :� ` (�x:A:B) : s(application rule) � ` F : (�x:A:B) � ` a : A ;� ` Fa : B[x := a](abstraction rule) �; x:A ` b : B � ` (�x:A:B) : s ;� ` (�x:A:b) : (�x:A:B)(conversion rule) � ` A : B � ` B0 : s B =� B0 :� ` A : B0Typical assignments in �P are the following:A:� ` (A!�) : �;A:�; P :A!�; a:A ` Pa : �;A:�; P :A!�; a:A ` Pa!� : �;A:�; P :A!� ` (�a:A:Pa!�) : �;A:�; P :A!� ` (�a:A�x:Pa:x) : (�a:A:(Pa!Pa))Pragmatics of �PSystems like �P have been introduced by N.G. de Bruijn (1970), (1980) inorder to represent mathematical theorems and their proofs. The methodis as follows. One assumes there is a set prop of propositions that is closedunder implication. This is done by taking as context �0 de�ned asprop:�; Imp:prop!prop!prop:Write ' � for Imp' . In order to express that a proposition is valida variable T : prop!� is declared and ' : prop is de�ned to be valid if

Lambda Calculi with Types 87T' is inhabited, i.e. M : T' for some M . Now in order to express thatimplication has the right properties, one assumes �e and �i such that�e' : T(' �)!T'!T :�i' : (T'!T)!T(' �):So for the representation of implicational proposition logic one wants towork in context �prop consisting of �0 followed byT : prop!��e : �':prop� :prop:T(' �)!T'!T �i : �':prop� :prop:(T'!T)!T(' �):As an example we want to formulate that ' � ' is valid for all propositions.The translation as type is T(' � ') which indeed is inhabited�prop `�P (�i''(�x:T':x)) : T(' � '):(Note that since ` T' : � one has ` (�x:T':x) : (T'!T'):)Having formalized many valid statements de Bruijn realized that it wasrather tiresome to carry around the T: He therefore proposed to use � itselffor prop, the constructor ! for � and the identity for T: Then for �e' one can use �x:('!)�y:':xyand for �i' �x:('!):x:In this way the f!; 8g fragment of (manysorted constructive) predicatelogic can be interpreted too. A predicate P on a set (type) A can berepresented as a P :(A!�) and for a:A one de�nes Pa to be valid if itis inhabited. Quanti�cation 8x 2 A:Px is translated as �x:A:Px: Now aformula like [8x 2A8y 2A:Pxy]![8x2A:Pxx]can be seen to be valid because its translation is inhabitedA:�; P :A!A!� ` (�z:(�x:A�y:A:Pxy)�x:A:zxx) :([�x:A�y:A:Pxy]![�x:A:Pxx]):The system �P is given that name because predicate logic can be inter-preted in it. The method interprets propositions (or formulas) as typesand proofs as inhabiting terms and is the basis of several languages in thefamily AUTOMATH designed and implemented by de Bruijn and cowork-ers for the automatic veri�cation of proofs. Similar projects inspired by

88 H.P. BarendregtAUTOMATH are described in Constable et al.(1986) (NUPRL), Harper etal.(1987) (LF) and Coquand and Huet (1988) (calculus of constructions).The project LF uses the interpretation of formulas using T:(prop!�) likethe original use in AUTOMATH. In Martin-L�of (1984) the proposition-as-types paradigm is used for formulating results in the foundation of mathe-matics.The �-cubeWe will now introduce a cube of eight systems of typed lambda calculi.This so called `�-cube' forms a natural framework in which several knownsystems �a la Church, including �!, �2; �! and �P are given in a uniformway. It provides a �nestructure of the calculus of constructions, which isthe strongest system in the cube. The di�erentiation between the systemsis obtained by controlling the way in which abstractions are allowed.The systems �! and �2 in the �-cube are not given in their originalversion, but in a equivalent variant. Also for some of the other known sys-tems the versions on the cube are only in essence equivalent to the originalones. The point is that there are some choices for the precise formulationof the systems and in the cube these choices are made uniformly.De�nition 5.1.10 (Systems of the �-cube).1. The systems of the �-cube are based on a set of pseudo-expressionsT de�ned by the following abstract syntax.T = V j C j T T j �V :T :T j �V :T :Twhere V and C are in�nite collections of variables and constants re-spectively. No distinction between type- and term-variables is made.2. On T the notions of �-conversion and �-reduction are de�ned by thefollowing contraction rule:(�x:A:B)C!B[x := C]:3. A statement is of the form A : B with A;B 2T . A is the subject andB is the predicate of A : B. A declaration is of the form x:A withA2T and x a variable. A pseudo-context is a �nite ordered sequence ofdeclarations, all with distinct subjects. The empty context is denotedby <>. If � =< x1:A1; : : : ; xn:An >, then�; x:B =< x1:A1; : : : ; xn:An; x:B > :Usually we do not write the <> :

Lambda Calculi with Types 894. The rules of type assignment will axiomatize the notion� ` A : Bstating that A : B can be derived from the pseudo-context �; in thatcase A and B are called (legal) expressions and � is a (legal) context.The rules are given in two groups:(a) the general axiom and rules, valid for all systems of the �-cube;(b) the speci�c rules, di�erentiating between the eight systems; the-se are parametrized �-introduction rules.Two constants are selected and are given the names � and �. Thesetwo constants are called sorts. Let S = f�;�g and s; s1; s2 range overS. Systems in the �-cube1. General axiom and rules.(axiom) <> ` � : �;(start rule) � ` A : s ;�; x:A ` x : A x =2 �;(weakening rule) � ` A : B � ` C : s ;�; x:C ` A : B x =2 �;(application rule) � ` F : (�x:A:B) � ` a : A ;� ` Fa : B[x := a](abstraction rule) �; x:A ` b : B � ` (�x:A:B) : s ;� ` (�x:A:b) : (�x:A:B)(conversion rule) � ` A : B � ` B0 : s B =� B0 :� ` A : B02. The speci�c rules(s1; s2) rule � ` A : s1; �; x:A ` B : s2 :� ` (�x:A:B) : s2

90 H.P. BarendregtWe use A;B;C; a; b; : : : for abitrary pseudo-terms and x; y; z; : : : forarbitrary variables.5. The eight systems of the �-cube are de�ned by taking the general rulesplus a speci�c subset of the set of rules f(�; �); (�;�); (�; �); (�;�)g:System Set of speci�c rules�! (�; �)�2 (�; �) (�; �)�P (�; �) (�;�)�P2 (�; �) (�; �) (�;�)�! (�; �) (�;�)�! (�; �) (�; �) (�;�)�P! (�; �) (�;�) (�;�)�P!=�C (�; �) (�; �) (�;�) (�;�)The �-cube will usually be drawn in the standard orientation displayed asfollows; the inclusion relations are often left implicit.�! �C������ �������2 �P2�! �P!������ �������! �PRemark 5.1.11. Most of the systems in the �-cube appear elsewhere inthe literature, often in some variant form.

Lambda Calculi with Types 91System related system(s) names and references�! �� simply typed lambda calculus;Church (1940),Barendregt (1984), Appendix A,Hindley and Seldin (1986), Ch 14.�2 F scond order (typed) lambda calculus;Girard (1972),Reynolds (1974).�P AUT-QE; LF de Bruijn (1970);Harper et al. (1987).�P2 Longo and Moggi (1988).�! POLYREC Renardel de Lavalette (1991).�! F! Girard (1972).�P! = �C CC calculus of constructions;Coquand and Huet (1988).Remarks 5.1.12.1. The expression (��:�:(�!�)) in �2 being a cartesian product oftypes will also be a type, so (��:�:(�!�)) : �. But since it is aproduct over all possible types �, including the one in statu nascendi(i.e. (��:�:(�!�)) itself is among the types in �), there is an essentialimpredicativity here.2. Note that in �! one has also in some sense terms depending on typesand types depending on types:�x:A:x is a term depending on the type A,A!A is a type depending on the type A.But in �! one has no function abstraction for these dependencies.Note also that in �! (and even in �2 and �!) one has no typesdepending on terms. The types are given beforehand. The right-hand side of the cube is essentially more di�cult then the left-handside because of the mixture of types and terms.The two versions of �! and �2Now we have given the de�nition of the �-cube, we want to explain why�! and �2 in the cube are essentially the same as the systems with thesame name de�ned in 5.1.1 and 5.1.3 respectively.

92 H.P. BarendregtDe�nition 5.1.13. In the systems of the �-cube we use the followingnotation: A!B � �x:A:B; where x is fresh (not in A;B):Lemma 5.1.14. Consider �! in the �-cube. If � ` A : � in this system,then A is built up from the set fB j (B : �) 2 �g using only ! (as de�nedin 5.1.13).Proof. By induction on the generation of `.Notice that the application rule implies the !-elimination rule:� ` F : (A!B)(� �x:A:B) � ` a : A ;� ` (Fa) : B[x := a] � Bsince x does not occur in B. It follows that if e.g. in �! in the �-cube onederives A:�; B:�; a:A; b:B `M : C : �then a:A; b:B `M : Cis derivable in the system �! as de�ned in 5.1.1.Similarly one shows that both variants of �2 are the same by �rst de�n-ing in the �-cube 8�:A � ��:�:A;��:M � ��:�:M:Of course the use of the greek letter � is only suggestive; after all, it is abound variable and its name is irrelevant.Some derivable type assignments in the �-cubeWe end this subsection by giving some examples of type assignment forthe systems in the �-cube. The examples for �! and �2 given before areessentially repeated in the new style of the systems.The reader is invited to carefully study these examples in order to gainsome intuition in the systems of the �-cube. Some of the examples arefollowed by a comment fin curly bracketsg. In order to understand theintended meaning for the systems on the right plane in the �-cube (i.e. therule pair (�;�) is present), some of the elements of � have to be consideredas sets and some as propositions. The examples show that the systemsin the �-cube are related to logical systems and form a preview of thepropositions-as-type interpretation described in subsection 5.4. Names of

Lambda Calculi with Types 93variables are chosen freely as either Roman or Greek letters, in order tofollow the intended interpretation. The notation � ` A : B : C stands forthe conjunction of � ` A : B and � ` B : C:Examples 5.1.15.1. In �! the following can be derived:A:� ` (�x:A:A) : �;A:� ` (�a:A:a) : (�x:A:A);A:�; B:�; b:B ` (�a:A:b) : (A!B);where (A!B) � (�x:A:B);A:�; b:A ` ((�a:A:a)b) : A;A:�; B:�; c:A; b:B ` ((�a:A:b)c) : B;A:�; B:� ` (�a:A�b:B:a) : (A!(B!A)) : �:2. In �2 the following can be derived:�:� ` (�a:�:a) : (�!�);` (��:��a:�:a) : (��:�:(�!�)) : �;A:� ` (��:��a:�:a)A : (A!A);A:�; b:A ` (��:��a:�:a)Ab : A;of course the following reduction holds:(��:��a:�:a)Ab ! (�a:A:a)b! b:The following two examples show a connection with second-orderproposition logic.` (��:��a:(��:�:�):a((��:�:�)!�)a) : (��:�:(��:�:�)!�):fFor this last example one has to think twice to see that it is correct;a simpler term of the same type is the following; write ? � (��:�:�),which is the second-order de�nition of falsum.g` (��:��a:?:a�) : (��:�:?!�):fThe type considered as proposition says: ex falso sequitur quodlibet ,i.e. anyting follows from a false statement; the term in this type is itsproof.g3. In �! the following can be derived

94 H.P. Barendregt` (��:�:�!�) : (�!�) : �f(��:�:�!�) is a constructor mapping types into typesg;�:� ` (��:�:�!�)� : �;�:�; x:� ` (�y:�:x) : (��:�:�!�)�fnote that (�y:�:x) has type �!� in the given contextg;�:�; f :�!� ` f(f�) : �;�:� ` (�f :�!�:f(f�)) : (�!�)!�fin this way higher-order constructors are formedg:4. In �P the following can be derived:A:� ` (A!�) : �fif A is a type considered as set, then A!� is the kind of predicateson Ag; A:�; P :(A!�); a:A ` Pa : �fif A is a set, a 2 A and P is a predicate on A, then Pa is a typeconsidered as proposition (true if inhabited; false otherwise)g;A:�; P :(A!A!�) ` (�a:A:Paa) : �fif P is a binary predicate on the set A, then 8a2A Paa is a propo-sitiong; A:�; P :A!�; Q:A!� ` (�a:A:(Pa!Qa)) : �fthis proposition states that the predicate P considered as a set isincluded in the predicate Qg;A:�; P :A!� ` (�a:A:(Pa!Pa)) : �fthis proposition states the re
exivity of inclusiong;A:�; P :A!� ` (�a:A�x:Pa:x) : (�a:A:(Pa!Pa)) : �fthe subject in this assignment provides the `proof' of re
exivity ofinclusiong;A:�; P :A!�; Q:� ` ((�a:A:Pa!Q)!(�a:A:Pa)!Q) : �A:�; P :A!�; Q:�; a0:A ` (�x:(�a:A:Pa!Q)�y:(�a:A:Pa):xao(yao)) :

Lambda Calculi with Types 95(�x:(�a:A:Pa!Q)�y:(�a:A:Pa):Q) �(�a:A:Pa!Q)!(�a:A:Pa)!Qfthis proposition states that the proposition(8a 2A:Pa!Q)!(8a 2A:Pa)!Qis true in non-empty structures A; notice that the lay out explainsthe functioning of the ��rule; in this type assignment the subject isthe `proof' of the previous true proposition; note that in the contextthe assumption a0:A is needed in this proof.g5. In �! the following can be derived.Let �&� � �
:�:(�!�!
)!
, then�:�; �:� ` �&� : �fthis is the `second-order de�nition of &' and is de�nable already in�2g:Let AND � ��:���:�:�&� and K � ��:���:��x:��y:�:x, then` AND : (�!�!�);` K : (��:���:�:�!�!�):fNote that �&� and K can be derived already in �2, but the termAND cannotg:�:�; �:� ` (�x:AND��:x�(K��)) : (AND��!�) : �fthe subject is a proof that AND��!� is a tautologyg:6. In �P2 fcorresponding to second-order predicate logicg the followingcan be derived.A:�; P :A!� ` (�a:A:Pa!?) : (A!�)A:�; P :A!A!� ` [(�a:A�b:A:Pab!Pba!?)!(�a:A:Paa!?)] : �fthe proposition states that a binary relation that is asymmetric isirre
exiveg7. In �P! the following can be derived.A:� ` (�P :A!A!��a:A:Paa) : ((A!A!�)!(A!�)) : �

96 H.P. Barendregtfthis constructor assigns to a binary predicate P on A its `diagona-lization'g;` (�A:��P :A!A!��a:A:Paa) : (�A:��P :A!A!��a:A:�) : �fthe same is done uniformly in Ag:8. In �P! = �C the following can be derived.` (�A:��P :A!��a:A:Pa!?) : (�A:�:(A!�)!(A!�)) : �fthis constructor assigns to a type A and to a predicate P on A thenegation of Pg:Let ALL � (�A:��P :A!�:�a:A:Pa); thenA:�; P :A!� ` ALLAP : � and (ALLAP) =� (�a:A:Pa)funiversal quanti�cation done uniformlyg:Exercise 5.1.16.1. De�ne : � ��:�:�!?: Construct a term M such that in �!� : �; � : � `M : ((�!�)!(:�!:�)):2. Find an expression M such that in �P2A:�; P :(A!A!�) `M : [(�a:A�b:A:Pab!Pba!?)!(�a:A:Paa!?)] : �:3. Find a term M such that in �CA:�; P :A!�; a:A `M : (ALLAP!Pa):5.2 Pure type systemsThe method of generating the systems in the �-cube has been generalizedindependently by Berardi (1989) and Terlouw (1989). This resulted in thenotion of pure type system (PTS). Many systems of typed lambda calculus�a la Church can be seen as PTSs. Subtle di�erences between systems canbe described neatly using the notation for PTSs.One of the successes of the notion of PTS's is concerned with logic.In subsection 5.4 a cube of eight logical systems will be introduced that

Lambda Calculi with Types 97is in a close correspondence with the systems on the �-cube. This resultis the so called `propositions-as-types' interpretation. It was observed byBerardi (1989) that the eight logical systems can each be described as aPTS in such a way that the propositions-as-types interpretation obtains acanonical simple form.Another reason for introducing PTSs is that several propositions aboutthe systems in the �-cube are needed. The general setting of the PTSsmakes it nicer to give the required proofs. Most results in this subsectionare taken formGeuvers and Nederhof (1991) and also serve as a preparationfor the strong normalization proof in Section 5.3.The pure type systems are based on the set of pseudo-terms T for the�-cube. We repeat the abstract syntax for T .T = V j C j T T j�V :T T j �V :T TDe�nition 5.2.1. The speci�cation of a PTS consists of a tripleS = (S, A, R) where1. S is a subset of C, called the sorts;2. A is a set of axioms of the form c : swith c 2 C and s 2 S;3. R is a set of rules of the form(s1; s2; s3)with s1; s2; s3 2 S.It is useful to divide the set V of variables into disjoint in�nite subsets Vsfor each sort s2 S. So V = [fVs j s 2Sg. The members of Vs are denotedby sx; sy; sz; : : :. Arbitrary variables are often still denoted by x; y; z; : : : ;however if necessary one writes x � sx to indicate that x 2 Vs. The �rstversion of �2 introduced in 5.1.3 can be understood as x; y; z; : : : rangingover V� and �; �;
; : : : over V�: For reasons of hygiene it will be useful toassume that if s1x1 and s2x2 occur both in a pseudo-term M, thens1 6� s2) x1 � x2:If this is not the case, then a simple renaming can establish this.De�nition5.2.2. The PTS determined by the speci�cation S = (S;A;R),notation �S=�(S;A;R), is de�ned as follows. Statements and contexts are

98 H.P. Barendregtde�ned as for the �-cube. The notion of type derivation � `�S A : B (wejust write � ` A : B) is de�ned by the following axioms and rules:�(S;A;R)(axioms) <>` c : s; if (c : s) 2A;(start) � ` A : s ;�; x : A ` x : A if x � sx =2 �;(weakening) � ` A : B � ` C : s ;�; x : C ` A : B if x � sx =2 �;(product) � ` A : s1 �; x:A ` B : s2 ;� ` (�x:A:B) : s3 if (s1; s2; s3) 2R;(application) � ` F : (�x:A:B) � ` a : A ;� ` Fa : B[x := a](abstraction) �; x:A ` b : B � ` (�x:A:B) : s ;� ` (�x:A:b) : (�x:A:B)(conversion) � ` A : B � ` B0 : s B =� B0 :� ` A : B0In the above we use the following conventions.s ranges over S, the set of sorts;x ranges over variables.The proviso in the conversion rule (B =� B0) is a priori not decidable.However it can be replaced by the decidable conditionB0 !� B or B !� B0without changing the set of derivable statements.De�nition 5.2.3.1. The rule (s1; s2) is an abbreviation for (s1; s2; s2). In the �-cube onlysystems with rules of this simpler form are used.2. The PTS �(S;A;R) is called full if

Lambda Calculi with Types 99R = f(s1; s2) j s1; s2 2 Sg:Examples 5.2.4.1. �2 is the PTS determined by:S = f�;�gA = f� : �gR = f(�; �); (�; �)g:Speci�cations like this will be given more stylistically as follows.�2 S �;�A � : �R (�; �); (�; �)2. �C is the full PTS with�C S �;�A � : �R (�; �); (�; �); (�;�); (�;�)3. A variant �C0 of �C is the full PTS with�C0 S �t; �p;�A �t : �; �p : �R S2, i.e. all pairs4. �! is the PTS determined by�! S �;�A � : �R (�; �)5. A variant of �!, called �� in Barendregt (1984) Appendix A, is thePTS determined by �� S �A 0 : �R (�; �)

