HOMEWORK FOR 3RD. EXAM

C. BAUTISTA

(1) Consider the following context-free grammar G:

$$S \rightarrow ABS \mid AB$$

 $A \rightarrow aA \mid a$
 $B \rightarrow bA$

Which of the following strins are in L(G) and which are not? Provide derivations for those that are in L(G) and reasons for those that are not.

- (a) aabaab(b) aaaaba
- (c) aabbaa
- (d) abaaba
- (2) Give a context-free grammar for the set PAREN₂ of balanced strings of parentheses of two types () and []. For example, ([()[]]([]) ∈ PAREN₂, but [(]) ∉ PAREN₂. Use the following inductive definition:PAREN₂ is the smallest set of strings such that
 - (a) $\epsilon \in \text{PAREN}_2$;
 - (b) if $x \in PAREN_2$, then so are (x) and [x];
 - (c) if x and y are both in PAREN₂, then so is xy.

(*Hint:* Your grammar should closely model the inductive definition of the set.)

(3) Give a grammar with no ϵ - or unit productions generating the set $L(G) - \{\epsilon\}$, where G is the grammar

$$S \to aSbb \mid T$$
$$T \to bTaa \mid S \mid \epsilon$$

- (4) Give grammars in Chomsky normal form for the following context-free languages.
 - (a) $\{a^n b^{2n} c^k \mid k, n \ge 1\}$
 - (b) $\{a^n b^k a^n \mid k, n \ge 1\}$
- (5) Prove that the set

$$PRIMES = \{a^p \mid p \text{ is prime}\}\$$

is not context-free. (*Hint*: $\forall k$ integer $\exists p$ prime such that $p \geq k$).

(6) Is the following language regular, context-free or not context-free? Give a justification.

 $\{a^{2^n} \mid n \ge 0\}$

References

[1] Dexter C. Kozen, Automata Theory and Computability, Springer, 1997.