Lo anterior refiere a la tabla de certeza de una fbc. Por ejemplo: para la fbc $(p \lor q) \to r$ (cada valuación es un renglón):

p	q	r	$(p \lor q)$	$(p \lor q) \to$
V	V	V	V	V
V	V	F	V	F
V	F	V	V	V
V	F	F	V	F
F	V	V	V	V
F	V	V	V	V
F	V	F	V	F
F	F	V	F	V
F	F	F	F	V

Además, se dice que una f
bc $\mathcal A$ es una tautologíasi para toda valuación
 $v,\,v(\mathcal A)=V,$ y que una f
bc $\mathcal A$ es una contradicciónsi para toda valuación
 $v,\,v(\mathcal A)=F.$

 ${\bf Ejercicio~3~~Comprobar~si~las~siguientes~fbc~son~tautologías:}$

- 1. $\neg \neg p \rightarrow p$
- 2. $p \rightarrow \neg \neg p$
- 3. $(p \to q) \to (\neg q \to \neg p)$
- 4. $(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$
- 5. $(p \rightarrow q) \rightarrow ((p \rightarrow \neg q) \rightarrow \neg p)$

Observación 1

- Aunque las fbc anteriores usan solamente proposiciones el resultado obtenido puede generalizarse. Esto es, p → ¬¬p no cambiaría su valor de certeza al sustituir por p cualquier otra fbc, digamos A, A → ¬¬A. Esto es debido a que en la tabla, finalmente A sólo podrá, como p, tomar uno de dos valores, V o F, y obtener el resultado final al igual que con p. Así las fbc del ejercicio 3 se cumplen en general: ¬¬A → A, A → ¬¬A, etc.
- 2. Algunas fbc pueden ser reescritas en virtud del teorema de la deducción. Por ejemplo: $(p \to q) \to (\neg q \to \neg p)$, como $(p \to q) \vDash (\neg q \to \neg p)$: a partir de $(p \to q)$ podemos inferir $\neg q \to \neg p$. O bien, $(p \to q)$, $\neg q \vDash \neg p$: si contamos con las premisas $(p \to q)$ y $\neg q$, podemos inferir $\neg p$.

La última fbc del ejercicio 3 expresa el esquema conocido como reducci'on al absurdo: Si a partir de p obtenemos q, pero también $\neg q$, entonces concluimos $\neg p$, esto es si suponemos p y llegamos a que q y no q entonces p es falso. Esta es justamente la primera técnica de demostración que vamos a presentar.

1.1.1. Contradicción

Para ilustrar esta técnica de demostración haremos antes algunas definiciones. Un número q se llama racional si hay un múltiplo entero de él que es entero: $\exists a \in \mathbb{Z}, a \neq 0 \colon aq = b \in \mathbb{Z},$ es decir q = b/a es una fracción. En caso contrario se dice que q es irracional. Claramente tenemos muchos enteros que cumplen con la definición de racional: si b = qa entonces $mb = qma, ma, mb \in \mathbb{Z}$. Convenimos en tomar el múltiplo menor de q que satisfaga la condición antedicha. También se dice que los enteros que definen el racional no tienen factores comunes diferentes a 1 o -1. El siguiente es un ejemplo enunciado por Euclides (hacia 330 a.n.e.).

Teorema 1 $\sqrt{2}$ es irracional.

Demostración. Supongamos que $\sqrt{2}$ es racional. Esto significa $\sqrt{2}=b/a$ con $a,b\in\mathbb{Z}$ sin factores comunes. Entonces, podemos escribir $2=b^2/a^2,\ 2a^2=b^2,\ y\ b$ debe ser par. De esta forma, $b=2c^2$ y, por tanto, $2a^2=4c^2,\ a^2=2c^2$. Luego, a y b son pares, lo cual es una contradicción. \square

En la demostración anterior hemos usado la tautología de reducción al absurdo: $(p \to q), (p \to \neg q) \vDash \neg p$, tomando como $p = "\sqrt{2}$ es racional", $q = "\sqrt{2} = b/a$ con $a \neq b$ sin factores comunes", $\neg q = "a \neq b$ son pares", $\forall p = "\sqrt{2}$ es irracional".