100 H.P. BarendregtThe di�erence with �! is that in �� no type variables are possiblebut only has constant types like 0; 0!0; 0!0!0; : : :.6. The system �� in which � is the sort of all types, including itself, isspeci�ed by �� S �A � : �R (�; �)In subsection 5.5 it will be shown that the system �� is `inconsis-tent', in the sense that all types are inhabited. This result is knownas Girard's paradox. One may think that the result is caused bythe circularity in � : �, however Girard (1972) showed that also thefollowing system is inconsistent in the same sense, see Section 5.5.�U S �;�;�A � : �;� : �R (�; �); (�; �); (�;�); (�;�); (�; �)7. (Geuvers (1990)). The system of higher-order logic in Church (1940)can be described by the following PTS; see Ssection 5.4 for its use.�HOL S �;�;�A � : �;� : �R (�; �); (�; �); (�;�)8. (van Benthem Jutting (1990)). So far none of the rules has been ofthe form (s1; s2; s3). Several members of the AUTOMATH family, seevan Daalen (1980) and de Bruijn (1980), can be described as PTSswith such rules. The sort � serves as a `parking place' for certainterms. �AUT-68 S �;�;�A � : �R (�; �); (�;�;�); (�; �;�)(�;�;�); (�;�;�); (�;�;�)This system is a strengthening of �! in which there are more pow-erful contexts.�AUT-QE S �;�;�A � : �R (�; �); (�;�); (�; �;�)(�;�;�); (�;�;�); (�;�;�)

Lambda Calculi with Types 101This system corresponds to �P.�PAL S �;�;�A � : �R (�; �;�); (�;�;�); (�; �;�)(�;�;�); (�;�;�); (�;�;�)This system is a subsystem of �!. An interesting conjecture of deBruijn states that mathematics from before the year 1800 can all beformalized in �PAL.In subsection 5.4 we will encounter rules of the form (s1; s2; s3) in orderto represent �rst-order but not higher-order functions.Properties of arbitrary PTSsNow we will state and prove some elementary properties of PTSs. In 5.2.5 -5.2.17 the notions of context, derivability etc. refer to �S = �(S;A;R), anarbitrary PTS. The results are taken from Geuvers and Nederhof (1991).Notation 5.2.5.1. � ` A : B : C means � ` A : B&� ` B : C:2. Let � � u1:B1; : : : ; un:Bn with n � 0 be a pseudocontext. Then� ` � means � ` u1:B1 & : : : & � ` un:Bn:De�nition 5.2.6. Let � be a pseudocontext and A be a pseudoterm.1. � is called legal if 9P;Q2 T � ` P : Q:2. A is called a �-term if 9B 2 T [� ` A : B or � ` B : A]:3. A is called a �-type if 9s 2 S[� ` A : s]:4. If � ` A : s, then A is called a �-type of sort s.5. A is called a �-element if 9B 2 T 9s 2 S[� ` A : B : s]:6. If � ` A : B : s then A is called a �-element of type B and of sort s.7. A 2 T is called legal if 9�; B [� ` A : B or � ` B : A]:De�nition 5.2.7. Let � � x1:A1; : : : ; xn:An and � � y1:B1; : : : ; ym:Bmbe pseudo-contexts.

102 H.P. Barendregt1. A statement x:A is in �, notation (x:A) 2 �, if x � xi and A � Aifor some i.2. � is part of �, notation � � �, if every x:A in � is also in �:3. Let 1 � i � n + 1. Then the restriction of � to i, notation � � i, isx1:A1; : : : ; xi�1:Ai�1:4. � is an initial segment of �, notation � � �, if for some j � m + 1one has � � � � j:Lemma 5.2.8 (Free variable lemma for PTS's).Let � � x1:A1; : : : ; xn:An be a legal context, say � ` B : C. Then thefollowing hold.1. The x1; : : : ; xn are all distinct.2. FV (B); FV (C) � fx1; : : : ; xng:3. FV (Ai) � fx1; : : : ; xi�1g for 1 � i � n.Proof. (1), (2), (3). By induction on the derivation of � ` B : C:The following lemmas show that legal contexts behave as expected.Lemma 5.2.9 (Start lemma for PTS's). Let � be a legal context.Then1. (c : s) is an axiom) � ` c : s;2. (x:A) 2 �) � ` x : A:Proof. (1), (2). By assumption � ` B : C for some B and C. The resultfollows by induction on the derivation of � ` B : C:Lemma 5.2.10 (Transitivity lemma for PTS's). Let � and � becontexts of which � is legal. Then[� ` � & � ` A : B]) � ` A : B:Proof. By induction on the derivation of � ` A : B:We treat two cases:Case 1. � ` A : B is <> ` c : s with c : s an axiom. Then by the startlemma 5.2.9 (1) we have � ` c : s, since � is legal. (Note thattrivially � ` <>, so one needs to postulate that � is legal.)Case 2. � ` A : B is � ` (�x:A1:A2) : s3 and is a direct consequence of� ` A1 : s1 and �; x:A1 ` A2 : s2 for some (s1; s2; s3)2R. It may

Lambda Calculi with Types 103be assumed that x does not occur in �. Write �+ � �; x:A1. Thenby the induction hypothesis � ` A1 : s1, so �+ ` �; x:A1. Hence�; x:A1 ` A2 : s2and hence by the product rule� ` (�x1:A1:A2):s3i.e. � ` A : B:Lemma 5.2.11 (Substitution lemma for PTS's). Assume�; x:A;� ` B : C (1)and � ` D : A: (2)Then �;�[x := D] ` B[x := D] : C[x := D]:Proof. By induction on the derivation of (1). We treat two cases. WriteM� for M [x := D].Case 1. The last rule used to obtain (1) is the start rule.Subcase 1.1. � =<>. Then the last step in the derivation of (1) is� ` A : s ;�; x:A ` x : Aso in this subcase (B : C) � (x : A). We have to show� ` (x : A)� � (D : A)which holds by assumption (2).Subcase 1.2. � = �1; y:E and the last step in the derivation of (1) is�; x:A;�1 ` E : s :�; x:A;�1; y:E ` y : EWe have to show

104 H.P. Barendregt�;��1; y:E� ` y : E�;but this follows directly from the induction hypothesis �;��1 `E� : s:Case 2. The last applied rule to obtain (1) is the application rule, i.e.�; x:A;�;` B1 : (�y:C1:C2) �; x:A;� ` B2 : C1 :�; x:A;� ` (B1B2) : C2[y := B2]By the induction hypothesis one has�;�� ` B�1 : (�y:C�1 :C�2) and �;�� ` B�2 : C�1and hence �;�� ` (B�1B�2) : (C�2 [y := B�2])so by the substitution lemma for terms, 2.1.6, one has�;�� ` (B1B2)� : (C2[y := B2])�:Lemma 5.2.12 (Thinning lemma for PTS's). Let � and � be legalcontexts such that � � �. Then� ` A : B) � ` A : B:Proof. By induction on the length of derivation of � ` A : B. We treattwo cases.Case 1. � ` A : B is the axiom <> ` c : s. Then by the start lemma 5.2.9one has � ` c : s.Case 2. � ` A : B is an � ` (�x:A1:A2) : s3 and follows from � ` A1 : s1and �; x:A1 ` A2 : s2. By the IH one has � ` A1 : s1 and since it maybe assumed that x does not occur in � it follows that �; x:A1 ` x : A1,i.e.�; x:A1 is legal. But then again by the IH �; x:A1 ` A2 : s2 and hence� ` (�x:A1:A2) : s3:The following result analyses how a type assignment � ` A : B can beobtained, according to whether A is a variable, a constant, an application,a �-abstraction or a �-abstraction.

Lambda Calculi with Types 105Lemma 5.2.13 (Generation lemma for PTS's).1: � ` c : C) 9s 2 S [C =� s & (c : s) is an axiom]:2: � ` x : C) 9s 2 S9B =� C [� ` B : s & (x:B) 2 �& x � sx]:3: � ` (�x:A:B) : C) 9(s1; s2; s3) 2R [� ` A : s1 &�; x:A ` B : s2 & C =� s3]:4: � ` (�x:A:b) : C) 9s 2 S9B [� ` (�x:A:B):s &�; x:A ` b : B & C =� (�x:A:B)]:5: � ` (Fa) : C) 9A;B [� ` F : (�x:A:B) &� ` a : A & C =� B[x := a]]:Proof. Consider a derivation of � ` A : C in one of the cases. The rulesweakening and conversion do not change the term A. We can follow thebranch of the derivation until the term A is introduced the �rst time. Thiscan be done by� an axiom for 1;� the start rule for 2� the product-rule for 3;� the application rule for 4;� the abstraction-rule for 5.In each case the conclusion of the axiom or rule is �0 ` A : B0 with �0 � �and B0 =� B. The statement of the lemma follows by inspection of theused axiom or rule and the thinning lemma 5.2.12 .The following corollary states that every �-term is a sort, a �-type or a�-element. Note however that the classes of sorts, �-types and �-elementsoverlap. For example, in �! with context � � � : � one has that �!� isboth a �-type and a �-element; indeed,� ` (�x:�:x) : (�!�) : � and � ` (�!�) : � : �:Also it follows that subexpressions of legal terms are again legal. Subex-pressions are de�ned as usual. (M sub A i� M2Sub(A), where Sub(A),the set of subexpressions of A, is de�ned as follows.Sub(A) = fAg, if A is one of the constants(including the sorts) or variables;= fAg[Sub(P)[Sub(Q), if A is of the form�x:P:Q; �x:P:Q or PQ.)

106 H.P. BarendregtCorollary 5.2.14. In every PTSone has the following.1. � ` A : B) 9s[B � s or � ` B : s]2. � ` A : (�x:B1:B2)) 9s1; s2[� ` B1 : s1 & �1; x : B1 ` B2 : s2]:3. If A is a �-term, then A is a sort, a �-type or a �-element.4. If A is legal and B sub A, then B is legal.Proof. 1. By induction on the derivation of � ` A : B:2. By (1) and (4) of the generation lemma (notice that (�x:B1:B2) 6� s):3. By (1), distinguishing the cases � ` A : C and � ` C : A:4. Let A be legal. By de�nition either � ` A : C or � ` C : A, forsome � and C. If the �rst case does not hold, then by (1) it followsthat A � s, hence B � A is legal. So suppose � ` A : B. It followsby induction on the structure of A, using the generation lemma, thatany subterm of A is also legal.Theorem 5.2.15 (Subject reduction theorem for PTS's).� ` A : B & A!!� A0) � ` A0 : B:Proof. Write �!��0 i� � = x1:A1; : : : ; xn:An;�0 = x1:A01; : : : ; xn:A0n andfor some i one has Ai!A0i and Aj � A0j for j 6= i. Consider the statements� ` A : B & A!� A0) � ` A0 : B; (i)� ` A : B & �!� �0) �0 ` A : B: (ii)These will be proved simultaneously by induction on the generation of� ` A : B. We treat two cases.Case 1. The last applied rule is the product rule. Then � ` A : B is� ` (�x:A1:A2) : s3 and is a direct consequence of � ` A1 : s1and �; x:A1 ` A2 : s2 for some rule (s1; s2; s3). Then (i) and(ii) follow from the IH (for (i) and (ii), and (ii), respectively).Case 2. The last applied rule is the application rule. Then � ` A : Bis � ` A1A2 : B2[x := A2] and is a direct consequence of� ` A1 : (�x:B1:B2) and � ` A2 : B1. The correctness of (ii)

Lambda Calculi with Types 107follows directly from the IH. As to (i), by Corollary 5.2.14 (1)it follows that for some sort s� ` (�x:B1:B2) : s;hence by the generation lemma� ` B1 : s1;�; x:B1 ` B2 : s2:>From this it follows with the substitution lemma that� ` B2[x := A2] : s2 (1)Subcase 2.1. A0 � A01A02 and A1!A01 or A2!A02. The IH and the applica-tion rule give � ` A01A02 : B2[x := A02]Therefore by (1) and the conversion rule� ` A01A02 : B2[x := A2]which is � ` A0 : B:Subcase 2.2. A1 � �x:A11:A12 and A0 � A12[x := A2]. Then we have� ` (�x:A11:A12) : (�x:B1:B2) (2)� ` A2 : B1: (3)By the generation lemma applied to (2) we get� ` A11 : s2 (4)�; x:A11 ` A12 : B02 (5)�; x:A11 ` B02 : s2�x:B1:B2 = �x:A11:B02 (6)for some B02 and rule (s1; s2; s3). From (6) and the Church{Rosser property, we obtain

108 H.P. BarendregtB1 = A11 and B2 = B02 (7)By (3), (4) and (7) it follows from the conversion rule� ` A2 : A11;hence by (5) and the substitution lemma� ` (A12[x := A2]) : (B02[x := A2]):From this (1) and the conversion rule we �nally obtain� ` (A12[x := A2]) : (B2[x := A2])which is � ` A0 : B:Corollary 5.2.16. In every PTSone has the following.1. [� ` A : B & B !!� B0]) � ` A : B0:2. If A is a �-term and A!!� A0, then A0 is a �-term.Proof. 1. If � ` A : B, then by Corollary 5.2.14 (1) B � s or � ` B : s,for some sort s. In the �rst case also B0 � s and we are done. Inthe second case one has, by the subject reduction theorem, 5.2.15,� ` B0 : s and hence by the conversion rule � ` A : B0:2. By 5.2.15 and (1).The following result is proved in van Benthem Jutting (1990) extendingin a nontrivial way a result of Luo (1990) for a particular type system. Theproof for arbitrary PTSs is somewhat involved and will not be given here.Lemma 5.2.17 (Condensing lemma for PTS's). In every PTS onehas the following:�; x:A;� ` B : C & x =2�; B;C) �;� ` B : C:Here x =2�; : : : means that x is not free in � etc.Corollary 5.2.18 (Decidability of type checking and typability fornormalizing PTS's). Let �S = �(S;A;R), with S �nite, be a PTS that

Lambda Calculi with Types 109is (weakly or stongly) normalizing. Then the questions of type checkingand typability (in the sense of subsection 4.4) are decidable.Proof. This is proved in van Benthem Jutting (1990) as a corollary to themethod of lemma 5.2.17, not to the result itself.On the other hand Meyer (1988) shows that for �� these questions are notdecidable.In 5.2.19 - 5.2.22 we will consider results that hold only in special PTS's.De�nition 5.2.19. Let �S = �(S;A;R) be a given PTS.�S is called singly sorted if1. (c : s1); (c : s2) 2A) s1 � s2;2. (s1; s2; s3); (s1; s2; s03) 2R) s3 � s03:Examples 5.2.20.1. All systems in the �-cube and �� and �U as well are singly sorted.2. The PTS speci�ed by S �;�;�A � : �; � : �R (�; �); (�;�)is not singly sorted.Lemma 5.2.21 (Uniqueness of types lemma for singly sorted PTS's).Let �S be a PTSthat is singly sorted. Then� ` A : B1 & � ` A : B2) B1 =� B2:Proof. By induction on the structure of A. We treat two cases. Assume� ` A : Bi for i = 1; 2:Case 1. A � c; a constant. By the generation lemma it follows that9si = Bi (c : si) is an axiomfor i = 1; 2. By the assumption that �S is singly sorted we can concludethat s1 � s2, hence B1 = B2:

110 H.P. BarendregtCase 2. A � �x:A1:A2. By the generation lemma it follows that� ` A1 : s1 & �; x : A1 ` A2 : s2 & B1 = s3� ` A1 : s01 & �; x:A1 ` A2 : s02 & B2 = s03for some rules (s1; s2; s3) and (s01; s02; s02). By the induction hypothesis itfollows that s01 = s1 and s02 = s2 hence s01 � s1 and s02 � s2. Hence bythe fact that �S is singly sorted we can conclude that s03 � s3. ThereforeB0 = B.Corollary 5.2.22. Let �S be a singly sorted PTS.1. Suppose � ` A : B and � ` A0 : B0. ThenA =� A0) B =� B0:2. Suppose � ` B : s; B =� B0 and � ` A0 : B0. Then � ` B0 : s:Proof. 1. If A =� A0, then by the Church{Rosser theorem A !!� A00and A0 !!� A00 for some A00. Hence by the subject reduction theorem5.2.15 � ` A00 : B and � ` A00 : B0:But then by uniqueness of types B =� B0:2. By the assumption and Corollary 5.2.14 it follows that � ` B0 : s0 orB0 � s0 for some sort s0.Case 1. � ` B0 : s0. Since B and B0 have a common reduct B00, it followsby the subject reduction theorem that � ` B00 : s and � ` B00 : s0. Byuniqueness of types one has s � s0 and hence � ` B0 : s:Case 2. B0 � s0. Then B !!� s0, hence by subject reduction � ` s0 : s, i.e.� ` B0 : s:Now we introduce a classi�cation of pseudoterms that is useful for theanalysis of legal terms in systems of the �-cube.De�nition 5.2.23. A map] : T !f0; 1; 2; 3g is de�ned as follows:](�) = 3;](�) = 2;](�x) = 1;](�x) = 0;](s) =](sx) = arbitary, say 0, if s 6� �; �;](�x:A:B) =](�x:A:B) =](BA) =](B):For A 2 T the value](A) is called the degree of A.

Lambda Calculi with Types 111It will be shown for all systems in the �-cube that if � ` A : B, then](A) + 1 =](B). This is a folklore result for AUTOMATH-like systemsand the proof below is due to van Benthem Jutting. First some lemmas.Lemma 5.2.24. In �C and hence in all systems of the �-cube one has thefollowing:1. � 6` � : A.2. � 6` (AB) : �:3. � 6` (�x:A:b) : �:Proof. 1. By induction on derivations one shows� ` B : A) B 6� �2. Similarly one shows � ` (AB) : C) C 6� �:We treat the case that the application rule is used last.� ` A : (�x:P:Q) � ` B : P� ` (AB) : Q[x := B](� C)By 5.2.14 (1) one has � ` (�x:P:Q) : s: hence by the generationlemma �; x:P ` Q : s. Therefore by � ` B : P and the substitutionlemma � ` C � Q[x := B] : sBy (1) it follows that C 6� �:3. If � ` (�x:A:b) : �, then by the generation lemma for some B onehas (�x:A:B) =� �, contradicting the Church{Rosser theorem.Lemma 5.2.25.1. � `�C A : �)](A) = 2:2. � `�C A : B &](A) 2 f2; 3g) B � �:Proof. 1. By induction on derivations.2. Similarly. We treat two cases (that turn out to be impossible).Case 1. The abstraction rule is used last:

112 H.P. Barendregt�; x:A1 ` b : B1 � ` (�x:A1:B1) : s :� ` (�x:A1:b) : (�x:A1:B1)Since](b) =](�x:A1:b) 2 f2; 3g one has by the IH that B1 � �.By the generation lemma it follows that �; x:A1 ` B1 : s0, whichis impossible by 5.2.24 (1).Case 2. The conversion rule is used last:� ` A : b0 � ` B0 : s B0 =� B :� ` A : BBy the IH one has B0 � �. But then B !!� � so by subjectreduction � ` � : s. Again this contradicts 5.2.24 (i).Lemma 5.2.26. If](x) =](Q). Then](P [x := Q]) =](P).Proof. Induction in the structure of P .De�nition 5.2.27.1. A statement A : B is ok if](A) + 1 =](B):2. A statement A : B is hereditarily ok, notation hok, if it is ok andmoreover all substatements y : P (occurring just after a symbol `�'or `�') in A and B are ok.Proposition 5.2.28. Let � `�C A : B. Then A : B and all statements in� are hok.Proof. By induction on the derivation of � ` A : B. We treat four cases.Case 1. (axiom). The statement in <>` � : � is hok.Case 2. (start rule). Suppose all statements in � ` A : s are hok.Then also in �; sx:A ` sx:A, since](sx) =](s)� 2 and](A) =](s) � 1.Case 3. (application rule). Suppose that the statements in � ` F :(�x:A:B) and � ` a : A are hok. We have to show that(Fa) : (B[x := a]) is hok. This statement is ok since](Fa) + 1 =](F) + 1 =](�x:A:B) =](B) =](B[x := a])by Lemma 5.2.26 and the fact that x : A and a : A are ok (sothat](x) =](a)). The statement is also hok since all partsy : P occur already in �; F; (�x:A:B) or a.Case 4. (conversion rule). Suppose that all statements in � ` A :B;� ` B0 : s are hok and that B =� B0. If we can show that

Lambda Calculi with Types 113](B) =](B0) it follows that also A : B0 is hok and we aredone. By Lemma 5.2.22 (2) one has � ` B : s:Subcase 4.1. s � �. Then](B) = 2 =](B0) by Lemma 5.2.25(1)Subcase 4.2. s � �. Then � ` B : � and hence by Lemma 5.2.25(2) onehas](B) =2 f2; 3g: Since A : B is ok, we must have](B) = 1.Moreover B0 : s � � is ok, hence also](B0) = 1.Corollary 5.2.29. � `�C A : B)](A) + 1 =](B):Proposition 5.2.30.1. Let (�x:A:b)a be legal in �C. Then](x) =](a).2. Let A be legal in �C. ThenA!!� B)](A) =](B):Proof. 1. By Corollary 5.2.14(1) one has � ` (�x:A:b)a : B for some �and B. Using the generation lemma once it follows that� ` (�x:A:b) : (�x:A0:B0) and � ` a : A0;and using it once more that � ` A : s and (�x:A:B00) =� (�x:A0:B0),for some s and B00. Then A =� A0, by the Church-Rosser theorem.Hence by the conversion rule � ` a : A. Therefore a : A is ok. Butalso x : A is ok. Thus it follows that](x) =](a).2. By induction on the generation of A !!� B, using (1) and lemma5.2.26.Finally we show that PTS's extending �2 the type ? � (��: � :�) canbe inhabited only by non normalizing terms. Hence, if one knows thatthe system is normalizing|as is the case for e.g. �2 and �C|then thisimplies that ? is not inhabited. On the other hand if in a PTS the type? is inhabited|as is the case for e.g. ��|then not all typable terms arenormalizing.Proposition 5.2.31. Let �S be a PTS extending �2. Suppose `�S M : ?.Then M has no normal form.

114 H.P. BarendregtProof. Suppose towards a contradiction that M has a nf N . Then by thesubject reduction theorem 5.2.15 one has `�S N : ?. By the generationlemma N cannot be constant or a term starting with �, since both kindsof terms should belong to a sort, but ? is not a sort. Moreover N is nota variable since the context is empty. Suppose N is an application; writeN � N1N2 : : :Nk, where N1 is not an application anymore. By a reasoningas before N1 cannot be a variable or a term starting with �. But thenN1 � (�x:A:P); hence N contains the redex (�x:A:P)N2, contradicting thefact that N is a nf. Therefore N neither can be an application. The onlyremaining possibility is that N starts with a �. Then N � �a: � :B andsince ` N : ? one has a:� ` B : a. Again by the generation lemma Bcannot be a constant nor a term starting with � or �. The only remainingpossibility is that B � xC1 : : :Ck. But then x � a and k = 0. Hencea:� ` a : a which implies a = �, a contradiction. (The sets V and C aredisjoint.)5.3 Strong normalization for the �-cubeRecall that a pseudo-termM is called strongly normalizing, notation SN(M),if there is no in�nite reduction starting fromM .De�nition 5.3.1. Let �S be a PTS. Then �S is strongly normalizing,notation�S � SN, if all legal terms of �S are SN, i.e.� ` A : B) SN(A) & SN(B):In this subsection it will be proved that all systems in the �-cube satisfySN. For this it is su�cient to show �C � SN. This was �rst proved byCoquand (1985). We follow a proof due to Geuvers and Nederhof (1991)which is modular: �rst it is proved that�! � SN) �C � SN (1)and then �! � SN (2)The proof of (2) is due to Girard (1972) and is a direct generalizationof his proof of �2 � SN as presented in subsection 4.3. Although the proofis relatively simple, it is ingenious and cannot be carried out in higher-order arithmetic. On the other hand the proof of (1) can be carried outin Peano arithmetic. This has as consequence that �! � SN and �C � SNare provably equivalent in Peano arithmetic, a fact that was �rst shown byBerardi (1989) using proof theoretic methods. The proof of Geuvers and

Lambda Calculi with Types 115Nederhof uses a translation between �C and �! preserving reduction. Thistranslation is inspired by the proof of Harper et al. (1987) showing that�! � SN) �P � SNusing a similar translation. Now (1) and (2) will be proved. The proof israther technical and the readers may skip it when �rst reading this chapter.Proof of �! � SN) �C � SNThis proof occupies 5.3.2 { 5.3.14. Two partial maps � :T !T and [[]]:T !Twill be de�ned. Then � will be extended to contexts and it will be provedthat � `�C A : B) � (�) `�! [[A]] : � (B)and A!�A0) [[A]]!!6=0 [[A0]]:(M !!6=0 N means that M !!� N in at least one reduction step. Thenassuming that �! � SN one has� `�C A : B) SN([[A]])) SN(A):as is not di�cult to show. This implies that we are done since by Corollary5.2.14 it follows that also� `�C A : B) SN(B):In order to ful�ll this program, next to � and [[]] another partial map � isneeded.De�nition 5.3.2.1. Write Ti= fM 2 T j](M) = ig and Ti;j= Ti [Tj; similarly Ti;j;k isde�ned.2. Let A 2 T . In �C one uses the following terminology.A is a kind , 9�[� ` A : �];A is a constructor , 9�; B[� ` A : B : �];A is a type , 9�[� ` A : �];A is an object , 9�; B[� ` A : B : �]:Note that types are constructors and that for A legal in �C one hasA is kind ,](A) = 2;A is constructor or type ,](A) = 1;A is object ,](A) = 0:Moreover for legal A one has](A) = 3 i� A � �:

116 H.P. BarendregtDe�nition 5.3.3. A map �:T2;3!T is de�ned as follows:�(�) = �;�(�) = �;�(�x:A:B) = �(A)!�(B); if](A) = 2;= �(B); if](A) 6= 2;�(�x:A:B) = �(B);�(BA) = �(B):It is clear that if](A)2f2; 3g, then �(A) is de�ned and moreover FV (�(A))= ?:Lemma 5.3.4.1. � `�C A : �) `�! �(A) : �:2. Let A 2 T2;3 and](a) =](x). Then �(A[x := a]) � �(A):3. Let A 2 T2;3 be legal and A!!� B. Then �(A) � �(B):4. Let � `�C Ai : �; i = 1; 2. ThenA1 =� A2) �(A1) � �(A2):Proof. 1. By induction on the generation of A : �. We treat two cases.Case 1. � `�C A : � is �0; x:C `�C A : � and follows directly from�0 `�C A : � and �0 `�C C : s. By the induction hypothesis one has`�! �(A) : �:Case 2. � `�C A : � is � `�C (A1A2) : B[x := A2] and followsdirectly from � `�C A1 : (�x:C:B) and � `�C A2 : C. Then eitherB � �, which is impossible by Lemma 5.2.24(2), or B � x andA2 � �. But also � `�C � : C is impossible.2. By induction on the structure of A.3. By induction on the relation!!, using (2) and Proposition 5.2.30 forthe case A � (�x:D:P)Q and B � P [x := Q]:4. By (3).A special variable 0 with 0 : � will be used in the de�nition of �: More-over, in order to de�ne the required map from �C to �! `canonical' con-stants in types are needed. For this reason a �xed context �0 will beintroduced from which it follows that every type has an inhabitant.

Lambda Calculi with Types 117De�nition 5.3.5.1. �0 is the �! context 0:�; c:?;where ? � �x:�:x:2. If � `�! B : �, then cB is de�ned as cB.3. If � `�! B : �, then cB is de�ned inductively as follows; note thatif B 6� �, then it follows from the generation Lemma 5.2.13 thatB � B1!B2. Therefore we can de�nec� � 0;cB1!B2 � �x:B1:cB2 :Lemma 5.3.6. If � `�! B : s, then �0;� `�! cB : B:Proof. If s � �, then cB � cB and the conclusion clearly holds. If s � �,then the result follows by induction on B.De�nition 5.3.7.1. A map � :T1;2;3!T is de�ned as follows.� (�) = 0;� (�) = 0;� (�x) = �x;� (�x:A:B) = �x:�(A):� (A)!� (B); if](A) = 2;= �x:� (A):� (B); if](A) = 1;= � (B); else;� (�x:A:B) = �x:�(A):� (B); if](A) = 2;= � (B); else;� (BA) = � (B); if](A) = 0;= � (B)� (A); else.2. The map � is extended to pseudo-contexts as follows.� (�x:A) = �x:� (A); � (�x:A) = �x:�(A); �x:� (A):Let � � x1:A1; : : : ; xn:An be a pseudo-context. Then� (�) = �0; � (x1:A1); : : : ; � (xn:An):By induction on the structure of A it follows that if A 2 T1;2;3, then � (A)is de�ned and moreover �x =2 FV (� (A)):

118 H.P. BarendregtLemma 5.3.8.1. Let B 2 T1;2;3 and](a) =](x). Then� (B[x := a]) = � (B)[x := � (a)]; if x � �x;= � (B); if x � �x:2. If A 2 T1;2;3 is legal and A!! B, then � (A)!! � (B):Proof. 1. By induction on the structure of B, using Lemma 5.3.4(3).2. By induction on the generation of A !! B. We only treat the caseA � (�x:D:b)a and B � b[x := a]. By the generation lemma itfollows that � ` D : s with s � � or s � �. In the �rst case one hasx � �x and by (1)� ((�x:D:b)a) � � (b) � � (b[x := a]) � � (B):In the second case one has x � �x and by (1)� (A) � (�x:�(D):� (b))� (a)! � (b)[x := � (a)]� � (B):Lemma 5.3.9. Let � `�C B : � or B � �. Then� `�C A : B) � (�) `�! � (A) : �(B):Proof. By induction on the proof of � `�C A : B. We treat three cases.Case 1. � `�C A : B is �0; x:C `�C A : B and follows from �0 `�C A : B and�0 `�C C : s by the weakening rule. By the IH one has� (�0) `�! � (A) : �(B) & � (�0) `�! � (C) : �:We must show � (�0); � (x:C) `�! � (A) : �(B): (1)If x � �x, then � (x:C) � x:� (C) and (1) follows from the IH byweakening. If x � �x, then � (x:C) � �x:�(C); �x:� (C) and (1) follows

Lambda Calculi with Types 119from the IH by weakening twice. (Note that in this case �0 `�C C : �,so by Lemma 5.3.4 (1) one has `�! �(C) : �:)Case 2. � `�C A : B is � `�C (�x:D:b) : (�x:D:B) and follows from � `�C(�x:D:B) : s and �; x:D `�C b : B. By the assumption of thetheorem one has s � �:Subcase 2.1.](D) = 2. By the IH it follows among other things that� (�) `�! [�x:�(D):� (D)!� (B)] : �� (�);�x:�(D); �x:� (D) `�! � (b) : �(B): (2)We must show� (�) `�! (�x:�(D):� (D)) : (�(D)!�(B)):Now �x does not occur in �(B) since it is closed, nor in � (b). There-fore, by (2) and the substitution lemma, using c�(D) in context �0 �� (�), one has � (�);�x:�(D) `�! � (b) : �(B)and hence� (�) `�! (�x:�(D):� (b)) : (�x:�(D):�(B)) � �(D)!�(B)� �(�x:D:B);since �(B) is closed.Subcase 2.2.](D) = 1. Similarly.Case 3. � `�C A : B is � `�C (�x:D:E) : s2and follows directly from � `�C D : s1 and �; x:D `�C E : s2:Subcase 3.1. s1 � �. The IH states� (�) `�! � (D) : �;� (�); x:� (D) `�! � (E) : �:We have to show � (�) `�! (�x:� (D):� (E)) : �;but this follows immediately from the IH.

120 H.P. BarendregtSubcase 3.2. s1 � �. The IH states now� (�) `�! � (D) : �;� (�);�x:�(D); �x:� (D) `�! � (E) : �:We have to show� (�) `�! (�x:�(D):� (D)!� (E)) : �;this follows from the IH and the fact that the fresh variable �x doesnot occur in � (E):Now the third partial map on pseudo-terms will be de�ned.De�nition 5.3.10. The map [[�]]:T0;1;2!T is de�ned as follows. Remem-ber that in the context �0 � 0:�; c:? we de�ned expressions cA such that� ` A : s) �0;� ` cA : A:[[�]] = c0[[�x]] = �x[[�x]] = �x;[[�x:A:B]] = c0!0!0[[A]]([[B]][�x := c�(A)][�x := c�(A)]); if](A) = 2;= c0!0!0[[A]]([[B]][�x := c�(A)]); if](A) 6= 2;[[�x:A:B]] = (�z:0��x:�(A)��x:� (A):[[B]])[[A]]; if](A) = 2;= (�z:0��x:� (A):[[B]])[[A]]; if](A) 6= 2;[[BA]] = [[B]]� (A)[[A]]; if](A) = 2:= [[B]][[A]]; if](A) 6= 2:In the above z � �z is fresh.Proposition 5.3.11.� `�C A : B) � (�) `�! [[A]] : � (B):Proof. By induction on the derivation of A : B. We treat two cases.Case 1. � `�C A : B is � `�C (�x:D:E) : s2 and follows from � `�C D : s1and �; x:D ` E : s2. By the IH one has � (�) `�! [[D]] : 0 and� (�; x:D) `�! [[E]] : 0. By Lemma 5.3.9 one has � (�) `�! � (D) : �,hence � (�) `�! c�(D) : � (D):

Lambda Calculi with Types 121If s1 � �, then x � �x and � (�; x:D) � � (�); x:� (D). Therefore bythe substitution lemma� (�) `�! [[E]][x := c�(D)] : 0:Hence by the application rule twice� (�) `�! c0!0!0[[D]]([[E]][x := c�(D)]) : 0:If s1 � �, then x � �x and � (�; x:D) � � (�);�x:�(D); �x:� (D):Therefore by the substitution lemma� (�) `�! [[E]][�x := c�(D)][�x := c�(D)] : 0:Hence by the application rule twice� (�) `�! c0!0!0[[D]]([[E]][�x := c�(D)][�x := c�(D)]) : 0:In both cases one has � (�) `�! [[�x:D:E]] : 0Case 2. � `�C A : B is � `�C (�x:D:b) : (�x:D:B) and follows from�; x:D `�C b : Band � `�C (�x:D:B) : s:By the generation lemma (and the Church-Rosser theorem) one hasfor some sort s1 � `�C D : s1 & �; x : D `�C B : s:By the IH one has � (�; x:D) `�! [[b]] : � (B)and � (�) `�! [[D]] : 0:By Lemma 5.3.9 one has � (�) `�! � (D) : �and � (�; x:D) `�! � (B) : �:If s1 � �, then x � �x and � (�; x:D) � � (�); x:� (D):

122 H.P. BarendregtTherefore by two applications of the abstraction rule and one appli-cation of the product rule one obtains� (�) `�! ((�z:0�x:� (D):[[b]])[[D]]) : (� (D)!� (B)):If s1 � �, then a similar argument shows� (�) `�! (�z:0��x:�(D)��x:� (D):[[b]])[[D]] : (�x:�(D):� (D)!� (B)):In both cases one has� (�) `�! [[�x:D:b]] : � (�x:D:B):Lemma 5.3.12. Let A:B 2 T . Then1. x � �x) [[A[�x := B]]] � [[A]][�x := [[B]]]2. x � �x) [[A[�x := B]]] � [[A]][�x := � (B); �x := [[B]]]:Proof. 1. By induction on the structure of A. We treat one case: A ��y:D:E. Write P+ � P [x := B]. Now[[A+]] � [[�y:D+:E+]]� c0!0!0[[D+]][[E+]][y := c�(D+)]� (c0!0!0[[D]][[E]][y := c�(D)])[x := [[B]]]� [[�y:D:E]][x := [[B]]];by the induction hypothesis, the substitution lemmaand the fact that� (D[�x := B]) � � (D):2. Similarly, using the convention about hygiene made in de�nition5.2.1.Lemma 5.3.13. Let A;B 2 T0;1;2. ThenA!B) [[A]]!! 6=0 [[B]]:where !! 6=0 denotes that the reduction takes at least one step.

Lambda Calculi with Types 123Proof. By induction on the generation of A!B. We treat only the casethat A!B is (�x:D:P)Q!P [x := Q]:If x � �x, then[[(�x:D:P)Q]] � (�z:0�x:� (D):[[P]])[[D]][[Q]]!!6=0 [[P]][x := [[Q]]]� [[P [x := Q]]]:If x � �x, then[[(�x:D:P)Q]] � (�z:0��x:�(D)��x:� (D):[[P]])[[D]]� (Q)[[Q]]!!6=0 [[P]][�x := � (Q); �x := [[Q]]]� [[P [x := Q]]]:Theorem 5.3.14. �! � SN) �C � SN.Proof. Suppose �! � SN. Let M be a legal �C term. By Corollary 5.2.14it is su�cient to assume � `�C M : A in order to show SN(M). Considera reduction starting with M �M0M0!M1!M2!� � �One has � `�C Mi : A, and therefore � `�! [[Mi]] : � (A) for all i, byProposition 5.3.11. By lemma 5.3.13 one has[[M0]]!! 6=0 [[M1]]!! 6=0 : : :But then [[M]] is a legal �! term and hence the sequence is �nite.Corollary 5.3.15 (Berardi). In HA, the system of intuitionistic arith-metic, one can prove �! � SN , �C � SN:Proof. The implication(is trivial. By inspecting the proof of 5.3.14 itcan be veri�ed that everything is formalizable in HA.This corollary was �rst proved in Berardi (1989) by proof theoretic meth-ods. The present proof of Geuvers and Nederhof gives a more direct argu-ment.

124 H.P. BarendregtThe proof of �! � SNoccupies 5.3.16 -5.3.32. The result will be proved using the following steps:1. A map j � j:T0!� will be de�ned such that� `�! A : B : �) SN(jAj);2. � `�! A : B : �) SN(A);3. � `�! A : B : �) SN(A);4. � `�! A : B : �) SN(A);5. � `�! A : B) SN(A)&SN(B):De�nition 5.3.16. A map j � j:T0!� is de�ned as follows:j�xj = x;j�x:A:Bj = �x:jBj; if](A) = 1;= jBj; else;jBAj = jBjjAj; if](A) = 0;= jBj; else;j�x:A:Bj = jBj:The last clause is not used essentially, since legal terms �x:A:B never havedegree 0. Typical examples of j � j are the following.j�x:�:xj = �x:x;j��:�:�x:�:xj = �x:x;j(�x:�:x)yj = (�x:x)y;j(��:�:�x:�:x)�j = �x:x:The following lemma shows what kinds exist in �! and what kinds andobjects in �!:Lemma 5.3.17. Let K be the set of pseudo-terms de�ned by the abstractsyntax K = � j K!K. So K = f�; �!�; �!�!�; : : :g. Then1. � `�! A : �) A 2K:2. � `�! B : A : �) A;B do not contain any �x:3. � `�! A : �) A � �:4. � `�! A : �) A is an nf.