Antes de ver otro ejemplo recordaremos algunas definiciones. Un número es llamado primo si tiene exactamente dos divisores. Para un primo p los divisores aludidos son p y 1, y dicha propiedad se escribe: p|p y 1|p. Observe que 1 no es primo. Con la relación de divisibilidad entre dos enteros a y b, a|b estamos indicando que b mod a=0. Esta relación tiene las siguientes propiedades: i) si a|b y a|c entonces a|(b+c) y a|(b-c), ii) si a|b y b|c entonces a|c.

Teorema 2 Hay una cantidad infinita de números primos.

Demostración. Supongamos que los primos son $P=\{2,3,5,\ldots,p_k\}$. Claramente el número $n=(2\cdot\ldots\cdot p_k)+1>p_k$ y, por tanto, debe ser divisible por algún x>1 y x< n (de lo contrario n sería primo y tendríamos una contradicción) . Sea m el menor número tal que m|n. m debe ser primo (de no serlo, habría un p< m que divide a m y, por tanto, m no sería el menor divisor de n). Como $m\in P$, m|(n-1), pero esto es imposible puesto que m|n. \square

La demostración anterior se hace por contradicción y además dentro de ella se hace una construcción que se justifica también por contradicción, las demostraciones referidas aparecen entre paréntesis.

Ejercicio 4 Demostrar las siguientes afirmaciones:

- 1. Para todo número primo mayor que dos su antecesor es par.
- 2. Si $c^3 = 5$ entonces c es irracional.
- El cubo de el mayor de tres enteros consecutivos no puede ser igual a la suma del cubo de los otros dos.
- 4. La suma de los cuadrados de tres enteros consecutivos no puede tener residuo -1 al ser dividida por 12.

1.1.2. Inducción

El Principio de Inducción Matemática (PIM) es una característica de los números naturales. Ésta surge en la construcción intuitiva de tales números, al aprender a contar: "la numeración empieza con 1z "siempre podemos obtener un número mayor sumando 1 al que tenemos". Más formalmente se dice que el conjunto de números naturales cumple la propiedad \mathcal{A} si 1 la cumple, y si cualquier n cumple \mathcal{A} también lo hace $n+1\colon \mathcal{A}(1),$ y $[\mathcal{A}(n)\to\mathcal{A}(n+1)]$. Cuando deseamos probar que una propiedad es cumplida por todos los elementos de \mathbb{N} , basta demostrar dos cosas: (base:) 1 satisface dicha propiedad y, $(paso\ inductivo:)$ suponiendo que $n\in\mathbb{N}$ la satisface $(hipótesis\ de\ inducción),\ n+1$ también satisface la propiedad. Aclaremos lo anterior con un ejemplo.

Proposición 1 Para todo natural se cumple $\log n < n$.

Demostrsción. Por inducción. Base: $\log 1 = 0 < 1$.

Inducción: Debe demostrarse que si $\log n < n$ entonces $\log(n+1) < n+1$. Puesto que \log es una función creciente al igual que su inversa: $n < 2^n$, por tanto, $(n+1) < 2^n+1$, pero es también cierto que $2^n+1 < 2^n+2^n$. Resumiendo: $(n+1) < 2^{n+1}$ lo cual equivale a decir que $\log(n+1) < n+1$. \square

Es común establecer la validez de una propiedad \mathcal{A} solamente para una parte de los números naturales, esto es: $\mathcal{A}(n)$ para todo $n \geq n_0$, lo cual es equivalente a decir que la propiedad $\mathcal{B}(n)$ se cumple para todo $n \in \mathbb{N}$, donde $\mathcal{B}(n) \doteq \mathcal{A}(n+n_0-1)$. Así debe demostrarse que $\mathcal{A}(n_0)$ (base) y $\mathcal{A}(n) \to \mathcal{A}(n+1)$ para $n \geq n_0$ (inducción). El siguiente ejemplo muestra la utilidad de esta forma del PIM.

Proposición 2 Para todo $n \ge 5$, $2^n > n^2$.

Demostración. Base: 32>25. Inducción: La hipótesis de inducción es $\mathcal{A}(n-1)=2^{n-1}>(n-1)^2$. Parte de $\mathcal{A}(n)$ es: $2^n=2\cdot 2^{n-1}$. Por hipótesis de inducción $2^{n-1}>n^2-2n+1$, de aquí $2^n>2n^2-4n+2=n^2+(n-2)^2-2>n^2$, para $n\geq 5$. \square

Ejercicio 5

1. Diga para qué valores no se cumple $2^n \le n^3$.