Lambda Calculi with Types 125Proof. By induction on derivations.Lemma 5.3.18. Let A � � or � `�! A : �. Then for all terms B legalin �! one has A =� B) A � B:Proof. First let A � �. Suppose B is legal and A =� B. By the Church{Rosser theorem one has B !!� �. Then the last step in this reductionmust be (�x:A1:A2)A3!�A2[x := A3] � �:Case 1. A2 � x and A3 � �. Then by 5.2.30 one has](�) =](x), whichis impossible.Case 2. A2 � �. Then (�x:A1:�) is legal, hence � ` (�x:A1:�) : C forsome �; C. But then by 5.2.29 one has](C) =](�x:A1:�) + 1 = 4, acontradiction.If � `�! A : �, then A 2 K as de�ned in 5.3.17 and similarly a con-tradiction is obtained. (In case 2 one has � ` (�x:A1:A) : (�x:A1:�), butthen � ` (�x:A1:�) : s:)Now it will be proved in 5.3.19 - 5.3.24 that if � `�! A : B : �, thenSN(jAj). The proof is related to the one for �2�Curry in section 4.3.Although the proof is not very complicated, it cannot be carried out inhigher-order arithmetic PA! (because as Girard (1972) shows SN(�!) im-plies Con(PA!) and G�odels second incompleteness theorem applies).We work in ZF-set theory. Let U be a large enough set. (If syntax iscoded via arithmetic in the set of natural numbers !, hence the set of type-free �-terms � is a subset of !, then U = V!2 will do; it is closed under theoperations powerset, function spaces and under syntactic operations. HereV� is the usual set-theoretic hierarchy de�ned by V0 = ?;V�+1 = P (V�)and V� = [�2�V�; moreover !2 is the ordinal ! + !:)De�nition 5.3.19.1. A valuation is a map �:V!U :2. Given a valuation � a map [[�]]�:T !U [fUg is de�ned as follows:Remember that X!Y = fF 2� j 8M 2X FM 2Y gand that SAT =fX � � j X is saturatedg.[[�]]� = U ;[[�]]� = SAT;[[x]]� = �(x);

126 H.P. Barendregt[[�x:A:B]]� = [[A]]�![[B]]� if](A) =](B) = 1,= [[B]][[A]]�� ; if](A) =](B) = 2,= \f[[B]]�[x:=f] j f 2 [[A]]�g; if](A) = 2;](B) = 1,= ?; else;[[�x:A:B]]� = �x:[[B]]�[x:=x]; if](A) = 1;](B) = 0,= �f 2 [[A]]�:[[B]]�[x:=f] ; if](A) = 2;](B) = 1,= [[B]]�; if](A) = 2;](B) = 0,= ?; else;[[BA]]� = [[B]]�[[A]]�; if](A) =](B) = 0,= [[B]]�([[A]]�); if](A) =](B) = 1,= [[B]]�; if](A) = 1;](B) = 0,= ?; else.Comment 5.3.20. In the �rst clauses of the de�nitions of [[�x:A:B]]�,[[�x:A:B]]� and [[BA]]� a syntactic operation (as coded in set theory) is used(! as de�ned in 4.3.1.(2) extended to sets, � abstraction and applicationas syntactic operations extended to U). In the second clauses some set the-oretic operations are used (function spaces, lambda abstraction, functionapplication). In the third clause in the de�nition of [[�x:A:B]]� an essentialimpredicativity { the `Girard trick' { occurs: [[�x:A:B]]� for a �xed � isde�ned in terms of [[B]]� for arbitrary �. The fourth clauses are not usedessentially.De�nition 5.3.21. Let � be a valuation.� � � A : B , [[A]]� 2 [[B]]�:� � � � , � � x : A for each (x:A) 2 �:� � � A : B , 8� [� � �) � � A : B]:Lemma 5.3.22. Let � be a valuation with � � �:1. Assume that A is legal in �! and](A) = 0. Then[[A]]� = jAj[~x := �(~x)] 2 �:2. Assume](x) =](a). Then

Lambda Calculi with Types 127[[B[x := a]]]� = [[B]]�[x:=[[a]]�]:3. Let B be legal in �!. Suppose either](B) = 0 and](a) =](x) = 1or](B) = 1 and](a) =](x) = 0. Then[[B[x := a]]]� = [[B]]�4. Let A;A0 be legal in �! and](A) =](A0) 6= 0. Then for all �A =� A0) [[A]]� = [[A0]]�:Proof. 1. By induction on the structure of A.2. By induction on the structure of B.3. By induction on the structure of B.4. Show that if A legal,](A) 6= 0 and A!!� A0, then [[A]]� = [[A0]]�:Proposition 5.3.23. � `�! A : B) � � A : B:Proof. By induction on the derivation of A : B. Since these proofs shouldbe familiar by now, the details are left to the reader.Corollary 5.3.24.1. � `�! A : B : �) SN(jAj):2. � `�! A : B : �) SN(A) & SN(B).Proof. For each kind k a canonical element fk 2 [[k]]� will be de�ned.f� = SNfk1!k2 = �f 2 [[k1]]:fk2:Assume � ` A : B : �. De�ne �(= ��) by�(�x) = fA if (x:A) 2 �;= f�; if x =2Dom(�);

128 H.P. Barendregt�(�x) = �x:Then � � �, because if �x:A is in �, then � ` A : � hence [[A]]�2 [[�]]� = SATand therefore �(x) = x 2 [[A]]� by the de�nition of saturation; if �x:A is in�, then � � �x : A since �(�x) = fA 2 [[A]]�:1. By 5.3.21 one has [[A]]� 2 [[B]]�2SAT and thereforejAj[~x := �(~x)] 2 [[B]]� � SNso jAj[~x := �(~x)]2SN and hence jAj2SN.2. By (1) one has jAj2SN. From this it follows that A2SN, since forlegal terms of �! one hasA!�A0) jAj!�jA0j:(This is not true for �!; for example(�x:(��:�:�!�)�:x)!�(�x:�!�:x)but the absolute values are both �x:x:)>From the previous result we will derive that constructors in �! arestrongly normalizing by interpreting kinds and constructors in �! as re-spectively types and elements in �!. The kind � will be translated as a�xed 0:�. The following examples give the intuition.valid in �! translation valid in �!�:� ` (��:�:�) : (�!�) : � 0:�; a:0 ` (�b:0:a) : (0!0) : �;�:�; f :(�!�) ` (f�!f�) : � 0:�; a:0; f :(0!0) ` c0!0!0(fa)(fa) : 0;�:� ` (��:�:�!�) : � 0:�; a:0 ` c0!0!0c0a : 0.De�nition 5.3.25. A map ()�:T1;2;3!T0;1;2 is de�ned as follows:(�)� = �;(�)� = 0;(�x)� = �x;(BA)� = B�A�; if](A) 6= 0,= B�; else;

Lambda Calculi with Types 129(�x:A:B)� = (�x�:A�:B�); if](A) 6= 0;](x) 6= 0,= B�; else;(�x:A:B)� = (�x�:A�:B�); if](A) =](B) = 2,= c0!0!0A�B�; if](A) =](B) = 1,= B�[x� := cA�]; if](A) = 2;](B) = 1,= B�; else.For pseudo-contexts one de�nes the following (remember �0 = f0:�; c:?g).(�x:A)� = x:A�;(�x:A)� = <>;(x1:A1; : : : ; xn:An)� = �0; (x1:A1)�; : : : ; (xn:An)�:Then one can prove by induction on derivations� `�! A : B &](A) 6= 0) �� `�! A� : B�:Lemma 5.3.26.1. For](A) 6= 0 and](a) =](x) 6= 0 one has(A[x := a])� � A�[x� := a�]:2. For A legal in �! with](A) = 1 one hasA!�B) A�!�B�:Proof. Both by induction on the structure of A.Proposition 5.3.27. � `�! A : B : �) SN(A):Proof. � `�! A : B : �) �� `�! A� : B� : �) SN(A�)

130 H.P. Barendregt) SN(A):De�nition 5.3.28. Let M � (�x:A:B)C be a legal �!-term.1. M is a 0-redex if](B) = 0 and](A) = 1;2. M is a 2-redex if](B) = 0 and](A) = 2;3. M is an !-redex if](B) = 1 and](A) = 2;4. A 2-� is the �rst lambda occurrence in a 2-redex.The three di�erent kinds of redexes give rise to three di�erent notions ofcontraction and reduction and will be denoted by !0;!2 and !! respec-tively. Note that �-reduction is 0; 2; !-reduction, in the obvious sense. Wewill prove that �-reduction of legal �!-terms is SN by �rst proving thesame for 2; !-reduction.Lemma 5.3.29. Let A;B 2 T0 be legal terms in �!. Then1. (A!2B)) (number of 2-�s in A)>(number of 2-�s in B).2. (A!!B)) (number of 2-�s in A) =(number of 2-�s in B).3. A!2;!B) jAj � jBj:4. A!0B) jAj!� jBj:Proof. 1. Contracting a 2-redex (�x:A0:B0)C0 removes one 2-� in A,removes A0 and moves around C0, possibly with duplications. A 2-�is always part of (�x:A1:B1) with degree 0. A kind or constructor doesnot contain objects, in particular no 2-redexes. Therefore removingA0, or moving around C0 does not change the number of 2-�'s andwe have the result.2. Similarly.3. If M � (�x:A0:B0)C0 in A is a 2-redex, then C0 is a constructorand jM j � jB0j. Remark that a constructor in an object M canoccur only as subterm of A1 occurring in �y:A1:B1 in M . By thede�nition of j � j constructors are removed in jM j. Therefore alsojB0[x := C0]j � jB0j. We can conclude jAj � jBj:

Lambda Calculi with Types 131IfM � (�x:A0:B0)C0 in A is an !-redex, then M and its contractumM 0 are both constructors. Therefore jAj � jBj, again by the factthat constructors are eliminated by j � j:4. If M � (�x:A0:B0)C0 is a 0-redex with contractum M 0 � B0[x :=C0], then jM j � (�x:jB0j)jC0j and jM 0j � jB0[x := C0]j � jB0j[x ::=jC0j] as can be proved by induction on the structure of B0. ThereforejM j!� jM 0j. More generally jAj!�jBj if A!0B:Lemma 5.3.30. Suppose M is legal in �! and](M) = 0. Then M isstrongly normalizing for1. !-reduction;2. 2; !-reduction.Proof. 1. M is not of the form �x:A:B. Therefore it follows that eitherM � �x1:A1 � � ��xn:An:yB1 � � �Bm; n;m � 0:or M � �x1:A1 � � ��xn:An:(�y:C0:C1)B1 � � �Bm; n � 0;m � 1:In the second case](M) =](C1). Therefore (�y:Co:C1)B1 is not an!-redex. So in both cases !-reduction starting with M must takeplace within the constructors that are subterms of the Ai; Bi or Ci,thus leaving the overall structure of M the same. Since �-reductionon constructors is SN by 5.3.27 it follows that !-reduction on objectsis SN.2. Suppose M0!2;!M1!2;! � � �is an in�nite 2; !�reduction. By 5.3.29 (1), (2) it follows that aftersome steps we have Mk!!Mk+1!! � � �which is impossible by (1).Corollary 5.3.31. Suppose](A) = 0 and SN(jAj). Then SN(A).

132 H.P. BarendregtProof. An in�nite reduction starting with A must by 5.3.30 2 be of theform A!!2;! A1!0A2 !!2;! A3!0A4 !!2;! � � � :But then by 5.3.29 3,4 we havejAj � jA1j!�jA2j � jA3j!� jA4j � � � � :contradicting SN(jAj):Proposition 5.3.32.� `�! A : B) SN(A) & SN(B):Proof. If � `�! A : B : �, then](A) = 0 by 5.2.28 and SN(jAj) by5.3.24(1) hence SN(A) by 5.3.31; also � `�! B : � : � and therefore by5.3.27 one has SN(B). If on the other hand � `�! A : B : �, then SN(A)by 5.3.27 and SN(B) since B is in nf by 5.3.17 (1).Theorem 5.3.33 (Strong normalization for the �-cube). For all sys-tems in the �-cube one has the following:1. � ` A : B) SN(A) & SN(B).2. x1:A1; : : : ; xn:An ` B : C) A1; : : : ; An; B;C are SN.Proof. 1. It is su�cient to prove this for the strongest system �C andhence by 5.3.15 for �!. This is done in 5.3.32.2. By induction on derivations, using (1).5.4 Representing logics and data-typesIn this section eight systems of intuitionistic logic will be introduced thatcorrespond in some sense to the systems in the �-cube. The systems arethe following; there are four systems of proposition logic and four systemsof many-sorted predicate logic.PROP proposition logic;PROP2 second-order proposition logic;PROP! weakly higher-order proposition logic;PROP! higher-order proposition logic;PRED predicate logic;PRED2 second-order predicate logic;PRED! weakly higher-order predicate logic;PRED! higher-order predicate logic.All these systems are minimal logics in the sense that the only logicaloperators are! and 8. However, for the second- and higher-order systems

Lambda Calculi with Types 133the operators :;&;_ and 9, as well as Leibniz's equality, are all de�n-able, see 5.4.17. Weakly higher-order logics have variables for higher-orderpropositions or predicates but no quanti�cation over them; a higher-orderproposition has lower order propositions as arguments. Classical versionsof the logics in the upper plane are obtained easily (by adding as axiom8�:::�!�): The systems form a cube as shown in the following Figure.3. PROP! PRED!������ ������PROP2 PRED2PROP! PRED!������ ������PROP PREDFig. 3. The logic-cube.This cube will be referred to as the logic-cube. The orientation ofthe logic-cube as drawn is called the standard orientation. Each systemLi on the logic-cube corresponds to the system �i on the �-cube on thecorresponding vertex (both cubes in standard orientation). The edges ofthe logic-cube represent inclusions of systems in the same way as on the�-cube.A formula A in a logic Li on the logic-cube can be interpreted as atype [[A]] in the corresponding �i on the �-cube. The transition A 7! [[A]]is called the propositions-as-types interpretation of de Bruijn (1970) andHoward (1980), �rst formulated for extensions of PRED and �P. Themethod has been extended by Martin-L�of (1984) who added to �P types�x:A:B corresponding to (strong) constructive existence and a constructor=A :A!A!� corresponding to equality on a type A. Since Martin-L�of'sprincipal objective is to give a constructive foundation of mathematics, hedoes not consider the impredicative rules (�; �):The propositions-as-types interpretation satis�es the following sound-ness result: if A is provable in PRED, then [[A]] is inhabited in �P. In fact,

134 H.P. Barendregtan inhabitant of [[A]] in �P can be found canonically from a proof of A inPRED; di�erent proofs of A are interpreted as di�erent terms of type [[A]].The interpretation has been extended to several other systems, see e.g.Stenlund (1972), Martin-L�of (1984) and Luo (1990). In Geuvers (1988) itis veri�ed that for all systems Li on the logic-cube soundness holds withrespect to the corresponding system �i on the �-cube: if A is provable inLi, then [[A]] is inhabited in �i. Barendsen (1989) veri�es that a proof Dof such A can be canonically translated to [[D]] being an inhabitant of [[A]].After seeing Geuvers (1988), it was realized by Berardi (1988a), (1990)that the systems in the logic-cube can be considered as PTSs. Doing this,the propositions-as-types interpretation obtains a simple canonical form.We will �rst give a description of PRED in its usual form and then in itsform as a PTS.The soundness result for the propositions-as-type interpretation raisesthe question whether one has also completeness in the sense that if a for-mula A of a logic Li is such that [[A]] is inhabited in �i, then A is provablein Li. For the proposition logics this is trivially true. For PRED complete-ness with respect to �P is proved in Martin-L�of (1971), Barendsen andGeuvers (1989) and Berardi (1990) (see also Swaen (1989)). For PRED!completeness with respect to �C fails, as is shown in Geuvers (1989) andBerardi (1989).This subsection ends with a representation of data types in �2. Themethod is due to Leivant (1983) and coincides with an algorithmgiven laterby B�ohm and Berarducci (1985) and by Fokkinga (1987). Some results arestated about the representability of computable functions on data typesrepresented in �2.Many sorted predicate logicMany sorted predicate logic will be introduced in its minimal form: formu-las are built up from atomic ones using only! and 8 as logical operators.De�nition 5.4.1.1. The notion of a many sorted structure will be de�ned by an example.The following sequence is a typical many sorted structureA = hA;B; f; g; P;Q; ci;where A;B are non-empty sets, the sorts of Af : (A!(A!A)) and g : A!B are functions;P � A and Q � A� B are relations;c 2A is a constant.

Lambda Calculi with Types 135The name `sorts' for A and B is standard terminology; in the contextof PTSs it is better to call these the `types' of A.2. The signature of A is h2; h1; 1; 1i; h1;2i; h1i; h1; 2i; 1i stating that thereare two sorts; two functions, the �rst of which has signature h1; 1; 1i,i.e. having as input two elements of the �rst sort and as output anelement of the �rst sort, the second of which has signature h1; 2i, i.e.having an element of the �rst sort as input and an element of thesecond sort as output; etc.De�nition5.4.2. Given the many sorted structure A of 5.4.1 the languageLA of (minimal) many sorted predicate logic over A is de�ned as follows.In fact this language depends only on the signature of A.1. LA has the following special symbols.� A;B sort symbols;� f ;g function symbols;� P;Q relation symbols;� c constant symbol.2. The set of variables of LA isV = fxA j x variableg [fxB j x variableg:3. The set of terms of sort A and of sort B, notation TermA and TermBrespectively, are de�ned inductively as follows:� xA2TermA; xB2 TermB;� c2TermA;� s2TermA and t2TermA) f (s; t)2TermA;� s2TermA) g(s)2TermB:4. The set of formulae of LA, notation Form, is de�ned inductively asfollows:� s2TermA) P(s)2Form;� s2TermA; t2TermB) Q(s; t)2Form;� '2Form, 2Form) ('!)2Form;� '2Form) (8xA:')2Form and (8xB:')2Form.De�nition 5.4.3. Let A be a many sorted structure. The (minimal)many sorted predicate logic over A, notation PRED = PREDA, is de�ned

136 H.P. Barendregtas follows. If � is a set of formulae, then � ` ' denotes that ' is derivablefrom the assumptions �. This notion is de�ned inductively as follows (Cranges over A and B, and the corresponding C over A;B):' 2 �) � ` '� ` '! ;� ` ') � ` �; ' `) � ` '! � ` 8xC:'; t 2TermC) � ` '[x := t]� ` '; xC =2 FV (�)) � ` 8xC:';where [x := t] denotes substitution of t for x and FV is the set of freevariables in a term, formula or collection of formulae. For ? ` ' one writessimply ` ' and one says that ' is a theorem.These rules can be remembered best in the following natural deductionform.'! ' ; '... ;'! 8xC:' ; t 2 termC;'[x := t] ' ; x not free in the assumptions:8xC'Some examples of terms, formulae and theorems are the following.The expressions xA; c; f (xA; c) and f (c; c) are all in TermA;g(xA) is inTermB. Moreover 8xAP(f (xA; xA)); (1)8xA[P(xA)!P(f (xA; c))]; (2)8xA[P(xA)!P(f (xA; c))]!8xAP(xA)!P(f (c; c)) (3)are formulae. The formula (3) is even a theorem. A derivation of (3) is asfollows:

Lambda Calculi with Types 1378xA[P(xA)!P(f(xA; c))]2P(c)!P(f (c; c)) 8xAP(xA)1P(c)P(f (c; c)) 18xAP(xA)!P(f (c; c)) 28xA[P(xA)!P(f (xA; c))]!8xAP(xA)!P(f (c; c))the numbers 1, 2 indicating when a cancellation of an assumption is beingmade. A simpler derivation of the same formula is8xA[P(xA)!P(f (xA; c))]2 8xAP(xA)1P(f (c; c)) 18xAP(xA)!P(f (c; c)) 28xA[P(xA)!P(f (xA; c))]!8xAP(xA)!P(f (c; c))Now we will explain, �rst somewhat informally, the propositions-as-types interpretation from PRED into �P. First one needs a context corre-sponding to the structure A. This is �A de�ned as follows (later �A willbe de�ned a bit di�erently):�A = A:�; B:�;P :A!�; Q:A!B!�;f :A!A!A; g:A!B;c:A:For this context one has �A ` c : A (00)�A ` (fcc) : A�A ` �x:A:P (fxx) : � (10)�A ` �x:A:(Px!P (fxc)) : � (20)�A ` (�x:A:(Px!P (fxc)))!((�x:A:Px)!P (fcc)) : �: (30)We see how the formulae (1){(3) are translated as types. The inhabi-tants of � have a somewhat `ambivalent' behaviour: they serve both as sets(e.g. A:�) and as propositions (e.g. Px : � for x:A). The fact that formulae

138 H.P. Barendregtare translated as types is called the propositions-as-types (or also formulae-as-types) interpretation. The provability of the formula (3) corresponds tothe fact that the type in (30) is inhabited. In fact�A ` �p:(�x:A:(Px!P (fxc))):�q:(�x:A:Px):pc(qc) :�p:(�x:A:(Px!P (fxc))):�q:(�x:A:Px):P (fcc):A somewhat simpler inhabitant of the type in (30), corresponding to thesecond proof of the formula (3) is�p:(�x:A:(Px!P (fxc))):�q:(�x:A:Px):q(fcc):In fact, one has the following result that we state at this moment informally(and in fact not completely correct).Theorem 5.4.4 (Soundness of the propositions-as-types interpre-tation). Let A be a many sorted structure and let ' be a formula of LA.Suppose `PRED ' with derivation D;then �A `�P [D] : ['] : �;where [D] and ['] are canonical translations of respectively ' and D.Now it will be shown that up to `isomorphism' PRED can be viewedas a PTS. This PTS will be called �PRED. The map ' 7! ['] can befactorized as the composition of an isomorphism PRED !�PRED and acanonical forgetful homomorphism �PRED !�P.De�nition 5.4.5 (Berardi (1988a)). PRED considered as a PTS, no-tation �PRED, is determined by the following speci�cation:S �s; �p; �f ;�s;�pA �s : �s; �p : �pR (�p; �p); (�s; �p); (�s;�p);(�s; �s; �f); (�s; �f ; �f)Some explanations are called for. The sort �s is for sets (the `sorts' ofthe many sorted logic). The sort �p is for propositions (the formulae of thelogic will become elements of �p). The sort �f is for �rst-order functionsbetween the sets in �s. The sort �s contains �s and the sort �p contains�p. (There is no �f , otherwise it would be allowed to have free variablesfor function spaces.)The rule (�p; �p) allows the formation of implication of two formulae:

Lambda Calculi with Types 139':�p; :�p ` ('!) � (�x:':) : �p:The rule (�s; �p) allows quanti�cation over sets:A:�s; ':�p ` (8xA:') � (�x:A:') : �p:The rule (�s;�p) allows the formation of �rst-order predicates:A:�s ` (A!�p) � (�x:A:�p) : �p;hence A:�s; P :A!�p; x:A ` Px : �p;i.e. P is a predicate over the set A.The rule (�s; �s; �f) allows the formation of a function space betweenthe basic sets in �s : A:�s; B:�s ` (A!B) : �f ;the rule (�s; �f ; �f) allows the formation of curried functions of severalarguments in the basic sets:A:�s ` (A!(A!A)) : �f :This makes it possible to have for example g:A!B and f :(A!(A!A)) ina context.Now it will be shown formally that �PRED is able to simulate thelogic PRED. Terms, formulae and derivations of PRED are translated intoterms of � PRED. Terms become elements, formulae become types and aderivation of a formula ' becomes an element of the type corresponding to':De�nition 5.4.6. Let A be as in 5.4.1. The canonical context correspond-ing to A, notation �A, is de�ned by�A = A:�s; B:�s;P :(A!�p); Q:(A!B!�p);f :(A!(A!A)); g:(A!B);c:A:Given a term t 2 LA, the canonical translation of t, notation [[t]], and thecanonical context for t, notation �t, are inductively de�ned as follows:

140 H.P. Barendregtt [[t]] �txC x x : Cc c hif (s; s0) f [[s]][[s0]] �s [�s0g(s) g[[s]] �sGiven a a formula ' in LA, the canonical translation of ', notation[[']], and the canonical context for ', notation �', are inductively de�nedas follows: ' [[']] �'P(t) P [[t]] �tQ(s; t) Q[[s]][[t]] �s [�t'1!'2 [['1]]![['2]] �'1 [�'28xC: �x:C:[[]] � � fx:CgLemma 5.4.7.1. t2TermC) �A;�t `�PRED [[t]] : C.2. '2Form) �A;�' `�PRED [[']] : �p:Proof. By an easy induction.In order to de�ne the canonical translation of derivations, it is usefulto introduce some notation. The following de�nition is a reformulation of5.4.3, now giving formal notations for derivations.

Lambda Calculi with Types 141De�nition 5.4.8. In PRED the notion `D is a derivation showing � ` '',notation D : (� ` '), is de�ned as follows.' 2�) P' : (� ` ');D1 : (� ` '!); D2 : (� ` ')) (D1D2) : (� `);D : (�; ' `)) (I':D) : (� ` '!);D : (� ` 8xC:'); t 2TermC) (Dt) : (� ` '[x := t]);D : (� ` '); xC =2 FV (�)) (GxC:D) : (� ` 8xC:'):Here C is A or B; P stands for `projection', I' stands for introductionand has a binding e�ect on ' and GxC stands for `generalization' (over C)and has a binding e�ect on xC:De�nition 5.4.9.1. Let � = f'1; : : : ; 'ng � Form. Then the canonical translation of �,notation ��, is the context de�ned by�� = �'1 [� � � [�'n ; x'1:[['1]]; � � � ; x'n:[['n]]:2. For D : (� ` ') in PRED the canonical translation of D, notation[[D]], and the canonical context for D, notation �D, are inductivelyde�ned as follows:D [[D]] �DP' x' hiD1D2 [[D1]][[D2]] �D1 [�D2I':D1 �x':[[']]:[[D1]] �D1 � fx':[[']]gDt [[D]][[t]] �D [�tGxC:D �x:C:[[D]] �D � fx:CgThe following result is valid for the structure A as given in 5.4.1.Lemma 5.4.10.D : (� `PRED ')) �A;�� [�' [�D `�PRED [[D]] : [[']]:

142 H.P. BarendregtProof. By induction on the derivation in PRED.Barendsen (1989) observed that in spite of Lemma5.4.10 one has in generalfor e.g. a sentence ' (i.e. FV (') = ?)`PRED ' 6) 9A [�A `�PRED A : [[']]]:The point is that in ordinary (minimal, intuitionistic or classical) logic itis always assumed that the universes (the sorts A;B; : : :) of the structureA are supposed to be non-empty. For example(8xA:(Px!Q))!(8xA:Px)!Q)is provable in PRED, but only valid in structures with A 6= ?. In so-called free logic one allows also structures with empty domains. This logichas been axiomatized by Peremans (1949) and Mostowski (1951). Thesystem �PRED is
exible enough to cover also this free logic. The followingextended context �+A explicitly states that the domains in question are notempty.De�nition 5.4.11. Given a many sorted structure A as in 5.4.1, the ex-tended context, notation �+A, is de�ned by �+A = �A; a:A; b:B:Not only there is a sound interpretation of PRED into �PRED, there isalso a converse. In order to prove this completeness the following lemma,due to Fujita and Tonino, is needed.Lemma 5.4.12. Suppose � `�PRED A : B : �p. Then there is a manysorted structure A, a set of formulae � � LA; a formula ' 2 LA and aderivation D such that � � �A;�� [�' [�D;A � [[D]]; B � [[']]D : � `PRED ':Proof. See Fujita and Tonino (1991).Corollary 5.4.13.1. Let ' be a formula and � be a set of formulae of LA. ThenD : � `PRED ' , �A;�� [�' [�D `�PRED [[D]] : [[']]:2. Let � [f'g be a set of sentences of LA. Then

Lambda Calculi with Types 143� `PRED ' , 9M [�+A;�� `�PRED M : [[']]]:3. Let ' be a sentence of LA. Then`PRED ' , 9M [�+A `�PRED M : [[']]]:Proof. 1. By 5.4.10 and 5.4.12 and the fact that [[�]] is injective onderivations and formulae.2. If the members of � and ' are without free variables, thenD : (� `PRED ') , �A;�� [�D `�PRED [[D]] : [[']]:A statement in �D is of the form x : C. Since �+A ` a : A; b : B onehas � `PRED ' , 9D[D : (� `PRED ')], 9D[�A;�� [�D `�PRED [[D]] : [[']]], 9M [�+A;�� `�PRED M : [[']]]:(For the last ()) take M � [[D]][x; y := a; b]; for (() use Lemma5.4.12.)3. By (2), taking � = ?:Now that it has been established that PRED and �PRED are `isomor-phic', the propositions-as-types interpretation from PRED to �P can befactorized in two simple steps: from PRED to �PRED via the isomorphismand from �PRED to �P via a canonical forgetful map.De�nition 5.4.14 (Propositions-as-types interpretation).1. De�ne the forgetful map j � j: term(�PRED)!term(�P) by deletingall superscripts in � and �, so:�s 7! ��p 7! ��f 7! ��s 7! ��p 7! �:E.g. j�x:�p:xj � �x:�:x. Write j�j � hx1:jA1j; : : :i for � � hx1:A1; : : :i:2. Let A be a signature and let t; ';� and D be respectively a term, aformula, a set of formulae and a derivation in PRED formulated inLA. Write

144 H.P. Barendregt[t] = j[[t]]j;['] = j[[']]j;[D] = j[[D]]j;[�] = j�+Aj; j��j:Corollary 5.4.15 (Soundness for the propositions-as-types inter-pretation).1. � `�PRED A : B) j�j `�P jAj : jBj;2. For sentences � and ' in LA one hasD:� `PRED ') [�] `�P M : [']; for some M:Proof. 1. By a trivial induction on derivations in �PRED.2. By 5.4.13(2) and 1.Now that we have seen the equivalence between PRED and �PRED,the other systems on the logic cube will be described directly as a PTSand not as a more traditional logical system. In this way we obtain the socalled L-cube isomorphic to the logic-cube.De�nition 5.4.16.1. The systems �PROP, �PROP2, �PROP! and �PROP! are thePTSs speci�ed as follows:�PROP S �p;�pA �p : �pR (�p; �p)�PROP2 = �PROP+ (�p; �p):�PROP2 S �p;�pA �p : �pR (�p; �p); (�p; �p)�PROP! = �PROP + (�p;�p):

Lambda Calculi with Types 145�PROP! S �p;�pA �p : �pR (�p; �p); (�p;�p)�PROP! = �PROP + (�p; �p) + (�p;�p):�PROP! S �p;�pA �p : �pR (�p; �p); (�p; �p); (�p;�p)2. The systems �PRED, �PRED2, �PRED! and �PRED! are thePTS's speci�ed as follows.�PRED S �p; �s; �f ;�p;�sA �p : �p; �s : �sR (�p; �p); (�s; �p)(�s; �s; �f); (�s; �f ; �f); (�s;�p)�PRED2 = �PRED+ (�p; �p):�PRED2 S �p; �s; �f ;�p;�sA �p : �p; �s : �sR (�p; �p); (�s; �p); (�p; �p)(�s; �s; �f); (�s; �f ; �f); (�s;�p)�PRED! = �PRED+ (�p;�p):�PRED! S �p; �s; �f ;�p;�sA �p : �p; �s : �sR (�p; �p); (�s; �p)(�s; �s; �f); (�s; �f ; �f); (�s;�p); (�p;�p)�PRED! = �PRED+ (�p; �p) + (�p;�p):�PRED! S �p; �s; �f ;�p;�sA �p : �p; �s : �sR (�p; �p); (�s; �p); (�p; �p)(�s; �s; �f); (�s; �f ; �f); (�s;�p); (�p;�p)The eight systems form a cube as shown in the following �gure 4.

146 H.P. Barendregt�PROP! �PRED!������ �������PROP2 �PRED2�PROP! �PRED!������ �������PROP �PREDFig. 4. The L-cube.Since this description of the logical systems as PTSs is more uniformthan the original one, we will considere only this L-cube, rather than theisomorphic one in �g. 3. In particular, �g. 4 displays the standard orien-tation of the L-cube and each system Li (ranging over �PROP, �PREDetc.) corresponds to a unique system �i on the similar vertex in the �-cube(in standard orientation).Now it will be shown how in the upper plane of the L-cube the logicaloperators :;&;_ and 9 and also an equality predicate =L are de�nable.The relation =L is called Leibniz' equality.De�nition 5.4.17 (Second-order de�nability of the logical opera-tions).1. For A;B:�p de�ne ? � (��:�p:�);:A � (A!?)A&B � �
:�p:(A!B!
)!
;A _B � �
:�p:(A!
)!(B!
)!
:2. For A:�p and S:�s de�ne9x:S:A � �
:�p:(�x:S:(A!
))!
:

Lambda Calculi with Types 1473. For S:�s and x; y:S de�ne(x =L y) � �P :S!�p:Px!Py:Note that the de�nition of & and _ make sense for systems extending�PROP2 and 9 and =S for systems extending �PRED2. It is a goodexercise to verify that the usual logical rules for &;_; 9 and =S are validin the appropriate systems.Example 5.4.18. We show how a part of �rst order Heyting Arithmetic(HA) can be done in �PRED. That is, we give a context �A;�� such that�A �xes the language of HA and �� �xes a part of the axioms of HA. Take�A to be N : �s;0 : N;S : N!N;+ : N!N!N;= : N!N!�p :Take �� to be tr : �x; y; z : N: x = y ! y = z ! x = z;sy : �x; y : N: x = y ! y = x;re : �x : N: x = x;a1 : �x; y : N: Sx = Sy ! x = y;a2 : �x : N: x+ 0 = x;a3 : �x; y : N: x+ Sy = S(x + y):Note that we do not have a4 : [�x:N: Sx 6= 0] and a5 : [�x:N: x 6= 0 !9y:N:x = Sy], because the logic is minimal (We can't de�ne : and 9 in�rst order logic.) Also we don't have an induction scheme for the naturalnumbers, which requires in�nitely many axioms or one second order axiom(a6 : �P :N!�p :P0! (�x:N:Px! P (Sx))! �x:N:Px). One says thatHA is not �nitely �rst order axiomatizable. Finally, the atomic equalityin �PRED is very weak, e.g. it doesn't satisfy the substitution property :if '(x) and x = y hold, then '(y) holds. In second order predicate logic(�PRED2) HA can be axiomatized by adding a6 and further a4 and a5 usingthe de�nable : and 9. Also the atomic = can be replaced by the (de�nable)Leibniz equality on N , which does satisfy the substitution property.Example 5.4.19. The structure of commutative torsion groups is not�nitely nor in�nitely �rst order axiomatizable. (This example is taken

148 H.P. Barendregtfrom Barwise (1977).) The manysorted structure of a commutative torsiongroup is hA;=; ?; 0i and it has as axioms:8x; y; z (x ? y) ? z = x ? (y ? z);8x x ? 0 = x;8x 9y x ? y = 0;8x; y x ? y = y ? x;8x 9n � 1 nx = 0;where we write nx for x ? � � � ? x| {z }nIf one tries to write the last formula in a �rst order form we get the follow-ing. 8x (x = 0 _ 2x = 0 _ � � �)So we obtain an `in�nitary' formula, which, can be shown to be not �rstorder, by some use of the compactness theorem. A second order statement(as type) that expresses that the group has torsion is8x:A8P :A!�:[Px!(8y:A:Py!P (x ? y))!P0]:Theorem 5.4.20 (Soundness of the propositions-as-types interpre-tation). Let Li be a system on the L-cube and let �i be the correspondingsystem on the �-cube. The forgetful map j : j that erases all superscriptsin the �'s and �'s satis�es the following� `Li A : B : s) j�j `�i jAj : jBj : jsj:Proof. By a trivial induction on the derivation in Li:As was remarked before, completeness for the propositions-as-types in-terpretation holds for PRED and �P, but not for PRED! and �C.Theorem 5.4.21 (Berardi (1989); Geuvers (1989)). Consider thesimilarity type of the structure A = hAi, i.e . there is one set without anyrelations. Then there is in the signature of A a sentence ' of PRED! suchthat 6`PRED! 'but for some M one has �A `�C M : [']:Proof. (Berardi) De�neEXT � �p; p0:�p:[(p$ p0)!�Q:�p!�p:(Qp!Qp0)]' � EXT ! `A does not have exactly two elements'Obviously 6`PRED! '. Claim: interpreted in �C one has

Lambda Calculi with Types 149EXT ! `if A is non-empty, then A is a type-free �-model'.The reason is that if a:A, then` (�x:(A!A):a) : ((A!A)!A)and always ` (�y:A:�z:A:z) : (A!(A!A));therefore `A$ (A!A)' and since `A �= A' (i.e. there is a bijection from Ato A), it follows by EXT that `A �= (A!A)', i.e.`A is a type-free �-model'.By the claimA cannot have two elements, since only the trivial �-modelis �nite.Proof. (Geuvers) Consider in �PRED! the context � and type B de�nedas follows:� � A:�s; c:AB � �Q:(�p!�p):�q:�p:(Q(�x:A:q)!9q0:�p:Q(q0!q)):Then B considered as formula is not derivable in �PRED!, but itstranslation jBj in �C is inhabited, i.e.1. j�j `�C C : jBj, for some C.2. � 6`�PRED! C : B, for all C.As to 1, it is su�cient to construct a C0 such thatA:�; c:A;Q:(�!�); q:� ` C0 : (Q(�x:A:q)!9q0:�:Q(q0!q)):Now note that Q(�x:A:q) � Q(A!q)and the type [Q(�x:A:q)!9q0:�:Q(q0!q)] �� Q(A!q)![��:�:�q0:�:(Q(q0!q)!�)!�]is inhabited by�y:(Q(A!q)):��:�:�f :(�q0:�:(Q(q0!q)!�)):fAy:As to 2, if � `�PRED! C : B, then alsoA:�s; c:A;Q:(�p!�p); q:�p; r:(Q(�x:A:q)); �:�p; t:(�q0:�p:Q(q0!q)!�)` CQqr�t : �By considering the possible forms of the normal form of CQqr�t it canbe shown that this is impossible.The counterexample of Geuvers is shorter (and hence easier to formal-ize) than that of Berardi, but it is less intuitive.

150 H.P. BarendregtAs is well-known, logical deductions are subject to reduction, see e.g.Prawitz (1965) or Stenlund (1972). For example in PRED one has
and

If the deductions are represented in �PRED, then these reductions be-come ordinary �-reductions:

Lambda Calculi with Types 151[[(I':D1)D2]] � (�x':[[']]:[[D1]])[[D2]]!�[[D1]][x' := [[D2]]] � [[D1[P' := D2]]];[[(GxC:D)t]] � (�x:C:[[D]])[[t]]!�[[D]][x := [[t]]]� [[D[x := t]]]:In fact the best way to de�ne the notion of reduction for a logical systemon the L-cube is to consider that system as a PTS subject to �-reductions.Now it follows that reductions in all systems of the L-cube are stronglynormalizing.Corollary 5.4.22. Deductions in a system on the L-cube are stronglynormalizing.Proof. The propositions-as-types mapj j : L-cube !�-cubepreserves reduction; moreover the systems on the �-cube are strongly nor-malizing.The following example again shows the
exibility of the notion of PTS.Example 5.4.23 (Geuvers (1990)). The system of higher-order logicin Church (1940) can be described by the following PTS:�HOL S �;�;�A � : �;� : �R (�; �); (�; �); (�;�)That is �HOL is �! plus � : �. The sort � represents the universeof domains and the sort � represents the universe of formulae. The sort� and the rule � : � allow us to make declarations A : � in the context.The system �HOL consists of a higher-order term language given by thesorts � : � : � and the rule (�;�) (notice the similarity with �!) with ahigher-order logic on top of it, given by the rules (�; �) and (�; �).A sound interpretation of �PRED! in �HOL is determined by the mapgiven by �p 7! ��s 7! ��f 7! ��p 7! ��s 7! �:

152 H.P. BarendregtGeuvers (1990) proves that �HOL is isomorphic with the following ex-tended version of �PRED!,�PRED!! S �p; �s;�p;�sA �p : �p; �s : �sR (�p; �p); (�s; �p); (�p; �p)(�s; �s); (�p; �s); (�s;�p); (�p;�p)where isomorphic means that there are mappings F : (�PRED!!) !(�HOL) and G : (�HOL)! (�PRED!!) such that G �F = Id and F �G =Id. (Here the systems (�HOL) and (�PRED!!) are identi�ed with the setof derivable sequents in these systems.) This shows that even completenessholds for the interpretation above.Representing data types in �2In this subsection it will be shown that data types can be represented in�2. This result of Leivant (1983), (1989) will be presented in a modi�edform due to Barendsen (1989).De�nition 5.4.24.1. A data structure is a many sorted structure with no given relations.A sort in a data structure is called a data set.2. A data system is the signature of a data structure. A sort in a datasystem is called a data type.Data systems will often be speci�ed as shown in the following example.� Sorts A;B� Functions f : A!Bg : B!A!A� Constants c 2A:In a picture:

Lambda Calculi with Types 153
Examples 5.4.25. Two data systems are chosen as typical examples.1. The data system for the natural numbers Nat is speci�ed as follows:� Sorts N;� Functions S :N!N;� Constants 0 2N:2. The dat asystem of lists over a sort A, notation ListA, is speci�edas follows:� Sorts A;LA;� Functions Cons : A!LA!LA;� Constants nil2 LA:De�nition 5.4.26.1. A sort in a data system is called a parameter sort if there is no in-going arrow into that sort and also no constant for that sort.2. A data system is called parameter-free if it does not have a parametersort.The data system Nat is parameter-free. The data system ListA hasthe sort A as a parameter sort.

154 H.P. BarendregtDe�nition 5.4.27. Let D be a data system. The language LD corre-sponding to D is de�ned in 5.4.21. The (open) termmodel of D, notation T (D), consists of the terms(containing free variables) of LD together with the obvious maps givenby the function symbols. That is, for every sort C ofD the corresponding set C consists of the collection of the terms in LDof sort C; corresponding to a function symbol f : C1!C2 a functionf : C1!C2 is de�ned by f(t) = f (t):A constant c of sort C is interpreted as itself; indeed one has alsoc 2C.2. Similarly one de�nes the closed termmodel of D, notation T o(D), asthe substructure of sets of T (D) given by the closed terms.For example the closed term model of Nat consists of the set0;S0;SS0; : : :with the successor function and the constant 0; this type structure is anisomorphic copy of hf0; 1; 2; :::g; S; 0i:T (ListA) consists of the �nite lists of variables of type A.De�nition 5.4.28. Given a data system D withA1; : : : ;An parameter sorts;B1; : : : ;Bm other sorts;f1 : A1!B1!B2 (say): : :c1 : B1 (say): : :Write �D = A1:�; : : : ; An:�;B1:�; : : : ; Bm:�;f :A1!B1) B2;: : : c1:B1;

Lambda Calculi with Types 155: : : :For every term t 2 LD de�ne a �2-term t� and context �t as follows.t t� �txC x x:Cf t1 � � � tn ft�1 � � � t�n �t1 [� � � [�tnc c hiLemma 5.4.29. For a term t 2 LD of type C one has�D;�t `�2 t� : C:Proof. By induction on the structure of t.Given a data system D, then there is a trivial way of representing T (D)into �2 (or even into �!) by mapping t onto t�. Take for example thedata system Nat. Then �Nat = N :�; S:N!N; 0:N and every term Sk0can be represented as �Nat ` (Sk0) : N:However, for this representation it is not possible to �nd, for example, aterm P lus such that, say,P lus(S0)(S0) =� SS0:The reason is that S is nothing but a variable and one cannot separate acompound S0 or SS0 into its parts to see that they represent the numbersone and two. Therefore we want a better form of representation.De�nition 5.4.30. Let D be a data system as in de�nition 5.4.28.1. Write �D= A1:�; : : : ; An: � :2. A �2-representation of D consists of the following.� Types B1; : : : ; Bm such that�D ` B1 : �; : : : ; Bm : �:� Terms f1; : : : ; c1; : : : such that

156 H.P. Barendregt�D ` f1 : A1!B1!B2;: : :�D ` c1 : B1;: : :� Given a �2-representation of D there is for each term t of LD a�2-term t and context �t de�ned as follows.t t �txC x x:Cf t1 � � � tn ft1 � � � tn �t1 [� � � [�tnc c hi� The �2-representation of D is called free if moreover for all termst; s in LD of the same type one hast =� s , t � s:Notation 5.4.31. Let � = x1:A1; : : : ; xn:An be a context. Then��:M � �x1:A1 � � ��xn:An:M ;��:M � �x1:A1 � � ��xn:An:M ;M� � Mx1 � � �xn:Theorem 5.4.32 (Representation of data types in �2; Leivant(1983), B�ohm-Berarducci (1985), Fokkinga (1987)). Let D be adatasystem. Then there is a free representation of D in �2.Proof. Let D be given as in de�nition 5.4.28. Write�D = B1 : �; : : : ; Bm : �;f1 : A1!B1!B2;: : : c1 : B1;: : : :We want a representation such that for terms t in LD of a non-parametertype t�D =� t�[x1 := x1�D] � � � [xn := xn�D]; (1)

Lambda Calculi with Types 157where x1; : : : ; xn are free variables with non parameter types in t; for termst of a parameter type one has t � t�: (2)Then for terms of the same non-parameter type one hast =� s) t�D =� s�D) t�� =� s��) t� =� s�) t� � s�) t � s;where � denotes the substitutor [x1 := x1�D] � � � [xn := xn�D]. For termsof the same parameter type the implication holds also. Now (2) is trivial,since a term t of a parameter type A is necessarily a variable and hencet � xA, so t� � x � t. In order to ful�ll (1) de�neBi � ��D:Bic � ��D:cf1 � �a1:A1�b1:B1�b2:B2��D:fa1(b1�D)(b2�D):Then by induction on the structure of t one can derive (1). Induction step:f1t1t2t3�D � f1t1t2t3�D=� f1t1(t2�D)(t3�D)=� f1t�1 t�2 �t�3 �� (f1t1t2t3)��:Now it will be shown that for a term t 2LD the representation t in �2given by theorem 5.4.32 can be seen as the canonical translation of a proofthat t satis�es `the second order de�nition of the set of elements of the freestructure generated by D'.De�nition 5.4.33.1. The map]: T !f0; 1; 2; 3g � fs; pg for �C is modi�ed as follows forpseudoterms of �PRED2. Let i range over fs; pg:](�i) = 3i; which is a notation for (3,i);](�i) = 2i;

158 H.P. Barendregt](�ix) = 1i;](�ix) = 0i;](�x:A:B) =](�x:A:B) =](BA) =](B):2. A map [[]]: �PRED2 into �PROP2 is de�ned as follows.[[�i]] = �;[[�i]] = �;[[�ix]] = �x;[[�ix]] = �x;[[�x:A:B]] = [[B]] if]A = 1s,= �[[x]]:[[A]]:[[B]] else;[[�x:A:B]] = [[B]] if]A = 1s,= �[[x]]:[[A]]:[[B]] else;[[BA]] = [[B]] if]A = 1s,= [[B]][[A]] else.[[x:A]] = hi if]x 2 f0s; 1sg,= [[x]]:[[A]] else.[[x1:A1; : : : ; xn:An]] = [[x1:A1]]; : : : ; [[xn:An]]:3. A map j j: �PROP2!�2 is de�ned as follows.j�ij = �;j�ij = �;j�ixj = �x;j�ixj = �x;j�x:A:Bj = �jxj:jAj:jBj;j�x:A:Bj = �jxj:jAj:jBj;jBAj = jBjjAj:Finally put jx:Aj = jxj:jAj;

Lambda Calculi with Types 159jx1:A1; : : : ; xn:Anj = jx1:A1j; : : : ; jxn:Anj:4. A map []: �PRED2!�2 is de�ned by [A] = j[[A]]j.Proposition 5.4.34.1. � `�PRED2 A : B) [[�]] `�PROP2 [[A]] : [[B]]:2. � `�PROP2 A : B) j�j `�2 jAj : jBj:3. � `�PRED2 A : B) [�] `�2 [A] : [B]:Proof. 1. By induction on derivations using[[P [x := Q]]] = [[P]][[[x]] := [[Q]]]:2. Similarly, using �sx =2 FV ([P]).3. By (1) and (2).Now the alternative construction of t for t2LD can be given. The methodis due to Leivant (1983). Let D be a datasystem with parameter sorts.To �x the ideas, let D = ListA. Write �D = A:�s; LA:�s; nil:LA, cons :A!LA!LA: For the parameter typeA a predicate PA:(A!�p) is declared.For ListA the predicatePLA = �z:(LA):�Q:(LA!�p):[Qnil![�a:A�y:(LA):PAa!Qy!Q(cons ay)]!Qz]says of an element z:LA that z belongs to the set of lists built up fromelements of A satisfying the predicate PA.Now if t 2 LD is of type ListA, then intuitively t� : LA satis�es PLA.Indeed, one has for such t�D;�t ` t� : LA and �D;�t ` dt : (PLAt�): (1)for some dt constructed as follows. Let C range over A and ListA withthe corresponding C being A or LA.

160 H.P. Barendregtt t� �t dtxC x x:C; ax:(PCx) axnil nil hi �Q:(LA!�p)�p:(Qnil)�q:(�a:A�y:LA.[PAa!Qy!Q(cons ay)]):pcons t1t2 cons t�1 t�2 �t1 ;�t2 �Q:(LA!�p)�p:(Qnil)�q:(�a:A�y:LA.[PAa!Qy!Q(cons ay)]):qt�1 t�2 dt1(dt2Qpq)By induction on the structure of t one veri�es (1). By Proposition 5.4.34it follows that [�D;�t] ` [dt] : [(PCt�)]: (2)Write A = [PA];LA = [PLA] = �Q:�:Q!(A!Q!Q)!Q;nil = [dnil] = �Q:�:�p:Q�q:(A!Q!Q):p;cons = �a:A�x:LA�Q:�:�p:Q�q:(A!Q!Q):qax:Notice that this is the same �2-representation of ListA as given in theorem5.4.32 and that t =� [dt].In this way many data types can be represented in �2.Examples 5.4.35.1. Lists.To be explicit, a list ha1; a2i2LA and cons are represented as follows.LA = (�L:�:L!(A!L!L)!L);ha1; a2i = (�L:��nil:L�cons:A!L!L:cons a1(cons a2nil)));cons = �a:A�x:(�L:�:L!(A!L!L)!L)

Lambda Calculi with Types 161�L:��nil:L�cons:A!L!L:cons (xLnil cons);Moreover A:�; a1:A; a2:A ` ha1; a2i:LA:2. Booleans.SortsBoolConstantstrue, false2Boolare represented in �2 as follows.Bool = ��:�:�!�!�;true = ��:��x:��y:�:x;false = ��:��x:��y:�:y:3. Pairs.Sorts A1;A2;BFunctions p:A1!A2!B:Representation in �2B = ��:�:(A1!A2!�)!�;p = �x:A1�y:A2��:��z:(A1!A2!�):zxy:Applying the map j j : terms(�2)!� de�ned in 3.2.14 the usual repre-sentations of Booleans and pairing in the type-free �-calculus is obtained.The same applies to the �2 representation of the data type Nat giving thetype-free Church numerals.Now that data types can be represented faithfully in �2, the questionarises which functions on these can be represented by �-terms. Since allterms have an nf, not all recursive functions can be represented in �2, seee.g. Barendregt (1990), thm. 4.2.15.De�nition 5.4.36. Let D be a data structure freely represented in�2 asusual. Consider in the closed term model T o(D) a function f :C!C 0, where

162 H.P. BarendregtC and C 0 are non-parameter sorts, is called �2-de�nable if there is a termf such that �D `�2 f : (C!C 0) & ft =� ft for all t 2 TermC :De�nition 5.4.37. Let a data system D be given. A Herbrand{G�odelsystem, formulated in �PRED2, is given by1. �D2. �f1;:::;fn , a �nite set of function declarations of the form f1:B1,: : : ,fn:Bn with �D ` Bi:�f :3. �ax1;:::;axm , a �nite set of axiom declarations of the form a1:ax1,: : : ,am:axm with each axi of the form fj(s1; : : : :; sp) =L r with thes1,: : : ,sp,r terms in LD of the correct type (see 5.4.17(4) for the def-inition of =L) .For such a Herbrand{G�odel system we writeHG � �D;�~f ;� ~ax:In order to emphasize the functions one may write HG = HG(~f). Theprincipal function symbol is the last fn:Example 5.4.38. The following is a Herbrand-G�odel system (Note thatthe principal function symbol f2 speci�es the function �x 2Nat:x+ x):HG0 � N :�s; 0:N;S:(N!N);f1:N!N!N; f2:N!N1a1:(�x:N:f1x0 =L x);a2:(f1x(Sy) =L S(f1xy));a3:(f2x =L f1xx):De�nition 5.4.39. Let A be a data structure having no parameter sorts.Let f : C!C 0 be a given external function on T (D) (similar de�nitions canbe given for functions of more arguments). Let HG be a Herbrand{G�odelsystem.1. HG computes f , HG = HG(f1; : : : ; fn) and for all t2TermC onehas for some p HG `�PRED2 p : (fnt =L f(t)):

Lambda Calculi with Types 1632. Suppose HG(f1; : : : ; fn) computes f . Then f is called provably type-correct (in �PRED2) if for some B one hasHG `�PRED2 B : [�x:C:[PCx!PC0(fnx)]].Note that the notion `provably type correct' is a so-called intensional prop-erty: it depends on how the f is given to us as fn. Now the questions about�2-de�nability can be answered in a satisfactory way. This result is due toLeivant (1983). It generalizes a result due to Girard (1972) characterizingthe �2-de�nable functions on Nat as those that are provably total.Theorem 5.4.40. Let D be a parameter-free data structure.1. The basic functions in D are �2-de�nable2. A function f :C!C 0 is recursive i� f is HG computable.3. A function f :C!C 0 is �2-de�nable i� f is HG-computable and prov-ably type correct in �PRED2.Proof. 1. This was shown in theorem 5.4.32.2. See Mendelson (1987).3. See Leivant (1983), (1989).5.5 Pure type systems not satisfying normalizationIn this subsection some pure type systems will be considered in which thereare terms of type ? � ��:�:�. As a consequence there are typable termswithout a normal form.In subsection 5.2 we encountered the system �� which can be seen as asimpli�cation of �C by identifying � and �. It has as peculiarity that � : �and its PTS speci�cation is quite simple.De�nition 5.5.1. The system �� is the PTS determined as follows:�� S �A � : �R (�; �)Since all constructions possible in �C can be done also in �� by collaps-ing � to �, it seems an interesting simpli�cation. However, the system ��

164 H.P. Barendregtturns out to be `inconsistent' in the sense that every type is inhabited, thusmaking the propositions-as-types interpretation meaningless. Nevertheless,the system �� is meaningful on the level of conversion of terms. In factthere is a nontrivial model of ��, the so-called closure model due to Scott(1976), see also e.g. Barendregt and Rezus (1983). For a discussion on thecomputational relevance of ��; see Coquand (1986) and Howe (1987).The `inconsistency' following from �:� was �rst proved by Girard (1972).He also showed that the circularity of �:� is not necessary to derive theparadox. For this purpose he introduced the following pure type system�U . Remember its de�nition.De�nition 5.5.2. The system �U is the PTS de�ned as follows:�U S �;�;�A � : �;� : �R (�; �); (�; �); (�;�); (�;�); (�; �)So �U is an extension of �!. The next theorem is the main result in thissubsection. The proof occupies this whole subsection.Theorem 5.5.3 (Girard's paradox). In �U the type ? is inhabited, i.e.`M :?, for some M .Proof. See 5.5.26.Corollary 5.5.4.1. In �U all types are inhabited.2. In �U there are typable terms that have no normal form.3. Results (1) and (2) also hold for �� in place of �U .Proof. 1. Let M :? be provable in �U . Thena:� `Ma : aand it follows that every type of sort � in �U is inhabited. Types ofsort � or � are always inhabited; e.g. �~x: ~A:� by �~x: ~A:?:2. By proposition 5.2.313. By applying the contraction f(�) = f(�) = f(�) = � mapping �Uonto ��.

Lambda Calculi with Types 165The proof of Girard's paradox will be given in �ve steps. Use is made ofideas in Coquand (1985), Howe (1987) and Geuvers (1988).1. Jumping out of a structure.2. A paradox in naive set theory.3. Formalizing.4. An universal notation system in �U .5. The paradox in �U .Step 1. Jumping out of a structureUsually the method of diagonalization provides a constructive way to `jumpout' of a structure. Hence if we make the (tacit) assumption that everythingshould be in our structure, then we obtain a contradiction, the paradox.Well known is the Russell paradox obtained by diagonalization. De�ne thenaive set R = fa j a =2 agThen 8a[a2R$ a =2 a];in particular R 2R$ R =2R;which is a contradiction. A positive way of rephrasing this result is sayingthat R does not belong to the universe of sets from which we take the a;thus we are able to jump out of a system. This is the essence of diagonal-ization �rst presented in Cantor's theorem. The method of diagonalizationyields also undecidable problems and sentences with respect to some givenformal system (i.e. neither provable nor unprovable). (If the main thesisin Hofstadter (1979) turns out to be correct it may even be the underlyingprinciple of self-consciousness.)The following paradox is in its set theoretic form, due to Mirimano�(1917). We present a game theoretic version by Zwicker (1987). Considergames for two players. Such a game is called �nite if any run of the gamecannot go on forever. For example noughts and crosses is �nite. Chess isnot �nite (a game may go on forever, this in spite of the rule that there isa draw if the same position has appeared on the board three times; thatrule is only optional). Hypergame is the following game: player I chooses a�nite game; player II does the �rst move in the chosen game; player I doesthe second move in that game; etc. Claim: hypergame is �nite. Indeed,

166 H.P. Barendregtafter player I has chosen a �nite game, only �nitely many moves can bemade within that game. Now consider the following run of hypergame.Player I: hypergamePlayer II: hypergamePlayer I: hypergame: : : : : :Therefore hypergame is not a �nite game and we have our paradox.This paradox can be formulated also as a positive result.Proposition 5.5.5 (Informal). Let A be a set and let R be a binaryrelation on A. De�ne for a 2ASNRa , there is no in�nite sequence a0; a1; : : :2A such that: : : : : :Ra1Ra0Ra:Then in A we have :9b8a [SNRa $ aRb]:Proof. Suppose towards a contradiction that for some b8a [SNRa$ aRb]: (1)Then 8a [aRb!SNRa]: (2)This implies SNRb;because if there is an in�nite sequence under b: : :Ra1Ra0Rbthen there is also one under a0(Rb), contradicting (2). But then by (1)bRbHence : : :RbRbRb and this means :SNRb. Contradiction.By taking for A the universe of all sets and for R the relation 2, oneobtains Mirimano�'s paradox. By taking for A the collection of all ordinalnumbers and for R again 2, one obtains the Burali{Forti paradox.The construction in 5.5.5 is an alternative way of `jumping out of asystem'. This method and the diagonalization inherent in Cantor's theorem

Lambda Calculi with Types 167can be seen as limit cases of the following generalized construction. Thisobservation is due to Quine (1963), p.36.Proposition 5.5.6. Let A be a set and let R be a binary relation on A.For n = 1; 2; : : : ;1 de�neCna , 9a0; : : : ; an 2A[a0 = a & 8i < n ai+1Rai & an = a]:Bn = fa 2A j :Cnag:fThe set Bn consists of those a 2 A not on an `n-cycle'g. Then in A onehas :9b8a[Bna$ aRb]:Proof. Exercise.By taking n = 1 one obtains the usual diagonalization method of Can-tor. By taking n = 1 one obtains the result 5.5.5. Taking n = 2 givesthe solution to the puzzle `the exclusive club' of Smullyan (1985), p.21. (Aperson is a member of this club if and only if he does not shave anyone whoshaves him. Show that there is no person that has shaved every memberof the exclusive club and no one else.)Step 2. The paradox in naive set theoryNow we will de�ne a (naive) set T with a binary relation < on it such that8a 2 T [SN<a $ a < b]; (!)for some b 2 T . Together with Proposition 5.5.5 this gives the paradox.The particular choice of T and < is such that the auxiliary lemmas neededcan be formalized in �U .De�nition 5.5.7.1. T = f(A;R) j A is a set and R is a binary transitive relation on AgFor (A;R); (A0; R0) 2 T and f :A!A0 write(A;R) <�f (A0; R0) , 8a; b 2A [aRb ! f(a)R0f(b)];f is bounded , 9a0 2A08a 2A:f(a)R0a0;(A;R) <f (A0; R0) , (A;R) <�f (A0; R0) & f is bounded.2. De�ne the binary relation < on T by(A;R) < (A0; R0) , 9f :(A!A0)[(A;R) <f (A0; R0)]:3. Let W = f(A;R)2 T j SN<(A;R)g:We will see that b = (W;<)2T satis�es (!) above. (For notational simplicitywe write for the restriction of < to W also < :)

168 H.P. BarendregtDe�nition 5.5.8. For (A;R) 2 T and a 2A write1. Aa = fb2A j bRag;2. Ra is the restriction of R to Aa:Lemma 5.5.9. Let (A;R) 2 T and a; b2A. Then1. (Aa; Ra) < (A;R);2. aRb ! (Aa; Ra) < (Ab; Rb);3. aRb ! SNRb ! SNRa;4. [8a 2ASNRa] ! SN<(A;R):Proof. 1,2. By using the map f = �x:Aa:x: For (2) the transitivity ofR is needed to ensure that f has codomain Ab. In both cases f isbounded by a.3. Suppose aRb. If there is an in�nite R-chain under a, i.e. : : :a1RaoRa,then there is also one under b; indeed : : :a1RaoRaRb. ThereforeSNRb imlpies SNRa.4. Suppose there is an in�nite <-chain under (A;R):: : : (A1; R1) < (A0; R0) < (A;R):>From the �gure 5 it can be seen that using the bounding elementsin (An; Rn) for the map fn:An+1!An (projected via the fs into A)there is an in�nite R-chain, below an element of A.This contradicts the assumption 8a 2A SNR(a).Proposition 5.5.10.8(A;R) 2 T [SN<(A;R)$ (A;R) < (W;<)]:Proof. It su�ces to show that for (A;R) 2 T1. SN<(A;R) ! (A;R) < (W;<);2. SN<(W;<):For then (A;R) < (W;<) ! SN<(A;R) by Lemma 5.5.9 (3).As to 1, suppose SN<(A;R). Let a2A and de�ne f(a) = (Aa; Ra), withRa de�ned in 5.5.8. By 5.5.9 (1) one has f(a) < (A;R); by assumption and5.5.9(3) applied to (T;<) it follows that SN<(f(a)) and hence f(a) 2W .Therefore f :A!W . Moreover, f :(A;R) < (W;<) by Lemma 5.5.9 (1), (2).As to 2, note that by de�nition 8(A;R) 2 W SN<(A;R): Hence byLemma 5.5.9 (4) one has SN<(W;<):

Lambda Calculi with Types 169
Fig. 5.Step 3. FormalizingIn this step several notions and lemmas from steps 1 and 2 will be for-malized. This could be done inside the systems of the cube (in fact inside�P2). However, since we want the eventual contradiction to occur inside�U , a system that is chosen with as few axioms as seems possible, the for-malization will be done in �U directly. From now on the notions of contextand ` refer to �U . Use will be made freely of logical notions (e.g. we write8a:A instead of �a:A):The �rst task is to de�ne the notion SNR without referring to theconcept of in�nity.De�nition 5.5.11.1. �0 is the context A:�; R:(A!A!�):2. Write in context �0chainA;R� �P :(A!�):8a:A[Pa!9b:A[Pb & bRa]]SNA;R� �a:A:8P :(A!�)[chainA;RP ! :Pa]:Intuitively, chainA;RP states that P :A!� is a predicate on (i.e. subset of)A such that for every element a in P there is an element b in P with bRa.Moreover SNA;Ra states that a:A is not in a subset P � A that is a chain.Lemma 5.5.12. In �U one can show1. �0 `chainA;R : ((A!�)!�):

170 H.P. Barendregt2. �0 ` SNA;R : (A!�):Proof. Immediate.Proposition 5.5.13. In context �0 the type:9b:A8a:A[SNA;Ra$ aRb]is in �U inhabited.Proof. With a little e�ort the proof of Proposition 5.5.5 can be formalizedin �PRED2. Then one can apply the map f :�PRED2!�U determined byf(�p) = �; f(�s) = f(�f) = f(�p) = �; f(�s) = �:iWe now need a relativization of Proposition 5.5.13.De�nition 5.5.14.1. In context �0 writeclosedA;R � �Q:(A!�):8a; b:A [Qa!bRa!Qb].fclosedA;RQ says: `if a is in Q and b is R-below a, then b is in Q':g2. In context �0; Q:A!�, write8a:AQ:B � 8a:A[Qa!B]9a:AQ:B � 9a:A[Qa&B]:fThis is relativizing to a predicate Q:gCorollary 5.5.15. In context �0; Q:A!� the typeclosedA;RQ!9b:AQ8a:AQ [SNA;Ra$ aRb]is inhabited in �U .Proof. The proof of Proposition 5.5.5 formalized in PRED2 can be rela-tivized and that proof becomes, after applying the contraction f the re-quired inhabitant.So far we have formalized the results in Step 1. There are severalproblems for the formalization of the naive paradox in Step 2 into �U . The

Lambda Calculi with Types 171main one is that in �U a `subset' of a type does not form a type again. Forexample it is not clear how to form Aa(� A) as a type. This problem issolved by considering instead of a structure (Aa; Ra) the structure (A;Ra)with bRac , bRc & bRa:In order to formalize Lemma5.5.9 the de�nition of< has to be adjusted.Let the domain of R be the (naive) subsetDomR = fa:A j 9b:A aRbg:In the new de�nition of< it is required that the monotonicmap involvedis bounded, but only on the domain of R.A second problem is that T andW are not types and that it is not clearhow to realize (W;<)2T . This problemwill be solved by constructing in �Ua `universal' kind U such that all pairs (A;R) can be `faithfully' embeddedinto U.De�nition 5.5.16. In �U de�ne two predicates <�; < of type[��:��r:(�!�!�)��0:��r0:(�0!�0!�)�f :(�!�0):�]as follows. We write(A;R) <�f (A0; R0) for <�ARA0R0fand similarly for < :1. (A;R) <�f (A0; R0) , 8a; b:A [aRb! (fa)R0(fb)]:2. (A;R) <f (A0; R0) , (A;R) <�f (A0; R0) &9a0:A0 [DomR0a0&8a:A [DomRa!(fa)R0a0]];where DomRa stands for 9b:A:aRb.3. Write for the appropriate A;R and A0; R0(A;R) <� (A0; R0) , 9f :A!A0 (A;R) <�f (A0; R0)and similarly for <.The notion SN< is not a particular instance of the notion SNA;R . This isbecause the `set' f(A;R) j A:�; R:A!A!�gon which < is supposed to act does not form a type. Therefore SN< hasto be de�ned separately.

172 H.P. BarendregtDe�nition 5.5.17.1. chain< � �P :(��:�:(�!�!�)!�):[8�1:�8r1:(�1!�1!�):[P�1r1!9�2:�9r2:(�2!�2!�)[P�2r2&(�2; r2) < (�1; r1)]]].2. SN<� ��:��r:(�!�!�):8P :[��0:�:(�0!�0!�)!�]:[chain<P!:(P�r)].3. Trans Trans � ��:��r:(�!�!�):8a; b; c:�:[arb!brc!arc]:4. In context �0; a:A de�neRa � �b; c:A:[bRc&bRa]:Proposition 5.5.18. Let A:�; R:(A!A!�); a:A; b:A and assumeTransAR;that is, work in context x :TransAR. Then the following types are inhab-ited.1. DomRa! (A;Ra) < (A;R):2. aRb! (A;Ra) < (A;Rb):3. aRb! SNA;Rb! SNA;Ra:4. (8a:A:SNA;Ra) $ SN<AR.Proof. 1. Assume DomRa. De�ne f = �x:A:x. Then (A;Ra) <�f(A;R). Moreover a in DomR bounds fx = x for x in Dom(Ra).Indeed, xRay ! xRa. Therefore (A;Ra) <f (A;R):2. Assume Trans AR and aRb. Again de�ne f = �x:A:x. Then(A;Ra) <�f (A;Rb);indeed, xRay ! xRy & xRaRb ! xRby by the transitivity of R.Also a is in Dom(Rb) and again bounds fx = x for x in Dom(Ra):3. Assume aRb and SNA;Rb. Let chainA;RP and assume towards acontradiction Pa. De�ne P 0 = �x:A:[Px _ x =L b]. Then alsochainA;RP 0 and P 0b, contradicting SNA;Rb:4. (!) Assume (8a:A. SNA;Ra). Let chain<P and assume towards acontradiction PAR. Then for some A0 and R0 one has PA0R0 and(A0; R0) < (A;R), and therefore for some a:A one has

Lambda Calculi with Types 173DomRa & 9f :(A0!A) [(A0; R0) <�f (A;R)& 8y:A0[DomR0y ! (fy)Ra]] (1)De�ne P 0 � �x:A:DomRx & [9�:�9r:(�!�!�):P�r & 9f :(�!A) [(�; r) <�f (A;R)& 8y:� [Domry!(fy)Rx]]]:Then also chainA;RP 0. By (1) one has P 0a, contradicting SNA;Ra:() Assume SN<AR. Let a:A and suppose towards a contradictionthat chainA;RP and Pa. De�neP 0 � ��:��r:(�!�!�):[9b:A:Pb & (A;Rb) < (�; r)]:Then chain<P 0, by (2), and P 0AR, by (1) and (2), contradictingSN<AR.Step 4. A universal notation system in �UIn this step the second problem mentioned in Step 3 will be solved. TermsU and i will be constructed such that i faithfully embeds a pair (A;R)with A:n and R:(A!A!�) into U. Such a pair (U, i) is called a uni-versal notation system for orderings and plays the role of the naive setT = f(A;R) j R:A!A!�g:Proposition 5.5.19. There are terms U and i such that in �U1. ` U : �:2. ` i : [��:�:(�!�!�)!U]:3. The type f`faithfulness of the map i'g8�:�8r:(�!�!�)8�0:�8r0:(�0!�0!�)[i�r =L i�0r0!(�0; r) <� (�0; r0)]is inhabited.Proof. De�ne H � ��:�:[(�!�!�)!�];

174 H.P. BarendregtU � H!�;i � ��:��r:(�!�!�)�h:H:h�r:Then clearly one has in �UH : �;U : � and i : [��:�:(�!�!�)!(H!�)]:So we have 1 and 2. As to 3, we must show that in context�:�; r:(�!�!�); �0:�; r0:(�0!�0!�)the type i�r =L i�0r0!(�; r) <� (�0; r0)is inhabited. Now i�r =L i�0r0! �h:H:h�r =L �h:H:h�0r0! h�r =L h�0r0; for all h:H;! [(�; r) <� (�0; r0)] =L [(�0; r0) <� (�0; r0)];by taking h � ��:��s:(�!�!�):(�; s) <� (�0; r0):Since the right-hand side of the last equation is inhabited it follows that(�; r) <� (�0; r0):Step 5 The paradox in �UUsing U in i of Step 4 we now can formalize the informal paradox derivedin step 2.De�nition 5.5.20.1. On U de�ne the binary relation <i as follows. For u; u0:U letu <i u0 � 9�:�9r:(�!�!�)9�0:�9r0:(�0!�0!�):[u =L (i�r)&u0 =L (i�0r0)&Trans �r & Trans �0r0 &SN<(�; r) &SN<(�0; r0) & (�; r) < (�0; r0)]:2. On U de�ne the (unary) predicate I as follows. For u:U let

Lambda Calculi with Types 175Iu = 9�:�9r:(�!�!�):[u =L (i�r) & Trans �r & SN<(�; r)]:Note that closedU;<iI.3. The element u : U is de�ned by u � iU < i:Lemma 5.5.21. In context �:�; r:(�!�!�); �0:�; r0:(�0!�0!�) the fol-lowing types are inhabited.1. (i�r) <i (i�0r0)! (�; r) < (�0; r0):2. SN<(A;R)! SNU;<i(iAR):Proof. 1. Suppose (i�r) <i (i�0r0). Then there are �; s; �0; s0 of appro-priate type such thati�r =L i�s & i�0r0 =L i�0s0 & (�; s) < (�0; s0):By the faithfulness of i and the symmetry of =L it follows that(�; r) <� (�; s) < (�0; s0) <� (�0; r0)hence (�; r) < (�0; r0):2. Suppose SN<(A;R). If chainU;<iQ, then de�neP�r � Q(i�r):Then chain<P . Since SN<(A;R) we have :PAR. But then :Q(iAR).So we proved chainU;<iQ! :Q(iAR);i.e. SNU;<i(iAR):Corollary 5.5.22. The type8u:U:SNU;<iuis inhabited.

176 H.P. BarendregtProof. Let u:U and suppose towards a contradictionchainU;<iP & Pu:Then 9u0:U:(u0 <i u & Pu0):Now u0 <i u!9�:�9r:(�!�!�)[u =L (i�r) & SN<(�; r)]:Hence by (2) of the lemmaSNU;<i(i�r) =L SNU;<iu:But then, again using chainU;<iP , it follows that :(Pu). Contradiction.Lemma 5.5.23. Let A:�; R:(A!A!�) and assume TransAR. Then thefollowing type is inhabitedSN<(A;R)!8a:A:SN<(A;Ra):Proof. Applying 5.5.18(4) one hasSN<(A;R) ! 8b:A:SNA;Rb;! 8b:A:8a:A:SNA;(Ra)b; see below,! 8a:A:SN<(A;Ra):The implication SNA;Rb!SNA;(Ra)b is proved as follows. Let SNA;Rband assume towards a contradiction that chainA;(Ra)P and Pb. Then alsochainA;RP , contradicting SNA;Rb:Lemma 5.5.24.1. Let �:� and r:�!�!� and assume Trans�r & SN<(�; r). Thenthere are �+:� and r+:�+!�+!� such thatTrans �+r+ & SN<(�+; r+) & (�; r) < (�+; r+):2. 8v:UI9v+:UIv <i v+:

Lambda Calculi with Types 177Proof. 1. The construction is the one for representing data structuresin Section 5.4. De�ne�� � ��:�:�!(�!�)!�;F � �x:���:��1:��f :(�!�):fx;1� ��:��1:��f :(�!�):1;then 1:��:� and F :(�!��). Intuitively �� = �[f1g and F is thecanonical imbedding. Indeed, F is injective and1 is not in the rangeof F . In fact, in the given context one has(�a:��b:��p:(Fa =L Fb)�Q:(�!�):p(�x:��:x�?Q)) :(8a; b:�:(Fa =L Fb!a =L b);(�a:��p:(Fa =L 1):p(�x:��:x�?(�a:�:T))(�b:?:b)) :(8a:�:Fa 6=L 1);here T � ?!? stands for `true' and has (�b:?:b) as inhabitingproof. De�ne r�:��!��!� as the canonical extension of r to �+making1 larger than the elements of �:r� � �x:���y:��:[9a:�9b:�:rab & x =L Fa & y =L Fb] _[9a:�:x =L Fa & y =L 1]:Then Trans ��r�&SN<(��; r�) and (�; r) <�F (��; r�) withbounding element 1. This 1 is not yet in Dom�+; but one has(�; r) <F�F (���; r��) with bounding element F1 and therefore onecan take �+ = ��� and r+ = r��:2. If v = i�r, then take v+ = i�+r+:Proposition 5.5.25. The following type is inhabited:9u:UI8v:UI[SNU;<iv $ v <i u]:Proof. For u one can take u � (iU <i). In view of Corollary5.5.22 it issu�cient to show for v:U that fthe following types are inhabitedg:1. Iu,

178 H.P. Barendregt2. Iv!v <i u:As to 1, we know from Corollary 5.5.228u:U SNU;<iu!SN<U <i); by Proposition 5.5.18(4);!I(iU <i); since clearly Trans U <i;!Iu:As to 2, assume Iv. Then v =L (i�r) for some pair �; r with Trans�r &SN<(�; r):De�ne f � (�a:�:(i�ra)) : (�!U):Then for all a:� with Domra one hasfa = (i�ra) <i (i�r) = v;fby 5.5.18(1) one has (�; ra) < (�; r); use Lemma 5.5.23 and the de�nitionof <ig and similarly for all a; b:�arb ! (�; ra) < (�; rb);! i�ra <i i�rb; SN<(�; ra) & SN<(�; rb) since SN<(�; r);! fa <i fb:Therefore (�; r) <�f (U; <i); f on Domr is bounded by v. Since v <i v+one has Dom<iv. Therefore (�; r) <f (U; <i) and hence v =L (i�r) <i(iU <i) = u:Theorem 5.5.26 (Girard's paradox). The type ? is inhabited in �Uand hence in ��:Proof. Note that Proposition 5.5.25 is in contradiction with Corollary5.5.15, since I is closed in U; <i. This shows that ? is inhabited in �U , soa fortiori in ��:In Coquand (1989b) another term inhabiting ? is constructed. Thisproof can be carried out in the system �U� which is the PTS de�ned asfollows: �U� S �;�;�A � : �;� : �R (�; �); (�; �); (�;�); (�;�)The proof is based on a category theoretic derivation of a contradictiondue to Reynolds (1984). Note that �U� = �HOL+(�;�):In the presence of so-called strong �s a simpler formalization of the settheoretic paradox 5.5.10 can be formalized, see e.g. Coquand (1986) orJacobs (1989).

Lambda Calculi with Types 179Fully formalized proof of Girard's paradoxAs a �nal souvenir we now show the reader the full term inhabiting ?.The term was presented to us by Leen Helmink who constructed it on aninteractive proof development system based on AUTOMATH for arbitraryPTSs. The treatment on his system found an error in an earlier versionof this subsection. This kind of use has always been the aim of de Bruijn,who conceived AUTOMATH as a proof checker.Following the series of intermediate lemmas in this subsection, it becamepragmatic to deal with de�nitions as follows. If we need an expression likeC � ���X | X��� (1)where X is de�ned as M of type A, then we do not �ll in the (possiblylarge) term M for X, but write(�X:A:���X | X���)M: (2)This in order to keep expresions manageable. This de�nition mechanismis also used extensively in functional programming languages like ML.Helmink (1991) shows that if all de�nitions given as �-redexes are con-tracted, then the length of the term is multiplied by a factor 72 (so thatthe term will occupy 215 pages, that is more than this chapter).Due to the presence of depending types, expressions like (2) are notalways legal in a PTS, even if (1) is. fFor example working in �U we oftenneeded the expression �!� for the type of predicates on �. We want tode�ne Pred =def ��:�:�!�;and use it as follows:[�Pred:(�!�):[�R:(Pred �) : : :](�x:�:?)���](��:�:�!�): (3)This is illegal for two reasons. First of all �!� is not allowed in �U . Sec-ondly, the subterm [�R:(Pred �) : : :](�x:�:?) is ill formed, since (�x:�:?)is `not yet' of type (Pred �).g These phenomena were taken into accountby de Bruijn and in the AUTOMATH languages expressions like (3) areallowed. The term that follows is for these reasons only legal in a liberalversion of �U .Glancing over the next pages, the attentive reader that has workedthrough the proofs in this subsection may experience a free association ofthe whirling details.

180 H.P. Barendregt

Lambda Calculi with Types 181

182 H.P. Barendregt

Lambda Calculi with Types 183

184 H.P. BarendregtReferencesvan Bakel, S.J.[1991] Complete restrictions of the intersection type discipline. TheoreticalComputer Science 102, 135-163.Barendregt, H.P.[1984] The lambda calculus: its syntax and semantics, revised edition,Studies in Logic and the Foundations of Mathematics,North-Holland.[1990] Functional programming and lambda calculus, in: van Leeuwen(1990) vol. II, 321{364.[1991] Introduction to generalised type systems, to appear in J. FunctionalProgramming.Barendregt, H.P., M. Coppo and M. Dezani-Ciancaglini[1983] A �lter lambda model and the completeness of type assignment, J.Symbolic Logic 48 (4), 931{940.Barendregt, H.P. and K. Hemerik[1990] Types in lambda calculi and programming languages, in: EuropeanSymposium on Programming, ed. N. Jones, Lecture Notes inComputer Science 432, Springer, 1{36.Barendregt, H.P. and W.J.M. Dekkers[199-] Typed lambda calculi , to appear.Barendregt, H.P. and A. Rezus[1983] Semantics of classical AUTOMATH and related systems,Information and Control 59, 127{147.Barendsen, E.[1989] Representation of logic, data types and recursive functions in typedlambda calculi, Master's Thesis, Dept. Computer Science, CatholicUniversity, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.Barendsen, E. and J.H. Geuvers[1989] Conservativity of �P over PRED, ms. Dept. Computer Science,University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, TheNetherlands.van Benthem Jutting, L.S.[1989] Personal communication.[199-] Typing in pure type systems, to appear in Information andComputationBerardi, S.[1988] Towards a mathematical analysis of the Coquand-Huet calculus ofconstructions and the other systems in Barendregt's cube, Dept.Computer Science, Carnegie-Mellon University and DipartimentoMatematica, Universit�a di Torino.[1988a] Personal communication.[1989] Personal communication.[1990] Type dependence and constructive mathematics, Ph.D. thesis,Dipartimento Matematica, Universit�a di Torino.

Lambda Calculi with Types 185B�ohm, C. and A. Berarducci[1985] Automatic synthesis of typed �-programs on term algebras, Theor.Comput. Sci. 39, 135{154.de Bruijn, N.G.[1970] The mathematical language AUTOMATH, its usage and some of itsextensions, in: Symposium on automatic demonstration (IRIA,Versailles 1968), Lecture Notes in Mathematics 125, Springer, 29{61.[1980] A survey of the AUTOMATH project, in: Hindley and Seldin(1980), 580{606.Cardelli, L. and P. Wegner[1985] On understanding types, data abstraction and polymorphism, ACMComp. Surveys 17-4.Church, A.[1932/33]) A set of postulates for the foundation of logic, Annals ofMathematics (2) 33, 346{366 and 34, 839{864.[1940] A formulation of the simple theory of types, J. Symbolic Logic 5,56{68.[1941] The calculi of lambda conversion, Princeton University Press.Coppo, M.[1985] A completeness theorem for recursively de�ned types, in:Proceedings of the 12th Int. Coll. on Automata and Programming,Lecture Notes in Computer Science 432, Springer, 120{129Coppo, M. and F. Cardone[1991] Type inference with recursive types: syntax and semantics,Information and Computation 92 (1), 48{80.Coppo, M., M. Dezani-Ciancaglini, G. Longo and F. Honsell[1984] Extended type structures and �lter lambda models, in: LogicColloquium 82 , eds. G. Lolli, G. Longo and A. Marcja, Studies inLogic and the Foundations of Mathematics, North Holland, 241{262.Coppo, M., M. Dezani-Ciancaglini and B. Venneri[1981] Functional characters of solvable terms, Zeitschrift f. MathematischeLogik u. Grundlagen der Mathematik 27, 45{58.Coppo, M., M. Dezani-Ciancaglini and M. Zacchi[1987] Type Theories, normal forms and D1 lambda models, Informationand Computation 72, 85{116.Coquand, Th.[1985] Une th�eorie des constructions, Th�ese de troisi�eme cycle, Universit�eParis VII.[1986] An analysis of Girard's paradox, in: Proceedings of the FirstSymposium of Logic in Computer Science, IEEE, 227{236.[1989] Metamathematical investigation of a calculus of constructions, in:Odifreddi (1990), 91{122.[1989] Reynolds paradox with the Type : Type axiom, in: The calculus ofconstructions, Documentation and users's guide, version 4.10,Rapports Techniques 110, INRIA, B.P. 105, 78153 Le ChesnayCedex, France, 4 unnumbered pages at the end of the report.

186 H.P. BarendregtCoquand, Th. and G. Huet[1988] The calculus of constructions, Information and Computation 76,95{120.Curry, H.B.[1934] Functionality in combinatory logic, Proc. Nat. Acad. Science USA20, 584{590.[1969] Modi�ed basic functionality in combinatory logic, Dialectica 23,83{92.Curry, H.B. and R. Feys[1958] Combinatory Logic, Vol. I, Studies in Logic and the Foundations ofMathematics, North Holland.Curry, H.B., J.R. Hindley and J.P. Seldin[1972] Combinatory Logic, Vol. II, Studies in Logic and the Foundations ofMathematics, North Holland.van Daalen, D.T.[1980] The language theory of AUTOMATH , Ph.D. thesis, TechnicalUniversity Eindhoven, The Netherlands.van Dalen, D.[1983] Logic and structure, 2nd edition, Springer.Davis, M.[1958] Computability and unsolvability, McGraw-Hill.Dezani-Ciancaglini, M. and I. Margaria[1987] Polymorphic types, �xed-point combinators and continuous lambdamodels, in: IFIP Conference on Formal Description of ProgrammingConcepts III, Ed. M. Wirsing, North-Holland, 425{450.Fitch, F.B.[1952] Symbolic logic, an introduction, Ronald Press, New York.[1974] Elements of combinatory logic, Yale University Press, New Heaven.Fokkinga, M.M.[1987] Programming languages concepts - the lambda calculus approach,in: Essays on concepts, formalism, and tools, eds. P.R.J. Asveld andA. Nijholt, CWI tracts 42, Box 4079, 1009 AB Amsterdam, TheNetherlands, 129{162.Fujita, K. and Tonino, H.[1991] Logical systems are generalised type systems, ms. TechnicalUniversity Delft, Faculty of Mathematics and Informatics,Julianalaan 132, 2628 BL Delft, The Netherlands.Gandy, R.O.[1980] Proofs of strong normalisation, in: Hindley and Seldin (1980),457-478.

Lambda Calculi with Types 187Geuvers, J.H.[1988] The interpretation of logics in type systems, Master thesis, Dept.Computer Science, Catholic University, Toernooiveld 1, 6525 EDNijmegen, The Netherlands.[1989] Theory of constructions is not conservative over higher order logic,ms. Dept. Computer Science, Catholic University, Toernooiveld 1,6525 ED Nijmegen, The Netherlands.[1990] Type systems for higher order logic, ms. Dept. Computer Science,Catholic University, Toernooiveld 1, 6525 ED Nijmegen, TheNetherlands.Geuvers, H. and M.J. Nederhof[1991] A modular proof of strong normalisation for the calculus ofconstructions, J. Functional Programming, 1 (2), 155{189.Giannini, P. and S. Ronchi della Roca[1988] Characterisation of typings in polymorphic type discipline, in:Proceedings of the Third Symposium of Logic in Computer Science,IEEE, 61{70.Girard, J.-Y.[1972] Interpr�etation foctionelle et �elimination des coupures dansl'arithm�etique d'ordre sup�erieur , Ph.D. thesis, Universit�e Paris VII.Girard, J.-Y., Y. Lafont and P. Taylor[1989] Proofs and types, Tracts in Theoretical Computer Science 7,Cambridge University Press.Harper, R., F. Honsell and G. Plotkin[1987] A framework for de�ning logics, in: Proceedings Second Symposiumof Logic in Computer Science (Ithaca, N.Y.), IEEE, WashingtonDC, 194{204.Helmink, L.[1991] Girard's paradox in �U, ms. Philips Research Laboratories, Box80.000, 5600 JA Eindhoven, The Netherlands.Henglein, F.[1990] A lower bound for full polymorphic type inference: Girard-Reynoldstypability is DEXPTIME-hard, Report RUU-CS-90-14, Dept.Computer Science, Utrecht University, The Netherlands.Hindley, J.R.[1969] The principal typescheme of an object in combinatory logic, in:Trans. Amer. Math. Soc. 146, 29{60.[1983] The simple semantics for Coppo-Dezani-Sall�e types, in:International Symposium on Programming, Eds. M. Dezani-Ciancaglini and H. Montanari, Lecture Notes in Computer Science137, Springer, Berlin, 212{226.Hindley, J.R. and Seldin, J.P.[1980] To H.B. Curry: Essays on combinatory logic, lambda calculus andformalism, Academic Press.[1986] Introduction to Combinators and �-calculus, London MathematicalSociety Student Texts 1, Cambridge University Press.

188 H.P. BarendregtHofstadter, D.[1979] G�odel Escher Bach: an eternal golden braid , Harvester Press.Howard, W.A.[1980] The formulae-as-types notion of construction, in: Hindley andSeldin (1980), 479{490.Howard, W. A., G. Kreisel, R. J. Parikh and W. W. Tait[1963] Stanford Report, unpublished notes.Howe, D.[1987] The computational behaviour of Girard's paradox, in: Proceedings ofthe Second Symposium of Logic in Computer Science (Ithaca, N.Y.),IEEE, 205{214.Jacobs, B.P.F.[1989] The inconsistency of higher order extensions of Martin-L�of's typetheory, J. Philosophical Logic 18, 399{422.[1991] Categorical type theory, Ph.D. thesis, Dept. Computer Science,Catholic University, Toernooiveld 1, 6525 ED Nijmegen, TheNetherlands.Jacobs, B.P.F., I. Margeria and M. Zacchi[199-] Filter models with polymorphic types, to appear in TheoreticalComputer Science.Kfoury, A.J., J. Tiuryn and P. Urzyczyn[1990] ML typability is DEXPTIME-complete, in: CAAP '90, ed.A. Arnold, in: Lecture Notes in Computer Science 431, Springer,206{220.Kleene, S.C.[1936] �-de�nability and recursiveness, Duke Math. J. 2, 340{353.Kleene, S.C. and J.B. Rosser[1935] The inconsistency of certain formal logics, Annals Math. (2) 36,630{636.Klop, J.-W.[1980] Combinatory reduction systems, Ph.D. thesis, Utrecht University;CWI Tract, Box 4079, 1009 AB Amsterdam, The Netherlands.Krivine, J. L.[1990] Lambda-calcul, types et mod�eles, Masson, Paris.Lambek, J. and P.J. Scott[1986] Introduction to higher order categorical logic, Cambridge Studies inAdvanced Mathematics, Cambridge University Press, Cambridge.L�auchli, H.[1970] An abstract notion of realizability for which intuitionistic predicatecalculus is complete, in: Intuitionism and Proof Theory, eds.A. Kino et al., Studies in Logic and the Foundations ofMathematics, North-Holland, 227{234.Leeuwen, J. van[1990] Handbook of Theoretical Computer Science, Elsevier/MIT Press.

Lambda Calculi with Types 189Leivant, D.[1983] Reasoning about functional programs and complexity classesassociated with type disciplines, 24th IEEE symposium onfoundations of computer science, 460{469.[1990] Contracting proofs to programs, in: Odifreddi (1990), 279{327L�ob, M.[1976] Embedding �rst order predicate logic in fragments of intuitionisticlogic, J. Symbolic Logic 41 (4), 705{718.Longo, G. and E. Moggi[1988] Constructive natural deduction and its modest interpretation, ReportCMU-CS-88-131, Carnegie Mellon University, Pittsburgh, USA.Luo, Z.[1990] An extended calculus of constructions, Ph.D. thesis, University ofEdinburgh.MacQueen, D., G.D. Plotkin and R. Sethi[1984] An ideal model for recursive polymorphic types, in: 11th ACMSymposium on Principles of Programming Languages, ACM,165{174.Malecki, S.[1989] Private communication.Martin-L�of, P.[1971] A construction of the provable wellorderings of the theory of species,ms. Mathematical Institute, University of Stockholm, Sweden, 14 pp.[1984] Intuitionistic type theory, Bibliopolis, Napoli.Mendelson, E.[1987] Introduction to mathematical logic, third edition, Wadsworth andBrooks/Cole.Mendler, N.P.[1987] Inductive types and type constraints in second-order lambdacalculus, in: Proceedings of the Second Symposium of Logic inComputer Science (Ithaca, N.Y.), IEEE, 30{36.Meyer, A.R.[1988] Personal communication.Milner, R.[1978] A theory of type polymorphism in programming, J. Computer andSystems Sciences 17, 348{375.[1984] A proposal for standard ML, in: Proceedings of the ACM Symposiumon LISP and Functional Programming (Austin), 184{197.Mitchell, J.C.[1984] Type inference and type containment, in: Proc. Internat. Symp. onSemantics of Data Types, ed. G. Kahn, Lecture Notes in ComputerScience 173, Springer, 257{277.[1988] Polymorphic type inference and containment, Inform. and Comput.76 (2,3), 211{249.[1990] Type systems for programming languages, in: van Leeuwen(1990), 365{458.

190 H.P. BarendregtMirimanoff, D.[1917] Les antinomies de Russell et de Burali-Forti et le probl�emefondamental de la th�eorie des ensembles, L' EnseignementMath�ematique 19, 37{52Mostowski, A.[1951] On the rules of proof in the pure functional calculus of �rst order, J.Symbolic Logic 16, 107{111.Nederpelt, R.P.[1973] Strong normalization in a typed lambda calculus with lambdastructured types, Ph.D. thesis, Eindhoven Technological University,The Netherlands.Nerode, A. and P. Odifreddi[199-] Lambda calculi and constructive logics, to appear.Odifreddi, P.[1990] Logic in Computer Science, Academic Press, New York.Pavlovi�c, D.[1990] Predicates and �brations, Ph.D. Thesis, Department ofmathematics, University of Utrecht, Budapestlaan 6, 3508 TAUtrecht, The Netherlands.Peremans, W.[1949] Een opmerking over intuitionistische logica, Report ZW-16, CWI,Box 4079, 1009 AB Amsterdam, The Netherlands.Pfenning, F.[1988] Partial polymorphic type inference and higher order uni�cation, in:Proc. ACM Conference on LISP and Functional Programming,153{163.Prawitz, D.[1965] Natural deduction: a proof-theoretical study, Almqvist and Wiksell,Stockholm.Quine, W. V. O.[1963] Set theory and its logics, Cambridge, Massachussets.Renardel de Lavalette, G.R.[199-] Strictness analysis via abstract interpretation for recursively de�nedtypes, to appear in: Information and Computation.Reynolds, J.C.[1974] Towards a theory of type structure, in: Mathematical Foundations ofSoftware Development, eds. Ehring et al., Lecture Notes inComputer Science 19, Springer, 408{ 425.[1984] Polymorphism is not settheoretic, in: Semantics of data types,Lecture Notes in Computer Science 173, Springer, Berlin, 145{156.[1985] Three approaches to type theory, in: Lecture Notes in ComputerScience 185, Springer, Berlin, 145{146.Robinson, J.A.[1965] A machine oriented logic based on the resolution principle, J. ACM.12 (1), 23{41.

Lambda Calculi with Types 191Sch�onfinkel, M.[1924] �Uber die Bausteinen der mathematische Logik, Math. Ann. 92,305{316.Schwichtenberg, H.[1977] Proof theory: applications of cut-elimination, in: Handbook ofMathematical Logic, ed. J. Barwise, North-Holland, 867{895.Smullyan, R.[1985] To mock a mockingbird , Knopf, New York.Scott, D.S.[1976] Data types as lattices, SIAM J. Comput. 5, 522{587.Stenlund, S.[1972] Combinators, �-terms and proof theory, D. Reidel, Dordrecht.Swaen, M.D.G.[1989] Weak and strong sum-elimination in intuitionistic type theory,Ph.D. thesis, University of Amsterdam.Tait, W.W.[1967] Intensional interpretation of functionals of �nite type I, J. SymbolicLogic 32, 198{212.[1975] A realizability interpretation of the theory of species, in: LogicColloquium (Boston), ed. R. Parikh, Lecture Notes in Mathematics453, Springer, 240{251.Terlouw, J.[1982] On de�nition trees of ordinal recursive functionals: reduction of therecursion orders by means of type level raising, J. Symbolic Logic 47(2), 395{402.[1989] Een nadere bewijstheoretische analyse van GSTT's, ms. Dept.Computer Science, University of Nijmegen, Toernooiveld 1, 6525 EDNijmegen, The Netherlands.Troelstra, A.S.[1973] Metamathematical investigations of intuitionistic arithmetic andanalysis, Lecture Notes in Mathematics 344, Springer.Turing, A.M.[1937] Computability and �-de�nability, J. Symbolic Logic 2, 153{163.de Vrijer, R.[1975] Big trees in a �-calculus with �-expressions as types, in: �-Calculusand Computer Science Theory, ed. C. B�ohm, Lecture Notes inComputer Science 37, Springer, 252{271Wadsworth, C.P.[1971] Semantics and pragmatics of lambda calculus, Ph.D. thesis, OxfordUniversity.Wand, M.[1987] A simple algorithm and proof for type inference, Fund. InformaticaeX, 115{122.

192 H.P. BarendregtWhitehead, A.N. and B. Russell[1910] Principia mathematica, Cambridge University Press.Zwicker, W.[1987] Playing games with games: the hypergame paradox, in: Amer. Math.Monthly, 507{514.

